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Abstract

The kraft pulp bleaching process presents significant operational challenges due to
its inherent non-linear reactions and unpredictable delays, complicating effective
control and optimization. This thesis aims to improve the efficiency of the process
through modeling it, and lays the groundwork for a new and improved automatic
model-based control system. It explores a way of handling the varying delay by
tracking the pulp throughout the process. This enables modeling of the chemical
reactions using parameterized static models, fitted to existing production data. The
models are used to create a decision support system to predict the future pulp quality
from the bleaching process. The system showcases the possibilities of using model-
based control to increase the efficiency of the plant. The pulp tracking also enables
an evaluation of the current process, since it links input data to output data for the
process.
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1
Introduction

This is a master thesis conducted at the Karlsborg Mill in northern Sweden during
the spring of 2024, as the last part of studies at the Faculty of Engineering at Lund
University.

1.1 Purpose

Every day, we interact with various forms of paper, commonly white. The color
is not by chance. The natural color of wood pulp, the primary material for paper,
is brown, necessitating bleaching not only for printing reasons but also to improve
structural integrity by removing particles. At the Karlsborg mill in northern Swe-
den alone, the production of bleached pulp reaches 335 kilotons annually [Billerud,
2024]. Given the scale, even minor reductions of the chemicals used in bleaching
could significantly impact both economic and environmental aspects. This thesis
explores the potential of improving bleaching efficiency through enhanced process
control, specifically through modeling to predict pulp bleaching outcomes.

1.2 Aims of this study

• Investigate if the Karlsborg plant’s bleaching process is suitable for modeling.

• Find models for the relationships between input and output variables for the
bleaching process.

• Extend the models to handle varying rates of production.

• Improve the understanding of the bleaching process at the plant and find pos-
sible ways of improvement.

9



Chapter 1. Introduction

1.3 Earlier work

A challenge when attempting to model a pulp bleaching process is how to handle
the bleaching plant’s varying production rate, since it in turn brings a varying delay
time for the process. Knowing the delay time is crucial to be able to model an
input to an output later in time. Earlier implementations of model-based control
strategies could be found to either use constant delays, based on a few set production
rates, or to implement a tracking program for the flow of the pulp in the process.
For the constant delay implementations, a common approach was to use first-order
transfer function models with constant delay to describe the relations between the
parameters in the system. Examples of this are [Mori et al., 2014], [de Oliveira,
2022]. For the other approach, where the delay modeling is done separately using a
plug flow program, polynomial models were used. [Flisberg and Rönnqvist, 2007].

Methods to find the delay were also investigated, in [Mori et al., 2014], [de
Oliveira, 2022], the first order models are found through system identification,
where bump tests are performed on the bleaching process. A bump test means
changing some input to the process in a controlled way, and then observing the
resulting output. It can reveal different system characteristics, including the system
delay. The drawback of bump tests is that they often affect the production quality
negatively, making them expensive. Less invasive methods were also investigated.
In another master thesis, [Dahlbäck, 2020], advanced methods like neural networks,
but also simpler like cross correlation were tested. The conclusions were that it is
difficult to employ advanced methods and that the results from these differ from the
manual calculations for the delay that they did in the thesis.

1.4 Contributions and thesis structure

The master thesis begins by describing the pulp bleaching process, and configura-
tions specific to the Karlsborg mill. This is presented in Chapter 2. Next up is in-
vestigating ways of modeling. With the earlier implementations in mind, the initial
exploration used first-order with constant delay models. Since the production rate
varied quite a lot, finding larger amounts of data from constant production proved
difficult. Doing bump tests were also avoided, due to the high costs of running the
production inefficiently.

The drawbacks of using a constant production rate led to the development of a
pulp tracking program. The concept was inspired by [Flisberg and Rönnqvist, 2007],
but with a new implementation, due to the limited amount of information about their
program design. The pulp tracking program enabled creating datasets that linked in-
put data to output data for the process. The program is described in Chapter 3. Based
on the properties of the bleaching process, it was decided that the bleaching in a
stage could be modeled as a static amplification. This enabled using parametrized
polynomial models for the bleaching process, together with the input-output data-

10



1.5 Scope

pairs that the pulp tracking program generated. The parametrized model structure
is described in Chapter 4. The parametrized models, with coefficients trained on
process data, were evaluated in Chapter 5. They could then be used in a decision
support system, described in Chapter 6. The system was constructed with the pur-
pose of guiding the process operators to which bleaching chemical dosages they
should set for the process to achieve a desired bleaching result.

In addition to the decision support system, the constructed datasets of input-
output pairs also brought new possibilities of evaluating the current control of the
process. This was since, before the program, the input data could not be linked to the
output data due to the varying delay. The evaluation is described in Chapter 7. The
thesis also contains a discussion in Chapter 8, where the limitations of the imple-
mentation are discussed, and some reflections on future work. In the end, Chapter
9, there are some conclusions.

1.5 Scope

In order to constrain the workload of this thesis, the scope was limited to:

• The bleaching process contains two types of stages, chlorine dioxide based
D-stages, and alkali based E-stages. The modeling focus was only on the D-
stages, since they had better data and were deemed more important.

• Only existing data was used, no new data was created for this thesis.
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2
The bleaching process

This chapter describes the Karlsborg mill’s bleaching plant, the chemical reactions
involved and the control of the process.

2.1 Introduction

Kraft pulp
Kraft pulp is created through a high-pressure cooking process. Small chips of wood
are put into a tank and alkali is added. The pressure and temperature are then raised
through the introduction of steam, which causes the lignin in the chips to dissolve
from the fibers and create pulp. The cooking process creates chromophoric groups
in the lignin, turning the pulp brown. Through the washing of the pulp, most of the
lignin can be removed, but what is left needs to be bleached and further extracted to
achieve a white pulp [Kassberg, 1996].

Process configuration
The specific configurations of pulp bleaching vary from plant to plant, as there are
many ways to achieve the desired result. The general components, chemicals, sen-
sors, and techniques are the same though. The difference from plant to plant is
mainly in which order and quantity they are installed or used. In this chapter, the
process is described as it is implemented at the Karlsborg plant. Details about the
specific configuration are sourced from operators and plant schematics, referred
to as [Process knowledge 2024], while components and concepts general to pulp
bleaching are referred to with each individual source. A schematic of the process
can be found in Figure 2.1, along with some terminology in Table 2.1.
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2.1 Introduction

Table 2.1 Bleaching stage definitions [Kassberg, 1996].

Symbol Definition

D Chlorine Dioxide (ClO2) stage
EOP Sodium Hydroxide (E), Oxygen (O), Hydrogen Peroxide (P) stage
E Sodium Hydroxide (E) stage

Process overview

The bleaching process begins once the washed pulp exits the cooking stage. The
first treatment is with pure oxygen, in a stage known as oxygen delignification,
which reduces the lignin content in the pulp, the thesis does not address this part.
Subsequently, the pulp enters the bleaching plant, where it undergoes a series of
stages:

1. D0 Stage: The initial delignifying stage with Chlorine Dioxide (ClO2), which
oxidizes the lignin. The effectiveness of this stage is influenced by tempera-
ture, pH, and ClO2 concentration. Stage duration around 1 hour.

2. EOP Stage: This stage uses Sodium Hydroxide, Oxygen, and Hydrogen Per-
oxide to further oxidize the lignin and dissolve the remnants from the D0
stage. Stage duration around 2 hours.

3. D1 Stage: Continues the bleaching process with another Chlorine Dioxide
treatment. D1 and E2 stage duration together is around 3 hours.

4. E2 Stage: An Alkali Extraction stage that dissolves the chlorine dioxide-
bleached lignin, preparing it for the final bleaching stage.

5. D2 Stage: The final Chlorine Dioxide treatment, completing the bleaching
process. Stage duration around 3 hours.

This sequence is illustrated in Figure 2.1. After each stage, except for D1, the
pulp is washed to remove any dissolved lignin and other chemicals [Kassberg,
1996]. The configuration of not washing the pulp after the D1 stage is unusual for
this type of D-EOP-D-E-D bleaching sequence. [Process knowledge 2024]

Available measurements
In the bleaching plant, numerous sensors are installed and possible to gather data
from. The ones most important to the modeling are presented in Table 2.2. Since
the measurements are of a chemical medium, the measurements are prone to drift-
ing. The drift requires regular maintenance in the form of calibrating and cleaning
the sensor equipment. Several sensors have a specified error tolerance, and if the
measured value is deviating enough from a lab sample, a calibration is performed
[Process knowledge 2024].
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Chapter 2. The bleaching process

Figure 2.1 Karlsborg bleach plant process illustration. The illustration does not
depict the oxygen delignification, which happens before the bleach plant [Process
knowledge 2024].

Table 2.2 Table describing available measurements, details about kappa and
brightness can be found in Section 2.2. The error tolerance is the largest allowed
absolute value of the sensors measurement error, if the error is outside this tolerance,
the sensor is calibrated. No relevant data indicated by – [Process knowledge 2024].

Type Location Sample Time Error tolerance

Kappa Before D0 20 min 0.7 Kappa units
pH Before D0 Continuous 0.5 pH
Pulp Flow Rate Before D0 Continuous –
ClO2 Dosage Before D0 Continuous –
Brightness After D0 Continuous 2 ISO Brightness
Fill height In EOP Continuous –
Pulp Flow Rate After EOP Continuous –
Kappa After EOP 20 min 0.3 Kappa
pH After EOP Continuous 0.3 pH
ClO2 Dosage Before D1 Continuous –
Fill Height In E2 Continuous –
Pulp Flow Rate After E2 Continuous –
Brightness After E2 Continuous 1 ISO Brightness
pH After E2 Continuous 0.5 pH
ClO2 Dosage Before D2 Continuous –
Brightness After D2 Continuous 1 ISO Brightness
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2.2 Pulp quality measurements (kappa, brightness)

2.2 Pulp quality measurements (kappa, brightness)

There are two main indicators of how bleached the pulp is: kappa and ISO-
brightness.

Kappa
The kappa number corresponds to the amount of lignin left in the pulp. For kraft
pulp, the fraction of percentage of dry pulp that consists of lignin and the kappa
number is approximately 0.15. The definition of kappa number is the amount of
potassium permanganate that can be absorbed by the pulp. The kappa number of
untreated cooked pulp is around 30–35, and decreases along the bleaching process.
For low kappa numbers, around 1–5, the method of determining the kappa is unre-
liable and brightness is used instead [Kassberg, 1996].

Brightness
Brightness, formally ISO-brightness, corresponds to the amount of light reflection
at 457 nm. It is measured in percentage of reflection, and therefore increases as the
pulp becomes whiter in the bleaching process [Kassberg, 1996].

2.3 Chemical reactions

The chemical reactions that achieve bleaching all have decreasing efficiency when
the relative bleaching in each stage increases. This effect is reset when alkali ex-
traction is performed, and this is why the bleaching is divided into separate steps.
To achieve optimal efficiency, the amount of bleaching should be correctly divided
among the steps. This effect is illustrated in Figure 2.2 [Kassberg, 1996].

Chlorine dioxide stages (D0, D1, D2)
The way that the chlorine dioxide stages work is different when comparing the
delignifying stage and the bleaching stages. The delignifying stage, D0, operates at
a pH of around 3. The chlorine dioxide reacts fast with pulp, the reaction is finished
in around 10 minutes. The reaction has primarily a delignifying effect, with less
focus on brightness increase. The majority of the lignin removed in the bleaching
process is removed in this stage. The bleaching ClO2 stages, D1 & D2, operate at
a higher pH, around pH 3.5 to 4.5. This means the ClO2 has a slower reaction with
the pulp and primarily increases the brightness of it [Ragnar et al., 2014].

Alkali stages (EOP, E2)
In both the EOP and E2 stages, the alkali sodium hydroxide increases the solubil-
ity of the lignin. This process is necessary to enable further bleaching. The EOP
stage also has the additional functionality of additional lignin removal with oxygen
and hydrogen peroxide. This process is a complement to the D0 stage, where an
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Chapter 2. The bleaching process

Figure 2.2 Brightness as a result of chemical demand. To achieve an increase in
bleaching result, for example the increase in brightness in a stage, exponentially
more chemicals need to be added. Dividing the bleaching among several stages can
be seen to reset the curve, and enable a higher bleaching result. Figure recreated and
translated from [Kassberg, 1996].

increased oxygen and hydrogen peroxide charge decreases the amount of chlorine
dioxide needed in the D0 stage [Gellerstedt, 2009].

2.4 Process characteristics

Since the bleaching process is part of a continuous pulp flow, it heavily depends on
the previous process stages. This is seen in the form of varying pulp kappa number
of the incoming pulp, but also varying process production rate. The production rate
can vary between 30 to 50 % some days, but also be constant for several days. The
production rate is defined by the amount of pulp fiber mass that is passing through
the stages. The available measurements are flow rate and pulp concentration, and
from this, the mass can be calculated. The production rate mainly affects the time
that the pulp spends in the bleaching stages, a higher rate meaning shorter delay
times. The stages are designed to be large enough that the chemical reactions reach
an approximately stationary state, independent of the process speed. The D-stages
are also designed so that the pulp is inserted into the stage evenly to achieve a plug
flow, meaning that no mixing occurs in the tank. The E-stages contain mixers in the
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2.5 Process control

lower part of the stage, where water is added to dilute the pulp. Water is also added
at other places in the process, and filtered away in the wash filters. The mass ratio
of dry pulp to water in the pulp is named pulp concentration. The E-stages operate
at around 11 % concentration and the D-stages at around 12 % [Process knowledge
2024].

A study by Tessier et al. [Tessier et al., 2000] found that for a D0 tower operating
at 3.2 % pulp concentration, 25 % mixing and 75 % plug flow was achieved. For a
EOP tower operating at 12 % pulp concentration, 14 % mixing and 86 % plug flow
was achieved.

2.5 Process control

The information in this part is sourced from interviews with process operation en-
gineers and process operators, along with process schematics. Today, the bleach
sequence is controlled by a combination of kappa factor control and manual con-
trol. The main actors for this control are the bleach process operators, which works
in shifts and have the responsibility for changing dosages and making sure that the
process runs correctly. There are also operations engineers, who support the opera-
tors by having a deep knowledge about the process and the pulp plant overall.

Control of each stage
D0. The kappa value of the D0 stage incoming pulp is measured, and this number
is then multiplied by a kappa factor κ in the range 1.0 to 2.0. The product is the
amount in kg of active chlorine being charged per ton pulp. Active chlorine is a
measurement that represents the bleaching ability of a bleaching chemical, in this
case chlorine dioxide. 1 kg of chlorine dioxide represents 2.63 kg of active chlorine.
The factor is set manually, and is changed when the D0 output brightness is too low,
or too high. It can also be changed because of information about process distur-
bances, for example incoming extraordinary high kappa numbers from the oxygen
delignification, which need increased dosage. Information about malfunctioning or
drifting sensors also affects decisions. For example, if the process operator know
that a sensor for the concentration of a bleaching chemical is sending values that are
too low, the dosage for that chemical is raised until the sensor has been recalibrated.
The decisions to change dosages are taken by the process operators, sometimes with
guidance from the operations engineers who they communicate with daily. Commu-
nication, for example about failing sensors, is aided through the usage of the factory
production diary.

EOP. The sodium hydroxide charge for the EOP stage is set manually to achieve a
pH of 10.5. Since the ClO2 charge in D0 affects the output pH, the sodium hydoxide
charge has to be continually adjusted. The amount of oxygen and hydrogen peroxide
that is charged per ton of pulp in EOP is set manually and rarely changed.
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Chapter 2. The bleaching process

D1 & E2. The ClO2 charge in the D1 stage is based on kappa factor control in
the same way as in D0. Here, the factor is more often adjusted by the operator
compared to D0. The decisions are based on the state of the bleaching process,
including the D1 and D2 output brightness, the EOP output kappa, and the amount
of residual ClO2 after the D2 stage. The E2 stage following D1 has an automatic
sodium hydroxide charge, with pH target slightly lower than in the EOP stage.

D2. The final D2 ClO2 stage does not have an automatic controller. Instead, the
amount of ClO2 in kilos of active chlorine per ton of pulp is set manually. This
amount is varied by considering output brightness of D1 and D2 and the amount of
residual chlorine dioxide after D2. For example, if the output brightness is too low,
the charge is raised, or if the residual chlorine dioxide is high, the charge is lowered.

Control challenges
From interviews with the operating staff, a few main challenges in controlling the
bleach sequence can be identified:

1. The long delays in the stages make compensating for changes in pulp quality
difficult. The way dosage changes are handled differs from operator to op-
erator and also depends on communication between working shifts. Making
too fast changes in dosage lead to an excessive impact on the process, wasting
chemicals, while making too small a change also can lead to low pulp quality.
Low quality can mean that it is not possible to sell the pulp.

2. The kappa number is slowly sampled, every 20 minutes, making fast changes
in D0 incoming pulp kappa difficult to compensate for.

3. Sometimes, pulp of the same kappa number can require different amounts of
bleaching chemicals to reach a lower kappa number, resulting in varying D0
kappa and brightness, with a need for correction in later stages. This is due
to chemical properties of the pulp that are not represented by the amount of
lignin in the pulp, and thus is not measured by the kappa meters.

2.6 Cost of bleaching

A study from 2007, [Flisberg and Rönnqvist, 2007], quotes the cost of bleaching to
be around 30 euros per ton of pulp, which is 387 SEK per ton of pulp when adjusted
for inflation and currency. With the Billerud Karlsborg yearly production of 335000
tons of pulp, then that equals 130M SEK per year in bleaching costs. The exact
division of costs was not available, but an estimation is that half of the cost is in the
E-stages and the other half is in the D-stages. If half the cost is in the D-stages, then
the cost of bleaching for the D-stages is 75M SEK per year.
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3
Gathering data through
delay modeling

3.1 Background

To be able to create a model predicting the pulp bleaching results, two things were
necessary: datasets with the crucial measurements, and a model able to represent the
process. Since the delay in each stage varied with the plant’s production rate, two
options for estimating the delay were considered. These were to either use datasets
captured during a constant production rate, and thus known delay, or develop a way
of tracking the varying production. In related studies, both ways have been explored.
In this work, initially the method of using datasets with constant production rate
was tried. Since it was deemed time-consuming and difficult to find datasets with a
constant production rate, it was decided to explore the other method, able to handle
varying rates of production.

To handle varying production rates, a program tracking the pulp throughout the
process was created. To track the pulp, the program required estimations of the
volumes of the stages. With the program able to track the pulp, datasets linking input
and output values for each stage could be created. The program and its components
are described later on in this chapter.

3.2 Modeling for constant production rate

Modeling using System Identification Toolbox
Since there were several examples of using first order with delay transfer functions,
[Mori et al., 2014; de Oliveira, 2022], this was tried first. It was done using the
System Identification Toolbox in MATLAB [The MathWorks Inc., 2020b]. Since
only a fixed delay could be used, datasets with a constant production rate had to
be created. It was possible to fit models, but the problems of optimization and how
to handle varying production rates became more and more evident. Through the
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Chapter 3. Gathering data through delay modeling

assumption that the bleaching plant had longer delay times in the stages than what
was needed for most of the chemical reactions to finish, it was decided that the
bleaching process in each stage could be estimated as a static amplification. There
probably could be minimal transient effects remaining, but they were deemed to be
small enough. This led to the development of the pulp tracking program.

3.3 Pulp tracking program

Overview
The purpose of the pulp tracking program is to track how long the delay time is for
each stage at each time. It also can create datasets that link input values to output
values for each stage, as well as simulating control actions based on models of the
process.

The pulp flow through the process is simulated in a discrete way, approximating
the continuous pulp flow as discrete plugs of pulp. A new plug is created at each
timestep and is then tracked throughout the bleach plant. The dataset creation and
simulated bleaching control is done independently for each plug. The approxima-
tion of the pulp as a plug flow, meaning there is no mixing, is motivated by the
results from [Tessier et al., 2000]. The study finds that pulp of the concentration
used in the stages achieves almost plug flow. This is described further in Section
2.4.

Since the D-stages are tanks, which only can contain a finite volume, the inflow
will be equal to the outflow. This means that the position of a plug of pulp in the
tank can be computed if one knows the volume of the tank and the amount of pulp
that has been added to the tank since the plug entered it. This is an approximation
for the E-stages, since they are top-filled with a fill level that can vary, and thus have
a varying volume. The position of a plug in a stage is indicated by its volume index,
a higher index means that it has progressed further into the stage.

To calculate where each plug is in the process, the pulp flow-rate in each stage at
each timestep is integrated. This results in a volume index increase, which is added
to each plug in the stage. When a plug has a volume index equal or exceeding the
volume of the stage, it must have exited. The plug is therefore removed from that
stage and sent into the next one. When entering a new stage, the average of the
process values during the timestep for the plug, such as brightness, pH, and dosage
are saved to the plug. Since all the measurements and dosages happen before the
pulp enters the stage, this approximation is reasonable. From the measurements,
the optimal bleaching dosage can be calculated using a model of the process and
the results of the calculation stored. This optimization possible in the plug tracking
program was not used to a further extent in the thesis, the models of the process
were instead used in the form of the decision support system in Chapter 6.

The sampling time for the plugs was chosen to be 5 minutes. This was chosen
in respect to the available measurements, ranging from continuous to every 20 min-
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3.3 Pulp tracking program

Figure 3.1 The flow of the pulp is approximated as discrete plugs. Each plug rep-
resents the pulp flow during 5 minutes. The volume index of the pulp at the bottom of
the stage has zero volume index, while the plug at the top of the stage has a volume
index close to the volume of the stage.

utes, the computations needed to run the program, and the accuracy of the stage
volume estimations. The resulting pulp tracking for a stage is illustrated in Figure
3.1. Each five minutes, the input measurements are stored to a pulp plug. The plugs
advance through the stage as more plugs are inserted, represented by increasing
each plug’s volume index. When the plug exits, the output measurements are stored
to it.

Code design
The core of the program is encapsulated in two loops, one for stepping through
time, and one for stepping through each plug object in a vector, representing the
bleaching process. The program employs a Pulp Plug class with properties and
methods that encapsulate the essential characteristics and behaviors of a pulp batch
during the bleaching process. Attributes include the batch’s ID, start time, current
stage, and arrays to track chemical dosages and brightness levels. Methods allow
for the updating of chemical dosages, brightness levels, and stage progression for
the plug. The execution flow of the program for each timestep is this:
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Chapter 3. Gathering data through delay modeling

1. A new plug object is instantiated and added to the array of plugs. It is given
an ID and start time, and has its volume index set to zero.

2. Through looping through the plug object array, each plug in the array has
the current volume index increase for that plug’s stage added to it. It is then
compared to the stage’s volume index threshold to determine the next action.

3. a) If the volume index is below the threshold, nothing happens. b) Otherwise,
the plug is deemed to have exited the stage, and the stage’s output values are
saved to it. Then, if the plug was in the last stage, it is recorded and removed
from the array. If it is entering a new stage, the new stage’s input values are
saved to it, and an optimal control solution for the bleaching chemical dosage
is calculated and also saved to the plug object. The volume index of the plug
is reset when entering the new stage.

A figure illustrating this process is provided below in Figure 3.2. The datasets that
the program generate thus consists of the plug objects that are recorded when re-
moved from the plug object array. The optimal control solution when entering a new
stage uses a parametrized model of the process, created in Chapter 4. The control
solution in the way that the program was used in this study was only for demonstra-
tion purposes and not used to any further extent.

Estimation of the pulp volume in each stage
Since the pulp tracking program required the pulp volume that each stage contains,
these had to be gathered. The physical size of some stages were known from process
schematics, but since the concentration of pulp changes throughout the process, it
could not be used straightforwardly. The concentrations change, for example, when
the pulp is washed between the stages, or diluted in the E-stages. This means that
integrating the measured pulp flow out of a stage might not correspond to the actual
volume of the pulp in the stage if the pulp is diluted between the stage and the
flow sensor. If the dilution is constant, the flow sensor still can be used, but the
additional volume of the dilution water has to be accounted for when integrating
the flow measured by the sensor. To get an estimation of the pulp volume the stages
contain, a manual correlation method was instead used. The method was to identify
peaks and valleys in the incoming and outgoing kappa or brightness data for each
stage. An estimate of the pulp volume each stage contains could thus be created by
integrating the pulp flow during the time between the peaks. The estimation was
then repeated and collected into datasets for each stage.

An example of how one data point is created is illustrated in Figure 3.3. A peak
in the incoming brightness into the EOP stage can be seen, and a similar drop in
the kappa of the outgoing pulp. Since a high brightness value corresponds to a low
kappa value, these peaks can be determined visually. The exact time for the peaks
were chosen to be in the middle of each peak, this was done manually. The time that
has elapsed between the peaks is recorded, and also the mean pulp flow rate and the
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3.3 Pulp tracking program

Figure 3.2 Schematic of one timestep iteration for the pulp tracking program de-
scribed in Section 3.3
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Chapter 3. Gathering data through delay modeling

pulp fill height in the EOP tower. The method of choosing the peaks manually can
be expected to be imperfect in matching the peak, and therefore needs to be repeated
several times.

The collected datasets are presented in Figures 3.4 to 3.7. Since the E-stages fill
height was thought to be affecting the retention time, this height is included for the
EOP and D1-E2 plots. What can be seen is that the data for these stages has a quite
high variance compared to the D0 and D2 data. Because of the higher variance,
more datapoints were also collected for the EOP and D1-E2 datasets. The variance
also does not seem to be explained by the height of the pulp. For the EOP stage, a
slight slope can be noticed. This was, however, ignored and only the flow rate was
hence used to calculate retention time for the stage.

Greater uncertainty for the volume estimation is expected from higher variance
in the data. Due to the higher variance for the EOP and D1-E2 estimation, we expect
that the volume may not be fully correct at all times. This means that some input-
output pairs may be linked incorrectly, and this likely results in increased noise for
the produced datasets for these stages by the pulp tracking program.

To verify the physical plausibility of the stage volume estimations, process
schematics were consulted. Since the pulp concentration varies throughout the pro-
cess, some estimations had to be made, and the results were that the estimated vol-
umes were plausible, not differing more than 10 % from the process schematic
calculations.

Dataset creation
The pulp tracking program enables using production data with varying production
rates, since it connects the input to a stage with the correct output at a later time.
Datasets with input and output production data that has been paired by the program
can then be created. Suitable time-periods for dataset creation were chosen where
the plant’s pulp production did not have stops longer than a few hours. Long stops
were avoided because they induce disturbances in pulp quality, which does not rep-
resent normal production. The factory production diary was also checked to find
any information about abnormal production, problems with sensors or other fac-
tors affecting the production. Time-periods with problems deemed too problematic
were discarded. Several datasets were created, the main analysis is presented for the
dataset Combined 23. It includes data from March and December 2023 together
with data from January 2024. A testing dataset was also created, named March
2024, taking data from a few days in March 2024. The Combined 23 dataset con-
tains data from in total 73 days of production. The March 2024 dataset contains 9
days.
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3.3 Pulp tracking program

Figure 3.3 The manual correlation method used to estimate volumes. The figure is
an example from the EOP stage, an incoming peak in the brightness will correspond
to a drop in outgoing kappa. These peaks are identified, the time between them are
measured, along with the flow rate and stage fill height. The flow rate is integrated
during the measured time to create a volume estimation for the stage
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Chapter 3. Gathering data through delay modeling

Figure 3.4 Plot of volume estimation dataset datapoints for the D0 stage, with a
line representing their mean. Each datapoint is a result of one volume estimation as
described in Section 3.3. The index represents the number of datapoints.

Figure 3.5 Plot of volume estimation dataset datapoints for the EOP stage, with a
flat line representing their mean, and a sloped line displaying a first order model with
stage fill height as a parameter. Each datapoint is a result of one volume estimation
as described in Section 3.3.
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3.3 Pulp tracking program

Figure 3.6 Plot of volume estimation dataset datapoints for the total volume of the
D1 and E2 stages, with a line representing their mean. A first model order model
with stage fill height as a parameter is also plotted, but not visible since it is equal to
the mean. Each datapoint is a result of one volume estimation as described in Section
3.3.

Figure 3.7 Plot of volume estimation dataset datapoints for the D0 stage, with a
line representing their mean. The index represents the number of datapoints. Each
datapoint is a result of one volume estimation as described in Section 3.3.
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4
Structure of the
parametrized model and
tools for evaluation

This chapter describes the structure of a parametrized model designed to capture the
workings of the bleaching process in each stage. It also describes tools for model
evaluation.

4.1 Polynomial model

To capture the properties of the process, polynomial regression was employed. The
focus was on polynomial models up to second order, incorporating interaction terms
to better account for the interplay between variables. The reason for choosing the
second order structure was the expected non-linear shape of the bleaching process,
see Figure 2.2. The model is also static, meaning it does not take the process dy-
namics into account. That was because the delay time in the stages was deemed
long enough for the process transient effect to become small.

The general form of the second order parametrized model is expressed as:

bleachResultModel(x,y) = p00 + p10x+ p01y+ p20x2 + p11xy+ p02y2. (4.1)

Here, x and y represent factors influencing the bleaching result, whose interactions
and quadratic effects are captured through the coefficients p10, p01, p20, p11, and
p02. Models with three input variables were also used, the model then extends with
a third variable z and its corresponding interactions. The model is structured to
provide an understanding of how these variables collectively impact the outcome,
increasing the explainability of it.
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4.2 What the models represent

4.2 What the models represent

Inputs used
For the models, three inputs were mainly used. These were the bleach chemical
dosage, represented by either the kappa factor or the absolute dosage, the incom-
ing pulp pH and the incoming quality, represented by either incoming pulp kappa
or brightness. The reason for using these three inputs was that they are the most
important when predicting the brightness.

Input to output relation
The parametrized models, structured as Equation (4.1), represent the cumulative ef-
fect of the input variables on the output. In this case, the combined effect of the input
variables; bleaching chemical dosage together with pH and kappa of the incoming
pulp, on the output variable, the brightness out. The relation is thus modeled for
each D stage, and in total there are three different sets of values for the coefficients,
one for each D-stage.

4.3 Finding parameter values

System identification
System identification through black box modeling means taking a pre-defined
model and fitting its parameters to a dataset. A simple example is fitting a line
for some data points. If we have an equation y = kx+m, then we want to get the
values for the parameters k and m from the data points. This can be done for more
complex models and in the time domain [Ljung et al., 2021].

The modeling in this study has mostly been performed with linear regression
using second degree polynomials, and formally it works like this:

Given inputs at a time t denoted as ui(t) for i = 1,2, . . . ,m, and an output as
y(t), we aim to model the relationship between y(t) and the inputs ui(t) using a
second-degree multivariate polynomial regression approach. The models used three
inputs most of time, meaning m = 3. This method is capable of capturing both the
individual effects of each input and their interactions on the output.

The discrete time model, assuming no noise for simplicity, can be stated as

y(t) = f (u(t),θ) (4.2)

where f is a second-degree polynomial function of the inputs
u(t) = [u1(t),u2(t), . . . ,um(t)] with coefficients represented by the parameter vector
θ .
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For a second-degree multivariate polynomial regression with interactions, the
model can be explicitly written as

y(t) = θ0 +
m

∑
i=1

θiui(t)+
m

∑
i=1

m

∑
j=i

θi jui(t)u j(t) (4.3)

To optimize the parameter vector θ , we construct a matrix X to include the
linear terms, interaction terms, and quadratic terms of the inputs. This involves cre-
ating additional columns in X for every pairwise interaction and every squared term,
leading to

X(t) =
[
1 u1(t) · · · um(t) u1(t)u1(t) · · · u1(t)um(t) · · · um(t)u2(t) · · · um(t)um(t)

]
.

(4.4)
The coefficients in θ = [θ0,θ1, . . . ,θi,θ1 j . . . ,θi j]

T are estimated by minimizing
the squared error between the observed outputs y(t) and the model’s predictions.

The optimization objective, in this case, is defined as

θ̂ = argminθ

N

∑
t=1

(y(t)−X(t)θ)2. (4.5)

Here, X(t) represents the tth row of the design matrix X , which now includes
the terms necessary for capturing both the individual and interactive effects of the
inputs on the output.

Optimization. The optimization of the parameter vector θ was performed using
MATLAB [The MathWorks Inc., 2020b]. The fitlm function in MATLAB takes
the matrix X and the target vector y(t) as inputs. It outputs the estimated parameter
vector θ̂ , along with the fit RMSE and r-value. The fitlm was used with standard
configuration, meaning it uses QR-decomposition to solve the least squares opti-
mization objective [The MathWorks Inc., 2020a].

Predictions and error measure

With the estimated coefficients θ̂ , the output ŷ(t) for any given set of inputs ui(t) is
predicted by

ŷ(t) = θ̂0 +
m

∑
i=1

θ̂iui(t)+
m

∑
i=1

m

∑
j=i

θ̂i jui(t)u j(t)+
m

∑
i=1

θ̂iiu2
i (t). (4.6)

The difference or error ε(t) between the estimated output ŷ(t) and the actual mea-
sured output y(t) is given by

ε(t) = y(t)− ŷ(t). (4.7)
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A measure of this error is the Root Mean Square Error (RMSE). It is a standard way
to measure the error of a model in predicting data. It represents the square root of
the average squared differences between the predicted values and the actual values,
Equation 4.8. In essence, RMSE quantifies how much, on average, the model’s pre-
dictions deviate from the observed values. A lower RMSE indicates a better fit of
the model to the data.

RMSE =

√
1
N

N

∑
i=1

(yi − ŷi)2 (4.8)

4.4 K-fold cross validation

K-fold validation is a model validation technique that works by dividing the avail-
able data into K subsets (or folds). In each iteration, one fold is retained as the test
set and the remaining K-1 folds are used as the training set. The model is trained
on the training set and validated on the test set, and the process is repeated K times,
with each fold used exactly once as the test set. In this study, the mean RMSE of the
test folds has been used as an accuracy measure. This method provides an evalua-
tion of a model on unseen data, while making use of all available data for training
and validation across the iterations [Jung, 2022]. In the thesis, five folds of equal
size were used. The folds were created using continuous data, not split up internally
in any way.
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5
Evaluating and fitting the
parametrized models

In this chapter, the parametrized models from Chapter 4 are fitted to data and their
predictive capabilities are evaluated.

5.1 Model evaluation

The parameterized model structure were evaluated through creating models with
parameters fitted to data. Two kinds of evaluations were performed; the M1 model
with training on the Combined 23 dataset with predictions on the March 2024
dataset. The other, the M2 model, with k-fold validation on only the March 2024
dataset. Both models thus predicts on unseen data, and it is the RMSE of the predic-
tions that are discussed. Some other combinations were also experimented with, for
example using only parts of the Combined 23 dataset. What can be seen in Figures
5.1 to 5.6, and Table 5.1, is that the M2 model performs better in terms of RMSE.
The difference in RMSE between the two methods can be seen to be different for
each stage.

It can also be seen that the RMSE is the lowest for the D2 stage. What has to
be noted, though, is that the brightness has a lower variance compared to the D0
and D1 stages. It is thus easier to achieve a low RMSE on D2 compared to the D0
and D1 stages. When observing the plots, especially for the D0-data, some large
peaks and drops in brightness can be seen that the model does not predict. This is
investigated in the residual analysis later on.

In the plots, for example in Figure 5.3, one can also note that the accuracy is
good initially and then worse later on. This could be due to sensors being recal-
ibrated, or that the properties of the pulp change. Since the pulp is created from
large batches of wood, some properties, especially how easy the pulp is bleached,
can change. When experimenting with the fitted models, the effect of training the
model on a small amount of data, and then predicting on new data further into the
future, was tried. The result was that the predictions had large errors. The models
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5.1 Model evaluation

Figure 5.1 Predictions for D0 pulp brightness out by M1, the model trained on
Combined 23 dataset, tested on March 2024. Average prediction error RMSE of
0.9095. The large peak in actual values goes up to 65.2 ISO brightness. Each data-
point represent 5 minutes, meaning that 1000 points is around 4 days.

fitted on the small dataset were also tested with bleaching chemical dosages differ-
ent from what they had been fitted on. The results were that the predictions were
unreasonable, with large errors.

Table 5.1 Prediction residual RMSE results for M1: the model trained on Com-
bined 23 dataset, tested on March 2024, and M2: the model using K-fold validation
on March 2024.

Stage RMSE for M1 RMSE for M2

D0 0.91 0.52
D1 0.72 0.42
D2 0.31 0.13
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Figure 5.2 Predictions on D1 pulp brightness out by M1, the model trained on
Combined 23 dataset, tested on March 2024. Average prediction error RMSE of
0.7191. Each datapoint represent 5 minutes, meaning that 1000 points is around 4
days.

Figure 5.3 Predictions on D2 pulp brightness out by M1, the model trained on
Combined 23 dataset, tested on March 2024. Average prediction error RMSE of
0.3060. Each datapoint represent 5 minutes, meaning that 1000 points is around 4
days.
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5.1 Model evaluation

Figure 5.4 Predictions on D0 pulp brightness out by M2, the model trained and
tested on March 2024 dataset. Average prediction error RMSE of 0.5217. Each dat-
apoint represent 5 minutes, meaning that 1000 points is around 4 days.

Figure 5.5 Predictions on D1 pulp brightness out by M2, the model trained and
tested on March 2024 dataset. Average prediction error RMSE of 0.4244. Each dat-
apoint represent 5 minutes, meaning that 1000 points is around 4 days.
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Figure 5.6 Predictions on D2 pulp brightness out by M2, the model trained and
tested on March 2024 dataset. Average prediction error RMSE of 0.1280. Each dat-
apoint represent 5 minutes, meaning that 1000 points is around 4 days.

Residual analysis for D0
Since the predictions for the D0 stage contained several peaks and drops that the
predictions missed, a more detailed residual analysis is presented for the largest
positive and negative residual. A prediction residual is defined as the difference be-
tween the predicted series and the real series. The residuals are extracted using the
model using the full second order structure, the same used in the previous evalu-
ation. It was trained on the March 2024 dataset, and also predicted on the March
2024 dataset. The prediction residuals were produced without k-fold validation.

The largest positive and negative residual are indicated by vertical lines in Figure
5.7. To analyze what they could have been caused by, all the incoming data are
also presented, with the same indices marked in the plots. To begin with, when
observing Figure 5.8, it can be noted that the brightness output correlates a lot with
the residuals. When observing the two indices 1297 and 1482 in the input variables,
Figures 5.9, 5.10,5.11, it can be noticed that no peaks or drops appear there. For the
first index at 1297, corresponding to the large negative residual, it can be noticed
that both the kappa in and dosage increase rapidly shortly thereafter. For the second
index at 1482, a slight drop in incoming kappa can be seen. This could partly explain
the large increase in brightness, but the measured brightness can be seen to be much
larger than the rest of the series, and the measured kappa seems normal. The large
peak in brightness therefore could be a result of a misreading in the sensor, but it is
also possible that the slow sample time of the kappa sensor missed a very low kappa
number in the pulp.
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5.1 Model evaluation

Figure 5.7 The residuals when predicting the brightness output out of D0, using
the M2 model. The model was trained and predicted on March 2024. A drop at index
1297, and a peak at index 1482 have been indicated with the vertical lines.

The kappa sensor can be seen to be malfunctioning for a period around index
1000, the measurement it is recording is constant. This malfunction was not indi-
cated in the factory production diary, and was thus included into the dataset. What
this means for the prediction during that period is that the kappa variable does not
provide any information about the brightness result, and thus stays constant. The
only inputs making the predictions to vary are thus pH and dosage, and since they
can be seen to vary quite slowly, the predictions does not change much. The predic-
tion residual can therefore be seen to be almost identical to the real brightness out
since the predictions are almost constant.

A conclusion that can be drawn is that the kappa measurement is vital for the
models predictions to be accurate. When the model predicts the worst, the kappa
measurement can be seen to not be correct. A accurate kappa measurement therefore
should lead to more accurate predictions.
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Figure 5.8 Brightness out from the D0 stage, used to produce the prediction resid-
uals in Figure 5.7. Index 1297, and index 1482 have been indicated with the vertical
lines.

Figure 5.9 Incoming kappa to the D0 stage, used to produce the prediction resid-
uals in Figure 5.7. Index 1297, and index 1482 have been indicated with the vertical
lines. The kappa meter seems to be malfunctioning in the time leading up to index
1297, and shortly after 1297 the kappa measurement peaks. The kappa measurement
at index 1482 does not indicate any abnormal kappa levels. It can therefore be seen
that there is no peaks or drops in kappa at the investigated indices.
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5.1 Model evaluation

Figure 5.10 Incoming pH to the D0 stage, used to produce the prediction residuals
in Figure 5.7. Index 1297, and index 1482 have been indicated with the vertical lines.
There are no large peaks or drops at either of the indices, but there can be seen to be
a peak in pH some time after index 1482.

Figure 5.11 The kappa factor κ for dosage to the D0 stage, used to produce the
prediction residuals in Figure 5.7. Index 1297, and index 1482 have been indicated
with the vertical lines. Shortly after index 1297 there is a increase in dosage, and no
change in dosage happens at index 1482.
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5.2 Do the coefficients of the models follow theory?

Theory says that increasing bleaching chemical dosage should have a diminishing
effect as the dosage is raised. This suggests that for the bleaching chemical dosage
variable, the first order coefficient should be positive, and the second order coeffi-
cient should be negative, since this represents a diminishing brightness increase as
the dosage is increased.

Since interaction terms possibly could affect the sign of the coefficients, no
interaction terms were used when evaluating the sign of the coefficients. The three
inputs that were used was bleaching chemical dosage, and the pH and brightness
of the incoming pulp. For the D0 stage kappa was used instead of brightness. The
output variable for all stages was outgoing pulp brightness.

What was found was that the correct sign of the coefficients only was achieved
in some cases. When including pH as a input, it was for the models fitted on the
Combined 23 dataset, only achieved for the D1 model. For the D0 model both coef-
ficients were positive and for the D2 model both coefficients were negative. When
excluding pH, and only using dosage and incoming kappa for D0 or brightness for
D1 and D2, the coefficients had the correct sign in all models. What this meant is
that when including pH, there is no decreasing efficiency when increasing dosage
in D0. A decreasing efficiency is expected, see Figure 2.2.

The negative coefficients means for D2 that the brightness is expected to in-
crease when dosages are lowered. This is counter intuitive since the purpose of
increasing dosages are to increase the brightness. What was revealed though when
doing the process evaluation in Chapter 7, was that the dosages in D2 had been
larger for incoming pulp with a higher brightness, while the outgoing pulp’s bright-
ness was constant. This explains the negative coefficients, but does not fully explain
why the coefficients turned positive when pH of incoming pulp was excluded. The
three inputs were plotted against each other in Figure 5.12. What can be seen is
that the pH does not have any clear effect on the other variables or the bright-
ness increase. As discovered in Chapter 7, the dosages can be seen to be higher
for incoming pulp with higher brightness. The dosages are controlled by the pro-
cess operators, see Section 2.5. This means that it is possible that the dosage or
incoming pulp brightness are colliders, affecting each other. Since it was revealed
that the brightness sensor after the D2 stage has difficulties measuring brightnesses
above a certain level, it is possible that the higher dosages for the higher incoming
pulp brightnesses was to achive a brightness outside the range of the brightness sen-
sor. To investigate this further, research into the reasoning among the operators for
changing the dosages would be needed.

Since including pH gave the best results in terms of RMSE, models using pH
were continued to be used. If one would want to use the models for optimization, it
has to be noted though that for example in the optimization step in the pulp tracking
program, models without pH probably need to be used to capture the decreasing
bleaching efficiency of a larger dosage.
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Figure 5.12 The input variables for the D2 stage, with the colorbar displaying the
brightness increase. The data is from the March 2024 dataset. It can be seen that the
dosages are larger for higher brightness in the incoming pulp. This is the same effect
seen in Figure 7.7. The brightness increase can be to be larger when the brightness
of the incoming pulp is lower, the same effect as seen in Figure 7.6. The pH of the
incoming pulp does not seem to have any clear effects on the brightness increase, or
the other variables.
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6
Bleaching control decision
support system

The fitted models from Chapter 5 are in this chapter implemented in a graphical user
interface using excel to create a decision support system for setting the bleaching
chemical dosages for each D-stage.

6.1 User interface

In Microsoft Excel, a decision support system was created using the fitted models
M1 and M2. M1, which is trained on the Combined 23 + March 2024 dataset,
was named the long-term model in the user interface. This is because it was trained
on more data than M2, which was trained on only the March 2024 dataset, and
subsequently named the short-term model. Since the long-term model is trained on
more data, it is more robust, but with the drawback of being less accurate in the short
term. The short-term model is more accurate in the short term, but will deteriorate
faster, and also cannot handle large changes in dosage. The purpose of the short-
term model is to represent an adaptive model that would be continuously re-trained
on new production data.

The decision support system presents the predicted qualities based on the cur-
rent production data and hypothetical chemical dosages. It displays the predicted
effects of changing the dosages in each stage, both with set intervals of dosage
changes and a calculator for setting custom dosages. The system does not employ
any pulp-tracking, meaning that the predictions for the stage’s output will have a
delay before they are realized. The approximate delays are retrieved from the plant
control system and also presented in the system view.

What can be seen in the upper part of Figure 6.1 is the predicted effects of
changing the dosages in each stage with set intervals of dosage changes. Red rep-
resents lower dosages, and green increased dosages. The white cells in the middle
are what the system predicts the future qualities will be with the current dosages.
Below it, to the left, the calculator for setting custom dosages can be seen. Here, the
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6.1 User interface

operator can input a custom dosage, and based on the current production data, the
predicted quality is calculated. To the right of the calculator, the predictions from the
short-term model M2 are presented. No predicted qualities from changed dosages
are presented, this is because the short-term models perform worse on dosages that
differ from the data it were trained on. Below the short-term model predictions, the
estimated delays for each stage are presented. This is just a rough estimate based on
the production rate, and does not use any pulp tracking. The purpose is to help the
user to know when the predicted qualities will have effect.

Since the model for D2 was seen to predict lower brightness increases when
increasing dosages, this also happens for the predictions in the program. In Figure
6.1, the predicted brightness for increasing the dosages in D2 can be seen to de-
crease, when it should probably just stay constant. A risk is that a non-reasonable
prediction lowers the trust in the models overall. See Section 5.2 and Chapter 7 for
more about the D2 models and data.
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Figure 6.1 Decision Support System created in Microsoft Excel for setting bleach-
ing chemical dosages.
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7
Process evaluation

To find possible improvements for the bleaching process, the Combined 23 dataset
produced by the pulp tracking program is analyzed in aspect of bleaching efficiency.

7.1 Method

Comparing the bleaching stages efficiency is not totally straightforward. This is
because the D0 stage is focused on lowering the amount of lignin in the pulp, while
the D1 and D2 stages are focused on increasing the brightness. The amount of lignin
in the pulp after the D0 stage is, however, still linked to the later stages ability
of increasing the pulp’s brightness. This enables some comparisons, which have
been measured in the relative increase in quality per amount of added bleaching
chemical. In order to have a measure of the effectiveness of the stages, some simple
models were fitted to the data. One linear model of the type y = ax+ b, and one
quadratic of the type y = ax2 + bx+ c. The models were fitted using MATLABs,
[The MathWorks Inc., 2020b], polyfit command. The fitted models are plotted in
Figures 7.1 to 7.6.

7.2 Data preparation

Since the D0 stage has a kappa sensor as a measure of incoming quality, and a
brightness as a measure of outgoing quality, the kappa sensor after the EOP stage
was used instead as measurement of outgoing quality. This was to be able to di-
rectly compare the incoming and outgoing kappa, since no direct conversion be-
tween brightness and kappa existed. Since the bleaching chemical dosages in the
EOP stage is constant, the effect of the EOP stage should be constant. For the other
stages, D1 and D2, the difference in brightness was used. For the D1 stage, the
brightness after the D0 stage was used, since no measure of brightness existed after
the EOP stage. The bleaching chemical dosage in the Combined 23 dataset was in
the form of kappa factor for the D0 and D1 stage, and in kg active chlorine per
ton pulp for the D2 stage. To be able to compare better, the kappa factor for the
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dosage inputs to the D0 and D1 stages was recalculated in kg active chlorine per
ton pulp. This was done by taking the relevant kappa measurement for each stage,
and multiplying it by the kappa factor to get the dosage in kg active chlorine per ton
pulp.

7.3 Results

When observing the plots for the linear model, Figures 7.1, 7.3 and 7.5, and coeffi-
cients in Table 7.1, it can be noted that they have different slopes. The pulp quality
increase for the D0 stage can be seen to increase when the amount of added bleach-
ing chemical is increased. For the D1 stage, the pulp quality increase remains almost
constant, and for the D2 stage, the stage quality increase decreases when the chem-
ical dosage is increased. When using quadratic models, with coefficients in Table
7.2, the D2 model can be seen in Figure 7.6 to remain almost linear. The D0 model
can be seen in Figure 7.2 to flatten out for higher dosages. The quadratic D1 model
can be seen to have a parabolic shape in Figure 7.4.

The results for the D0 stage follow what could be expected from theory, with the
quadratic curve similar to the theoretical ones in Figure 2.2. The largest increase in
the stage’s quality increase can be seen in the range of 15 to 25 kg of active chlorine
per ton of pulp, with the curve flattening out after that.

The data for the D1 stage can be seen to be quite compact, without any visible
structure. Although, since there are a lot of datapoints, judging the data visually
can be misleading. The fact that the quadratic model indicates that the stage’s pulp
quality increase peaks in the middle of the data is interesting. It is possible that the
drop after the peak is due to some outlier data present, since a line of low efficiency
measurements can be noted at a dosage of 16 kg per ton.

What can be noted, though, is that the data for the D2 stage efficiency follows
a negative trend too. In order to find the cause of this, the other data available for
the D2 stage was examined. In Figure 7.7, the incoming pulp’s brightness is plot-
ted against the amount of bleaching chemical that was added. It can be seen that
there appears to be a trend where higher incoming pulp brightnesses has a higher
dosage. When discussing this with plant staff, it was revealed that the brightness of
the pulp is also measured after the pulp has left the bleaching plant, with a more
sensitive sensor. This measurement is performed when the pulp is dried, and can
be several hours after the pulp has left the bleaching plant. When comparing to the
brightness of the outgoing pulp in Figure 7.8, the brightness can be seen to not have
the same trend for increasing dosage. This is thus because the sensor after the D2
stage can not measure the highest brightnesses. This could thus explain the decreas-
ing efficiency for the D2 stage in Figures 7.5 and 7.6, since the outgoing brightness
caps out at around ISO 90, regardless of the bleaching dosage. A higher incoming
brightness will therefore have a lower quality increase, since it already is close to
the maximum brightness that the sensor can measure.
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7.3 Results

Figure 7.1 The figure shows the quality increase in the pulp in the D0 stage, for
different amounts of chlorine dioxide dosages, measured in kg active chlorine per
ton of pulp. The relative quality increase is defined as the decrease in kappa divided
by the incoming pulp’s kappa. To this data, a line has been fitted, with coefficients
according to Table 7.1.

Table 7.1 The coefficients from the fit of linear models across the stages. The con-
fidence intervals of the fit are also presented.

Stage Parameter Coefficient 95% Confidence Bounds
D0 a 0.093 (0.009, 0.010)

b 0.57 (0.56, 0.58)
D1 a 0.0037 (0.0029, 0.0050)

b 0.51 (0.51, 0.51)
D2 a -0.018 (-0.018, -0.017)

b 0.12 (0.12, 0.12)

In summary, only the D0 stage has a clear benefit of increasing the dosage, with
both linear and quadratic models indicating a larger quality increase with greater
dosage. The quadratic model for the D1 stage indicates that there could be an in-
creasing quality increase up to a peak at a dosage of around 12 kg active chlorine
per ton pulp, while the linear model is almost constant. The D2 models need better
data, since the highest brightnesses in the pulp can not be measured by the sensor
used to model.
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Chapter 7. Process evaluation

Figure 7.2 The figure shows the quality increase in the pulp in the D0 stage, for
different amounts of chlorine dioxide dosages, measured in kg active chlorine per
ton of pulp. The relative quality increase is defined as the decrease in kappa divided
by the incoming pulp’s kappa. To this data, a quadratic curve has been fitted, with
coefficients according to Table 7.2.

Figure 7.3 The figure shows the quality increase in the pulp in the D1 stage, for
different amounts of chlorine dioxide dosages, measured in kg active chlorine per
ton of pulp. The relative quality increase is defined as the increase in brightness
divided by the incoming pulp’s brightness. To this data, a line has been fitted, with
coefficients according to Table 7.1. At a dosage of around 16 a line of datapoints
can be seen to be irregular. This is likely due to a malfunction sensor, but was not
investigated further.
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7.3 Results

Figure 7.4 The figure shows the quality increase in the pulp in the D1 stage, for
different amounts of chlorine dioxide dosages, measured in kg active chlorine per
ton of pulp. The relative quality increase is defined as the decrease in kappa divided
by the incoming pulp’s kappa. To this data, a quadratic curve has been fitted, with
coefficients according to Table 7.2.

Figure 7.5 The figure shows the quality increase in the pulp in the D2 stage, for
different amounts of chlorine dioxide dosages, measured in kg active chlorine per
ton of pulp. The relative quality increase is defined as the decrease in kappa divided
by the incoming pulp’s kappa. To this data, a line has been fitted, with coefficients
according to Table 7.1.
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Chapter 7. Process evaluation

Figure 7.6 The figure shows the quality increase in the pulp in the D2 stage, for
different amounts of chlorine dioxide dosages, measured in kg active chlorine per
ton of pulp. The relative quality increase is defined as the decrease in kappa divided
by the incoming pulp’s kappa. To this data, a quadratic curve has been fitted, with
coefficients according to Table 7.2.

Table 7.2 The parameters from the fit of quadratic models across the stages. The
confidence intervals of the fit are also presented.

Stage Parameter Coefficient 95% Confidence Bounds
D0 a -0.00046 (-0.00054, -0.00038)

b 0.028 (0.025, 0.031)
c 0.38 (0.35, 0.41)

D1 a -0.082 (-0.084, -0.080)
b 0.66 (0.64, 0.70)
c -0.78 (-0.82, -0.75)

D2 a -0.0012 (-0.0015, -0.0008)
b -0.010 (-0.011, -0.005)
c 0.10 (0.01, 0.11)
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7.3 Results

Figure 7.7 The figure shows the brightness of the incoming pulp to the D2 stage,
against the dosage of chlorine dioxide, measured in kg active chlorine per ton of
pulp.

Figure 7.8 The figure shows the brightness of the outgoing pulp to the D2 stage,
against the dosage of chlorine dioxide, measured in kg active chlorine per ton of
pulp.
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8
Discussion

In this chapter, aspects of the implementation are discussed. Some thoughts about
how an improved control system could work are presented, and also some other
suggestions for future work.

8.1 The plug flow approximation and delay estimation

As described in Section 1.3, handling the varying delay is a main challenge with
this type of process, and the solution was the plug tracking program. A fundamental
part of it was approximating the pulp as discrete plugs. Since [Tessier et al., 2000]
found that there is less plug flow and more blending when the concentration of the
pulp is lower, the true process probably is not a pure plug flow. Since the D-stages
are built for plug flow, and have a high pulp concentration, the model is most valid
for these stages. The E-stages also have a high concentration in the upper part of the
stage, but by dilution with water in the lower part of the stage, the concentration is
lowered. This means that there will be some blending of the pulp in the stage. The
effect of this blending on the validity of the plug flow is partly mitigated through the
sample time of five minutes, since any blending that is faster than that is within the
plug. The E-stages also had a higher variance in the volume estimations, than the
D-stages. Since an error in the volume estimation will lead to errors in the datasets
and subsequently the models, this will have some effect. It is known that the amount
of pulp in the E-stages varies due to the stage fill height, although no clear effect
was found when including it in the volume estimates.

8.2 The datasets

The great value of a factory diary
The data selection process began by choosing suitable time periods, as described in
Section 3.3. This was done both by looking at whether the data from all the sensors
were complete, but also by investigating the factory diary. What could be found in
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8.3 The process evaluation

it were, for example, notes about sensors malfunctioning, properties of the pulp that
were out of the normal, and reasons for changing bleaching chemical dosages. This
enabled a more accurate data selection process, that would not have been possible
by just looking at the data alone. The value of the diary highlights the importance
of a functioning data labeling structure in order to enable data-based methods. If
the diary were even more detailed, with a future data-scientist interest in mind,
instead of being mainly focused on internal communication and logging, it could
have contributed even more.

Data preparation
The raw production data from the selected time periods was used in the pulp track-
ing program. The datasets created by the program, mainly the Combined 23 dataset,
were then used for both the decision support program, and the process evaluation,
without any particular data preparation being performed. This meant that the data
was not analyzed for outliers, filtered or in any other way altered to increase perfor-
mance. The reason for this was both that it was not permitted due to time constraints,
but also to demonstrate what could be achieved with limited data preparation. It is
possible that better results from the models in Chapter 6, or conclusions about the
production in Chapter 7, could have been achieved with more data preparation.
What it would have needed, though, is knowledge about what data that could be
expected to be normal, and what not.

8.3 The process evaluation

What the process evaluation showed was a clear pattern for the bleaching efficiency
when increasing dosage in the D0 stage. This can be used as a tool when deciding
on the dosages to set in stage in the future. For the D1 stage, the results were a bit
unclear, due to the data lacking a structure. The D2 stage could be seen to reach
the same brightnesses regardless of the dosage applied. This was explained to be
due to the sensor measuring the brightness not being able to record the highest pulp
brightnesses. It is still possible that there are some possible reductions in dosage
to be had. Since the highest pulp brightnesses are not measured directly after the
bleaching stage, there is a risk that too high of a dosage is used, to compensate for
the even longer delay times that comes with using sensor further along the produc-
tion line in the pulp plant. When decreasing the dosages, and moving closer to the
limits of the process, the risk of bleaching too low increases though. It is there-
fore still important to maintain some safety margin since the cost of producing bad
quality pulp is high. To get an approximate figure of the possible savings, the cal-
culations for the cost of bleaching in Section 2.6 can be used. A possible reduction
of dosage in D2 of 2 kg active chlorine per ton, equates to a reduction of chlorine
dioxide usage in the bleaching plant of 5 %. If the cost of bleaching in the D-stages
mainly come from chlorine dioxide, then the possible savings would be around 4
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Chapter 8. Discussion

MSEK per year. The plausibility of lowering the dosages this way needs to be fur-
ther investigated though, and it is also possible that a more accurate sensor needs
to be installed directly after D2 to be able to verify the plausibility of lowering
dosages.

8.4 The control system

Operators as controllers
The benefit of a human operating the process seems to be robustness and commu-
nication. An example given was that when an anticipated batch of low-quality pulp
was going to enter the bleaching plant, the operators in the previous parts of the
process could communicate this to the bleaching plant operator, which in turn could
compensate with higher dosages. The operators also seem to develop a feeling for
the process over time, knowing roughly when to change dosages and how much.
The operator can be seen as a feedback controller, since if the brightness out of a
stage gets too low or high, then the operator will change the dosages. With the cur-
rent control system, though, there are no predictions for the outgoing pulp, meaning
that error compensation cannot be performed until it is seen. This probably leads to
unnecessary large dosages to not have a too low pulp brightness out of the bleaching
plant. This could be seen in the process evaluation for the D2 stage, and is some-
thing that a model-based control system could mitigate by predicting the future pulp
brightness.

Introducing a model-based control solution
Trust in the models. The results from the decision support system models in
Chapter 5 show what accuracy that can be expected from the models, on new data,
without any extensive data preparations. Whether this accuracy is enough, or not,
is a matter of trust in the model. The RMSE of the predictions were all within the
tolerated error for the measured value, indicating that they are good enough. But it
could perhaps be worse if they sometimes are really wrong, even though they are
accurate in terms of RMSE. The interface for the decision support system created
in Chapter 6 could be used as a tool for gauging this trust. By running it side by side
with the production, the operators could see how it performs in real time. Evalua-
tions could include which kind of production conditions it manages to predict well,
and which it does not. The results from an evaluation like that could be a part of a
decision basis for a full-scale solution.

Proposed control design. If the models are deemed to be trusted, a new control so-
lution could be implemented based on models like them, with or without adaptation
to new data. What is evident is that the D1 and D2 models achieved the best results
on new data, see Table 5.1. Since the current available measurement for incoming
pulp kappa to D0 is slowly sampled, a possible new automatic control solution could
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8.5 Future work

be to keep the kappa factor control for D0, and use a model-based control solution
for D1 and D2. This could perhaps tackle some challenges that exist when control-
ling the plant today, see end of Section 2.5. Challenge 1, the problem of not seeing
the result of a change in dosage until the pulp has passed through the stage, would
be mitigated by predicting the result. This probably means less safety marginal in
the D2 stage would be needed, making the bleaching plant more efficient. Process
disturbances could also be compensated for faster, thanks to the continuous mea-
surements that are available for the D1 and D2 stages. This means that challenge 2,
the slow sampling of kappa before D0, would be less of a problem since the D1 and
D2 stages could compensate for any disturbance. Challenge 3, that the bleaching
of the pulp sometimes is less effective in D0, hopefully also can be mitigated with
the fast compensation in D1 and D2. It is possible, though, that some kind of extra
compensation could be needed. For example, if the kappa number after D0 is extra
high, the models for D1 and D2 could get overridden with an extra high dosage to
not get a too low brightness out of the bleaching plant.

The negative aspect of a model-based control system would be that some kind
of data gathering system would be needed to be implemented, to keep the models
updated. An operator would still be needed for events or disturbances out of the or-
dinary, and with an automatic control solution, the operator possibly would not get
the same intuition about the process to be able to handle those cases. The control
system could either be designed to optimize the dosages for efficiency according to
the models, or to hold some set point. For example, since the process evaluation for
the D2 stage indicated that low chemical dosages in D2 could increase the bright-
ness adequately for quite low incoming pulp brightnesses, the D1 output brightness
could be set to this lower level. This would be some kind of manual optimization,
with the benefit of being understandable and transparent, something that could be
important to gain trust among the process operators.

8.5 Future work

The volume estimation
For future work, the variance of volume estimates for the E-stages would be in-
teresting to explore. Testing other sample times, to perhaps limit the effect of the
non-plug flow, could also be worthwhile.

Gathering more data for the stage evaluation
For future work, there could be a benefit of finding new data for the stage evalua-
tion. For example, finding the limits of the D2 stage by bleaching pulp with even
lower brightness than in this study. Furthermore, trying to get more useful data for
the evaluation of the D1 stage would be interesting, as it was difficult to draw con-
clusions from this study’s data.
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Chapter 8. Discussion

Adaptive models
What can be observed from the model evaluation results in Section 5.1 is that the
models, trained on data close in time to the time of the predictions, perform better.
This is reasonable since the process conditions can be expected to vary, both in
terms of pulp properties and sensor calibrations. The results also indicate that a
robust amount of data is needed to make reliable predictions for a change in dosage
rate, while at the same time staying calibrated to the current process conditions. A
solution to this is some way of adaptation, and several techniques could be used.
A form of decaying adaptation, where recent data was given more importance and
continuously added to the models, was used for an implementation by Tessier et
al. [Flisberg and Rönnqvist, 2007]. The adaptation does not necessarily have to be
continuous though, for example, new data could manually be gathered each month
and added to the models.

Regardless of adaptation time frame, some challenges need to be solved to im-
plement adaptation. Primarily, a systematic way of data gathering needs to be in
place. The more continuous and automatic the gathering is, the more robust it has
to be. This means identifying and handling periods when the data is unreliable, for
example during process disturbances or when sensors fail. Secondarily, the domain
of validity for the models needs to be accounted for. What could be seen in the re-
sults, was that the March 24 model could not handle changes in dosage very well,
giving unreliable predictions. This is a symptom of a limited domain of validity,
which likely is due to the small amount of training data, and in turn the range of
bleaching chemical dosages that the model was trained on. The optimal amount of
historical data that the models should train on could thus be varying, depending on
what range of dosages that can be found in the data.

56



9
Conclusions

From this thesis, a few conclusions can be made:

• It is possible to model the bleaching stages using polynomial models and
existing production data. Without extensive data preparation, the accuracy of
the models is within the error margins of the sensors. The results are valid for
the value ranges that existed in the used data, for example, ranges of bleaching
chemical dosages or brightness of the pulp.

• Handling the delay through the used method of volume estimation and pulp
tracking enabled creation of the datasets used to fit the polynomial models.
Their performance validates the pulp tracking method. However, the method
could be improved by better volume estimations for the E-stages.

• Pulp tracking enables process diagnostics opportunities by connecting input
and output data for the stages. Since the results for the D1 stage were difficult
to tell anything from, the method probably can be improved, or further eval-
uated with new data. The results from D2 point to possible savings, although
it needs further investigation.

• In the future, an improved control solution could be based on the model struc-
ture that were used in this thesis.
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