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Abstract

Buildings worldwide account for 30% of energy consumption and Heating, Ven-
tilation and Air Conditioning (HVAC) represent roughly 38% of a building’s con-
sumption. Therefore, energy savings are crucial for sustainability. The complexity
of buildings, with diverse physical domains and large-scale components, presents
challenges to achieving energy-efficient operation. Implementing high-performance
controls is effective but takes time and requires qualified experts. Reinforcement
learning (RL) offers adaptability but demands extensive data, making it difficult to
scale to large systems. RL is extensively used in model-free environments, such as
video games; however, when it comes to control the problem is a bit more chal-
lenging since it has to achieve stability and robustness of the system. This project
explores Physics-Informed RL (PIRL) for building energy optimization, focusing
on the supervisory control level. Information from physical models is selected to
accelerate learning, and the impact of reinforcement learning on a building’s cool-
ing system is studied. Key questions include selecting appropriate information from
physical models, determining data requirements, and exploiting the building system
architecture for the scalability of PIRL. Dynamic models developed in the Modelica
language with an open-source building library are used in the thesis. Numerical ex-
periments are then performed to evaluate the scaling potential of PIRL. One goal is
to understand and apply software in the loop methods using the PIRL methodology
and Carrier automated logic building control software. It will be shown that physics
information helps to reduce training time and that it is possible to save energy using
PIRL, in comparison with the baseline controller.
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1
Introduction

The global need to address climate change has propelled the development of sustain-
able practices across all sectors. It is estimated that buildings worldwide consume
approximately 30% of the total energy generated [International Energy Agency,
n.d.], this highlights the critical role of energy-efficient cooling systems in ensuring
environmental sustainability. However, optimizing a cooling system to make it ef-
ficient is a challenge, characterized by many different interrelated parameters that
can be tuned.

Traditional approaches to improving energy efficiency in buildings have often
relied on high-performance control systems and architectures, which, while effec-
tive, demand significant time and expertise for implementation. Moreover, the dy-
namic nature of building systems necessitates continuous optimization to adapt to
varying environmental conditions and cooling requirements. In recent years, rein-
forcement learning (RL) has emerged as a promising method for adaptive control,
allowing autonomous optimization through continuous interaction with the environ-
ment.

RL has demonstrated remarkable success in some environments such as video
games. However, its application to real-world control problems, particularly in com-
plex systems like buildings, presents unique challenges. Ensuring stability and ro-
bustness in control strategies while effectively leveraging optimal control actions
remains a remarkable task. This project seeks to bridge this gap by exploring the
application of Physics-Informed Reinforcement Learning (PIRL) for building en-
ergy optimization.

The main focus of this thesis is to investigate how RL algorithms with knowl-
edge about fundamental physical principles can be used in cooling systems control
applications.

Key questions addressed in this research include the selection of pertinent in-
formation from physical models, determination of data requirements for effective
learning, and exploitation of building systems architecture to facilitate the scalabil-
ity of PIRL algorithms. For that, numerical experiments are performed in a simu-
lated environment. The model used for simulation corresponds to a representative
data center based in Florida, along with its cooling system.

9



Chapter 1. Introduction

The first chapter of this thesis aims to describe the cooling system object of
this project and analyze its behavior through numerical experiments. After that,
relevant assumptions for the rest of the project are presented in Chapter 3. Then
the optimization problem that the RL algorithm will solve is formulated in Chapter
6. In Chapters 4 and 5, RL is introduced, briefly explaining how it works and its
main concepts, including the environment definition, which essentially consists of
the problem representation for RL and a simple experiment using the Q_learning
algorithm is conducted. Then the definition and implementation of the different RL
models is described, providing a summary table of the models that will be tested,
in Chapter 7. Finally, the numerical experiments, including training and testing the
RL models, and their results are addressed in Chapter 8.
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2
The Cooling System

In this chapter, a brief description of the cooling system is given. Furthermore, some
experiments are presented to study the influence of each controller parameter on the
power consumption and efficiency of the components and the total plant.

The cooling plant consists of a chiller plant, where the chillers produce cold
water, that will go to the IT room through pipes. The fans in the IT room are re-
sponsible for transferring the heat from the air to the cold water, which will go back
to the chiller plant afterward. The cooling towers transfer the heat from the chiller’s
condensers to the environment. In both, the cooling water and chilled water circuits
some pumps are responsible for moving the water through the circuit. This system
is artificial which means that the component characteristics and system architec-
ture are representative but do not correspond to any Carrier or other equipment or
system.

The cooling equipment, including the chillers, cooling towers, chilled water
pumps, and cooling water pumps, is located in an isolated room, the chiller plant.
Two pipes conduct the chilled water from the plant to the IT room and the return
water from the IT room to the plant, respectively.

The cooling load that needs to be handled is produced inside the IT room by the
IT equipment. Inside this room, air handling units transfer the heat from the air to
the chilled water they receive from the chiller plant. The cooling load is assumed to
be equal to the IT power consumption since the heat transfer between the room and
the environment is negligible compared with the IT power.

A description of the system, IT room, and chiller plant is provided in Figure 2.1.
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Chapter 2. The Cooling System
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(a) Chiller plant layout. It includes the decision variables detailed in Table
2.1. CT = Cooling tower, CD = Condenser, EV = Evaporator, CDWP =
Cooling Water Pump, CHWP = Chilled Water Pump, CH = Chiller.

Supply air

Air handling unit

Return air

IT equipment

Chilled water

Return water

(b) IT room layout

Figure 2.1 System layout diagrams

The figure shows that the two chillers, CH1 and CH2, are connected in series
instead of the standard parallel approach.

A building management system (BMS) controller controls the plant’s dynamic
inputs. This controller works in a regulatory level, below the RL controller, as shown
in Figure 2.2. This controller aims to track the setpoints for the dynamic variables
of the plant. However, those setpoints, which are inputs to the controller, can be
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Chapter 2. The Cooling System

optimized to increase the system’s efficiency by relocating the power consumption
between the different equipment units.

Setpoints and other parameters

Supervisory control with RL

Control signals

Data (load)

Building Management System (BMS)

Measured outputs

Equipment

Weather conditions

IT loadWeather

Figure 2.2 Layered control architecture. The equipment is controlled by a regulatory con-
trol layer (BMS). The setpoints for the controllers on this layer and the equipment status
variables are decided by the RL layer.

More concretely, the decision variables are shown in Table 2.1:
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Chapter 2. The Cooling System

Variable Description
CH1status Status (on/off) of chiller 1
CH2status Status (on/off) of chiller 2
Tevap,spt Chilled water temperature set-point, after evapo-

rator 2
Tdi f f ,spt Chilled water temperature set-point difference be-

tween chillers 1 and 2. The setpoint for the tem-
perature of the water leaving the evaporator 1 is
computed as Tevap,spt +Tdi f f ,spt

CT 1status Status (on/off) of cooling tower 1
CT 2status Status (on/off) of cooling tower 2
Tcond,spt Cooling tower leaving water (condenser 1 en-

trance) temperature setpoint value
P1status Status (on/off) of chilled water pump 1
P2status Status (on/off) of chilled water pump 2
P3status Status (on/off) of chilled water pump 3
d pspt Differential pressure on the chilled water circuit,

measured on the chiller plant side between the
supply and return water

Troom,spt Setpoint for the room temperature
Tsupply,spt Setpoint for the temperature of the supply air in

the air handling units

Table 2.1 Decision Variables

The variables Tevap,spt , Tdi f f ,spt and Tcond,spt are constrained to be in a certain
range for model validity and safety reasons. These ranges are the following:

6.67◦C < Tevap,spt < 15◦C (2.1)

0◦C < Tdi f f ,spt < 15◦C−Tevap,spt (2.2)

15◦C < Tcond,spt < 29.45◦C (2.3)

Note that the Tdi f f ,spt range depends on the evaporator leaving water setpoint.
By definition, the evaporator leaving water temperature setpoint of chiller 1 is
Tevap,spt + Tdi f f ,spt . Therefore, this constraint ensures that the evaporator leaving
water temperature of the upstream chiller is between 6,67◦C and 15◦C.

2.1 Experiments

One cannot be sure that the solution given by a trained RL model is optimal without
looking at the energy behavior of the plant. With experiments, one can get an idea
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2.1 Experiments

of what the optimal solution looks like and compare that with the solution that the
RL controller achieves.

The experiments were performed in a simulated model of the real plant, as part
of this master thesis work to study the effect of modifying each set point on equip-
ment efficiency and power consumption. Some variables are modified in them, and
others are set to their default values, which are the central values of the allowed vari-
ation range. All the experiments were performed with fixed outdoor temperature of
21 °C and relative humidity of 0.8, except the ones where the outdoor conditions
were explicitly changed. In all the experiments it is checked that the cooling de-
mand is tracked, this is done by checking the temperature in the room and ensuring
that it has the steady state value meeting the setpoint (26 ◦C). If the cooling de-
mand was not covered in a particular simulation, which involves the temperature in
the room being higher than its setpoint in steady-state, that result was disregarded,
which means that the cooling load was always tracked in the plotted results.

Chiller efficiency versus part load ratio and condenser and
evaporator temperatures
This experiment aims to explore the chiller efficiency curves. For this experiment,
just one chiller and one cooling tower were running. In the first stage of the exper-
iment, the cooling load was set as a varying parameter to explore the effieciency
for different Partial Load Ratio values (PLR). This load ratio measures the chiller
capacity, being 0 when the chiller is off and 1 when the chiller is at its maximum
capacity. The Coefficient of Performance (COP) of the chiller (not including the rest
of the equipment) was computed for each value of PLR. The COP of a chiller corre-
sponds to the coefficient between the cooling capacity supplied by it and its power
consumption, the values plotted are steady-state values. Two cases were studied:

• Setting the temperature setpoint of the water leaving the evaporator at 10.8
◦C and computing the COP for three different condenser entry water tem-
peratures (A qualitative plot representing this function is displayed in Figure
2.3). The best efficiency is achieved with a part load ratio of around 50%. The
efficiency is the same for condenser temperature setpoints of 15◦C and 22◦C
with higher PLRs (which means higher loads) because the cooling tower fan
runs at maximum speed. Therefore, the setpoints are not met, so the real con-
denser entry temperature is higher than them, however, this doesn’t mean that
the cooling demand is not supplied. This situation will change if the outdoor
temperature varies, with the saturated condenser temperature decreasing as
the outdoor temperature decreases.

• Setting the temperature setpoint of the water entering the condenser at 24 ◦C
and computing the COP for three different evaporator-leaving water tempera-
tures (A qualitative plot representing this function is displayed in Figure 2.3).
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Chapter 2. The Cooling System

Again, It can be seen that the best efficiency is achieved with a part load ratio
of around 50%.

Figure 2.3 Qualitative plot of the COP from one chiller versus partial load ratio and con-
denser entry water temperature setpoint. It is seen that the optimal value of PLR is around
50%. The efficiency increases with decreasing condenser temperature. For higher condenser
temperature setpoints, the setpoint is not met, so there reducing it more doesn’t make a dif-
ference.

Figure 2.4 Qualitative plot of the COP from one chiller versus partial load ratio and evap-
orator leaving water temperature. An optimal value of PLR around 50%. The efficiency in-
creases with increasing evaporator temperature.

16



2.1 Experiments

In the second stage of the experiment, the load was set constant to 500kW, which
corresponds to a PLR of roughly 45%. The effect on the efficiency of Tevap,spt and
Tcond,spt was studied. A qualitative plot representing this function is displayed in
Figure 2.5.

The chiller efficiency always increases when the condenser entry water temper-
ature decreases, up to a certain point, at which the cooling tower is saturated, so
the real condenser entry temperature becomes no longer controllable and cannot be
decreased more. Moreover, the efficiency increases as the evaporator leaving water
temperature increases.

Different weather conditions and cooling load would lead to different saturation
values for the condenser entry water temperature.

Figure 2.5 Qualitative plot of the COP from one chiller versus condenser and evaporator
temperature setpoints. The results are accordant with the previous experiment: Higher evap-
orator temperature and lower condenser temperatures contribute to increasing the efficiency.
There is saturation in the condenser temperature for the experiment conditions (the setpoint
is not met for lower values)

Power consumption versus chiller staging
In this experiment, the staging of the chillers, turning one of the chillers on and
off while keeping the other one on, was explored. The chiller power consumption
was studied for different cooling load values. Figure 2.6 shows each case’s power
consumption on the different equipment elements.

The tested loads are 25 %, 35%, 50%, 75 % and 100 % of the maximum capacity
(2000 kW). The power consumption plotted is the steady state power consumption
for the experiment conditions. Note that, for obvious reasons, the total power con-
sumption increases as the load increases.

17



Chapter 2. The Cooling System

In some cases, the power consumption of the Air Handling Units (AHUs) and
chilled water pumps is so small that it is not noticeable on the graph. The experi-
ment conditions are: Tevap,spt = 7.5◦C, Tdi f f ,spt = 2.2◦C, Tcond,spt = 23◦C, outdoor
temperature: Toutdoor = 21◦C, Relative Humidity: RH = 0.8

It is concluded that with lower loads, it is more efficient to have one chiller on,
while with a higher load, turning both of them on is better. Besides, for the two
higher cooling loads, the system cannot provide the needed cooling capacity with
only one chiller. It requires both of them to run. For the experiment conditions,
the threshold to turn the second chiller on seems to be between 700 and 1000 kW.
However, this will differ for other set points’ values, loads, and weather conditions.

Furthermore, the staging of the chillers seems only to affect the power con-
sumption on the chillers, not really on the other elements, one can appreciate that
by looking at the different color sections in the bar plot.

50
0K

W
70

0K
W

10
00

KW

15
00

KW

20
00

KW

Cooling load (kW)

0

100

200

300

400

500

Po
we

r c
on

su
m

pt
io

n 
(k

W
)

Chiller staging vs equipment power consumption
Chiller Power - 1 chiller on
Chilled Water Pump Power - 1 chiller on
AHU Power - 1 chiller on
Cooling Tower Power - 1 chiller on
Chiller Power - 2 chillers on
Chilled Water Pump Power - 2 chillers on
AHU Power - 2 chillers on
Cooling Tower Power - 2 chillers on

Figure 2.6 Equipment power consumption versus chiller staging. 1 chiller is better for
lower loads. For very high loads, 2 chillers are needed to supply the cooling demand, for
the experiment conditions. When 2 chillers are running, the chiller power consumption is the
sum of the power consumption at each chiller.

Equipment power consumption versus cooling tower staging
In this experiment, the staging of the cooling towers, turning one of the cooling
towers on and off while keeping the other one on was explored. The status (on/off)
of each cooling water pump is the same as its associated cooling tower. Therefore,
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2.1 Experiments

with this experiment, the pumps are also turned on and off.
The equipment power consumption was studied for different cooling load val-

ues. Figure 2.7 shows each case’s power consumption on the different equip-
ment units. The experiment conditions are: Tevap,spt = 7.5◦C, Tdi f f ,spt = 2.2◦C,
Tcond,spt = 23◦C, Toutdoor = 21◦C, RH = 0.8, all chillers were running

It is concluded that with lower loads, it is more efficient to only have one cool-
ing tower and pump on, while with a higher load, turning both of them on is better.
The cooling tower staging affects mostly the power consumption on the chillers
and cooling towers. In the cases where it is better to have two cooling towers (and
their associated pumps) running, turning on the second cooling tower reduces sig-
nificantly the chiller power consumption. The reason for this is that it decreases the
temperature of the water entering the condenser of chiller two, which is probably
saturated in that situations and not at its setpoint.
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Figure 2.7 Equipment power consumption versus cooling tower staging. The threshold
for turning on the second cooling tower is between 500 and 700 kW for the experiment
conditions. For the cases with two cooling towers, the power consumption in the cooling
towers is the sum of the power from each tower.

Power consumption versus equipment staging
This experiment explores the simultaneous staging of the chillers (CH) and cooling
towers (CT) for different cooling load values and outdoor temperature values. It can
be seen that the best case for lower loads is to have one chiller and one cooling
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Chapter 2. The Cooling System

tower running, whereas, for bigger loads, it is better to have two chillers and one
cooling tower on. The experiment conditions are: Tevap = 7.5◦C, Tdi f f = 2.2◦C,
Tcond = 23◦C, Toutdoor = 21◦C, RH = 0.8

The results are consistent with the previous experiments about staging. Figures
2.8, 2.9, 2.10 show the experiment for different outdoor temperatures. It can be
appreciated that the outdoor temperature modifies the optimal load threshold for
turning on the second cooling tower. Besides, the optimal threshold to turn on the
chiller remains between 700 and 1000 kW.

Figure 2.8 Total power consumption versus equipment staging, Toutdoor = 18◦C. It can be
seen that it’s better to have 1 chiller for the 2 lowest load values and 2 for the other cases.
Turning on the second cooling tower becomes better for the 2 higher loads.
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2.1 Experiments

Figure 2.9 Total power consumption versus equipment staging, Toutdoor = 24◦C. Again, it
can be seen that it’s better to have 1 chiller for the 2 lowest load values and 2 for the other
cases. Turning on the second cooling tower becomes better for the 2 higher loads.

Figure 2.10 Total power consumption versus equipment staging, Toutdoor = 30◦C. It can be
seen that it’s better to have 1 chiller for the 2 lowest load values and 2 for the other cases.
Turning on the second cooling tower becomes better only for the highest loads.
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Chapter 2. The Cooling System

Power consumption versus chilled water temperature setpoint
In this experiment, the power consumption of the different elements is explored
when varying the leaving chilled water set point (Tevap). The experiment conditions
are: Tdi f f = 2.2◦C, Tcond = 23◦C, Toutdoor = 21◦C, RH = 0.8

The results are shown in Figure 2.11. It is appreciated that, as one increases
Tevap, the power consumption on the chillers mainly decreases, while the power
consumption on the AHUs and chilled water pump increases. It is seen that the
power of the pumps increases following an approximately quadratic relation with
Tevap,spt , which results in a high total power consumption for high values of Tevap,spt .
Moreover, the chilled water flow saturates at some point (for setpoint values over
9◦C for the experiment conditions), which involves that the chilled water tempera-
ture setpoint Tevap,spt is not being met, the real value of the evaporator leaving water
temperature is kept lower to meet the cooling demand.

Figure 2.11 Equipment power consumption versus chilled water temperature setpoint. It
can be observed an increasing influence of the chilled water pump power for higher setpoint
values. The chilled water flow saturates at some point, involving the real chilled water tem-
perature being colder than its setpoint.

Best condenser entry temperature
This experiment aims to determine the best condenser entry temperature (Tcond,spt )
for different weather and load conditions. Results are shown in Figure 2.12. The
experiment conditions are: Tevap = 7.5◦C, Tdi f f = 3.2◦C, all the equipment was kept
on. The best temperatures are found by grid search, selecting the one that achieves
the minimal power consumption from a list.
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2.1 Experiments

Figure 2.12 Best Tcond . For each value of Tw, the Tcond,spt that gives the smaller power con-
sumption is found through a grid search and plotted. The experiment is repeated for several
values of cooling load. It is observed that the best setpoint value follows an approximately
piecewise linear relation with Tw, slightly influenced by the cooling load.

It can be seen that the relationship can be approximated, with not much error,
with a linear policy that computes the optimal Tcond,spt based on the wet-bulb tem-
perature and then constrains it to the allowed range. However, the cooling load also
has a bit of influence.
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Chapter 2. The Cooling System

Power consumption versus both chiller evaporator set-points
In this experiment, the differential and evaporator chilled water temperature set-
points are varied for different values of the cooling load, and the plant efficiency
(calculated as the cooling load over the total power consumption) is represented on
a level plot. Figure 2.13 shows the results. A red cross is displayed at the point with
the minimum power consumption, this was computed by simply selecting the coor-
dinates of the point with the best efficiency, from the discrete set of set-point values.
The experiment conditions were: Tcond,spt = 26 ◦C, all the equipment running.

Note that the points where Tevap+Tdi f f > 15 have been omitted since this would
violate Constraint 2.3. The limit region where the constraint is valid appears to not
be completely linear in the plot. This is due to the discretization of the setpoints
that were tested. Moreover, the simulation fails when the condenser entry water
temperature and evaporator leaving water temperature are too close (Small outdoor
temperature and large Tevap,spt ), and the load is high. The reason for this is that the
cooling capacity is lowered for those conditions to the point of not being capable of
handling the cooling load.

It can be observed that the optimal values for this pair of variables in this situ-
ation are not very dependent on the weather. Instead, they are highly dependent on
the cooling load.

There is a region, approximately for Tevap,spt higher than 10 ◦C, but dependent
on the conditions, where the efficiency drops drastically. This is related to an in-
crease in the chilled water pump power, which, as seen in Figure 2.11 increases
quadratically with Tevap,spt (which is directly related to the flow rate).

Moreover, there is mostly one unique global maximum, except for the case of
higher loads, when a local maximum appears, and the outdoor temperature begins
having some influence. This could be problematic if a gradient method were used
to optimize those set points.

Note that the plots are only valid under the experiment conditions, for example
regarding staging or Tcond,spt , if those conditions were fixed, the equipment could
just be operated in the maximum efficiency point from these plots. However, this
is not the case, so some sort of optimization, including all the parameters that can
influence the power consumption and external conditions is needed to find the best
operating points.
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2.1 Experiments

Figure 2.13 Power consumption versus chilled water temperature setpoint and differential
temperature setpoint for different load values. Points where Tevap + Tdi f f > 15 have been
omitted since this would violate Constraint 2.3
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Chapter 2. The Cooling System

Optimal chiller set-points
This experiment aims to determine the optimal Tevap and Tdi f f for different weather
and load conditions. Results are shown in Figure 2.14. The upper figure corresponds
to fixed weather conditions and variable load, while the lower corresponds to fixed
load and variable weather. The best setpoints are found through a grid search by
iterating over a list of values for both. The experiment conditions were: Tcond,spt =
26 ◦C, all the equipment running. The Tdi f f ,law is the temperature that distributes
the cooling load evenly between both chillers. It is computed as:

Tdi f f ,law =
Treturn−Tevap

2
(2.4)

Where Treturn is the temperature of the return water to the chiller plant, both chillers
and cooling towers were kept on during the experiment.

It can be seen that the best Tevap,spt follows a piecewise linear relationship with
the cooling load. Both best setpoints are affected mainly by the cooling load rather
than the weather conditions. The best Tdi f f is close to the one computed using the
above formula for loads higher than 800 kW. For lower loads, having a large Tdi f f
means turning off chiller 1 since it would have a set point equal to or higher than the
return water temperature. This can be observed in the figures for load = 500 kW on
experiment 2.1 where increasing Tdi f f over a specific limit does not affect the power
consumption. The simulation considers that chiller one consumes no power under
that situation, even if it is kept on. However, in the real plant, it would be better to
turn the chiller off. In the range where two chillers are better than one, following
the law for evenly distributed load gives roughly an optimal setpoint for Tdi f f .
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2.1 Experiments

Figure 2.14 Optimal set-points for varying load (upper figure) and outdoor wet-bulb tem-
perature (lower figure). It can be noted that the best Tevap,spt follows a piecewise linear rela-
tionship with the cooling load. the best setpoints are affected mainly by the cooling load. The
law for Tdi f f ,spt seems to give a good approximation of the best setpoint value for loads over
800 kW.
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Efficiency versus evaporator and condenser temperatures
In this experiment, the efficiency of the plant was studied for different values of
Tevap,spt and Tcond,spt , creating efficiency level curves for various loads and weather
conditions. Figure 2.15 illustrates some of these experiments. The experiment con-
ditions were: RH = 0.8, all equipment running.

The results of this experiment coincide with the previous one in showing that the
optimal Tevap,spt is not very dependent on the weather but more on the cooling load.
However, the optimal Tcond depends mostly on the weather, as Figure 2.12 shows.

For lower Tcond than a specific value, lowering it more does not affect the ef-
ficiency. This is because the cooling towers are saturated, and the set point is not
being met, so the real condenser entry water temperature is higher than that.

As before, for high loads it is not possible to supply the demand with low con-
denser temperatures, this is only appreciable with low outdoor temperatures, since
only in this situation the condenser entry temperature is equal to its setpoint (oth-
erwise it could be higher than the setpoint and therefore not cause any problem).
However, in this situation, the optimal condenser temperature is very close to the
limit value where the cooling demand cannot be met. This last result makes it par-
ticularly difficult for an RL controller to learn the optimal law for Tcond,spt in a safe
way since exploring the area close to the optimal setpoints involves not meeting the
cooling demand under certain conditions.

Moreover, there is a local maximum apart from the global, this could be prob-
lematic if a gradient method were used to optimize those setpoints.
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Figure 2.15 Efficiency versus Tevap,spt and Tcond,spt for different weather and load condi-
tions. The best Tevap,spt is mostly influenced by the cooling load, while the best Tcond,spt is
mostly influenced by the weather. Experiment conditions: RH = 0.8, all equipment running.
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Chapter 2. The Cooling System

Power consumption versus differential pressure on the chilled
water circuit
In this experiment, only the differential pressure of the chilled water is varied. The
results are shown in Figure 2.16. It can be seen that increasing the differential pres-
sure setpoint increases the power consumption in the chilled water pumps but de-
creases the power consumed in the AHUs slightly. The total power is increased with
this setpoint, and it seems optimal to keep it low.
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Figure 2.16 Power consumption versus differential pressure on the chilled water circuit. It
is always better to keep this parameter low.

Power consumption versus chilled water pump staging
This experiment analyses the chilled water pump staging while keeping on the two
chillers and the two cooling towers. The experiment conditions are: Tevap = 6.7◦C,
Tcond = 24◦C, Tdi f f = 2◦C, Toutdoor = 30◦C, RH = 0.8.

Figure 2.17 shows the total power consumption for different numbers of chilled
water pumps running. The experiment shows that having the three pumps running is
always better. This seems intuitive considering that the power consumption of each
pump depends quadratically on its flow rate, the total power consumption will be
lower if the total flow is split along the three pumps.
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Figure 2.17 Power consumption versus chilled water pump staging. It is always better to
have all of the pumps running for the experiment conditions.

2.2 Insights from the experiments

From the previous experiments and physical intuition, the following conclusions
can be made:

• The set-point variables that affect the power consumption at the chillers are
Tevap,spt , Tdi f f ,spt , and Tcond,spt .

• Increasing the chilled water setpoint (Tevap,spt ) or decreasing the temperature
setpoint at condenser two (Tcond,spt ) reduces the chiller power consumption,
although it can have the opposite effect on the total power consumption. This
can be concluded from Figure REF.

• Increasing Tevap,spt increases the power consumption in the AHUs, and chilled
water pumps. This is due to the fans in the AHUs needing more power to ex-
tract the same amount of heat from the air if the cooling water has a higher
temperature. There is also a need for a higher chilled water flow rate to ex-
tract the same amount of heat if the setpoint is increased, which increases the
power consumption in the chilled water pumps. This can be concluded from
figure 2.11

• Decreasing Tcond,spt increases the power consumption in the cooling towers.
This is because more water cooling in the cooling tower implies a higher
consumption of the cooling tower fan. Therefore, it is necessary to find an
optimal value where the sum of the power consumption of each component
is minimized.
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• The chilled water differential pressure balances the power consumption in
the chilled water pumps and the AHU fan power. The intuition behind this is
that more differential pressure in the system is related to a higher hydraulic
pressure drop in the circuit, which relates to higher water flow. If the water
flow increases, less fan power is needed to transfer the heat from the air to the
water in the AHUs. The experiment shown in Figure 2.16 shows this behavior,
showing that the optimal is to keep the differential pressure low. However, if it
is too low, there is a risk of not having enough pressure to overcome the losses
on the circuit. Therefore, a minimum value of 118 kPa will be considered for
this variable.

• The optimal condenser temperature depends piecewise linearly on the wet
bulb’s outdoor temperature and it depends weakly on the cooling load as well,
as seen in Figure 2.12.

• This is a multi-dimensional problem. The figures only explore one setpoint or
a pair of setpoints at a time, but the shape of the plots can be highly dependent
on the rest of the setpoints and conditions. Therefore, automated optimization
methods or data-driven approaches are needed to find a global solution to the
problem.
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3
Assumptions

This chapter summarizes the assumptions made for the rest of this work.

3.1 Steady state assumption

The goal is to minimize the power consumption of the chiller plant. When a setpoint
is modified or the external conditions (load and weather) change, the plant goes
through a transient and then reaches an equilibrium point with a new steady-state
value of power consumption.

The set points need to be modified when the external conditions change. There-
fore, if the transient is short in comparison to the rate at which these conditions
change, it would be much more beneficial to reach an optimal value of steady-state
power consumption than to improve the transitory behavior.

In this work, it will be assumed that the weather and cooling load conditions
change at a much slower rate than the settling time of the system.

This assumption is reasonable in the case of the weather since it changes slowly.
However, it is not very reasonable to assume this for the cooling load, since it can
change quickly in punctual moments. However, the assumption is needed for train-
ing the algorithms, then, they can be deployed to the real plant and be used to predict
the best action based on the external conditions, even if they change before the sys-
tem has reached an equilibrium.

3.2 Stateless assumption

In this section, the problem is classified according to Powell’s Article [Powell, 2019]
as a state-independent terminal reward problem.

From the problem’s point of view, every simulation until steady state corre-
sponds to one time-step in the sequential decision problem, as long as one con-
siders each transition of the Markov Decision Process (MDP) to correspond to a
simulation until steady state.
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Chapter 3. Assumptions

In other words, for a set of decisions and external conditions (modeled as exoge-
nous information), the plant behavior is simulated until it reaches steady state. Then,
the power consumption is read from the simulation. Let’s define input as the set of
decision variables and external conditions. Similarly, outputs can be defined as the
set of power consumption in the different elements and state variables. The work is
based on the assumption that for each set of inputs, there is only one possible output
under steady-state conditions.

Taking this into consideration, it is easy to see that if the system is on a state St ,
the next state St+1 will not depend on St , it will only depend on the inputs to the
simulation. Therefore, it is assumed that the problem is state-independent.

This reduces the problem to minimizing the power consumption for given a set
of external conditions at each time-step. Therefore, relating this to Powell’s frame-
work, the focus is set on the terminal reward of each time step.

From all of this it is concluded that the problem corresponds to class 1 in Pow-
ell’s classification, it is a classic stochastic search problem. The problem consists of
finding the best policy that inputs the optimal decisions to the system.

All in all, the system can be seen as a static mapping from weather, load con-
ditions, and decision variables to the Steady State power consumption, as seen in
Figure 3.1

PowerCooling
system

Outdoor Temperature

Humidity

Cooling load

Setpoints and staging variables

Figure 3.1 Cooling system. Under the stateless and steady-state assumptions it can be seen
as a static mapping from weather and load conditions, setpoints and staging variables to
power consumption.

3.3 Plant Variation.

The simulation model is not perfect and the real plant changes over time, due to
equipment aging. Although the goal of having RL in the controller is to adapt to
those variations, some conditions need to be fulfilled for the controller to work as
intended.
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3.3 Plant Variation.

1. The real plant changes at a slower rate than the RL algorithm is capable of
learning. So the algorithm converges quicker than significant plant variations
occur.

2. The two chillers deteriorate at the same rate. So both chillers need to have
sufficiently similar efficiency curves, even if it’s not their original curve. This
can be achieved by periodically alternating which is the chiller that can be off
during certain periods. This assumption is only needed for models that use
a physical law to compute Tdi f f , as described in Section 7.5. Whether this is
true on the real plant and what the error associated with this assumption is
has not been further explored in this work.
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4
Reinforcement Learning

Reinforcement Learning (RL) is a machine learning method where an agent learns
to make sequential decisions by interacting with an environment to maximize cumu-
lative rewards. Unlike traditional supervised learning, where explicit input-output
pairs are provided, or unsupervised learning, where patterns are inferred from un-
labeled data, RL operates through interaction with the environment. At each step,
the agent observes the current state of the environment, selects an action, receives
feedback in the form of a reward, and updates its policy to improve future decision-
making. The working principle is summarized in Figure 4.1. The goal is to maxi-
mize the cumulative reward over several time steps, so the method is particularly
suitable for sequential decision-making problems such as the one targeted in this
work.

Reward (Rt)State (St)

Environment

TextAction (at+1)

Agent

Figure 4.1 Reinforcement learning concept. The agent (controller) learns by interacting
with the environment and observing the results of each action, in terms of next state and
reward.

The main characteristic of reinforcement learning is that the agent does not need
any internal model of the environment, it just needs to interact with it. For this
reason, RL has been extensively used to play video games, achieving good results,
an example of this is the Alphazero project [Zhang and Yu, 2020], which developed
a model capable of playing chess.

36



4.1 Fundamentals

However, in this work, a control problem is attained, rather than a video game.
This implies numerous challenges for the reinforcement learning methodology.
Concretely, the following points need to be taken into consideration:

• The controlled system must be stable and robust.

• The control signal and the output must satisfy some constraints.

Another common issue in RL is the trade-off between exploration and exploita-
tion, which is crucial for effective learning. Exploitation involves the agent using its
current knowledge to maximize immediate rewards, while exploration means trying
new actions to gather more information about the environment. Excessive exploita-
tion can lead to suboptimal performance if the agent’s knowledge is incomplete,
whereas too much exploration can waste resources and delay learning.

There are many different algorithms for reinforcement learning. The Reference
[AlMahamid and Grolinger, 2021] suggests a classification based on the state and
action spaces topology. Unlimited states refer to those problems where the state
space is continuous and therefore the variables can have many values, while limited
states refer to problems with a discrete state space. Figure 4.2 shows a classification
of the different algorithms.

Figure 4.2 RL algorithms. Source [AlMahamid and Grolinger, 2021]

4.1 Fundamentals

This section aims to describe some of the mathematical fundamentals of RL.
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Markov Decision Processes (MDPs)
At the core of RL lies the Markov Decision Process (MDP) framework [Metropolis
et al., n.d.] An MDP is a tuple (S,A,P,R,γ), where:

• S is the state space.

• A is the action space.

• P is the transition probability function.

• R is the reward function.

• γ (gamma) is the discount factor.

An MDP can be represented with a graph where the nodes represent the states
and the arrows represent the possible transitions. For RL, each transition or subset
of transitions (for stochastic processes) is typically associated with an action. Each
transition has a certain reward value. A graphical representation of a generic MDP
is shown in Figure 4.3.

a1

a3

a2

S0

a2

a3

S1

a1

a2
S3

a1

a3S2

Figure 4.3 Generic deterministic MDP, with 4 states and 3 possible actions. In an RL prob-
lem, each state transition (each of the arrows) would have an associated reward.

Value Functions
Value functions estimate the goodness of being in a particular state and taking a
particular action in a state. There are two fundamental value functions:
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4.1 Fundamentals

• Action Value Function (Q(s, a)): It represents the expected return starting
from a particular state (s), taking a particular action (a).

Q(s,a) = Eπ

[
∞

∑
t=0

γ
tRt+1 | S0 = s,A0 = a

]

• State Value Function (V(s)): It represents the expected return starting from
a particular state under a given policy.

V (s) = Eπ

[
∞

∑
t=0

γ
tRt+1 | S0 = s

]

Let’s assume the policy is to choose the action that maximizes Q:

π(s) = argmax
a

Q(s,a) (4.1)

Then V would be the value of Q for the action chosen that maximizes Q:

V (s) = max
a

Q(s,a) (4.2)

This is the approach used in algorithms like DQN and Q-learning.

Bellman Equation [Bellman, 1966]
The Bellman equations are recursive relationships that express the value of a state or
action in terms of the values of subsequent states or actions. They are fundamental
to understanding the dynamics of RL algorithms. They are based on the principle of
optimality, which states that an optimal policy has the property that, whatever the
initial state and decisions are, the remaining decisions must constitute an optimal
policy, regarding the current state before each decision. In other words, the Bell-
man equations are built upon the assumption that future actions will continue to be
optimal.

The action-value function Q(s,a) represents an estimate of the future discounted
reward expected from being in state s and taking action a. It can be expressed as

Q(s,a) = ∑
s′,r

p(s′,r|s,a)[r+ γ ∑
a′

π(a′|s′)Q(s′,a′)] (4.3)

Where r is the scalar reward from each simulation. π(a|s) represents the proba-
bility of taking a certain action (a) when being on a certain state (s) and following
the policy π(s). p(s′,r|s,a) is the transition function, defined in Section 6.6.

The state value function V (s) represents the expected return from being in state
s. It can be expressed by the Bellman state value equation:

V (s) = ∑
a∈A

π(a|s)∑
s′,r

p(s′,r|s,a)[r+ γV (s′)] (4.4)
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RL algorithms try to learn a policy that maximizes V (s), so under optimality
conditions the following equality would be true:

V (s) = max
a∈A

Q(s,a) (4.5)

4.2 Model free RL

Q learning
The core idea behind Q-learning is to learn a Q-value function that represents the
expected value of taking a particular action in a particular state. The Q-value func-
tion can be represented as a look-up table, where the entries are updated iteratively
based on the agent’s experiences.

The Q-value update rule is based on the Bellman equation:

Q(s,a)← Q(s,a)+α

(
r+ γ max

a′
Q(s′,a′)−Q(s,a)

)
Where:

• Q(s,a) is the Q-value of taking action a in state s.

• r is the observed reward.

• α is the learning rate.

• γ is the discount factor.

The rationale of Q-learning is to minimize the error of the Bellman equation
using fixed point iteration. There are two hyper-parameters to tune. The intuition
behind it is as follows:

• α represents how much new experiences are trusted. A high value of α means
that a high weight is given to the observed reward, while a low value means
that more importance is given to the current Q-value.

• γ represents the importance of future rewards with respect to current rewards,
as in other RL algorithms. A value of gamma close to 1 means that the future
rewards are almost as important as the immediate reward. While a value of
gamma close to 0 means that the immediate reward is prioritized.

The policy with this algorithm would be to look at the Q table and select the
action with the higher value for the current state.

π(st) = argmax
a

Q(st ,a)
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4.2 Model free RL

However, an ε greedy strategy is typically used to favor exploration. This essen-
tially consists of randomly picking some of the actions, instead of using the previous
expression. The parameter ε defines what portion of the actions are randomly se-
lected and it is typically decreasing as training advances.

Policy Gradient
Policy Gradient methods [Sutton and Barto, 2018] are a class of reinforcement
learning algorithms that directly learn the policy function, which maps states to
actions, to maximize the expected cumulative reward. Unlike value-based methods
that aim to estimate the value function and then derive a policy from it, policy gra-
dient methods directly optimize the policy parameters using gradient ascent.

The basic idea behind policy gradient methods is to parameterize the policy
with some function approximator (such as a neural network) and then update the
parameters in the direction that increases the expected cumulative reward. This is
typically done by computing the gradient of the expected reward with respect to the
policy parameters and then performing gradient ascent.

Mathematically, the objective of policy gradient methods is to maximize the
expected return J(θ), where θ represents the parameters of the policy:

J(θ) = E[
T

∑
t=0

γ
tRt ]

where γ is the discount factor, T is the time horizon, and Rt is the reward at time
step t.

Note that in this expression, the sub-index t refers to a discrete time step of the
sequential decision problem. Which, in the context of this work, consists of one
simulation until steady state or a simulation during a fixed time step, as will be
described in Section 7.3.

Trust Region Policy Optimization (TRPO)
Trust Region Policy Optimization (TRPO) [Schulman et al., 2015] is a policy gradi-
ent algorithm that aims to improve stability and sample efficiency compared to basic
policy gradient methods. TRPO constrains the policy update step to ensure that the
new policy remains close to the old policy, thus avoiding large policy updates that
could destabilize learning.

The key idea behind TRPO is to maximize the following surrogate objective
function, subject to a constraint on the KL-divergence [Pollard, 2000] between the
old and new policies, which is a measure of how much the policy varies between
iterations:

max
θ

Es,a∼πold

[
πθ (a|s)
πold(a|s)

Aπold(s,a)
]
,
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subject to Es∼πold [DKL[πold(·|s)||πθ (·|s)]]≤ δ ,

where Aπold(s,a) is the advantage function under the old policy, and DKL is the
KL-divergence between the old and new policies.

The advantage function, denoted as Aπ(st ,at), represents the advantage of tak-
ing action at in state st compared to the expected value of being in state st under the
current policy π . It’s calculated as the difference between the Q-value and the state
value:

Aπ(st ,at) = Qπ(st ,at)−V π(st),

where:

• Qπ(st ,at) is the action value function, representing the expected cumulative
discounted return of taking action at in state st and then following policy π

thereafter.

• V π(st) is the state value function, representing the expected cumulative dis-
counted return starting from state st and then following policy π thereafter.

Again, in these expressions, the sub-index t refers to a discrete time step of the
sequential decision problem.

TRPO uses conjugate gradient optimization or other constrained optimization
techniques to solve the above optimization problem efficiently.

Proximal Policy Optimization (PPO)
Proximal Policy Optimization (PPO) [Schulman et al., 2017] is a further improve-
ment over TRPO, designed to address some of its limitations and make it more
practical and efficient. The main outcome of PPO, in contrast with TRPO, is that
there are no hard constraints in the loss functions. PPO incorporates a soft con-
straint directly in the definition of policy loss by using a clipped surrogate objective
function. This clipping has a similar effect as the hard constraint in the TRPO loss
function and eliminates the need for complex constraint optimization.

In PPO, the objective function is modified to prevent aggressive policy updates
that could lead to instability. Instead of directly maximizing the ratio of new policy
probabilities to old policy probabilities, PPO clips this ratio to keep it close to 1.
This is done using a hyperparameter ε:

LCLIP(θ) = Et̂ [min(rt(θ)At̂ ,clip(rt(θ),1− ε,1+ ε)At̂)] ,

where rt(θ) =
πθ (at |st )

πθold (at |st )
, and At̂ is the advantage function:

Aλ
t = δt +(γλ )δt+1 + · · ·+(γλ )T−t+1

δT−1,
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where δt = rt + γV (st+1)−V (st).
Again, in these expressions, the sub-index t refers to a discrete time step of the

sequential decision problem.
This loss function essentially incorporates a soft constraint for avoiding aggres-

sive updates of the policy paramters. Since there are no hard constraints, this makes
the optimization problem more computationally efficient than in TRPO.

PPO also incorporates a value function loss term LVF and an entropy term S[πθ ]
in the final loss function to encourage exploration and improve policy robustness.
The overall objective function in PPO is given by:

LCLIP+VF+S(θ) = E
[
LCLIP− c1LVF + c2S[πθ ](st)

]
,

where c1 and c2 are coefficients that balance the importance of the value function
loss and the entropy term, respectively.

PPO uses batches of data to update its policy, it runs the policy for a while in
the environment and collects data, which is used to compute the expectations in the
loss function. Then it performs a number of gradient optimization iterations on the
network parameters using the total loss function. A pseudocode of the algorithm is
shown in Figure 4.4

Figure 4.4 Pseudocode for PPO. Source: [Schulman et al., 2017]. The actors are threads
that run a given policy to collect data. N actors run in parallel to collect data. By default N =
1.

Twin Delayed Deep Deterministic Policy Gradient (TD3)
Twin Delayed Deep Deterministic Policy Gradient (TD3) [Fujimoto et al., 2018]
is an extension of the Deep Deterministic Policy Gradient (DDPG) [Silver et al.,
2014] algorithm, designed to improve its stability and performance.

In TD3, two separate neural networks (NN), referred to as the "twin" critics, are
employed to estimate the action-value function. This helps mitigate overestimation
bias in the Q-value estimates.

Moreover, TD3 introduces a policy smoothing noise during action selection to
reduce the variance of the Q-value estimates, which further enhances stability. Ad-
ditionally, TD3 uses target policy smoothing, which adds noise to the target policy
during the critic update step to prevent overestimation.
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The TD3 algorithm has shown improved performance and stability compared to
DDPG, especially in environments with high-dimensional state spaces.

4.3 Model based RL

Model-based RL is a method that uses some knowledge about a physical model to
select the right actions.

It involves learning or knowing a model of the environment to improve decision-
making. These methods can include planning algorithms to simulate future trajec-
tories and learn from them, to decide which is the right action to take.

Model-based RL is known for being more sample-efficient and stable than
model-free RL, which makes it an interesting alternative for control-related prob-
lems, however, it is more difficult to implement.

Planning and learning
"Planning and learning may actually be combined, in a field which is known as
model-based reinforcement learning" [Moerland et al., 2023]

Figure 4.5 illustrates the planning and learning framework introduced in [Moer-
land et al., 2023].

Planning
Use the model to
predict the best
action and / or

update the
policy.

Learning
Learn the model
(through learning
a value or policy

function).

Figure 4.5 Planning and learning. Essentially this consists of iterations of system identifi-
cation and controller optimization.

This consists essentially of running several iterations of system identification
(learning) and policy improvement (planning).
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4.4 RL Environment

4.4 RL Environment

In the context of Reinforcement Learning (RL), an environment serves as the sim-
ulation or representation of the real-world system with which an agent (controller)
interacts. Technically, it consists of a Python class where one can define the prob-
lem, including a representation of the dynamics of the system. The interaction be-
tween the agent and the environment occurs over discrete time steps. At each time
step, the agent observes the current state of the environment, selects an action from
its action space, and receives feedback in the form of rewards and potentially a new
state. This process continues iteratively during the training, with the agent aiming
to learn an optimal policy that maximizes its cumulative reward over time. For this
work, the package gym, from OpenAI has been used to generate the environment.

4.5 Elements of the environment

State Space
The state space (or observation space) represents the set of all possible configu-
rations or states that the system can be in. Those states encapsulate all relevant
information necessary for decision-making within the environment. One can arbi-
trarily decide what variables or information are included in the state space of the
RL controller. A detailed definition of the state definition for the problem attained
in this work is given in Section 7.2.

Action Space
The action space represents the set of all possible actions that the agent can take
within the environment. It is where one can define the number and topology of
actions.

In the context of the cooling problem, there are 2 binary actions and 3 continu-
ous actions. Different RL models have been built, considering all or a subset of the
actions on each model. More details about the action space definition for each RL
model are given in the next chapter.

The agent selects actions based on its current observation of the environment.

Reward
At every time step, the environment should return a reward, based on how good was
the action applied for the particular state. The reward function is a critical concept in
the definition of an RL problem since it plays a crucial role in defining the objective
of the algorithm. For this work, the reward function must guarantee that the power
consumption is minimized and the cooling demand constraint is met. The next chap-
ter introduces different definitions of reward functions for each of the models that
will be proposed.
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Episode definition
When training an RL agent, the simulations are often organized in episodes. In a
video game context, one episode would typically consist of one level, which ends
when either the player completes the level or dies. The environment is restarted at
the end of each episode. In the context of this work, one episode consists of several
simulations with different weather and load conditions. For example, one episode
could correspond to the weather and load data from one year discretized using a
certain time-step length or to a number of synthetic combinations of weather and
load.

4.6 Main methods of the environment

OpenAI’s Gym package [Brockman et al., 2016] was used for this work. It provides
a standardized interface for creating RL environments, which are compatible with
most of the RL packages and easy to use for testing own implementations of algo-
rithms. An environment is represented by a class in Python, that contains at least
the following main methods:

• Init(): This is the method that initializes the environment, here one can define
the topology of the state and action spaces. In other words, specify the type
(discrete, continuous), number, and range of each state and action variable.

• Step(action): The step method takes an action as input, applies it to the
environment, and returns four values: the next observation (state), the reward
obtained from taking the action, a boolean indicating whether the episode has
terminated, and additional information useful for debugging or analysis.

• reset(): This method initializes the environment to its initial state and returns
the initial observation. It is typically called at the beginning of an episode or
whenever a new episode starts.
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5
RL Basic Experiment

In this chapter, a basic experiment using Q-learning is performed. The motivation
is to better understand the reinforcement learning fundamentals and the limitations
of Q-learning before introducing more complex algorithms.

5.1 Reduced problem formulation

In this problem formulation, weather conditions and IT load are constant. The states
are given by:

• Chilled leaving water temperature difference between chiller 1 and 2, Tdi f f .

• The cooling water leaving water temperature, Tcond .

The actions are:

• The set-point of the chilled leaving water temperature difference between
chiller 1 and 2, Tdi f f ,spt .

• The set-point of the cooling water leaving water temperature, Tcond,spt .

Summarizing, the state (S) and action (A) spaces are:

• S = [Tdi f f , Tcond]

• A = [Tdi f f ,spt , Tcond,spt ]

The admissible values for these variables are given by their respective validity
ranges of the system.

Let’s denote the state transition function:

st+1 = f (st ,at)

The function f is evaluated by simulating the dynamic model for the thermal cool-
ing system for a given time step ∆t.
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The reward function is given by:

R =

{
−P if (TIT−Tsp IT)< 0,1◦C
−∞ else

, where P is the steady-state power consumption. This is to reflect that the main
constraint is to maintain the IT space temperature set-point, and the main control
objective is to minimize the power required to operate the cooling equipment.

5.2 Experiment

Given this simplified problem formulation, an RL controller was trained using Q-
learning. The simulation time-step was set sufficiently long to achieve steady state,
more concretely one hour.

The outdoor conditions and cooling load were fixed:

• Outdoor temperature: 20 ◦C

• Relative humidity: 0,8

• Cooling load: 1250 kW

The evaporator leaving water temperature was fixed to 6,67 ◦C.
The hyper-parameters were set in the following way:

• α was set to 1, to make the learning converge faster.

• γ was set to 0 and the episode length was set to one since each time step is
independent of the other.

• The initial ε was set to 0.9, with a linear decay rate of 0.0001

The set-points and state values were discretized into 5 values for Tdi f f and 10
for Tcond , as shown in Table 5.1. To plot the Q table, the arrays were flattened as
well.

Index 0 1 2 3 4 5 6 7 8 9
Tdi f f (

◦C) 0 2,08 4,17 6,25 8,33.
Tcond(

◦C) 15 16,60 18,21 19,82 21,42 23,02 24,63 26,23 27,84 29,44

Table 5.1 Discretization

Since the second state has 10 possible values, then the states and actions can be
easily expressed in flattened index or array formulations. For example, the flattened
state 34 would correspond to the array of discrete indices [3,4] which corresponds
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to Tdi f f = 6,25 (◦C) and Tcond = 21,42 (◦C) according to Table 5.1. The same logic
applies to the actions.

The algorithm converged in around 10000 time steps. Looking at the Q-table,
shown in Figure 5.1 one can realize two things:

1. The state doesn’t affect which action is the best. In other words, each ac-
tion has a different Q-value that is not dependent on the current state of the
problem. This is accordant with the intuition behind Assumption 3.2

2. Not all states are explored since not all states are reachable. For example, a
too-low condenser temperature cannot be reached, since the cooling towers
saturate. More concretely, it is observed that condenser temperatures lower
than the fourth discrete value and the last discrete differential temperature
value are never reached. This is not a problem, as long as the cooling demand
is supplied, which is the case for this experiment.

Figure 5.1 Static experiment Q-table color map. The best action does not depend on the
physical state of the system.

The best action selected by the algorithm was action 25, which corresponds to
the discrete action pair [2, 5] which corresponds to Tdi f f ,spt = 4,165 ◦C and Tcond,spt
= 23,02 ◦C. This is always the best action without depending on what state the plant
is in, as shown in Figure 5.3.

The value function V (s) represents the outcome of being in a particular state
(s). In the case of Q_learning it is defined as:
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V (s) = min
a

Q(s,a)

The function is represented in figure 5.2, where the unexplored states are not
plotted.
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Figure 5.2 Value function. The value of each of the explored states corresponds to the
maximum Q-value for that state. It is seen that all explored states have the same value.
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Figure 5.3 Best Tdi f f and Tcond for each state. Note that the best action is the same one,
independently of the current physical state.

5.3 Conclusions

There are 2 main conclusions from this experiment.

• Q-learning seems to be working for this simple problem. The results are ac-
cordant to the exploratory data analysis performed in Chapter 2. More con-
cretely, the weather of this experiment corresponds to a wet-bulb temperature
of 17,52 ◦C. Taking a look at Figure 2.14, it can be seen that the optimal
Tdi f f ,spt found is close to this curve for the load value 1250 kW and tem-
perature 20 ◦C, being the chosen value the discrete value of the list closer to
the optimal. Similarly, taking a look at Figure 2.15, specifically to the second
row left one (corresponding to the experiment conditions), the optimal Tcond
is close to the maximum efficiency point shown in the figure.

• The main disadvantage of tabular Q-learning is that the size of the Q-table
grows exponentially with the number of actions and states. That makes this
algorithm unsuitable for complex problems. Note that the problem solved
in this section is not the same as the one described in the original problem
formulation (Chapter 6). The actual problem has more actions and states,
besides, to have an efficient controller, the actions should be either continuous
or with more discrete values than the ones considered in this section. This
makes Q-learning a non-suitable algorithm for the problem attained in this
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work, instead more complex algorithms should be studied, such as DQN,
PPO or TD3.
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6
Problem Formulation

Here, the problem is formulated in a Powell fashion, according to the Book [Powell
et al., 2022]. Only set points for the regulatory control layer and staging of com-
ponents will be optimized. In further attempts, optimizing the controller parameters
can also be explored.

This problem can be modeled as a Markov Decision Process (MDP), which is
done at the end of this chapter.

6.1 The narrative

Our problem has a sequential decision nature since the supervisory control has to
apply an action at each time step based on the status of the plant and external infor-
mation such as the outdoor temperature or the IT load. The goal is to reduce the total
energy cost of the data center, focusing on the energy used by the cooling system,
as well as to keep the servers safe.

As mentioned in Chapter 2, The system consists of a chiller plant where chilled
water is produced and an IT room. The chilled water is transported to the air han-
dling units in the IT room (AHUS) that supply cold air to the IT equipment, accord-
ing to figure 2.1.

The cooling load can take different values between 500 kW and 2000 kW.
It could be considered that electricity has different prices at different times,

but to be able to minimize energy costs in that manner, energy storage would be
needed. Therefore the goal will be to minimize the power consumption regardless
of the different prices at different times.

There are low-level control architectures in the building that track certain set
points for the relevant variables, located at the BMS control layer (see Figure 2.2).
The goal is to develop a high-level controller that achieves the objective of min-
imizing power consumption by adjusting these set points and the staging of the
equipment.

It is important to optimize these set points, otherwise the system can use much
more energy than it needs to cool down the IT equipment.
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6.2 Optimization possibilities

The complete list of variables to optimize can be found in Table 2.1. However, some
variables cannot be optimized which must have a certain fixed value for reasons of
security, comfort, or achieving the cooling objectives (temperature of the IT room,
and supply air temperature).

Moreover, it has been decided not to modify the staging of the chilled water
pumps. One reason is that the energy consumption on them is not very big compared
to the rest of the elements and the aim is to keep the problem simple. Moreover,
optimizing them doesn’t have a big impact on power consumption and it is always
better to have all the pumps running, as shown in Figure 2.17.

This leaves us with the set of variables to optimize shown in Table 6.1

Variable Description
CH1status Status (on/off) of chiller 1
CH2status Status (on/off) of chiller 2
Tevap,spt Chilled water temperature set-point
Tdi f f ,spt Chilled water temperature difference set-point between

chillers 1 and 2
CT 1status Status (on/off) of the cooling tower 1
CT 2status Status (on/off) of the cooling tower 2
Tcond,spt Cooling tower leaving water (condenser entrance) tem-

perature set-point value

Table 6.1 Optimization Variables

According to the variation ranges (2.1) - (2.3), the following constraints must
be considered:

6.67◦C < Tevap,spt < 15◦C (6.1)

0◦C < Tdi f f ,spt < 15◦C−Tevap,spt (6.2)

15◦C < Tcond,spt < 29.45◦C (6.3)

Moreover, under certain conditions, the degrees of freedom of the optimization
problem are reduced. For example, for high loads (roughly over 1300 kW) it is nec-
essary to have the two chillers on to be able to meet the demand (so the temperature
in the IT room remains at its set point in steady-state).

Furthermore, the rate at which the equipment is turned on and off must be lim-
ited, since too many changes on the staging are harmful to the equipment and imply
a higher transient power consumption.

There are two ways to implement these constraints:
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6.3 State variables

1. Soft constraints: Adding a penalty on the objective function for not meet-
ing the constraint. For example, a fixed penalty when a staging variable is
modified within a fixed time interval since it was modified the last time. With
these constraints, it is not guaranteed that the condition will always be met.
However, it is possible to define (by tuning the penalty terms) how harmful it
is to not meet the condition and allow the system to disregard it if it’s really
beneficial according to the optimization criteria.

2. Hard constraints: Specifying a constraint that must always be met. This
needs to be done in the policy definition. With this approach, the constraints
will always be met.

In this work, hard constraints will be used, since equipment safety is of critical
importance.

To reduce the dimension of the combinatorial problem, some constraints need
to be imposed on the boolean decision variables. The idea is that when there is only
one chiller working, that should be chiller 1. In the same way, when there is only
one cooling tower working, that should be cooling tower 1.

In this sense, the reinforcement learning model will not need to differentiate
between the case where only chiller 1 is running and the case where only chiller 2
is running. Since they are essentially the same case, the second option is just not
allowed to happen, the same applies to the staging of the cooling towers.

To implement this, the RL model will have 2 boolean actions. One corresponds
to the chillers and one corresponds to the cooling towers. When the chiller action
takes the value 0, it means that only chiller 1 is on and when it takes the value
1 it means that both chillers are on. The same applies to the cooling towers with
their associated action. This approach imposes a hard constraint on the equipment
staging.

6.3 State variables

For the general problem (not taking into account the assumption in section 3.2), the
state of the system consists of variables that reflect the internal conditions of the
plant.

The state variables considered for this problem are shown in Table 6.2:
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Variable Description
Tevap Evaporator leaving water temperature.
Tcond Condenser entry water temperature.
Tdi f f Evaporator leaving water temperature difference

between chiller 1 and 2
CH1status Status (on/off) of chiller 1
CH2status Status (on/off) of chiller 2
CT 1status Status (on/off) of cooling tower 1
CT 2status Status (on/off) of cooling tower 2

Table 6.2 State Variables

Note that the state variables are not the same as the decision variables. The
first ones refer to the real value of each particular physical variable, while the later
ones refer to the set point for that particular variable. The state variables might not
have the same value as their setpoint, even in steady state. This is due to equipment
saturation (the equipment is not capable of reaching one particular set-point, but
still meets the cooling requirements).

The importance of this variables in decision making will be explored later in this
work. A different definition of state variables for the RL controller will be given,
which will include only the variables containing relevant information for the control
problem.

6.4 Performance metrics

The performance metrics evaluate the power consumption of each element and the
total system. The variables shown in Table 6.3 can be used as those.

Variable Description
Pct Power consumption at time t in the chillers.
Ptt Power consumption at time t in the cooling towers.
Pat Power consumption at time t in the AHUs.
Ppt Power consumption at time t in the chilled water

pumps.
Pt Total power consumption at time t.
COP cooling_load/Pt

Table 6.3 Performance metrics

6.5 Exogenous information

The exogenous information in our problem is the weather conditions and the cooling
load. The variables are summarized in Table 6.4
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6.6 Transition Function

Case Decision variables
T _dbt+1 Dry-bulb temperature of the outdoor air.
RHt+1 Relative humidity of the outdoor air.
loadt+1 Cooling load.

Table 6.4 Exogenous information

Note the index t+1 in the variable. This denotes that future weather conditions
are exogenous information. The past and current weather conditions are known and
the system must use them to estimate the optimal parameters.

6.6 Transition Function

The transition function describes how the state of the system evolves over time in re-
sponse to the decisions made by the controller and the exogenous information (such
as weather conditions and cooling load). In this context, it represents the dynamics
of the cooling system and how it reacts to changes in the control inputs.

The transition function, denoted as p(st+1,st ,at), calculates the probability of
transitioning from state st to state st+1 given the action a. It encapsulates the dy-
namics of the cooling system and how it responds to changes in control inputs and
exogenous information.

Using mathematical notation, the transition function can be expressed as:

p(st+1,st ,at) = P(st+1 | st ,at) (6.4)

This equation represents the probability of transitioning to state st+1 at time step
t +1 given that the system is in state st at time step t and action a is taken.

For this problem, the transition function will be given by performing a simula-
tion starting from state st , taking action at for given exogenous information wt and
then reading the value of the state variables:

st+1 = simulate(st ,at ,wt) (6.5)

6.7 Objective function

The goal is to minimize energy consumption under the constraint of meeting the
cooling demand.

min
a

∫
year

P(t)dt

subject to:
TIT < Tsp,IT +β
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In the equation, TIT and Tsp,IT are the IT room temperature and its setpoint,
respectively, β is a small number, P is the power consumption of the cooling plant.

The constraint ensures that the cooling demand is met, by ensuring that the room
temperature is never higher than its setpoint with a small admissible error range.

6.8 Designing policies

The policy will be to use a physics-informed Reinforcement learning model to make
the decisions. The RL algorithm will modify the decision variables, based on a
reward proportional to the COP at each time step. The shape of the policy will
be dependent on the algorithm used. Several experiments will be performed with
different algorithms, therefore, different types of policies will be used.

For example, some algorithms are based on policy optimization, Proximal Pol-
icy Optimization (PPO) being an example of them, for those, the policy is repre-
sented by a Neural Network (NN) that predicts the best setpoints for each state
observation. Other algorithms, such as Q_learning, store a table with the expected
cost of selecting each action from a possible set of actions for each state observation
from a set of observations. These algorithms simply select the best possible action
according to the information stored in that table.
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7
RL Models and Algorithms

In the definition of the most suitable RL model, various factors must be considered
and some parameters must be tuned. In this work, different experiments have been
performed. This chapter provides a general description of the RL models that have
been set up and tested. The last section summarizes the models by specifying which
methods have been applied in terms of algorithm selection, action space definition,
reward function, episode configuration, and physics information techniques.

7.1 Training process

The training process can be performed in two different ways:

• Offline, using a simulated environment of the real plant.

• Online, directly using the real plant.

The first method involves needing an accurate simulation environment that rep-
resents well the real plant. The approach would be to use that simulation model to
train the RL controller and then deploy it to the real plant.

The following issues need to be considered when deciding what approach to
follow:

• Flexibility of designing training scenarios. In simulation, there is more flexi-
bility for this, for example, the weather and load can be varied as one desires
and simulations can be performed until steady state. In reality, the controller
should be able to train with realistic weather and load patterns, as a conse-
quence, the algorithm may never learn what operating point is optimal for
unexplored external conditions.

• Training speed. While training the model on the real plant would take years,
training it in a simulated environment should only take a few hours.
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• Safe training. Some actions can break the IT or cooling equipment under cer-
tain circumstances if performed on the real plant, however, in the simulation,
this is not an issue. The agent can receive a big negative reward when such an
action is taken, learning then that that action is not adequate for that particular
state.

• Model accuracy. When training on a simulation, the model needs to be suffi-
ciently accurate, the efficiency curves should be the same as for the real plant.
This problem only applies to the simulation training approach.

In this work, the model is trained on a simulated model. However, some of the
experiments study a particular scenario that should be able to resemble training in
the real plant, as described later in this section.

7.2 State Variables for RL

RL algorithms converge faster if the dimension of the state is reduced, so the state
variables should ideally include all the relevant information for decision-making,
but not unnecessary information.

Since it is assumed that the problem is stateless (see Section 3.2), which was
proved experimentally in Chapter 5, it has been decided to define the state variables
for RL as:

S = [l,Tw] (7.1)

Where Tw is the wet bulb outdoor temperature and l is the cooling load, both of
them are normalized so their range is from -1 to 1. This is the recommended range
for state variables when using RL packages such as stable baselines.

In this case, the only relevant information for deciding which action is more
suitable at each time step is the load and weather conditions, which are modeled as
exogenous information in Section 6.3. A more detailed motivation on why to use
the wet-bulb temperature in the state space can be found in Section 7.5, as well as
the details of how it is computed and used.

Provided this definition of state space, the simplified MDP in Figure 7.1 can
be defined. This MDP also assumes deterministic sampling of conditions from a
given list and discrete actions. Since the external conditions are the only information
in the state space, the state transitions will always go from the current sample on
the list to the next one. However, the same transition could be done with different
actions (represented by different arrows) with different associated reward values.
The behavior is similar to an MDP with an uncontrollable state. The RL algorithm
aims to find the best action to be applied at each state.
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Figure 7.1 Simplified MDP for RL. One always moves one step forward in the weather
and load list, but one can do that with many different actions. Each action has an associated
reward depending on the current weather, load, and the action itself (one reward for each
arrow in the diagram).

The state variables are usually modified at each time step according to the con-
troller’s action and the system dynamics. However, in this case, the state is modified
by resampling the weather and load conditions after the simulation. In this way, the
new normalized conditions are returned to the RL controller by the environment
after each time step to compute the action for the next step.

7.3 Scenarios

The word scenario, in this context, refers to how the action space, reward function,
and episode configuration are defined.

One common problem is that the environment has both continuous and discrete
actions. The majority of algorithms don’t support this. Q-learning and DQN need
discrete action spaces, while PPO can work with continuous action spaces, but not
with mixed (continuous and discrete) actions. One way to solve this is to discretize
the continuous actions. Another solution might be to disregard the discrete actions
and optimize only the continuous ones. In this work, the following scenarios have
been defined:

Discrete. In this scenario, the actions are all discrete and correspond to setpoints
and staging. The action space is formed by the following variables:

• CH1status: Boolean

• CT 1status: Boolean

• Tevap,spt : Discrete, 15 levels.
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• Tcond,spt : Discrete, 15 levels.

• Tdi f f ,spt : Discrete, 15 levels.

A = [CH1status,CT 1status,Tevap,spt ,Tcond,spt ,Tdi f f ,spt ]

When training in this scenario, the simulations are performed until steady-state
and the reward is defined in the same way as described in the problem formulation:

rt =

{
Lt
Pt
∗ 1

6 if (TIT−Tsp,IT)< β

−0.7 else
(7.2)

Where t is the current time step (current simulation until steady state) and Lt
and Pt are the values at the end of the simulation (steady state values). Note that this
reward is always positive except when the cooling demand is not met. The average
efficiency is around 6, so it is normalized by dividing it by this number since smaller
rewards tend to improve training time.

One episode consists of all the simulations with all possible outdoor conditions
and cooling load. The training is performed with loads between 500 and 2000 kW
sampled deterministically from a linearly spaced list. The same kind of sampling
for the Tdb and RH, that range between 12 and 30 ◦ C and 0.8 and 0.55 respectively.
20 levels are used for the load and 10 for the weather conditions, so the episode
length is 200.

Continuous. In this scenario, the actions are all continuous and correspond to
setpoint tunning. The staging is fixed, and all the equipment is running. The action
space is composed of the following variables:

• Tevap,spt : Continuous.

• Tcond,spt : Continuous.

• Tdi f f ,spt : Continuous.

A = [Tevap,spt ,Tcond,spt ,Tdi f f ,spt ]

The reward function and episodes are defined in the same way as for the discrete
scenario.

This scenario simplifies the policy network since the problem consists of a re-
gression, with the observation as an input and action as an output, rather than a
classification, which is the case for the discrete scenario.

However, the equipment staging optimization was not considered in this sce-
nario. If this controller was implemented in the real plant, the rule from the baseline
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controller could be applied for cooling tower staging. However, this was not tested
due to the time constraints of the project.

The chiller staging can be controlled with a single rule, turn off the second
chiller when its set-point (set by the RL controller) is larger than the evaporator
entering water Treturn, which can be measured.

CH1status =

{
1 if (Tevap +Tdi f f )< Treturn

0 else

This is not necessary to implement when working on the simulated environment,
since the power consumption of chiller 1 is considered zero automatically when the
mentioned condition is met.

Realistic. In this scenario, the actions are all continuous and correspond to set-
point tunning. The staging is fixed, and all the equipment is running, as in the pre-
vious scenario. The action space is composed of the following variables:

• Tevap,spt : Continuous.

• Tdi f f ,spt : Continuous.

A = [Tevap,spt ,Tdi f f ,spt ]

Tcond,spt is set according to the baseline controller, which controls it safely.
Too low condenser temperatures reduce drastically the cooling capacity. Therefore,
meeting the cooling demand depends highly on this parameter.

The purpose of this scenario is to study the feasibility of training on the real
plant. With this action space, if the ranges are properly limited, it can be achieved
that the simulation never fails for any action applied, which would mean that the
cooling demand is met and the equipment safety is guaranteed, so the agent would
be able to train on the real plant.

When training in this scenario, the simulations are performed for intervals of 20
minutes. The reward is defined as:

rt =

{
Lt
Pt
∗ 1

6 if (TIT−Tsp,IT)< β

−0.7 else
(7.3)

Where t is the current time step (current simulation index). The Load (Lt ) and
Power (Pt ) values are measured at the end of each simulation.

One episode consists of one one-year simulation, with weather data from Miami
and the variable load pattern, described in Section 8.2

Similar policies as the ones described in the continuous scenario could be de-
ployed for chiller and cooling tower staging when implementing the controller on
the real plant.
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7.4 Algorithms

As mentioned previously, the size of the action and state spaces makes tabular Q-
learning not suitable for the problem. 3 different algorithms are therefore studied.
Not all of them work with all the scenarios, due to their different action space nature.

• PPO: Works with continuous or discrete actions.

• TD3: Works only with continuous actions.

• DQN: Works only with discrete actions.

However, DQN was quickly discarded since it was observed that PPO converges
much faster to a higher reward value, as seen in Figure 7.2. So the final results are
only shown for PPO and TD3.
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Figure 7.2 Comparison training DQN and PPO, for the discrete scenario (described later
in this section). PPO reaches higher reward values quicker than DQN.

Python Library
It has been decided to use the python package stable baselines [Raffin et al., 2021],
which provides implementations of these algorithms. This package is intuitive and
easy to use, since it is compatible with gym environments and the algorithms come
with a default set of hyperparameters suitable for different types of problems.
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Parameter Considerations
Several parameters affect the convergence speed of the algorithm when training.
These parameters include:

• Policy and Value Network Architectures: This is the neural network archi-
tecture that represents the policy and value functions. In PPO, both typically
consist of 2 hidden layers with 64 neurons with hyperbolic tangent activa-
tion functions, as well as the input and output layers. In this project, it has
been decided to keep the main structure but change the hidden layer size to
32 and use Rectified Linear Unit (ReLu) activation functions when working
with PPO. These parameters were obtained by trial and error. Two PPO mod-
els were trained, one used the described architecture and the other used the
default architecture. It turned out that the model with the proposed architec-
ture performed better on the test benchmark, described in Section 8.2.

• Discount Factor (γ): This parameter determines how much future rewards
are considered in the agent’s decision-making process. Higher γ values prior-
itize long-term rewards, while lower values focus more on short-term gains.
Due to the assumptions in Sections 3.2 and 3.1, the intuition suggests setting
γ to 0. Since each time step is a simulation until a steady state, the outcome
of future simulations should not influence how the actions at the current time
step are selected.

• Episode Length: The episode length defines the duration of each episode in
the RL training process. In the project’s case, one episode consists of a set
of situations with all the possible combinations of cooling loads and weather
conditions. More concretely, 20 samples have been used for the cooling load
and 10 for the weather, so the episode length is 200.

• Entropy Coefficient: This parameter can be used to boost exploration by
adding entropy to the loss calculation. The parameter was kept to its default
value of 0, to not use entropy. Note that this does not mean that there is no
exploration at all. The policy used is stochastic, concretely, the policy network
outputs the standard deviation (σ ) and mean (µ) of a normal distribution for
each action. Then the actions are sampled from their respective distributions,
where the predicted variance σ is larger at the beginning of the training, due
to random initialization of the neural network weights. Then σ decreases as
training advances, since the agent finds that some particular actions work
better than randomly taken actions, favoring exploration in the initial steps
and exploitation at the later steps.
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7.5 Physics information

Incorporating domain-specific knowledge, such as physics information, into the RL
framework can enhance learning efficiency and performance. The goal of lever-
aging physics information is to provide the agent with prior knowledge about the
environment, enabling it to converge faster and make informed decisions.

[Banerjee et al., 2023] introduces a taxonomy of physics information tech-
niques. In this work, two physics information techniques are introduced, the first
one (optimal law for Tdi f f ,spt ) corresponds to the "action regulation" method, while
the second one (Tw computation) corresponds to the "state design" method in that
taxonomy.

Optimal law for Tdi f f ,spt . As mentioned in the action space description, and relat-
ing to Section 2.1. The setpoint for Tdi f f can be set according to the law:

Tdi f f ,spt =
Treturn−Tevap

2
(7.4)

This ensures that both chillers have the same temperature difference (provided
that they are not saturated, so the set points are met). This seems to be optimal
according to Figure 2.14.

This policy reduces the dimension of the action space since it has one less vari-
able to optimize, which should imply less time to train the RL controller.

Wet-bulb temperature computation. Recalling Section 4.5, the state space is de-
fined as the array:

S = [l,Tw] (7.5)

where l is the cooling load and Tw is the wet bulb temperature. The wet-bulb tem-
perature is used to reduce the dimension of the steady state. In the simulation en-
vironment, the weather is defined by the outdoor dry-bulb temperature (Tdb) and
the outdoor relative humidity (RH). One could include this weather information di-
rectly in the state space, but that would involve adding two dimensions representing
the weather. Instead of doing that, the two variables can be used to compute the
wet-bulb temperature and include only that variable in the state space, which is the
approach taken in this work. The wet-bulb temperature is calculated using the fol-
lowing empirical equation, described in [Chen and Chen, 2022], where T must be
expressed in ◦C and RH must be expressed as a percentage:

Tw = T ∗atan(0.152∗
√

RH +8.314)+0.00392∗
√

RH3

∗atan(0.0231∗RH)−atan(RH−1.676)+atan(T +RH)−4.686 (7.6)

Figure 7.3 illustrates this function. Note that the wet-bulb temperature is always
equal to or lower than the dry-bulb temperature, they are only equal when the rela-
tive humidity is 100 %
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Figure 7.3 Tw function. It consists of a mapping from dry-bulb temperature and relative
humidity to wet-bulb temperature.

For this to be a good approximation, Tw must contain relevant information for
the system. In other words, the power consumption must depend on Tw, rather than
on Tdb and RH individually, so all combinations of Tdb and RH that correspond to
the same value of Tw should give the same value of power consumption. This is
the case for the cooling system, the reason is that the weather affects mainly the
efficiency of the cooling towers. The intuition behind this is that objects can be
cooled down to the wet-bulb temperature, which is usually lower than the dry bulb
temperature, without using additional energy. The other equipment units where the
weather is relevant are the different pipes since the thermal loss of the pipes is
computed based on the outdoor temperature, but the contribution of this to the total
power is deprecable in relation to the cooling tower power consumption.

The cooling tower in the simulated environment has been modeled using
Merkel’s calculation method. A detailed explanation of the calculation is given in
[Wetter et al., 2024]. The most significant aspects are described in this section. The
heat exchange can be computed as:

Q =UA× hs−ha

cp
(7.7)

Where U is the cooling tower’s overall heat transfer coefficient and A is the heat
transfer surface area. The coefficient UA is computed as:

UA =UA0× fUA,wetbulb× fUA,airflow× fUA,waterflow (7.8)

Where fUA,wetbulb, fUA,airflow and fUA,waterflow are factors that depend on the wet-
bulb temperature, airflow, and water flow respectively. So, the efficiency of the cool-

67



Chapter 7. RL Models and Algorithms

ing towers, in the way that they have been modeled, is not dependant on the dry-bulb
temperature and relative humidity individually, but rather on the wet-bulb tempera-
ture.

This is the case for the system, the weather affects mostly the efficiency of the
cooling towers, which is computed as a function of Tw. The weather also affects the
heat transfer in the different pipes, which is calculated as a function of Tdb, but the
effect of this on the total power consumption is neglectable since it is minimal, see
Table 7.1

Tdry-bulb(
◦C) RH Tw(

◦C) Power Consumption (steady state) (kW)
21 0.8 18.49 226.95

22.37 0.7 18.49 226.60
19.72 0.9 18.49 226.55

22 0.8 19.45 237.01
23.4 0.7 19.45 236.81
20.69 0.9 19.45 236.80

Table 7.1 Experiments to test the effect of the dry-bulb temperature and RH on the power
consumption individually. The table shows that the effect of these variables individually on
the power consumption is deprecable, in relation to the effect of Tw. Experiment conditions:
Tevap,spt = 7.5 ◦C, Tcond,spt = 23 ◦C, Tevap,spt = 2.2 ◦C, load = 1200 kW, all the equipment
running.

7.6 Experiments

Different RL models have been set, in the next chapter, the training and testing of
each model is explored. The models, with their characteristics are summarized in
Table 7.2.

Model Scenario Algorithm Physics information Techniques
1 Discrete PPO Tw computation
2 Continuous PPO Tw computation
3 Continuous TD3 Tw computation
4 Continuous PPO Tw computation, Law for Tdi f f
5 Realistic PPO Tw computation
6 Realistic TD3 Tw computation

Table 7.2 Model setup

Model 1 uses the full action space but requires discretizing the continuous ac-
tions. Models 2 and 3 ignore equipment staging, and only optimize the continuous
setpoints, the only difference between them is the algorithm used. Model 4 is like
Model 2 but fixing Tdi f f ,spt to follow a physical law, this is expected to reduce the
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data requirements for training. Models 5 and 6 use a reduced action space to train
safely in the real plant, and more realistic training conditions, their purpose is to
study the feasibility of training on the real plant.
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8
Numerical Experiments

8.1 Training

Discrete Scenario
Figure 8.1 shows the evaluation reward from the training process of Model 1 in Ta-
ble 7.2, which uses PPO, and the discrete scenario, this is the reward obtained from
running one episode with the current model at each evaluation step. This reward is
evaluated every 2048 training steps, the same frequency at which the policy is up-
dated. Note that one time step corresponds, for this model, to one simulation until
steady state. It can be observed that the algorithm converges after approximately
160000 time steps.

0 25000 50000 75000 100000 125000 150000 175000 200000
Time step

155

160

165

170

175

180

ev
al

/m
ea

n_
re

wa
rd

Figure 8.1 Discrete scenario training. The algorithm converges after around 160000 time
steps.
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Continuous Scenario
Figure 8.2 shows the evaluation reward from the training process of the models
with the continuous scenario: 2, 3 and 4 in Table 7.2. These models use the algo-
rithms PPO, TD3 and PPO respectively. The last one differs from the first in that it
doesn’t learn a policy for Tdi f f ,spt , but instead it applies the physical law described
in Section 7.5.

The reward is again evaluated every 2048 training steps, corresponding to the
policy update frequency. As before, one time step corresponds, for all these mod-
els, to one simulation until steady state. The following can be concluded from the
experiment:

• TD3 converges faster than PPO. It takes around 50000 time steps to converge,
while PPO needs around 100000.

• TD3 also gives significantly better results at the beginning of the training
process, which would be beneficial if training on the real plant.

• Using a physical law for Tdi f f ,spt , which reduces the action space, improves
the results at the beginning of training. This is logical since, if the assumption
in Section 3.3 is fulfilled, this setpoint is assumed to always follow an optimal
law, even at the beginning of training.
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Figure 8.2 Continuous scenario training. TD3 converges quicker than PPO, TD3 and the
PPO model with the physical law for Tdi f f ,spt give better results at the beginning of training.
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Realistic Scenario
As mentioned before, the realistic scenario aims to resemble real training condi-
tions, to evaluate the data requirements for training on the real plant and the perfor-
mance of the algorithms trained in this way.

Figure 8.3 shows the rollout reward of the models that train in this scenario: 5
and 6 in Table 7.2.

To understand the concept of rollout reward, the PPO working principle needs
to be taking into account. A fixed policy is executed on the environment to collect T
(hyperparameter with default value 2048) data samples, that will be used to compute
the advantage expectations for the next policy update, as shown in Figure 4.4.

The rollout reward is the average episodic reward gotten from the samples that
are used on every policy update. However, in this case, since the episode length is
higher than 2048, the rollout reward is computed at the end of each training episode.
The main difference with the evaluation reward is that this is the reward observed
on the training data, rather than the reward from a separate evaluation experiment.
The reasons to use this metric are the following:

• The rollout reward is more realistic when the model trains on the real plant.
Since this is the reward directly gotten from the samples used for training,
which correspond to stochastic actions, they correspond to the real reward
that one could expect when training online. The stochasticity in the actions is
needed to favor model exploration and be able to properly train the model.

• The episode length for this scenario is very long in comparison to the number
of training time steps, therefore, it would take very long to simulate one full
episode for evaluation. That would correspond to evaluating the model over
one year of data after it has been trained on one year of data, so it would
double the training time.

It can be observed that with both algorithms, the reward increases over time and
it seems that it will eventually converge. Note that, for this model, one episode con-
sists of 26278 time steps, since it consists of a one-year simulation (corresponding
to 2023) discretized in intervals of 20 minutes, rather than the previous 200 time
steps. Therefore, it is expected that it will take longer to converge than the previ-
ous 50 or 150 thousand time steps since it takes a higher number of time steps to
complete each episode.

In this case, PPO apparently outperforms TD3. The models have been trained
for around 150 thousand time steps, corresponding to 5 complete years of training
(5 complete episodes).
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Figure 8.3 Realistic scenario training. The reward increases over time with both algo-
rithms, but PPO achieves higher reward values with the same training time.

8.2 Algorithm Evaluation

Weather data
The weather data used is from Miami. It is sampled every hour and then interpolated
to have data every 20 minutes since that is the control interval used when testing.
As mentioned before, this might imply that the steady-state assumption (mentioned
in Section 3.1) is not met. However, the aim of this decision is to develop a realistic
testing scenario.

The outdoor temperature and humidity are shown in Figure 8.4.
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Figure 8.4 Weather data from Miami in 2023. Temperature in ◦C and relative humidity as
a percentage.

Load Patterns
3 load patterns are defined:

Constant. Constant loads at different levels: 500, 1000, 1500, and 1800 kW

Sinusoidal. Offset loads at different levels: 500, 1000, 1500, and 1800 kW with
an added sinusoidal component with amplitude 10% of the offset load and period
24 hours.

Variable. Consists of 3 components, the notation: N(µ,σ) corresponds to a nor-
mal distribution with mean µ and standard deviation σ :

• Base load following a distribution N(1200,30) kW

• Added load on peak hours (19-23) following a distribution N(400,30) kW

• Added load on weekends following a distribution N(150,30) kW

So, this pattern has essentially 3 different offset levels for the load and an added
noise component:

• 1200 kW on weekdays outside peak hours.

• 1600 kW on weekdays during peak hours.

• 1350 kW on weekends outside peak hours.
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• 1750 kW on weekends during peak hours.

The load is clipped to a maximum value of 2000 kW. This aims to be a realistic
representation of the real load pattern. A plot of the load can be found in Figure 8.5

Figure 8.5 Variable load pattern.

Benchmark
The results from the RL controllers are compared with the baseline controller, in
terms of total energy consumed, energy savings and set-point adjusting.

Results
Tables 8.1 and 8.2 contain the yearly energy consumption from each model for
different load patterns. Tables 8.3 and 8.4 contain the overall energy savings, with
respect to the baseline controller.

Algorithm Scenario
Variable

load
Constant load (kW)

500 1000 1500 1800
PPO discrete 2327 833 1652 2727 NM
PPO continuous 2301 1040 1620 2709 3625
TD3 continuous 2337 951 1701 2723 3625
PPO with Tdi f f ,spt law continuous 2301 1053 1625 2702 3627
PPO realistic 2371 958 1709 2768 3704
TD3 realistic 2376 958 1709 2779 3708
Baseline 2379 910 1707 2769 3747

Table 8.1 Yearly energy consumption in MWh for the different RL models and the baseline
controller. The data is shown for the variable and constant load patterns. NM means that
the cooling demand was not met for that particular case, so the experiment should not be
considered valid.

75



Chapter 8. Numerical Experiments

Algorithm Scenario
Sinusoidal load (offset) (kW)

500 1000 1500 1800
PPO discrete 834 1659 2727 NM
PPO continuous 1042 1624 2719 NM
TD3 continuous 951 1695 2733 NM
PPO with Tdi f f ,spt law continuous 1056 1627 2718 NM
PPO realistic 982 1717 2779 3765
TD3 realistic 973 1719 2790 3744
Baseline 911 1714 2784 3782

Table 8.2 Yearly energy consumption in MWh for the different RL models and the baseline
controller. The data is shown for the sinusoidal load patterns. NM means that the cooling
demand was not met for that particular case, so the experiment should not be considered
valid.

Algorithm Scenario
Variable

load
Constant load (kW)

500 1000 1500 1800
PPO discrete 2.18 8.46 3.24 1.90 NM
PPO continuous 3.26 -14.35 5.10 2.17 3.28
TD3 continuous 1.75 -4.43 0.36 1.68 3.26
PPO with Tdi f f law continuous 3.28 -15.69 4.81 2.39 3.19
PPO realistic 0.35 -5.30 -0.10 0.03 1.17
TD3 realistic 0.11 -5.30 -0.13 -0.36 1.03

Table 8.3 Energy savings in % for variable and constant load patterns with respect to the
baseline controller. NM means that the cooling demand was not met for that particular case,
so the experiment should not be considered valid.

Algorithm Scenario
Sinusoidal load (offset) (kW)

500 1000 1500 1800
PPO discrete 8.43 3.23 2.04 NM
PPO continuous -14.42 5.23 2.31 NM
TD3 continuous -4.34 1.07 1.82 NM
PPO with Tdi f f law continuous -15.90 5.05 2.36 NM
PPO realistic -7.78 -0.17 0.17 0.43
TD3 realistic -6.78 -0.31 -0.23 0.99

Table 8.4 Energy savings in % for sinusoidal load patterns with respect to the baseline
controller. NM means that the cooling demand was not met for that particular case, so the
experiment should not be considered valid.

Let’s assume that the variable load pattern is the more realistic one, then it seems
that the Continuous models with PPO, with and without the physics law for Tdi f f
seem to be the best one. Their efficiency is similar, varying slightly for each load
pattern, so the main benefit of having a fixed control law for Tdi f f is reflected when
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training the model, as discussed previously, rather than in the controller perfor-
mance. However, this law will not work if the chillers are different (the assumption
in Section 3.3 would not be true). Therefore, if training the model offline, it would
be better to include Tdi f f ,spt in the action space, since training time doesn’t matter
that much.

The discrete model with PPO performs a bit worse than the continuous, with
the variable pattern and it doesn’t meet the cooling requirements for high loads,
but it performs significantly better with very low loads. The intuition behind this is
that the discrete model is allowed to optimize as well the staging of the equipment,
while the continuous model is forced to have all the equipment running. The staging
of chillers, however, can be controlled through Tdi f f ,spt , if the chiller 1 evaporator
leaving water setpoint (Tevap,spt +Tdi f f ,spt ) is larger or equal than the return water
temperature, the chiller 1 doesn’t need to be on. Similarly, if the value for Tdi f f ,spt
is 0, the chiller 2 doesn’t need to be running. This is already accounted for in the
simulation, which in those cases shows the same power consumption value as if the
corresponding chiller was off, in reality, a rule-based controller for the chiller status
that checks the previously mentioned conditions could be implemented. This is the
reason why in Figure 2.14 one observes an increase and deviation from the physical
law in the optimal Tdi f f ,spt for lower loads, since for those loads it would be better
to only use one chiller, which would imply to set Tdi f f ,spt to either a high value
or 0. However, it seems like the continuous model is not capable of learning this
behavior, Figure 8.6 shows the action values for the continuous model with PPO,
with constant load of 500 kW, it can be appreciated that Tdi f f ,spt is very different
than the ideal values shown in Figure 2.14 for lower loads. The setpoint Tdi f f ,spt
decided by the RL controller is instead close to the value from the physical law, so
it could be the case that the controller learned that law from the larger load cases
and generalized it to lower loads.
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Figure 8.6 Actions for the continuous model with PPO for a constant load of 500 kW. The
green and yellow lines represent the actions from the baseline controller and RL controller
respectively.

The staging of cooling towers is also not contemplated in the continuous mod-
els. However, both, cooling towers and chillers staging could be implemented on top
of the RL controller, using the rules from the baseline controller. This would signif-
icantly increase the efficiency of the RL controller with lower loads, and hopefully
maintain its current efficiency for higher loads. This would potentially result in a
better controller than the one with discrete actions, especially taking into account
that the savings with higher load values are more significant in terms of absolute
energy, which is directly related to the energy cost.

Regarding the continuous models, it can be seen that PPO outperforms TD3 in
testing, however, it is important to note that these experiments have been performed
under certain conditions and hyperparameters and the results might be different
with other settings. Something that could be explored is reducing the network sizes
for TD3, as it was done for PPO, however, this was not explored due to the time
constraint of the project.

Regarding the realistic models, it seems that again PPO outperforms TD3, this
time in both, training rollout reward, as seen in Figure 8.3, and efficiency with vari-
able load, when testing, as seen in Table 8.3. However, it is to note, that in both
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cases, the savings are pretty low when testing with the same data that the algorithm
was trained (the variable load pattern). Moreover, it can be seen that the algorithm
struggles to generalize to other loads, contrary to the other models, the savings are
highest for the constant and sinusoidal pattern with an offset of 1800 kW. These
load patterns are very close to one of the offset levels from the variable load pattern
1750 kW, so the algorithm has trained on the load region around them. The other
load patterns result in even higher energy consumption than the baseline controller.

To analyze the outputs from the controllers, two weeks, corresponding to the
winter and summer seasons, will be analyzed. Figure 8.7 shows the wet-bulb tem-
perature and load conditions during the winter week, while Figure 8.8 shows the
same data for the summer week. The outputs from the realistic and continuous
models using PPO will be analyzed, for both weeks, the variable load pattern is
used.
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Figure 8.7 Outdoor wet-bulb temperature and load, from the variable pattern, for a week
in winter.
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Figure 8.8 Outdoor wet-bulb temperature and load, from the variable pattern, for a week
in summer.

Continuous model with PPO. This section explores the decisions taken by the
RL controller with the Continuous scenario and PPO (model 2 in Table 7.2) when
evaluating the performance during the proposed weeks.

Figures 8.9 and 8.10 show the RL actions for the winter and summer weeks
respectively.

It seems that the RL controller learned to keep Tevap,spt low, to prevent the chilled
water pumps from consuming too much power when the load is relatively high (for
this load pattern it is always higher than 50 %). So it fixes Tevap,spt to the minimum
and then adjusts Tdi f f ,spt , to balance the load between the chillers. Tdi f f ,spt is highly
dependent on the load, and it decreases when the load increases, as in Figure 2.14
for this load range.

The condenser temperature (Tcond,spdt ) shows some influence from the cooling
load, rather than depending purely on the weather, as the baseline controller law
does. This load influence is mostly appreciated in the summer plot, where Tcond,spdt
is usually at its maximum value except when the load increases. The winter plot
shows that this setpoint is mostly affected by the weather (it resembles to some
extent the law from the baseline controller), with some influence from the load.
Note that in both cases, the closed loop controller is very conservative with this
setpoint, keeping it always higher (except when it is at its maximum value) than
the RL controller. This means that lowering a bit Tcond,spt favors saving energy,
although, it decreases the cooling capacity and in some situations, it can lead to not
meeting the cooling requirements.
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Figure 8.9 Actions for the continuous model with PPO and variable load pattern, during a
winter week. The green and yellow lines represent the actions from the baseline controller
and RL controller respectively. It can be observed that Tcond,spt is always lower than with the
baseline controller, and there is some dependency with the cooling load.
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Figure 8.10 Actions for the continuous model with PPO and variable load pattern, during a
summer week. The green and yellow lines represent the actions from the baseline controller
and RL controller respectively. It can be observed that Tcond,spt is dependent cooling load.

81



Chapter 8. Numerical Experiments

Realistic model with PPO. This section explores the decisions taken by the RL
controller with the Realistic scenario and PPO (model 5 in Table 7.2) when evalu-
ating the performance during the proposed weeks.

Figures 8.11 and 8.12 show the RL actions for the winter and summer weeks
respectively.

A similar behavior to the continuous model is observed concerning Tevap,spt and
Tdi f f ,spt .

The condenser temperature (Tcond,spt ) is set according to the law from the base-
line controller. Therefore they have the same value.
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Figure 8.11 Actions for the realistic model with PPO and variable load pattern, during a
winter week. The green and yellow lines represent the actions from the baseline controller
and RL controller respectively.
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Figure 8.12 Actions for the realistic model with PPO and variable load pattern, during a
summer week. The green and yellow lines represent the actions from the baseline controller
and RL controller respectively.

Analisis of results
The realistic models, which could be trained online safely, show very low power
savings and generalize poorly to other conditions. These models take 5 years to
train from scratch. However, this is a maximum limit on the actual training time,
since the controller can be pre-trained using simulation and then continue training
on the real plant. In this way, it could take much less than 5 years of training on the
real plant until it reaches a sufficiently good average reward value, depending on
how affine the simulation is to the real plant.

Despite this, due to the reduced energy savings observed, it seems much more
interesting to implement and test the approaches described in Section 8.1 as future
work rather than implementing this controller. Both of those approaches involve
training the controller offline. So it could be possible to achieve similar efficiencies
to the continuous model with Proximal Policy Optimization (PPO), with around 3%
energy savings in comparison to the baseline controller.

The extensive evaluation and analysis conducted revealed several key insights
into the energy-saving potential of different models under varying load conditions.
Around 3.2 % of energy could be saved on average, and up to 8.4% for lower load
conditions.

The main factors that influence energy savings are the load and weather. Under
low load conditions, the system is not operating near its maximum capacity. As a
result, there is more flexibility for the controller to make energy-efficient decisions
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without compromising performance. On the other hand, when the load is high, the
system operates closer to its maximum capacity, which means that there are less
degrees of freedom, since certain control actions are compatible with providing the
necessary cooling capacity. The priority under these conditions shifts to maintaining
performance and stability.

Similarly, higher outdoor temperatures reduce the optimization possibilities. In
this case because the condenser two entry temperature is saturated, so lowering
Tcond,spt , more than the saturation value will not have any effect on the power con-
sumption. Moreover, the efficiency of the chillers decrease as the condenser entry
temperatures increases, so the total power consumption is higher under this situa-
tion.

The controller trained online demonstrated poor generalization to varying con-
ditions, which means its performance was not consistent across different load sce-
narios. This inconsistency can lead to poor energy savings, under fluctuating loads.
Offline-trained controllers, as suggested for future work, could potentially address
this by being trained on a broader range of scenarios, leading to better generalization
and consistent performance.

In conclusion, it seems that it is possible to save energy using RL. However, it
doesn’t seem possible to directly train the controller on the real plant in the same
way as it would be done in a simulated environment.
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9
Conclusions and Future
Work

9.1 Conclusions

This thesis was focused on the application of Physics-Informed Reinforcement
Learning (PIRL) to optimize energy efficiency in cooling systems, specifically
within data center environments. It was shown that it is possible to save energy
using RL although it is hard to design a controller that learns directly on the real
plant, without a model.

As a first step, some literature about stochastic optimization and problem mod-
eling was reviewed, more concretely [Powell, 2019] and [Powell et al., 2022]. This
provided a foundation for crafting the problem formulation and getting some inspi-
ration about how to tackle the problem. It was a useful step, that provided insights
on how to model problems before thinking of how the solution looks like.

The next step was to carry out experiments to observe the behavior of cooling
systems under various operational conditions. These experiments revealed how dif-
ferent parameters, such as setpoints and staging variables affect the power consump-
tion of the plant and the different equipment units. They were especially useful in
identifying relevant physical behaviors such as equipment saturation. Furthermore,
an idea of how the solution should look like was build up, and compared with the
solution that the different RL controllers found.

Several RL models were developed and trained using a simulation model from
a data center cooling system in Florida. These models incorporated physics-based
information to enhance learning. A test case was defined for evaluating the con-
trollers.

The RL models that were trained offline in a synthetic scenario, where the
weather and cooling load conditions can be decided arbitrarily, showed energy sav-
ings of around 3.2% in comparison with the baseline controller. However, using a
more realistic training scenario and constraining the action space so the actions are
safe showed barely around 0.3 % savings.
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Finally, the literature was reviewed, seeking approaches to train the controller
without a simulation. Two relevant papers were found, described in Section 9.2.

9.2 Future Work

This section briefly introduces some fields of study that could be applied to the
current problem to train the RL controller effectively using data from the real plant,
rather than a simulation.

The approaches described in this section suggest offline training methods based
on data from the real plant. These methods aim to achieve better energy savings by
addressing the limitations of online training, such as poor generalization and long
training times. Implementing these approaches could lead to higher energy savings,
potentially matching or exceeding the 3.2% savings observed with the continuous
model using PPO.

[Naug et al., 2020] propose an approach where the plant is modeled using Long
Short-Term Memory Neural Networks (LSTMNN), instead of a modelica simula-
tion. The aim of this is to be able to train the neural networks automatically with
data collected from the real plant. Then the RL controller is trained offline as it was
done in this project, with the only difference of using the (LSTMNN) model for
getting data instead of a Modelica model.

[Levine et al., 2020] suggests using batch reinforcement learning, to train the
controller offline. Off policy algorithms, such as TD3 or DQN support this ap-
proach, which consists on learning from a dataset instead of learning by interaction
with the real plant. In this way, data, including the power consumption and relevant
state variables, could be collected from the real plant, controlled by an arbitrary
policy, and then used to train an RL controller.
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