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Abstract

This thesis employs deep reinforcement learning, a branch of machine learning, to
carry out robotic tasks. The objective centers around teaching an agent controlling
a seven-axis robot arm with a gripper tool, to complete an object isolation task.
For this task, a robot manipulates a cluttered environment in such a way that a
predetermined target object becomes isolated. Sub-tasks were developed to explore
simpler robot tasks to evolve and combine into more complex tasks, where the goal
was the object isolation task. Agent training took place in a simulated robot learning
environment with the use of primarily a coordinate-based low dimensional state-
space, where reward shaping was the primary tool to teach a given task.

The reinforcement learning algorithm Proximal policy optimization (PPO) im-
plemented with a neural network architecture was used to train agents for the
robotics tasks and the robot arm’s joint velocities were used as the action-space
for the agents. Multiple experiments were conducted for agents practicing different
tasks and their performance was evaluated by measuring their task completion rate
and rendering their behavior among others. Agents developed policies capable of
different forms of cube manipulation and performing cube extraction tasks. Multi-
ple different policies for completing robot tasks were learned, and their strategies
were evaluated and discussed.
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1
Introduction

Combining machine learning and robotics has led to a new era of intelligent sys-
tems and automation. Robots were previously confined to pre-programmed tasks
relying on human-designed controllers with limited ability to carry out intelligent
decisions on their own. The integration with machine learning unveils new opportu-
nities for intelligent autonomous decisions, allowing robots to learn from and adapt
to dynamic tasks. [Arents and Greitans, 2022]

For this thesis, tasks carried out by a robot arm will be in focus. Through deep
reinforcement learning (RL), a pillar in machine learning, robots learn to carry out
tasks through interaction with an environment where a reward encourages correct
behavior. As an approach to solving the robotics tasks the reinforcement learning
algorithm Proximal policy optimization (PPO) [Schulman et al., 2017] implemented
with a neural network architecture was used.

1.1 Research questions

The purpose of this thesis was to teach a reinforcement learning agent controlling
a seven-axis robot arm to carry out an object isolation task. For this task, an agent
manipulates a cluttered environment in such a way that a predetermined object be-
comes extractable. This is to be done by removing surrounding objects such that a
collision-free zone is created around the target object. To accomplish this, the thesis
aims to answer the following research questions:

• 1. How can reinforcement learning be utilized to train agents to carry out
robot actions such as reaching, pushing, grasping, and avoiding?

• 2. How can reinforcement learning be utilized to train an agent to complete
an object isolation task utilizing and combining the action primitives from
research question 1?
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Chapter 1. Introduction

1.2 Research approach

To achieve the objectives set by the research questions, reinforcement learning
agents were trained to carry out sub-tasks that in different ways support the final
goal task of an object isolation task. For all tasks, cubes were used as the interac-
tive objects, and the tasks were designed to explore cube manipulation, multi-cube
interaction, and randomized environment interaction.

The purpose of the sub-tasks was to explore how to teach the primitive robot ac-
tions of reaching, pushing, grasping, and avoiding. Following this, the focus shifted
to explore how these actions could be combined and evolved to solve more complex
problems where the ultimate goal was the object isolation task.

The agents trained were all taught from scratch without any prior demonstra-
tions where reward shaping was used as the primary tool to achieve the tasks. Low-
dimensional observations were used as a state-space for the agents, and their actions
directly controlled the joint velocities of the robot arm.

The agents were trained and the tasks were developed in the robot learning
environment RLBench [James et al., 2020], where the robot used was the seven-
axis Franka Emika Panda robot [Haddadin et al., 2022] with a gripper tool. During
the training and evaluation of agents, a primary objective was that the strategies
developed to solve the tasks could effectively be transferred to a real robot.

1.3 Related work

The object isolation task is a common task whose name and definition may differ
slightly. However, at its core, it involves manipulating a group of objects such that
a free zone is created around a target object. When using reinforcement learning
to solve this task, multiple different approaches exist. Both [Sarantopoulos et al.,
2020] and [Berscheid et al., 2019] explored using reinforcement learning for an
object isolation task with different approaches.

In [Sarantopoulos et al., 2020] a split Deep Q-Network (DQN) was proposed
where each network handles different actions. The state was extracted by generat-
ing a topographic map from a camera mounted to the end-effector. The object ma-
nipulation approach consisted of sliding and pushing using a mounted rod-shaped
tool. As actions the agents could carry out pushing motions where the agent would
determine the pushing trajectories.

In [Berscheid et al., 2019] the objective focused on teaching shifting an object’s
position to make it graspable, while also exploring the generalization of their model
by training and testing on different objects. Also, a vision-based state supplied from
a camera mounted to the robot was used. As actions, the agent would directly com-
mand the gripper’s positioning.

The aim of this thesis focuses on the same tasks as these papers, however, a
different approach is taken. This thesis gives the reinforcement learning agent direct
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1.4 Robot control and machine learning

control of the low-level actions of the robot by letting it command the robot’s joint
velocities. This means that the agent has to learn all robot actions from scratch and
cannot utilize predefined actions such as the pushing in [Sarantopoulos et al., 2020].
Therefore, this thesis focuses on teaching sub-tasks that evolve into more complex
tasks to gain insight into how an agent can carry out robot tasks using primitive
actions. Furthermore, the used state-space differs from [Sarantopoulos et al., 2020]
and [Berscheid et al., 2019] since a low-dimensional coordinate-based state-space
was used for this thesis.

Proximal policy optimization (PPO) is a common reinforcement learning algo-
rithm and in [Shahid et al., 2020] PPO was used for learning continuous control
actions for robotic grasping. For the task, dense reward functions were used to en-
courage learning for the agent where agents were trained to generalize grasping
strategies to an array of objects.

The use of reward shaping was employed in this thesis as in [Shahid et al.,
2020]. This differs from for example [Sarantopoulos et al., 2020] where sparse-
rewards were used. The approach of using reward shaping as a primary guide for
agent behavior was selected in this thesis to gain insight into how to design reward
functions to carry out a robotic object isolation task.

Having a reliable simulation environment is important for training agents to
perform robotics tasks. The robot learning environment RLBench was used as an
environment for this thesis. The benchmark includes a vast library of tasks and
supports multiple machine-learning approaches to solving the tasks. [James et al.,
2020] The benchmark also includes examples of how tasks can be designed in a
simulated environment.

1.4 Robot control and machine learning

Controlling a robot arm becomes a complex problem because of the multiple joints
and non-linear dynamics. Inverse kinematics is a fundamental concept of determin-
ing the required joint positions to achieve the desired pose and orientation of a robot
end-effector. [Bajd et al., 2013]

For arms with a lower number of degrees of freedom, analytical approaches can
be used to solve inverse kinematics problems, however, a problem arises as a result
of the non-linearity of kinematic equations and the possibility of multiple solutions
achieving the same end-effector position. This problem becomes amplified for more
complex arms with multiple joints. In this case, kinematics problems can be solved
numerically by using an iterative algorithmic approach. [Bajd et al., 2013]

Planning a robot’s path is a common practice for industrial applications with
repetitive tasks such as welding, material handling, or assembly. An industrial robot
in its simplest form needs to be pre-programmed for each task and is incapable of
carrying out intelligent decisions, learning, or adapting to a dynamic environment.
New robot tasks result in the need for reprogramming and an uncertainty or change
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Chapter 1. Introduction

during the robot task can lead to failure. By introducing AI in robotics through
implementing technologies such as AI-based computer vision, deep reinforcement
learning, or imitation learning, robots gain the possibility of knowledge acquisition,
generalization, and adaptive planning. [Arents and Greitans, 2022] This results in
the possibility of intelligent decision-making within dynamic tasks.

Working in a dynamic environment becomes vital for collaborative robots work-
ing together with humans. By developing methods for robots to act and respond in-
telligently, human-robot collaboration can become more natural. Advances in com-
puter vision and deep learning enable robots to detect and classify objects. This can
be used to handle task-specific information by assessing a scene and acting accord-
ingly. Furthermore, robust object detection can provide safety for humans working
in the vicinity, e.g., if they are in the way of a robot. [Arents and Greitans, 2022]

By introducing reinforcement learning for robotics tasks, a robot can learn a
vast variety of tasks through interaction. A reinforcement learning-based robot con-
troller can be used for a wide array of situations making it adaptable for different
tasks variations and tasks with irregularities. Furthermore, the use of reinforcement
learning can eliminate the need for planning or inverse kinematics since an agent
can be successful by directly controlling a robot’s joints.

With the rise of agile robots such as Atlas [Boston Dynamics, 2024a] and Spot
[Boston Dynamics, 2024b] from Boston Dynamics, robots are now becoming more
capable of navigating and being a part of an urban environment. For these types of
robots, robust walking strategies are important. The utilization of pre-coded human-
designed walking strategies becomes limiting and difficult to adapt to a wide array
of situations. With the use of deep reinforcement learning walking strategies can be
taught through interaction in a way similar to how a living creature would learn from
prior experiences. Reinforcement learning also allows robots to adapt their walking
strategies to different terrains by learning from different environments. In [Wu et
al., 2023] a quadruped walking robot learned walking strategies and the ability to
recover from a tumble by only interacting with a real-life environment.

Furthermore, OpenAI has been successful in creating agents controlling robot
hands capable of precise dexterity. Reinforcement learning algorithms were lever-
aged to teach the robot hand to manipulate a cube similarly to a human hand, mak-
ing it capable of rotating the cube’s orientations and even solving a Rubik’s cube
one-handedly. [Akkaya et al., 2019]
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2
Reinforcement learning

Reinforcement learning (RL) is a pillar of machine learning that draws from fields
such as computer science, mathematics, neuroscience, economics, engineering, and
psychology, which revolves around developing strategies that achieve desired be-
havior through a trial-and-error process. [Silver, 2015] At its simplest form, re-
inforcement learning strives to develop an agent that through interaction with an
environment develops behavior that maximizes an accumulated reward.

Within RL, a reward Rt is a scalar feedback signal that indicates an agent’s
performance at step t. The purpose of the agent is to choose actions that maximize
the reward accumulated in the future. These rewards are not always instantaneous.
Sometimes a sequence of low reward-yielding actions can lead to a high reward-
yielding action. [Silver, 2015]

Reinforcement learning is one of the main pillars of machine learning together
with supervised learning where an agent learns from an external supervisor provid-
ing examples, and unsupervised learning where an agent finds structure in a collec-
tion of data without any external supervisors. Reinforcement learning differs from
these pillars of machine learning since the main focus is to maximize a reward signal
and not to find a structure or rely on external guidance. [Sutton and Barto, 2018]

Reinforcement learning can be applied to a variety of fields such as robot con-
trol, optimal control, autonomous driving, and strategic games. Applying reinforce-
ment learning has led to agents being successful in playing Atari games at a high
level, executing advanced maneuvers for a remote-controlled stunt helicopter, and
controlling a power station. [Silver, 2015] As mentioned previously, reinforcement
learning has also been successful in robotic tasks, robot walking strategies, and dex-
terous robot manipulation.

Solving robotics problems with reinforcement learning often involves training
in a simulated environment where an agent can iteratively learn from experience in
less time than real-world training would allow. Once a satisfactory policy has been
achieved this agent can be deployed on a physical robot.
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Chapter 2. Reinforcement learning

2.1 Markov decision process

Reinforcement learning problems can be formalized in a Markov decision process
(MDP), meaning that the process will consist of a finite set of states S and actions
A, a state transition probability matrix P, a reward function R, and a discount factor
γ . Together they describe the MDP as the tuple (S,A,P,R,γ). [Otterlo and Wiering,
2012]

Selecting appropriate states and actions, and defining a good reward function
for a reinforcement learning problem is crucial. A state represents a unique char-
acterization of all that is important for the modeled problem. [Otterlo and Wiering,
2012] For a given state to be considered a Markov state it must include all rele-
vant information so that the history is no longer needed. A Markov state means that
future states are independent of the history given the present state. [Silver, 2015]
Actions are what an agent can use to influence and control the state of a system. For
a given state, multiple actions are possible where each leads to a different outcome.
[Otterlo and Wiering, 2012] To give certain states or actions a value, rewards are
used. A reward function determines rewards for being in a state or acting in a state.
This ultimately serves as a guide to reaching a goal by giving direction in which
way the MDP should be controlled. [Otterlo and Wiering, 2012]

When defining a problem as a Markov decision process the environment in
which an agent should interact is assumed to be fully observable and contain all rel-
evant information for each current state. This assumption allows decision-making
based solely on the present state without the need to take history into account.

Reward

Observation

Action

Agent Environment

Figure 2.1 An overview of an agent’s interaction with a simulated robot environment. For
this example, the agent emits actions influencing the robot and receives observation of the
robot’s environment and rewards as feedback.
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2.2 Agent

2.2 Agent

Agents are often described as the brains of a reinforcement learning system and
are responsible for decision-making and environment interaction. An agent’s inter-
action with the environment in step t is visualized in Figure 2.1. For each step, an
agent emits an action to the environment and receives a new state and reward, which
the agent uses to adapt its behavior. For this example, the action is controlling the
joint velocities of a robot and the state consists of an object’s position. Multiple ap-
proaches to designing a reinforcement learning agent exist, where the fundamental
components are [Silver, 2015]:

Policy The behavior of an agent is referred to as its policy π and is what deter-
mines what action to execute from a given state. The purpose of an agent is
to achieve a policy that knows how to carry out actions that achieve the most
rewards, hence solving a given task. [Silver, 2015] As a general description, a
policy can be viewed as a set of instructions or a map for how the agent should
act given its current perception of the environment. A simple policy can take
the form of a look-up table while more complex policies use more advanced
methods. [Sutton and Barto, 2018] Policies can either be deterministic

a = π(s), (2.1)

where each state s has only one corresponding action a or stochastic

π(a|s) = P[At = a|St = s], (2.2)

where the policy specifies probabilities for each action at a given state.

Value function To evaluate the value of a given state and aid with selecting actions
a value function can be used. The value function is used to calculate the ex-
pected total future reward for a given state from following a policy π , and can
be described as

Vπ(s) = Eπ

[
Rt+1 + γRt+2 + γ

2Rt+3 + . . . | St = s
]
, (2.3)

where a discount factor γ is used to weigh the value of current and future
rewards. [Silver, 2015]

Model A model corresponds to the agent’s representation of the environment and
is used to predict what the environment will do next. Model-based reinforce-
ment learning can utilize planning. With the use of a model, the next state and
reward can be anticipated from a current state and action. However, to be suc-
cessful with this approach an accurate model of the environment is crucial.
In this thesis, the approach of model-free learning was pursued. For this type
of learning the agent has no prior model and needs to rely on learning how
an environment works through a trial-and-error process. [Sutton and Barto,
2018]
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Chapter 2. Reinforcement learning

RL algorithms

Model-free

Actor-critic Value-based Policy-based

Gradient-free Gradient-based

PPO

Model-based

Figure 2.2 An overview of RL algorithm classifications, specifically showing how PPO
can be categorized.

2.3 Reinforcement learning methods

By utilizing components such as policy, value function, and model different algo-
rithms can be tailored. This leads to a wide array of approaches where methods can
be customized for specific problems. The three fundamental reinforcement learning
methods are categorized as value-based, policy-based, and actor-critic.

For value-based methods, an agent learns a value function that maps the value
of being in a given state. The policy is thereafter defined manually to select states
of high value. This differs from policy-based methods where the primary objective
for an agent is to learn a policy and not a value function. [Simonini and Sanseviero,
2023]

Actor-critic methods inherit properties from both policy-based and value-based
methods by combining a policy-based actor that determines agent behavior, with a
value-based critic that evaluates how good actions taken by the actor are. [Simonini
and Sanseviero, 2023]

From these categories, a plethora of different algorithms utilizing different
methods and approaches to solve reinforcement learning problems exist. For this
thesis, Proximal policy optimization (PPO) was used. PPO has showcased good
ability for Atari gameplay and learning humanoid walking in [Schulman et al.,
2017]. Furthermore, in [Shahid et al., 2020] PPO was used for robot grasping tasks
and the algorithm was therefore seen fit to use for the robot tasks involved in this
thesis.
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2.4 Deep learning

2.4 Deep learning

In this thesis, deep reinforcement learning has been utilized. What differs between
traditional algorithms and deep learning is the use of deep neural networks to solve
the given reinforcement learning problems. For instance, for policy-based methods
neural networks can be used to find the optimal policy. [Simonini and Sanseviero,
2023]

A neural network consists of layers of interconnected nodes inspired by a mam-
malian brain structure of neurons. This leads to similarities in the decision-making
process for a neural network and a biological brain, where the network of nodes is
used to make conclusions based on data. The fundamental process of learning for
artificial neurons consists of changing connections between the neurons. Each neu-
ron can be seen as a binary operator that activates when a threshold, also referred
to as bias, is exceeded where connection strength between neurons is determined
by weights. A network can be trained from a set of input data together with a list
of values to target, by adjusting the connection strengths between neurons to return
the targeted value from the given data. [Mehlig, 2021]

A standard neural network is built of layers of nodes where the first one is an
input layer, the last one is an output layer, and between are intermediate hidden
layers. For example, when a network learns to identify handwritten numbers the
input layer receives images of handwritten numbers and the output layer emits what
number the model believes it is. This is based on how the intermediate layers have
been configured during the training process where the weight and biases for all
nodes have picked up on patterns during the training process. What makes a process
considered a deep learning process is that multiple layers are used in the network.
[Sanderson, 2017]

As a basic description, the learning process for a neural network consists of the
network adjusting its weights and biases to emit accurate answers based on its input
data. As an example, a policy implemented using a neural network should learn to
emit the optimal action given a state, and a value function neural network should
learn to accurately predict expected cumulative rewards from states.

2.5 Proximal policy optimization (PPO)

The primary reinforcement learning algorithm utilized for the robotics tasks in this
thesis was Proximal policy optimization (PPO) that, as seen in Figure 2.2, falls un-
der gradient-based methods, a subclass of policy-based methods. For policy-based
methods the main objective is to find the optimal policy, by finding θ to maximize
the objective J(θ), ultimately maximizing the accumulated reward. What distin-
guishes gradient-based methods is that the method does this by searching for local
maximums in J(θ) by ascending the policy gradient. [Silver, 2015] For deep rein-
forcement learning, finding θ corresponds to the network adjusting its weights and
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Chapter 2. Reinforcement learning

biases.
For policy gradient methods, advantage functions serve as guidance of the rela-

tive goodness of an action a in a state s, ultimately describing the advantage of an
action compared to others. The advantage is calculated as the difference between
the on-policy value action function Qπ(s,a) and the on-policy value function Vπ(s),

Aπ(s,a) = Qπ(s,a)−Vπ(s), (2.4)

where Qπ(s,a) gives the expected reward for taking the action a and then following
the policy π and Vπ(s) returns the average expected reward of all actions according
to the policy π . [Achiam, 2018]

PPO focuses on improving its policy at each step and uses certain strategies to
restrain the policy from changing too much at the time and risking a performance
collapse. The utilized version of PPO for this thesis can be referred to as PPO-
clip. This version optimizes an objective function and uses clipping to remove the
incentive for a new policy to veer far from the old policy. [Schulman et al., 2017]

To achieve this, the ratio

rt(θ) =
πθ (at | st)

πθold (at | st)
, (2.5)

between the former and the current policy, is clipped in a range [1− ε,1+ ε].
This is done by introducing a surrogate objective function:

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε) Ât

)]
(2.6)

The objective function selects the minimum of the product of a rt(θ) or the clipped
version of rt(θ) and the estimated advantage Ât . The clipping makes the function
constrained since the ratio rt(θ) is penalized if it diverges too far from 1. Hence,
large policy changes are prevented and more careful policy updates are encouraged.
To implement PPO using a neural network architecture a loss function combining
the clipped surrogate objective LCLIP and the value function error term LV F

t is used.
This is referred to as an actor-critic PPO implementation where the policy serves as
an actor and the value function as a critic. To encourage the algorithm to explore an
entropy bonus can be added. [Schulman et al., 2017]

For this thesis, a version of PPO implemented by Stable-Baselines3 [Raffin et
al., 2021] was utilized. This version uses clipping for the surrogate objective func-
tion and uses a neural architecture based on PyTorch [Paszke et al., 2019]. The
implementation consists of the actor-critic style policy with a policy and a value
function network. The implementation utilizes a clipped surrogate objective func-
tion as in Equation (2.6). In addition to this a value loss function LV F

t (θ) that aims to
minimize the difference between actual values and predicted values from the value
function is included. Furthermore, the algorithm implementation has the option of
including an entropy bonus Ent(πθ ) used to encourage exploration. Together a total
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2.5 Proximal policy optimization (PPO)

PPO loss function is constructed as:

Lt(θ) =−LCLIP
t (θ)+ c1LV F

t (θ)+ c2Ent(πθ ), (2.7)

where c1 and c2 are parameters for scaling. The pseudo-code in Algorithm 1 gives
an overview of how the implementation works. [Raffin et al., 2021]

Algorithm 1 PPO Clip

1: Input: Initial policy and value function parameters.
2: for each policy update step do
3: Collect a set of trajectories by running policy π in the environment for N

steps.
4: Compute rewards Rt .
5: Compute advantage estimates Ât .
6: Compute the policy ratio

rt(θ) =
πθ (at | st)

πθold (at | st)
(2.8)

7: Compute the clipped surrogate objective function

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε) Ât

)]
(2.9)

8: Compute the value loss function LV F
t (θ) and the entropy bonus Ent(πθ )

9: Compute the total loss function.

Lt(θ) =−LCLIP
t (θ)+ c1LV F

t (θ)+ c2Ent(πθ ) (2.10)

10: Update the policy by minimizing the loss function through gradient descent.
11: end for

The loss function is calculated over batches of trajectories from running a policy
in an environment. How long an agent interacts with an environment before a policy
update, can be determined for each agent task. For example, if a task has a limit of
ten steps before resetting, the algorithm could be given fifty steps to interact with
the environment before an update. This would give the agent at least five attempts
to execute a task and the ability to collect trajectories for each attempt. A trade-off
is made between how much information an agent gets to collect before an update
and the total time needed to train.
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Chapter 2. Reinforcement learning

2.6 RLBench

To develop robot tasks, train agents, and simulate their performance, the robot learn-
ing environment RLBench [James et al., 2020] was used. RLBench aims to serve
as a benchmark for robot learning and is focused on facilitating research combining
robot tasks with reinforcement learning, and imitation learning among others. The
benchmark provides both proprioceptive and vision-based observations, allowing
the use of low dimensional task observations directly extracting positions of objects
in a scene or the use of images supplying RGB (red, green, and blue) images, depth,
and segmentation masks.

Within RLBench the user has the opportunity to build custom robot tasks with
dynamic objects in the form of simple shapes or more advanced 3D models. Tools
such as proximity and touch sensors can be utilized to add logic to the task success
criteria and reward shaping. [James et al., 2020]
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3
Method

The approach chosen to teach agents to carry out desired tasks was through an
iterative task design, training, and evaluation process. The method to teach desired
behavior was through reward shaping functions guiding the agent to perform each
task. Information from the simulator regarding aspects such as the state of an object
in a given task was used for the reward shaping functions. For example, tracking the
velocity of a cube allowed reward functions based on the movement of the cube.

Once an agent had been trained, its performance was evaluated by rendering
its behavior in the simulator and evaluating data such as its success rate, rewards
per episode, and episode length. Different types of reward shaping and training
parameters were tested until an agent could perform the desired task. Thereafter, a
new task would be developed often built upon prior successful tasks.

3.1 Task design

For each task, a custom environment was created for an agent to interact with. Each
environment included task-specific objects, sensors, state-space, and reward shap-
ing functions. A maximum amount of steps per episode was set for each specific
task, based on the task complexity, amount, or distance the robot end-effector must
travel. These steps determine how long the agent had to complete its task, and once
the limit was reached the environment reset. For each task, N amount of steps were
selected between each policy update, and a total amount of training steps were se-
lected. As a starting point, the N steps would correspond to five times the maximum
episode steps, letting the agent collect trajectories for at least five task attempts.

The initial training runs of a task would be done conservatively to evaluate the
task functionality. Thereafter, longer runs were carried out until the agent’s accumu-
lated reward would stop increasing. An array of different parameters could be tested
and tuned within the Stable-Baselines version of PPO. To limit the variability, the
altered algorithm-specific parameters were limited to N steps per policy update and
the use of an entropy bonus. The entropy bonus uses a corresponding scaling co-
efficient c1 in Algorithm 1. The coefficient was set to 0.01 when in use, and this
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Chapter 3. Method

number was determined from initial runs where some coefficient values were tested
to determine a value that can lead to a noticeable impact in the agent learning pro-
cess.

State-space
As a primary approach, the low-dimensional environment representation was used
as a state-space. The utilized state-space for all tasks could be divided into two main
parts: The first part includes general information regarding the robot and everything
that remains the same for each task, and the second part includes task-specific infor-
mation such as the position of objects in the scene. Each object was represented in
low-dimensional coordinate-based observations, meaning that an object in the robot
task scene would be represented as a point in the scene. For example, a cube would
be represented solely by its x, y, and z positional coordinates.

Table 3.1 Descriptions of low-dimensional observations.

Low-dimensional observations

General observations for all tasks

• Velocities of the robot’s joints

• Positions of the robot’s joints

• Forces experienced by the
joints

• Pose of the robot’s gripper

• Positions of the gripper’s joints

• Forces detected by the gripper

Task-specific observations

• Low-dimensional state of the
task

As a secondary approach, the vision-based observation mode consisting of
RGB, depth, and segmentation masks provided by a virtual camera in the simu-
lation environment was tried. The purpose was to investigate if the designed task
could be carried out using only vision feedback and not a state-space where the
locations of all objects were precisely known. A vision-based state-space was not
selected as the primary approach since the more advanced and large state-space
would lead to drastically longer training time. By creating and refining tasks for the
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low dimensional state-space they could further be tried utilizing the vision-based
state-space.

Action mode
There are multiple approaches to carrying out actions with a robot arm. A reinforce-
ment learning agent can use more high-level action modes involving inverse kine-
matics and planning or low-level action modes where the agent directly commands
a joint’s velocity, torque, or position. For this thesis, a low-level action mode was
selected consisting of the joint velocities for the seven joints of the Panda robot, and
a separate action mode for the gripper. The gripper’s action was discrete, namely,
the gripper had a closed and an open mode.

The decision to use a low-level action mode was made to gain insight into how
an agent can be successful while having complete control of the robot and not only
commanding trajectories or positions to a planner that executes the robot move-
ments.

All actions were normalized and the agent could select values between - 1 and 1
for joint and gripper actions. For the gripper, negative values would lead to opening
and positive to closing.

For grasping within the simulator a simplified approach utilizing fake grasping
was used. For this form of simulated grasping the grasped object becomes frozen
at the end-effector during grasping. This results in the dynamics of grasped objects
being ignored and the force needed to grasp an object not being considered. This
simplification was considered acceptable. However, simplified grasping also allows
grasping positions that would be impossible to adapt to the real robot. As exempli-
fied in Figure 3.1, grasping an object by its very edge would work in the simulator.
To counter this, tasks were designed specifically to teach good grasping positions.

Figure 3.1 An illustration highlighting two acceptable grasp positions within the simulated
environment, where the left version displays undesired grasp positioning difficult to imple-
ment with a real robot.
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3.2 Task categories

To achieve an agent that can complete the object isolation task, agents were devel-
oped to carry out sub-tasks that support the final goal in their distinct matter. The
purpose of the variety of tasks was to achieve agents with specific objectives, and
once all these objectives were achieved an agent inheriting all the desired properties
could be brought forward. The objectives that the sub-tasks were aimed to develop
can be categorized according to:

• Cube manipulation
This could be done through both pushing and grasping strategies and both
were explored. Furthermore, improved grasping strategies were explored to
find solutions that could be transferred from simulation to a real robot.

• Multi-cube interaction
To work toward completing an object isolation task, agents were trained to
carry out tasks in an environment with multiple cubes. This involved the ma-
nipulation of multiple cubes at the same time and carrying out tasks where
distractor cubes served as obstacles for a cube extraction. For a robot to carry
out an object isolation effectively, it must be capable of extracting a predeter-
mined object with minimal interference with the surrounding objects.

• Randomized environment interaction
For an agent to be able to work in a dynamic environment, it should adapt
to situations where the position and orientation of objects are random. To
achieve this, agents were trained in environments where cube orientation and
position vary from episode to episode.

The task categorization allowed the exploration of action primitives such as
reaching, avoiding, pushing, and grasping, and how the action primitives could be
combined to solve more complex tasks. Furthermore, the sub-tasks allowed the in-
vestigation of different strategies developed by the agent to solve a different task
and allowed insight into how the strategies could be influenced to solve tasks more
robustly.

3.3 Tasks

The following section gives an overview of the design and reward shaping functions
for the robot tasks. The approach to creating the tasks consisted of an iterative pro-
cess of trying task variations, adjusting reward shaping functions, training the agent,
and evaluating their performance until satisfactory performance was reached. The
primary tasks explore cube manipulation, thereafter the focus shifts to tasks involv-
ing multiple cubes and exploring training agents for randomized environments.
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Slide cube to target
To achieve agents that could manipulate a cube by pushing, the task slide cube to
target was explored. The essential parts of the task were to navigate to the cube and
push it into a target zone as shown in Figure 3.2, where the cube and target position
were the same for all episodes.

Figure 3.2 The initial setup for the slide cube to target task.

Success criterion. Once the red cube has entered the green target section shown
in Figure 3.2 the task is deemed successful.

Task-specific low-dimensional observations. The task-specific observations con-
sisted of the cube position and the green square position.

Reward shaping. The reward shaping function R(s,a,s′) for the slide cube to tar-
get task consists of the following parts:

1. Gripper to cube penalty (RGripperToCube): A negative reward based on
the Euclidean distance between the robot gripper and the target cube
dGripperToCube scaled by a positive constant α , that decreases for smaller
distances.

RGripperToCube(s,a,s′) =−αdGripperToCube (3.1)

2. Cube to target reward (RCubeToTarget): A reward based on the Euclidean
distance between the cube and the target zone dCubeToTarget scaled by a positive
constant β .

RCubeToTarget(s,a,s′) =−βdCubeToTarget (3.2)

3. Cube velocity reward (RCubeVelocity): A reward determined by the cube-
velocity vCube, made to encourage cube movement.

RCubeVelocity(s,a,s′) =

{
1 if vCube ̸= 0
0 otherwise

(3.3)
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4. Task complete reward (RTaskComplete): A large reward for fulfilling the task
success criterion.

RTaskComplete(s,a,s′) =

{
1000 if the task is complete
0 otherwise

(3.4)

The total reward shaping function can be represented as the sum of these com-
ponents:

R(s,a,s′) =RGripperToCube(s,a,s′)

+RCubeToTarget(s,a,s′)

+RCubeVelocity(s,a,s′)

+RTaskComplete(s,a,s′) (3.5)

Remove from zone
The remove from zone task was designed to explore multi-cube and randomized
environment interaction. The task consisted of a zone represented by a white circle
and three cubes as seen in Figure 3.3. The cubes were placed randomly in each
episode and the goal was for the agent to find a policy to remove all the cubes from
the white zone by any means. No guidance for how the cubes were to be removed
was provided in the reward shaping.

Figure 3.3 The initial setup for the remove from zone task.

Success criterion. Once the white zone no longer contains any yellow cubes
shown in Figure 3.3 the task is deemed successful.

Task-specific low-dimensional observations. The task-specific low-dimensional
observations consisted of all the cube positions and the center position of the zone.
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Reward shaping. The reward shaping function R(s,a,s′) for the slide cube to tar-
get task consists of the following parts:

1. Gripper to zone reward (RGripperToZone): A penalty based on the Eu-
clidean distance between the robot’s gripper and the center of the white zone
dGripperToZone scaled by a positive constant α . Once the end-effector reached
the inside of the zone, no penalty was given.

RGripperToZone(s,a,s′) =

{
0 if end-effector in zone
−αdGripperToZone otherwise

(3.6)

2. Gripper movement in zone reward (RGripperMovementInZone): A reward
based on the end-effector’s movement in the zone to encourage exploration.

RGripperMovementInZone =

{
0.1 if end-effector is in the zone and vend-effector ̸= 0
0 otherwise

(3.7)

3. Cube velocity reward (RCubeVelocity): A reward that is determined by the
cube velocity vCubei for all N cubes present in the zone. This is to encourage
cube movement and hence interaction with the cubes.

RCubeVelocityTotal(s,a,s′) =
N

∑
i=1

RCubeVelocityi(s,a,s
′) (3.8)

where

RCubeVelocityi(s,a,s
′) =

{
1 if vCubei ̸= 0
0 otherwise

(3.9)

4. Cube exit reward (RCube Exit): A reward for a cube exiting the zone, where
each cube could only be rewarded for its exit once. This was to avoid policies
where an agent can accumulate a large reward by moving a cube in and out
of the zone.

RCubeExitTotal(s,a,s′) =
N

∑
i=1

RCubeExiti(s,a,s
′) (3.10)

where

RCubeExiti(s,a,s
′) =

{
500 if Cubei exits zone for the first time
0 otherwise

(3.11)
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5. Task complete reward (RTaskComplete): A large reward for fulfilling the task
success criterion.

RTaskComplete(s,a,s′) =

{
1000 if the task is complete
0 otherwise

(3.12)

The total reward shaping function can be represented as the sum of these com-
ponents:

R(s,a,s′) =RGripperToZone(s,a,s′)

+RGripperMovementInZone(s,a,s′)

+RCubeVelocity(s,a,s′)

+RCubeExit(s,a,s′)

+RTaskComplete(s,a,s′) (3.13)

Grasp extraction
To explore cube manipulation through grasping, the grasp extraction task was de-
signed. The task consisted of a zone with a yellow cube in the middle as shown
in Figure 3.4 and the objective for the robot was to extract the cube from the zone
with grasping. To encourage policies utilizing grasping, shaping rewards favoring
grasping were introduced.

Figure 3.4 The initial setup for the grasp extraction task.

Success criterion. Once the yellow cube has exited the white zone shown in Fig-
ure 3.4 while being grasped the task was deemed successful.

Task-specific low-dimensional observations. The task-specific observations con-
sisted of the cube position and the center position of the zone.
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Reward shaping. The reward shaping function R(s,a,s′) for the grasp removal
task consists of the following parts:

1. Gripper to cube reward (RGripperToCube): A reward based on the Euclidean
distance between the robot’s gripper and the target cube dGripperToCube scaled
by a positive constant α . For this function, the reward grows as the gripper
nears the target cube.

RGripperToCube(s,a,s′) =
α

100 ·dGripperToCube +1
(3.14)

2. Cube distance from center grasped reward (RCubeFromCenter): A reward
based on the Euclidean distance between the cube and the center of the zone
dCubeFromCenter scaled by the positive constant β , this to encourage the agent
to move the cube out of the zone.

RCubeFromCenter(s,a,s′) =

{
βdCubeFromCenter if cube is grasped
0 otherwise

(3.15)

3. Task complete reward (RTaskComplete): A large reward for fulfilling the task
success criterion.

RTaskComplete(s,a,s′) =

{
1000 if the task is complete
0 otherwise

(3.16)

The total reward shaping function can be represented as the sum of these com-
ponents:

R(s,a,s′) =RGripperToCube(s,a,s′)

+RCubeFromCenter(s,a,s′)

+RTaskComplete(s,a,s′) (3.17)

Extraction with improved grasping
The prior grasping task did not address the issue of impossible grasping positions
as in Figure 3.1. To address this, a new task favoring improved grasping positioning
was designed. The task was based on the grasp extraction task. However, specific
grasping areas were introduced on the cube. These areas were used to reward good
gripper positioning on the cube. Two versions of this task were tested, one with
one pair of grasping areas and another with two pairs. Good grasping would be
rewarded when both gripper tips would be in one pair of areas.
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(a) A cube with one pair of grasping ar-
eas.

(b) A cube with two pairs of grasping ar-
eas.

Figure 3.5 Renderings showing the grasping areas encouraging specific gripper position-
ing.

Success criterion. Once the yellow cube has exited the white zone while being
grasped the task was deemed successful, where the initial position corresponds to
Figure 3.4.

Task-specific low-dimensional observations. For the prior tasks, a cube was only
represented in the state-space as its center point coordinate. This gives no infor-
mation regarding a cube’s orientation, hence not enough information to find good
grasping positions. For this task, points for each respective grasping area were intro-
duced according to Figure 3.5. The extended observation of the cube now provides
information regarding a cube’s orientation and enhances the opportunity for finding
good grasping strategies. This is exemplified in Figure 3.6.

(a) (b) (c)

Figure 3.6 Low dimensional representation of the three cube variations where each grasp-
ing area is represented as a point on the cube. a) shows a cube without grasp areas, while b)
and c) show cubes with one and two pairs of grasp areas.

Reward shaping. The reward shaping function R(s,a,s′) for the extraction with
improved grasping task consisted of the following parts:
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1. Gripper to cube reward (RGripperToCube): Same as Equation (3.14).

2. Cube distance from center grasped (RCubeFromCenter): Same as Equation
(3.15).

3. Good grasping position reward (RGraspingPos): A reward for maintaining a
good grasping position determined by the zones on the cube.

RGraspingPos(s,a,s′) =

{
10 if the grasping is within the grasping zones
0 otherwise

(3.18)

4. Task complete reward (RTaskComplete): A large reward for fulfilling the task
success criterion. However, for this version, an additional reward is given for
completing the task with a good grasp positioning.

RTaskComplete(s,a,s′) =


1000 if the task is complete
2000 if the task is complete with good grasping
0 otherwise

(3.19)

The total reward shaping function can be represented as the sum of these com-
ponents:

R(s,a,s′) =RGripperToCube(s,a,s′)

+RCubeFromCenter(s,a,s′)

+RGraspingPos(s,a,s′)

+RTaskComplete(s,a,s′) (3.20)

Extraction with distractors
To teach an agent to interact with a cube for a scenario involving multiple cubes,
an extraction task including distractor cubes was created. The task built on the prior
grasp extraction tasks still strongly rewarding grasping strategies. However, for this
task to be deemed successful the green cube, shown in Figure 3.7, must exit the
white zone while the yellow cubes remain within. Two versions of the task were
created: one where the cubes were initialized with the same positions and orien-
tations for each episode, and another where cube positions and orientations were
randomized for each episode. The purpose of this is that if an agent successfully
extracts a predetermined object with minimal interference with the surrounding ob-
jects, an object isolation can be executed by deploying the agent multiple times to
extract cubes surrounding a target that should be isolated. For the agents trained for
fixed formations, different formations were tried for different training runs.
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(a) Initial setup for the version with the
same fixed setup each episode.

(b) Initial setup for the version with
scrambling each episode.

Figure 3.7 Initial setup for the extract with distractors task.

Success criterion. For the task to be deemed successful the green cube must exit
the zone while all the yellow cubes remain within. The yellow cubes are allowed to
relocate within the zone but not exit.

Reward shaping. The reward shaping function R(s,a,s′) for the extraction with
distractors task consists of the following parts:

1. Gripper to cube reward (RGripperToCube): Same as Equation (3.14).

2. Cube distance from center grasped (RCubeFromCenter): Same as Equation
(3.15).

3. Distractor exit punishment (RDistractorExit): A punishment for any distractor
leaving the zone.

RDistractorExit(s,a,s′) =

{
−100 if a distractors leaves the zone
0 otherwise

(3.21)

4. Task complete reward (RTaskComplete): A large reward for fulfilling the task
success criteria.

RTaskComplete(s,a,s′) =

{
1000 if the task is complete
0 otherwise

(3.22)
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The total reward shaping function can be represented as the sum of these com-
ponents:

R(s,a,s′) =RGripperToCube(s,a,s′)

+RCubeFromCenter(s,a,s′)

+RDistractoreExit(s,a,s′)

+RTaskComplete(s,a,s′) (3.23)

Reach and grasp a randomly positioned cube
The transition from teaching agents capable of completing the extraction with dis-
tractors task in a non-varying environment to teaching agents to complete the task
in a randomized environment was considered a big jump. Therefore, two new sim-
pler tasks were created consisting of reaching, and reaching and grasping a ran-
domly positioned cube. The task design and reward functions were the same as
the grasp extraction task, however, the success criterion differed. The reaching task
was deemed successful when the robot gripper reached a predetermined proximity
to the cube, and the reach and grasp task was deemed successful when the cube was
grasped.

Cube extraction with vision-based observations
To explore how well the designed tasks could carry over to a more advanced state-
space, the cube grasp extraction task was trained using the vision-based state-space
consisting of RGB, depth, and segmentation mask. Two variations of the task were
trained. One allowed only grasping strategies and one allowed the extraction of the
cube by any means.
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Results

4.1 Task performance

Multiple simulations were done for multiple task variations. In this section, the tasks
resulting in successful agents will be highlighted by displaying their performance
through the mean of the accumulated reward per episode and the task completion
success rates. Furthermore, images from renderings are used to illustrate the strate-
gies of chosen policies.

Slide cube to target
The agent for the slide cube to target task learned different policies that completed
the task, where the best-performing policy reached a success rate of around 80% to
90% as seen in Figure 4.7.

The successful policies consisted of the robot shoving the cube in the direction
of the target, often resulting in the cube tumbling to its target. The methods were
often unconventional and the robot would often use parts of its body other than the
grippers as seen in Figure 4.1.

(a) Approach. (b) Push. (c) Cube entering the target.

Figure 4.1 Rendering showing a common strategy for the slide cube to target task, where
the agent employs pushing which causes the cube to tumble into the target position.
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Remove from zone
The agent for the remove from zone task learned different policies that completed
the task with quite low success rates, where the best-performing policy reached a
success rate of around 20% as seen in Figure 4.8.

The successful policies consisted of the robot arm sweeping across the white
zone and knocking cubes out of it. The robot would make contact with the cubes
with unconventional parts as seen in Figure 4.2, while moving fast resulting in the
cubes tumbling as in the slide cube to target task.

(a) Approach. (b) Contact. (c) Task complete.

Figure 4.2 Common strategy for the remove from zone task, where an agent employs a
strategy consisting of a sweeping motion.

Grasp extraction
The agent for the grasp extraction task learned different policies that completed the
task with varying success rates, where the best-performing policy reached a success
rate of around 85% as seen in Figure 4.9.

Due to task design, only policies with grasp strategies were learned. Different
policies exhibited different approaches to grasping the cube where some grasped
at the very edge of the cube as seen in Figure 4.3, and others exhibited impossible
grasping strategies as in Figure 3.1.

(a) Approach. (b) Grasp. (c) Extract.

Figure 4.3 Strategy for an agent completing the grasp extraction task.
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Extraction with improved grasping
For the task dedicated to teaching improved grasping positions the best-performing
agent reached a success rate of 90% for both variations as seen in Figure 4.10 and
Figure 4.11. Agents for both cube area varieties demonstrated policies striving to
grasp the cubes in the grasping areas, effectively reducing the number of policies
practicing impossible or difficult grasping strategies as in Figure 3.1.

Two main approaches to reach the grasping zones were noticed. One was the
robot arm adapting its approach to be able to grasp within the grasping areas di-
rectly as seen in Figure 4.4, and the other was nudging the cube slightly to align the
grasping areas with the gripper.

(a) Approach. (b) Grasp. (c) Extract.

Figure 4.4 Strategy from an agent performing the extraction with improved grasping task.

Extraction with distractors
For the extraction with distractors task for a non-varying environment multiple fixed
formations were tried. In this section two formations, A seen in Figure 4.5 and B
seen in Figure 4.6, will be exhibited.

The agent for formation A learned different policies that completed the task
with varying success rates, where the best-performing policy reached a success rate
of around 60% to 70% as seen in Figure 4.12. However, it was common that some
runs failed to learn a good policy such as A, G and I in Figure 4.12.

The successful policies consisted mostly of navigating the green target cube
between the yellow distractor cubes through grasping only as in Figure 4.5 or a
combination of grasping and pushing.

The best-performing policy for the agent trained for formation B achieved a
success rate of around 90% as seen in Figure 4.13. The successful policies consisted
of the robot navigating down to the cube and pulling it out in the opposing direction
of distractor cubes. An example of such a policy is shown in Figure 4.6.

For the corresponding task with randomized cube positioning in each episode,
no successful policies were achieved.
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(a) Approach. (b) Grasp. (c) Extract.

Figure 4.5 A strategy for an agent completing the extract with distractors task for forma-
tion A, where the agent navigates the cube out between the distractors.

(a) Approach. (b) Grasp. (c) Extract.

Figure 4.6 A strategy for an agent completing the extract with distractors task for forma-
tion B, where the agent navigates the cube out of the zone while avoiding the distractors.

Reach and grasp a randomly positioned cube
The agent for the reach a randomly positioned cube task learned policies that com-
pleted the task with a success rate of around 65% as seen in Figure 4.14, and the
agent for the grasp a randomly positioned cube task learned policies that completed
the task with a success rate of around 30% as seen in Figure 4.15.

The successful policies consisted of navigating down to the area of the cube and
then moving around in the general direction of the cube before reaching or grasping
it.

Cube extraction with vision-based observations
For the vison-based agent, fewer and shorter runs were done as a result of the longer
training time. The agent for the extraction through grasping failed to learn as seen
in Figure 4.16, and the agent for extracting the cube by any means learned a policy
that achieved a success rate of around 30% as seen in Figure 4.17, where the policy
consisted of pushing the cube out of the zone.
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(a)

(b)

Figure 4.7 Reinforcement learning graphs for the slide cube to target task where a) shows
the mean of the accumulated reward for each episode on the Y-axis and the total step count
on the X-axis, and b) shows the success rate of each policy update on the Y-axis and the step
count on the X-axis. Each episode had a maximum length of 30 steps and the policy updated
every 180 steps. Lines E and D used an entropy coefficient of 0, A and C 0.01, and B 0.005.
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(a)

(b)

Figure 4.8 Reinforcement learning graphs for the remove from zone task where a) shows
the mean of the accumulated reward for each episode on the Y-axis and the total step count
on the X-axis, and b) shows the success rate of each policy update on the Y-axis and the step
count on the X-axis. Each episode had a maximum length of 40 steps and the policy was
updated every 200 steps. All plots used an entropy coefficient of 0.
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(a)

(b)

Figure 4.9 Reinforcement learning graphs for the grasp extraction task where a) shows the
mean of the accumulated reward for each episode on the Y-axis and the total step count on
the X-axis, and b) shows the success rate of each policy update on the Y-axis and the step
count on the X-axis. Each episode had a maximum length of 50 steps and the policy updated
every 250 steps. Lines A, B, C, D, and E used an entropy coefficient of 0, and, F, G, and H
0.01.
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(a)

(b)

Figure 4.10 Reinforcement learning graphs for the extraction with improved grasping task
with one pair of grasping areas where a) shows the mean of the accumulated reward for each
episode on the Y-axis and the total step count on the X-axis, and b) shows the success rate
of each policy update on the Y-axis and the step count on the X-axis. Each episode had a
maximum length of 60 steps and the policy updated every 300 steps. Lines A, B, C, D, E,
and F used an entropy coefficient of 0, and G, H, I, J, K, and L 0.01.
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(a)

(b)

Figure 4.11 Reinforcement learning graphs for the extraction with improved grasping task
with two pairs of grasping areas where a) shows the mean of the accumulated reward for
each episode on the Y-axis and the total step count on the X-axis, and b) shows the success
rate of each policy update on the Y-axis and the step count on the X-axis. Each episode had a
maximum length of 60 steps and the policy updated every 300 steps. All lines used an entropy
coefficient of 0.
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(a)

(b)

Figure 4.12 Reinforcement learning graphs for the extraction with distractors for forma-
tion A task where a) shows the mean of the accumulated reward for each episode on the
Y-axis and the total step count on the X-axis, and b) shows the success rate of each policy
update on the Y-axis and the step count on the X-axis. Each episode had a maximum length
of 80 steps and the policy updated every 400 steps. Lines A, B, C, D, E, F, and G used an
entropy coefficient of 0, and H, and I used 0.01.
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(a)

(b)

Figure 4.13 Reinforcement learning graphs for the extraction with distractors for forma-
tion B task where a) shows the mean of the accumulated reward for each episode on the
Y-axis and the total step count on the X-axis, and b) shows the success rate of each policy
update on the Y-axis and the step count on the X-axis. Each episode had a maximum length
of 80 steps and the policy updated every 400 steps. All lines used an entropy coefficient of 0.
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(a)

(b)

Figure 4.14 Reinforcement learning graphs for the reach a randomly positioned cube task
where a) shows the mean of the accumulated reward for each episode on the Y-axis and the
total step count on the X-axis, and b) shows the success rate of each policy update on the
Y-axis and the step count on the X-axis. Each episode had a maximum length of 60 steps and
the policy updated every 300 steps. All lines used an entropy coefficient of 0.
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(a)

(b)

Figure 4.15 Reinforcement learning graphs for the grasp a randomly positioned cube task
where a) shows the mean of the accumulated reward for each episode on the Y-axis and the
total step count on the X-axis, and b) shows the success rate of each policy update on the
Y-axis and the step count on the X-axis. Each episode had a maximum length of 60 steps and
the policy updated every 1200 steps. All lines used an entropy coefficient of 0.
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(a) (b)

Figure 4.16 Reinforcement learning graphs for a task using a vision-based state. The task
consisted of a cube extraction task where only grasping strategies for extraction were allowed.
a) shows the mean of the accumulated reward for each episode on the Y-axis and the total
step count on the X-axis, and b) shows the success rate of each policy update on the Y-axis
and the step count on the X-axis. Each episode had a maximum length of 50 steps and the
policy was updated every 250 steps. No entropy bonus was used.

(a) (b)

Figure 4.17 Reinforcement learning graphs for a task using a vision-based state. The task
consisted of a cube extraction task where any strategy for extraction was allowed. a) shows
the mean of the accumulated reward for each episode on the Y-axis and the total step count
on the X-axis, and b) shows the success rate of each policy update on the Y-axis and the step
count on the X-axis. Each episode had a maximum length of 50 steps and the policy updated
every 250 steps. No entropy bonus was used.
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4.2 Hardware and training time

For the training process for the agents utilizing the low-dimensional observations,
the policy and critic network both used two intermediate hidden layers, each con-
taining 64 neurons. The input to both networks consisted of the observations in Ta-
ble 3.1. The training was done on three different machines, however, most runs were
done on a computer with an Intel Core i9 i9-13900KF processor [Intel Corporation,
2022] and an NVIDIA GeForce RTX 4090 graphics card [NVIDIA Corporation,
2022]. The agent training process utilized both the CPU (Central processing unit)
and GPU (Graphics processing unit), and training times for the task would vary
slightly depending on the task itself, policies learned and the number of runs done
simultaneously. For the mentioned computer, a general observation was that the
extraction with improved grasping task in Figure 4.11 would need around twelve
hours of training time, and the extract with distractors task in Figure 4.13 would
need around twenty-four hours, both for two million total steps per run. For both
cases, at least five runs were conducted simultaneously and the training times men-
tioned correspond to two of the tasks that required the longest training duration with
the low-dimensional observations.

For the attempts using vision-based state-space the same computer and network
architecture was used, however, now the input consists of the vision-based obser-
vations containing RGB, depth, and segmentation masks. The training for the run
of one million steps for the vision-based task in Figure 4.16 required two days and
twenty-three hours to train.
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5
Exploring the sim2real gap

This section will give a general overview of an attempted sim2real implementation
and its outcome. The purpose of the attempt was to gain insight into what challenges
exist when applying a reinforcement learning agent to a real robot process. Further-
more, the attempt aims to explore what strategies can lead to a successful sim2real
implementation.

5.1 Approach

The simulated robot task environment was replicated as seen in Figure 5.1. To bring
an agent from simulation to reality, a real robot environment should take the place
of the simulated robot environment. This means that the observations from the sim-
ulations should be replaced by information from the real robot, and the robot should
respond to the actions sent by the agent.

Figure 5.1 An image of the real version of the Franka Emika Panda robot [Haddadin et al.,
2022] setup to replicate the experiments done in the simulated robot environment.
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A successful agent for the extract with improved grasping task was chosen as a
candidate for the sim2real process. The agent was selected since it learned policies
achieving a high success rate in the simulation, and from rendering its behavior it
also showed reliable strategies to solve its task.

Observations
The observations provided to the agent consisted of all observations in Table 3.1.
Observations regarding the robot were extracted and sent to the agent, and task-
specific observations were entered manually based on the simulator. The task-
specific information, in this case, consisted of the position of the cube. The sim-
plification of adding the cube positioning manually was done to avoid the need to
implement an additional system to track the cube. Furthermore, the cube would re-
main stationary for the initial parts of the robot task, which consisted of reaching
and grasping the cube.

Actions
The joint velocities commanded by the agent were now based on the observations
from the real robot. The desired joint velocities were scaled to the real robot capa-
bilities and were sent to a controller for the robot joint velocities in intervals close
to the step time in the simulator.

5.2 Outcome

The agent was successful in controlling the robot arm, however, the performance of
the agent did not resemble the simulated environment. The robot arm would move
and the gripper would open and close. Despite this, the actions did not show any
signs of working toward completing the task that the agent was trained for.

When comparing the observations from the robot and the simulated environ-
ment, differences were apparent. Furthermore, since no countermeasures were
added for ignoring actions that led to joint constraints, some runs would end in the
agent sending action leading the robot to reach its joint limits. Different implemen-
tations of controlling the joint velocities were used, however, none were successful
in reproducing the performance achieved in the simulation.
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6
Discussion and conclusion

The following section discusses the learned policies for the different agents and
highlights some key findings regarding the policy performance and the agent’s abil-
ities to learn a given task. Suggestions for future improvements and a discussion
of the sim2real gap will also be addressed, followed by a conclusion tied to the
research questions.

6.1 Agent evaluation

Undesired versus desired policies
Throughout the task development and agent training, it became apparent that the re-
ward shaping had a large impact on how the tasks were completed. An agent could
have developed a policy effectively completing a task while displaying undesired
approaches and strategies. For example, the agents for the remove from zone and
slide cube to target tasks both displayed strategies that could result in the cubes
being manipulated in an uncontrolled manner, specifically highlighted by the agent
in Figure 4.2. Developing such strategies can be seen as unuseful or difficult to
implement in a real-life application. To develop more robust cube manipulation ap-
proaches, grasping strategies were rewarded, leading to agents developing policies
utilizing grasping as the agent in Figure 4.3.

However, other traits were developed for the grasping approach that could be
seen as undesired. For example, in the first grasping task grasp extraction the prob-
lem of impossible grasping positions, as illustrated in Figure 3.1, became appar-
ent. Throughout the training and task development, the ability to bring an agent
from simulation to real life was always in mind. Therefore tasks to encourage bet-
ter grasping positions were created, resulting in overall better grasping approaches
for the developed policies as exemplified by the policy shown in Figure 4.4. The
improved grasping tasks also achieved a good success rate as seen in Figure 4.11.

However, a strategy occurred that could be seen as difficult to implement for
a real robot. This strategy consisted of the robot nudging the cube into a different
position before grasping in the rewarded grasping area. This behavior can be seen
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as an unfavorable approach to achieving a precise grasping position since it relies
on an accurate simulation of the cube dynamics. Pushing the cube in the simulation
versus a real cube can lead to two different positions since the simulated environ-
ment might not line up with the real-life physical properties of the cube, such as
friction and mass. The policies involving directly pursuing a good grasping position
were therefore considered superior.

The introduction of the cube grasping areas proved successful in deterring im-
possible grasping strategies and influencing the robot’s grasp positioning. The abil-
ity to influence an agent’s grasp positioning could have further benefits. An example
could be when dealing with fragile or irregularly shaped objects requiring specific
grasping approaches.

For the extraction with distractors task involving extracting a cube surrounded
by distractors, the successful policies consisted of removing the cube by gripping
it and extracting it by navigating in between or away from the distracting cubes as
shown in Figure 4.5 and Figure 4.6. From an outside perspective, gripping the cube
and lifting it straight up would seem like a simpler and more effective approach.
The same goes for the other grasp extraction tasks where policies involving lifting
were uncommon. The reason for this behavior could come from the reward shaping.
When gripping the cube, reward is given for moving it out from the center of the
zone. If the robot moves the cube close to the work surface it can let it go, re-grasp,
and continue moving. However, if the robot would move the cube vertically and let
it go, the cube would drop, making the task more difficult to resume. This could
ultimately lead to policies involving lifting the cube further from the work surface
less common. To combat this, reward shaping could be added to vertical movement.

Randomization
With a randomized version of the extraction with distractors task, the agents failed
to learn and complete the task. The simpler task of reaching, and reaching and
grasping a cube did succeed in learning as seen in Figure 4.14 and Figure 4.15,
however, total training time for simpler tasks in a randomized environment was
significantly larger compared to the advanced task in a fixed environment.

Vision-based observations
For the vision-based agents, it became apparent that there is a potential for transfer-
ring the tasks and reward functions designed for a low-dimensional state-space to
a vision-based state-space since one of the agents managed to learn a policy with a
success rate of 30% as seen in Figure 4.17. However, more experiments are neces-
sary to improve on the vision-based agents. As seen in Figure 4.16, the vision-based
grasping task the agent starts to learn, however, after around a hundred thousand
steps failure occurs. To determine what causes this failure to learn and sudden drop
would require further runs.
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6.2 Algorithm parameters

The purpose of the clipping in the surrogate objective function, Equation (2.6) in
PPO, is to make sure the policy does not change too much at the time, ultimately
leading to failure and the policy being worse. As mentioned previously and as seen
in Figure 4.9 for runs D and G, some runs showed signs of the policy veering off
too far leading to failure. To avoid this the clipping range could be altered for tasks
with this problem, reducing the risk of large policy updates.

For some runs the entropy bonus was tested with the scaling entropy coefficient
of 0.01. It was observed that the agent’s ability to learn was influenced by the in-
clusion of the entropy bonus. As seen in Figure 4.7, Figure 4.10, and Figure 4.12
the agent using the entropy bonus would consistently learn and the spread in per-
formance would vary less compared to agents without the bonus. This also resulted
in that the best-performing agents were the ones without the entropy bonus. A rea-
son for this behavior could be that the entropy bonus encourages exploration over
exploitation, resulting in consistency in finding a successful policy for the use of
an entropy bonus. In contrast, no entropy bonus allows exploitation if a successful
policy is found early, which can lead to the optimal policy being found faster.

Furthermore, this thesis focused on employing PPO to solve robotics tasks, how-
ever, there are multiple other reinforcement learning algorithms and approaches to
combining machine learning with robotics. For this thesis PPO proved to be a vi-
able algorithm for the designed tasks, however, testing other reinforcement learning
algorithms could provide different results and insights into how to work toward
completing an object isolation task.

6.3 Sim2real

The agent’s diverging behavior when deployed in a real robot process can be caused
by multiple different factors. Regarding the observations given to the agent, differ-
ences were found when comparing the real process and the simulation. This would
ultimately lead to the agent working with observations that could seem foreign,
ultimately impacting its decision making.

Another factor that influences the agent’s performance in a real process is
whether the actions in a real process would result in the same outcome as the ac-
tions in a simulation. For an agent sending joint velocities as references, there is
no guarantee that the sent joint velocities for a given time would result in the same
pose for a real robot and a simulation. This is highly dependent on the controller
of the robot’s joints and experimenting with the controller and the scaling of the
actions sent by the agent are necessary steps to work toward a successful sim2real
implementation.

The problem of accurately communicating an agent’s action to a robot can be
seen as specifically apparent when using actions directly controlling the robot joints.
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If the approach of utilizing an agent together with a planner was selected instead,
the end-effector position could be directly sent from the agent to a planner executing
the robot movement. This would eliminate the problem of actions sent by the agent
resulting in different poses when comparing a real robot with a simulation.

Ideally, the environment that the agent has been trained in should closely resem-
ble the real environment in which it is to be deployed. To achieve this data could be
collected from the robot, and thereafter the simulation could be modified to more
closely resemble the real robot in which the agent should be implemented. Further-
more, the training process of the agent could continue when applied to a real robot.
This enables the policies developed to adapt and be refined for a real process.

6.4 Conclusion and future work

Agents capable of primitive robot actions such as reaching, avoiding, pushing, and
grasping were achieved. These actions were used to complete more complex tasks
such as grasp extractions, where a method to improve grasping approaches was
explored and shown to be successful. Furthermore, an agent capable of extracting
a target cube without removing the surrounding distractor blocks was achieved for
a fixed environment without episode variations. For tasks with an environment that
scrambles each episode, agents with the ability to reach and grasp randomly placed
cubes were achieved.

This ultimately satisfies research question 1, furthermore, some tasks combine
multiple actions into one task. For example, the extract with distractors task com-
bines reaching, grasping, and avoiding to complete the task. This works towards
satisfying research question 2, where combining and utilizing the action primitives
was an objective. However, the objective of training an agent capable of completing
an object isolation task was not reached, and therefore research question 2 was not
fully satisfied.

The selected approach to complete the objective was to refine the agent capable
of extracting the target cube without affecting the surrounding cubes in such a way
that it can complete the task for an environment that scrambles the cube positions
each episode. With this approach, the agent could be deployed for cubes surround-
ing the target cube, to complete an object isolation.

A suggestion for future work, to achieve an agent capable of extracting ran-
domly positioned cubes, is to pursue further testing and training for the tasks involv-
ing reaching and grasping for randomized positions. Once a satisfactory success rate
has been reached, the extraction part can be added to the task and thereafter the dis-
tractors can be reintroduced. This ultimately repeats the process for the successful
task achieved for fixed positions.

In addition to this, further testing could explore tuning the different algorithm-
specific parameters, scaling between the shaping rewards, and trying longer training
sessions. Furthermore, the tasks developed for this thesis were focused on extrac-
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tion. To further develop the agents releasing the cubes in a determined area should
also be considered.
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