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Abstract

Showing when random walks are transient or recurrent is the central topic
we investigate in this thesis. To be able to find the conditions of a random
walk, we develop techniques gained from knowledge about electrical networks
developed from Snell and Doyle’s “Random Walks and Electrical Networks”
(1984). We aim to use these techniques from Snell and Doyle’s work to be
able to find conditions of recurrence for random walks in increasingly complex
environments. The culmination of this thesis will be finding the necessary
conditions for both recurrence and transience for random walks where the
transition probabilities are independent and identically distributed random
variables.



Popular Scientific Introduction

Föreställ dig att du g̊ar ut ur ditt hus och sl̊ar ett mynt. F̊ar du huvuden
g̊ar du ett steg åt vänster och f̊ar du svansar g̊ar du ett steg åt höger. Om
du fortsätter denna process, är det garanterat att du kommer tillbaka hem?
Det är möjligt att du bara vänder p̊a huvudet och därför aldrig återvänder
hem.

Det visar sig att även om detta är teoretiskt möjligt är sannolikheten för
att det händer noll, och detsamma gäller för alla liknande serier. Det är
hundra procents sannolikhet att återvända hem. Men är det alltid s̊a? Tänk
om du hade fyra olika riktningar som du kunde g̊a i? Eller vad skulle hända
om chansen att f̊a huvuden i sig valdes slumpmässigt varje g̊ang? Kan vi
garantera att vi kommer hem?

Denna fr̊aga, om vi garanterat kommer tillbaka fr̊an där vi började, är den
centrala fr̊agan som denna avhandling kommer att ägna sig åt att besvara.
För att kunna svara p̊a denna fr̊aga i alltmer komplexa situationer kommer
vi att utveckla matematiska tekniker som gör att vi kan använda metoder
utvecklade för att förenkla elektriska nätverk.
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Chapter 1

Introduction

In this thesis, we will explain the use of electrical networks to find condi-
tions for the recurrence of random walks in random environments. We will
first introduce a mathematical background for all the concepts discussed.
Then we will go through the mathematics needed to show that we can use
electrical networks to solve for recurrence, and then explain the importance
of these techniques. Lastly, we will show recurrence for increasingly more
complex random walks using the techniques constructed.

This thesis relies heavily on the concept of electrical networks, and their
use in solving recurrence for Markov chains. Therefore, while electrical net-
works are defined as purely mathematical objects in this thesis, it is im-
portant to note that how we define them comes from physical circuits. For
example, how we define current in this thesis is such that the network will
satisfy Ohm’s Law and Kirchhoff’s Law. Thus, while these laws are not ex-
plicitly stated, they are the underlying reason we define things the way we do.
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Chapter 2

Mathematical Preliminaries

To begin, we go through some mathematical preliminaries. This section
contains basic definitions and theories regarding graph theory, probability,
and Markov chains. In this section, no theorems or lemmas will be proved,
as they are outside the scope of this thesis.

Additionally, if the reader is sufficiently versed in any of these areas they
may be able to skip reading this chapter, however things we prove later will
rely on this foundation. For proofs of each statement as well as complimen-
tary information, the reader may refer to the books cited in each section.

2.1 Graph Theory

Definition 2.1.1 (Graph) A Graph is the ordered pair G = (V,E). Where
V is the set of points or vertexes, and E = {(x, y) : x, y ∈ V } is the set of
edges connecting the vertices.

Definition 2.1.2 (Weighted Graph) A weighted graph is a graph where
each edge has an assigned weight. These weights are notated as Ex,y.

Definition 2.1.3 (Multigraph) A multigraph is a graph where there can
exist more than one edge between any two points. These edges will be notated
as (x, y)(1), (x, y)(2), and so on. When we have a weighted multigraph, we

will denote the weights as E
(1)
x,y, E

(2)
x,y and so on.

For any graph, the distance between two points is assumed to be the geodesic
distance, i.e., the shortest path distance, between those two points.
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Definition 2.1.4 (Harmonic Function) A function on a weighted graph
G = (V,E) is called harmonic on the set I ⊆ V if we have that:

f(x) =
∑
y∈V

Ex,yf(y) ∀x ∈ I

2.2 Probability

Definition 2.2.1 (Sigma Algebra) Let Ω be any set often called the sam-
ple space, then we define a Sigma Algebra F , as any collection of subsets of
Ω that satisfy the following three properties:

1) Ω ∈ F
2) If A ∈ F =⇒ Ā ∈ F

3) If A0, A1, ... ∈ F =⇒
∞⋃
i=0

Ai ∈ F ∀Ai ∈ F

Definition 2.2.2 (Probability Measure) Then we define probability IP,
as a finitely additive measure from F to the interval [0,1] that satisfies the
following three conditions:.

1) IP(Ω) = 1

2) IP(A) = 1− IP(Ā) ∀A ∈ F

3) IP(
∞⋃
i=0

Ai) =
∞∑
i=0

IP(Ai) ∀Ai ∈ F

Definition 2.2.3 (Random Variable) A Random Variable, X, is a mea-
surable function that maps from Ω to the real line.

X : Ω → R

Definition 2.2.4 (Stochastic Process) A Stochastic Process Xn, is a col-
lection of random variables indexed by time n.

Theorem 2.2.5 (Law of Total Probability) [4] Let A1, A2, . . . be events
that form a partition of the sample space Ω. Let B be any event in F . Then

IP(B) = IP(A1 ∩B) + P (A2 ∩B) + ...

Remark 2.2.6 Formally the Law of Total Probability is a property of how
we define the probability function. However, we call it a theorem here because
it is defined as such in the book from which we cite the theorem.
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Lemma 2.2.7 (Borel-Cantelli) [3] Let {An}∞n=1 be a sequence of events in
some probability space, then:

If,
∞∑
n=1

IP(An) < ∞ =⇒ IP({An i.o.}) = 0

If,
∞∑
n=1

IP(An) = ∞, and all An are independent =⇒ IP({An i.o.}) = 1

Where {An i.o.} denotes the event An happening ”infinitely often”, and is
formally defined as:

{AN i.o.} :=
∞⋂
n=1

⋃
k≥n

Ak

Definition 2.2.8 (Moment Generating Function) [5] The moment gen-
erating function of a random variable X is:

ϕX(t) = E[etX ]

Provided there exists h > 0 such that the expectation exists and is finite for
|t| < h.

Theorem 2.2.9 [5] Let X be a random variable whose moment generating
function ϕX(t), exists for |t| < h for some h > 0. Then:

a) all moments exist, that is E[|X|r] < ∞ ∀r > 0

b) E[Xr] = ϕ
(n)
X (0) for, n = 1, 2, ...

Theorem 2.2.10 (Jensen’s Inequality) [3] Let the Borel function g =
g(x) be convex downward and E[|ξ|] < ∞. Then:

g(E[ξ]) ≤ E[g(ξ)]

Theorem 2.2.11 Let ξ be a random variable that has a defined moment
generating function ϕξ(t). Then:

eµt ≤ ϕξ(t) (2.2.1)

Proof: This proof follows directly from Jensen’s Inequality. Let ξ be a
random variable with expectation E[ξ] = µ. Then since the function g(x) =
ext is convex for all t, by Jensen’s Inequality we have the following:

g(E[ξ]) = eµt ≤ E[g(ξ)] = E[etξ] = ϕξ(t)

Which proves the statement above.
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Theorem 2.2.12 (Chernoff-Cremier Bound) Let Sn be the sum of n in-
dependent random variables with identical distribution ξ. Additionally, let ϕξ

be the moment-generating function of ξ, and let a be any real number. Then
the following inequalities hold:

IP(Sn ≥ an) ≤ en ln(ϕξ(λ)−λan) ∀λ > 0 (2.2.2)

IP(Sn ≤ an) ≤ en ln(ϕξ(−λ)+λan) ∀λ > 0 (2.2.3)

Proof: To begin, we first prove this is true for the first inequality (2.2.2):

IP(Sn ≥ an) = IP(λSn ≥ λan) ∀λ > 0

= IP(eλSn ≥ eλan) ∀λ > 0

Then, by the Markov Inequality we have that:

IP(eλSn ≥ eλan) ≤ E[eλSn ]

eλan
∀λ > 0

≤ E[eλξ]n

eλan
∀λ > 0

≤ en ln(ϕξ(λ))−λan ∀λ > 0

This proves (2.2.2) is true for all positive lambdas. Then the second inequal-
ity follows directly by substituting λ for −λ.

2.3 Markov Chains

Definition 2.3.1 (Markov chain) A Markov chain is a Stochastic process,
Xn, on a countable or finite state space S = {i0, i1, i2, ...} such that the
probability of moving to another state is only determined by the current state:

IP(Xn = in|Xn−1 = in−1, Xn−2 = ii−2, ...) = IP(Xn = in|Xn−1 = in−1)

This is called the “Memory-less property” of Markov chains, and it is the
foundation for everything that will follow. Because of this propriety for
Markov chains we define the transition probability, as the probability from
going from any one state to any other:

pj,i := IP(Xk+1 = i|Xk = j)

Using these probabilities we can then construct a transition matrix, P, for
any Markov chain with a finite state space:

P :=

p0,0 ... p0,r
... ... ...
pr,0 ... pr,r


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Definition 2.3.2 (Distribution of a Markov chain) Let Xn be a Markov
chain. We define a distribution for that Markov chain as a row vector, where
each column defines the probability of being in the corresponding state:

π = (πi0 , πi1 , ...)

πi0 = IP(Xn = i0)

Definition 2.3.3 (Stationarity) A distribution of a Markov chain is said
to be stationary if it does not change when multiplied with the transition
matrix:

πP = π

Definition 2.3.4 (Reversibilitity) A Markov chain is called reversible if
the probability of going from a state i ∈ S to another state j ∈ S is equivalent
to the probability of going from state j ∈ S to i ∈ S, when in the stationary
distribution:

πipi,j = πjpj,i ∀i, j ∈ S

Definition 2.3.5 (Connected Markov chains) A Markov chain is called
connected if the probability of going from any state to any other is positive:

∃n ∈ N s.t. IP(Xk+n = i|Xk = j) > 0 ∀i, j ∈ S ∀k ∈ N
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Chapter 3

Theoretical Background

In this section, we will lay the groundwork for what we aim to prove in
Chapter 4. We will construct the necessary definitions and statements for
proving the theorems in later chapters.

In this chapter, we will first go over the definition of a random walk on
a graph, talk about the return probability of random walks on finite graphs,
and finally make the connection between the return probability for finite and
infinite graphs and relate that to the concept of recurrence. Here it is im-
portant to note that the definition of recurrence used in this section comes
directly from an intuitive understanding of recurrence, and it can be shown
to correspond with the more conventional definition of recurrence; however,
that is outside the scope of this thesis.

In the next section, we will go over how we mathematically define an
“electrical network” and the properties that electrical networks have. It is
critical to note that some definitions used in this section were created by the
author for convenience and therefore do not use standard notation. This is
especially true for the definition of an “electrical network.”. This was done
both for convenience of notation and to emphasize the connection between
the mathematical object described and “real-world” electrical networks.

Finally, we will show both the benefits we gain through the use of electri-
cal networks and how the effective resistance in a network is related to the
recurrence of a random walk on that network.
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3.1 Random Walks

Definition 3.1.1 Let G = (V,E) be a connected weighted multigraph, then
we define the random walk on G as the Markov chain with state space equal
to the set of vertexes, where the transition probabilities are determined by the
weights of each edge.

For all random walks on a graph G, we designate one state as the origin, from
here forward this state will be notated as s0. Additionally, we designate one
state as the end state notated as sd.

Definition 3.1.2 Let Xn n ∈ Z, be a random walk on some graph G. Then
we define a function r, called the return probability, that signifies the proba-
bility that the origin is visited before the end state, given that the chain starts
at state x.

From our definition, we see that the return probability should be one and
zero at the origin and end points. This is because the probability of going
to state s0 before sd while at state s0 is one. And inversely the probability
of going to state s0 before sd must be zero specifically. Then by the Law of
Total Probability, we know that the return probability of all the states that
are not the origin or the end state is equal to the sum of the probability of
moving to that state multiplied by the return probability. This gives us the
following function:

r(x) =


r(x) = 1 if x = s0

r(x) = 0 if x = sd∑
y∈S px,yv(y) if x ̸= s0, sd

Definition 3.1.3 Let Xn be a random walk on some finite graph G. Then
we define escape probability, pesc, of that random walk as the probability that
given we start at the origin we visit the end point before returning to the
origin:

pesc =
∑
y∈S

pi0,y(1− r(y))

Definition 3.1.4 Let G = (V,E) be a weighted connected multigraph, and
let s0 denote an arbitrary point in, V called the origin. Then let {G(d)} =
{(V (d), E(d))} be a sequence of graphs generated by G, such that the limit of
this sequence approaches G as d goes to infinity:

G(d) → G as, d → ∞
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Where for each G(d) its set of points, V (d), is equal to V for all points at
most distance d from the origin, and all points greater than distance d are
put together into one point notated sd. Hence, for G(d), any edge (x, y) ∈ E
where both the points x, y are at most distance d from the origin in G are in
E(d). And any edge (x, y) ∈ E where x is at most distance d from the origin,
but y is greater than distance d is replaced with the edge (x, sd) ∈ E(d) with
weight equal to (x, y).

Definition 3.1.5 Let G be some graph, and let {G(d)} be the sequence of

subgraphs of G. Then we can define {X(d)
n }∞d=1 as the sequence of random

walks, where each element in the sequence X
(d)
n is the random walk on the

graph G(d).

Definition 3.1.6 Let G be some graph, with the sequence of subgraphs {G(d)},
and {X(d)

n } be the sequence of random walks corresponding to each subgraph.

Then we can define {p(d)esc} as the sequence of escape probabilities, where each

element in the sequence p
(d)
esc is the escape probability of the random walk X

(d)
n .

Definition 3.1.7 Let Xn be a random walk on an infinite graph G, then
we define the escape probability of the random walk as equal to the limit of
the sequence of escape probabilities.

pesc := limd→∞p(d)esc

Remark 3.1.8 Here we are extending Definition (3.1.3) such that the escape
probability is defined also for Random Walks with infinite state spaces.

Remark 3.1.9 We know the limit of the sequences of escape probabilities
exists. This is because as d increases, the set of points greater than distance
d from the origin can only decrease. Therefore, the probability of visiting
sd before the origin also cannot increase. Thus, since the sequence of escape
probabilities is naturally bounded by 0, we have that the sequence is monotonic
and bounded, and therefore a limit must exist.

Definition 3.1.10 Let Xn be a random walk on an infinite graph G, then
we call the random walk recurrent if the escape probability of Xn is zero.

Definition 3.1.11 Let Xn be a random walk on an infinite graph G, then
we call the random walk transient if the escape probability of Xn is greater
than zero.
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3.2 Electrical Networks

Definition 3.2.1 We define an Electrical Network, G = (S,R), as a weighted,
connected, multigraph. Here, S is a finite set of points which we divided into
two disjoint subsets B and I, where B = {0, n} signifies the points connected
by a battery and I represent the interior points of the network that are not
connected directly to a battery. R is the set of edges connecting the points
in S to each other, we will call this the set of resistors. Let (x, y) ∈ R be
a resistor which connects two points in S, then we write the weight of that
resistor as Rx,y.

Remark 3.2.2 To stay consistent with the physical interpretation of electri-
cal networks, we impose the following two requirements for all resistors in an
electrical network.

Rx,y = Ry,x ∀(x, y) ∈ R

Rx,y > 0 ∀(x, y) ∈ R

Definition 3.2.3 We can define the resistance at each point in the network
as the sum of resistors connected to that point:

Rx =
∑

y: (x,y)∈R

Ry,x ∀x ∈ S

Definition 3.2.4 For each edge in a given electrical network, we define its
conductivity as:

Cx,y =

{
1

Rx,y
if (x, y) ∈ R

0 if (x, y) ̸∈ R

Definition 3.2.5 As before, we can also define the conductivity at each point
x ∈ S equal to the sum of conductivity attached to that point:

Cx =
∑
y∈S

Cy,x ∀x ∈ S

Definition 3.2.6 Let G be an electrical network. Then we define a function
v, on the points of an electrical network, which we call the voltage:

v(x) :=


1 if x = 0

0 if x = n∑
y∈S

Cx,y

Cx
v(y) if x ∈ I
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Remark 3.2.7 We define voltage this way such that our electrical network
will follow Kirchhoff’s law. Additionally, here v(0) signifies the voltage of the
battery attached to the network, which we assume to be one for convenience.

Definition 3.2.8 Let G be an electrical network. Then let (x, y) ∈ R be two
points connected by a resistor. We define the current between x and y as a
function such that:

ix,y =
v(x)− v(y)

Rx,y

= (v(x)− v(y))Cx,y ∀(x, y) ∈ R

Definition 3.2.9 We can also define the current at a point as the sum of
currents going out from that point:

ix =
∑

y: (x,y)∈R

iy,x ∀x ∈ S

Definition 3.2.10 For any electrical network G, we define a flow on G as
any function on the set of resistors R with the following properties:

1) jx,y = −jy,x

2) jx =
∑

y: (x,y)∈R

jx,y = 0 if x ∈ I

3) jx,y = 0 if (x, y) ̸∈ R

Remark 3.2.11 We also define the flow at the end points as the sum of
the flow connected to those end points. However, unlike above, this is not
necessarily zero.

jx :=
∑

y: (x,y)∈R

jx,y > 0 if x ∈ B

Here we note that for any flow on an electrical network G we have that
j0 = −jn since:

j0 + jn =
∑
x∈S

jx =
∑
x∈S

∑
y∈S

jx,y =
1

2

∑
x∈S

∑
y∈S

(jx,y + jy,x) = 0

Theorem 3.2.12 [1] For any electrical network G the current on that net-
work is a flow.

15



Proof : Given how we defined current, we can see that the first and third
properties are met; thus, all we need to do is prove the second. However,
this also comes from our definition (3.2.7), since given x ∈ I:

ix =
∑
y∈S

(v(x)− v(y))Cx,y = v(x)
∑
y∈S

Cx,y −
∑
y∈S

v(y)Cx,y

= Cx(
∑
y∈S

Cx,y

Cx

v(y)−
∑
y∈S

v(y)Cx,y = 0

Definition 3.2.13 Let G be an electrical network, and let j be a flow on G.
Then we define the total energy dispersion, Ej of the network G through the
flow j.

Ej :=
1

2

∑
(x,y)∈R

j2x,yRx,y

Lemma 3.2.14 (Conservation of energy) [1] Let G = (S,R) be an elec-
trical network and let w be any function defined on S, and let j be any flow
defined on R. Then:

(w(0)− w(n))j0 =
1

2

∑
x∈S

∑
y∈S

(w(x)− w(y))jx,y

Proof : To prove this, we expand the left-hand side.∑
x∈S

∑
y∈S

(w(x)− w(y))jx,y =
∑
x∈S

(w(x)
∑
y∈S

jx,y)−
∑
y∈S

(w(y)
∑
x∈S

jx,y)

= (w(0)(j0) + w(n)(jn))− (w(0)(−j0) + w(n)(−jn))

= 2(w(0)− w(n))j0

Definition 3.2.15 For any electrical network, define the effective resistance
of that network as:

Reff :=
1

i0
In the same manner, we can also define the effective conductance of an elec-
trical network:

Ceff =
1

Reff

= i0

Theorem 3.2.16 [1]: The effective conductance of an electrical network is
equal to the total energy dispersion through the current.

Proof : To prove this we use the conservation of energy and set w = v and
j = i which gives us:

Ei =
1

2

∑
(x,y)∈R

i2x,yRx,y =
1

2

∑
x∈S

∑
y∈S

(v(x)− v(y))ix,y = (v(0)− v(n))i0 = Ceff
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3.3 Properties of Electric Networks

Theorem 3.3.1 (Thomson’s Principle) [1] Current is the flow which uniquely
minimizes the total energy dissipation for any electrical network.

Proof : [1] Let j be any unit flow on an electrical network G = (S,R) from
the origin to the end point. Then we define a new function, d, on G such that
dx,y := jx,y − ix,y, then by definition, d is a flow and d0 =

∑
x(j0,x − i0,x) = 0.

Then we have that: ∑
x,y

j2x,yRx,y =
∑
x,y

(ix,y + dx,y)
2
x,yRx,y

∑
x,y

j2x,yRx,y =
∑
x,y

j2x,yRx,y + 2
∑
x,y

ix,ydx,yRx,y +
∑
x,y

d2x,yRx,y

=
∑
x,y

j2x,yRx,y + 2
∑
x,y

(vx − vy)dx,y +
∑
x,y

d2x,yRx,y

Then, by the law of conservation of energy, we have that the middle term is
equal to 0 since, 2

∑
x,y(vx − vy)dx,y = 4(v0 − vn)d0 = 0, thus this gives us:∑

x,y

j2x,yRx,y =
∑
x,y

j2x,yRx,y +
∑
x,y

d2x,yRx,y ≥
∑
x,y

i2x,yRx,y

Thus we have proved the statement.

Theorem 3.3.2 (Rayleigh’s Monotonicity Law) [1] Given an electrical
network, if the weights of the resistors are increased, then the effective resis-
tance can only ever increase. And if the weights of the resistors are decreased,
the effective resistance can only ever decrease.

Proof : [1] Let G be an electrical network and let i be the current on G.
Then we let R̂x,y be a new set of resistors on G such that R̂x,y ≥ Rx,y for all
x, y ∈ S. Then this new set of resistors will have a new current, which we
will denote j. Then, for our network, we have the following equation:

R̂eff =
1

2

∑
x,y

j2x,yR̂x,y ≥
1

2

∑
x,y

j2x,yRx,y

However, due to Thomson’s principle, we have that the current reduces the
energy lost, which gives us:

1

2

∑
x,y

j2x,yRx,y ≥
1

2

∑
x,y

i2x,yRx,y = Reff
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Thus increasing the weight of resistors in an electrical network can never
decrease the effective resistance. The proof for the decreasing of the weight
of the resistors is identical, therefore we have proved the theorem.

Corollary 3.3.3 (Shorting Law) [1] Given an electrical network, adding
a resistor can only increase the total resistance.

Proof : By Rayleigh’s Monotonicity Law, we know that if the total resistance
of a network is increased, then the effective resistance can only increase; thus,
all we need to show is that adding a resistor decreases the total resistance.
This, however, is clear to see because we do not allow resistors with negative
weight; thus, removing a resistor cannot ever increase the total resistance
and therefore can never increase the effective resistance.

Corollary 3.3.4 If the voltages between two points in an electrical network
are equal, one can short them together without increasing the effective resis-
tance.

Proof : This statement follows directly from how we define the weight of a
resistor. Since if the voltage of two points is the same, then the resistance of
a resistor between those points will be zero. Thus, adding a resistor of weight
zero to our network cannot increase nor decrease the effective resistance, and
by Rayleigh’s Monotonicity Law, this means that the effective resistance can
neither increase nor decrease.

Corollary 3.3.5 (Cutting Law) [1] Given an electrical network, removing
a resistor can only decrease the total resistance.

Proof : By Rayleigh’s Monotonicity Law, we know that if the total resistance
of a network is decreased then the effective resistance can only decrease; thus,
all we need to show is that removing a resistor decreases the total resistance.
This, however, is clear to see because we do not allow resistors with negative
weight; thus, removing a resistor cannot ever increase the total resistance
and therefore can never increase the effective resistance.

Theorem 3.3.6 (Series Law) [2] Let G = (S,R) be an electric network,
then if y ∈ I is a point of degree two with neighbors x,z and we replace the
edges (x, y), (y, z) by a single edge (x, z) having resistance Rx,z := Rx,y+Ry,z

then the effective resistance of G is unchanged.

Proof : Let G be an electrical network and let x, y, z be three points in G such
that y only has degree two and is directly connected to both points x and z.
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Then we create a new network G
′
which is identical except there is no point

y and there is only one resistor between points x and z with weight R
′
x,z =

Rx,y + Ry,z. In our new network G
′
the sum of the weights of all resistors

neither increased nor decreased; thus, by Rayleigh’s Monotonicity Law we
have that the effective resistance also can neither increase nor decrease, thus
it must stay the same.

Theorem 3.3.7 (Parallel Law) [2] Let G = (S,R) be an electric network,
then if two edges (x, y)(1) and (x, y)(2) that both join points x, y ∈ S are

replaced by a single edge (x, y) joining x, y of conductance Cx,y := C
(1)
x,y+C

(2)
x,y,

then the effective current of G is unchanged.

Proof : The proof for this is the same for the theorem above, and thus is
proved analogously.

3.4 Equivalence of random walks to electrical

networks

Definition 3.4.1 Let G = (S,R) be an electrical network, and let then we
define a random walk on G as the Markov chain with state space equal to S,
and the transition probabilities are determined by:

px,y =
Cx,y

Cx

∀x, y ∈ S

Theorem 3.4.2 [1] For a random walk on an electrical network, the return
probability of any state in the Markov chain is equivalent to the voltage at
the corresponding electrical network at all points.

Proof : Let G = (S,R) be the electrical network, and let Xn be a random
walk on G such that the origin is the point 0 ∈ S and the end point is the
point n ∈ S. Then we see that the values at these two points are identical,
thus all we need to show is that v(x) = r(x) on all the interior points of the
network. To be able to prove this, we first need to prove two theorems.

Theorem 3.4.3 (Maximal Principle) [2] Let G = (S,R) be any electrical
network. If f is a harmonic function on G, and the supremum of f on S is
achieved at some element x ∈ I, then f is constant on all of S.

Proof : [2] Let K := {y ∈ S; f(y) = supf}. Note that if x ∈ I ∩ K and
(x, y) ∈ R, then y ∈ K because f is harmonic at x. Hence, the conclusion
follows.
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Theorem 3.4.4 (Uniqueness of Harmonic Functions) [2] Let G = (S,R)
be an electrical network. If f,g are two functions that are both harmonic on
G and agree on all the boundary points (that is, f(x) = g(x) for all x ∈ B),
then f = g.

Proof : [2] Let h := f − g, we aim to show that h ≤ 0. This suffices to es-
tablish the proof, since then h ≥ 0 by symmetry. Since I is finite, h achieves
its overall supremum at some point x ∈ S. If x ∈ B, then by definition
h(x) ≤ 0, as desired. On the other hand, if x ∈ I, then by the maximum
principle, h(x) ≤ sup h = 0, which again shows that h ≤ 0.

Then since it is clear that both r and v are harmonic on G by the Uniqueness
of Harmonic functions, we have that r(x) = v(x) for all x ∈ S since they are
equal on their boundaries.

Theorem 3.4.5 [1] For a random walk on an electrical network, the proba-
bility of escape is equal to the effective conductivity of the electrical network
generated by that random walk divided by the conductance at the origin.

Proof : Let {G(d)} be a sequence of electrical networks generated by some

electrical network G, and let X
(d)
n be the corresponding random walk on each

G(d). Then, for each electrical network in the series {G(d)} we have that the
effective conductance of G(d) is:

C
(d)
eff = i0 =

∑
y∈S

(v(0)− v(y))C0,y =
∑
y∈S

C0,y − v(y)C0,y = C0 −
∑
y∈S

v(y)C0,y

Then we divide everything by C0, which gives us:

C
(d)
eff =

1

C0

(1−
∑
y∈S

v(y)
C0,y

C0

)

Which, by [Theorem 3.4.2] gives us:

C
(d)
eff =

1

C0

(1−
∑
y∈S

v(y)
C0,y

C0

) =
1

C0

(1−
∑
y∈S

r(y)p0,y) =
1

C0

(p(d)esc)

Thus, we have that:

p(d)esc =
C

(d)
eff

C0

=
1

C0R
(d)
eff

Corollary 3.4.6 [1] A random walk is only recurrent if and only if the ef-
fective resistance of the electric network generated by the random walk is
infinity. Additionally, a random walk is only transient if and only if the
effective resistance is finite.
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Proof : First, we note that as d increases the amount of resistors can only
increase, thus by Rayleigh’s Monotonicity Law the effective resistance can
only increase if we have more resistors. Therefore, the limit of effective resis-
tance must exist, although it can be infinity. Then, by definition [3.1.8] we
have that a random walk is recurrent if and only the limit of the probability
of escape is zero. This gives us:

lim
d→∞

pesc = lim
d→∞

1

C0R
(d)
eff

= 0 ⇐⇒ lim
d→∞

R
(d)
eff = ∞

Therefore, a random walk is recurrent if and only if the effective resistance
goes to infinity. We use the same logic to prove the statement about tran-
sience:

lim
d→∞

pesc = lim
d→∞

1

C0R
(d)
eff

> 0 ⇐⇒ lim
d→∞

R
(d)
eff < ∞
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Chapter 4

Showing Recurrence of
Random Walks

Now we will show recurrence for random walks on different electrical net-
works. We will use the tools developed in the previous section to prove each
of the following theorems involving the recurrence of random walks.

To begin, we will show that a simple random walk in both one and two
dimensions is recurrent. Normally, showing that simple random walks exist
in both one and two dimensions is not a trivial matter. However, with the
use of electrical networks, as we will show, the proof becomes quite straight-
forward. This allows us to demonstrate the power of the technique created.

After this, we will find conditions for recurrence for two different electri-
cal networks. The first will be a so-called “highly connected” random walk.
Where each point is connected to each other point in the network by a resistor
of a weight determined by the distance between the points. (It is important
to note that the distance will be defined as the Euclidean distance, since the
shortest path is always one between two points.) Our goal here will be to
find a bound on the function that determines the weight such that a random
walk on the network will be recurrent.

Next we will have a network in which the transition matrix for the ran-
dom walk is determined randomly, such that each transition probability is
some i.i.d. observation of a random variable. Such a random walk is called
a “Random Walk in a Random Environment” or RWRE. Our goal will be
to show conditions for that underlying random variable such that a random
walk on the graph will be recurrent on N.
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Finally, we will show both conditions for recurrence and transience for
a RWRE on a tree where each node has two “offspring”. This will be the
most challenging proof in this work and will serve as the culmination of
the thesis. Additionally, the reader may note that each proof in this section,
excluding those for simple random walks, is provided by the author, although
the results are by no means novel.

4.1 Simple Random Walks

Definition 4.1.1 A simple random walk on Zd is a random walk with state
space, S = Zd where the probability of moving from any state x ∈ S to any
other state y ∈ S is equal if are distance one from each other, and zero
otherwise.

Theorem 4.1.2 A simple random walk on Zd is recurrent if d = 1, 2.

Proof if d=1: To begin this proof, first we draw the graph on which the
random walk will take place:

0-1-2-3 1 2 3

Then we convert this graph into an electrical network. Let G = (S,R) be
an electrical network such that S = Z1, and R = {(x, x + 1) : x ∈ Z1} with
Rx,x+1 = Rx,x−1 = 1. Below is a drawing of our electrical network:

1 1111111

Then we start by shorting all points of equal distance from each other to-
gether. We can do this because shorting our network can only decrease
effective resistance, thus if we show that the shorted electrical network has
an infinite effective resistance, we also show that our original electrical net-
work does as well. Then by the Parallel Law, we can replace each of the
resistors Rx,x+1, R−x,−x−1 = 1 with one resistor R

′
x,x+1 =

1
2
:

1/21/21/21/2

Then we notice that all the resistors are now in series, which by the se-
ries law allows us to replace them all with a signal resistor with weight
R0,n =

∑n
i=0 R

′
x,x+1:
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Σd
01/2

Origin End Point

Thus, since we have reduced our network to a single resistor we can easily
find the effective resistance for each sub electrical network at distance d:

R
(d)
eff =

1

i0
= R0,d ≥

d∑
i=0

R
′

x,x+1 =
d∑

i=0

1

2

Thus it is clear to see that:

lim
d→∞

R
(d)
eff → ∞

Therefore by Corollary 3.4.6. we have that Xn is recurrent.

Proof if d= 2: We start this proof in the same way as the one dimen-
sional case, skipping drawing the original graph. Thus, to start we let
G = (S,R) be an electrical network with S = {(x, y) : x, y ∈ Z} (= Z2), and
R = {((x, y), (x, y + 1)) : x, y ∈ Z1} ∪ {((x, y), (x + 1, y)) : x, y ∈ Z1} where
all resistors have equal weight which for simplicity set equal to one.

1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1
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We start like in the last proof by shorting all points of equal distance from
the origin to each other together. Visually, we depict this shorting below:

1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1

Then by the parallel law we can replace all the resistors between any two
points with a single one with weight:

R
′

x,x+1 =
1

8x+ 4

We get this sum as the new weight because as we increase the distance from
the origin by one the amount of resistors increases by eight, and there are
four resistors from the origin to its neighboring points. This gives us the new
electrical network:

1/281/12 1/201/4

Then we notice that all the resistors are now in series, which by the series
law allows us to replace them all with a signal resistor with weight R0,n =∑n

i=0 R
′
x,x+1. Thus, since we have reduced our network to a single resistor

we can easily find the effective resistance for each sub electrical network at
distance d:

R
(d)
eff = R0,d ≥

d∑
i=0

R
′

x,x+1 =
d∑

i=0

1

8i+ 4

Then since we have that:

R
(d)
eff ≥

d∑
i=0

1

8(i+ 1)
=

1

8

d∑
i=0

1

(i+ 1)
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Then since the right-hand side of this equation is a harmonic series we know
the limit of it goes to infinity we get.

lim
d→∞

R
(d)
eff → ∞

Therefore, by Corollary 3.4.6. we have that Xn is recurrent.
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4.2 Highly Connected Random Walk

Theorem 4.2.1 Let G = (S,R) be a graph where S = Z, and R = {(x, y) :
∀x, y ∈ S} where the weight of each resistor is determined by some function
Rx,y = f−1(x− y). Then a random walk on G is recurrent if f(x) is bounded
from above by x−3.

Proof: We begin this proof by first drawing a picture of the graph.

0
...

2 1 21
...

Then we translate this into an electrical network G = (S,R), where S = Z
and R = {Rx,y : ∀x, y ∈ Z}. This gives us the following electrical network,
(here we highlight each of the resistors going to or from the origin):

f(2)

f(1)

f(3)

f(2)

f(1)

f(3)

f(1) f(1)

f(2)f(2)

f(3)f(2)

f(1)f(1)

f(3)

Then because the series law does not change effective resistance, we can split
each resistor with weight f(n) into n resistors with weight f(n)

n
. Additionally,

after doing this, we short along each node, which decreases the total resis-
tance, which gives us the following electrical network:

f(1)f(1) f(1) f(1)f(1)f(1)

f(3)/3 f(3)/3 f(3)/3

f(2)/2 f(3)/3 f(3)/3f(3)/3f(2)/2

f(2)/2f(2)/2

f(2)/2f(2)/2 f(2)/2f(2)/2 f(2)/2f(2)/2

f(3)/3f(3)/3f(3)/3f(3)/3

f(3)/3f(3)/3f(3)/3
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Thus, we can use the parallel rule to replace all the resistors connecting each
node with just one, which we will denote R

′
x,x+1. To find the weight of these

new resistors, we first look at the one that will connect zero to one, which
gives us the following equation:

R
′

0,1 = (
∞∑
k=1

k · 1

R0,k

)−1

We get the k factor at the beginning because for each weight f(k), there are k
of those that pass through zero and one. This is true because for the resistor
between the points 0 and k, a resistor of the same weight exists between the
points (−1, k − 1), ..., (k − 1, 1), and thus there are a total of k resistors of
that weight between zero and one. Therefore, we return to our sum:

R
′

0,1 = (
∞∑
k=1

k · 1

R0,k

)−1 = (
∞∑
k=1

k · f(k))−1

Next if we let f be such that f(k) < k−3, we get the following sum:

R
′

0,1 = (
∞∑
k=1

k · f(k))−1 < (
∞∑
k=1

k−2)−1 =
1

2

Then by symmetry we know that all the new resistors have the same weight,
thus we have that the total recurrence is equal to the sum of all resistors
which is:

R
(d)
eff =

d∑
k=−d

Rk,k+1 >
d∑

k=−d

1

2
= d

Therefore the effective resistance clearly goes to infinity as d goes to infinity,
and therefore by Corollary 3.4.6 we have that any random walk on G is
recurrent.
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4.3 RWRE on N
Theorem 4.3.1 Let Xn be a random walk on a graph with state space S = N,
and such that IP(Xn+1 = i− 1|Xn = i) = ξi, where each ξi is an independent
random variable identically distributed as some random variable ξ ∈ [0, 1).
Then the random walk is recurrent if E(ln( ξ

1−ξ
)) > 0.

Proof: To begin this proof, we first draw a model of our graph.

1 1− ξ1 1− ξ2

ξ3ξ2ξ1

0 1 2 3 ...
1− ξ3

ξ4

Then we can translate this graph into an electrical network G = (S,R), with
S = N and the weight of each resistor can be found by making sure the ratio
of the resistor to the left and right of each point is equal to the ratio of the
probability of going left and right. To make sure this is true, we need the
following to hold for all resistors in G:

Rn

Rn−1

=
ξn

1− ξn
∀n ∈ N

Then this will give us the following recursive formula for determining the
weight of all the resistors in G:

Rn = Rn−1
ξn

1− ξn
∀n ∈ N

Then we can draw our newly constructed electrical network:

R0 R1 R2 R3

Next by the rules of logarithms we can rewrite each resistor as:

Rn =
(ξ1)...(ξn)

(1− ξ1)...(1− ξn)
= exp{ln

(
ξ1

1− ξ1

)
+ ...+ ln

(
ξn

1− ξn

)
}

Then we let ηi be a random variable defined by:

ηi := ln

(
ξi

1− ξi

)
Additionally we define µ as the expectation of this random variable:

µ := E(η) = E[ln
(

ξ

1− ξ

)
]
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And we let Sn be equal to the sum of the first n of these random variables
which gives us:

Rn = exp{Sn}

Here we will call a resistor “bad” if it has weight less than one. And we
define the following event, Bn, that a resistor is bad:

Bn = {Rn < 1}

Then we let δ > 0, and we assume the following inequality is true for all
resistors in our network:

IP(Rn ≤ 1) ≤ e−δn (4.3.1)

Then if the equation above holds we have that:∑
n

Bn =
∑
n

IP(Sn ≤ 0) ≤
∑
n

e−δn < ∞

Therefore by the Borel-Cantelli Lemma the event Bn happens only finitely
often, and thus after some time N, all Sn where n > N we have that Sn ≥ 0.
Thus, after this point, we can replace all resistors with ones of weight equal
to one and only decrease the resistance. After doing this we can use the
series law which gives us:

Rd
eff ≥

d∑
n≥N+1

Rn ≥
d∑

n≥N+1

1

Thus it is clear to see that:

Reff ≥
d∑

n≥N+1

1 = (d−N − 1) → ∞ as, d → ∞

Thus by corollary 3.4.6 we have that if equation (4.3.1) holds, then a random
walk on our network is recurrent. Thus, all we need to show is that equation
(4.3.1) holds for all Sn in our network. To do this we use the Chernoff Bound
which says that:

IP(Sn ≤ an) ≤ en ln(ϕη(−λ))−λan ∀λ > 0

Then we let ϵ > 0, and set a = 0, which gives us:

IP(Sn ≤ 0) ≤ en ln(ϕη(−λ))n ∀λ > 0
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Thus if the right-hand side of this equation is less than the right-hand side
of (4.3.1) we have finished the proof. Thus, all we need to find is some λ > 0
for which the inequality below holds:

en ln(ϕη(−λ)) ≤ e−δn

Then we take the logarithm of both sides and divide by n, which gives us:

ln(ϕη(−λ)) ≤ δ

Then since δ is just some arbitrarily small positive real number we get the
following inequality:

ln(ϕη(−λ)) < 0

Then we define a function, J , equal to the left-hand side of this equation:

J(λ) = ln(ϕη(−λ))

Whereby definition of our function we have the two following properties

1) J(0) = 0

2) J
′
(λ) =

−ϕ
′
η(−λ)

ϕη(−λ)

Thus since the moment generating function is log convex we have that a
sufficient condition for recurrence is that:

J
′
(0) =

−µ

1
< 0

Which can only happen if µ > 0. Therefore, we have shown that if E[ ξ
1−ξ

] > 0
that a random walk on this electrical network will be recurrent.
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4.4 RWRE on a Binary Tree

Definition 4.4.1 A Binary Tree is a graph G = (V,E) such that each point,
except for the first point which is only connected to the two points in the next
level, in the graph at level n is connected to two points on the next level, n+1,
and one point on the previous level n− 1.

Theorem 4.4.2 Let Xn be a Markov Chain on a binary tree where the tran-
sition probabilities IP(Xn = in−1,⌈ k

2
⌉|Xn−1 = in,k) = ξn,k, where each ξn,k is an

independent random variable identically distributed as some random variable
ξ ∈ [0, 1). Then Xn is recurrent if E[ln( 2ξ

1−ξ
)] > ln(2).

Proof: To begin, we first look at a drawing of our graph: Then we translate

0, 0

1, 1

2, 1 3, 1

3, 2

3, 32, 2

3, 4

3, 5

3, 62, 31, 2

2, 4

3, 7

3, 8

this into an electrical network G = (S,R) where S is a binary tree, and the
weight of each resistor is determined by making the ratio of resistors equal
to the ratio of probabilities for the Markov Chain:

Rn,k

Rn−1,⌈k/2⌉
=

2ξn,k
1− ξn,k

Which gives us a recursive formula for the value of each resistor:

Rn,k =
2ξn,k

1− ξn,k
Rn−1,⌈k/2⌉

Then we can draw our newly constructed electrical network:
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R1,1

R3,8

R3,7

R3,6

R3,5

R3,4

R3,3

R3,2

R3,1

R2,4

R2,3

R2,2

R2,1

R1,2

Next we define a random variable equal to the logarithm of the ratio of
probabilities:

ηn,k := ln(
2ξn,k

1− ξn,k
)

Then we use this definition, and by the logarithm rules we can rewrite each
resistor in the following way:

Rn,k = exp (ηn,k + ηn−1,⌈k/2⌉ + ...+ η1,⌈k/2n−1⌉) = exp

(
n−1∑
i=0

ηn−i,⌈k/2i⌉

)

And for notational simplicity we can define the inner sum as a random vari-
able.

Sn,k :=

(
n−1∑
i=0

ηn−i,⌈k/2i⌉

)
This gives us the following equation for the weight of each resistor in our
network.

Rn,k = exp (Sn,k)

Then in our network we call a resistor a “bad resistor” if it has weight smaller
than 2n. And we define the event that a resistor, Rn,k, is bad:

Bn,k = {Rn,k < 2n}

Next also we define the event that on some level n there exists at least one
bad resistor.

Bn =
2n⋃
k=1

{Rn,k < 2n}

Next we assume that the following equation holds:

IP(Bn,k) = IP(Rn,k ≤ 2n) ≤ 2−(1+δ)n (4.4.1)
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We can reformulate this condition as:

IP(Sn,k ≤ n ln(2)) ≤ e−n(1+δ) ln(2)

Then we use this to find a bound for the probability at least any one resistor
at level n is bad:

IP({Bn}) ≤
2n∑
k=1

IP(Bn,k)

But because of (4.4.1) we have that:

2n∑
k=1

IP(Bn,k) ≤
2n∑
k=1

2−(1+δ)n = 2−δn

From this we can use the Borel-Cantelli Lemma to show that the event that
a level has a bad resistor happens only a finite amount of times because 2−δn

is summable:
∞∑
n=1

IP(Bn) ≤
∞∑
n=1

2−δn < ∞

Thus we know that after some random level N each resistor past that level
has a minimum weight of 2n. Then we can short across each level, because
this only decreases the effective resistance, and then we can use the Parallel
Law to replace all resistors at each level by a new resistor R̃n, which as value:

R̃n = (
2n∑
k=1

R−1
n,k)

−1

Then we can replace all resistors after level N by 2n, and because this can
never increase the weight of any individual resistor, and by Rayleigh’s Mono-
tonicity Law the effective resistance of the whole network can only decrease.
This gives us the following inequality.

R̃n ≥ (
2n∑
k=1

2−n)−1 = (2n2−n)−1 = 1

Now, since our network only consists of resistors in series, we can replace
them all by one resistor equal to their sum. This new resistor will be equal
to our effective resistance, thus we can say the following about the effective
resistance of our network:

Rd
eff =

d∑
n=1

R̃n ≥
d∑

n=N+1

R̃n =
d∑

n=N+1

1 = (d−N − 1) → ∞ as, d → ∞
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Therefore we have that if our equation (4.4.1) holds that the effective resis-
tance is infinite and thus the Markov chain is recurrent. Then all we need to
find is the condition for which (4.4.1) holds. We do this using the Chernoff-
Cramer Bound proved in Chapter 2.

Proof of (4.4.1): We know that by the Chernoff-Cramer Bound the fol-
lowing inequality holds for any a.

IP(Sn ≤ an) ≤ en ln(ϕη(−λ)+λan) ∀λ > 0

Thus, if we let a = ln(2), all we need to show is that the right-hand side
of this equation is less than that of (4.4.1), i.e., we need that there exists a
λ > 0 such that:

en(ln(ϕη(−λ))+λ ln(2)) ≤ e−n(1+δ) ln(2)

Taking the logarithm of both sides and dividing by n gives us:

ln(ϕη(−λ)) + λ ln(2) ≤ −(1 + δ) ln(2)

Since δ is just some arbitrarily positive small real number then the previous
expression is true if and only if the following inequality holds:

ln(ϕη(−λ)) + λ ln(2) < − ln(2)

Then if we move all the terms to one side we get a necessary and sufficient
condition for recurrence.

∃λ > 0 =⇒ ln(ϕη(−λ)) + (λ+ 1) ln(2) < 0

Thus, if there exists a λ such that this inequality holds we have found a
necessary and sufficient condition for recurrence, since if such a λ exists
then (4.4.1) holds and therefor any random walk on our electrical network is
recurrent. To be able to relate this too, µ we find a necessary condition for
this to hold. To do this we isolate the moment generating function to the
left-hand side, which gives us:

ϕη(−λ) < e−(λ+1) ln(2)

And from Chapter 2 we have the following property of moment generating
functions:

eµt ≤ ϕη(t) ∀t ∈ R

Thus this gives us another bound for our equation:

eµ(−λ) ≤ ϕη(−λ) < e−(λ+1) ln(2)
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Then taking the logarithm of the left and right-hand sides of the equation
we get:

−µ(λ) < −(λ+ 1) ln(2)

Then since λ cannot be zero we divide both sides by −λ which gives us:

µ > ln(2) +
ln(2)

λ

And since λ is some cam be any arbitrarily large real number, we get that
if µ > ln(2) that there exists a lambda for which this equation holds. Thus,
we have shown that µ > ln(2) is a necessary condition that equation (4.4.1)
holds.

36



Theorem 4.4.3 Let Xn be a Markov Chain on a binary tree where the tran-
sition probabilities IP(Xn = in−1,⌈ k

2
⌉|Xn−1 = in,k) = ξn,k, where each ξn,k

is an independent random variable identically distributed as some random
variable ξ. Where ξ is a random variable who takes values inside (0, 1)
and whose moment generating function that exits. Then Xn is transient
if E[ln( 2ξ

1−ξ
)] < ln(2).

Proof: To prove this, we start similarly to the proof of the condition for
recurrence. As the graph itself is identical, we begin with the electrical
network pictured below:

R1,1

R3,8

R3,7

R3,6

R3,5

R3,4

R3,3

R3,2

R3,1

R2,4

R2,3

R2,2

R2,1

R1,2

And as before we get that the weight each resistor in this network can be
determined by the following equation:

Rn,k = exp (ηn,k + ηn−1,⌈k/2⌉ + ...+ η1,⌈k/2n−1⌉) = exp

(
n−1∑
i=0

ηn−i,⌈k/2i⌉

)
= exp (Sn,k)

Then if we fix some ϵ > 0 we can define the event that resistor is a bad
resistor as one which is greater than 2(1−ϵ)n:

Bn,k = {Rn,k > 2(1−ϵ)n}

We can also define the event that there exists at least one resistor on level n
which is “bad”.

Bn =
2n⋃
k=1

{Rn,k > 2(1−ϵ)n}

Then by the axioms of probability we can find a bound on the probability
for the event {Bn} to occur:

IP(Bn) ≤
2n∑
k=1

IP(Bn,k)
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Then we let, δ, ϵ > 0, and assume the following equation holds:

IP(Sn,k > 2(1−ϵ)n) ≤ 2−(1+δ)n (4.4.2)

This gives us:

IP(Bn) ≤
2n∑
k=1

2−(1+δ)n = 2−δn

Then since δ is some positive number, that the right-hand side is summable
over n. Thus, we obtain the following equation:

∞∑
n=1

IP(Bn) ≤
∞∑
n=1

2−(δ)n < ∞ ∀δ > 0

Then by the Borel-Cantelli Lemma, we get that the event that there is a
single bad resistor on level n happens only finitely often. Therefore, we know
that after some level N all resistors on each level n > N have weight less
than or equal to 2(1−ϵ)n.

And by Rayleigh’s Monotonicity Law for all resistors on level n > N we
can set their weight to 2(1−ϵ)n, and this can only ever increase the effective
resistance. Then we let W be the largest weight of all the resistors on levels
at or below level N, and then we set the weight of all resistors at or below
level N equal to W. Doing this will give us the completely symmetrical net-
work pictured below:

... ...

2(1−ϵ)n

2(1−ϵ)n

2(1−ϵ)n

2(1−ϵ)n

2(1−ϵ)n

2(1−ϵ)n

2(1−ϵ)n

2(1−ϵ)n

W

W

W

W

W

W

And thus, since our new network is completely symmetrical, the voltage of
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all points on each level are equal. Then by Corollary 3.3.4 we know that if
all points on each level have identical voltage, we can add resistors between
them without changing the effective resistance.

Thus, after adding these resistors, we are allowed to short our network with-
out changing the effective resistance. This allows us to short our network as
pictured below:

... ...

2(1−ϵ)n

2(1−ϵ)n

2(1−ϵ)n

2(1−ϵ)n

2(1−ϵ)n

2(1−ϵ)n

2(1−ϵ)n

2(1−ϵ)n

W

W

W

W

W

W

Then we can use the Parallel Law, and replace all resistors on each level
above N with one resistor with weight:

R̃n = (
2n∑
k=1

R−1
n,k)

−1 = (
2n∑
k=1

2(1−ϵ)n)−1 = (2n2−(1−ϵ)n)−1 = 2−ϵn

And all resistors at or below level N with one of weight equal to:

R̃n ≤ (
2n∑
k=1

R−1
n,k)

−1 = (
2n∑
k=1

W−1)−1 = (2nW−1)−1 =
W

2n

Thus we get that the effective resistance of our sum can be calculated by:

Rd
eff ≤

N∑
n=1

(
W

2n
) +

d∑
n=N+1

2−ϵn

And since both sums on the right-hand side are summable we have that the
limit of the effective resistance of our network is finite as d goes to infinity,
and thus by Corollary 3.4.6 assuming that (4.4.2) holds we have that a ran-
dom walk on G is transient. Therefore, all we have left to do is show when
equation (4.4.2) holds.

Proof of (4.4.2): To show that (4.4.2) holds we show that we use the
Chernoff-Cramer bound:

IP(Sn ≥ an) ≤ en ln(ϕη(λ)−λan) ∀λ ≥ 0
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Then if we let a = (1− ϵ) ln(2), for some ϵ > 0, we get the following inequal-
ities:

IP(Sn ≥ (1− ϵ) ln(2)n) ≤ en ln(ϕη(λ)−λ(1−ϵ) ln(2)n)

Thus if we can find a λ ≥ 0 such that the right-hand side of the equation
above is less than the bound assumed in (4.4.2), we have found the needed
condition for transience. Thus, all we need is to find the condition when the
following equation holds:

en ln(ϕη(λ)−λ(1−ϵ) ln(2)n) ≤ e−(1+δ) ln(2)n

Then we take the logarithm of each side and divide both sides by −n which
gives us:

λ(1− ϵ) ln(2)− ln(ϕη(λ)) ≥ (1 + δ) ln(2)

Then because both δ and ϵ are just some arbitrarily small real numbers we
get the following strict inequality

λ ln(2)− ln(ϕη(λ)) > ln(2)

Then if we move all the terms to one side we get our condition for transience.

∃λ > 0 such that, (λ− 1) ln(2)− ln(ϕη(λ)) > 0 (4.4.3)

Thus if there exists a λ such that this inequality holds we have found a nec-
essary and sufficient condition for transience, since if such a λ exists then
(4.4.2) holds and therefor any random walk on our electrical network is tran-
sience. However, we want to formulate this condition in terms of µ. To be
able to do this we can only find a necessary condition for (4.4.2) to hold,
to find such a necessary condition we first isolate the moment generating
function:

ϕη(λ) < e(λ−1) ln(2)

And from section 2 we have the following property of moment generating
functions:

eµt ≤ ϕη(t) ∀t ∈ R

Thus this gives us another bound for our equation:

eµλ ≤ ϕη(λ) < e(λ−1) ln(2)

Then taking the logarithm of the left and right-hand sides of the equation
we get:

µ(λ) < (λ− 1) ln(2)
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Then since λ cannot be zero we divide both sides by λ which gives us:

µ < ln(2)− ln(2)

λ

And since λ is some cam be any arbitrarily large real number, we get that if
µ is some number less than ln(2) that there exists a lambda for which this
equation holds. Thus, we have shown that µ < ln(2) is necessary for (4.4.3)
to hold.
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