
MASTER’S THESIS 2024

Leveraging Large Language
Models for Event Extraction
Jonathan Desnoyer

ISSN 1650-2884
LU-CS-EX: 2024-62

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-62

Leveraging Large Language Models for
Event Extraction

Jonathan Desnoyer

Leveraging Large Language Models for
Event Extraction

Jonathan Desnoyer
jo7364de-s@student.lu.se

September 26, 2024

Master’s thesis work carried out at QuantCube Technology.

Supervisors: Carla Martin, c.martin@quant-cube.com
Pierre Nugues, pierre.nugues@cs.lth.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:jo7364de-s@student.lu.se
mailto:c.martin@quant-cube.com
mailto:pierre.nugues@cs.lth.se
mailto:jacek.malec@cs.lth.se

Abstract

In light of generative AI’s recent explosion in popularity, a lot of research is be-
ing made to leverage large language models that have demonstrated impressive
capabilities across numerous fields. These developments could be advantageous
for event extraction, as previous methods depended heavily on large annotated
datasets and lacked generalizable methodology. Using three recent large language
models (Phi-2, Phi-3, and Mistral 7B) that are categorized as small language mod-
els, we investigate the process of fine-tuning for the event extraction task. We
show that fine-tuning these models enhances the results on both document and
sentence-level event extraction, with Mistral 7B outperforming Phi-2 and Phi-
3 on both levels. Document level extraction being a challenging task, reaching
0.329 and 0.089 F1-score against 0.576 and 0.316 for sentence-level extraction on
trigger and argument extraction, respectively.

Keywords: Natural Language processing, Event Extraction, Large Language Models, Prompt
Engineering, Fine-tuning, Embeddings, LORA, QLORA, GPU, Transformers

2

Acknowledgements

I would like to express my special appreciation and thanks to :
Prof. Pierre Nugues, for his continuous advice, patience and encouragements over these past
months, providing his scientific expertise as well as his tutoring experience.
Carla Martin for giving me the opportunity to engage in such an interesting project and for
her thoughtful guidance throughout.
The entire QuantCube team, for their kindness and the enriching exchanges we’ve shared.
My family and friends for their love and support.

3

4

Contents

1 Introduction 7
1.1 Objective . 8

1.1.1 Research Questions . 8
1.2 Related Work . 8

1.2.1 Historical Context and Evolution 8
1.3 Scientific Contribution . 9

2 Theoretical Background 11
2.1 Natural Language Processing . 11

2.1.1 Word Embeddings . 11
2.1.2 Transformers . 12
2.1.3 Large Language Models Pre-Training 16
2.1.4 In-Context Learning . 18
2.1.5 Fine-tuning . 18
2.1.6 Memory Optimization Techniques 19
2.1.7 Models . 21

2.2 Event Extraction . 22
2.2.1 Information Extraction . 22
2.2.2 Event Extraction Task . 22
2.2.3 Deep Learning Approaches . 24
2.2.4 Large Language Models Approaches 25

3 MultiMedia Event Extraction Dataset 27
3.1 Overview . 27
3.2 Data Statistics . 27
3.3 Data Formatting . 29

3.3.1 Document Level Extraction . 29
3.3.2 Sentence-Level Extraction . 30

5

CONTENTS

4 Method 33
4.1 Overview . 33
4.2 Dataset Retrieval and Preparation . 33
4.3 Baselines . 34
4.4 Fine-Tuned Models . 34

4.4.1 Fine-Tuning Process Steps . 34
4.4.2 Infrastructure . 35
4.4.3 Libraries and Memory Optimization Techniques 36

4.5 Training Configuration . 37
4.6 Evaluation . 39

4.6.1 Metrics . 39
4.6.2 Evaluation on the M2E2 dataset . 39

5 Results 41
5.1 Document-Level Event Extraction . 41
5.2 Sentence-Level Event Extraction . 44

6 Conclusions 47
6.1 Results Discussion and Limitations . 47
6.2 Fine-Tuning Large Language Models . 48
6.3 Considerations . 48

6.3.1 Resource Consumption and Environmental Impact 49
6.3.2 Ethical Implications . 49

6.4 Conclusions . 49
6.5 Future Work . 50

References 53

Appendix A Abbreviations 59

6

Chapter 1

Introduction

With the exponential growth of unstructured data from news articles, social media, and web
pages, information extraction (IE) has become a key task in natural language processing (NLP).
With its emergence, we needed automatic methods to make use of this data, extract key
information, and convert it to a structured format for easy analysis and use. This led to
a specific task in the research domain: event extraction. The goal of event extraction is to
detect events from trigger words and retrieve arguments related to these events, answering
questions like “who”, “when”, “where”, “what”, “why”, and “how”. Recent approaches focus
on deep learning models and transformers (Li et al., 2022) that combine multiple steps to
perform end-to-end event extraction.

However, most deep learning-based methods require large quantities of annotated data
for training. This process is costly and labor-intensive. Recently, the emergence of large lan-
guage models (LLMs) has sparked significant interest in the NLP field. A lot of work is now
focused exploring LLMs’ capabilities for various tasks, including event extraction. LLMs offer
the advantage of requiring minimal fine-tuning and demonstrate proficiency in understand-
ing complex semantic relationships within text.

In context learning or prompt engineering has emerged as a method to leverage the ca-
pabilities of LLMs by providing specific instructions to guide them towards desired outputs
without modifying the core model parameters (Sahoo et al., 2024). This approach allows
users to interact and steer these models to achieve specific tasks. However, some challenges
remain: although pre-trained language models possess vast language knowledge, they can
lack specialization in specific areas. Fine-tuning pre-trained models can address this issue by
exposing the model to task-specific examples.

We investigate the capabilities of large language models for event extraction by bench-
marking their performance on an event extraction dataset, on both document and sentence
level. Specifically, we employ Microsoft’s Phi-2 and Phi-3 mini 4k instruct models, as well
as the Mistral 7B instruct v2 model, evaluating them both with and without fine-tuning.
Our findings indicate that while fine-tuning consistently improves model performance, the
overall results remain modest, especially on the document-level extraction.

7

1. Introduction

1.1 Objective
The goal of this Master’s thesis, is to explore the use of large language models in the context
of event extraction on both sentence and document-level event extraction. We explore the
fine-tuning process across multiple models to assess how model size impacts the outcomes
of the fine-tuning process and if they can be used for event extraction with optimization
techniques such as quantization.

1.1.1 Research Questions
To address our objective, we formulate the following research questions:

1. How effectively do large language models perform when fine-tuned for event extrac-
tion tasks?

2. To what extent does the size of language models influence their performance in event
extraction?

3. What is the effect of dataset constraints on the performance of fine-tuned models in
event extraction?

1.2 Related Work
This Master’s thesis investigates how LLMs can be used in the field of event extraction, ex-
panding on earlier studies in LLMs and NLP techniques relevant to this endeavor. It enhances
its contributions by utilizing state-of-the-art (SOTA) results from several fields of NLP.

Event extraction has long been a focus in NLP, with recent advancements fueled by the
transformers architecture (Vaswani et al., 2017) and pre-trained language models. Newer,
lighter, and faster language models offers opportunities for further exploration.

More recently, research has emphasized enhancing LLMs’ capabilities through two pri-
mary paradigms: increasing the number of model parameters to improve their performance
on a wide range of tasks, and developing smaller, specialized models tailored for specific
tasks. This thesis makes use of recent advancements in LLMs, emphasizing quantization
methods and the fine-tuning process. Specifically, recent work on smaller models, known as
small language models (Microsoft, 2024), that solve the difficulties brought on by constrained
computer resources has made it conceivable.

1.2.1 Historical Context and Evolution
We provide a brief overview of significant turning points in the domains of large language
models and event extraction.

8

1.3 Scientific Contribution

Event Extraction
In early efforts to event extraction, feature-based machine learning techniques or rule-based
systems were frequently used (Ahn, 2006). However, these methods were limited in their
ability to capture complex semantic relationships and often required extensive domain ex-
pertise for feature engineering.

The introduction of neural network-based approaches marked a significant change in
event extraction methodologies. As both local and long-range, textual relationships were
better captured by convolutional neural networks (CNNs) and recurrent neural networks
(RNNs), especially Long short-term memory (LSTM) networks (Nguyen et al., 2016). More
recently, transformer-based models have become the standard in event extraction tasks (Liu
et al., 2018).

Large Language Models
LLMs have revolutionized natural language processing in recent years, demonstrating re-
markable capabilities across a wide range of tasks. These models, based on the transformer
architecture (Vaswani et al., 2017), are trained on vast amounts of text data and have shown
particularly good performance in various NLP tasks, including text generation, question an-
swering, and text classification.

The development of LLMs has been characterized by a rapid increase in model size and
complexity. GPT-3 being a perfect example (Brown et al., 2020), reaching 175 billion param-
eters, this model was used to showcase large language models few-shot learning capabilities
on various sets of tasks. However, these efforts towards larger and larger models have raised
concerns about computational resources, environmental impact, and accessibility. This has
led to research in several key areas:

• Efficient pre-training and fine-tuning techniques, such as parameter-efficient fine-
tuning methods like LoRA (Hu et al., 2022).

• Exploration of small language models that aim to achieve competitive performance
with significantly fewer parameters (Microsoft, 2024).

• Development of instruction-tuned models that can follow natural language instruc-
tions to perform various tasks (Wei et al., 2022a).

1.3 Scientific Contribution
This Master’s thesis contributes to the advancement of natural language processing by in-
vestigating the fine-tuning process of large language models on an event extraction dataset.
We evaluate how well the fine-tuning process improves the results on both document and
sentence-level extraction for three recent small language models: Mistral 7B, Phi-2 and Phi-3.
Additionally, we explore the effectiveness of the fine-tuning process with various optimiza-
tion techniques, including LoRA and QLoRA.

We observed overall improvements across all models on both sentence-level and document-
level extraction tasks, especially at the document-level, where the base models initially per-
formed poorly. Additionally, our results demonstrate that Mistral 7B outperforms Phi mod-

9

1. Introduction

els, indicating its superior capabilities for information extraction tasks. These findings high-
light the potential of large language models for extracting information from text, even when
constrained by lesser computational resources.

10

Chapter 2

Theoretical Background

In this chapter, we present in detail the technical aspects covered in this thesis. The first
section delves into natural language processing techniques and the current breakthroughs
tied to large language models. In a second section, an overview of the area of event extraction
is provided before going into detail on the particular goal of event extraction and various
methodologies.

2.1 Natural Language Processing
The following section provides the detailed description of all natural language processing
techniques discussed in this Master’s thesis.

2.1.1 Word Embeddings
Natural language processing is all about making words understandable by machines. Ma-
chines cannot read like humans, so we provide a numerical representation of words for them
to understand. A naive approach is to convert every word in the dictionary to a vector of
zeros and put a one in the vector at the position of the word. This is called one-hot encoding.
However, this method suffers from the curse of dimensionality (Bera et al., 2021). As the dic-
tionary size grows, the vectors become very large and sparse. Additionally, it does not give
any contextual information between words.

To tackle this problem, Bengio et al. (2003) introduced word embeddings. This method
projects words into a vector space with a fixed dimension, capturing relationships between
words. For example, for a correct space representation, the words “Queen” and “Princess”
would be close together because they refer to similar concepts. Conversely, “King” and “Queen”
would have opposite vectors as they are antonyms. Traditionally, these word embeddings are
constructed using neural network models, such as word2vec (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014).

11

2. Theoretical Background

Recently, more sophisticated word embedding techniques that leverage language models
have been created. Contextual embedding models, such as ELMo (Embeddings from Lan-
guage Models) (Peters et al., 2018), have emerged as a significant improvement over tradi-
tional static word embeddings. These models generate dynamic word representations that
adapt based on the surrounding words, allowing for a more nuanced capture of word se-
mantics and polysemy. Furthermore, large-scale transformer-based language models employ
self-attention mechanisms (Vaswani et al., 2017) to generate embeddings that effectively cap-
ture long-range dependencies in text.

2.1.2 Transformers
Ever since Vaswani et al. (2017) presented the transformer architecture, it has gained enor-
mous attention within the field of natural language processing. This new architecture, driven
by the mechanism of self-attention, has become a cornerstone in NLP.

Vaswani et al. (2017) applied first transformers in machine translation and extended to
any task that transforms an input sequence to an output sequence. Their introduction marked
an improvement over traditional sequential models, such as RNNs and LSTMs, which often
had difficulty with capturing long-range dependencies in sequences.

The self-attention mechanism allows transformers to weigh the importance of different
words in a sequence in order to capture relationships and dependencies across varying dis-
tances within text. This architecture has proven itself by achieving SOTA results on a wide
variety of NLP tasks, including, to cite a few, machine translation, text summarization, sen-
timent analysis, and question-answering.

In this section, we will cover the components of the transformer’s architecture, providing
explanations of self-attention mechanisms, multi-head attention, position-wise feed-forward
networks, positional encoding, the transformer’s architecture, and the transformer decoder-
only architecture.

Self-Attention
Self-attention is the core of transformers. Transformers are the foundation of most modern
language models and employ self-attention to capture context within a sequence. Tradition-
ally, sequential models processed input data sequentially, often struggling to model relation-
ships in long sequences. Transformers, on the other hand, can dynamically focus on different
segments of the input sequence thanks to the attention mechanism, by assigning varying
degrees of importance to each element based on its relevance to the current processing step.

Attention works by attributing a weight to each token in function of their importance
with the current token. Hence, it allows each element in the sequence to attend to tokens that
are most relevant to them. This is achieved by computing attention scores through a learned
linear transformation of the input embeddings, followed by a softmax activation to obtain
normalized weights. The resulting weighted sum is used to determine the most probable next
token.

Also known as “Scaled Dot-product Attention”, this mechanism is mathematically ex-
pressed as shown in the equation, as illustrated in Figure 2.1.

Given an input sequence of vectors X = {x1, x2, ..., xn}, where xi represents the embed-
ding of the i-th token in the sequence, the self-attention mechanism computes attention

12

2.1 Natural Language Processing

Figure 2.1: Scaled Dot-Product Attention. After Vaswani et al.
(2017).

scores, A, as follows:

A(Q,K,V) = softmax
(
QKT
√

dk

)
V.

Here, Q, K, and V are linear projections of the input vectors X, representing queries,
keys, and values, respectively. The division by

√
dk scales the dot-product to prevent the gra-

dients from becoming too small during backpropagation. The softmax function normalizes
the attention scores across the sequence, ensuring that the weights sum to 1. The attended
output is then calculated as the weighted sum of the values.

Multi-Head Attention
Instead of computing a single attention score, Vaswani et al. (2017) realized it was more
beneficial to use multiple parallel attention modules (see Fig. 2.2), known as heads, with
distinct learned linear projections. The idea behind this is that it will allow the model to
focus better on the different parts of the semantic space. The resulting outputs from these
individual heads are then combined through concatenation and linear operations to generate
the ultimate self-attention output.

MultiHead(Q,K,V) = Concat(head1, head2, ..., headh) ·WO.

Here, each headi corresponds to an attention head, and WO is the weight matrix for the
linear combination. The specific formulation of each attention head is given by:

headi = Attention(QWQ
i ,KWK

i ,VWV
i).

13

2. Theoretical Background

Figure 2.2: Multiple Head-Attention. After Vaswani et al. (2017).

Position-Wise Feed-Forward Networks
In each encoder layer, positioned after the multi-head self-attention mechanism, the feed-
forward network consists of fully connected layers that operate independently on each po-
sition. This position-wise nature enables the network to process different positions within
the sequence, capturing intricate patterns and local dependencies. The feed-forward net-
work employs two linear transformations and a non-linear activation functions, the rectified
linear Unit (ReLU), facilitating the extraction of complex features.

FFN(X) = ReLU(XW1 + b1)W2 + b2.

The linear transformations are the same for all positions but can have different parame-
ters from layer to layer.

Positional Encoding
So far, this model has no way of capturing the position of the tokens in a sequence. To make
up for it, the authors decided to introduce “positional encoding” to the input embeddings.
These encodings allow the model to track the position of each word in the sequence, helping
it to distinguish between words with the same content but different positions.

The positional encodings have the same dimension dmodel as the embeddings, so that the
two can be summed. Each dimension in the embeddings is associated with a distinct sinu-
soidal wave, characterized by varying frequencies. The embedding’s early dimensions are
linked to low-frequency waves, while the frequencies progressively rise towards the end of
the embedding. Additionally, the choice between sine and cosine waves alternates based on
the parity of the embedding’s dimensions. To obtain a positional embedding, the position
value is inserted into this series of waves:

14

2.1 Natural Language Processing

PE(pos, 2i) = sin
(

pos
100002i/dmodel

)
,

PE(pos, 2i + 1) = cos
(

pos
100002i/dmodel

)
.

Here, pos represents the position of the token in the sequence, i denotes the dimension,
and dmodel is the dimensionality of the model.

Transformer’s Architecture

Figure 2.3: The transformer architecture from Vaswani et al. (2017),
with the encoder block (left) and decoder block (right).

The transformer architecture was first used with both the encoder and decoder blocks,
as shown in Figure 2.3. It was mainly used for sequence-to-sequence tasks, such as machine
translation or text summarization, where the encoder block transforms the input sequence
into a latent space representation that is then fed to the decoder block that generates the
output sequence.

Encoder block

As described in Figure 2.3, the encoder block comprises multiple layers of N identical units,
where each encoder layer consists of two main sub-components: the multi-head self-attention
module and the position-wise fully connected feed-forward network.

15

2. Theoretical Background

As previously mentioned, the multi-head self-attention mechanism allows the encoder to
capture complex relationships among various parts in a sequence. Concurrently, the position-
wise feed-forward network makes it easier to extract intricate characteristics by individually
performing linear transformations to every position.

Each encoder layer uses residual connections and layer normalization, contributing to
stable and efficient training of the model. By stacking these encoder layers, a deep archi-
tecture is produced, which enables the transformer to gradually improve its representation
of the input data. The output of the encoder serves as context-aware representation for the
decoder block but can also be used for downstream tasks.

Decoder block

The decoder architecture is designed to generate output sequences by attending to the en-
coded representations of the input sequences produced by the encoder. Similar to the en-
coder, each block contains a masked multi-head attention submodule, a feedforward net-
work, and several layer normalization operations. Blocks are put in sequence to make the
model deeper. The output of the last block is fed through one more linear and softmax layer
to obtain the final output of the model.

The decoder transformer architecture is frequently referred to as auto-regressive because
it processes the input sequence sequentially such that each output token is generated based
on the previous tokens. This auto-regressive process is ensured by the masked multi-head
attention module. The encoded input sequence and the output are then sent into a standard
multi-head attention block. This allows the model to handle the tokens that were previously
created in addition to the input sequence.

Transformer’s Decoder-Only Architecture
The original transformer model consists of both an encoder and a decoder. Many models,
nevertheless, only make use of one of these blocks. Encoder-only models like BERT (Devlin
et al., 2018) are used for natural language understanding (NLU) tasks such as text classifi-
cation and named entity recognition (NER). In contrast, decoder-only models are used for
natural language generation (NLG) tasks (Tunstall et al., 2022).

Decoder-only models repeatedly forecast the next token in a sequence until a unique end
token is generated, this process is frequently referred as inference. These models employ causal
or autoregressive attention, which are representations depending on the left context. This
includes the generative pretrained transformer (GPT) family (Radford et al., 2018).

As seen in Figure 2.4, the decoder-only architecture is similar to the encoder-decoder
architecture but it does not include the encoder block. As a result, the multi-head attention
layer is not linked to the encoder output. A feed-forward layer and a masked multi-head
attention layer make up each decoder block.

2.1.3 Large Language Models Pre-Training
Pre-training is the first phase of training a large language model. It is an important process
that allows these models to learn to generate and understand large amounts of language. Pre-
training usually entails exposing the model to large amounts of heterogeneous textual data
so that it can learn unsupervised patterns, relationships, and language representations.

16

2.1 Natural Language Processing

Figure 2.4: Transformer’s decoder-only architecture.

The pre-training stage of LLMs might use a variety of pre-training tasks. One of the most
common tasks is left-to-right language modeling, as utilized in models like GPT (Radford
et al., 2018). This method trains the model to predict the next token in a sequence given a set
of tokens. To be more precise, the model looks at the order in which the final token has been
eliminated and makes an attempt to predict it. Through capturing syntactic and semantic
patterns, this step aids the model in learning the distribution of tokens in the language. The
model modifies its weights and biases in back-propagation in response to the prediction error.
The error is calculated by comparing the predicted token with the actual token. Through
this iterative process, the model is able to learn the language’s fundamental structure and
gradually improve its predictions.

A different strategy is masked language modeling (MLM), in which the model’s task is
to forecast the masked tokens within a sentence by masking random tokens (Devlin et al.,
2018). Because it must deduce the masked token from the surrounding words, this approach
compels the model to gain a deeper comprehension of the sentence’s overall context. Under-
standing complicated language patterns is made easier by MLM’s ability to teach the model
bidirectional representations, which capture context from both preceding and succeeding
tokens.

17

2. Theoretical Background

2.1.4 In-Context Learning
In-context learning, also known as prompt engineering, consists in giving instructions to guide
LLMs towards a desired output for a given task. This method, was first presented by Brown
et al. (2020) in their seminal work on GPT-3, and it represents a significant change in how
we interact with and use LLMs.

This concept is closely related to the concept of few-shot learning, in which we provide
the model instances of instructions and desired responses so that it can make generalizations
and complete the task for unknown examples. This ability to draw generalizations from a
limited set of cases seems to emerge as the scale of the model increases and has been trained
on a variety of datasets.

One area of recent study interest has been on improving LLMs’ reasoning ability. It has
been demonstrated that using chain-of-thought (CoT) prompting (Wei et al., 2022b) im-
proves the reasoning of the model and improves its performance on certain tasks. It improves
the model’s reasoning process in a way that is similar to human cognitive problem-solving by
enabling models to decompose complicated problems into smaller, more manageable tasks.

2.1.5 Fine-tuning
Fine-tuning LLMs involves additional training on a smaller, domain-specific dataset of a
pre-trained model (PML), often referred to as a foundation model, which has undergone the
process described in Section 2.1.3. While LLMs have shown remarkable performance on a va-
riety of tasks even in zero-shot settings, fine-tuning allows us to adapt the model to a specific
task. This process is really useful since it avoids us having to train a large language model
from scratch, which requires a lot of time and computational power. And it allows the model
to achieve better performances on a specific task with a large reduction in the amount of
data and computing power needed by utilizing information and capabilities already present
in the PML.

Full Fine-Tuning (Instruction fine-tuning)
Full fine tuning, also known as instruction tuning, is a supervised training process of LLMs on
a dataset made up of (instruction, output) pairs. This process adapts a pre-trained model to
perform specific tasks (Zhang et al., 2024). It produces a new version with improved features,
by updating all of the model weights. However, this approach needs a lot of memory and
computational power to handle the gradients, optimizers, and other elements during the
training phase, just like pre-training does.

Parameter-Efficient Fine-Tuning
Alternatively, Houlsby et al. (2019) presented a more resource-efficient method than full
fine-tuning that led to the development of parameter-efficient fine-tuning methods. While full
fine-tuning requires substantial computational resources and memory allocation, not only
for storing the model but also for managing parameters during training, parameter-efficient
fine-tuning methods only targets a subset of layers and keeps the rest of the model frozen. In

18

2.1 Natural Language Processing

addition to significantly reducing the memory needs, this helps the model retain the majority
of its knowledge and prevents catastrophic forgetting (Liao et al., 2023).

Sparse fine-tuning and infused fine-tuning are the two main categories of parameter-
efficient fine-tuning methods (Liao et al., 2023). Sparse fine-tuning involves selectively ad-
justing a small subset of existing parameters without introducing new ones. On the other
hand, infused fine-tuning introduces new parameters to the PLM and updates only these ad-
ditional parameters during training. An example of infused fine-tuning that was widely used,
prior to LoRA (see next Section 2.1.5), is adapter fine-tuning, where one or multiple small
multilayer perceptron (MLP) modules are inserted into each layer of the PLM. However, be-
cause it adds new sequential layers, this second technique increases inference time.

Low-Rank Adaptation (LoRA)
Nowadays, low-rank adaptation (LoRA) is the most popular method for effectively fine-
tuning LLMs. LoRA, first presented by Hu et al. (2022), addresses three key aspects of the
fine-tuning procedure. Firstly, it significantly lowers memory needs and allows LLMs to be
optimized with just one GPU. Secondly, by lowering the number of trainable parameters, it
accelerates and lowers the cost of the training process. Last but not least, it enables users to
keep a single instance of an LLM with several LoRA adapters for multiple tasks that may be
inverted using straightforward matrix operations.

Fine-tuning a language model involves modifying its underlying parameters. This modi-
fication can be represented as:

h = W0x + ∆Wx
In contrast to the standard fine-tuning approach, LoRA introduces a more efficient ap-

proach. As depicted in Figure 2.5, LoRA models this parameter update using a low-rank
decomposition, implemented through a pair of small linear projections. Instead of altering
the pre-trained layers, LoRA keeps them fixed and injects a trainable rank decomposition
matrix into each target layer:

h = W0x +WAWBx
where W0 ∈ Rd×d is the pre-trained weight matrix, ∆W ∈ Rd×d is the updated weight matrix
which is decomposed into low-rank matrices WA ∈ Rd×r and WB ∈ Rr×d . The matrix WA is
initialized with small random values, while WB is set to zero, ensuring that the fine-tuning
process begins with the model’s original pretrained weights.

2.1.6 Memory Optimization Techniques
Quantized Low-Rank Adaptation (QLoRA)
Quantized Low-Rank Adaptation (QLoRA) was introduced by Dettmers et al. (2023) as an
improvement to LoRA that uses quantization to reduce memory requirements in LLMs.
Quantization consists in lowering the precision of the data types used for the model’s pa-
rameters.

Figure 2.6 illustrates how QLoRA uses a number of innovations to lower memory usage
without compromising performance:

19

2. Theoretical Background

Figure 2.5: Regular fine-tuning process where weight update is h =
W0x+∆Wx (left) vs. LoRA process with h = W0x+WAWBx (right).

Figure 2.6: Comparison of different fine-tuning methods and their
memory requirements. After Dettmers et al. (2023).

1. 4-bit NormalFloat (NF4): To quantize the weights of pre-trained language models,
QLoRA use NF4. NF4 is optimized for normally distributed weights, typical in neural
networks.

2. Double Quantization: QLoRA employs double quantization, reducing the quantiza-
tion constants themselves from 32-bit to 8-bit.

3. Paged Optimizers: To manage memory spikes during training, QLoRA uses paged op-
timizers leveraging NVIDIA’s unified memory feature. Automatic page-to-page trans-
fers between CPU and GPU memory are made possible by this.

Gradients are backpropagated into the LoRA adapters during training via the frozen,
4-bit quantized pre-trained language model. QLoRA employs 16-bit BrainFloat for compute
and NF4 for storage data types. For both forward and backward passes, the storage data type
is dequantized to the computation data type.

20

2.1 Natural Language Processing

Gradient Checkpointing
Gradient checkpointing is a technique used to reduce memory usage during training of a
deep neural network, and it can also be used when fine-tuning LLMs. It trades off increased
computation time for memory usage and can therefore reduce the need for GPUs with large
VRAM.

In practice, for the training of deep neural networks, the input data is passed through
the entire network in the forward pass. This involves computing at each layer intermediate
activation values in order to compute the final output. Then, in the backward pass, the
gradients of the loss function with respect to the model parameters are computed using the
stored intermediate activation values. Finally, the gradients are used to update the model
parameters.

As you can imagine, storing these intermediate activation values during forward pass can
take quite a lot of memory and can lead to a bottleneck in terms of batch size or simply
size of the model during the training of a deep neural network. Gradient Checkpointing
addresses this challenge by storing only a subset of intermediate activation values, known
as checkpoints, during the forward pass. And then during backward pass, the intermediate
activation values that weren’t stored are recomputed using the cached checkpoint activation
values. It reduces the memory footprint from a linear scale that is proportional to the number
of layers n to approximately a square root scale

√
n (Singh et al., 2024).

Mixed Precision Training
Mixed precision training optimizes different parts of the model using varying numerical pre-
cisions during training. FP16, a half-precision floating-point format that uses 16 bits for
number representation, is commonly employed for its capacity to conserve memory and ac-
celerate computations (Narang et al., 2018).

QLoRA (see Section 2.1.6) and mixed precision training can be employed during the
fine-tuning process. The pre-trained weights of the frozen model will be quantized to 4-bit,
just like in QLoRA. While FP16 will be utilized in the LoRA adapters and computational
steps. Gradients passing through these adapters during backpropagation are in FP16, and
optimizer updates for these adapters are also computed in FP16. With this strategy, we can
take advantage of both optimization techniques.

2.1.7 Models
For this Master’s thesis, I chose to use three different language models: Mistral 7B instruct
v2, Phi-2, and Phi-3 mini 4k instruct. While Mistral 7b instruct v2 is a member of the Mistral
series, which was created by Mistral AI (Jiang et al., 2023), the Phi models were created by
Microsoft as a part of a collection of small language models (SLMs).

Although Phi-2 and Phi-3 mini have different sizes and functionalities, they have sim-
ilar architectures. There are 2.7 billion parameters in Phi-2, and 3.8 billion in Phi-3 mini.
Both models were pre-trained on high-quality, textbook-like data, contributing to their per-
formance which is on par with much bigger LLMs. Phi-3 mini 4k instruct benefits from an
improved training dataset compared to its predecessor as well as an instruction fine-tuning
stage. The context window sizes vary among these models. Phi-2 can have trouble digesting

21

2. Theoretical Background

longer texts because of its 2048 token context window. There are two options for the con-
text window on Phi-3 mini: 4k and 128k tokens. We used the 4k context window for this
investigation because it met our needs.

Mistral 7b instruct v2 is almost twice as large as Phi-3 mini, with 7 billion parameters.
With its architecture combining sparse mixture of experts and sliding window attention,
Mistral 7B instruct v2 can handle lengthy sequences—up to 32k tokens—in an efficient man-
ner. Hugging Face open-source instruction datasets were used to refine Mistral 7B instruct v2,
improving its capacity to carry out a variety of tasks and adhere to specific instructions. The
model should be more adaptable and usable than its counterpart thanks to this additional
instruction training phase.

We will refer to Phi-2 model as Phi-2, Phi-3 mini 4k instruct as Phi-3, and Mistral 7B
instruct v2 as Mistral 7B throughout the remainder of this thesis.

2.2 Event Extraction
2.2.1 Information Extraction
The need to make sense of the massive amounts of unstructured text data that are available
in several sources, including documents, web pages, and social media, gave rise to the field of
information extraction (IE). As digital content expanded at an exponential rate, automated
techniques were required to extract relevant information from this unstructured data and
transform it into formats that could be readily accessed, analyzed, and used.

Information extraction is a field that uses NLP techniques to extract important infor-
mation from unstructured data and transform it into structured formats for simpler use and
management. It involves several steps, such as name entity recognition (NER) and relation ex-
traction, to mention a couple. NER focuses on identifying and categorizing named entities,
such as people, organizations, locations, dates, and numerical expressions, within the text.
Once these entities are identified, relation extraction comes into play by analyzing the re-
lationships between them. Relation extraction involves identifying and classifying semantic
relationships between entities mentioned in text. Relation extraction would ascertain the re-
lationship between an entity and a person, such as employment or ownership, whereas NER
would identify the entities in a statement citing a person or a firm.

2.2.2 Event Extraction Task
In IE, event extraction is a difficult and well-studied task. Its goal is to extract structured
information from unstructured text. Event extraction is often separated into two categories:
closed-domain event extraction and open-domain event extraction (Li et al., 2022). Events in
closed-domain are frequently given predefined schemas to indicate which particular events
and arguments should be extracted. Conversely in open-domain event extraction, events are
defined as a list of descriptions and the problem is then reformulated into a clustering or
classification task. In both cases, the goal is to detect events and their arguments from a
predefined list and output it in a structured format. As illustrated in Figure 2.7, the aim of
event extraction is to extract event triggers and arguments from a text. It can be done on
document-level but also on sentence-level.

22

2.2 Event Extraction

Figure 2.7: Example of an event of type Meet. After Yang et al. (2019).

Event Extraction Key Concepts
An event is an occurrence of an action or a shift in status that is frequently brought about by
verbs or gerunds. Arguments are the components of an event that give more information or
background. They include elements like places, times, entities, and so on. Event extraction
technologies are capable of extracting all mentions of events from a text, together with their
corresponding triggers and parameters (Liu et al., 2021).

The following broad concepts are definable:

Event mention: The sentence that refers to an event and includes the arguments and trigger;

Event type: Characterizes the kind of event and typically matches the kind of event trigger;

Event trigger: Frequently a verb, it is the crucial element required to identify a reference of
an event;

Event argument: Refers to the “attributes” of an event and can include entities, places, agents,
etc.;

Argument role: Corresponds to the role played by an argument in an event.

Event Extraction Problem Formulation
Event Extraction can be seen as four subtasks (Li et al., 2022): trigger extraction, trigger
classification, argument extraction, and argument role classification:

• Trigger Identification
Most people agree that the trigger is the fundamental component of event extraction
that can accurately describe the occurrence of an event.

• Trigger Classification
The classification of a trigger serves to identify the type of occurrence to which it
pertains. For example, “meeting” in Figure 2.7 denotes the event “Meet“. Therefore,
trigger classification can be seen as a multi-label text classification task.

• Argument Identification
Finding the arguments supporting a specific event mention is known as argument iden-
tification. It depends on the trigger identification and trigger classification processes
in the majority of approaches.

• Argument Role Classification
The event extraction schema’s arguments serve as the foundation for the argument
role classification, and each argument’s category is categorized in accordance with the
arguments that have been identified.

23

2. Theoretical Background

Figure 2.8: Example of pipeline event extraction architecture from
Yang et al. (2019), a trigger extractor first performs the event detec-
tion before feeding the result to an argument extractor

2.2.3 Deep Learning Approaches

The majority of current methods, as stated in the introduction, have concentrated on em-
ploying transformers and deep learning models. Pipeline base models and joint models are
the two basic paradigms that were established to do an end-to-end event extraction (Lu et al.,
2021). Pipeline-based models first perform trigger identification and extract the event type
according to the triggers. In a second step, the model then extracts arguments and classifies
argument roles according to the prediction results of event type and the triggers. To avoid
the error propagation, researchers have proposed joint models that combine trigger and ar-
gument extraction simultaneously.

Pipeline-Based Paradigm For Event Extraction

For pipeline-based methods, the four main subtasks are run sequentially. In practice, this
type of model converts event extraction tasks into a multi-stage classification problem. The
necessary classifiers are an argument classifier that ascertains whether a word is an argument
of the event; a trigger classifier that ascertains whether a term is an event trigger and de-
fines the kind of event; and an argument role classifier that establishes the category of the
arguments.

As outlined in Singh (2018), pipeline models commonly include components like named
entity recognition (NER), named entity linking (NEL), coreference resolution (CR), temporal
information extraction, and relation extraction (RE). These tasks encompass lower-level NLP
tasks such as parts-of-speech tagging (POST), chunking, and parsing.

This method’s main flaw is that each subtask’s accuracy determines how effective it is. In-
accuracies or mistakes in any of the intermediary steps have the potential to spread through-
out the pipeline and reduce overall performance.

24

2.2 Event Extraction

Figure 2.9: Joint model architecture from Liu et al. (2018).

Joint Model Paradigm For Event Extraction
In order to avoid the errors from propagating from one step to another, researchers proposed
joint model architectures that perform trigger classification and argument classification si-
multaneously. As outlined in Liu et al. (2018), usually these model architectures first find a
trigger candidate and then go over each (trigger, entity) pair to perform trigger and argument
classification. This involves retrieving semantic representations for each word and relation
tuple, in most cases using neural network encoders.

A joint model architecture, as illustrated in Figure 2.9, allows for simultaneous extraction
of events and arguments from text. This approach has demonstrated improved performance
compared to pipeline models that handle trigger prediction and argument extraction sepa-
rately.

2.2.4 Large Language Models Approaches
Large language models, which have several advantages over deep neural approaches, have
recently opened the door to possible new approaches. Compared to conventional methods,
LLMs demonstrate a reduced reliance on extensive datasets and token-level annotations (Lu
et al., 2021). Since LLMs process natural language inputs directly, they do not require the
use of intermediate preparatory steps like part-of-speech tagging, dependency parsing, or
coreference resolution.

Moreover, LLMs are remarkably flexible with respect to certain event schemas. In cases
with little or no task-specific training data, Hsu et al. (2022) reported encouraging results,
indicating LLMs can use pre-trained information to generalize across a variety of event types.

These developments point to a paradigm change in event extraction techniques, opening
the door to more adaptable, effective, and broadly applicable strategies.

25

2. Theoretical Background

26

Chapter 3

MultiMedia Event Extraction Dataset

This chapter gives a deeper explanation on the dataset used in this Master’s thesis, detailing
how it was processed, formatted and used for both inference and fine-tuning for document
and sentence-level extraction.

3.1 Overview
The MultiMedia Event Extraction (M2E2) dataset (Li et al., 2020) was initially created to
demonstrate a new method for event extraction from multimedia news items that includes
both visual and written content. In this work, I will only use the textual data from this
dataset, though. The trigger event and arguments in this dataset are nested within the same
phrase because it is intended for sentence-level event extraction. It contains 245 annotated
multimedia news articles. After processing these with events in the texts, we end with 203
news articles. We use the raw articles and specific event annotations. For our research, the
texts and event annotations are formatted into a question-answer format, adapted for infer-
ence and fine-tuning.

The event types are derived from the Automatic Content Extraction (ACE) commu-
nity. This makes it possible to expand our work utilizing the multilingual ACE 2005 dataset
(Walker et al., 2005), which addresses five main tasks: entity, value, temporal expression,
relation, and event recognition.

3.2 Data Statistics
The dataset covers eight different types of events, with a total of 1105 event mentions across
203 articles. For each type of event, there are specific arguments. The different arguments
and their counts are shown in Table 3.1 as well as the number of events per type.

Figure 3.1 shows a box plot with the number of events per article.

27

3. MultiMedia Event Extraction Dataset

Event Type Argument Count
Conflict:Demonstrate (98) Place 78

Entity 50
Justice:Arrest-Jail (121) Person 72

Place 30
Agent 29

Movement:Transport (229) Destination 123
Artifact 136
Origin 78
Agent 44
Vehicle 21

Contact:Meet (104) Entity 97
Place 62

Life:Die (176) Victim 133
Agent 48
Place 69
Instrument 11

Conflict:Attack (302) Attacker 166
Target 152
Place 134
Instrument 25

Contact:Phone-Write (43) Place 11
Entity 43

Transaction:Transfer-Money (32) Recipient 21
Giver 23

Table 3.1: Number of events per type (indicated in parentheses)
along with the different arguments and their counts, providing a
detailed overview of the dataset’s composition.

For the fine-tuning process, the dataset was split into a training, validation, and test set
as described in Table 3.2.

28

3.3 Data Formatting

Figure 3.1: Box plot with the number of events per article

Event Type Train Set Validation Set Test Set
Number of Articles 140 31 32
Conflict:Attack 209 40 53
Movement:Transport 167 36 26
Life:Die 120 27 29
Justice:Arrest-Jail 89 13 19
Contact:Meet 73 17 14
Conflict:Demonstrate 55 28 15
Contact:Phone-Write 30 5 8
Transaction:Transfer-Money 20 5 7
Total Number of Events 763 171 171

Grand Total Number of Events: 1105

Table 3.2: Number of events per type for each dataset split (Train,
Validation, and Test) along with the number of articles.

3.3 Data Formatting
We processed the dataset in two different ways to accommodate for document and sentence
level event extraction. For both we kept the same split as described in Table 3.2.

3.3.1 Document Level Extraction
As said in Section 3.1, we transform the content of articles and annotations into a question-
answer format. Given an article, the goal for our model is to extract data into a dictionary
format as shown in the example below:

29

3. MultiMedia Event Extraction Dataset

{

’events’: [
{

’event’: ’Contact:Phone-Write’,
’trigger’: ’conversation’,
’event_arguments’: {’Entity’: ’Teddy Riner’}

},
{

’event’: ’Contact:Meet’,
’trigger’: ’meeting’,
’event_arguments’: {’Place’: ’France’, ’Entity’: ’Teddy Riner’}

}
]

}

We give the model a list of event types, the available arguments for each event type, and
contextual instructions in order to use in-context learning. The template used for document-
level event extraction during the model’s evaluation, both for inference and fine-tuning, is
shown below:

Instruct : You are an AI expert specialized in Event Extraction.
Your task is to identify triggers and arguments of events from this
list of event types: {event_types}
Here is a dictionary with the possible argument roles for each
event type: {arg_roles_by_event_type}
You will only extract arguments corresponding to these roles.
Triggers are clearly identifiable in the text, and arguments for a given
trigger are nested within the same sentence. Not every event has arguments,
and there should not be more than 5 events per article, except in rare cases.
Now for the following article : {article}
Output : {annotation_dictionary}
End

3.3.2 Sentence-Level Extraction
For sentence-level extraction we adapt the prompt and only use event mentions from the
articles. So the target corresponds to the elements from the above dictionary, given this
sentence:

“And if he is arrested in the street, they might charge him with trying to get
other people on the street to commit ‘debauchery’ as well.“

The expected output is the following:

30

3.3 Data Formatting

{

’event’: ’Justice:Arrest-Jail’,
’trigger’: ’arrested’,
’event_arguments’: {’Place’: ’street’}

}

Below is the template used for sentence-level event extraction for both fine-tuning and
inference during the model’s evaluation:

Instruct : You are an AI expert specialized in Event Extraction.
Given a sentence, your task is to classify the sentence with an event from
this list of events type: {sorted_event_types}
You shall extract the trigger (word that indicates the event) and potential
arguments with their roles, given this mapping : {arg_roles_by_event_type}
Now for the following sentence: {event_mention}
Output : {annotation_dictionary}
End

31

3. MultiMedia Event Extraction Dataset

32

Chapter 4

Method

In this chapter, we provide a detailed explanation of the methodology employed in this Mas-
ter’s thesis, aligned with the research questions outlined in the introduction.

4.1 Overview
Before delving into the methodology, let’s outline the key steps undertaken in this thesis.
First, we retrieved and pre-processed an open-source dataset for event extraction tasks, for
both document and sentence level. Next, we evaluated different models using two-shot ap-
proach on a test dataset to establish baseline performances. Subsequently, each model was
fine-tuned using training and validation sets, applying techniques discussed in Chapter 2.
Finally, we experimented with various parameter configurations to optimize model’s perfor-
mance.

4.2 Dataset Retrieval and Preparation
We conducted our research using a publicly available dataset that we preprocessed in com-
pliance with the guidelines in Section 3.3 to facilitate experiment replication. The dataset
is available from the GitHub repository of the original research paper (Li et al., 2020). This
approach ensures that other researchers can build upon and validate our findings. The 2005
ACL dataset (Walker et al., 2005) could be added to the dataset, hence increasing its size and
diversity of event categories, due to its flexibility. This extensibility provides an opportunity
for a more comprehensive evaluation of LLMs capabilities and fine-tuning process in event
extraction.

We prepared the dataset in two different ways for both document and sentence-level
event extraction. For the document-level extraction the targets are created with the event
mentions annotations and stored into a dictionary as described in Section 3.3. While for the

33

4. Method

sentence-level extraction we used only the event mentions annotations, creating one data
point for each event mention.

Our primary objective was to establish a benchmark for the fine-tuning process, using
models with different sizes. Our goal in doing this was to gain greater insight into the con-
nections between model size and performance on a small dataset.

4.3 Baselines
Prior to fine-tuning, the models must be evaluated in order to comprehend the advances
brought about by the process and to gauge the corresponding abilities of the different mod-
els. Two-shot settings were used for this evaluation, utilizing in-context learning (for more
information, see Section 2.1.4).

By establishing these baselines, it is possible to compare the models more accurately and
provides a clear reference point to measure the impact of fine-tuning.

4.4 Fine-Tuned Models
One of the main focuses of this work is the fine-tuning method, which produced the best
outcomes for our particular objective. This section will include a detailed description of
the infrastructure, libraries, and quantization methods utilized, as well as steps required for
fine-tuning.

4.4.1 Fine-Tuning Process Steps
Fine-tuning the different large language models involves several steps to ensure that the mod-
els are well-adapted to the specific task. The following subsections outline these steps in
detail:

1. Data Preparation

The first step in fine-tuning is preparing the dataset. This involves cleaning and formatting
the data to ensure it is suitable for training. This step includes tokenization, normalization,
and splitting the data into training, validation, and test sets.

2. Model Initialization

The next step in the fine-tuning process is the initialization of the pre-trained model. In our
study, we utilized pre-trained models from Hugging Face open source platform.

3. Configuring Hyperparameters

It is essential to set the hyperparameters for the training procedure. This include figuring
out the number of steps/epochs, batch size, learning rate, and any other pertinent parameter.
A hyperparameter search was not possible due to the size of the models and the calculation
time needed for each training loop.

34

4.4 Fine-Tuned Models

4. Validation

After each epoch or number of steps (25 in our case), the model’s performance is evaluated
on the validation set. This step helps monitoring overfitting and adjusting training accord-
ingly. Unfortunately, this was only done on the loss function which isn’t adapted to monitor
performance on our task.

5. Checkpointing

Checkpoints are periodically saved to safeguard against potential disruptions and to facilitate
the selection of the optimal model. These checkpoints allow training to resume from the last
stored state, if needed, by storing the states of the deconstructed matrices.

6. Hyperparameter Tuning

It could be necessary to modify the hyperparameters in light of validation performance. To
determine the ideal settings, this iterative approach entails adjusting the hyperparameters
and repeating the training loop.

7. Final Evaluation

The test set is used to assess the model’s performance once it has been fine-tuned. This final
assessment uses precision, recall, and F1-score measures to clearly quantify how effectively
the model generalizes to new data.

4.4.2 Infrastructure
It is crucial to have an infrastructure in place before beginning a data science project that
can support the project’s requirements. While fine-tuning large language models, it is impor-
tant to have adequate GPUs and VRAM to conduct the training process and prevent hitting
bottlenecks. These days, a wide range of companies offer a catalog of virtual machines with
various specifications, from which you can select the one best suited to your needs.

AWS
Amazon Web Services (AWS) was chosen as the primary infrastructure as it provides power-
ful GPU-equipped instances that are ideal for fine-tuning large language models. For our re-
search, we employed an AWS EC2 g4dn.12xlarge instance equipped with NVIDIA T4 GPUs.
This instance offers a fair trade-off between cost and performance, with enough GPU mem-
ory and processing capacity to accommodate our models’ fine-tuning (see Table 4.1).

Graphic Processing Unit (GPU)
The initial purpose of graphics processing units (GPUs) was to process images and videos for
use in computer graphics applications. These are specialized processors made to handle nu-
merous tasks concurrently. GPUs are particularly good at performing the intricate computa-
tions needed for graphics rendering, including transformations and shading. They are ideal

35

4. Method

Table 4.1: Specifications of the g4dn.12xlarge Instance

Specification Details
vCPUs 48
GPU 4 NVIDIA T4
GPU Memory 64 GB
Instance Memory 192 GB
Storage 900 GB NVMe SSD
Network Bandwidth 50 Gbps
EBS Bandwidth Up to 9.5 Gbps

for parallel computing tasks because of their architecture, which has many cores capable of
simultaneous processing. In the field of artificial intelligence, they are now widely utilized.

GPUs’ parallel processing capabilities, which greatly speed up the training process, are
essential for fine-tuning LLMs. They are able to handle the massive amounts of matrix and
tensor operations required in deep learning, making them indispensable for this task. The
choice of GPU can impact both the speed and cost-effectiveness of the training process.

Video Random Access Memory (VRAM)

One of the most common errors that can happen during fine-tuning is “RuntimeError: CUDA
error: out of memory“. In addition to using optimization techniques, choosing a GPU with
enough Video random access memory (VRAM) is the best way to avoid this error. VRAM or
GPU memory plays a crucial role in the efficient operation of LLMs on GPUs. LLMs, such as
those based on transformer architectures, often require significant VRAM due to their mas-
sive parameter sizes. VRAM is dedicated GPU memory that stores not only the model param-
eters but also the intermediate activation values and gradients during the training process.
Insufficient VRAM can severely limit the size of models that can be trained or fine-tuned,
leading to performance degradation or outright failure.

4.4.3 Libraries and Memory Optimization Techniques
In this thesis, we employed several advanced libraries and memory optimization techniques
for the fine-tuning process. Each component played an important role in enhancing compu-
tational efficiency and memory utilization.

Transformers Library

Hugging Face created the renowned Transformers library, which we utilized (Hugging Face,
2024c). This library works with TensorFlow and Pytorch and offers cutting-edge general-
purpose architectures for NLU and NLG. It enables us to load and fine-tune the most recent
pre-trained language models for our investigations.

36

4.5 Training Configuration

BitsAndBytes for Quantization
We used the BitsAndBytes package for quantization to meet the memory requirements of
LLMs (Hugging Face, 2024b). In particular, this library allowed us to use the NF4 data type
to import models in a 4-bit quantized format (see Section 2.1.6). BitsAndBytes allowed us
to deploy larger models even on devices with limited GPU RAM by drastically lowering the
memory footprint.

LoRA and QLoRA Integration
In our study, we integrated LoRA and QLoRA techniques using the PEFT (Parameter-Efficient
Fine-Tuning) python library (Hugging Face, 2024a). As described before (see 2.1.5), LoRA,
implemented through PEFT, focused on updating specific layers. This method involved con-
figuring key parameters like the LoRA alpha learning rate (α), dropout rates, and the rank
(r) of decomposition matrices, typically setting α to 1 or 2 times the value of r to optimize
the integration of low-rank decomposition into the model’s structure.

Building upon LoRA, QLoRA further enhanced memory efficiency by maintaining the
majority of pre-trained model weights in a 4-bit quantized format. We used FP16 preci-
sion for smaller LoRA adaption layers that handle important computational tasks. This
hybrid approach effectively combined the benefits of quantization—reducing memory foot-
print with the precision of half-precision floating-point computations, thereby optimizing
both memory usage and computational performance in our experiments.

Gradient Checkpointing
To mitigate peak memory usage during training, we employed gradient checkpointing. This
method involved storing intermediate activation values and recalculating them during the
backward pass, effectively reducing the overall memory footprint while preserving computa-
tional accuracy (see Section 2.1.6).

SFTTrainer (Supervised Fine-Tuning Trainer)
To manage the fine-tuning process, we employed the SFTTrainer (supervised fine-tuning trainer).
This class is provided by the TRL (transformer reinforcement learning) library, which is built
on top of the Hugging Face transformers ecosystem. It easily combines with the PEFT library,
making the implementation of LoRA and QLoRA simple.

4.5 Training Configuration
Identifying optimal hyperparameters is important in order to achieve the best possible re-
sults. In the context of fine-tuning, the rank of the LoRA decomposition matrices is one of
the key parameters that significantly influence performance. Additionally, the selection of
target layers plays a critical role, as it also impacts the number of trainable parameters.

We experimented with multiple configurations for each model to identify the most ef-
fective setup. The parameters used for the models discussed in the subsequent chapter are
detailed in Tables 4.2 and 4.3. Across all models, we employed a specialized version of the

37

4. Method

AdamW optimizer, which integrates paging and 8-bit quantization to enhance computa-
tional efficiency.

Mistral 7B Phi-3 Phi-2
LoRA Configuration

lora alpha 8 32 32
lora dropout 0.1 0.05 0.05
r 8 16 16

target modules
q_proj, k_proj, v_proj,
o_proj, up_proj

o_proj, k_proj,
v_proj, dense

o_proj, k_proj,
v_proj, dense

Training Arguments
warmup steps 3 3 3
batch size 1 1 1
gradient accumulation steps 4 4 4
max steps 500 500 500
learning rate 2e-4 2e-4 2e-4

Training time
Total Training time 3 hours 2 hours 1 hour

Table 4.2: Training Arguments, LoRA Configuration, and Runtime
for Mistral 7B, Phi-2, and Phi-3 on document-level extraction

Mistral 7B Phi-3 Phi-2
LoRA Configuration

lora alpha 8 8 8
lora dropout 0.1 0.1 0.1
r 8 8 8

target modules
q_proj, k_proj, v_proj,
o_proj

o_proj, k_proj,
v_proj, dense

o_proj, k_proj,
v_proj, dense

Training Arguments
warmup steps 3 3 3
batch size 1 1 1
gradient accumulation steps 4 4 4
max steps 500 500 500
learning rate 2e-4 2e-4 2e-4

Training time
Total Training time 1 h 30 min 50 min 35 min

Table 4.3: Training Arguments, LoRA Configuration, and Runtime
for Mistral 7B, Phi-2, and Phi-3 on sentence-level extraction

38

4.6 Evaluation

4.6 Evaluation
The evaluation phase constitutes a critical component in the context of fine-tuning an LLM
for a specific task. This study employs a rigorous evaluation methodology to assess the perfor-
mance of our fine-tuned model on the M2E2 dataset, with a focus on assessing both trigger and
argument extraction. To ensure comparability with existing literature and facilitate bench-
marking, we utilize a set of established metrics widely adopted in the field of information
extraction.

4.6.1 Metrics
To evaluate our models, it is important to choose metrics that are relevant to our task. In the
case of event extraction, precision, recall, and F1-score are the metrics usually chosen. These
metrics have a long history in information extraction evaluations, dating back to the message
understanding conferences (MUC) (Chinchor and Sundheim, 1993).

Precision measures the proportion of correctly identified events among all events de-
tected by the system. Recall measures the proportion of correctly identified events among
all actual events in the dataset. The F1-score is the harmonic mean of precision and recall,
providing a single balanced metric.

4.6.2 Evaluation on the M2E2 dataset
For our specific dataset, we evaluate the trigger and argument extraction separately using
precision, recall and F1-score defined above. The evaluation is intended to be an end to end
evaluation as in Li et al. (2020), however we do not extract any information on the position
of the triggers or arguments in the text.

For both, document and sentence level event extraction, we consider a trigger as correct if
its event type and text matches a reference trigger. Similarly, for arguments we consider them
correct if the event mention/trigger they are associated with is correct and their argument
role and text matches a reference argument.

39

4. Method

40

Chapter 5

Results

This chapter presents the outcomes of this work, detailing the results for both document-level
and sentence-level event extraction. Initial experiments with document-level event extrac-
tion yielded modest results, leading us to explore alternative strategies, such as fine-tuning
models on sentence annotations. A discussion of these results is provided in Chapter 6.

5.1 Document-Level Event Extraction
As explained in Chapter 4, we first fine-tuned models on entire articles for document-level
event extraction. We compared base and fine-tuned versions of Phi-2, Phi-3, and Mistral
7B by computing precision, recall, and F1-scores for both trigger and argument extraction
across each event type, as well as overall scores. The base models were evaluated with two-
shot prompts while the fine-tuned models were evaluated with the same prompt used for the
fine-tuning (zero shot).

In Figure 5.1, we present the overall metrics for trigger and argument extraction tasks for
the three fine-tuned models. The models are performing consistently across both precision
and recall metrics. This is important to make sure that the models aren’t generating too
many false positives versus missing too many relevant events. The results clearly indicate
that the argument extraction task is more difficult than the trigger extraction task for both
fine-tuned and base models. The base models achieve really poor results, while the fine-
tuned models demonstrated improvements, especially for the trigger extraction task. Overall,
Mistral 7B fine-tuned model achieve the highest performance, with 0.329 and 0.089 F1-score
on respectively trigger and argument extraction tasks.

Figure 5.2 presents the F1-scores for both trigger and argument extraction of the fine-
tuned models. For argument extraction, all three models show relatively similar results. For
the trigger extraction task, some event types prove more challenging than others, but no clear
trend emerges, even between the three models, and even between Phi models. These results
suggest that larger models tend to achieve higher performance.

41

5. Results

Mistral 7B base

Mistral 7B fine-tuned

Phi-3 base

Phi-3 fine-tuned

Phi-2 base

Phi-2 fine-tuned

0.088

0.35

0.079

0.165

0.038

0.127

0.038

0.31

0.032

0.139

0.014

0.127

0.053

0.329

0.045

0.151

0.02

0.132

Precision Recall F1 score

Mistral 7B base

Mistral 7B fine-tuned

Phi-3 base

Phi-3 fine-tuned

Phi-2 base

Phi-2 fine-tuned

0

0.093

0.007

0.035

0

0.055

0

0.084

0.004

0.031

0

0.055

0

0.089

0.006

0.033

0

0.055

Precision Recall F1 score

Figure 5.1: Overall metrics for base and fine-tuned models on trigger
(left) and argument (right) extraction tasks

Figure 5.3 shows the training and validation lost for all three models. But it’s not a good
indicator to when the model is overfitting or not since the loss function is not aligned with
the F1-score computed on the extracted triggers and arguments.

42

5.1 Document-Level Event Extraction

C
on

fli
ct

:A
tt

ac
k

C
on

fli
ct

:D
em

on
st

ra
te

C
on

ta
ct

:M
ee

t
C

on
ta

ct
:P

ho
ne

-W
rit

e
Ju

st
ic

e:A
rr

es
t-

Ja
il

Li
fe

:D
ie

M
ov

em
en

t:T
ra

ns
po

rt
Tr

an
sa

ct
io

n:
Tr

an
sf

er
O

ve
ra

ll

0
5 · 10−2

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

F1
Sc

or
e

Mistral 7B
Phi-3
Phi-2

Figure 5.2: F1 Score by class for the trigger (solid lines) and argu-
ment (dashed lines) document-level extraction for the three fine-
tuned models

0 100 200 300 400 500
0

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

Step

Lo
ss

Mistral 7B
Phi-3
Phi-2

Figure 5.3: Training (solid lines) and Validation Loss (dashed lines)
over gradient steps for the three models on document level extrac-
tion

43

5. Results

5.2 Sentence-Level Event Extraction
After observing modest results from fine-tuning models for document-level event extraction,
we aimed to delve deeper into the limitations posed by a small dataset. Consequently, we
fine-tuned the models using sentence-level annotations. Similar to our previous approach,
we compared the performances of the base models with two-shot prompts and the fine-tuned
model with the regular prompt, computing precision, recall, and F1-scores for both trigger
and argument extraction tasks.

Mistral 7B base

Mistral 7B fine-tuned

Phi-3 base

Phi-3 fine-tuned

Phi-2 base

Phi-2 fine-tuned

0.417

0.563

0.56

0.519

0.238

0.412

0.395

0.571

0.464

0.488

0.229

0.432

0.405

0.567

0.508

0.503

0.233

0.422

Precision Recall F1 score

Mistral 7B base

Mistral 7B fine-tuned

Phi-3 base

Phi-3 fine-tuned

Phi-2 base

Phi-2 fine-tuned

0.147

0.286

0.11

0.27

0.218

0.197

0.179

0.352

0.142

0.293

0.213

0.223

0.161

0.316

0.124

0.281

0.215

0.209

Precision Recall F1 score

Figure 5.4: Overall metrics for base and fine-tuned models on trigger
(left) and argument (right) extraction tasks

Figure 5.4 shows the metrics across all event types comparing the base models with the
fine-tuned models. As anticipated, sentence-level event extraction is less complex, and the
fine-tuned models achieved higher scores compared to document-level extraction. As for the
document level extraction, Mistral 7B fine-tuned model demonstrated best results reaching
0.567 and 0.316 F1 score on trigger and argument extraction tasks respectively. Surprisingly,
Phi-3 base model demonstrated better precision and F1-score on the trigger extraction task
compared to its fine-tuned counterpart, beating also the two other base models on this task.
And Phi-2 base model achieved better results than Phi-3 and Mistral 7B base models on the ar-
gument extraction. Overall, taking into account argument and trigger extraction combined,
the fine-tuning process improved the results for all three models.

Figure 5.5 presents the F1 scores by class for the fine-tuned models, on both trigger and
argument extraction. As with document-level event extraction, no clear trend emerged across
all models between the event types. It’s also the case for the arguments, suggesting no type
of event seem to have arguments that are easier to capture.

Figure 5.6 shows the validation and training losses for the three models. Again it’s not
the best indicator for our task, but we can see that the models fits better to this loss than for
the document level extraction.

44

5.2 Sentence-Level Event Extraction

C
on

fli
ct

:A
tt

ac
k

C
on

fli
ct

:D
em

on
st

ra
te

C
on

ta
ct

:M
ee

t
C

on
ta

ct
:P

ho
ne

-W
rit

e
Ju

st
ic

e:A
rr

es
t-

Ja
il

Li
fe

:D
ie

M
ov

em
en

t:T
ra

ns
po

rt
Tr

an
sa

ct
io

n:
Tr

an
sf

er
O

ve
ra

ll

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
sc

or
e

Mistral 7b
Phi-3
Phi-2

Figure 5.5: F1 score by class for the trigger (solid lines) and argument
(dashed lines) sentence-level extraction for the three models

0 100 200 300 400 500
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Step

Lo
ss

Mistral 7B
Phi-3
Phi-2

Figure 5.6: Training (solid lines) and Validation Loss (dashed lines)
over gradient steps for the three models on document level extrac-
tion

45

5. Results

46

Chapter 6

Conclusions

In this chapter, we elaborate on the results from the previous chapter and draw some conclu-
sions to try and answer the research questions initially stated in this Master’s thesis.

6.1 Results Discussion and Limitations
The results presented in the previous chapter offer a better understanding of the capabili-
ties of LLMs, specifically Phi-2, Phi-3, and Mistral 7b, after fine-tuning for event extraction
tasks. Our research demonstrates that fine-tuning greatly enhances the model’s performance,
particularly with regard to verbosity, the decrease of hallucinations, and output formatting.
Our findings show that even small language models like Phi-2, Phi-3, and Mistral 7b can po-
tentially be used for event extraction with some fine-tuning. Obtaining better results for
sentence-level event extraction, but there is still space for improvement.

Regarding the specific tasks covered in this Master’s thesis, our results indicate that trig-
ger extraction is less complex than argument extraction. This discrepancy is probably caused
by the fact that argument roles vary more widely within a single event type and by the se-
mantic difficulties that come with argument extraction. Arguments were annotated using a
dependency parsing tree logic, selecting only the root word. However, LLMs don’t possess
knowledge related to the semantic of the words. For example, in the sentence:

Two black men were shot (trigger: Conflict: Attack) by white police (Arg: At-
tacker) officers at point-blank range in the states of Louisiana (Arg: Place) and
Minnesota.

The trigger is quite evident, but the arguments are less straightforward. LLMs would tend to
output ‘officers’ or ‘police officers’ for the ‘Attacker’ argument. This global observation seems
to be aligned with the results in Li et al. (2020), which reported significantly lower metrics
for argument extraction compared to trigger extraction.

47

6. Conclusions

Another important consideration for the document level-extraction is that this dataset
focuses on intra-sentence event extraction, requiring triggers and arguments to be within the
same sentence. We attempted to address this by including target sentences in the annotations,
but this approach led to degraded performance. Since the loss function is computed token-
by-token by comparing the predicted probability distribution with the actual target token
at each position, it likely resulted in the model focusing more on the sentences rather than
on accurately extracting triggers and arguments.

Further on, the dataset is likely not big enough for the model to be able to capture all the
variations of trigger words and arguments in order to achieve satisfying performances.

6.2 Fine-Tuning Large Language Models
The method of fine-tuning has shown to be a breakthrough in enhancing LLM performance in
specific tasks and domains. It expands upon PLMs with a general understanding of language
but no task-specificity. Although LLMs have demonstrated some ability to follow instruc-
tions, especially when given examples, their outputs often display verbosity and hallucina-
tions. Our results demonstrate that fine-tuning, without requiring a significant amount of
data, has the ability to overcome this problem by restricting the model’s possible answers to
a more accurate and task-specific space.

Smaller language models (SLMs) have significantly increased fine-tuning accessibility. It
is now possible to fine-tune SLMs like Phi-2, achieving performances on certain tasks com-
parable to non-fine-tuned models like GPT-4, using just a single GPU and 16 GB of VRAM.
Because it enables companies to host their own models that have been refined with propri-
etary data, this feature is particularly noteworthy because it eliminates the need for external
API endpoints and maintains control over model parameters. This lower cost and improved
accessibility of fine-tuning LLMs have opened up chances to address real-world challenges.
Companies can now design customized approaches without requiring substantial computing
resources or relying on third-party services.

Additionally, SLMs are now being developed by large AI companies. Microsoft leads this
movement with its Phi series, which varies in model size, including three variations of the
Phi-3 model and Meta has enhanced its Llama series, with Llama 3 8B being their most recent
SLM. Google has also entered this space with the development of Gemma 7B. The field of
natural language processing has advanced with the rise in SLMs and the faster rate at which
they may be fine-tuned for certain applications. LLMs offer a more general approach than
typical deep neural network models, which may need extensive modeling and task-specific
architectures. This feature makes it easier for users to apply these models to a variety of
applications.

6.3 Considerations
As artificial intelligence advances, particularly in the area of generative AI, it is important
to closely monitor the dangers and misuses associated with these technologies. One major
reason to be concerned is the amount of energy and computing power required to train and
execute LLMs. These models also raise significant ethical concerns since the information they

48

6.4 Conclusions

generate is prone to prejudice, stereotypes, and the development of bad habits.

6.3.1 Resource Consumption and Environmental Im-
pact

The process of training LLMs requires a vast amount of resources. Pre-training models like
GPT-4, for example, require a significant amount of computational ressources. Development
expenses are estimated to be between $2 and $3 million USD. In addition to being expensive,
this process has a significant carbon footprint, which raises environmental issues. Even the
later fine-tuning process requires a substantial amount of GPU resources, although being less
demanding than pre-training.

Despite the fact that optimization techniques like the ones employed in this work lower
these resource requirements, using LLMs is still a costly and resource-intensive undertak-
ing. Therefore, when using these models, it’s important to apply best practices designed to
prevent resource waste and to consider the associated costs and environmental effects while
employing these models.

6.3.2 Ethical Implications
In addition to environmental issues, LLMs bring up ethical concerns. Because these models
produce information that is based on the training data which can include preconceptions or
damaging narratives, they have the potential to produce content that reinforces social biases.
While LLMs offer new automated solutions, their lack of accountability, transparency, and
human labor displacement pose risks.

Given these considerations, it is essential to evaluate the application of LLMs critically,
particularly in circumstances where ethical integrity is important. Furthermore, lighter mod-
els may sometimes produce results that are easier to interpret and have adequate performance.
As the field evolves, it is important to find a balance between harnessing the incredible po-
tential of LLMs and fostering ethical, sustainable, responsible and explainable AI practices.

6.4 Conclusions
The goal of this project was to benchmark different large language models on an event ex-
traction dataset. We wanted to explore Phi-2, Phi-3, and Mistral 7B, considering these are
some of the most recent models and provided a good size split, ranging from 2.7 billion to 7
billion parameters. We compare the fine tuning process on each of these models to the base
models with 2-shot prompts on both sentence-level and document-level event extraction.
We demonstrate that the fine-tuning process improves the results for every model on both
tasks, especially on the document-level event extraction where the base models perform very
poorly. The fine-tuning process made the models less prone to hallucinations and verbosity
and also helped in ensuring a stable format of output.

On the document-level, the performances are modest but show some potential, suggest-
ing a bigger dataset would help the models to learn better representations, especially for the

49

6. Conclusions

argument extraction. For the sentence level, while the base models show a superior compre-
hension of the problem at the phrase level compared to document-level, the results were im-
proved through fine-tuning, especially for the argument extraction part. We noticed that the
Phi-3 and Mistral 7B base models, for which we utilized the instruct versions, demonstrated
better performances compared to Phi-2, which didn’t undergo an instruction phase. As a re-
sult, the instruct models show less of an improvement after being fine-tuned in sentence-level
event extraction.

This Master’s thesis also provided the chance to investigate optimization techniques like
LoRA and QLoRA, which lessen the need for resources and the expense of training these
kinds of models. In order to make generative AI-based solutions profitable, this is an essential
component for companies looking to develop such solutions. For Phi-2, a single NVIDIA T4
GPU can be used thanks to these optimization techniques, which are relatively cheap and
can be accessed for free with Kaggle or Google Colab.

With these results in mind we will go over the research questions initially defined for this
project.

1. How effectively do large language models perform when fine-tuned for event extrac-
tion tasks?
All three models show improvement after being fine-tuned on both sentence-level and
document-level extraction. The argument extraction task shows the most improve-
ment, as it is the most challenging task at hand. On sentence-level extraction, the
models demonstrate promising results, while for document-level extraction, the re-
sults are modest but still show improvement after fine-tuning.

2. To what extent does the size of language models influence their performance in event
extraction?
We will address this question with our empirical results, as it heavily depends on the
models employed. Phi-3 shows clear improvement compared to its predecessor Phi-2,
with both the base and fine-tuned models demonstrating better performance. Since
these two models share a very similar architecture, we can confidently hypothesize that
model size plays a role. However, it is important to consider the additional instruc-
tion phase Phi-3 received, as well as its improved training dataset. Mistral 7B over-
all demonstrated superior performance, suggesting that model size impacts results to
some extent.

3. What is the effect of dataset constraints on the performance of fine-tuned models in
event extraction?
The models definitely benefited from the fine-tuning process; however, the results are
quite modest especially for document-level extraction. The base models performances
as well as the fine-tuned models results suggests that the task is quite challenging,
especially the argument extraction and that the models have the potential to perform
better with a bigger dataset.

6.5 Future Work
To extend our work, we propose several ideas to explore. Firstly, our study might be expanded
by adding data from the ACE dataset (Walker et al., 2005), which would enrich the data with

50

6.5 Future Work

more event types and a larger dataset. Since we used three model SLMs in this thesis, it
could be interesting to include more SLMs, such as Phi-3 small (Microsoft, 2024), Gemma 7B
(Google, 2024), or Llama 3 8B (Meta AI, 2024), in this benchmark.

Adding a first extraction step to extract event mentions and then using the fine-tuned
models to do sentence event extraction could be one future strategy to improve the outcomes.
This step could probably be done with a simple encoder model with sufficient data or try zero
shot classification models that have recently improved a lot, especially for classification tasks
(Hugging Face, 2024d).

Finally, this Master’s thesis is applied to an event extraction dataset, hence this method-
ology can be applied to other event extraction datasets. Notably, as LLMs make use of the
self attention mechanism, we hypothesize that they could perform well on cross-document
events.

51

6. Conclusions

52

References

Ahn, D. (2006). The stages of event extraction. In Proceedings of the Workshop on Annotating
and Reasoning about Time and Events.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic language
model. Journal of Machine Learning Research.

Bera, D., Pratap, R., and Verma, B. D. (2021). Dimensionality reduction for categorical data.
arXiv preprint arXiv:2112.00362.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners.
Advances in Neural Information Processing Systems.

Chinchor, N. and Sundheim, B. (1993). Muc-5 evaluation metrics. In Proceedings of the 5th
conference on Message understanding.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023). Qlora: Efficient fine-
tuning of quantized llms. arXiv preprint arXiv:2305.14314.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Google (2024). Gemma: Google introduces new state-of-the-art open models. https://
blog.google/technology/developers/gemma-open-models/.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., de Laroussilhe, Q., Gesmundo, A.,
Attariyan, M., and Gelly, S. (2019). Parameter-efficient transfer learning for nlp. In Pro-
ceedings of the 36th International Conference on Machine Learning. PMLR.

Hsu, I.-H., Huang, K.-W., Boschee, E., Miller, S., Natarajan, P., Chang, K.-W., and Peng, N.
(2022). Zero and few-shot event extraction via large language models. In Findings of the
Association for Computational Linguistics: EMNLP 2022.

53

https://blog.google/technology/developers/gemma-open-models/
https://blog.google/technology/developers/gemma-open-models/

REFERENCES

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2022).
LoRA: Low-rank adaptation of large language models. International Conference on Learning
Representations.

Hugging Face (2024a). Peft: Parameter-efficient fine-tuning. https://huggingface.co/
docs/peft/en/index.

Hugging Face (2024b). Quantization - accelerate. https://huggingface.co/docs/
accelerate/usage_guides/quantization.

Hugging Face (2024c). Transformers. https://huggingface.co/docs/transformers/
index.

Hugging Face (2024d). What is zero-shot classification? https://huggingface.co/
tasks/zero-shot-classification.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., de Las Casas, D.,
Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-A., Stock,
P., Le Scao, T., Lavril, T., Wang, T., Lacroix, T., and El Sayed, W. (2023). Mistral 7b. arXiv
preprint arXiv:2310.06825.

Li, M., Zareian, A., Zeng, Q., Whitehead, S., Lu, D., Ji, H., and Chang, S.-F. (2020). Cross-
media structured common space for multimedia event extraction. In Proceedings of The 58th
Annual Meeting of the Association for Computational Linguistics.

Li, Q., Li, J., Sheng, J., Cui, S., Wu, J., Hei, Y., Peng, H., Guo, S., Wang, L., Beheshti, A., and
Yu, P. S. (2022). A survey on deep learning event extraction: Approaches and applications.
arXiv preprint arXiv:2107.02126.

Liao, B., Meng, Y., and Monz, C. (2023). Parameter-efficient fine-tuning without introducing
new latency. arXiv preprint arXiv:2305.16742.

Liu, J., Min, L., and Huang, X. (2021). An overview of event extraction and its applications.
arXiv preprint arXiv:2111.03212.

Liu, X., Luo, Z., and Huang, H. (2018). Jointly multiple events extraction via attention-based
graph information aggregation. ACL anthology.

Lu, W., Jain, N., Thayaparan, M., Suresh, V., and Surdeanu, M. (2021). Text2event: Control-
lable sequence-to-structure generation for end-to-end event extraction. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing.

Meta AI (2024). Introducing meta llama 3: The most capable openly available llm to date.
https://ai.meta.com/blog/meta-llama-3/.

Microsoft (2024). The phi-3 small language models with big po-
tential. https://news.microsoft.com/source/features/ai/
the-phi-3-small-language-models-with-big-potential/.

54

https://huggingface.co/docs/peft/en/index
https://huggingface.co/docs/peft/en/index
https://huggingface.co/docs/accelerate/usage_guides/quantization
https://huggingface.co/docs/accelerate/usage_guides/quantization
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://huggingface.co/tasks/zero-shot-classification
https://huggingface.co/tasks/zero-shot-classification
https://ai.meta.com/blog/meta-llama-3/
https://news.microsoft.com/source/features/ai/the-phi-3-small-language-models-with-big-potential/
https://news.microsoft.com/source/features/ai/the-phi-3-small-language-models-with-big-potential/

REFERENCES

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781.

Narang, S., Diamos, G., Elsen, E., Micikevicius, P., Alben, J., Garcia, D., Ginsburg, B., Hous-
ton, M., Kuchaiev, O., Venkatesh, G., and Wu, H. (2018). Mixed precision training. In
International Conference on Learning Representations.

Nguyen, T. H., Cho, K., and Grishman, R. (2016). Joint event extraction via recurrent neural
networks. In Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.
(2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365v2.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language
understanding by generative pre-training. Technical report, OpenAI.

Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., and Chadha, A. (2024). A systematic
survey of prompt engineering in large language models: Techniques and applications. arXiv
preprint arXiv:2402.07927.

Singh, A., Pandey, N., Shirgaonkar, A., Manoj, P., and Aski, V. (2024). A study of optimiza-
tions for fine-tuning large language models. arXiv preprint arXiv:2406.02290.

Singh, S. (2018). Natural language processing for information extraction. arXiv preprint
arXiv:1807.02383.

Tunstall, L., von Werra, L., and Wolf, T. (2022). Natural Language Processing with Transformers:
Building Language Applications with Hugging Face. O’Reilly Media, Inc.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

Walker, C., Strassel, S., Medero, J., and Maeda, K. (2005). Ace 2005 multilingual training
corpus. Linguistic Data Consortium.

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M., and Le, Q. V.
(2022a). Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., and Zhou,
D. (2022b). Chain-of-thought prompting elicits reasoning in large language models. arXiv
preprint arXiv:2201.11903.

Yang, S., Feng, D., Qiao, L., Kan, Z., and Li, D. (2019). Exploring pre-trained language models
for event extraction and generation. ACL anthology.

Zhang, S., Dong, L., Li, X., Zhang, S., Sun, X., Wang, S., Li, J., Hu, R., Zhang, T., Wu, F., and
Wang, G. (2024). Instruction tuning for large language models: A survey. arXiv preprint
arXiv:2308.10792v5.

55

REFERENCES

56

Appendices

57

Appendix A

Abbreviations

ACE Automatic Content Extraction

AI Artificial Intelligence

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

CNN Convolutional Neural Network

CPU Central Processing Unit

CR Coreference Resolution

EBS Elastic Block Store

EE Event Extraction

FFN Feed Forward Network

GPT Generative Pre-trained Transformer

GPU Graphics Processing Unit

IE Information Extraction

LLM Large Language Models

LoRA Low-Rank Adaptation

LSTM Long Short-Term Memory

ML Machine Learning

59

A. Abbreviations

MLM Masked Language Modeling

MLP Multi Layer Perceptron

NEL Named Entity Linking

NER Named Entity Recognition

NVMe Non-Volatile Memory Express

NLP Natural Language Processing

PEFT Parameter-Efficient Fine-Tuning

PML Pre-Trained Model

POST Parts-of-Speech Tagging

QLoRA Quantized Low-Rank Adaptation

RNN Recurrent Neural Network

RE Relation Extraction

ReLU Rectified Linear Unit

SFTTrainer Supervised Fine-Tuning Trainer

SLM Small Language Model

SOTA State of the Art

SSD Solid State Drive

TRL Transformer Reinforcement Learning

VRAM Video Random Access Memory

60

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-08-29

EXAMENSARBETE Leveraging Large Language Models for Event Extraction
STUDENT Jonathan Desnoyer
HANDLEDARE Pierre Nugues (LTH)
EXAMINATOR Jacek Malec (LTH)

Empowering Event Extraction Through
Next-Gen Language Models

POPULÄRVETENSKAPLIG SAMMANFATTNING Jonathan Desnoyer

In this thesis, we fine-tune three large language models, Mistral 7B, Phi-2 and Phi-3
on an event extraction dataset and compare their performance to the base models
using two-shot prompts.

Event extraction is a task that aims to identify
and extract event triggers and their associated
arguments from text. Most recent approaches
have focused on deep neural networks and the
transformer architecture. However, the emergence
of large language models (LLMs) and innovative
optimization techniques like low-rank adaptation
(LoRA) present new opportunities for advancing
event extraction.

With the recent advancements in generative AI,
the fine-tuning process has appeared as a way to
adapt LLMs on specific tasks. Rather than re-
training the entire model, parameter-efficient fine-
tuning (PEFT) methods have been developed to
be more resource efficient. These methods typ-
ically keep most of the model layers frozen and
modify a subset of layers. Nowadays, LoRA is the
most widely used approach, which approximates
weight matrices with low-rank matrices and only
alters a subset of the model’s parameters.

We have fine-tuned three different LLMs on an
event extraction dataset that consist of new arti-
cles with intra-sentence events. We use LoRA and
compare the results with the base models. The
three models have sizes varying from 2.7 billion pa-
rameters to 7 billion to evaluate the impact of size
on the performances. The models were fine-tuned
and evaluated on both document and sentence-

level to get a better understanding of the capabil-
ities of these new large language models.

We show that fine-tuning these models enhances
the results on both document and sentence-level
event extraction, with Mistral 7B outperforming
Phi-2 and Phi-3 on both levels. Document-level
extraction being a challenging task, reaching 0.329
and 0.089 F1-score against 0.576 and 0.316 for
sentence-level extraction on trigger and argument
extraction, respectively.

	Introduction
	Objective
	Research Questions

	Related Work
	Historical Context and Evolution

	Scientific Contribution

	Theoretical Background
	Natural Language Processing
	Word Embeddings
	Transformers
	Large Language Models Pre-Training
	In-Context Learning
	Fine-tuning
	Memory Optimization Techniques
	Models

	Event Extraction
	Information Extraction
	Event Extraction Task
	Deep Learning Approaches
	Large Language Models Approaches

	MultiMedia Event Extraction Dataset
	Overview
	Data Statistics
	Data Formatting
	Document Level Extraction
	Sentence-Level Extraction

	Method
	Overview
	Dataset Retrieval and Preparation
	Baselines
	Fine-Tuned Models
	Fine-Tuning Process Steps
	Infrastructure
	Libraries and Memory Optimization Techniques

	Training Configuration
	Evaluation
	Metrics
	Evaluation on the M2E2 dataset

	Results
	Document-Level Event Extraction
	Sentence-Level Event Extraction

	Conclusions
	Results Discussion and Limitations
	Fine-Tuning Large Language Models
	Considerations
	Resource Consumption and Environmental Impact
	Ethical Implications

	Conclusions
	Future Work

	References
	Appendix Abbreviations

