
EXPLORING FACTORS

INFLUENCING ON-BASE

PERCENTAGE IN MODERN

BASEBALL

HEIDAR GERGIS

Bachelor’s thesis
2024:K20

Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Bachelor’s Theses in Mathematical Sciences 2024:K20
ISSN 1654-6229

LUTFMS-4014-2024

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lu.se/

Exploring Factors Influencing On-Base
Percentage in Modern Baseball

Heidar Gergis

Abstract

This report uses highly detailed data from Statcast from the 2015–2023 sea-
sons to explore and identify the key factors influencing on-base percentage
in the American top league, Major League Baseball. On-base percentage is
simply the percentage of times a player gets on base, and can be achieved
in multiple ways. It is an important metric in baseball, as without getting
on base, you cannot score. Using machine learning techniques, we aim to
identify these factors and develop models with predictive power. This highly
detailed data, with tens of features and more than 1 million rows of tracked
events, was then used to develop and implement different machine learning
models, such as logistic regression and XGBoost. These models were trained
and then tested for performance that took into account the imbalance in the
data, such as the F2 score and area under the precision-recall curve (AUC-
PR). To aid in the interpretation of the models, SHAP (SHapley Additive
exPlanations) values were used to provide insight. Our results show that
the XGBoost models significantly outperform the logistic regression model
in terms of both F2 score and AUC-PR, achieving high scores of 90.50% and
95.82%, respectively. This can be contrasted with the respective 77.83% and
68.42% for the logistic regression model. We also find that the XGBoost
model can be greatly reduced with a feature-selected model, with less than
a third of the variables achieving near-identical scores (89.60% and 94.90%,
respectively). Feature importance and SHAP analysis showed that factors
such as hit location, launch angle, ball-strike count difference, and whether
contact was made were the most important and influential factors.

Table of contents

Acknowledgement 2

Glossary 3

1 Introduction 6
1.1 Introduction to Baseball . 6
1.2 The Rise of Statistical Analysis in Baseball 10
1.3 Problem Formulation . 11

2 Theory 13
2.1 Dimensionality Reduction Techniques 13

2.1.1 Principal Component Analysis (PCA) 13
2.1.2 Uniform Manifold Approximation and Projection

(UMAP) . 16
2.2 Binary Classification . 17
2.3 Statistical Models . 17

2.3.1 Logistic Regression . 17
2.3.2 Lasso Regularization 19
2.3.3 XGBoost . 21

2.4 Evaluation Metrics . 24
2.4.1 Accuracy, Precision, Recall, and F2 Score 24
2.4.2 Precision-Recall Curve and AUC 28

2.5 Model Interpretability . 28
2.5.1 Feature Importance 29
2.5.2 SHAP Values . 30

2.6 Model Optimization . 31

1

3 Method 37
3.1 Data Collection and Preparation 37

3.1.1 Data Source and Scope 37
3.1.2 Data Cleaning and Preprocessing 38
3.1.3 Feature Engineering 38
3.1.4 Handling Categorical Features 40
3.1.5 Handling Missing Values 41

3.2 Exploratory Data Analysis . 41
3.2.1 Overview . 41
3.2.2 Pitch Analysis . 42
3.2.3 Batted Ball Analysis 46
3.2.4 Correlation Analysis 52
3.2.5 PCA Implementation and Results 53
3.2.6 UMAP Implementation and Results 55
3.2.7 Conclusions from PCA and UMAP 56

3.3 Model Development . 57
3.3.1 Model Training and Evaluation 57

3.4 Model Evaluation and Interpretation 61
3.4.1 Performance Metrics 61
3.4.2 Feature Importance Analysis 61
3.4.3 SHAP Value Analysis 61

3.5 Tools and Libraries Used . 61

4 Results 63
4.1 XGBoost Feature Selection Results 63
4.2 Lasso Feature Selection Results 64
4.3 Model Performance Results 65

4.3.1 Confusion Matrices . 65
4.3.2 Performance Metrics 65
4.3.3 Precision-Recall Curve and AUC-PR 66

4.4 Feature Importance Results 68
4.5 SHAP Results . 69

5 Discussion 74
5.1 Insights for Baseball Strategy 74
5.2 Limitations & Future Opportunities 75

References 76

2

Appendices 81

A Appendix 81
A.1 Statcast CSV documentation 81
A.2 UMAP Explanation . 86
A.3 XGBoost Mathematical Details 88
A.4 Hyperparameter Tuning Results 89

3

Acknowledgement

I would like to express gratitude to my supervisor, Dr. Linda Hartman, for
her guidance and flexibility in the course of this project, allowing me to
balance this thesis with my job. I would also like to thank my girlfriend Lisa
and my family, for their support throughout this degree project.

4

Glossary

At bat (AB): The batter’s turn at batting

AUC-PR: Area Under the Precision-Recall Curve, a performance measure-
ment for classification problems at various thresholds.

Ball: A pitch outside the strike zone that the batter does not swing at.

Barrel: A batted ball with the optimal combination of exit velocity and
launch angle, typically resulting in high-quality contact.

Base: The four points that the batter must touch to score a run, numbered
in the order they are placed

Batter: The player up to bat

Batting average (AVG): The number of hits divided by the total number
of at-bats, typed as a decimal between .000 and 1.000

Double (2B): A hit where the batter reaches second base.

F2 score: A measure of predictive performance that places more emphasis
on recall than precision.

Fielding alignment: The positioning of defensive players on the field.

Foul ball: A ball hit outside the foul lines.

Foul lines: The two lines that meet at a 45 degree angle and are the bound-
aries of play-

Hard hit: Any ball hit harder than 95 mph (153 km/h).

Hit (H): When a batter makes contact with the ball and reaches base safely.

5

Hit by pitch (HBP): When the batter gets hit by the ball. Allows free
passage to first base.

Home run (HR): A hit between the foul lines and over the center-field
fence. Allows the batter and any runners to circle the bases and score
runs.

Inning: One turn for each team to both bat and field. A baseball game is
comprised of 9 innings.

Launch angle: The vertical angle at which the ball leaves the bat after
being hit.

Launch speed: The speed at which the ball leaves the bat after being hit,
also known as exit velocity.

LIPS (Late Inning Pressure Situation): A situation in the 7th inning
or later where the team is either ahead by one run or behind by three
runs or fewer.

Logistic Regression: A statistical method for analyzing a dataset in which
there are one or more independent variables that determine an out-
come.

On-base percentage (OBP): Refers to how frequently a batter reaches
base per plate appearance.

Out (O): When the fielding team retires a batter or runner, they lose the
ability to score a run until their next turn at bat.

Pitcher (P): The player who throws the ball to the batter.

RISP (Runners in Scoring Position): Runners on second or third base,
considered in scoring position because they can typically score on a
single.

Run (R): A point scored by a player who advances around all the bases
and returns safely to home plate.

Runner: Players on base.

Scoring position: Defined as being on second or third base. It is called
scoring position as one can score on a single which is usually impossible
to do from first base.

6

SHAP (SHapley Additive exPlanations): A game theoretic approach
to explain the output of any machine learning model.

Single: A hit where the batter reaches single base.

Spray angle: The horizontal angle of the ball when contact is made.

Statcast: A tracking technology that allows for the collection of highly de-
tailed data on various aspects of the game, including pitch velocity,
spin rate, and batted ball metrics.

Strike: A pitch inside the strike zone or any pitch that the batter swings
at.

Strikeout (K): When the batter gets three strikes at an at bat. The batter
is then out.

Strike zone: An imaginary box with the width of the home plate and the
height is defined as from the hollow beneath the kneecap to the mid-
point between the batter’s shoulders and the top of the uniform pants

Sweet spot: Any ball hit at a launch angle between 8 and 32 degrees.

Triple (3B): A hit where the batter reaches third base.

Walk (BB): A walk (or base on balls) occurs when a pitcher throws four
pitches out of the strike zone, none of which are swung at by the hitter.
Awards free passage to first base.

XGBoost: eXtreme Gradient Boosting, a tree-based machine learning algo-
rithm.

7

Chapter 1

Introduction

1.1 Introduction to Baseball
Baseball is one of America’s most popular sports. Having been created in the
1800s, it has grown to be a global sport with players and leagues in countries
in East Asia, and the rest of North America [Nielsen Company, 2023].

It is a sport that is different from others in that it does not have a game
clock and play is not continuous; rather, the game consists of discrete events
called plate appearances.

Baseball is played on a field, often called the diamond.

In Figure 1.1 one can see the layout of a baseball field. It consists of an
infield that is a square with sides of 90 feet (27.4 m) with bases on each
corner. This square is covered in grass. The area just outside this square,
known as the edge of the infield, is composed of sand. Beyond the infield is
the outfield, a large grass area that is the end of the field. The boundaries
of play are the foul lines, which extend from home plate at 45-degree angles
all the way to the poles on each end, the left-field and right-field poles. This
forms a 90-degree area within these foul lines. The last boundary of play is
the center-field fence between the two foul poles. The minimum distances
shown in the image are due to the fact that each baseball field can look
different with different boundaries. It is preferred that the fields fulfill the
requirements set forth, with distances of at least 325 ft (99 m) for the foul

8

Figure 1.1: Dimensions of a baseball field [Marca, 2022]

lines, and the furthest point of the center-field fence must be more than 400
ft (122 m) from home plate. However, these rules are not strictly enforced,
as long as the boundary dimensions are close to these values [Burnes et al.,
2024]. This results in baseball fields with differing dimensions, as Figure 1.2
shows the different dimensions of two of the baseball fields in use.

The sport is played between two teams, each with nine players. The goal is
to score more runs than the other team. To score a run, a player, the batter,
must essentially hit the ball into play and traverse the bases in counterclock-
wise fashion. The ball must be hit between the two foul lines; otherwise, it
is called a “foul ball”. The batter starts at home plate, where the pitcher
on the fielding team, standing on the pitcher’s mound approximately 18.5 m
away, throws a ball that the batter tries to make contact with. The event is
called a plate appearance. The pitcher’s goal is to throw the ball toward the
strike zone so that the batter cannot hit it. The strike zone, as displayed in
Figure 3.4, is an imaginary box with the width of the home plate, and the
height is defined as from the hollow beneath the kneecap to the midpoint
between the batter’s shoulders and the top of the uniform pants [Burnes et
al., 2024].

9

Figure 1.2: The different field dimensions of two baseball fields [Schaul, 2023].

10

Figure 1.3: Image with a drawing of the strike zone superimposed [Chan,
2008].

A pitch thrown through this area is called a strike. A pitch thrown anywhere
that the batter swings and misses is also called a strike. A foul ball is
also called a strike, but only if it is the first or second strike. If a batter
accumulates three strikes, then they are called out; this specific type of out
is called a strikeout. If the ball is thrown outside the strike area without the
batter swinging at it the pitch is called a ball. If the pitcher accumulates
four balls, then the batter gets to walk freely to first base, this is referred to
as a walk or bases on balls. Also, if the batter gets struck directly by a pitch;
this is a hit by pitch, and the batter again gets to walk freely to first base.

If and when the batter hits the ball into play, he must then drop the bat and
run toward first base. At this point, he becomes a runner. If he reaches the
first base before an opponent touches the base with the ball in their hand,
the runner is safe. Doing this successfully is called getting a single. And if
the batter makes it to second base as a result of the play, that is called a
double, and reaching third base as a direct result of the play is called a triple.
If the batter hits the ball between the foul lines and over the center-field
fence, this is called a home run, and the batter and any runner on base get
to freely circle the bases and score runs for their team. These four events;

11

single, double, triple, and home run are all collectively referred to as hits, not
to be confused with the word hit, as in “hitting the ball”.

The fielding team tries to prevent this by getting outs. As previously men-
tioned, three strikes equal an out,but there are other ways of getting outs. If
the ball is caught in the air the batter will be out. If they are tagged with
the ball whilst running between bases then they are out. There are more
ways to be called out, but they are rare and out of the scope for this report.
When the batter is out, he leaves the field and waits until his turn to bat is
up again. Once the defense has made three outs, the teams switch sides and
the fielding team bats and vice versa. When both teams have batted, this is
called an inning. Baseball is typically played over nine innings.

There are no ties, so if the score is even at the end of these nine innings,
extra innings are played until a winner is decided. Baseball does not utilize
a game clock. The game is over only after nine innings, however long that
may take. There is no way to waste time to run out the clock, a team has to
make 27 outs and outscore their opponent to win [Burnes et al., 2024].

1.2 The Rise of Statistical Analysis in Base-
ball

This, coupled with the fact that play comes at these discrete chunks of plate
appearances, makes the sport very apt for statistical analysis. Baseball is
perhaps the sport with the most statistics and has led the way in sports in
using statistics and analytics to guide decisions on squads and game tactics.
Other sports, like football, are continuous matches where it is more difficult
to extract distinct events. But baseball, like “brännboll” or rounders, which
you may have played as a child, is made up of events where one person comes
up and tries to hit a ball with a piece of wood thrown by a pitcher. Then
the next person comes up and tries to do the same thing. These discrete
events make it easier to keep statistics and have also led to many statistical
measures such as batting average and on-base percentage, and more advanced
statistics such as wins above replacement (WAR), which attempts to quantify
the amount of wins a player generates compared to a replacement level player
[McLeod, 2023].

This is aided by the fact that since 2015, all stadiums in the American top

12

league, Major League Baseball now have radar, lidar, and optical tracking
systems installed that track plays with high accuracy. The system allows
for tracking with very high precision, everything from pitch speed to launch
angle to hit distances. This change is so significant that the time since is
often referred to as the Statcast era and has started what some in the sport
have called an “arms race” of data analysis [A. Chen, 2016].

1.3 Problem Formulation
The most commonly used metric for offensive success for most of the 20th
century was the batting average. The batting average is defined as the num-
ber of hits divided by the total number of at-bats. At-bats do not include
all the batter’s appearances at the plate. Some events, like walks and hit
by pitches, do not count toward at-bats. At-bats are intended to be plays
in which the batter tries to put the ball in play, thus the omission of some
events as mentioned above. However, batting average does not take into
account other ways of reaching base outside of hits, such as walks. With
the rise of statistical analysis in the sport, it was realized that often it was
reaching base that was important, not how you reach base. If you can not
get on base, you can not score runs. However, you could score runs without
hits. And even though more and more complex metrics are being used, a
simple one that is highly valued by statistical professionals in the field is
on-base percentage (OBP) [Knight, 2009]. On-base percentage is simply the
rate at which a batter reaches base per plate appearance. This simplifies the
actual calculation a bit because not all plate appearances are included in the
calculation. The actual calculation for OBP is:

𝐻 + 𝐵𝐵 + 𝐻𝐵𝑃
𝐴𝐵 + 𝐵𝐵 + 𝐻𝐵𝑃 + 𝑆𝐹 (1.1)

where

H = hits

BB = walks

HBP = hit by pitches

AB = at bats

13

SF = sacrifice flies

The denominator is very similar to plate appearance but does exclude certain
infrequent events that the batter can not affect but would negatively affect
the OBP. What is often explored with OBP is its effect and correlation to
scoring runs, but it is not often explored what factors and variables influence
and affect a player’s and the sport as whole, OBP. Therefore, the goal of this
report is to investigate and explore these factors with the aid of statistical
analysis. This thesis aims to identify the key metrics that impact OBP and
getting on base. As a lot of different events are included in the calculation
for on-base percentage, building a predictive model can be challenging, but
it is the goal of this thesis to build a model that can also have predictive
power.

14

Chapter 2

Theory

2.1 Dimensionality Reduction Techniques
Dimensionality reduction is a highly desirable technique for statistical models
of large sizes and high dimensionality. Without dimensionality reduction or
feature selection, we risk overfitting data and having a model that is too
complex for the task at hand. Such a model will not perform well on new
unseen data. We also risk the curse of dimensionality. This refers to the fact
that after a certain number of dimensions, a model’s predictive power will
decrease rather than increase [Altman & Krzywinski, 2018].

Dimensionality reduction can be achieved within the process of fitting a pre-
diction model, e.g. using LASSO regression (see Section 2.3.2). Dimension-
ality reduction techniques can, however, also provide valuable early insights
about the data and are often performed as part of the exploratory data anal-
ysis. There are many techniques that can be applied in the case of dimen-
sionality reduction, but two common ones are Principal Component Analysis
(PCA) and Uniform Manifold Approximation and Projection (UMAP).

2.1.1 Principal Component Analysis (PCA)
Principal Component Analysis (PCA) is perhaps the most popular technique
for reducing dimensionality. The idea with PCA is to create new variables
that are linear combinations of the original variables, such that these new

15

variables explain most of the variance. These new variables are called princi-
pal components, and they are ordered so that the first principal component,
denoted PC1, explains most of the variance, PC2 explains the second most,
and so on. Worth noting is that PC2 is in the direction perpendicular to PC1,
and PC3 is in the direction perpendicular to PC1, PC2 et cetera. An example
of PCA and the first two principal components can be seen in Figure 3.11.

Figure 2.1: An example plot of data with the first two principal components
overlaid [Ngo, 2018].

If we consider a dataset X with 𝑝 features, where 𝑋𝑝 is the 𝑝-th feature, PCA
then represents a change of basis to Z with 𝑚 features where 𝑚 < 𝑝 so for
the i-th principal component we get:

Z𝑖 = 𝜙𝑖1𝑋1 + 𝜙𝑖2𝑋2 + ⋯ + 𝜙𝑖𝑝𝑋𝑝

where 𝜙𝑖𝑗 are the weights for each X-variable in the newly created Z-basis. To

16

create the principal components that aim to maximize the variance explained,
the covariance matrix is used [Shlens, 2014]. First the data is centered and
scaled. Then the estimated covariance matrix C, a 𝑝×𝑝 matrix is calculated:

C = 1
𝑛X𝑇 X

On C eigendecomposition is performed to find both the eigenvalues and
eigenvectors. The eigenvectors of the covariance matrix are the principal
components and each eigenvalue represents the variance explained by the
eigenvector. Since covariance matrices are symmetric, the eigenvectors are
orthogonal to each other which is desired and the eigendecomposition be-
comes C = PDP𝑇 where P are the eigenvectors and D is a diagonal matrix
of the eigenvalues 𝜆1, 𝜆2 … , 𝜆𝑝. The eigenvalues and eigenvectors are ordered
so that:

𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯ ≥ 𝜆𝑝

Since the maximum number of eigenvalues for a 𝑝 × 𝑝 matrix is 𝑝, and we
have 𝑝 features, the sum of the eigenvalues

𝑝
∑
𝑖=1

𝜆𝑖 (2.1)

explain all the variance in the dataset. However, if we choose to project the
data onto a subset 𝑀 of the eigenvectors where 𝑀 < 𝑝, then the retained
variance can be written as:

𝑀
∑
𝑖=1

𝜆𝑖 (2.2)

This means that the retained variance can also be expressed as a percentage
of the total variance:

%𝑣𝑎𝑟 = ∑𝑀
𝑖=1 𝜆𝑖

∑𝑝
𝑖=1 𝜆𝑖

⋅ 100 (2.3)

17

This allows us to choose the number of principal components to retain based
on the percentage of variance we want to retain, generally this is set to 90-
95%. If the PCA is successful, then we can retain the vast majority of the
information with only a fraction of the complexity. However, PCA is a linear
dimensionality reduction technique it relies on the model being linear and
having linear correlations so if the linearity stipulation is not met, then PCA
will not work and other techniques should be considered. Other techniques
should also be considered if the majority of the variance is not captured by
the first few principal components [Dong & McAvoy, 1996].

2.1.2 Uniform Manifold Approximation and Projec-
tion (UMAP)

One dimensionality reduction technique for non-linear data is Uniform Man-
ifold Approximation and Projection, or UMAP. It is a popular technique for
complex and high-dimensional datasets with non-linear structures. It was
created by Leland McInnes et al. in 2018 and excels in speed and efficiency
compared to other techniques for non-linear data. The aim is to preserve
both the local and global structures of the data [McInnes, 2018].

As the term manifold indicates, UMAP uses ideas from the field of mani-
fold learning and topology. A manifold is a topological space that resembles
Euclidian space locally, like how a sphere locally and zoomed in looks like
a flat plane. In this context, this is essentially describing high-dimensional
data with a representation of lower dimensionality [Britannica, 2024]. The
mathematical details, however, are complex and beyond the scope of this the-
sis. Instead, we will focus on the ideas and intuition behind UMAP. UMAP
constructs an initial graph representation of the data, where each data point
is a node and nodes are connected to each other according to some distance
metric. This representation is high-dimensional. The graph is then used to
optimize a low-dimensional graph to be, structurally, as similar as possible
to the initial high-dimensional graph representation. A more in-depth expla-
nation of UMAP with the mathematical details can be found in Section A.2.

For a dataset as large and complex as ours, with non-linear relationships
between the features, UMAP is a powerful technique to find low-dimensional
representations and reduce the dimensionality without compromising predic-
tive performance. It is also rather fast and efficient, even with large datasets.

18

In this project, UMAP and PCA will be used as tools for exploratory data
analysis as the reduction from a high-dimensional to a low-dimensional space
while preserving the local and global structures of the data will allow us to
identify clusters, patterns and relationships that may not be visible in the
original data.

2.2 Binary Classification
Whether an event resulted in an on-base appearance or not is a binary clas-
sification problem. Binary classification problems are about estimating the
probability that an event, 𝑌 , occurs or not. The two possible events of 𝑌 are
often encoded as either 0 or 1 where 1 is the positive class and 0 is the non-
positive class. In our case, 1 is that an event resulted in the hitter getting
on base 𝑝(𝑥) = 𝑃 (𝑌 = 1|𝑋 = 𝑥).

2.3 Statistical Models
2.3.1 Logistic Regression
Logistic regression is one of the most commonly used binary classification
methods and the logistic function it uses was developed in France in the
1830s and 1840s [Cramer, 2003]. Its use is facilitated by its ease of imple-
mentation and the interpretability it provides. To show its properties we
can start with the classification problem itself. As previously mentioned, bi-
nary classification is trying to predict the outcome of a two-class categorical
outcome and the probability of an event resulting in the positive class. Let

𝑝(𝑥) = 𝑃(𝑌 = 1|𝑋 = 𝑥)

We could create a model to outright predict 𝑝(𝑥) but the probability is re-
stricted to the range of 0 to 1 and with such a limited range it would be
difficult to identify how the function would behave with a small change in
one or more of the predictors. Instead, it is better to consider odds. We
can write the odds, the probability of an event occurring compared to the

19

probability of an event not occurring as:

odds = 𝑝(𝑥)
1 − 𝑝(𝑥) (2.4)

Taking the natural logarithm of the odds, results in log-odds or logit. In
logistic regression the logit is

logit(𝑝(𝑥)) = ln 𝑝(𝑥)
1 − 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥1 + … + 𝛽𝑝𝑥𝑝 = 𝛽𝑇 𝑋 (2.5)

The logit transformation is easier to work with than the probability function
as it may provide a linear relationship between the log-odds of an event and
the predictors. This is useful as it allows us to use the same principles as
linear regression models to estimate the coefficients, and we can also interpret
the coefficients of the predictors easily as the change in log-odds per unit of
increase in the predictor [Nahhas, 2024].

It is straightforward to derive the probabilities again from the logit function
when it is time to interpret the results of the function:

𝑝(𝑥) = 𝑒𝛽𝑇 𝑋

1 + 𝑒𝛽𝑇 𝑋
(2.6)

The result is the so-called logistic function. It can take any real input 𝑡 =
𝛽𝑇 𝑋𝑖 and output a value between 0 and 1 which means that is well suited
for the task of binary classification, as Figure 2.2 shows.

To estimate the parameters of the logistic function maximum likelihood es-
timation is used. As the name suggests, the objective is to maximize a
likelihood function 𝐿(𝛽) by estimating a parameter vector ̂𝛽. We want to
maximize the conditional probability of the event occurring given the predic-
tors. So for samples labeled as 1 we want to estimate ̂𝛽 such that 𝑝(𝑋) is
as close to 1 as possible and for samples labeled as 0 it is as close to 0 as
possible. We define 𝑥𝑖 as the vector of features for the 𝑖-th observation, 𝑦𝑖 as
the binary outcome for the 𝑖-th observation, and 𝑠 is the set of observations.

20

Figure 2.2: The logistic function.

So for N samples we get:

𝐿(𝛽) = ∏
𝑠∈𝑦𝑖=1

𝑝(𝑥𝑖) × ∏
𝑠∈𝑦𝑖=0

(1 − 𝑝(𝑥𝑖))

= ∏
𝑠

𝑝(𝑥𝑖)𝑦𝑖 × (1 − 𝑝(𝑥𝑖))1−𝑦𝑖

𝑙(𝛽) =
𝑁

∑
𝑖=1

(𝑦𝑖 ln 𝑝(𝑥𝑖) + (1 − 𝑦𝑖) ln(1 − 𝑝(𝑥𝑖)))

(2.7)

where 𝑙(𝛽) is the log-likelihood function [Nguyen, 2020]. In practice however,
one often tries to minimize the negative log-likelihood function:

−𝑙(𝛽) = −
𝑁

∑
𝑖=1

(𝑦𝑖 ln 𝑝(𝑥𝑖) + (1 − 𝑦𝑖) ln(1 − 𝑝(𝑥𝑖))) (2.8)

2.3.2 Lasso Regularization
Standard logistic regression only seeks to maximize the likelihood function
and therefore it might find an optimal solution for the training set but that
turns out to be a poor solution for the test set, thus the model would be

21

overfitting [Brain & Webb, 2002]. It is desirable to instead find a solution
that decreases variance and that results in perhaps a worse performance on
the training set but generalizes better to the test set and unseen data. This
is the objective of regularization. Regularization adds a penalty term to the
loss function and aims to discourage the model from fitting the training data
too closely and to discourage the model from assigning too much weight to
individual coefficients for the predictors.

There are different regularization methods, but Lasso which stands for Least
Absolute Shrinkage and Selection Operator is the one we will use. Lasso
adds a penalty term that is based on the absolute value of the coefficients
and aims to minimize:

𝑙𝐿𝑎𝑠𝑠𝑜(𝛽) = −𝑙(𝛽) + 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗| (2.9)

where 𝜆 is a tuning parameter that controls the regularization strength, and
𝑝 is the number of features. The larger the value of 𝜆 the more penalized
the coefficients will be and when 𝜆 = 0 the model is the same as standard
logistic regression.

An added benefit of Lasso regularization that will be especially beneficial for
identifying important factors influencing on-base percentage is that because
of the way the penalty term is set up, it can shrink coefficients all the way to
0. This means that Lasso has built-in feature selection, the coefficients being
0 being removed from the model[Galli, 2022]. The feature selection occurs
because the Lasso penalty introduces that sharp corners in the constraints
where one or more the coefficients are 0, which can be seen in Figure 2.3.

With Ridge regression the penalty term added is based on the squared values
of the coefficients:

𝑙𝑅𝑖𝑑𝑔𝑒(𝛽) = −𝑙(𝛽) + 𝜆
𝑝

∑
𝑗=1

𝛽2
𝑗

This created the circular constraints as the figure above shows. The coef-
ficients shrink toward zero but because of the geometry of the constraints,
they rarely reach zero.

For the baseball analysis, this is the reason why Lasso’s properties are par-
ticularly useful. With a large number of predictors, it provides a way to

22

Figure 2.3: Figure illustrating the difference between Ridge and Lasso, show-
ing where the loss function is minimized at one of the corners [Haben et al.,
2023].

identify important factors while still using a simple and interpretable model.

2.3.3 XGBoost
XGBoost was created in 2016 [T. Chen & Guestrin, 2016]. Since then, XG-
Boost has been one of the most popular machine learning libraries and im-
plementations of the library has won numerous machine learning competi-
tions [DMLC, 2023]. Its popularity and design makes it suitable for high-
dimensional data and complex datasets. XGBoost stands for eXtreme Gradi-
ent Boosting and is a regularized gradient boosting decision tree framework.
To understand XGBoost, it is therefore important to understand these terms
and the concepts behind them.

At its core, XGBoost uses decision tree models. Decision trees predict the
output by evaluating a hierarchical structure of if/else-statements, that is to
say they evaluate trees with nodes branching out into two branches. These
branch all the way down to the so-called leaf nodes that represent the pre-
diction. Decision trees can be used both for classification and regression
problems [Quinlan, 1986]. The tree structure of the model makes it easy to
produce graphical representations that make them intuitive and simple to
understand, as shown in Figure 2.4.

23

Figure 2.4: A decision tree showing survival probability of passengers on
the Titanic depending on the answers to these if/else-statements [Gilgoldm,
2020].

A single decision tree however, can be non-robust and sensitive to changes in
the training data. This is due to small variations leading to larger changes
to the decision tree itself. Thus, minor changes can drastically affect the
model’s performance. Therefore ensemble methods are often used. Ensem-
ble methods combine multiple algorithms to create a a single model that is
more robust and creates stronger productive models. One method is called
boosting. Boosting is a type of method that builds “weak learners” itera-
tively, with each subsequent learner using the previous learners’ residuals
to fit the next learner. In this context, a weak learner is machine learning
algorithm that performs slightly better than just guessing randomly. The
idea can be illustrated and seen in Figure 2.5.

Gradient boosting refers to the method of boosting but where the adding of
new learners is governed by a gradient descent algorithm over an objective
function. The eXtreme in XGBoost’s name is to underscore that this a
different and advanced implementation of gradient boosting. As previously
stated, XGBoost is regularized which means that it uses regularization. It
aims to minimize the following objective function:

24

Figure 2.5: An illustration of boosting [Sirakorn, 2020].

Obj(𝜃) = 𝐿(𝜃) + Ω(𝜃) (2.10)

Here 𝜃 is the model parameters, Ω(𝜃) is the regularization term and 𝐿(𝜃) a
loss function. A tree ensemble model can be defined as:

𝑝𝑖 =
𝐾

∑
𝑗=1

𝑓𝑗(𝑥𝑖), 𝑓𝑘 ∈ ℱ (2.11)

where 𝑝𝑖 is the predicted output for the 𝑖-th instance, K is the number of
trees created, 𝑓𝑗 is an individual tree in the function space ℱ, where ℱ is
the set of possible trees. We let 𝑝𝑖 be 𝑝(𝑡)

𝑖 where 𝑡 referes to the 𝑡-th iteration
of the 𝑖-th instance. We also add 𝑓𝑡 to minimize the objective. For a dataset
with 𝑚 features and 𝑛 observations this results in:

Obj(𝑡) =
𝑛

∑
𝑖=1

𝐿(𝑦𝑖, 𝑝(𝑡−1)
𝑖 + 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) (2.12)

From this, we can derive the optimal score of:

Obj(𝑡) = −1
2

(∑𝑖∈𝐼𝑗
𝑔𝑖)2

∑𝑖∈𝐼𝑗
(ℎ𝑖 + 𝜆) (2.13)

25

where 𝑔𝑖 and ℎ𝑖 are first two coefficients in the Taylor approximation of
𝐿(𝑦𝑖, 𝑝(𝑡−1)

𝑖) and 𝜆 is a penalty term that controls the regularization strength.
For the derivation of the optimal score, see Section A.3.

It is not practical to compute all possible trees, so XGBoost uses a greedy al-
gorithm to calculate the gain in score for the leaf after the split into instances
𝐼𝐿 and 𝐼𝑅 (the left tree and right tree respectively). That the algorithm is
greedy means that it will make the locally optimal choice at each step. We
let 𝐼 be the root node, then the gain is calculated as:

Gain = 1
2 [

(∑𝑖∈𝐼𝐿
𝑔𝑖)2

∑𝑖∈𝐼𝐿
(ℎ𝑖 + 𝜆) +

(∑𝑖∈𝐼𝑅
𝑔𝑖)2

∑𝑖∈𝐼𝑅
(ℎ𝑖 + 𝜆) −

(∑𝑖∈𝐼 𝑔𝑖)2

∑𝑖∈𝐼(ℎ𝑖 + 𝜆)] (2.14)

If the value is positive the left split is kept, if the value is negative the right
split is kept, if the value is 0 then the tree is grown on both sides [T. Chen
& Guestrin, 2016].

The optimizations mentioned, such as the greediness and using the second-
order Taylor approximation, are the reason why XGBoost is so efficient and
performs well even with large datasets. Furthermore, unlike standard gradi-
ent boosting or other tree-based algorithms such as Random Forest, XGBoost
includes regularization, which is what we are seeking from Lasso with logistic
regression. These properties, and other optimizations that serve to increase
speed and efficiency makes XGBoost a promising candidate for the statistical
model selection.

2.4 Evaluation Metrics
2.4.1 Accuracy, Precision, Recall, and F2 Score
There is a plethora of evaluation metrics that can be used to judge the
performance of a model in a binary classification task.The most common
ones are the accuracy, precision, recall. These metrics can all be derived
from a confusion matrix, which is a table that shows the performance of the
model by its predictions. It is a 2x2 table where the rows show the predictions
and the columns show the true values, see Figure 2.6 for an example.

The true positives are the correctly predicted positives, that is the positive
class. The true negatives are the correctly predicted negatives. The false

26

Figure 2.6: How a confusion matrix works [Ahmed, 2023].

27

positives are the negatives that get incorrectly predicted as positives and vice
versa for the false negatives [Powers, 2020]. In the case of on-base events this
would result in:

• True positives (TP): the number of on-base events that are correctly
predicted as on-base.

• True negatives (TN): the number of on-base events that are correctly
predicted as not on-base.

• False positives (FP): the number of on-base events that are incorrectly
predicted as on-base.

• False negatives (FN): the number of on-base events that are incorrectly
predicted as not on-base.

The accuracy is perhaps the most common one and is written as:

Accuracy = TP + TN
TP + TN + FP + FN (2.15)

We can see that accuracy is a measure of how well the model correctly clas-
sifies the data. However, as we will see later, the dataset to be used is
imbalanced and accuracy can be misleading in those cases. As an extreme
example, if we have a dataset with one class making up 99% of the data a
model could get 99% accuracy just by predicting the majority class for every
prediction.

Given the limitations, we need to look to other metrics that can be more
useful and relevant. Thus, we introduce precision and recall.The precision
and recall are defined as:

Precision = TP
TP + FP

Recall = TP
TP + FN

(2.16)

From the equations above it is clear that precision is the ratio of true positives
to all items that were predicted as positives while recall is the ratio of true
positives to all actual positives. In the context of this baseball analysis,
precision reveals the share of on-base predictions that are correct while recall

28

Figure 2.7: Confusion matrix for on-base event classification, with precision
and recall for this task added.

reveals the share of actual on-base events that are correctly predicted. A
more visual example of this can be seen in Figure 2.7.

Both metrics are relevant for imbalanced data but they should not be used
in isolation. For instance, a model that always predicts the positive class will
have a recall of 100% and conversely a model that is very selective and only
predicts almost certain positive events will have a precision of 100%. The
motivation for using both metrics is then that this will give a balanced view
of the model’s performance as the relationship between them is often inverse,
an increase in one is often associated with a decrease in the other. For us,
it is more important to correctly identify on-base events but we also want
to have a model with predictive power and that can provide insights [Abma,
2009].

With these preferences in mind, we turn to a metric that combines precision
and recall while focusing on recall. This metric is called the F2 score:

𝐹2 = 5 Precision ⋅ Recall
4 ⋅ Precision + Recall (2.17)

F2 is part of the F-score family and the 2 signifies that this variant places
twice as much weight on recall as precision which aligns well with our goals
and preferences of identifying on-base events while maintaining a high pre-

29

dictive power. We see this in Equation 2.17. There, the multiplication of
the precision with 4 decreases its relative impact to recall. It is a measure
that is well-suited for imbalanced data and for when including more false
positives than false negatives is preferred [Van Rijsbergen, 1979]. Thus, the
F2 score will be the main metric used for performance evaluation. However,
precision and recall are important and useful metric and will also be reported
to present a more complete picture of model performance.

2.4.2 Precision-Recall Curve and AUC
To aid evaluation performance and interpretation it is useful to include metric
visualizations. As we are using precision and recall, a precision-recall curve
or a PR-curve is appropriate. It is constructed by plotting the precision on
the y-axis and the recall on the x-axis for different thresholds of classify-
ing predicted probabilities to binary outcomes. For instance, a threshold of
0.5 dictates that probability scores of greater than or equal to this will be
classified as positives while those below will be classified as negatives. The
PR-curve illustrates the aforementioned trade-off between precision and re-
call for a given model, see Figure 2.8 for an example. It is also useful for
evaluation of different models through the comparison of the Area Under the
Curve (AUC). The AUC-PR is the area under the PR-curve and the model
with the highest AUC-PR has the best performance as it indicates both high
precision and high recall. The maximum area under the curve is 1 while the
lowest is 0. Thus, a perfect model would have an AUC-PR of 1 for example
[Czakon, 2024].

2.5 Model Interpretability
With machine learning models becoming more and more complex, inter-
pretability of the models often becomes increasingly lost. Advanced algo-
rithms that can capture non-linear relationships, are often referred to as
black-box models where results are obtained without any explanation of how.
For example, if one compares decision trees to more advanced tree-based al-
gorithms such as the aforementioned XGBoost, the difference becomes stark.
Decision tree algorithms output a single tree structure with easily understood
decisions and is therefore easier to interpret. XGBoost, however, while often
achieving higher accuracy and better performance outputs a model that is

30

Figure 2.8: A plot showing two different models with corresponding PR-
curves and their AUC-PR [Eban et al., 2017].

much more complex. Instead of a single tree, one has to navigate through
hundreds or thousands of trees in sequence without clear and cut rules to
follow. In many fields, accuracy is not the only metric that is evaluated and
instead interpretability is a key factor [Molnar, 2022]. This is especially true
for fields that are subject to so-called right to explanation regulations, such
as healthcare and finance where an individual has a right to know why a
decision was made. This right to explanation is now a law in the European
Union with the General Data Protection Regulation (GDPR) [Vollmer, 2023].
In the case of baseball analytics, any model needs to be able to provide ac-
tionable insights to coaches and managers and other team staff. With the
need for interpretability, there are tools to aid this goal and some of these
will be introduced and delved into.

2.5.1 Feature Importance
Feature importance, or variable importance as it sometimes is called, ranks
the features of a dataset by how well they aid in predicting the outcome. For
linear methods such as logistic regression, when features are standardized

31

and scaled, this is straightforward as the coefficients for the features directly
represent the importance each feature has. XGBoost has built-in methods
for feature importance, with gain (see Equation 2.14) being the default one
[XGBoost, 2022].

The feature importance method then uses the average gain across all splits to
determine an importance score, with higher scores more important. For our
analysis, this allows us to identify the most important factors influencing on-
base percentage. Potentially, we can also use this to simplify the model and
remove features that are unimportant without sacrificing the predictive power
of our model. There are however some caveats that introduce limitations
to feature importance through XGBoost. The first and perhaps biggest is
that feature importance does not show how the factors influence the model,
whether they increase the likelihood of an event getting the batter on base
or decrease it. Another one is that feature importance only offers a high-
level global view of the impact features contribute and does not include
information regarding feature interactions. To gain more insight and increase
interpretability, we will therefore also look at SHapley Additive exPlanations
(SHAP) values.

2.5.2 SHAP Values
SHAP values aim to explain the output of machine learning models. SHAP
has its roots in game theory and Shapley values. Shapley values were in-
troduced in 1951 by Lloyd Shapley and this concept won him the Nobel
Memorial Prize in Economic Sciences [Nobel Prize Outreach, 2024]. The
concept is used in cooperative game theory to fairly divide the payoff of a
game between the players and the resulting Shapley values is the expected
marginal contribution for a specific player 𝑖. This can be written in pseudo
mathematical notation as:

𝜙𝑖(𝑣) = 1
of players ∑

S excl. i

marginal contribution of i to S
number of coalitions excluding i of size |S|

(2.18)

where S is a coalition of players.

In 2017 this concept was extended to the field of machine learning with a

32

paper by Scott Lundberg and Su-In Lee called “A Unified Approach to In-
terpreting Model Predictions” where SHAP values were introduced. SHAP
values reframed the concept from game theory to machine learning. Instead
of calculating the contributions of players to a coalition, SHAP values calcu-
late how features contribute to a prediction. For a specific instance 𝑖, where
instance refers to a single data point, the SHAP values then become the
difference between the average output of the model and the output of the
model for 𝑖 distributed over the features [Lundberg & Lee, 2017]. Thus, they
quantify how much the presence of a feature 𝑗 contributes to a prediction.
A positive SHAP value indicates that the feature 𝑗 increases the prediction,
while a negative value indicates that the feature 𝑗 decreases the prediction.
The resulting formula for a single prediction becomes:

𝑓(𝑥𝑖) = 𝔼[𝑓(𝑋)] +
𝑚

∑
𝑗=1

𝜙𝑖𝑗 (2.19)

where 𝑓(𝑥𝑖) is the output of the model for that instance, 𝔼[𝑓(𝑋)] is the
expected output for all instances, 𝜙𝑖𝑗 is the SHAP value for the 𝑗-th feature
of the 𝑖-th instance, and ∑𝑚

𝑗=1 𝜙𝑖𝑗 is the sum of the SHAP values for all
features for the instance in question.

The additive properties of SHAP values enable global interpretation, that is
interpreting the model as a whole. To visualize the impact each feature has
on an individual observation, so-called beeswarm plots are used, as displayed
in Figure 2.9. In a beeswarm plot, features are organized in rows, ranked
by their overall importance. Each dot represents the SHAP value for that
feature and instance, 𝜙𝑖, while the color of the dot indicates the feature value
with red indicating a higher feature value and blue indicating a lower feature
value. Dots with the same SHAP value are stacked on top of each other to
show density.

2.6 Model Optimization
To build and optimize a robust and accurate model, we will use hyperparam-
eter tuning with cross-validation. It is standard practice to split the data
into a training set and a test set. The training set is used to train the model
and the test set is held out until the end to evaluate the model. However,

33

Figure 2.9: A beeswarm plot showing the mean SHAP values for the features
[Lundberg, 2018].

34

the models we will use have many hyperparameters that need to be tuned for
good performance and one cannot use the test set to tune them. Instead one
uses a validation set to select the best hyperparameters. There are different
ways of doing this. One way is to split the training set into a training and
validation set once and use the validation set to tune the hyperparameters.
Another way is to use cross-validation. Cross-validation is especially useful
for limited data but also for large data sets. There are different types of
cross-validation, but the most used one is k-fold cross-validation and that is
also the one we will use.

In k-fold cross-validation the data training set is split into 𝑘 subsets of the
same size. One subset is used to simulate a validation set and then the
model is trained on the remaining 𝑘 − 1 subsets. This process is repeated 𝑘
times with each subset used as a validation set once. The evaluation metrics
are then averaged over all iterations. This way, we can tune on the whole
training set and avoid overfitting to a specific subset [Bradshaw et al., 2023].
An illustration showing how k-fold cross-validation, with 𝑘 = 5, works can
be seen in Figure 2.10.

The two most common hyperparameter tuning methods are grid search and
random search. Grid search is an exhaustive search through a previously
specified set of values to test. While this is systematic and thorough, it
is also computationally expensive and the performance of the optimization
depends on the specified grid to search through. For example, if you desire to
tune five hyperparameters, with three values each, you will need to test 35 =
243 combinations. To do this with cross-validation and/or large datasets, it
quickly becomes impractical [Bergstra et al., 2011].

Random search, on the other hand, randomly samples values to test. This
is often more efficient than grid search but it is not as thorough and the
algorithm might also spend time and computational resources testing un-
promising combinations. For large and complex datasets such as ours grid
and random search can be limiting. Instead, we will use Bayesian optimiza-
tion, a technique that is often preferred for black-box models.

It uses a probabilistic model that is initialized by selecting a small set of
random sample points and testing them on the actual model. The results
from these points is used to construct a so-called surrogate function which
approximates the actual objective function. This is a simpler model that
contains estimates using the set of points that were sampled. Together with

35

Figure 2.10: An image illustrating how k-fold cross-validation works, here 𝑘
is 5 [Scikit-learn, n.d.].

36

surrogate function, a so-called acquisition function is constructed to select fu-
ture promising points to sample. It does this by using the surrogate function.
Often Expected Improvement (EI) is used as an acquisition function:

𝐸𝐼(𝑥) = 𝔼[max(𝑓(𝑥) − 𝑓(𝑥+), 0)] (2.20)

where 𝑓(𝑥) is the value of the objective function at point 𝑥 and 𝑓(𝑥+) is the
maximum score so far. It is important to note that the acquisition function
is a function of the surrogate one. The acquisition function is then used to
find 𝑥∗, a hyperparameter set that maximizes 𝐸𝐼(𝑥), such that:

𝑥∗ = argmax
𝑥

𝐸𝐼(𝑥) (2.21)

𝑥∗ is then evaluated and 𝑥∗ and the new score is added to the history of
samples. The surrogate is trained on the new samples and gets updated.
This process is an iterative one and gets repeated for a specified number of
iterations [Bergstra et al., 2011].

This is often more efficient than grid search and random search while ob-
taining better results as they use previous results to guide the search which
results in a targeted approach with faster convergence, see Figure 2.11 for an
illustration of how the different optimization strategies work.

37

Figure 2.11: An image showing the different optimization strategies [Kim et
al., 2021].

38

Chapter 3

Method

3.1 Data Collection and Preparation
3.1.1 Data Source and Scope
The dataset comes from Statcast. As previously mentioned, the Statcast era
is considered to have started in 2015 when the new technology that enables
the play tracking was introduced. This makes the scope for the data collection
simple to determine. The data is collected from the 2015 MLB season to the
most recent completed season, the 2023 MLB season. The data from Statcast
is highly detailed and contains pitch-by-pitch data. We are also only using
data from regular season games, that is games that are not postseason games.
This is customary with American sports as stats for players and teams are
colloquially always assumed to be regular season stats and postseason stats
and regular season stats are rarely used together. This is because only a select
number of teams play in the postseason and as the postseason goes along,
that is whittled down further and the number of games are not specified.
Rather the games are played in a best-of-X games format.

This filtration of the data renders approximately 6 million rows of data, with
each row representing a single pitch. However, as not all pitches end with an
outcome, we will only use pitches that end with a result. This then leaves
us with approximately 1.5 million rows of data. The Statcast data is very
detailed and contains in total 92 columns, which means in total 138 million
data points [Baseball Savant, n.d.]. The columns include areas such as: -

39

Game information: Includes general information about the game, such as
date, teams involved, location. - Player information: Includes information
about the players involved, such as the batter, pitcher, and fielders. - Pitch
details: Includes information about the pitch, such as the type of pitch, the
release speed, spin rate, release point, and movement. - Play information:
Includes information about the play, such as the inning, the at-bat number,
the number of balls and strikes, and the pitch number. - Plate appearance
outcomes: Provides information about the outcome of the event, such as
the result of the play and more advanced metrics from the outcome of the
play. - Ball contact information: For events where contact is made with the
ball, information about the contact is included, such as launch angle, launch
speed, hit coordinates, and more.

For more detailed information about all columns, see Section A.1.

3.1.2 Data Cleaning and Preprocessing
The dataset that resulted from the aforementioned filtration was still in need
of cleaning and preprocessing. The exact cleaning code that was used can be
found in the appendix. Firstly, by using the formula for on-base percentage
Equation 1.1, we only kept events that are part of the OBP calculation. This
meant removing events such as errors, ejections and other events not related
to OBP. Then columns with only null values were dropped. Furthermore,
columns that were dependent on the result of the play so do not give us
information for prediction or the columns have information that is not im-
portant or inferred from other columns that we do keep were dropped. To
have some semblance of identifiability, we created a composite key that held
information about game date, game ID, inning, batter ID, pitcher ID, and
at-bat number. This was set as an index and the columns that were used to
create the index were removed. Thus we avoid data leakage while having a
unique identifier for each row.

3.1.3 Feature Engineering
For the feature engineering, which is the process of creating new features from
the existing ones, domain knowledge was used to create new features and to
aid in reducing the dimensionality of the data as there were features that
could be summarized into singular ones [VanderPlas, 2016]. These include:

40

- A variable ‘score_diff’ was created by subtracting the score by the batting
team from the fielding team. This way, the game score can be captured in
one variable and it is more important to capture the relative difference than
the two scores themselves. For instance, a score of 13-12 or 1-0 is not as
important as the fact that there is only a one run difference. - We create a
‘count_diff’ variable that is the difference between the number of balls and
the number of strikes to capture the pitch count status in one variable. -
The data also comes with three columns for indicating if each base is filled.
Instead a single column was created to keep track of runners on base. -
Statcast has very detailed information about where the ball passes the strike
zone, dividing it into 13 zones. For the purpose of this thesis, it is more
useful to have a variable that indicates if the ball is in the strike zone or not,
thus such a binary variable was created.

MLB and Statcast’s own established metrics were added. These metrics are
both used for the general public and by MLB teams to aid insights. The
following variables were added:

• A variable for runners in scoring position (RISP) was added. Scoring
position is defined as being on second or third base. It is called scoring
position as one can score on a single which is usually impossible to do
from first base [Sutelan, 2014].

• A binary variable for whether a situation is a late inning pressure situ-
ation (LIPS): A late inning pressure situation is one in the 7th inning
or later where the team is either ahead by one run or behind by three
runs or fewer [Brooks, 1989]. This was added to investigate whether a
pressure situation aids or not.

• Spray angle: This is the horizontal angle of the ball when contact is
made. The calculation of the spray angle came from the formula used
in Python Baseball package which in turn was derived from the work
of baseball statistician Bill Petti [Petti, 2017]

Lastly binary variables were created to indicate the following launch angle
and launch speed metrics that Statcast provides.

• Hard hit: Any ball hit harder than 95 mph (153 km/h). This is kept
track of as research shows a higher likelihood for these hard hits to be
successful [Mueller, 2015].

• Sweet spot: Any ball hit at a launch angle of between 8 and 32 degrees.
• Barrel : A barrel is a ball hit in such a way that contact of this type

41

are considered optimal due to their success rate. It is derived using a
combination of launch speed and launch angle. An image of the barrel
zone can be seen below.

Figure 3.1: The red area shows the combination of launch speed and angle
that results in a so-called barrel [Major League Baseball, 2016].

Finally, the events column was transformed into a binary variable that indi-
cated whether an event resulted in the batter getting on base or not. This
will be the target variable for the prediction task. We observe that the target
variable is imbalanced with approximately 32% of the data belonging to the
positive class.

3.1.4 Handling Categorical Features
Categorical features were encoded to either 0 and 1 for binary features while
one-hot encoding was utilized for multi-class features, to be used similarly in
both logistic regression and XGBoost.

42

3.1.5 Handling Missing Values
For some variables, imputation was used. For instance, the fielding alignment
variables that indicate how the fielding team is aligned it was assumed that
from play to play, the alignments do not change. Thus,the missing values
there were backfilled using the next available value.

With other variables, the data is only missing for a very small share of rows.
This combined with the fact that the Statcast dataset is very large, makes it
easier then to simply drop all rows that have missing values.

Early in the process, it was clear that the data could be divided into two
groups: events where contact was made with the ball and events where con-
tact was not made. Events where contact is not made are events such as
walks and strikeouts. For the non-contact events, of course, the contact re-
lated variables are missing. The variables in question relate to launch angle,
launch speed, hit coordinates and batted ball type. To handle those, we
used the “is_contact” variable was used as an interaction variable, making
no contact events 0 and keeping contact events their original value.

3.2 Exploratory Data Analysis
3.2.1 Overview
After the aforementioned data cleaning and transformations, the dataset was
ready for exploratory data analysis. The dataset consisted of approximately
1.5 million rows with 47 columns, including the target variable. For detailed
information about the columns, see Section A.1. The columns can be grouped
into general information, pitch variables, pitch location variables, contact
related variables and player related variables such as:

• General information:
– Outs
– Home/away team
– Fielding alignment
– Score difference
– Runners on base
– Count difference

• Player related variables:

43

– Batter stance
– Pitcher throwing arm

• Pitch variables
– Pitch type
– Pitch speed
– Pitch release
– Pitch movement

• Pitch location:
– Location across the plate
– Location on the strike zone
– Whether the pitch is in the strike zone

• Contact related variables
– Launch angle and speed
– Hit coordinates
– Batted ball type

3.2.2 Pitch Analysis
The analysis started with looking at pitch variables and histograms were
plotted for six variables, see Figure 3.2. The top two histograms show the
distribution of pitches by release speed and effective speed, both in miles per
hour. The next two show the release position of the pitch in the x and z
dimension in feet. The last two show the release extension of the pitcher and
the spin rate of the pitch in revolutions per minute (RPM).

As the figure shows, release speed and effective speed show similar distribu-
tions with the peaks occurring around 90-95 miles per hour. The release
position in x-dimension is bimodal, this is likely due to pitcher handedness
with the larger peak belonging to right-handed pitchers. On the other hand
the release position in the z-dimension looks more normally distributed with
a peak around 5.5-6 feet (1.68-1.83 meters), which is to be expected as the
variable depends on the height of the pitcher. The same can be seen for
the release extension. The spin rate seems more right skewed, with a peak
around 2000-2500 RPM.

Due to the bimodal nature of the horizontal release position, it was decided to
create a new variables that represented the deviation from the center which
might be more important. Thus we took the absolute value of the release
position in x-dimension. In the same process we also created a variable that

44

Figure 3.2: The six histograms showing general pitch information.

45

indicated whether the batter and pitcher were of the same handedness. We
did this due to the fact that it is a widely held belief that teams try to use
pitchers of the same handedness to maximize their chances of getting the
batter out.

The release speed and spin rate are the two main variables generally when
looking at pitches, thus we want to investigate further. So distribution plots
were made of the pitches by pitch type to get more insight.

Figure 3.3: Two distribution plots of release speed and release spin rate,
grouped by pitch type.

Both plots clearly show that the fastball is the most common pitch by far
and has the highest release speeds with speeds up to 100 miles per hour. The
breaking balls are the slowest pitches in general but exhibit the highest spin
rates with extremes up to 3500 RPM. The ‘Other’ category is barely shown
in the plots, which indicates that the grouping of pitch types done previously
is accurate. The results are expected and consistent with the intuition that
arises from watching the sport.

Next, the pitch locations were investigated. The pitch locations are classified
from the catcher’s perspective. We want to see if the zone classification is
accurate by Statcast and/or if pitches are called correctly by the umpires,
the term used for the referees. Therefore a dual plot was made, a combined
scatter plot and distribution plot of the horizontal and vertical coordinates

46

of the ball as it crosses the plate. This plot can be seen in Figure 3.4. The
pitches are then grouped by whether they are in the strike zone or not.

Figure 3.4: Plots showing the pitches from the catcher’s perspective as they
cross the plate.

In Figure 3.4, we can clearly see the strike zone from the orange points. The
plots show that the zone classification is accurate and that the horizontal
parts of the strike zone are well defined and very accurate. This is expected
as the strike zone’s width is defined by the plate width which is constant and
the umpires stand behind the plate, giving them a clear view. The vertical
borders of the strike zone are more spread out and not as well defined. Again
this is expected due to the height of the strike zone being defined by the
batter’s height as previously mentioned and as can be seen in Figure 3.4.

47

3.2.3 Batted Ball Analysis
The analysis proceeded with looking at batted balls. A scatter plot was
created of the hit locations, grouped by whether the batter got on base or
not.

Figure 3.5: Scatter plot of the hit locations by hit coordinates, divided by
the result of contact.

The first observation is that the hit coordinates are remarkably well defined
and a clear baseball field can be seen with a gap showing foul balls outside
the pitch area. It is also visible that balls to the infield are not productive
while balls to the outfield are. If we also contrast this with standard fielding
alignment, as can be seen in Figure 3.6, that where fielders are the result is
usually an out and it is instead required to hit the ball into gaps, where they
are too far away to catch the ball, or out of the park for a home run to get
on base.

Statcast places a large emphasis on launch speed and launch angle as pre-
dictors for hits, and their derived metrics that were added to this dataset
through feature engineering use these two variables to derive them. So to

48

Figure 3.6: Typical fielding alignment in baseball [CS Odessa Corp, n.d.].

investigate this a scatter plot, Figure 3.7,was created with the launch speed
on the x-axis and the launch angle on the y-axis, color coded by the result
of the contact.

This plot shows some interesting insights. Firstly, there is a clear red cluster
showing that home runs are much more likely with a high launch speed of at
least 90-95 miles per hour and a launch angle of between 10 and 40 degrees.
One can also see that the higher the launch speed, more room is afforded for
the launch angle. We can also see that a certain angle a single is more likely,
even at lower speeds.

As the launch angle and speed play such big roles in the result of contact, we
investigate distribution of them with the corresponding plots as Figure 3.8
shows.

In both plots four peaks can be seen, that are highly out of the norm. Further
research showed that is a known phenomenon and comes from Statcast’s
“no nulls” policy when it comes to launch angle and speed as they are the
variables that Statcast places the most emphasis on, as mentioned earlier in
Section 3.1.3. Considering this and that both plots have four peaks, it is

49

Figure 3.7: Scatter plot of the launch speed and launch angle, grouped by
result of contact.

50

Figure 3.8: Histograms of the launch speed and launch angle.

51

worth to investigate whether their imputation is made in pairs for the two
variables. Thus, the frequency of launch speed and launch angle was listed
with the following results of the ten most frequent pairs, in Table 3.1.

Table 3.1: Launch speed and launch angle for the 10 most frequent pairs.

Launch speed (mph) Launch angle (deg) Frequency
82.9 -21 24756
80.0 69 19104
90.3 -17 4247
89.2 39 2126
90.4 15 309
91.1 18 293
90.2 -13 256
98.8 17 210
102.8 30 158
93.1 32 114

The four peaks can be clearly seen in the plots with frequencies ranging
from 2000 to almost 25000 occurrences. Compared to the fifth most frequent
pair, which only appears 309 times in comparison. In total they account
for around 5 percent of all occurrences. Considering we have such a large
dataset, we can feel confident that their removal from the dataset would not
have a significant impact, rather as they are very likely to be default values
imputed by Statcast they can present problems if kept. Removing them is
the simplest course of action with the size of the dataset and it ensures that
we focus on authentic data and we achieve distributions that more closely
resemble normality. The confidence is compounded by the fact that that
both on-base events and outs are included in these imputed events, so we
are not introducing bias into the dataset. After removing the four peaks, the
updated histograms can be seen in Figure 3.9.

Comparing this with the scatter plot of the same variables, this looks more
reasonable with smoother and more expected distributions. Launch speeds
exhibit peaks around 90-95 miles per hour with the distribution being right
skewed. The launch angles exhibit more of a normal distribution, peaking
around 10 degrees.

52

Figure 3.9: Histograms of the launch speed and launch angle after removing
the peaks.

53

3.2.4 Correlation Analysis
We then proceed to look at correlations between the variables through the
use of correlation matrices. First, a general correlation matrix is created for
all variables to get high level insights, as Figure 3.10 shows.

Figure 3.10: Correlation matrix of all variables for the entire dataset.

We see some very boldly colored squares, indicating high positive or negative
correlations. Investigating these further, we see that some pitch variables
are highly correlated. For instance, release speed and effective speed have
a 0.988 correlation while release speed and vy0 have a -0.998 correlation.
Considering that these variables are related such as the velocity of a pitch
and the release speed the correlation is expected.

The same type of correlation can be seen for the contact related variables.
Again, this can be expected due their close relationship. When looking specif-
ically at variables correlation with the target variable we see that the feature
engineering has resulted in stronger correlations than their components. The
6 most highly correlated variables to the target variable can be seen in Ta-
ble 3.2.

54

Table 3.2: The six most highly correlated variables to the target variable.

Variable Correlation
is_sweet_spot 0.31
bb_type_line_drive 0.30
count_diff 0.27
hard_hit 0.24
hc_y_adjusted 0.24
is_barrel 0.22

4 of 6 variables are from the feature engineering. We can also look only at non
contact events where the correlation for variables such as “in_strike_zone”
and “count_diff” is large which is likely due to the non-contact events result-
ing in walks.

With this correlation analysis, we could glean some insights to guide the
rest of the analysis. We see that contact related variables are the most
correlated to the target variable. We also see that the feature engineering has
been effective and introduces insightful and valuable features to the dataset.
Furthermore, we get indications that the dataset is complex and there is
multicollinearity in some of the variables.

3.2.5 PCA Implementation and Results
For both PCA and UMAP, as the dataset is large, these operations could
not be performed on the entire dataset. Instead, the dataset was sampled
for 10% of the data with sampling being stratified by the target variable to
ensure that the target variable is evenly distributed. The dataset and all its
features was then standardized and scaled. The PCA was then run with a
variance threshold of 95% as is commonly done. We found that the number of
components needed was 28 with the first two components explaining approxi-
mately 25% of the variance and it took 8 components to even surpass 50%. A
table of the first five components with their corresponding explained variance
ratios and cumulative explained variance ratios can be seen in Table 3.3.

55

Table 3.3: The first five components with their corresponding explained vari-
ance ratios and cumulative explained variance ratios.

Variance % Cumulative %
PC1 15.68 15.68
PC2 9.54 25.22
PC3 6.58 31.79
PC4 4.71 36.50
PC5 4.51 41.01

The fact that the first two components only explain 25% of the variance
suggests that the dataset might be too complex and not exhibit linear re-
lationships conducive to PCA. Plotting the first two components in with
the data points in a scatter plot grouped by the target variables shows the
following:

Figure 3.11: Scatter plot of the first two components grouped by the target
variable.

We do see a spread in both directions, which signifies that some variance is

56

captured. However, it is hard to discern any clustering and there does not
seem to be any grouping by the target variable. Plotting the most important
features in the first two components in a heatmap does show some insights,
as presented in Figure 3.12.

Figure 3.12: Heatmap of the first two components grouped by the target
variable.

The more blue the color, the bigger the loading is and we see that for PC1 that
pitching variables are the biggest influencers, while PC2 is more influenced
by variables related to contact making. It is difficult to discern any deeper
insights without investigating further. We do see that some pitch variables
are influential, as are the contact variables. It is also clear that the data is
complex and the relationships might go beyond the scope of linearity.

3.2.6 UMAP Implementation and Results
Next, the UMAP analysis was done. The same procedure as for the PCA was
followed. The data was standardized and scaled. Then the UMAP model was
tuned with a range of parameters. Those parameters yielded the following
results, as presented in Figure 3.13.

The UMAP model does exhibit some clustering, however it does not seem to
be able to capture the structures and complexities that separate the classes
of the target variable. However, the fact there is clustering does lend some

57

Figure 3.13: Heatmap of the first two components grouped by the target
variable.

promise to the idea of predicting on-base events and/or finding important
features.

3.2.7 Conclusions from PCA and UMAP
Both techniques indicate that the dataset is highly complex. The PCA re-
quired 28 components to reach 95% of explained variance and the first two
components only explained 25% of the variance. This signifies that the
dataset does have relationships that are not linear. The same conclusion
can be drawn from the PCA scatter plot in Figure 3.12, where no clear clus-
tering could be seen. UMAP revealed some clustering that PCA did not,
which again indicates that non-linear relationships exist in the data. How-
ever, the clustering could not be separated by the target variable. Thus, the
fact that UMAP and PCA did not show any clear separations and that the
PCA required many components to reach the desired explained variance ra-
tios led us to determine that it would be more beneficial to focus on Lasso
regularization for logistic regression and feature selection for XGBoost for
any potential dimensionality reduction.

While PCA and UMAP were not used further, they did glean some insights.

58

Both techniques confirmed the suspicion of complexity in the data and that
non-linear relationships exist. Furthermore, PCA did provide some insight
from the heatmap in Figure 3.12, that shows that pitching variables are im-
portant and so are contact related variables. This aided in the understanding
of the data and helped guide future decisions.

3.3 Model Development
3.3.1 Model Training and Evaluation
3.3.1.1 Data Splitting (Train/Test)

The dataset was split into a training set and a test set with 70% of the data
being used for training and 30% for testing, which resulted in approximately
1 million rows in the training set and more than 400,000 rows in the test set.
As the dataset is imbalanced, we used stratified sampling to ensure that that
the target variable is evenly distributed.

For the feature selection in Section 3.3.1.5.2 we used a 10% sample of the
training data to be able to run the code with cross-validation described in
Section 3.3.1.2. This was necessary due to the computational intensity re-
quired to perform the iterative feature selection process. For all other model
training and evaluation, we used the entire dataset.

3.3.1.2 Cross Validation

As the dataset is so large, we used a 3-fold cross validation instead of a 5 or
10-fold cross validation. However, we are confident that the results become
robust with the combination of folds and the amount of data. Again, we
make sure to stratify the data for the target variable. We used this strategy
in both the model development and hyperparameter tuning.

3.3.1.3 Hyperparameter Tuning

As previously mentioned, the model optimization strategy chosen was
Bayesian optimization. For that we used the Optuna package which is a
hyperparameter optimization framework. One uses Optuna by defining an
objective with a hyperparameter search space which Optuna then optimizes.
The tuning was then done with the aforementioned 3-fold cross validation

59

and the evaluation metric used was the mean F2 score. We set Optuna to
run 50 trials which is a resource intensive operation that required enabling
parallelization. The parameters that yielded the best F2 score were then
saved and used for the final model.

3.3.1.4 Logistic Regression Implementation

For the logistic regression we wanted to develop some initial models to serve
as baselines and to give direction to the areas of improvement and which
hyperparameters to tune. The first model implemented was a bare bones
logistic regression with no parameters specified except for the computer per-
formance related ones, such as the number of processing cores to use and
the maximum number of iterations. Then a lasso logistic regression was im-
plemented, that had the additional hyperparameter of which penalty to use.
The final initial logistic regression model was one with class weighting. Class
weighting, as the name dictates, assigns weights to each class to give more
importance to the minority classes with the aim of making the model give
equal attention to both classes. This was done as the dataset is imbalanced
and we do not want the model to favor one class over the other.

3.3.1.4.1 Hyperparameter Tuning

The logistic regression model was tuned with the following hyperparameters
and search spaces, as presented in Table 3.4.

Table 3.4: The hyperparameters that were tuned for the logistic regression
model.

Parameter Description Search Space
alpha The Lasso

regularization
parameter, the higher
the value the more
regularization is applied

0.00001 to 10 in log scale

learning_rate The learning rate
schedule, that
determines the step size
of each iteration

{optimal, invscaling,
constant, adaptive}

60

Parameter Description Search Space
eta0 The starting learning

rate
0.00001 to 10 in log scale

class_weight The weighting of the
classes

{balanced, None}

with the obtained hyperparameters presented in Section A.4.

3.3.1.4.2 Feature Selection

For the feature selection process the intrinsic capabilities of Lasso regulariza-
tion were used and the final model was trained with the obtained optimal
regularization strength, which then determines if any features received coef-
ficients of 0.

3.3.1.5 XGBoost Implementation

Like the logistic regression, an initial XGBoost model was created with min-
imal hyperparameter specification. That model was then evaluated with the
3-fold cross validation and the requisite metrics were calculated. The model
was then optimized.

3.3.1.5.1 Hyperparameter Tuning

The XGBoost model was tuned with the following hyperparameters and
search spaces, as presented in Table 3.5.

Table 3.5: The optimal hyperparameters for the XGBoost model.

Parameter Description Search Space
max_depth Maximum depth of the

tree
3 to 8

learning_rate The learning rate
schedule, that
determines the step size
of each iteration

0.001 to 1 in log scale

61

Parameter Description Search Space
n_estimators The number of trees to

build
100 to 1000

min_child_weight The minimum number
of samples required to
split a node

1 to 6

gamma The minimum loss
reduction required to
make a split

0.01 to 1 in log scale

reg_alpha The Lasso
regularization
parameter, the higher
the value the more
regularization is applied

0.01 to 10 in log scale

scale_pos_weight The weighting of the
classes

{balanced, None}

subsample Subsample ratio of the
training instances, used
to prevent overfitting

0.7 to 0.9

colsample_bytree Subsample ratio of
columns when
constructing each tree,
again to prevent
overfitting

0.5 to 0.7

The optimal hyperparameters are, like the logistic regression tuning, pre-
sented in Section A.4.

3.3.1.5.2 Feature Selection

The feature importances were extracted from the optimal XGBoost model
and then an iterative process was used to run cross-validation on the optimal
model, increasing the number of features used. The first run was only done
with the feature with the highest gain and the last run was done with all
features. From there we selected a threshold that resulted in a balance of
feature selection and model performance.

62

3.4 Model Evaluation and Interpretation
3.4.1 Performance Metrics
For testing against the test set, three models were evaluated. The first model
was the optimized logistic regression model. The second model was the opti-
mized XGBoost model. The third model was the optimized XGBoost model
after feature selection. As previously mentioned, the F2 score was the main
metric used with all models also being evaluated with AUC-PR, precision and
recall. For the AUC-PR, precision and recall a precision-recall curve was cre-
ated with all three models featured and the area under the precision-recall
curve was calculated. To further aid in interpretation, confusion matrices
were also created for each model.

3.4.2 Feature Importance Analysis
The feature importance analysis was done with using the feature importance
values from both XGBoost functions and they were plotted in bar charts
to aid in extracting insights regarding the most influential factors. We also
compared the results of the two XGBoost models with each other to see if
whether the most important features of the full model ended up being the
same as the features in reduced model or if the dimensionality reduction
could yield a different result and new insights.

3.4.3 SHAP Value Analysis
For a more nuanced and detailed analysis of the model outputs of the best
performing model SHAP values were used. To evaluate the model as a whole,
a beeswarm plot was created with SHAP values for the top features and
interaction plots were created to see how the features interacted with each
other.

3.5 Tools and Libraries Used
Python was used for the analysis with the following libraries being used:

• Scikit-Learn and XGBoost: for machine learning
• Pandas: for data analysis and manipulation

63

• Seaborn and Matplotlib: for data visualization
• Numpy: for data manipulation
• PyBaseball: for data collection
• SHAP: for SHAP values

64

Chapter 4

Results

4.1 XGBoost Feature Selection Results
Using the optimal XGBoost model and the process outlined in Sec-
tion 3.3.1.5.2, F2 scores for each run are presented in Figure 4.1.

Figure 4.1: Line plot of the F2 score for each run with an increasing number
of features used.

As can be seen in Figure 4.1 the F2 score reaches near optimal values at 15
features at 88.79%.Additional features thereafter have no significant impact

65

on the model performance with a peak of 89.29%.

Thus, for a feature-selected model, the number of features was chosen to be
15 with the features being listed in Table 4.1.

Table 4.1: The features used for the feature-selected model.

Rank Feature
1 in_strike_zone
2 count_diff
3 is_contact
4 is_sweet_spot
5 hard_hit
6 is_barrel
7 pitch_type_Fastball
8 bb_type_ground_ball
9 hc_y_adjusted
10 launch_angle
11 bb_type_popup
12 bb_type_line_drive
13 launch_speed
14 plate_x
15 hc_x_adjusted

4.2 Lasso Feature Selection Results
With the process outlined in Section 3.3.1.4.2, the optimal model was ob-
tained with a regularization strength that selected 42 out of 46 features. The
features are listed in Table 4.2, ranked by their absolute value of the coeffi-
cient.

Table 4.2: The features selected by Lasso.

Rank Feature Rank Feature
1 release_speed 22 hc_x_adjusted
2 hc_y_adjusted 23 launch_angle
3 is_contact 24 plate_z

66

Rank Feature Rank Feature
4 bb_type_ground_ball 25 az
5 effective_speed 26 pfx_z
6 bb_type_line_drive 27 pitch_number
7 vy0 28 runners_on_base
8 launch_speed 29 bb_type_popup
9 count_diff 30 plate_x
10 in_strike_zone 31 release_spin_rate
11 hard_hit 32 score_diff
12 is_sweet_spot 33 home_away
13 is_barrel 34 outs_when_up
14 adj_spray_angle 35 same_hand
15 pitch_type_Off-speed 36 release_pos_z
16 pitch_type_Breaking Ball 37 if_fielding_alignment
17 ay 38 ax
18 sz_top 39 release_pos_x_abs
19 pitch_type_Fastball 40 lips
20 sz_bot 41 release_pos_x
21 release_extension 42 of_fielding_alignment

4.3 Model Performance Results
4.3.1 Confusion Matrices
In Figure 4.2 the confusion matrices for each model can be seen, with counts
and percentages for the true positives, true negatives, false positives and false
negatives.

4.3.2 Performance Metrics
This table shows the F2 score, AUC-PR, precision and recall for each model.

67

(a) (b) (c)

Figure 4.2: Results for the confusion matrices for each model.

Table 4.3: Performance metrics for each model

Model F2 Precision Recall
AUC-
PR

Logistic Regression 77.83% 67.05% 81.09% 68.42%
XGBoost 90.50% 79.64% 93.69% 95.82%
XGBoost after Feature Selection 89.60% 76.95% 93.45% 94.90%

We can clearly see that the XGBoost models perform better than the logistic
regression model in all metrics. The full XGBoost model achieves the highest
scores with an F2 score of 90.50%, precision of 79.64% and recall of 93.69%.
The feature-selected model achieves a slightly worse performance with the
precision being the most affected at 76.95%, almost three percentage points
lower than the full model. However, these differences are very minute. The
high F2 and recall scores indicate that the XGBoost models are very good
at predicting on-base events, which is very important in baseball strategy as
teams always look for scoring opportunities and do not want to miss those
opportunities. The AUC-PR for the logistic regression model is 68.42% while
the AUC-PR for the XGBoost model is 95.82%. The XGBoost model after
feature selection achieves a slightly lower, but still very impressive, AUC-PR
of 94.90%. The fact that the feature-selected model is so close to the full
model with less than a third of variables shows that the feature selection
process by XGBoost seems effective and this can potentially offer significant
computational advantages with the same predictive power.

68

4.3.3 Precision-Recall Curve and AUC-PR
Figure 4.3 shows the precision-recall curve obtained by each model and the
selected precision and recall for each model marked with a circle.

Figure 4.3: Precision-Recall Curve and AUC-PR

We see similar results in the precision-recall curve as Figure 4.3 shows where
XGBoost models obtain better results at each point of the curve with the
feature-selected model slightly differing at the very top of the precision and
recall. Looking at the area under the curve for each model, the differences
appear as starkly. The logistic regression’s precision drops off very quickly
as recall is increased, eventually stabilizing at approximately 70% until recall
reaches above 80%.

The performance difference between the XGBoost models and the logistic

69

regression model made it a reasonable choice to then only focus on the XG-
Boost models for the feature importance analysis and the SHAP analysis.

4.4 Feature Importance Results
For this project and the dataset used, this resulted in the selection of 15
features that this iterative process indicated would yield similar performance
to the XGBoost model with all features.

Figure 4.4 shows the relative feature importance for each model with the top
15 features being shown for the full model and all 15 features being shown
for the feature-selected model.

Looking at the feature importance results in Figure 4.4 we see that there are
differences with the reduced model valuing certain features more than the
full model. This might be the model adjusting to the absence of the features
that the complete model still has.

For the reduced model, the ‘is_contact’ variable is assigned significantly
higher importance compared to the full model, whereas the full XGBoost
model places more weight on the ‘in_strike_zone’ and ‘count_diff’ variables.
The importance placed by both models on the resulting features aligns well
with baseball intuition, that getting in a favorable count (having more balls
than strikes) is important, as is making contact with the ball.

4.5 SHAP Results
Figure 4.5 and Figure 4.6 show the bee swarm plots for the full and feature-
selected models respectively with the features ranked by their mean absolute
SHAP values and the plots are color coded by the feature values with higher
feature values being colored in red and lower feature values being colored in
blue.

The two bee swarm plots look very similar with the five most important
features being the same:

• hc_y_adjusted (hit coordinate, y-dimension)
• launch_angle (launch angle)

70

Figure 4.4: Feature Importances for the two XGBoost models.

71

Figure 4.5: SHAP bee swarm plot for the full XGBoost model.

72

Figure 4.6: SHAP bee swarm plot for the feature-selected XGBoost model

73

• count_diff (count difference, i.e. number of balls minus number of
strikes)

• hc_x_adjusted (hit coordinate, x-dimension)
• is_contact (whether contact was made with the ball)

The plots show that for both ‘hc_y_adjusted’ and ‘count_diff’ the higher
feature values are the more positive impact on OBP. Launch angle exhibits
more of a non-linear relationship with the target variable with extreme values
at both ends having a negative impact. This is also consistent with baseball
intuition, that a ball launched at a higher angle gives fielders more time to
catch the ball and the ball cannot go so far. Equally disadvantageous a low
angle seems to be, where hitting the ball at an angle of less than 0 degrees is
not traveling far and easily being recovered by the fielders. This also explains
the rationale for the sweet spot metric created by Statcast that, as mentioned
in Section 3.1.3, is an angle of between 8 and 32 degrees.

In summary, the similarity of the two bee swarm plots do indicate again that
the feature selection was successful and that the key features identified are
robust and that the reduced model simplified but did not experience any
significant loss in performance and can quite accurately capture the essence
of the full dataset and the full model.

There is some difference to feature importance provided by XGBoost with
the two SHAP plots being very similar while the feature importances for the
two models being more different. It does then seem that the SHAP values are
more stable than the gain metric from XGBoost and captures complexities
and interactions between the features more accurately.

Figure 4.7 shows the interaction plots for the full model. They show the
interaction effect between features in the model. The color indicates di-
rection of interactions, with red indicating positive interactions while blue
indicates negative interactions. Positive interactions in this context refer to
the features interacting to increase the prediction while negative interactions
indicating the opposite.

The plot shows for example that ‘hc_y_adjusted’ and launch angle have
strong self-interactions, that is that those features as we have found out have
strong effects on the predictions. They also have strong interactions with each
other, suggesting that the launch angle has a strong effect on the distance in
the y-direction. In summary, one can also see from the interactions that they

74

Figure 4.7: SHAP Interaction Plot

are complex and non-linear which justifies the use of XGBoost and explains
its’ advantage over the logistic regression model.

75

Chapter 5

Discussion

5.1 Insights for Baseball Strategy
There are some insights that can be drawn and are relevant to baseball strat-
egy. The first is that we obtain a greatly reduced model that indicates that
a certain subset of features dictate outcomes more than others and should
be regarded more by teams. Not all factors can be affected by the teams but
certain ones are and these factors are more important for teams to focus on
to maximize their chances of getting on base.

One of these factors is the importance of making contact with the ball. This
might seem obvious but there are different approaches. Some players aim
for making hard contact, potentially swinging and missing, which is often
called power hitting. Some players on the other hand prioritize the contact
itself and try to not strike out. Contact-focused players do not generally
always hit the ball hard, but their approach might lend itself to getting on
base. We do also see that the hit coordinates matter a lot and that as
Figure 3.5 shows, the further away the ball is hit does not translate to a
higher probability of getting on base and that placement matters. This can
conversely guide defensive baseball strategy as the effect of these variables
could inform defensive positioning in an effort to get batters out.

We also do see the importance of count difference with more balls than strikes
increasing the probability of getting on base. This suggests that batters need
to have plate discipline and to be able to get the count difference in their

76

favor is important. This means not swinging at every pitch as every swing is
a strike if missed and that pitch selection and identification matters. Being
able to identify pitches that are outside the strike zone and should not be
hit at could get the count in the batter’s favor which in turn possibly forces
the pitcher to pitch more hittable balls in the strike zone to avoid giving the
batter a walk.

5.2 Limitations & Future Opportunities
The limitations in this project are also opportunities for the future. While
each event contains some information about previous events, such as the
count difference that provides information about the previous pitches in the
at bat, the models built in this project do not use information from previous
events more than these high-level insights. Future work could include more
temporal analysis, such as looking at whether these features’ effects change
over time, or looking at performances over time, or taking into account pre-
vious events in more detail. An example would be seeing the impact of pitch
sequences, such as what impact can be seen if the pitcher has thrown the
same pitch multiple times in a row.

Another opportunity is to look at more player grouped metrics and develop
models that look at player types and what player types are more likely to
get on base. One could then look into the possibility of using so-called rate
statistics, which are the percentage of actions occurring, such as whiff rate
which indicates the percentage of pitches that a batter swings and misses at.

Finally, there are opportunities and insights that can be gained from us-
ing causal inference techniques. While SHAP values are a great way to
understand the impact of features on the prediction, they do not provide
any information about causal relationships and instead provide more corre-
lational information. Causal inference techniques can then be used instead
to provide such insights regarding the true causal structures and account for
confounding effects. This could help stakeholders and analysts more deeply
understand the mechanisms at play.

77

References

Abma, B. J. M. [2009]. Evaluation of requirements management tools with
support for traceability-based change impact analysis. University of
Twente. https://www.utwente.nl/en/eemcs/trese/graduation/_proj
ects/2009/Abma.pdf

Ahmed, N. A. [2023]. What is A Confusion Matrix in Machine Learning?
The Model Evaluation Tool Explained. https://www.datacamp.com/tut
orial/what-is-a-confusion-matrix-in-machine-learning

Altman, N., & Krzywinski, M. [2018]. The curse(s) of dimensionality. Nature
Methods, 15[6], 399–400. https://doi.org/10.1038/s41592-018-0019-x

Baseball Savant. [n.d.]. Statcast Search CSV Documentation. Retrieved
April 27, 2024, from https://baseballsavant.mlb.com/csv-docs

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. [2011]. Algorithms for
Hyper-Parameter Optimization. Advances in Neural Information Pro-
cessing Systems, 24. https://papers.nips.cc/paper/_files/paper/2011/fil
e/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

Bradshaw, T. J., Huemann, Z., Hu, J., & Rahmim, A. [2023]. A Guide to
Cross-Validation for Artificial Intelligence in Medical Imaging. Radiology:
Artificial Intelligence, 5[4], e220232. https://doi.org/10.1148/ryai.220232

Brain, D., & Webb, G. I. [2002]. The Need for Low Bias Algorithms in
Classification Learning from Large Data Sets. In G. Goos, J. Hartmanis,
J. Van Leeuwen, J. G. Carbonell, J. Siekmann, T. Elomaa, H. Mannila, &
H. Toivonen [Eds.], Principles of Data Mining and Knowledge Discovery
[Vol. 2431, pp. 62–73]. Springer Berlin Heidelberg. https://doi.org/10.1
007/3-540-45681-3_6

Britannica. [2024]. Manifold | Differential Geometry, Topology & Algebra |
Britannica. https://www.britannica.com/science/manifold

Brooks, H. [1989]. The Statistical Mirage of Clutch Hitting. Baseball Re-

78

https://www.utwente.nl/en/eemcs/trese/graduation/_projects/2009/Abma.pdf
https://www.utwente.nl/en/eemcs/trese/graduation/_projects/2009/Abma.pdf
https://www.datacamp.com/tutorial/what-is-a-confusion-matrix-in-machine-learning
https://www.datacamp.com/tutorial/what-is-a-confusion-matrix-in-machine-learning
https://doi.org/10.1038/s41592-018-0019-x
https://baseballsavant.mlb.com/csv-docs
https://papers.nips.cc/paper/_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://papers.nips.cc/paper/_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://doi.org/10.1148/ryai.220232
https://doi.org/10.1007/3-540-45681-3_6
https://doi.org/10.1007/3-540-45681-3_6
https://www.britannica.com/science/manifold

search Journal. http://research.sabr.org/journals/the-statistical-mirage-
of-clutch-hitting

Burnes, C., DeWitt, B., Gallen, Z., Johnson, G., Merrifield, W., Miller, B.,
Monfort, D., Shapiro, M., Slater, A., Stanton, J., Werner, T., & Mifsud,
P. V. [2024]. Official Baseball Rules 2024 Edition. https://mktg.mlbstat
ic.com/mlb/official-information/2024-official-baseball-rules.pdf

Chan, M. [2008]. Explanation of strike zone. https://commons.wikimedia.or
g/w/index.php?curid=5591282

Chen, A. [2016]. How MLB’s Statcast is changing game of baseball. Sports
Illustrated. https://www.si.com/mlb/2016/08/26/statcast-era-data-
technology-statistics

Chen, T., & Guestrin, C. [2016]. XGBoost: A Scalable Tree Boosting
System. Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 785–794. https:
//doi.org/10.1145/2939672.2939785

Coenen, A., & Pearce, A. [2018]. Understanding UMAP. In Google PAIR.
https://pair-code.github.io/understanding-umap/

Cramer, J. S. [2003]. The Origins of Logistic Regression. SSRN Electronic
Journal. https://doi.org/10.2139/ssrn.360300

CS Odessa Corp. [n.d.]. Baseball Diagram. In https://www.conceptdraw.com.
Retrieved August 3, 2024, from https://www.conceptdraw.com/exampl
es/baseball-positions

Czakon, J. [2024]. F1 Score vs ROC AUC vs Accuracy vs PR AUC: Which
Evaluation Metric Should You Choose? In neptune.ai. https://neptune.
ai/blog/f1-score-accuracy-roc-auc-pr-auc

DMLC. [2023]. Machine Learning Challenge Winning Solutions. In GitHub.
https://github.com/dmlc/xgboost/tree/master/demo

Dong, D., & McAvoy, T. J. [1996]. Nonlinear principal component analysis—
Based on principal curves and neural networks. Computers & Chemical
Engineering, 20[1], 65–78. https://doi.org/10.1016/0098-1354(95)00003-
K

Eban, E. E., Schain, M., Mackey, A., Gordon, A., Saurous, R. A., &
Elidan, G. [2017]. Scalable Learning of Non-Decomposable Objectives
[arXiv:1608.04802]. arXiv. http://arxiv.org/abs/1608.04802

Galli, S. [2022]. Feature selection with Lasso in Python. https://www.blog.t
rainindata.com/lasso-feature-selection-with-python/

Gilgoldm. [2020]. English: A tree showing survival of passengers on the
Titanic (”sibsp” is the number of spouses or siblings aboard). https:

79

http://research.sabr.org/journals/the-statistical-mirage-of-clutch-hitting
http://research.sabr.org/journals/the-statistical-mirage-of-clutch-hitting
https://mktg.mlbstatic.com/mlb/official-information/2024-official-baseball-rules.pdf
https://mktg.mlbstatic.com/mlb/official-information/2024-official-baseball-rules.pdf
https://commons.wikimedia.org/w/index.php?curid=5591282
https://commons.wikimedia.org/w/index.php?curid=5591282
https://www.si.com/mlb/2016/08/26/statcast-era-data-technology-statistics
https://www.si.com/mlb/2016/08/26/statcast-era-data-technology-statistics
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://pair-code.github.io/understanding-umap/
https://doi.org/10.2139/ssrn.360300
https://www.conceptdraw.com/examples/baseball-positions
https://www.conceptdraw.com/examples/baseball-positions
https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc
https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc
https://github.com/dmlc/xgboost/tree/master/demo
https://doi.org/10.1016/0098-1354(95)00003-K
https://doi.org/10.1016/0098-1354(95)00003-K
http://arxiv.org/abs/1608.04802
https://www.blog.trainindata.com/lasso-feature-selection-with-python/
https://www.blog.trainindata.com/lasso-feature-selection-with-python/
https://commons.wikimedia.org/wiki/File:Decision/_Tree.jpg
https://commons.wikimedia.org/wiki/File:Decision/_Tree.jpg

//commons.wikimedia.org/wiki/File:Decision/_Tree.jpg
Haben, S., Voss, M., & Holderbaum, W. [2023]. Load Forecasting Model

Training and Selection. In Core Concepts and Methods in Load Forecast-
ing [pp. 107–127]. Springer International Publishing. https://doi.org/10
.1007/978-3-031-27852-5_8

Kim, G., Lee, S. Y., Oh, J.-S., & Lee, S. [2021]. Deep Learning-Based
Estimation of the Unknown Road Profile and State Variables for the
Vehicle Suspension System. IEEE Access, 9, 13878–13890. https://doi.
org/10.1109/ACCESS.2021.3051619

Knight, M. [2009]. Prospectus Idol Entry: Why is On Base Percentage King?
In Baseball Prospectus. https://www.baseballprospectus.com/news/arti
cle/8938/prospectus-idol-entry-why-is-on-base-percentage-king/

Lundberg, S. [2018]. Beeswarm plot. https://shap.readthedocs.io/en/latest/
example/_notebooks/api/_examples/plots/beeswarm.html

Lundberg, S., & Lee, S.-I. [2017]. A Unified Approach to Interpreting Model
Predictions [arXiv:1705.07874]. arXiv. http://arxiv.org/abs/1705.07874

Major League Baseball. [2016]. Statcast: Barrel Zone. https://www.mlb.co
m/video/statcast-barrel-zone-c1152989483

Marca. [2022]. MLB Field Dimensions: What are the dimensions of a base-
ball field? In MARCA. https://www.marca.com/en/mlb/2022/03/10/62
2931ce22601dc5528b45e2.html

McInnes, L. [2018]. How UMAP Works — umap 0.5 documentation. https:
//umap-learn.readthedocs.io/en/latest/how/_umap/_works.html

McInnes, L., Healy, J., & Melville, J. [2020]. UMAP: Uniform Manifold Ap-
proximation and Projection for Dimension Reduction [arXiv:1802.03426].
arXiv. https://doi.org/10.48550/arXiv.1802.03426

McLeod, J. [2023]. Sabermetrics 101: Understanding the Calculation of
WAR. In Samford University. https://www.samford.edu/sports-analytic
s/fans/2023/Sabermetrics-101-Understanding-the-Calculation-of-WAR

Molnar, C. [2022]. Interpretable machine learning: A guide for making black
box models explainable [Second edition]. Christoph Molnar.

Mueller, B. [2015]. The Importance of Hard-Hit Percentage. https://comm
unity.fangraphs.com/the-importance-of-hard-hit-percentage/

Nahhas, R. W. [2024]. Introduction to Regression Methods for Public Health
Using R. https://www.bookdown.org/rwnahhas/RMPH/

Ngo. [2018]. Principal component analysis explained simply. In BioTuring’s
Blog. https://blog.bioturing.com/2018/06/14/principal-component-
analysis-explained-simply/

80

https://commons.wikimedia.org/wiki/File:Decision/_Tree.jpg
https://doi.org/10.1007/978-3-031-27852-5_8
https://doi.org/10.1007/978-3-031-27852-5_8
https://doi.org/10.1109/ACCESS.2021.3051619
https://doi.org/10.1109/ACCESS.2021.3051619
https://www.baseballprospectus.com/news/article/8938/prospectus-idol-entry-why-is-on-base-percentage-king/
https://www.baseballprospectus.com/news/article/8938/prospectus-idol-entry-why-is-on-base-percentage-king/
https://shap.readthedocs.io/en/latest/example/_notebooks/api/_examples/plots/beeswarm.html
https://shap.readthedocs.io/en/latest/example/_notebooks/api/_examples/plots/beeswarm.html
http://arxiv.org/abs/1705.07874
https://www.mlb.com/video/statcast-barrel-zone-c1152989483
https://www.mlb.com/video/statcast-barrel-zone-c1152989483
https://www.marca.com/en/mlb/2022/03/10/622931ce22601dc5528b45e2.html
https://www.marca.com/en/mlb/2022/03/10/622931ce22601dc5528b45e2.html
https://umap-learn.readthedocs.io/en/latest/how/_umap/_works.html
https://umap-learn.readthedocs.io/en/latest/how/_umap/_works.html
https://doi.org/10.48550/arXiv.1802.03426
https://www.samford.edu/sports-analytics/fans/2023/Sabermetrics-101-Understanding-the-Calculation-of-WAR
https://www.samford.edu/sports-analytics/fans/2023/Sabermetrics-101-Understanding-the-Calculation-of-WAR
https://community.fangraphs.com/the-importance-of-hard-hit-percentage/
https://community.fangraphs.com/the-importance-of-hard-hit-percentage/
https://www.bookdown.org/rwnahhas/RMPH/
https://blog.bioturing.com/2018/06/14/principal-component-analysis-explained-simply/
https://blog.bioturing.com/2018/06/14/principal-component-analysis-explained-simply/

Nguyen, M. [2020]. A guide on data analysis. Bookdown. https://bookdo
wn.org/mike/data/_analysis/

Nielsen Company, T. [2023]. Tops of 2023: Sports | Nielsen. https://www.
nielsen.com/insights/2023/tops-of-2023-sports/

Nobel Prize Outreach. [2024]. Lloyd S. Shapley – Facts. https://www.nobe
lprize.org/prizes/economic-sciences/2012/shapley/facts/

Petti, B. [2017]. Research Notebook: New Format for Statcast Data Export
at Baseball Savant. In The Hardball Times. https://tht.fangraphs.co
m/research-notebook-new-format-for-statcast-data-export-at-baseball-
savant/

Powers, D. M. W. [2020]. Evaluation: From precision, recall and F-measure
to ROC, informedness, markedness and correlation [arXiv:2010.16061].
arXiv. http://arxiv.org/abs/2010.16061

Quinlan, J. R. [1986]. Induction of decision trees. Machine Learning, 1[1],
81–106. https://doi.org/10.1007/BF00116251

Schaul, K. [2023]. How far must a ball travel to be a home run? Depends on
the MLB stadium. In Washington Post. https://www.washingtonpost.c
om/sports/interactive/2023/mlb-field-dimensions/

Scikit-learn. [n.d.]. 3.1. Cross-validation: Evaluating estimator performance.
In scikit-learn. Retrieved August 2, 2024, from https://scikit-learn.org/
stable/modules/cross/_validation.html

Shlens, J. [2014]. A Tutorial on Principal Component Analysis
[arXiv:1404.1100]. arXiv. http://arxiv.org/abs/1404.1100

Sirakorn. [2020]. English: Illustration of a boosting method for ensemble
learning. https://commons.wikimedia.org/wiki/File:Ensemble/_Boosti
ng.svg

Sutelan, E. [2014]. Taking a Closer Look at Hitting with Runners in Scoring
Position. https://community.fangraphs.com/taking-a-closer-look-at-
hitting-with-runners-in-scoring-position/

Van Rijsbergen, C. J. [1979]. Information Retrieval. Butterworth and Co.
https://www.dcs.gla.ac.uk/Keith/Preface.html

VanderPlas, J. [2016]. Python data science handbook: Essential tools for
working with data [First edition]. O’Reilly.

Vollmer, N. [2023]. Recital 71 EU General Data Protection Regulation (EU-
GDPR). SecureDataService. https://www.privacy-regulation.eu/en/rec
ital-71-GDPR.htm

XGBoost. [2022]. Understand your dataset with XGBoost — xgboost 2.1.1
documentation. https://xgboost.readthedocs.io/en/stable/R-package/di

81

https://bookdown.org/mike/data/_analysis/
https://bookdown.org/mike/data/_analysis/
https://www.nielsen.com/insights/2023/tops-of-2023-sports/
https://www.nielsen.com/insights/2023/tops-of-2023-sports/
https://www.nobelprize.org/prizes/economic-sciences/2012/shapley/facts/
https://www.nobelprize.org/prizes/economic-sciences/2012/shapley/facts/
https://tht.fangraphs.com/research-notebook-new-format-for-statcast-data-export-at-baseball-savant/
https://tht.fangraphs.com/research-notebook-new-format-for-statcast-data-export-at-baseball-savant/
https://tht.fangraphs.com/research-notebook-new-format-for-statcast-data-export-at-baseball-savant/
http://arxiv.org/abs/2010.16061
https://doi.org/10.1007/BF00116251
https://www.washingtonpost.com/sports/interactive/2023/mlb-field-dimensions/
https://www.washingtonpost.com/sports/interactive/2023/mlb-field-dimensions/
https://scikit-learn.org/stable/modules/cross/_validation.html
https://scikit-learn.org/stable/modules/cross/_validation.html
http://arxiv.org/abs/1404.1100
https://commons.wikimedia.org/wiki/File:Ensemble/_Boosting.svg
https://commons.wikimedia.org/wiki/File:Ensemble/_Boosting.svg
https://community.fangraphs.com/taking-a-closer-look-at-hitting-with-runners-in-scoring-position/
https://community.fangraphs.com/taking-a-closer-look-at-hitting-with-runners-in-scoring-position/
https://www.dcs.gla.ac.uk/Keith/Preface.html
https://www.privacy-regulation.eu/en/recital-71-GDPR.htm
https://www.privacy-regulation.eu/en/recital-71-GDPR.htm
https://xgboost.readthedocs.io/en/stable/R-package/discoverYourData.html
https://xgboost.readthedocs.io/en/stable/R-package/discoverYourData.html

scoverYourData.html

82

https://xgboost.readthedocs.io/en/stable/R-package/discoverYourData.html

Appendix A

Appendix

A.1 Statcast CSV documentation

Column name Definition
pitch_type The type of pitch derived from

Statcast.
game_date Date of the Game.
release_speed Pitch velocities from 2008-16 are via

Pitch F/X, and adjusted to roughly
out-of-hand release point. All
velocities from 2017 and beyond are
Statcast, which are reported
out-of-hand.

release_pos_x Horizontal Release Position of the
ball measured in feet from the
catcher’s perspective.

release_pos_z Vertical Release Position of the ball
measured in feet from the catcher’s
perspective.

player_name Player’s name tied to the event of
the search.

batter MLB Player Id tied to the play
event.

83

Column name Definition
pitcher MLB Player Id tied to the play

event.
events Event of the resulting Plate

Appearance.
description Description of the resulting pitch.
spin_dir Deprecated field from the old

tracking system.
spin_rate_deprecated Deprecated field from the old

tracking system. Replaced by
release_spin

break_angle_deprecated Deprecated field from the old
tracking system.

break_length_deprecated Deprecated field from the old
tracking system.

zone Zone location of the ball when it
crosses the plate from the catcher’s
perspective.

des Plate appearance description from
game day.

game_type Type of Game. E = Exhibition, S =
Spring Training, R = Regular
Season, F = Wild Card, D =
Divisional Series, L = League
Championship Series, W = World
Series

stand Side of the plate batter is standing.
p_throws Hand pitcher throws with.
home_team Abbreviation of home team.
away_team Abbreviation of away team.
type Short hand of pitch result. B = ball,

S = strike, X = in play.
hit_location Position of first fielder to touch the

ball.
bb_type Batted ball type, ground_ball,

line_drive, fly_ball, popup.
balls Pre-pitch number of balls in count.

84

Column name Definition
strikes Pre-pitch number of strikes in count.
game_year Year game took place.
pfx_x Horizontal movement in feet from

the catcher’s perspective.
pfx_z Vertical movement in feet from the

catcher’s perpsective.
plate_x Horizontal position of the ball when

it crosses home plate from the
catcher’s perspective.

plate_z Vertical position of the ball when it
crosses home plate from the
catcher’s perspective.

on_3b Pre-pitch MLB Player Id of Runner
on 3B.

on_2b Pre-pitch MLB Player Id of Runner
on 2B.

on_1b Pre-pitch MLB Player Id of Runner
on 1B.

outs_when_up Pre-pitch number of outs.
inning Pre-pitch inning number.
inning_topbot Pre-pitch top or bottom of inning.
hc_x Hit coordinate X of batted ball.
hc_y Hit coordinate Y of batted ball.
tfs_deprecated Deprecated field from old tracking

system.
tfs_zulu_deprecated Deprecated field from old tracking

system.
fielder_2 Pre-pitch MLB Player Id of Catcher.
umpire Deprecated field from old tracking

system.
sv_id Non-unique Id of play event per

game.
vx0 The velocity of the pitch, in feet per

second, in x-dimension, determined
at y=50 feet.

85

Column name Definition
vy0 The velocity of the pitch, in feet per

second, in y-dimension, determined
at y=50 feet.

vy0 The velocity of the pitch, in feet per
second, in z-dimension, determined
at y=50 feet.

ax *The acceleration of the pitch, in
feet per second per second, in
x-dimension, determined at y=50
feet.

ay The acceleration of the pitch, in feet
per second per second, in
y-dimension, determined at y=50
feet.

az The acceleration of the pitch, in feet
per second per second, in
z-dimension, determined at y=50
feet.

sz_top Top of the batter’s strike zone set by
the operator when the ball is
halfway to the plate.

sz_bot Bottom of the batter’s strike zone
set by the operator when the ball is
halfway to the plate.

hit_distance Projected hit distance of the batted
ball.

launch_speed Exit velocity of the batted ball as
tracked by Statcast. For the limited
subset of batted balls not tracked
directly, estimates are included
based on the process described here.

launch_angle Launch angle of the batted ball as
tracked by Statcast. For the limited
subset of batted balls not tracked
directly, estimates are included
based on the process described here.

86

Column name Definition
effective_speed Derived speed based on the the

extension of the pitcher’s release.
release_spin Spin rate of pitch tracked by

Statcast.
release_extension Release extension of pitch in feet as

tracked by Statcast.
game_pk Unique Id for Game.
pitcher MLB Player Id tied to the play

event.
fielder_2 MLB Player Id for catcher.
fielder_3 MLB Player Id for 1B.
fielder_4 MLB Player Id for 2B.
fielder_5 MLB Player Id for 3B.
fielder_6 MLB Player Id for SS.
fielder_7 MLB Player Id for LF.
fielder_8 MLB Player Id for CF.
fielder_9 MLB Player Id for RF.
release_pos_y Release position of pitch measured

in feet from the catcher’s
perspective.

estimated_ba_using_speedangle Estimated Batting Avg based on
launch angle and exit velocity.

estimated_woba_using_speedangle Estimated wOBA based on launch
angle and exit velocity.

woba_value wOBA value based on result of play.
woba_denom wOBA denominator based on result

of play.
babip_value BABIP value based on result of play.
iso_value ISO value based on result of play.
launch_speed_angle Launch speed/angle zone based on

launch angle and exit velocity. 1:
Weak 2: Topped 3: Under 4:
Flare/Burner 5: Solid Contact 6:
Barrel

at_bat_number Plate appearance number of the
game.

87

Column name Definition
pitch_number Total pitch number of the plate

appearance.
pitch_name The name of the pitch derived from

the Statcast Data.
home_score Pre-pitch home score
away_score Pre-pitch away score
bat_score Pre-pitch bat team score
fld_score Pre-pitch field team score
post_home_score Post-pitch home score
post_away_score Post-pitch away score
post_bat_score Post-pitch bat team score
if_fielding_alignment Infield fielding alignment at the time

of the pitch.
of_fielding_alignment Outfield fielding alignment at the

time of the pitch.
spin_axis The Spin Axis in the 2D X-Z plane

in degrees from 0 to 360, such that
180 represents a pure backspin
fastball and 0 degrees represents a
pure topspin (12-6) curveball

delta_home_win_exp The change in Win Expectancy
before the Plate Appearance and
after the Plate Appearance

delta_run_exp *The change in Run Expectancy
before the Pitch and after the Pitch

A.2 UMAP Explanation
To construct the high-dimensional graph, UMAP uses a concept called sim-
plices. A simplex is essentially a way of representing a 𝑘-dimensional object,
where a 𝑘-simplex is 𝑘 dimensional. Hence, a 0-simplex is a point, a 1-simplex
is a line, a 2-simplex is a triangle et cetera. Each 𝑘-dimensional simplex is
formed by using 𝑘 + 1 𝑘 − 1-dimensional simplices. This means that a 1-
simplex is formed by using 2 0-simplices and a 2-simplex is formed by using
3 1-simplices. This process then makes it easy to generalize to higher and

88

higher dimensional simplices.

Figure A.1: The four first simplices [McInnes, 2018]

We consider the data points in our dataset to be 0-simplices and connect them
to their neighboring data points to form 1-simplices in a so-called simplicial
complex. With that, the topology of the manifold can be approximated. To
connect each data point, UMAP creates radii that extend from the data
point outwards and when data points overlap, they get connected. Then all
connections get weights that indicate connection probability. Thus, when
points are far apart, the weight is low and closer points are higher weighted
[Coenen & Pearce, 2018].

Figure A.2

89

Figure A.3: Images showing the creation of radii from each data point and
the subsequent formation of the simplical complex [McInnes, 2018].

To find the low-dimensional graph representation, we seek to minimize a
loss function that is based on the cross entropy loss. We define the set of
all possible 1-simplices as 𝐸 and the weight functions 𝑤𝐻(𝑒), 𝑤𝐿(𝑒) to be
the weights of the 1-simplex 𝑒 in the high-dimensional and low-dimensional
graph representations respectively. The loss function will then be similar to
previously discussed loss functions, specifically we get:

∑
𝑒∈𝐸

𝑤𝐻(𝑒) ln(𝑤𝐻(𝑒)
𝑤𝐿(𝑒)) + (1 − 𝑤𝐻(𝑒)) ln(1 − 𝑤𝐻(𝑒)

1 − 𝑤𝐿(𝑒))

There are two terms here. The first term 𝑤𝐻(𝑒) ln (𝑤𝐻(𝑒)
𝑤𝐿(𝑒)) will be minimized

as 𝑤𝐿(𝑒) increases, which indicates inter-point distance to be small, whereas
the second term (1 − 𝑤𝐻(𝑒)) ln (1−𝑤𝐻(𝑒)

1−𝑤𝐿(𝑒)) will be minimized as 𝑤𝐿(𝑒) de-
creases, which indicates inter-point distance to be large. This is the balance
that the loss function needs to achieve and minimize and when that is done,
the low-dimensional graph representation is found [McInnes et al., 2020].

A.3 XGBoost Mathematical Details

Ω(𝑓𝑡) = 𝛾𝑇 + 1
2𝜆

𝑇
∑
𝑗=1

𝑤2
𝑗 (A.1)

90

where 𝛾, is the complexity control parameter, 𝑇 is n the number of leaves
in the tree, 𝜆 is a regularization term, and 𝑤𝑗 are the leaf weights [T. Chen
& Guestrin, 2016]. Equation A.1 can be unwieldy to work with and there-
fore XGBoost instead uses the second-order Taylor approximation of the loss
function to simplify calculations. Doing that results in:

Obj(𝑡) =
𝑛

∑
𝑖=1

[𝐿(𝑦𝑖, 𝑝(𝑡−1)
𝑖) + 𝑔𝑖𝑓𝑡(𝑥𝑖) + 1

2ℎ𝑖𝑓2
𝑡 (𝑥𝑖)] + Ω(𝑓𝑡) (A.2)

where

𝑔𝑖 = 𝜕
𝜕𝑝(𝑡−1)

𝑖
𝐿(𝑦𝑖, 𝑝(𝑡−1)

𝑖)

ℎ𝑖 = 𝜕2

𝜕𝑝2(𝑡−1)
𝑖

𝐿(𝑦𝑖, 𝑝(𝑡−1)
𝑖)

When removing constant terms, Equation A.2 simplifies to:

Obj(𝑡) =
𝑛

∑
𝑖=1

[𝑔𝑖𝑓𝑡(𝑥𝑖) + 1
2ℎ𝑖𝑓2

𝑡 (𝑥𝑖)] + Ω(𝑓𝑡) (A.3)

This is the objective function to minimize. We can re-formulate the model
by defining 𝐼𝑗 as the instance of all data points of the 𝑗-th tree. Then each 𝑓𝑡
becomes 𝜔𝑗 and to find the minimum we derive the objective function with
respect to 𝜔𝑗:

𝜕
𝜕𝜔𝑗

Obj(𝑡) = ∑
𝑖∈𝐼𝑗

[𝑔𝑖 + (ℎ𝑖 + 𝜆)𝜔𝑗] = 0

𝜔∗
𝑗 =

∑𝑖∈𝐼𝑗
𝑔𝑖

∑𝑖∈𝐼𝑗
(ℎ𝑖 + 𝜆)

A.4 Hyperparameter Tuning Results
For the logistic regression model the optimal hyperparameters were, as pre-
sented in Table A.2:

91

Table A.2: The optimal hyperparameters for the logistic regression model.

Parameter Optimal value
alpha 0.000034
learning_rate adaptive
eta0 0.00346
class_weight balanced

These hyperparameters resulted from the following optimization history, as
presented in Figure A.4:

Figure A.4: Hyperparameter Optimization History

where the objective function was the mean F2 score. We can see that the
algorithm reached near optimal objective values already in the first 10 trials
and that after approximately 20 trials it very rarely explored unfavorable
regions of the parameter space.

Looking at the XGBoost model the optimal hyperparameters were, as pre-
sented in Table A.2::

92

Table A.3: The optimal hyperparameters for the XGBoost model.

Parameter Optimal value
max_depth 7
learning_rate 0.0958
n_estimators 803
min_child_weight 1
gamma 0.4267
reg_alpha 9.4585
scale_pos_weight 4.9604
subsample 0.7873
colsample_bytree 0.6680

Again we present the optimization history, as shown in Figure A.5:

Figure A.5: Hyperparameter Optimization History

We again see that the algorithm is very quick with reaching near optimal
objective values and with XGBoost it is even quicker in abandoning unfruitful
paths.

93

	Acknowledgement
	Glossary
	Introduction
	Introduction to Baseball
	The Rise of Statistical Analysis in Baseball
	Problem Formulation

	Theory
	Dimensionality Reduction Techniques
	Principal Component Analysis (PCA)
	Uniform Manifold Approximation and Projection (UMAP)

	Binary Classification
	Statistical Models
	Logistic Regression
	Lasso Regularization
	XGBoost

	Evaluation Metrics
	Accuracy, Precision, Recall, and F2 Score
	Precision-Recall Curve and AUC

	Model Interpretability
	Feature Importance
	SHAP Values

	Model Optimization

	Method
	Data Collection and Preparation
	Data Source and Scope
	Data Cleaning and Preprocessing
	Feature Engineering
	Handling Categorical Features
	Handling Missing Values

	Exploratory Data Analysis
	Overview
	Pitch Analysis
	Batted Ball Analysis
	Correlation Analysis
	PCA Implementation and Results
	UMAP Implementation and Results
	Conclusions from PCA and UMAP

	Model Development
	Model Training and Evaluation

	Model Evaluation and Interpretation
	Performance Metrics
	Feature Importance Analysis
	SHAP Value Analysis

	Tools and Libraries Used

	Results
	XGBoost Feature Selection Results
	Lasso Feature Selection Results
	Model Performance Results
	Confusion Matrices
	Performance Metrics
	Precision-Recall Curve and AUC-PR

	Feature Importance Results
	SHAP Results

	Discussion
	Insights for Baseball Strategy
	Limitations & Future Opportunities

	References
	Appendices
	Appendix
	Statcast CSV documentation
	UMAP Explanation
	XGBoost Mathematical Details
	Hyperparameter Tuning Results

