
IMAGE BASED FEATURE

EXTRACTION TO IMPROVE

SURVIVAL ANALYSIS IN HEAD

AND NECK CANCER

ANTON LINNÉR
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Abstract

In this thesis we performed a pooled cohort study to investigate the role
of radiomics in head and neck cancer prognosis. The aim was to investi-
gate prognostic value for overall survival and cancer recurrence of radiomics
combined with previously studied demographic and clinical risk factors. Ra-
diomics features were extracted from the gross tumor volume on a computed
tomography captured prior to radiotherapy treatment. Both standard statis-
tical models such as Cox regression, and common machine learning methods
such as random survival forest, DeepSurv and DeepHit, were used. The can-
cer type was constricted to oropharyngeal head and neck cancer due to large
amount of missing data in the other head and neck cancer types. Prognostic
performance for local recurrence was improved using shape related radiomics
(sphericity) and clustering based methods (PCA). In contrast, the results
showed no improved performance for overall survival (OS) for any model,
where a possible reason might be too few events per covariate or that OS
depends mainly on factors not captured by the radiomics data.

These results indicate a role for radiomics in prognostic evaluation, which
could prove to be useful treatment decision making and research guidance.

Keywords: Radiomics, Head and neck cancer, oropharynx, Cox regression,
DeepSurv, DeepHit, Random survival forest, overall survival, local recurrence
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Popular summary

More people get cancer today than ever before, and according to the World
Health Organization (WHO) the trend in cancer cases will keep rising in the
near future with an increase of 77 % from 2020 to 2050. Despite the increase
in cancer cases, cancer mortality seems to be decreasing. One reason that is
commonly given for the decrease in mortality is improved treatment methods.
Decisions on treatment are made through patient specific information (such
as age or overall health status) and tumor specific information (such as cancer
type). Tumor specific information can be obtained through biopsy or medical
imaging. One way to quantify information in medical images is radiomics,
which is a method that is currently not used to inform treatment decision
making.

Radiomics extracts information from images with the aim to describe the
region of interest in the image (such as the tumor) with great detail. The
aim of this thesis was to use survival analysis to evaluate if radiomics could
help in predicting survival and recurrence in head and neck cancer, with the
goal to potentially use radiomics in treatment decision making in the future.

To do this, both standard statistical methods such as Cox regression, and
machine learning methods such as DeepSurv, DeepHit and Random survival
forest, were used. These models were used to model the probability of getting
the event (either death or cancer recurrence) over time. The machine learning
methods were only used to model death probability.

The results showed that neither standard statistical models or machine
learning models could utilize the radiomics to improve the probability predic-
tions for the case of death. Radiomics did seem to provide an improvement
for recurrence prediction. There therefore seems to be promise to use the
radiomic information to inform on how treatment decisions are made.
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Chapter 1

Introduction

Cancer cases are expected to increase by 77 % from 2020 to 2050 (World
Health Organization 2024). Despite the expected increase of cancer incidence,
cancer mortality appears decreasing in many developed countries (Hashim
et al. 2016, Siegel, Giaquinto, and Jemal 2024), where the three main reasons
presented are: declines in smoking, early detection and improved treatments.
This suggests the importance of cancer treatment and research.

There are four common ways to treat cancer: radiotherapy, chemotherapy,
immunotherapy and surgery. Treatment modality is based on several patient
and tumor specific factors. Patient specific factors can be information of the
patients overall health (such as age and diseases unrelated to the cancer),
whereas tumor specific factors are factors such as the size and cancer type.

Tumor specific information is often acquired by biopsy and by a doctor
through medical imaging such as X-ray computed tomography (CT). Some
characteristics of the tumor might be difficult to ascertain with imaging, and
often general and subjective descriptions of the tumor are made. Moreover,
biopsies might give limited information as tumors can be heterogeneous and
a small sample might not characterize the full tumor. Radiomics is a novel
method that uses computer algorithms to characterize regions of an image
with the goal of describing the details of the region in standardized ways
(Aerts et al. 2014). The radiomic features of the image describes complicated
patterns and shapes of 2D or 3D images. If radiomic features meaningfully
characterize tumor information in a complementary way to biopsy or visual
estimation there is potential for them to be used to inform treatment choices
and guide future research. One of the difficulties with using radiomic features
is that they are often highly correlated with each other. This is an issue
that can make it hard to get consistent results when radiomics are used in
statistical models.
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CHAPTER 1. INTRODUCTION 2

A branch of statistics called survival analysis (Andersen et al. 1993) in-
vestigate how factors affect survival outcome. It describes the time-to-event,
T , for an event of interest such as death or disease recurrence. It takes into
account the problem of censoring, which is when there are only partly known
observations. Censoring is the reason why standard regression and statistical
models can not be used.

One way to model time-to-event in survival analysis is the Kaplan-Meier
estimator (KM-estimator) which was introduced in 1958 (Kaplan and Meier
1958) and is a cornerstone to survival analysis that is still used today. The
KM-estimator is a nonparametric univariate method which is easy to im-
plement and straightforward to interpret. In 1972 David Cox developed a
regression method that could do multivariate modelling (D. R. Cox 1972),
which was the next large step in survival analysis. This model is called
the Cox proportional hazards model (Cox PH) and is together with the KM-
estimator one of the most common statistical methods for time-to-event mod-
elling in the medical field. In 2008 a decision tree-based machine learning
method based on the already popular random forest method was introduced,
referred to as random survival forest (RSF) (Ishwaran et al. 2008), which is
one of the common machine learning approaches today. Some more recent
machine learning models are DeepSurv (Katzman et al. 2018) and DeepHit
(Lee et al. 2018) which are feed forward neural networks that can use complex
relationships between covariates to predict survival outcomes.
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1.1 Background and previous research
One common type of cancer is head and neck cancer (H&N cancer) with
890,000 new cases and 450,000 deaths annually worldwide (Global Cancer
Observatory 2023), which accounts for roughly 4.5% of cancer diagnoses and
deaths (Barsouk et al. 2023). An overview for common H&N cancer locations
can be seen in Figure 1.1.

Figure 1.1: Head and neck overview
(National Cancer Institute 2023).

For oropharyngeal H&N cancer
specifically (a region within pharynx),
the human papillomavirus (HPV) has
been shown to be a prognostic marker
and might affect treatment recommen-
dations (Patel et al. 2020). It is of-
ten measured through the presence of
the tumor suppressing protein known
as p16. In addition to HPV-p16 sta-
tus, the size of the tumor has shown
promise to be an additional marker in
oropharyngeal H&N cancer for both
overall survival and local cancer recur-
rence1 (Adrian et al. 2022). It was
shown that both tumor volume and
having a negative p16 status were as-
sociated with a worse prognosis, where
tumor volume had a more significant
negative effect on survival and recur-
rence prognosis for HPV-p16 positive patients. There has been no conclusion
on how radiomics might aid the existing H&N cancer risk factors, such as
volume and p16 status for oropharyngeal cancer, when estimating overall
survival and local recurrence.

The aim of this project was to do a pooled cohort study to investigate how
radiomics could improve upon existing models and how they might expand
the understanding of the cancer characteristic in H&N cancer. In addition
to this, machine learning methods were used in order to see if they better
incorporate the information from radiomics in combination with clinical/de-
mographic features and compared to standard statistical methods.

1Overall survival refers to death by any cause, and local recurrence refers to recurrence
of the cancer close to the original location.
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1.2 Data
Two data sets were available for this project. The first data set, ARTSCANIII,
was obtained from a prospective randomized trial comparing chemotherapy
treatment methods for H&N cancer (Gebre-Medhin et al. 2021). Inclusion
criteria were established to ensure some homogeneity of the patient group,
such as health conditions unrelated to the cancer, and patients with previous
cancer surgery were excluded. All patients were treated with radiotherapy.
The second data set was an open data set from patients treated at MAAS-
TRO Clinic, The Netherlands (Wee and Dekker 2019), referred to as H&N1.
This data set contains a variety of treatments and has no strict exclusion
criteria. ARTSCANIII included 299 patients and H&N1 included 137 H&N
patients. To deal with missing values, listwise deletion was implemented,
where observations were deleted if they had a missing value in any of the
features used in the model.



Chapter 2

Theory

2.1 Survival analysis
Survival analysis is a branch of statistics that aims to model the time, T , to
a certain event of interest in a subject. For example, when investigating the
time from treatment of a disease to recurrence of the disease. Questions that
survival analysis tries to answer are, what is the probability of experiencing
the event at a certain point in time? What is the rate of the event given that
the subject is event free up until that point? Is it possible to investigate how
certain groups and characteristics affect the event rate and event probability?
Is it possible to model several mutually exclusive events at the same time?

There are a few key concepts in survival analysis that are important,

• Censoring,

• Survival function and hazard function,

• Competing risks.

2.1.1 Censoring in survival analysis
Survival data must include both the duration that the subject is monitored,
and an indicator of an event. If the event did not occur during the monitored
time, the duration is recorded but the subject is considered censored.

Censoring in survival analysis refers to when certain subjects (e.g. pa-
tients) have only a partially observed survival time. More specifically, cen-
soring can occur if the observed survival time is monitored from an unknown
starting point or if the time is only known up until a certain time point, t.
If the starting point is unknown the censoring is called left-censoring and

5



CHAPTER 2. THEORY 6

if the survival time is only known up until a certain time point it is called
right-censoring. An example of right censoring is a patient who drops out
of a study at time t0 without having experienced an event. It is therefore
only possible to know that the patient had not experienced the event at time
t0, but after that point the status of the patient is unknown, and considered
right censored, demonstrated in Figure 2.1. Left-censoring can be explained
in the case of a trial looking at a specific disease, where the interest is mod-
elling the time from onset of disease to death due to the disease. In this case
one might not know the true onset time of the disease but rather the time
of diagnosis, and the full survival time is partially unknown. In this project,
the event start time will be after completed radiotherapy treatment which
means only right censoring will be considered.

Time

Subjects

Censored

Event

Censored

Subject 1

Subject 2

Subject 3

Figure 2.1: Illustration of right censoring

2.1.2 Survival function and hazard function
In survival analysis one commonly wants to characterize the time to event
(also called survival time), T , with the survival function which is defined as
S(t) = P (T ≥ t). The survival function is the probability of observing a
survival time greater than some time t. In some instances the cumulative
incidence function, CIF, is used. In the case where there is only one event of
interest, the CIF is simply 1 - S(t) and defines the probability of observing
a survival time less than some time t. In standard survival analysis the
survival function is more common to use, but in the context of competing
risk (discussed more in section 2.3) the CIF is more commonly used.

Estimating the survival function for different groups or individuals will
give insights on their survival probability over time. One of the more com-
mon estimators of the survival function is the Kaplan-Meier estimator (KM-
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estimator). The KM-estimator uses both censored and uncensored data to
estimate the survival function. It does this over time intervals obtained by the
ordered observed times for the subjects (including censored subjects), from
shortest to longest. This gives a nonparametric estimation of the survival
function,

Ŝ(t) =
∏
i:ti≤t

ni − di
ni

, (2.1)

where ti is the observed survival time of a subject i in the risk set Ri. The risk
set, Ri, includes the index of all censored or uncensored subjects that has not
experienced the event yet at time ti. The number of subjects at risk at time
ti is denoted ni and the number of people for which the event occurred at
time ti is denoted di. The KM-estimator assumes non-informative censoring
which is independent of the event of interest and does not provide information
about the distribution of survival times. To look at an example where this
is not the case, we look at the case when our event of interest is recurrence
of cancer. If censoring occurs due to the patients worsening health condition
(caused by cancer recurrence), then the censoring and event of interest are
dependent.

Another important concept in survival analysis is the hazard function,
h(t), defined as

h(t) = lim
∆t→0

P (t < T ≤ t+∆t | T > t)

∆t
. (2.2)

The hazard function describes the instantaneous rate of an event occurring
at time t, given that the event has not happened yet. The cumulative hazard,
H(t) is the integral of the hazard function up to time t, and relates to the
instantaneous hazard through:

H(t) =

∫ t

0

h(u) du. (2.3)

The cumulative hazard is related to the survival function in the following
way:

S(t) = e−H(t). (2.4)
This means that to estimate the survival function, one could estimate the
cumulative hazard or hazard function and use equation 2.4 to obtain the
survival function.
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2.2 Cox proportional hazards model.
The Cox proportional hazards model (Cox PH) is a way to relate the hazard
function to a set of covariates through:

h(t | Xi) = h0(t)e
Xiβ, (2.5)

where β is a column vector of coefficients for a subject, i, with the covariates
represented by the row vector Xi ∈ Rp where p is the number of covariates.
The function h0(t) is called the baseline hazard function and is the hazard
function where the covariates are 0, or in some cases the mean or median. The
baseline hazard function relates to the baseline survival function through:

S0(t) = exp

[
−
∫ t

0

h0(u) du

]
(2.6)

which relates to the survival function by:

S(t | Xi) = S0(t)
exp(Xiβ). (2.7)

The baseline cumulative hazard function can be estimated using the Breslow
estimator (Hosmer, Lemeshow, and May 2008, p. 175):

Ĥ0(t) =
∑
ti≤t

di∑
j∈Ri

exp(Xjβ)
. (2.8)

One can then get the baseline survival function estimate through equation 2.4.
Once the β coefficients are obtained, the baseline survival function estimate
can be used to calculate the full survival function through equation 2.7.

The part of equation 2.5 that does not depend on time, exp(Xiβ), relates
the covariates to the overall hazard function. The exponent, Xiβ, describes
the relative risk for a subject i and is often described as the risk function,
r(Xi)= Xiβ. For two subjects with covariates Xi and Xj and r(Xi) > r(Xj),
the subject i will have a higher probability to experience the event compared
to the subject j.

The Cox proportional hazard model is sometimes referred to as a semi-
parametric model since the baseline hazard function, h0(t), does not assume
a parametric form and is estimated nonparametrically. This is in contrast to
the exp(Xiβ) which is parametric with the coefficients β.

Hazard ratio and proportional hazard

An assumption of the Cox proportional hazards model is that it assumes
proportional hazards. To explain this assumption, we start with explaining
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a concept called the hazard ratio. In the Cox model, hazard ratio is the
ratio between the hazard of two observations having two different values of a
covariate (commonly a difference of 1) while the other covariates are constant.
This is a common method to interpret the effects of covariates on the hazard
function. In the univariate case for a subject with one covariate, Xj, the
hazard ratio for the covariate increasing from 0 to 1 is shown below:

h(t|Xj = 1)

h(t|Xj = 0)
=

h0(t) exp(β · 1)
h0(t) exp(β · 0)

= exp(β) (2.9)

This can be extended to multiple covariates by holding all other covariates
constant except for the covariate of interest. The hazard ratio describes how
much the instantaneous rate of the event increases with an increase of one
step of the covariate. The ratio between the hazard functions of two different
hazards is equal to a constant that does not depend on time and is therefore
proportional. If the ratios would depend on time, the hazards would no
longer be proportional and the assumption would not hold. This also means
that the information of covariates are assumed to be obtained at the time
of gathering them, and their effect stays the same independent of how much
time has passed.

Likelihood coefficient estimation

To estimate the β-coefficients a partial likelihood function was introduced in
1975, (D. Cox 1975), and is shown below. Since the baseline hazard function
is not used in this expression, it is called the partial likelihood function. If
there are no tied observation times for individuals that experienced the event
of interest, the partial likelihood function, given observations X, is given by:

L(β | X) =
∏
i:ci=1

exp(Xiβ)∑
j∈Ri

exp(Xjβ)
, (2.10)

where ci is an indicator for if the event happened (ci = 1) or the subject
was censored (ci = 0). The possibility of ties makes it difficult to assess
who is in the risk set. If two subjects experience the event at the same time
it is ambiguous as to who will be considered in the other persons risk set.
For a set Di containing the subjects with ties at time ti, the tied corrected
likelihood function is given by:

L(β | X) =
∏

j:cj=1

∏
i∈Dj

exp(Xiβ)∏mj−1
ℓ=0

[∑
i∈Rj

exp(Xiβ)− ℓ
mj

∑
i∈Dj

exp(Xiβ)
] , (2.11)
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where mj = | Dj |.
To check the significance of the model, or the individual coefficients, either

Walds test or the likelihood ratio test is commonly used (Hosmer, Lemeshow,
and May 2008, p. 77).

2.3 Competing risk
Up until now, only a single event of interest has been considered. A common
complication is when there are competing risks that are mutually exclusive
to the event of interest, see Figure 2.2. To ground the concept of competing
risk in an example, the example of cancer recurrence and death from any
cause can be used. If the subject dies from any cause (related or unrelated
to the cancer), it is no longer possible to get cancer recurrence. Death is
therefore a competing risk to cancer recurrence and will have to be considered
when looking at survival time modeling for the event of interest. An initial
thought might be to treat subjects who suffer a competing risk before the
event of interest as censored. This is common when obtaining the hazard rate
of that specific cause. However, the relation between the hazard function
for a specific cause and the survival function for that cause is no longer
straightforward.
One option is to use the cause specific cumulative incidence function (CIFk)

Start

Event CRC

Time t = 0

Event of interest

Competing RiskCensoring

Figure 2.2: Illustrating the possible event outcomes in the presence of com-
peting risks (CR). The event of interest can not occur if the competing risk
occurs.

in the presence of competing risks. This is the probability of the event
occurring before a specific time for that specific cause, CIFk(t) = Pr(T ≤
t,D = k). In a competing risk free setting, the CIF is just equal to 1 - S(t),
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which means it would be possible to use the KM-estimator to estimate it.
This is however not possible in the presence of competing risks.

The cause specific hazard function is shown in equation 2.12. This is the
instantaneous rate of experiencing the event of cause k at a specific time,
given that you have not experienced any event.

hk(t) = lim
∆t→0

Pr(t ≤ T < t+∆t,D = k | T ≥ t)

∆t
(2.12)

Using the cause specific hazard function, we can define the cause specific
cumulative hazard function as:

Hk(t) =

∫ t

0

hk(u) du. (2.13)

Using Hk(t), an expression for the overall survival function can be obtained
through the following expression:

S(t) = exp

(
−

k∑
i=1

Hk(t)

)
. (2.14)

Using equation 2.14, we can define the cause specific CIF as:

CIFk(t) =

∫ t

0

hk(u)S(u) du. (2.15)

As can be seen, the cause specific CIFk depends on all causes through the
overall survival function, equation 2.14.
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2.3.1 Cause specific Cox regression model
The cause specific Cox regression model is similar to the standard Cox re-
gression model, with the key difference that it looks at the hazard function
for only one specific cause and ignoring the rest of the causes,

hk(t | Xi) = hk0(t) exp(Xiβk), (2.16)

where k is the cause of interest. The coefficient estimation is the same as in
the standard Cox regression model, where one deals with each cause sepa-
rately.

2.4 Machine learning
Due to the complexity that censoring adds to the statistics of survival analy-
sis, there needs to be modifications to standard machine learning techniques
before they are applicable to survival data. In this section, some basic con-
cepts in machine learning will be explained that are deemed to be of impor-
tance in this study. The models modified for survival analysis will then be
presented.

Specifically, two machine learning concepts are important:

• Decision trees

• Multi-layer perceptrons (MLPs)

Decision trees

Decision trees take a set of covariates, X, as input and divides the data points
based on the values of the covariates, as can be seen in Figure 2.3. First, the
value of the covariates for subject i are used as input to a node called the
root node. The root node is a node that starts the decision tree and therefore
every data point will go through it. In the root node a decision is made that
decides which node the subject will be passed on to based on the value of
the covariate. The decision is made by setting a threshold for the covariate
which dictates the path of the subject down the decision tree. The internal
nodes, called decision nodes, act in the same way as the root node. The final
nodes are called leaf nodes, which is where the data ends up after passing
the root nodes and the decision nodes. This is the final classification of the
data based on the covariates.

The decision on which covariate to split, and what the threshold should
be that is used to split them, is based on increasing the homogeneity after
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each split, which can be done through statistical tests comparing the charac-
teristics of the groups after a split. Many different thresholds are tried, and
the split with the best result is chosen.

Xi

Root node
Covariate > Threshold?

Leaf node
Class A

Decision node:
Covariate < Threshold?

Leaf node
Class B

Leaf node
Class C

Yes No

Yes No

Figure 2.3: Example of decision tree structure.

Multi-layer perceptrons

Multi-layer perceptrons is a class of neural networks that are based on layers
of nodes, where each node does some transformation of the data used as input.
It starts with the covariates being passed to the input layer, with one node
per covariate. This acts like a placeholder for the data and no transformation
or modification is done to the data in this layer of nodes. The data is then
passed to a layer called a hidden layer. When the data is passed to the
hidden layer, they are scaled by weights, where each connection has their
own weight. The number of nodes in the hidden layer is a parameter to
be decided and does not have to match the number of nodes in the input
layer. The number of hidden layers is another parameter that needs to be
decided on, where more layers can find more abstract patterns in the data
but usually need more data points. From the hidden layer(s), the nodes
are connected to the output layer. These connections are also attached to a
weight, transforming the value. These weights determine the importance of
the data points and their transformations. The output layer is the prediction
of the network and is compared to the known value that is associated with
the input covariates, X. This is evaluated by an error function that the
network tries to minimize through gradient based methods. These calculate
the gradient of the loss function with respect to the weights and then adjusts
the weight in the direction of lower error. The steps the weights adjust is
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Input
layer

Hidden
layer

Output
layer

Figure 2.4: Standard MLP structure.

often referred to as the learning rate. In addition to the connections between
nodes having weights, each node has an activation function which transforms
the value in a non-linear way.

2.4.1 DeepSurv
The DeepSurv proportional hazards neural network is a network which aims
to find the risk function r(Xi) for subject i. The network finds interactions
and transformations of covariates that are otherwise hard to capture in stan-
dard proportional hazards models. Just like the Cox proportional hazard
model discussed above, the DeepSurv network assumes proportional hazards
(Katzman et al. 2018) and does not allow for time varying-covariates. It has
a multi-layer perception structure which has a single node as output, see Fig-
ure 2.5, which represents the risk function. The loss function is the negative
log likelihood of equation 2.10 with and added regularization parameter,

L(θ | Xi) := − 1

N

∑
i:ci=1

(
r̂θ(Xi)− log

∑
j∈Ri

er̂θ(Xj)

)
+ λ∥θ∥2 (2.17)

Here θ are the weights used by the network and λ is a regularization parame-
ter, which is a way to combat overfitting and to limit the number of features
included.

Once the risk function is obtained, it is possible to get a risk score for
a set of parameters Xi for subject i. Once the risk function is found it is
possible to obtain the survival function by estimating the baseline hazard
non-parametrically and then following the same steps described in the Cox
regression section.
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Figure 2.5: DeepSurv MLP model structure.

2.4.2 DeepHit
DeepHit is a neural network that has a similar structure to DeepSurv, in the
sense that they are both MLPs, shown in Figure 2.6. However, where Deep-
Surv estimates the risk function, DeepHit estimates the survival function
directly. This is done by first discretizing the time into discrete time points,
t ∈ T where T = {0, . . . , Tmax}. Here Tmax is the time horizon of interest,
which is manually chosen based on the interest of the study. DeepHit tries to
estimate the survival probability at certain time points, P (T = t |Xi). The
main difference from DeepSurv is the output layer, which is a softmax layer
instead of a linear layer, seen in Figure 2.6. The softmax output layer is a
probability distribution for a subject with covariates Xi, represented as y =
[y1 y2 ... yTmax ]. Here yt is the estimated probability that a subject will
experience the event at time point t, given some covariates Xi.
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Dropout layer
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...

Dropout layer

Fully Connected layer

X

Figure 2.6: DeepHit MLP model structure

Since DeepHit does not estimate the risk function, it cannot use the
same loss function as DeepSurv. Instead it uses a loss function that consists
of functions that focus on different aspects of the predictions. The first loss
function, for N subjects, is given by:

L1(θ | X) = −
N∑
i=1

[1(ci ̸= 0) · log (ŷti)

+1(ci = 0) · log
(
Ŝ(ti | Xi)

)]
, (2.18)

where 1 is the indicator function and Ŝ(ti | Xi) is estimated by Ŝ(ti | Xi) =
1 -
∑

t∈T yt. This evaluates the error made by the prediction of probability
of the model. The second loss function looks at how well the model ranks
different subjects based on their risk score:

L2(θ | X) =
∑
i ̸=j

ci1{ti < ti} exp

(
Ŝ(ti | Xi)− Ŝ(ti | Xj)

σ

)
(2.19)

where σ is a parameter that can be chosen to scale how much an incor-
rectly ranked pair of subjects will affect the loss function. The total loss
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function is:
Ltotal = αL1 + (1− α)L2, (2.20)

where α is a parameter that can be selected to further fine-tune how much
each loss function should contribute to the total loss function. Once the
probabilities are estimated, a linear interpolation between the time points
can be done in order for a more accurate prediction (Kvamme and Borgan
2019).

2.4.3 Random survival forest
In standard random forest, many decision trees are trained simultaneously,
hence the name random forest. The predictions are the ensemble mean of
these trees, which means that each tree makes a prediction independently,
and the final prediction is the mean of all the predictions from each tree.
Each tree is only allowed a subset of the covariates and data points to train
on, which is assigned randomly and is why it is called random forest. For
each tree, a bootstrap sample of the observations is given for it to use as
training data. A bootstrap sample is when observations are drawn from the
original set with replacement. That means that the bootstrap sample can
have the same observation several times. Typically, a bootstrap sample is as
large as the original sample.

At each leaf node, the KM-estimator will be used to estimate the survival
function for the observations in that leaf node, and the splits at each root
and decision node are based on how well the split divides the subjects into
groups with different survival functions. This is done by evaluating the KM-
estimator for each group after a split, and performing a log-rank test to
determine how different their survival functions are (Hosmer, Lemeshow, and
May 2008, p. 77).

2.5 Model evaluation
Once the models are obtained, there needs to be metrics to evaluate their
performance. Here two common metrics will be discussed, the concordance
index and the Brier score.

2.5.1 Concordance
The concordance index for both the competing risk-free (standard) and com-
peting risk case is explained below.
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In general, concordance index ranks individuals based on their estimated risk
of experiencing an event.

Standard survival analysis

The Frank Harrell concordance index (Harrell et al. 1982) is an accuracy
measures that ranks individuals based on a risk score, M(Xi), for an individ-
ual with covariates Xi. The risk score can be obtained from the estimated
risk function, cumulative hazard function or survival probability. The risk
score should be constructed such that a higher risk score means a higher risk
of experiencing the event. To compare the risk scores of a pair of subjects
where there are one or more censored subjects the ranking needs some con-
siderations, since some pairs will be non-comparable. The pairs are therefore
divided into two subsets:

• Comparable pairs. This is a pair where either:

i) Both experienced the event of interest,
ii) One subject experienced the event and the other subject is cen-

sored but with a shorter observed time than the subject that ex-
perienced the event.

• Non-comparable pairs. This is a pair where either:

i) Both individuals are censored
ii) One is censored and the other subject experienced the event with

an event time earlier than the censored subject.

A comparable pair, each with covariates Xi and Xj and observed event times
ti and tj, where M(Xi) < M(Xj), are said to be concordant if ti > tj. If
tj > ti they are said to be discordant. This means that if the subject with
high risk scores experiences the event sooner than the subject with low risk
scores, the pair is said to be concordant. The concordance, C, is then:

C =
#Concordant pairs

#Comparable pairs
(2.21)

A score of C = 1 means that the model ranks the pairs perfectly, and a score
of C = 0.5 means that the model has no ability to rank the pairs correctly.
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Competing risks

In the presence of competing risks, the same definition as in the standard case
can be used with some modifications. If one considers the case where there
is only one competing risk where the event indicator k ∈ {0,1,2} indicates
if the subject was censored (k = 0), had the event of interest (k = 1) or
had the competing risk (k=2), the following addition of comparable pairs
can be made: both of the subjects experienced an event where neither was
censored, and not both experienced the competing risk. For a pair with
individuals with covariates, event indicators and event times (Xi, ki, ti) and
(Xj, kj,tj) respectively, where M(Xi) > M(Xj) for k=1, the pair is said to
be concordant if:

• tj < ti, kj = 2,

• tj > ti, kj = 2.

The reasoning for this, outlined in (Wolbers et al. 2014), is that M(Xi) is
the risk of experiencing the event of interest k = 1. If a subject experiences
the competing risk, then the event of interest cannot occur and the subject
should be estimated to have a lower risk of experiencing the event of interest.

2.5.2 Brier score
The Brier score is a prediction error metric which uses the mean squared error
of the estimated survival probability and the outcome (censored or event of
interest). It also takes into account the censoring distribution in order to
correct for bias introduced due to the censoring.

BSc(t) =
1

n

n∑
i=1

[1(ti ≤t, ci = 1)
(0− Ŝ(t|Xi))

2

Ĝ(ti)

+ 1(ti > t)
(1− Ŝ(t|Xi))

2

Ĝ(t)

]
(2.22)

Here n is the number of subjects, ti is the observed time point of the censored
or uncensored subject and ci is an indicator for if the subject is censored or
not. To adjust for censoring probability, Ĝ(ti) is introduced as weighting
where Ĝ(ti) is the probability of being censoring free. If Ĝ(ti) = 0.1 for a spe-
cific time point ti, it represents a high censoring risk at that time point. The
subject will represent 1/0.1 = 10 subjects to account for the possible cen-
sored individuals. This is called inverse-probability-of-censoring weighting
(IPCW).
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2.6 Principal Component Analysis (PCA)
One way to handle high dimensional feature spaces that suffer from multi-
collinearity is through principal component analysis (PCA). For a data set
X with n rows and p columns, where each row is an observation and each
column is a feature, PCA can be done by:

1. Standardize the data set.

2. Calculate the covariance matrix between the features.

3. Calculate the eigenvectors and eigenvalues for the covariance matrix

4. Transform the data using the eigenvectors.

The motivation is that the eigenvectors are the directions of highest variance
which assumes to contain the most information.

The first step is to standardize the data since PCA is sensitive to differ-
ences in variance,

Zip =
Xip − µp

σp

, (2.23)

where µp is the mean of feature Xp, and σp is the standard deviation of the
feature Xp, estimated from the data set X. Z is now the standardized form
of X.

The covariance matrix can be estimated through:

C =
1

n− 1
ZTZ. (2.24)

The second step is to obtain, the eigenvectors, u, and eigenvalues λ of the
covariance matrix. The eigenvectors u are the principal components and the
eigenvalues describe how much of the variance is explained in each eigenvec-
tor. The eigenvectors are the directions of axes with maximum variance. The
eigenvectors are ordered by their eigenvalue, where a higher eigenvalue rep-
resents an eigenvector that explains more variance in the data. Since there
are as many eigenvectors (and eigenvalues) as features, one wants to choose
only a subset of eigenvectors. Let P be a matrix with the eigenvectors as
columns, one can then transform the original standardized data to a new
data set through the following transformation:

T = ZP. (2.25)

T is now the new data set with as many features (columns) as eigenvectors
chosen. If the variance of the data can be described by only a few principal
components there can be a great dimensionality reduction.
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2.7 Mutual information
Mutual information (MI) is a type of association between random variables
which detects any relation between them, in contrast to correlation that
only measures linear dependence. For two random variables X and Y , MI
estimates the difference between the joint probability of (X,Y ) and their
marginal distributions through the equation:

I(X,Y ) = E

(
ln

p(x, y)

p(x)p(y)

)
=
∑
x

∑
y

p(x, y)[ln p(x, y)− ln p(x)p(y)] (2.26)

As can be seen, if the random variables are independent, p(x, y) = p(x)p(y)
results in I(X,Y ) = 0. Equation 2.26 can be estimated from data by esti-
mating it using empirical distribution functions. This means that continuous
variables need to be discretized, where a common bin width is Freedman-
Diaconis rule:

h = 2
IQR
n1/3

(2.27)

where IQR is the interquartile range and n is the number of observations.
The number of bins, k, is then calculated through:

k =

⌈
range of data

h

⌉
(2.28)

Unlike correlation, it gives no indication as to in which direction the variables
are related, only that a relation exists.
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Methodology

3.1 Data description, selection and pre-processing

3.1.1 Feature description
The features of the two data sets, ARTSCANIII and H&N1, can be divided
into two categories, clinical/demographic features and radiomic features. The
full feature set of the data sets will not be shown here, but important clini-
cal/demographic and radiomic features will be described.

Clinical and demographic features

Important clinical and demographic features are collected in Table 3.1. These
features can describe different clinical aspects and characteristics of the can-
cer, but also demographic information about the patient (such as age).

22
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Table 3.1: Data characteristics for ARTSCANIII and
H&N1, described as ’N (percentage)’ unless otherwise
specified.

Feature ARTSCANIII
(N=299)

H&N1
(N=137)

Age, years
Median (range) 61 (33-77) 61 (44-83)
Missing 1 (<1) 0 (0)

Sex
Male 239 (80) 111 (81)
Female 59 (20) 26 (19)
Missing 1 (<1) 0 (0)

Primary tumor site
Oropharynx 253 (85) 88 (64)
Oral cavity 16 (5) 0 (0)
Larynx 12 (4) 49 (36)
Hypopharynx 17 (6) 0 (0)
Missing 1 (<1) 0 (0)

T stage
T1 43 (14) 35 (26)
T2 115 (38) 32 (23)
T3 56 (19) 24 (18)
T4 84 (28) 46 (34)
Missing 1 (<1) 0 (0)

p16 status
Positive 237 (79) 23 (17)
Negative 51 (17) 58 (42)
Missing 11 (4) 56 (41)

Survival status
Censored 240 (80) 63 (46)
Not censored 54 (18) 74 (54)
Missing 5 (2) 0 (0)

Survival time (days)
Median (range) 1052 (49-2121) 2778 (48-4789)
Missing 1 (<1) 0 (0)

Continued on next page
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Table 3.1 continued from previous page

Feature ARTSCANIII
(N=299)

H&N1
(N=137)

Recurrence status
Censored 253 113
Not censored 46 (51) 24 (48)
Missing 1 (<1) 0 (0)

Recurrence time (days)
Median (range) 864 (64-1959) 1142 (36-3200)
Missing 1 (<1) 0 (0)
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Radiomic features

The radiomic features are calculated from the PET/CT of the patient. The
tumor image region that the features are calculated from are drawn by an
oncologist. The radiomic are then calculated using the PyRadiomics package
in python (Griethuysen et al. 2017). These features can be divided into 6
subgroups where each group tries to describe a different aspect of the image of
the tumor. These subgroups are summarized in Table 3.2. In each subgroup
there are several features, each described in detail in (Griethuysen et al. 2017)
and a list of the 102 features used in this project is show in Table B.1.

Table 3.2: Overview of radiomic features by subgroup.
Subgroup Name Description
Shape This subgroup aims to characterize the shape of

the tumor in both 2D and 3D space. Examples
are the volume of the tumor and flatness of the
tumor.

First Order First order statistics of voxels1 within the region
of interest. Examples are the mean, median, and
maximum voxel values.

Gray Level
Co-occurrence Matrix
(GLCM)

This describes the second order joint probability
statistics of pairwise pixel values with a certain
distance to each other (immediate neighbors are
used here). This relates to the small scale structure
of the image.

Gray Level Size Zone
(GLSZM)

Describes the gray level zones in an image. Gray
level zones are zones of connected voxels with the
same gray level intensity.

Gray Level Run
Length Matrix
(GLRLM)

Describes the number of runs in a certain direction
of voxel with the same gray level. This quantifies
the number of consecutive gray levels in a certain
direction.

Gray Level
Dependence Matrix
(GLDM)

Describes gray level dependencies in an image. De-
pendencies are defined as the number of voxels that
are connected within a specified range that are de-
pendent on a center voxel.

1Voxels are pixels in 3 dimensions.
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There were no missing radiomic values for the patients in the H&N1 data
set, but 7 patients (2 %) in the ARTSCANIII had missing values. Since the
complete case method was implemented, these patients could only be used
in radiomic-free models.

3.1.2 Pre-processing
It is common practice to scale features that are on different scales and mag-
nitudes when using machine learning methods. Since the radiomics were on
different scales, they were scaled using Min-Max scaling from the package
scikit-learn. The scaling is mainly of importance on the gradient descent
based models in this project (DeepHit and DeepSurv).

The T-stage feature is a categorical variable that has values from 1 to
4, where 4 indicates a tumor that is large and has spread to surrounding
tissue and 1 indicates a less intrusive size of the tumor. To limit the number
of levels used for this factor in the models, T-stage was refactored to small
(T-stage = 1 or 2) or large (T-stage = 3 or 4). This turns the T-stage feature
from a factor with four levels into a binary factor with two levels.

3.1.3 Patient selection
As can be seen in Table 3.1, ARTSCANIII had four specific H&N cancer
diagnoses: hypopharynx, larynx, oral cavity and oropharynx, whereas the
H&N1 data set only had larynx and oropharynx. Therefore, a first step of
patient selection was to select patients with oropharynx or larynx cancer,
since these two cancer types were common to both cohorts.
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The p16 status in the H&N1 data set had 41 % missing values. However,
most of the missing values of p16 status were with patients in larynx cancer,
where only one out of 49 larynx cancer patients had recorded p16 status.
Only eight out of 88 of the oropharyngeal cancer patients had missing values
for p16 status in the H&N1 data set. Since p16 is of clinical importance for
the most prevalent cancer diagnosis, oropharynx, it was therefore decided to
only select oropharyngeal cancer patients from the two cohorts in our study.
Additionally, since no patients in the ARTSCANIII had treatment by cancer
surgery, only patients who did not have cancer surgery were selected.

299 patients

252 patients

137 patients

88 patients

85 patients

ARTSCANIII: H&N1:

57 omittedOropharynx
only

Oropharynx
only 49 omitted

No
surgery 3 omitted

Figure 3.1: Patient selection from the ARTSCANIII and H&N1.

3.2 Data split and feature selection

3.2.1 Train and test split
ARTSCANIII was used as the main training set for the models due to its
strict selection criteria for the included patients. The data was split into a
test set and a training set. The test set consisted of 15 % of the ARTSCANIII
set, and the training set consisted of the remaining 85 %. The training set
was used to fit the models, and the models were then evaluated on the test
set which acted as an out-of-sample data set. The H&N1 data set was used
as an additional test set for evaluation from an external cohort to see how
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well the models generalized to other cohorts. This finally results in a training
set of 205 patients, and two test sets of 37 patients (ARTSCANIII test set)
and 85 patients (H&N1 test set).

3.2.2 Feature selection
An important aspect of feature selection is deciding on the number of features.
In survival analysis, the number of features to use can be related to the
number of uncensored events in the data set. There is no exact rule for the
choice of number of features, but a common standard is to have 10 events
per feature included (Ogundimu, Altman, and Collins 2016). For neural
networks, there might be more or less events needed, but we will use the
same standard for all models. In the training set there are 205 observations
and 27 events of death and 27 events of recurrence. An upper limit is chosen
to be 3 covariates which is 9 events per feature for both standard survival
analysis using machine learning.

There were different feature selection methods based on which of the
features were looked at (clinical/demographic or radiomic). For the choice
of demographic and clinical predictors, manual selection was implemented
based on prior research or relevancy. T-stage and p16 status have shown
to be relevant factors for both local recurrence and overall survival in H&N
oropharyngeal cancer (Patel et al. 2020; Adrian et al. 2022). These were
chosen to be used to represent the reference feature set, which will be denoted
as the demographic feature from now.

For the choice of radiomic features, two filtering approaches were imple-
mented, full filtering and subgroup filtering, see Figure 3.2. For the filtering
methods, the first thing that is done is to retrieve the observed survival times
for the uncensored events (for both overall survival, OS, and local recurrence,
REC). This means that these filtered observed event times are only for when
an event was actually observed, not for censored events. For the full filtering
method, the mutual information is then calculated between the filtered ob-
served event times, and the radiomics. The features with the highest value
of mutual information are then chosen to be candidate features to use. In
the next step, the mutual information is calculated between one of the de-
mographic features chosen, and the radiomic features. Only radiomics that
are below the 30th percentile are considered. The final feature set are the
features with the highest MI with the event of interest which simultaneously
had a low MI with one of the relevant reference features. Since two reference
features were chosen and the covariate limit for all limits was chosen to be 3,
only one radiomic will be included in addition to the reference covariates.
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Subgroup filtering is done by also filtering out the observed event times
that are not censored. The radiomics are then divided into the subgroups
described in Table 3.2 and the mutual information between each subgroup
and the observed event times is calculated. In the next step, one feature is
selected from each subgroup based on which feature had the highest mutual
information in that specific subgroup. The final feature set with candidate
features is therefore one feature from each subgroup. The feature chosen is
the highest MI-feature that is not in the same subgroup as any of the features
in full filtering sets.

Step 1: Calculate
MI to event times

Step 2: Calculate MI
to reference feature

Step 3: Select ra-
diomic based

on step 1 and 2

Step 1: Categorize
radiomics by subgroup

Step 2: Calculate
MI to event times

Step 3: Select ra-
diomic based on step 2.

Full
filtering

Subgroup
filtering

Figure 3.2: Overview of the two filtering methods used in feature selection.

In addition to the filtering steps, PCA will be implemented where two
cases will be looked at:

• Reference model features + 1 PC feature

• Only PC features (3 are chosen due to this being the limit of covariates
used in models).

There will be 5 feature sets in the end, that will be compared to the de-
mographic set: 2 feature sets from full filtering (with low MI against p16
status and T-stage), one feature set from subgroup filtering, and the two
PCA feature sets described above.
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Motivation for full filtering method

The motivation for the full filtering method is that we want to find covariates
with high association with the event of interest. But it is also of interest to
have covariates with low association with prevalent, already used, clinical co-
variates. This method might however suffer the problem of multicollinearity
if more than one feature is chosen, but since only one radiomic was chosen
this will not be an issue.

Motivation for subgroup filtering method

Since the radiomic features are already divided into subgroups that aim to
capture different aspects of the tumor, it might be useful to utilize these
subgroups as a basis of feature selection. This might provide features with
different explanatory characteristics.

3.3 Model training and evaluation
Once the feature sets are chosen through the different methods explained
in the feature selection method, the models need to be developed. There
are in total five models to be developed, where four are models that are
concerned with the overall survival probability and one is concerned with
local recurrence in the presence of competing risks (death from any cause).
The models are described in theory but repeated here in Table 3.3.

Table 3.3: Summary of survival analysis models used.
Model Application

Standard survival analysis
Cox regression Standard approach for hazard modeling
DeepSurv Neural network-based, estimates risk function.
DeepHit Neural network-based, estimates survival function
Random survival forest (RSF) Decision tree-based

Presence of competing risks
Cause specific Cox regression Handles competing risks for recurrence analysis

To fit the Cox regression model, the package survival in R was used,
using the function coxph. The pycox package was used to fit the DeepSurv
and DeepHit models, and the scikit-survival package was used to fit the
random survival forest model.
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3.3.1 Hyperparameter optimization
For the machine learning models, some parameters need to be chosen man-
ually or through optimization. These parameters are commonly denoted as
hyperparameters, where the parameters considered are shown in Table 3.4.
The optimization was done using the package optuna in python. In order to
avoid overfitting, k-fold cross validation was used. This validation method
divides the data into k folds, and trains the data on k-1 folds and validates it
on the remaining fold using an appropriate metric. In our case, the mean of
the Brier score over the first four consecutive years of observations was used
as a metric. When the model was optimized, it ran a k-fold cross validation
each time to obtain a score used in the optuna optimization process. The
batch size and dropout for DeepHit was chosen to be the same as chosen for
DeepSurv, in order to minimize optimization time. For both DeepSurv and
DeepHit, 2 hidden layers with 32 nodes were used, with two dropout layers.

3.3.2 Accuracy evaluation
For each model, the concordance is calculated and presented to present how
well the models ranked the individuals in the test sets based on their risk
scores. In addition to this, the 1-4 year Brier scores are presented for each Cox
regression model and cause specific Cox regression model, the β-coefficients
are presented in addition to their respective statistical relevance through
the p-value. Standard deviations for the concordance and Brier score were
obtained through bootstrapping.



CHAPTER 3. METHODOLOGY 32

Table 3.4: Hyperparameters chosen to optimize.
Model Hyperparameter Description
RSF Number of decision trees Controls the complexity

and performance of the
model.

Minimum samples leaf Minimum number of sub-
jects required to be a leaf
node.

Minimum samples split Minimum number of sam-
ples required to split an in-
ternal node. Impacts how
detailed the learned pat-
terns are.

DeepSurv Batch size Number of samples before
weights are updated.

Dropout Fraction of connections be-
tween layers of nodes that
are omitted in order to gen-
eralize the model.

Learning rate Step size taken to reach the
minimum in the loss func-
tion for the model.

DeepHit Learning rate Just as in DeepSurv, used
for gradient based optimiza-
tion.

σ Adjusts the punishment in
the loss function related to
accurately ranking the sub-
jects

α Adjusts how much the
model should consider rank-
ing relative to prediction
error in the loss function.
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Results

4.1 Overview
In this section each model will be presented separately to see how the features
improve each model.

4.2 Feature sets
Two feature sets were obtained from full filtering, one with a radiomic feature
with low MI with T-stage and one with p16 status. In addition to this, one
with subgroup filtering was used. Two feature sets were obtained using PCA,
one where the first principal component was used in addition to the reference
features and one where only three principal components were used.

The feature sets are shown below in Table 4.1. The feature Max is a
radiomic feature which is the maximum gray level intensity in the image
region. The feature SDE is Small Dependence Emphasis which is a measure
of the dependence in the region, which relates to how homogeneous the region
is. A high value of SDE means that there is a low amount of dependencies
and relates to less homogeneous textures. Flatness is a measure of how flat
the object is, where a low value means a more flat-shaped object. For the
local recurrence radiomics, IV is the Inverse Variance is a measure of variance
for the joint probability distribution of the gray levels of voxel pairs. The
inverse in the name stands for which gray levels are considered. RLN refers
to how many similar run lengths (neighboring voxels with same gray levels)
there are in the region where a lower value means more similar run lengths.
Sphericity is a measure on how sphere-like the region is where a higher value
means a more sphere-like region.

33
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Table 4.1: Feature sets for overall survival and local recurrence.
Overall Survival

Feature Set Features

Demographic T-stage
p16 status

Filtered all 1
T-stage
p16 status
Max

Filtered all 2
T-stage
p16 status
SDE

Filtered subgroup
T-stage
p16 status
Flatness

Demo + PC1
T-stage
p16 status
PC1

PC Only
PC1
PC2
PC3

Local Recurrence
Feature Set Features

Demographic T-stage
p16 status

Filtered all 1
T-stage
p16 status
IV

Filtered all 2
T-stage
p16 status
RLN

Filtered subgroup
T-stage
p16 status
Spherecity

Demo + PC1
T-stage
p16 status
PC1

PC Only
PC1
PC2
PC3
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4.3 Overall survival
Below the evaluation metrics for Cox PH, DeepSurv, DeepHit and RSF are
presented in addition to a summary of the β-coefficients and their p-values
for all feature sets. The standard error for the brier score for each model can
be seen in Appendix A.

4.3.1 Cox proportional hazards
Table 4.2 shows the β-coefficients and p-values for the covariates in each
feature set. The covariates in the reference set (demographic) both have p-
values < 0.05. No other set has a significant covariate at a 5 % level except
for the PCA Only set, where the first principal component is significant. In
the Demo + PC1 set, the first principal component is close to significant at
the 0.05 % level, but T-stage is less significant.

Table 4.2: Cox PH feature set comparison.
Feature set Covariate β (Std error) p-value

Demographic T-stage 1.112 (0.444) 0.0123
p16 positive -1.769 (0.403) 1.15e-05

Filter all 1
T-stage 1.128 (0.508) 0.0264
p16 positive -1.772 (0.405) 1.21e-05
Max -0.018 (0.268) 0.9469

Filter all 1
T-stage 1.118 (0.448) 0.0125
p16 positive -1.763 (0.407) 1.44e-05
SDE 0.0243 (0.220) 0.9118

Filter all subgroup
T-stage 1.142 (0.457) 0.0125
p16 positive -1.746 (0.411) 2.14e-05
Flatness -0.066 (0.224) 0.7683

Demo + PC1
T-stage 0.785 (0.484) 0.1046
p16 positive -1.778 (0.408) 1.31e-05
PC1 0.057 (0.032) 0.0787

PC only
T-stage 0.077 (0.032) 0.0162
p16 positive 0.035 (0.028) 0.2197
PC1 -0.038 (0.079) 0.6227
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Figure 4.1 and 4.2 show the concordance and Brier score for the Cox PH
model. Both of these metrics are worse for the H&N1 cohort, except for the
concordance of the PCA Only set.

Figure 4.1: Concordance for the Cox PH model in the ARTSCANIII and
H&N1 cohorts.

Figure 4.2: Brier score for the Cox PH model in the ARTSCANIII and H&N1
cohorts.
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4.3.2 DeepSurv
Table 4.3 shows the hyperparameters for DeepSurv. In general, the batch size
was stable across feature sets. The dropout is higher for all radiomic feature
sets compared to the demographic set, with the exception of the Demo +
PC1 set. The learning rate is not consistent across feature sets.

Table 4.3: Hyperparameters across feature sets.
Batch
Size

Dropout Learning
rate

Demographic 92 0.17 0.18
Filter All 1 100 0.31 0.28
Filter All 2 89 0.24 0.03
Filter All Subgroups 100 0.35 0.27
Demo + PC1 94 0.14 0.002
PCA Only 96 0.24 0.012

Figure 4.3 and 4.4 show the concordance and Brier score for the DeepSurv
model. In both cohorts, the feature sets involving PCA transformations have
the lowest concordance score, where they are at or below 0.5 concordance.
The concordance in the ARTSCANIII cohort is in general higher than in the
H&N1 cohort. The concordance is otherwise comparable between the sets,
and the Brier scores are either equal to, or worse than, the demographic set
for all feature sets.
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Figure 4.3: Concordance for the DeepSurv in the ARTSCANIII and H&N1
cohorts.

Figure 4.4: Brier score for the DeepSurv in the ARTSCANIII and H&N1
cohorts.
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4.3.3 DeepHit
Table 4.4 shows the hyperparameters for the DeepHit model across all fea-
ture sets. The α-parameter is above 0.5 for all sets except for Filter All
Subgroups. For all sets except for PCA Only, σ is below 0.5. It is lowest for
the demographic reference set. The learning rate is consistent across sets.

Table 4.4: Hyperparameters across feature sets.
α σ Learning

rate
Demographic 0.84 0.17 0.012
Filter All 1 0.69 0.41 0.005
Filter All 2 0.85 0.32 0.007
Filter All Subgroups 0.45 0.47 0.004
Demo + PCI 0.74 0.24 0.012
PCA Only 0.75 0.66 0.001

Figure 4.5 and 4.6 show the concordance and Brier score for the DeepHit
model. For the ARTSCANIII set, the PCA-related sets have the lowest
concordance. All Brier scores are comparable or worse than the demographic
set.



CHAPTER 4. RESULTS 40

Figure 4.5: Concordance for the DeepHit in the ARTSCANIII and H&N1
cohorts.

Figure 4.6: Brier score for the DeepHit in the ARTSCANIII and H&N1
cohorts.
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4.3.4 Random survival forest (RSF)
Table 4.5 shows the hyperparameter results for the RSF model. Both mini-
mum samples per leaf and per split are low. The number of trees chosen for
each set is not consistent across sets.

Table 4.5: Hyperparameters across feature sets.
Min

samples
leaf

Min
samples

split

Number of
trees

Demographic 5 5 157
Filter All 1 7 4 77
Filter All 2 24 2 37
Filter All Subgroups 6 8 159
Demo + PCI 6 6 5
PCA Only 19 3 231

Figure 4.7 and 4.8 show the concordance and Brier score for the RSF
model. Both scores are higher in the ARTSCANIII cohort than the H&N1
cohort for all feature sets. The concordance is either comparable to, or worse
than, the demographic set. This is also the case for the Brier scores.
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Figure 4.7: Concordance for the RSF model in the ARTSCANIII and H&N1
cohorts.

Figure 4.8: Brier scores for the RSF model in the ARTSCANIII and H&N1
cohorts.
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4.4 Local recurrence
In this section the cause specific Cox regression model is presented, with a
summary of β-coefficients and p-values in addition to the model evaluation
metrics.

4.4.1 Cause specific Cox regression
Table 4.6 shows the coefficient values and p-values for each feature set. The
PCA Only set has two significant features and one nearly significant feature.
The PC1 feature is also significant in the Demo + PC1 set, and changes
the magnitude of the T-stage coefficient. Sphericity is also significant in
the Filter All Subgroup - set and changes the magnitude and sign of the
T-stage covariate, in addition to changing the p-value in the direction of less
significance. Figure 4.9 and 4.10 show the concordance and Brier score across

Table 4.6: Cause specific Cox PH feature set Comparison
Feature set Covariate β (Std error) p-value

Demographic T-stage 0.752 (0.420) 0.0736
p16 positive -1.324 (0.451) 0.0033

Filter all 1
T-stage 0.722 (0.426) 0.0264
p16 positive -1.382 (0.460) 0.0026
IV 0.367 (0.207) 0.0768

Filter all 2
T-stage 0.423 (0.447) 0.0717
p16 positive -1.295 (0.455) 0.0044
RLN 0.178 (0.206) 0.3879

Filter all subgroup
T-stage -0.236 ( 0.460) 0.6076
p16 positive -1.415 (0.444) 0.0014
Sphericity -1.319 (0.370) 0.0003

Demo + PC1
T-stage 0.234 (0.456) 0.1046
p16 positive -1.382 (0.461) 0.0027
PC1 0.104 (0.032) 0.0011

PC only
PC1 0.138 (0.034) 6.3e-05
PC2 0.069 (0.026) 0.0089
PC3 -0.163 (0.089) 0.0674

all feature sets for the cause specific Cox regression model. The concordance
index for the ARTSCANIII seems to be higher than for the H&N1 cohort for
all feature sets except for PCA Only set that seems to perform similarly in
both cohorts. Most concordance are comparable or worse than the reference
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set. All sets except Filter All 1 have a better Brier score, in both cohorts,
than the reference group.

Figure 4.9: Concordance for the cause specific Cox PH model in the
ARTSCANIII and H&N1 cohorts.

Figure 4.10: Brier score for the cause specific Cox PH model in the
ARTSCANIII and H&N1 cohorts.



Chapter 5

Discussion

5.1 Discussion overview
The main goal of the thesis was to see if radiomic features could improve
model performance and give insight into H&N cancer. The main part of the
discussion will therefore be focused on comparisons between feature sets, but
a part of the discussion will also be devoted to model comparison.

5.1.1 Cohort differences
Table 3.1 shows some differences in the T-stage and p16 distribution be-
tween the two cohorts. This, in addition to the stricter selection criteria of
ARTSCANIII could contribute to the differences in evaluation metric scores
between the two cohorts.

5.1.2 Overall survival
The concordance index across the feature sets showed no large improvement
using radiomics for the Cox regression model. The only difference can be seen
for the feature set using only PCA features, PCA Only, which has a worse
performance than the reference set, Demographic. The results are similar
for RSF and for DeepSurv and DeepHit for the concordance score, where the
PCA sets seem to perform worse in general. The very low concordance scores
for the PCA feature sets in the DeepHit model indicates that the model was
not able to model the survival time well. A concordance score lower than 0.5
means that the model ranks the individuals in opposite order of how they
experience the event. If a model shows a consistent low concordance, one
could use the reverse predictions of the model to rank the subjects. But

45
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more commonly, a very low concordance means that the results are unstable.
Table 4.3 shows higher levels of dropout for all feature sets for DeepSurv,
with the exception of the feature set using one PC in addition to the reference
features. This could indicate some overfitting in the DeepSurv model, and
could be one reason for the machine learning models not being able to improve
using radiomic features. The Brier scores were equal to, or worse than, the
reference set for all models, feature sets and cohorts. These results indicate
that radiomics did not yield a meaningful improvement for overall survival.

5.1.3 Local recurrence
For the cause specific Cox regression, the concordance is comparable for the
feature sets in the respective cohorts. For the Brier scores, one can see that
all feature sets get a better score than the reference model, except for the
Filter All 1 - set in the second cohort. Moreover, the PCA Only set gets
a better Brier score than the reference set in both cohorts. This set uses
neither of the demographic variables and still manages to get comparable or
better results. In addition to this, one can see that for the feature set using
one principal component in addition to the demographic features alters the
magnitude of the coefficient for T-stage by a large margin. As previously
mentioned, T-stage relates to the volume of the cancer. Since many radiomic
features relate to the shape and size of the cancer it seems reasonable that
radiomics might do a better job at describing this characteristic of the cancer.
This might especially be true for PCA methods that incorporate information
from all radiomic features. The sphericity feature in the subgroup feature
set similarly alters the T-stage feature, both in magnitude and significance.
Since the sphericity coefficient is negative this means that a larger value
(more spherical) means lower risk for recurrence. This has been seen for
head and neck cancer in the oral cavity (Tarsitano et al. 2019; Lucchi et al.
2023). One possible reason given is that an uneven surface relates to a more
aggressive expanding tumor into adjacent tissue. They also saw that a more
spherical tumor seemed to indicate a better prognosis. They saw it in both
overall survival and local recurrence, where the effect of sphericity was only
checked for local recurrence in this study.

These results indicate that radiomics had a positive impact on the prog-
nostic accuracy for local recurrence. In addition to this, sphericity specifically
shows results that have been seen in other H&N - cancer types. Radiomics
being more influential for local recurrence than overall survival could be due
to recurrence being more directly related to the cancer type compared to over-
all survival. Many factors that could affect overall survival, such as overall
health condition, are not explained by radiomics.
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5.1.4 Limitations and sources of error
In other studies, the stability of radiomics for patients has been used as a
feature selection method (Aerts et al. 2014). The reasoning for this is that
radiomics features that do not yield stable results for the same patient when
different images are used are not as reliable as stable radiomics. This has
not been taken into account in this thesis, and if the radiomics features
used have unstable measurements it might affect the results of the models.
In addition to this, how the region is drawn by the oncologist might differ
between individuals, which might affect the radiomic values.

Another limitation might be the amount of data and events. If overfitting
was a problem for the machine learning models, an increase of data could be
a solution. In addition to this, if one wants to include more covariates to see
if interactions between radiomics are useful, more data is needed.

One also has to make sure that conclusions drawn from radiomic research
have reasonable connections to the epidemiological background of the cancer
type. In this thesis, discussions were had with doctors from articles using
ARTSCANIII (Adrian et al. 2022), but more thorough discussion and collab-
oration in study planning could be beneficial to ensure reasonable conclusions
are made.

5.1.5 Future work
Future possibilities for the role of radiomics can be examining the role of
shape specific radiomics to find consistent features, in collaboration with on-
cologists to ensure reasonable interpretation. Some safeguards for radiomics
suggested (Welch et al. 2019) are:

• using standard software to ensure inter-institutional research. This
relates to having standardized feature extraction from imaging,

• making sure to do external cohort testing,

• checking for multicollinearity among radiomics.

A good starting point could be checking the reliability of radiomics across
images for the same patient, across institutions and imaging apparatus and
professional doing region delineation. This should be done using standard
software, such as the pyrad packages used in this thesis.

Cancer progression to lymph nodes is used to determine the cancer extent
and complexity. In this project only images of the primary tumor were used,
but this could be extended to images of lymph nodes to give a more detailed
description of cancer progression.
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5.1.6 Conclusion
For overall survival, neither standard statistical models such as the Cox PH
model, nor the machine learning models RSF, DeepSurv or DeepHit, could
see an improvement using radiomic features. The evaluation metrics were
better in general for testing done on the ARTSCANIII cohort compared to
the H&N1 cohort, which could be due to the greater homogeneity of the
ARTSCANIII cohort due to the selection criteria.

For local recurrence, an improvement for the evaluation metrics could be
seen when using the shape specific feature sphericity. This has been seen
in other research for different H&N cancer locations (Tarsitano et al. 2019;
Lucchi et al. 2023) and could indicate a feature of importance. One could
see improved evaluation metrics when incorporating PCA features in the
model in addition to the reference covariates, which shows the potential for
clustering methods to aid in this field. Moreover, one could see that using
only PCA features yielded better Brier scores compared to the reference
model in both cohorts, suggesting a promising role of information obtained
solely from radiomics.

This study shows some promise for using radiomic features for improved
prognostic evaluation using non-invasive methods such as imaging. The in-
formation gained can then potentially be used to implement more aggressive
treatment methods, in addition to pointing to new research areas to improve
knowledge about different cancer types.



Bibliography

[1] Gabriel Adrian et al. “Primary tumor volume and prognosis for pa-
tients with p16-positive and p16-negative oropharyngeal squamous cell
carcinoma treated with radiation therapy”. English. In: Radiation On-
cology 17.1 (Dec. 2022). issn: 1748-717X. doi: 10.1186/s13014-022-
02074-7.

[2] Hugo Aerts et al. “Decoding tumour phenotype by noninvasive imaging
using a quantitative radiomics approach”. In: Nature communications
5 (Aug. 2014), p. 4006. doi: 10.1038/ncomms5006.

[3] Per Kragh Andersen et al. Statistical Models Based on Counting Pro-
cesses. 1st ed. Springer Series in Statistics. Published: 06 December
2012 (eBook), Published: 23 June 1995 (Softcover). Springer New York,
NY, 1993, pp. XI, 784. isbn: 978-0-387-94519-4. doi: 10.1007/978-1-
4612-4348-9. url: https://doi.org/10.1007/978-1-4612-4348-
9.

[4] Adam Barsouk et al. “Epidemiology, Risk Factors, and Prevention of
Head and Neck Squamous Cell Carcinoma”. In: Medical Sciences 11
(June 2023), p. 42. doi: 10.3390/medsci11020042.

[5] D. R. Cox. “Regression Models and Life-Tables”. In: Journal of the
Royal Statistical Society. Series B (Methodological) 34.2 (1972), pp. 187–
220. issn: 00359246. url: http://www.jstor.org/stable/2985181
(visited on 05/26/2024).

[6] David Cox. “Partial Likelihood”. In: Biometrika 62 (Aug. 1975), pp. 269–
276. doi: 10.1093/biomet/62.2.269.

[7] Maria Gebre-Medhin et al. “ARTSCAN III: A randomized phase III
study comparing chemoradiotherapy with cisplatin versus cetuximab
in patients with locoregionally advanced head and neck squamous cell
cancer”. English. In: Journal of Clinical Oncology 39.1 (2021), pp. 38–
47. issn: 0732-183X. doi: 10.1200/JCO.20.02072.

49

https://doi.org/10.1186/s13014-022-02074-7
https://doi.org/10.1186/s13014-022-02074-7
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1007/978-1-4612-4348-9
https://doi.org/10.1007/978-1-4612-4348-9
https://doi.org/10.1007/978-1-4612-4348-9
https://doi.org/10.1007/978-1-4612-4348-9
https://doi.org/10.3390/medsci11020042
http://www.jstor.org/stable/2985181
https://doi.org/10.1093/biomet/62.2.269
https://doi.org/10.1200/JCO.20.02072


BIBLIOGRAPHY 50

[8] Global Cancer Observatory. Interactive Web-Based Platform for Global
Cancer Statistics. https://gco.iarc.fr. Accessed: 2024-05-22. 2023.

[9] Joost J.M. van Griethuysen et al. “Computational Radiomics System to
Decode the Radiographic Phenotype”. In: Cancer Research 77.21 (Oct.
2017), e104–e107. issn: 0008-5472. doi: 10.1158/0008- 5472.CAN-
17-0339. eprint: https://aacrjournals.org/cancerres/article-
pdf/77/21/e104/2934659/e104.pdf. url: https://doi.org/10.
1158/0008-5472.CAN-17-0339.

[10] Jr Harrell Frank E. et al. “Evaluating the Yield of Medical Tests”. In:
JAMA 247.18 (May 1982), pp. 2543–2546. issn: 0098-7484. doi: 10.
1001/jama.1982.03320430047030. eprint: https://jamanetwork.
com/journals/jama/articlepdf/372568/jama\_247\_18\_030.pdf.
url: https://doi.org/10.1001/jama.1982.03320430047030.

[11] D. Hashim et al. “The global decrease in cancer mortality: Trends and
disparities”. In: Annals of Oncology 27.5 (May 2016), pp. 926–933. doi:
10.1093/annonc/mdw027. url: https://doi.org/10.1093/annonc/
mdw027.

[12] David W. Hosmer, Stanley Lemeshow, and Susanne May. Applied Sur-
vival Analysis. John Wiley & Sons, Inc., 2008.

[13] Hemant Ishwaran et al. “Random survival forests”. In: The Annals of
Applied Statistics 2.3 (2008), pp. 841–860. doi: 10.1214/08-AOAS169.
url: https://doi.org/10.1214/08-AOAS169.

[14] E. L. Kaplan and Paul Meier. “Nonparametric Estimation from Incom-
plete Observations”. In: Journal of the American Statistical Association
53.282 (1958), pp. 457–481. doi: 10.1080/01621459.1958.10501452.
eprint: https://www.tandfonline.com/doi/pdf/10.1080/01621459.
1958.10501452. url: https://www.tandfonline.com/doi/abs/10.
1080/01621459.1958.10501452.

[15] Jared L. Katzman et al. “DeepSurv: personalized treatment recom-
mender system using a Cox proportional hazards deep neural network”.
In: BMC Medical Research Methodology 18.1 (Feb. 2018). issn: 1471-
2288. doi: 10.1186/s12874-018-0482-1. url: http://dx.doi.org/
10.1186/s12874-018-0482-1.

[16] Håvard Kvamme and Ørnulf Borgan. Continuous and Discrete-Time
Survival Prediction with Neural Networks. 2019. arXiv: 1910.06724
[stat.ML].

https://gco.iarc.fr
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://aacrjournals.org/cancerres/article-pdf/77/21/e104/2934659/e104.pdf
https://aacrjournals.org/cancerres/article-pdf/77/21/e104/2934659/e104.pdf
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1001/jama.1982.03320430047030
https://doi.org/10.1001/jama.1982.03320430047030
https://jamanetwork.com/journals/jama/articlepdf/372568/jama\_247\_18\_030.pdf
https://jamanetwork.com/journals/jama/articlepdf/372568/jama\_247\_18\_030.pdf
https://doi.org/10.1001/jama.1982.03320430047030
https://doi.org/10.1093/annonc/mdw027
https://doi.org/10.1093/annonc/mdw027
https://doi.org/10.1093/annonc/mdw027
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1080/01621459.1958.10501452
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1958.10501452
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1958.10501452
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501452
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501452
https://doi.org/10.1186/s12874-018-0482-1
http://dx.doi.org/10.1186/s12874-018-0482-1
http://dx.doi.org/10.1186/s12874-018-0482-1
https://arxiv.org/abs/1910.06724
https://arxiv.org/abs/1910.06724


BIBLIOGRAPHY 51

[17] Changhee Lee et al. “DeepHit: A Deep Learning Approach to Survival
Analysis With Competing Risks”. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence 32.1 (Apr. 2018). doi: 10.1609/aaai.
v32i1 . 11842. url: https : / / ojs . aaai . org / index . php / AAAI /
article/view/11842.

[18] Elisabetta Lucchi et al. “Pretreatment Tumor Volume and Tumor Spheric-
ity as Prognostic Factors in Patients with Oral Cavity Squamous Cell
Carcinoma: A Prospective Clinical Study in 95 Patients”. In: Journal
of Personalized Medicine 13.11 (2023). issn: 2075-4426. doi: 10.3390/
jpm13111601. url: https://www.mdpi.com/2075-4426/13/11/1601.

[19] National Cancer Institute. Head Neck Overview. Accessed: May 26,
2024. 2023. url: https://training.seer.cancer.gov/head-neck/
anatomy/overview.html.

[20] Emmanuel O. Ogundimu, Douglas G. Altman, and Gary S. Collins.
“Adequate sample size for developing prediction models is not simply
related to events per variable”. In: Journal of Clinical Epidemiology
76 (2016), pp. 175–182. issn: 0895-4356. doi: https://doi.org/10.
1016/j.jclinepi.2016.02.031. url: https://www.sciencedirect.
com/science/article/pii/S0895435616300117.

[21] Roshal R. Patel et al. “De-intensification of therapy in human pa-
pillomavirus associated oropharyngeal cancer: A systematic review of
prospective trials”. In: Oral Oncology 103 (2020), p. 104608. issn: 1368-
8375. doi: https : / / doi . org / 10 . 1016 / j . oraloncology . 2020 .
104608. url: https://www.sciencedirect.com/science/article/
pii/S1368837520300440.

[22] Rebecca L. Siegel, Angela N. Giaquinto, and Ahmedin Jemal. “Can-
cer statistics, 2024”. In: CA: A Cancer Journal for Clinicians 74.1
(2024), pp. 12–49. doi: https://doi.org/10.3322/caac.21820.
eprint: https://acsjournals.onlinelibrary.wiley.com/doi/pdf/
10.3322/caac.21820. url: https://acsjournals.onlinelibrary.
wiley.com/doi/abs/10.3322/caac.21820.

[23] Achille Tarsitano et al. “Pretreatment tumor volume and tumor spheric-
ity as prognostic factors in patients with oral cavity squamous cell
carcinoma”. In: Journal of Cranio-Maxillofacial Surgery 47.3 (2019),
pp. 510–515. issn: 1010-5182. doi: https : / / doi . org / 10 . 1016 /
j.jcms.2018.12.019. url: https://www.sciencedirect.com/
science/article/pii/S1010518218308837.

https://doi.org/10.1609/aaai.v32i1.11842
https://doi.org/10.1609/aaai.v32i1.11842
https://ojs.aaai.org/index.php/AAAI/article/view/11842
https://ojs.aaai.org/index.php/AAAI/article/view/11842
https://doi.org/10.3390/jpm13111601
https://doi.org/10.3390/jpm13111601
https://www.mdpi.com/2075-4426/13/11/1601
https://training.seer.cancer.gov/head-neck/anatomy/overview.html
https://training.seer.cancer.gov/head-neck/anatomy/overview.html
https://doi.org/https://doi.org/10.1016/j.jclinepi.2016.02.031
https://doi.org/https://doi.org/10.1016/j.jclinepi.2016.02.031
https://www.sciencedirect.com/science/article/pii/S0895435616300117
https://www.sciencedirect.com/science/article/pii/S0895435616300117
https://doi.org/https://doi.org/10.1016/j.oraloncology.2020.104608
https://doi.org/https://doi.org/10.1016/j.oraloncology.2020.104608
https://www.sciencedirect.com/science/article/pii/S1368837520300440
https://www.sciencedirect.com/science/article/pii/S1368837520300440
https://doi.org/https://doi.org/10.3322/caac.21820
https://acsjournals.onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21820
https://acsjournals.onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21820
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21820
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21820
https://doi.org/https://doi.org/10.1016/j.jcms.2018.12.019
https://doi.org/https://doi.org/10.1016/j.jcms.2018.12.019
https://www.sciencedirect.com/science/article/pii/S1010518218308837
https://www.sciencedirect.com/science/article/pii/S1010518218308837


BIBLIOGRAPHY 52

[24] L. Wee and A. Dekker. Data from HEAD-NECK-RADIOMICS-HN1.
Data set. The Cancer Imaging Archive. https://doi.org/10.7937/
tcia.2019.8kap372n. 2019.

[25] Mattea L. Welch et al. “Vulnerabilities of radiomic signature develop-
ment: The need for safeguards”. In: Radiotherapy and Oncology 130
(2019), pp. 2–9. issn: 0167-8140. doi: https://doi.org/10.1016/
j.radonc.2018.10.027. url: https://www.sciencedirect.com/
science/article/pii/S0167814018335515.

[26] Marcel Wolbers et al. “Concordance for prognostic models with com-
peting risks”. In: Biostatistics 15.3 (Feb. 2014), pp. 526–539. issn:
1465-4644. doi: 10 . 1093 / biostatistics / kxt059. eprint: https :
//academic.oup.com/biostatistics/article- pdf/15/3/526/
599536/kxt059.pdf. url: https://doi.org/10.1093/biostatistics/
kxt059.

[27] World Health Organization. Global Cancer Burden Growing Amidst
Mounting Need for Services. Accessed: 2024-02-26. Feb. 2024. url:
https://www.who.int/news/item/01-02-2024-global-cancer-
burden-growing--amidst-mounting-need-for-services (visited
on 02/26/2024).

https://doi.org/10.7937/tcia.2019.8kap372n
https://doi.org/10.7937/tcia.2019.8kap372n
https://doi.org/https://doi.org/10.1016/j.radonc.2018.10.027
https://doi.org/https://doi.org/10.1016/j.radonc.2018.10.027
https://www.sciencedirect.com/science/article/pii/S0167814018335515
https://www.sciencedirect.com/science/article/pii/S0167814018335515
https://doi.org/10.1093/biostatistics/kxt059
https://academic.oup.com/biostatistics/article-pdf/15/3/526/599536/kxt059.pdf
https://academic.oup.com/biostatistics/article-pdf/15/3/526/599536/kxt059.pdf
https://academic.oup.com/biostatistics/article-pdf/15/3/526/599536/kxt059.pdf
https://doi.org/10.1093/biostatistics/kxt059
https://doi.org/10.1093/biostatistics/kxt059
https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services
https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services


Chapter A

Brier score standard errors

A.1 Overall survival

A.1.1 Cox PH

Figure A.1: Standard error for the Brier scores in the ARTSCANIII cohort

Figure A.2: Standard error for the Brier scores in the H&N1 cohort
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A.1.2 DeepSurv

Figure A.3: Standard error for the Brier scores in the ARTSCANIII cohort

Figure A.4: Standard error for the Brier scores in the H&N1 cohort
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A.1.3 DeepHit

Figure A.5: Standard error for the Brier scores in the ARTSCANIII cohort

Figure A.6: Standard error for the Brier scores in the H&N1 cohort
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A.1.4 Random Survival Forest (RSF)

Figure A.7: Standard error for the Brier scores in the ARTSCANIII cohort

Figure A.8: Standard error for the Brier scores in the H&N1 cohort
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A.2 Local Recurrence

A.2.1 Cause specific Cox regression

Figure A.9: Standard error for the Brier scores in the ARTSCANIII cohort

Figure A.10: Standard error for the Brier scores in the H&N1 cohort



Chapter B

Full radiomic table

Table B.1: Full list of radiomic features, described as
’subgroup_Featurevalue’.

Features Features
firstorder_10Percentile firstorder_90Percentile
firstorder_Energy firstorder_Entropy
firstorder_InterquartileRange firstorder_Kurtosis
firstorder_Maximum firstorder_Mean
firstorder_MeanAbsoluteDeviation firstorder_Median
firstorder_Minimum firstorder_Range
firstorder_RobustMeanAbsoluteDeviation firstorder_RootMeanSquared
firstorder_Skewness firstorder_TotalEnergy
firstorder_Uniformity firstorder_Variance
glcm_Autocorrelation glcm_ClusterProminence
glcm_ClusterShade glcm_ClusterTendency
glcm_Contrast glcm_Correlation
glcm_DifferenceAverage glcm_DifferenceEntropy
glcm_DifferenceVariance glcm_Id
glcm_Idm glcm_Idmn
glcm_Idn glcm_Imc1
glcm_Imc2 glcm_InverseVariance
glcm_JointAverage glcm_JointEnergy
glcm_JointEntropy glcm_MaximumProbability
glcm_SumEntropy glcm_SumSquares
gldm_DependenceEntropy gldm_DependenceNonUniformity
gldm_DependenceNonUniformityNormalized gldm_DependenceVariance
gldm_GrayLevelNonUniformity gldm_GrayLevelVariance

58



APPENDIX B. FULL RADIOMIC TABLE 59

Feature 1 Feature 2
gldm_HighGrayLevelEmphasis gldm_LargeDependenceEmphasis
gldm_LargeDependenceHighGrayLevelEmphasis gldm_LargeDependenceLowGrayLevelEmphasis
gldm_LowGrayLevelEmphasis gldm_SmallDependenceEmphasis
gldm_SmallDependenceHighGrayLevelEmphasis gldm_SmallDependenceLowGrayLevelEmphasis
glrlm_GrayLevelNonUniformity glrlm_GrayLevelNonUniformityNormalized
glrlm_GrayLevelVariance glrlm_HighGrayLevelRunEmphasis
glrlm_LongRunEmphasis glrlm_LongRunHighGrayLevelEmphasis
glrlm_LongRunLowGrayLevelEmphasis glrlm_LowGrayLevelRunEmphasis
glrlm_RunEntropy glrlm_RunLengthNonUniformity
glrlm_RunLengthNonUniformityNormalized glrlm_RunPercentage
glrlm_RunVariance glrlm_ShortRunEmphasis
glrlm_ShortRunHighGrayLevelEmphasis glrlm_ShortRunLowGrayLevelEmphasis
glszm_GrayLevelNonUniformity glszm_GrayLevelNonUniformityNormalized
glszm_GrayLevelVariance glszm_HighGrayLevelZoneEmphasis
glszm_LargeAreaEmphasis glszm_LargeAreaHighGrayLevelEmphasis
glszm_LargeAreaLowGrayLevelEmphasis glszm_LowGrayLevelZoneEmphasis
glszm_SizeZoneNonUniformity glszm_SizeZoneNonUniformityNormalized
glszm_SmallAreaEmphasis glszm_SmallAreaHighGrayLevelEmphasis
glszm_SmallAreaLowGrayLevelEmphasis glszm_ZoneEntropy
glszm_ZonePercentage glszm_ZoneVariance
shape_Compactness1 shape_Compactness2
shape_Elongation shape_Flatness
shape_LeastAxisLength shape_MajorAxisLength
shape_Maximum2DDiameterColumn shape_Maximum2DDiameterRow
shape_Maximum2DDiameterSlice shape_Maximum3DDiameter
shape_MeshVolume shape_MinorAxisLength
shape_SphericalDisproportion shape_Sphericity
shape_SurfaceArea shape_SurfaceVolumeRatio
shape_VoxelVolume



Master’s Theses in Mathematical Sciences 2024:E70
ISSN 1404-6342

LUNFMS-3130-2024

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lu.se/


	Introduction
	Background and previous research
	Data

	Theory
	Survival analysis
	Censoring in survival analysis
	Survival function and hazard function 

	Cox proportional hazards model.
	Competing risk
	Cause specific Cox regression model

	Machine learning
	DeepSurv
	DeepHit
	Random survival forest

	Model evaluation
	Concordance
	Brier score

	Principal Component Analysis (PCA)
	Mutual information

	Methodology
	Data description, selection and pre-processing
	Feature description
	Pre-processing
	Patient selection

	Data split and feature selection
	Train and test split
	Feature selection

	Model training and evaluation
	Hyperparameter optimization
	Accuracy evaluation


	Results
	Overview
	Feature sets
	Overall survival
	Cox proportional hazards
	DeepSurv
	DeepHit
	Random survival forest (RSF)

	Local recurrence
	Cause specific Cox regression


	Discussion
	Discussion overview
	Cohort differences
	Overall survival
	Local recurrence
	Limitations and sources of error
	Future work
	Conclusion


	Brier score standard errors
	Overall survival
	Cox PH
	DeepSurv
	DeepHit
	Random Survival Forest (RSF)

	Local Recurrence
	Cause specific Cox regression


	Full radiomic table

