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Abstract

This thesis uses the unsupervised deep learning method of generative diffusion mod-
els to generate images of paperboard surfaces. As the images are intended to be
used as input to various simulations by food packaging company Tetra Pak, simply
looking at them is not sufficient to determine their quality. For this reason, some
new evaluation metrics, specific to paperboard images, are proposed and used. We
present model architectures and training parameters that allow for sampling of new
images, examples of generated images and the evaluation of them. The generated
images bear a close resemblance to real images both when visually inspected and
in terms of the used evaluation metrics. Finally, an alternative use of the models
in this project is explained. It is possible to use a model to generate images larger
than what it was trained on.
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Populärvetenskaplig sammanfattning

Exempel p̊a riktig kartongbild

Kartongen som utgör m̊anga av v̊ara livsmedelsförpack-
ningar har l̊angt ifr̊an fullkomligt släta ytor. För
att se detta kan man till exempel ta n̊agra bilder
p̊a kartong med ett kraftfullt mikroskop. Detta har
Tetra Pak gjort och det visar sig att kartongytor
best̊ar av fibrer som slingrar sig huller om buller.
Utöver att beundras är dessa bilder användbara
för att undersöka olika egenskaper hos kartongen.
Specifikt är Tetra Pak intresserade av hur karton-
gen lämpar sig som förpackningsmaterial. Saker
som att sätta dit tryck p̊a kartongen och att lamin-
era den med plast p̊averkas av fiberstrukturen.
Tetra Pak använder kartongbilder för att simulera
dessa processer, men för att simuleringarna ska ge
tydliga resultat s̊a behövs m̊anga bilder. Ett sätt
att f̊a fler bilder är självklart att ta dem med det
ovan nämnda kraftfulla mikroskopet. Tyvärr är detta dyrt, s̊a ett bättre sätt vore att
generera artificiella bilder. Det är här som exjobbet kommer in i bilden.

Detta exjobb utg̊ar ifr̊an verkliga bilder p̊a kartong och tränar generativa diffusion-
smodeller till att generera nya, liknande men inte exakt likadana, bilder. Tekniken
bygger p̊a att succesivt lägga till slumpmässigt brus till en riktigt bild och att sedan
träna ett neuralt nätverk till att ta bort bruset. När man har tränat ett nätverk till
att framg̊angsrikt ta bort brus fr̊an en bild s̊a kan man använda det p̊a en bild med
bara brus, allts̊a utan n̊agon riktig bild i grunden. Detta resulterar i en ny bild som är
inspirerad av dem bilder nätverket är tränat p̊a.

Resultaten fr̊an detta exjobb är modeller som kan generera bilder i tv̊a olika
upplösningar, 64 × 64 och 256 × 256 pixlar. De mindre genererade bilderna g̊ar inte
att skilja fr̊an sina verkliga motsvarigheter medan de större har vissa skavanker. I b̊ada
fallen är det dock inte bara de visuella intrycken som spelar roll. Eftersom att bilderna
ska användas i simuleringar i syftet att bättre först̊a förpackningsmaterial s̊a vill vi ocks̊a
försäkra oss om de är lämpliga för det. För detta har n̊agra nya evalueringsmetoder tag-
its fram som visar att de genererade bilderna även stämmer överens med verkligheten
när det kommer till simulering. Om s̊a inte var fallet vore de genererade bilderna inte
till särskilt stor nytta.

Sammanfattningsvis ger resultaten fr̊an det här arbetet förutsättningar för att bättre
först̊a egenskaper hos kartong när det används som förpackningsmaterial. I förlängnin-
gen kan detta leda till bättre livsmedelsförpackningar för oss alla!
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1 Introduction

1.1 Background

Packages for various types of food, such as milk cartons, are made out of paperboard.
Paperboard is, on a microscopic scale, a very uneven material as it is made out of wood
fibres. This microscopic unevenness affects a large number of macroscopic properties of
the package. For instance, the printability is affected by properties of the surface. The
aim of this thesis is to generate artificial paperboard surfaces to be used in Monte Carlo
simulations. This will allow for better understanding of certain characteristics of paper-
board as a food packaging material. The surfaces modelled in this project can be seen
as images and this turns the problem into one of image generation. Solving it involves
implementing and training generative models that enable new images to be sampled as
well as developing tools in order to analyse and characterise real and generated data.

This thesis was performed in collaboration with Tetra Pak. Tetra Pak uses paper-
board surface topographies, which can be viewed as single channel images, as input to
different types of simulations. The images are visually characterised by fibres going
across the surface which can be seen in Figure 1.

The purpose of using images as input to simulations is to better understand the prop-
erties of paperboard when used as a food packaging material. Specifically, the structure
and behaviour of the fibres are thought to play a key role. For the results of simulation
to reflect real world variation, a lot of data is required. One approach is to scan vast
amounts of paperboard surfaces to obtain more data. However, generating artificial
data may prove to be a significantly more resource effective method if the generated
data is of a good enough image quality.

Several things are included in what we mean by image quality. Firstly, the gener-
ated images should bear resemblance to real images when inspected by the naked eye.
In many applications of image generation, this test is enough. If the images look good,
they are good. For the purposes of this project, however, we need more. The generated
images should match real images in terms of statistical measures such as image distri-
butions and autocorrelation. Beyond that, we want images that yield results similar to
real data when used as input to simulations.

1.2 History of generative diffusion models

The chosen method for images generation in this thesis is generative diffusion models
(GDMs) which were first introduced by Sohl-Dickenstein et al. in 2015 [11]. This paper
introduced the idea of gradually adding noise to data until it becomes Gaussian and
then learning to reverse this process in order to recover the original data. These steps
are generally called the forward process and the backward process. One of the core
ideas behind GDMs is that while going from pure noise to a generated sample in one
step is difficult, splitting the problem up into many, less challenging, steps makes the
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de-noising feasible.

In 2020, Ho et al. [2] contributed significant improvements to GDMs. They introduced a
simpler and more efficient training method. But, more importantly, their image quality
was as good as or better than that of previous generative models. Their work ushered in
a new era in which a plethora of articles have been written on the subject and diffusion
has become the preferred method for image generation in commercial and open-source
applications [9] [8]. The work in this thesis is primarily based on the formulation laid
out in [2].

The main goal of this project is to implement and train GDMs that generate images
that correspond to real paperboard images, both visually and in terms of statistics and
for downstream simulations of packaging material properties. In order to achieve the
main goal, different methods of analysis have to be considered and evaluated. Consid-
eration must be taken to different limiting factors such as the available computational
resources and, perhaps most importantly, the available raw data. Getting the most out
of the available data will be crucial as GDMs are known to require a lot of data [9].

The implementation and training of GDMs is done in Python and specifically using the
PyTorch library [7]. Neural networks are trained and used by connecting to Tetra Pak’s
in-house high performance computational cluster. Analysis is performed in Python and
Matlab.

1.3 Previous attempts

The problem of generating images of paperboard topography has already been at-
tempted at Tetra Pak. A first attempt was made with classical statistical methods
in which the surface is modelled as a stationary process. The spectral density was
estimated and then used to generate new surfaces. The generated data from these spec-
tral models did not resemble real images visually. This is unsurprising as paperboard
surfaces are obviously not stationary. Later, the model was expanded but became so
complicated as to be impractical. Due to the complexity, it was decided to not pur-
sue classical models further at the time. For this reason, a second attempt was made
with the machine learning based method generative adversarial networks (GAN). This
method was able to generate good quality images with 64 × 64 pixels, but struggled
with finding a good training setup for larger images. [6]

With these previous attempts in mind, a goal of this project is to first of all produce
good quality images with 64 × 64 pixel resolution. We also want to produce images
with the larger resolution 256 × 256 pixels as this was not achieved when using GAN.
To validate this project and the choice of GDMs for image generation, the results will
be compared to those of previous attempts. At a minimum, we want to produce images
which can be said be better than what classical methods were able to achieve.
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2 Data

The problem tackled in this thesis is one of image generation. As is the case with all deep
learning methods, GDMs require real data to learn from. Tetra Pak obtains this data
through scanning paperboard with a coherence scanning interferometry microscope. For
this project, 110 files that each contain the surface topographies of 1.56mm × 1.56mm
areas of paperboard were made available by Tetra Pak. Each file contained height
readings across the entire area along with the corresponding positions. This can be vi-
sualised as a greyscale image where the intensity of each pixel corresponds to the height
at its position.

The 110 images come from 22 different types of paperboard i.e. we have 5 images
from each type of paperboard. The paperboards differ in things like manufacturer, pa-
perboard machine and stiffness. The exact points of difference are not important for this
report. Rather, what we care about is the fact that we have 22 classes of paperboard.
For the purposes of this report, we will name the classes {A,B, . . . , V }. Figure 1 shows
a few different examples of the images we are working with.

Figure 1: Unprocessed images and their corresponding classes. The directions of MD
and CD, which correspond to the directions along and across a roll of paper are marked
out.

When working with packaging material, like paperboard, it is common to not use x and
y as directions. Instead, machine direction (MD) and cross direction (CD) are used as
the direction in which material flows along the paper machine and the direction across
the roll of paper respectively (Figure 2). The pieces of paperboard were scanned in such
a way that MD corresponds to the vertical direction while CD is horizontal. All images
displayed in this report follow this convention. It is noted that the materials studied are
anisotropic. Fibres are stretched out more along MD which can be seen when analysing
autocorrelations in different directions. Figure 3 shows the average autocorrelations in
MD and CD of some randomly selected images.
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Figure 2: Machine and cross direction in relation to a roll of paperboard. ZD corre-
sponds to height values in images.

Figure 3: Average autocorrelation in MD and CD of raw images. Note that the corre-
lation in the MD direction is more pronounced for small lag values compared to that of
CD. This is due to the general orientation of fibres in the material.

2.1 Data pre-processing

Before using the raw data for training neural networks, some pre-processing had to be
performed. We can see each image as a matrix

Iraw = {zij}, i, j ∈ [1, 1000]

where zij is the height reading in µm at position [i, j].

Some of the images had missing values at a few points due to measurement issues.
These NaN-values were handled by replacing the missing value with the average of all
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surrounding non-NaN values. If there was a cluster of NaN-values, it was handled by
recursively filling in the edges and then working toward the centre.

The images were also subjected to a high pass filter. This was achieved via convolution
with a Gaussian kernel Gσ with standard deviation σ = 100µm which corresponds to
64 pixels. The filtered image is then subtracted from the raw image which results in a
high pass filtered image Ihp.

Ihp = Iraw − Iσ, Iσ = Iraw ∗Gσ

The reason for applying a high pass filter is to remove low frequencies in height differ-
ence which may exist across the surfaces. These variations in height over large distances
may be due to the surface being tilted or unevenly placed during scanning. The purpose
of the whole project is to analyse properties of paperboard which are related to the fibre
structure itself and therefore we do not lose valuable information by filtering in this way.
Conversely, removing low frequency variations allows the model to focus on capturing
the fibre structure of the images. The value of σ = 100µm was selected based on the
typical length of autocorrelations in the images (Figure 3).

The final pieces of pre-processing relate to how the problem is approached in prac-
tice. Training directly on the raw data of 110 images with resolution 1000×1000 would
prove to be impractical for two reasons. Firstly, size of the images would place too large
demands on computational hardware. Secondly, using the raw data would mean that
we only have 5 images images per class to train on. For these reasons, we divide the
raw data into two datasets: Data64 and Data256.

Data64 is made by taking square crops of the raw data with a crop size of 250 pixels
and a step size of 17 in both MD and CD. These 250×250 crops are then scaled down
to 64×64 using bi-cubic interpolation.
Data256 is made by taking crops of the raw data with a crop size of 256 pixels and a
step size of 53. No interpolation is performed.

The resulting images in both datasets are also flipped along the MD and CD axis
as well as rotated 180◦. The point of these operations is to increase the amount of data
that the models can train on. None of these operations violate the above described
relationship between MD and CD in terms of autocorrelations. Here it is noted this
processing reduces the amount of visual features included in each image. This could
be detrimental when generated images are to be used as input to simulations. For this
reason, it is important to strike a balance between cropping small (yielding more data)
and cropping large enough (to preserve visual features. In Figure 4 we see that clear
fibre structures are preserved in both datasets. Table 1 summarises the datasets used
in this project.
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Table 1: Datasets used in this project. Raw data is included for reference

Raw data Data64 Data256
Images per class 5 38720 4500

The height values zij in both datasets were rescaled in two ways in order to prepare
the data for deep learning with neural networks. Firstly, the variance of height values
within a given class of paperboard was calculated. Then each cropped image (in Data64
and Data256) stemming from that class was divided by the corresponding variance.
Secondly, the height values in each cropped image were adjusted such that their median
was equal to zero. These modifications put the height values within a range that is
suitable for image generation. This means that generated images will have height values
in this modified scale. This must be considered when returning generated images to a
realistic scale. Figure 4 shows a selection of the different images used in this project
with a high pass filtered raw image as reference.

Figure 4: Samples from high pass filtered raw data, Data64 and Data256. Note that
the images are not to scale in MD and CD.

3 Theory of Generative Diffusion Models

GDMs are a form of unsupervised machine learning which model the underlying dis-
tribution of the data they are trained on. As stated in the introduction, the core idea
revolves around gradually adding noise to training images and then training a network
to undo that process. This section will describe the three main building blocks of GDMs
and how we use deep learning for image generation. A method for controlling what type
of paperboard gets generated is also described.

3.1 Forward process

The training data is assumed to follow an underlying distribution q(x0) where x0 is
a real image. In the case of an n×n greyscale image, q(x0) will be an n2-dimensional
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probability density function. The ultimate goal of GDMs is to model this distribution.
To start the forward process, an image x0 ∼ q(x0) is sampled from the training data.
Latent variables are then defined as x1,x2, . . . ,xT where more and more noise gradually
gets added. In practice, x1 will be very similar to x0 since only a small amount of noise
has been added whereas xT , the final latent variable, will be almost pure noise. Noise
is added in a cumulative manner and the transition probability is

q(xt|xt−1) = N (
√

1 − βtxt−1, βtI) (1)

which allows us to express the transition xt from x0 through

q(xt|x0) =

t∏
s=1

q(xs|xs−1) (2)

In (eq. 1), I is Gaussian noise of zero mean and unit variance and βt, t ∈ [1, . . . , T ]
is the noise schedule which sets the level of noise added at each timestep. In this
thesis the total number of timesteps is set to T = 1000. In general, noise schedules are
constructed such that small amounts of noise are added early in the forward process
while more noise is added at later steps. The most common type of noise schedule is
linear but other variations are possible. This thesis uses a cosine noise schedule where
αt = 1 − βt, αt =

∏t
s=1 αs and is defined in terms of αt.

αt =
f(t)

f(0)
, f(t) = cos(

t/T + k

1 + k
· π

2
) (3)

The offset k = 0.008 is a standard choice in the literature [5].

Later during training, we will want to be able to directly calculate xt from x0 without
taking all intermediate steps that would be required with (eq. 2). αt, which can be
pre-calculated for all t, allows this through

q(xt|x0) = N (
√
αtx0, (1 − αt)I) (4)

Some latent variables in the forward process are displayed in Figure 5 where we see that
the last latent variable has enough noise to completely obscure the original image. This
feature will be important in the sampling process.

Figure 5: The forward process showed at 5 different timesteps. t = 0 represents the
original image while t > 0 represents latent variables. Note that the final latent variable
is indistinguishable from pure noise.
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3.2 Backward process

The backward process describes transition probabilities in the opposite direction com-
pared to the forward process. The key to GDMs is to estimate the backward transition
probability pθ(xt−1|xt). In order to do this, we parametrise this conditional transition
probability as

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)) (5)

which introduces a dependence on t but crucially not on x0 as this is what we ulti-
mately want to extract from the model. The two parameters µθ(xt, t) and Σθ(xt, t)
are handled in different ways. The variance at each timestep is determined by the
noise schedule in the forward process, so it will not be modelled. Instead it is taken
to be Σθ(xt, t) = σ2

t I where σ2
t = βt

1−αt−1

1−αt
. This ensures that the modelling of the

backward process is computationally efficient while maintaining consistency with the
noise added in the forward process. The mean is modelled in terms of xt and t as
µθ(xt, t) = 1√

αt
(xt − βt√

1−αt
ϵθ(xt, t)). Where ϵθ(xt, t) is a prediction of the actual noise

that we have added to xt [2]

This is where neural networks enter the picture. A convolutional neural network (CNN)
will be trained to model ϵθ(xt, t). A well trained network will be able to predict the
noise well which in turn allows for precise modelling of the backward probability in (eq.
5). Conversely, a less effective CNN will lead to imprecise modelling and poor image
quality within generated samples.

3.3 Sampling process

The final step of GDMs is the sampling process. The goal is to sample new, artificial,
data from the underlying distribution of the training data q(x0). This is done by starting
the reverse process with pure Gaussian noise xT ∼ N (0, I). The random noise is then
iteratively de-noised by going through the reverse process. The distribution of x0 when
modelled by the neural network is:

pθ(x0) = p(xT )

T∏
t=1

pθ(xt−1|xt), p(xT ) = N (0, I) (6)

In practice, sampling is performed with the following algorithm from [2]
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Algorithm 1 Sampling Algorithm

Require: Pretrained model ϵθ, noise schedule {βt}, T , and xT ∼ N (0, I)
Ensure: Sample x0
1: for t = T, T − 1, . . . , 1 do

2: Compute µt = 1√
αt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
3: Compute σ2

t = βt
1−αt−1

1−αt

4: Sample z ∼ N (0, I) if t > 1, otherwise z = 0
5: Update xt−1 = µt + σtz
6: end for
7: return x0

3.4 Training

The goal of training is to learn the probability distributions of the backward process in
(eq. 5). This is done with a CNN which takes a noisy image xt =

√
ᾱtx0 +

√
1 − ᾱtϵ

and the timestep t as input. The expression for xt comes from (eq. 4). The output
of the CNN is a prediction of ϵ which is a scaling of the total noise that was added to
get xt. An implication of this formulation is that the CNN actually tries to completely
de noise the image from xt to x0 rather than to go from xt to xt−1. This may seem
different from learning the backward transition probability (eq. 5) but, as we can see
in the sampling algorithm above, the noise at step t − 1 can be added back in to the
predicted x0 yielding a predicted xt−1.

We get the natural training objective of the mean square error of the predicted noise
and the actual noise L = ∥ϵ − ϵθ(xt, t)∥22 which is minimized through the use of the
Adam optimization method [3]. An example of what the training process looks like in
included in the Appendix (7.3). The training process in summarized in the following
algorithm [2].

Algorithm 2 Training Algorithm

Require: Training data q(x0), noise schedule {βt}, initialised neural network ϵθ
Ensure: Trained parameters θ
1: repeat
2: Sample x0 ∼ q(x0), t ∼ Uniform({1, . . . , T}), and ϵ ∼ N (0, I)
3: Compute xt =

√
ᾱtx0 +

√
1 − ᾱtϵ

4: Optimize L = ∥ϵ− ϵθ(xt, t)∥22
5: until converged

In practice, training is done by splitting the training data into batches of size S. On
every iteration, S different values for t are sampled and a prediction of the total noise
is made for each one. Optimization is done by taking the average gradient step from all
S of the samples. Training is then continued over a preset number of epochs where all
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training data is seen once during one epoch.

3.5 Convolutional Neural Network

This thesis uses two CNNs to model the reverse transition probabilities, one for each of
the datasets Data64 and Data256. The networks are named CNN64 and CNN256
and share the same basic structure. For clarity, we will describe CNN64 and then
provide an explanation of the modifications needed to get CNN256.

The network is inspired by the well know U-net architecture. This style of network
was introduced in 2015 by Olaf Ronneberger et al. and was originally used for image
segmentation [10]. However, the same type of network can also be used for GDMs, as
is done here. The idea behind U-net is to first reduce the dimensionality of the input
images though a series of convolutions. This is called encoding and it allows the network
to first capture high resolution features of the data. As the image dimensions reduce
further along the downsampling path, the convolutional kernels act over a larger area
across the original image. This allows them to learn large patterns, e.g. fibres, across
the image. When the image resolution drops, the number of channels is increased such
that more convolutional kernels are available at deeper levels. The increasing number
of channels is what preserves information as the images get smaller. The next step
is called the bottleneck where data is processed at the lowest resolution. This allows
the modelling of patterns that potentially stretch over the whole image. The encoded
data is then fed into a decoder which recreates the original dimensionality of the im-
age through a series of convolutions and convolutional transposes. The purpose of the
upsampling path is to take all features learned in the downsampling and bottleneck
stages and recreate an output with the same resolution as the input. To aid in this,
another core feature of the U-net called skip connections is used. Skip connections copy
the data at several points during downsampling and then concatenate this data to the
upsampling path. This allows the upsampling to use a combination of more processed
data (the main path of the network) and data with more fine details (skip connection)
when creating the output image of the network. The network is constructed by blocks
and its architecture is shown in Figure 6. Due to the skip connections, the upsampling
block must have double the amount of input channels in order to be able to take the
main path and skip connections. Both streams of data are combined and processed
together within the upsampling blocks.
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Figure 6: Network architecture for CNN64. The tensor (multi dimensional matrix) di-
mensions along every connection is included and should be read as [batch size, channels,
height, width]. The batch size is here denoted as S. Note that due to skip connections,
each upsampling block has two inputs.

As we see, the data is processed in modular blocks and the inner workings of these is
what allows the network to perform its function. All blocks share the same general
structure but differ slightly based on the type of block. Convolutional layers are used
for learning features of the data. ReLU layers are used to introduce non-linearities
without which training would not work. Batch normalisation layers are used to prevent
instability during training. By unstable training we mean than the steps taken by the
optimisation algorithm do not lead to convergence. The blocks also include a residual
connection (the lower path in the blocks) which is inspired from the well known ResNet.
These allow features from the input to flow freely further into the network and have
been shown to greatly improve the performance of deep neural networks [1]. The three
block types are described in Figure 7.
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Figure 7: Components of blocks in neural network. All convolutions are padded such
that image dimensions are preserved except where the convolution is intended to change
the image resolution. In the upsample block’s residual path, upsampling is handled
separately with bilinear interpolation. Note that the residual connection is multiplied
by a factor 0.1. This is to prevent unstable training. The time embedding will be
explained in a later section.

For clarity it is noted that the overall structure of the network architecture (Figure 6)
is taken directly from the original U-net paper [10]. The inner workings of the blocks
(Figure 7) are designed with the data processing requirements of the network in mind.
They are not taken directly from any source but are rather a collection of standard
components for convolutional neural networks. The residual connections within the
blocks are directly taken from ResNet [1].

3.6 Time embedding

What we have seen so far only concerns the manipulation of the images and their pixel
data throughout the network. However, in order to predict the noise at a given timestep,
information about the time must also be fed into the network. Just feeding a scalar
into the network will not work. Instead, the time is embedded into a vector via an
embedding function f(t)

f : Z −→ R128
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The output dimension of 128 is an arbitrary choice and the details of the embedding
function can be found in the Appendix (7.1). The purpose of the embedding vector is to
encode the timestep for every block of the network (Figure 7). For this to be possible,
the 128 dimensions of the embedding vector must be adjusted to the number of channels
in a given block. This is achieved by running the embedding vector through a multi
layer perceptron (MLP) which output matches the number of channels at the relevant
block (Figure 8). The use of a MLP allows the time embedding to be added element
wise to the image data being processed in the blocks of the network. In practice, every
block of the network will have its own MLP and their weights will be learnable during
training. This whole setup allows the network to account for the timestep at all levels
of processing which is crucial for its functionality [12].

Figure 8: Encoding of a scalar timestep into each block of the network.

3.7 CNN256

For training on higher resolution images in Data256, the network needs to be adapted
somewhat. The number of blocks and their corresponding channels are changed to
meet the demands that larger images place on the model while still taking memory
constraints into account. CNN64 uses the channels [128, 256, 512, 1028] with three
down and up blocks. CNN256 uses the channels [128, 128, 128, 256, 512, 512] which
require five blocks in the downsample and upsample paths respectively. The architecture
of CNN256 is chosen such that the image resolution in the bottleneck block is the
same as for CNN64. Another difference in CNN256 is that it does not use residual
connections within the blocks. This is motivated by the fact that training on larger
images, especially under memory constraints with small batch sizes, can be unstable.
Removing the residual path contributes to stability during training and also frees up
memory for larger batch sizes. For completeness, tables of the components of both
networks used in this thesis are included in the Appendix (7.2).

3.8 Class conditioned sampling

This section concerns a method which was not ultimately used in the final models of
this thesis. However, it is described here in order to be the subject of discussion later on.

The data used in this project is divided up into 22 different types of paperboard named
A,B, . . . , V . If we want to be able to control which type we generate, we must feed
the network with class information. This is handled in a similar way to how infor-
mation about timesteps was introduced. We make use of PyTorch’s built in function
nn.Embedding which allows us to map the class into a 128 dimensional vector. Simi-
larly to the time embedding, this vector is also fed through a trainable MLP in order to
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match the number of channels in a given block. The two outputs from the MLPs (time
and class embeddings) are added together and then fed into the blocks of the network.
This method allows the network to account for both timestep and class at all blocks of
the network. The flow of data when this method is used can be seen in Figure 9.

Figure 9: The flow of the timestep and class embeddings into each block of the network.
This process takes place at every block of the whole network. Note that the class
embedding path (marked in red) was ultimately not used in this thesis.

4 Method

In order to achieve the main goal of this thesis, to generate images of paperboard of
good quality, the theory of GDMs described above was implemented into several different
models. This section describes these models as well as some evaluation methods used
to test the generated images.

4.1 Neural networks

The data in this thesis is split up into the two resolutions 64× 64 and 256× 256 pixels.
The original aim was to use class conditioning and train one model for each resolution.
This would allow for generation of all 22 different types of paperboard with a single
model at a given resolution. This approach was attempted but ultimately abandoned
due to difficulties with getting good image quality. The results of these attempts will
be shown in a later section. Instead, it was decided to split the data up into smaller
groups and train separate models on these. The splitting into groups was made based
on the types of paperboard machines that the paperboards come from. E.g. classes A
and B share the same paperboard machine so they were combined into a group. Table
2 shows the different groups of data modelled in this thesis.

Table 2: Classes of paperboard combined into groups. The classes combined share the
same paperboard machine. Note that each groups correspond with a separate trained
network.

Resolution Groups

64 × 64 A+B C+L+M N+O+U+V
256 × 256 A+B

This way of splitting the data does not cover all available 22 classes. However, it is
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sufficient for showing that this generation technique works as well as evaluating its
results. It is trivial to use the methods laid out in this thesis to train models on other
classes of paperboard in the future. In total, three neural networks called CNN64-
AB, CNN64-CLM, CNN64-NOUV were trained on 64 × 64 images. One network,
CNN256-AB, was trained on 256 × 256 images. All training was performed with the
Adam training algorithm with training parameters according to table 3

Table 3: Training parameters used for the different networks.

Network Learning Rate Beta1 Beta2 Batch Size Epochs

CNN64 (all) 0.001 0.9 0.999 128 300

CNN256 0.0005 0.9 0.999 32 300

4.2 Evaluation

As is stated in the introduction, we require generated images to not only to look like
real images upon visual inspection. We need to characterise paperboard images in a
quantitative manner and compare generated images on the same metrics. It is noted that
merely analysing pixel value distribution is insufficient in this context because vastly
different images can still have matching image distribution. E.g. randomly shuffling the
pixels of an image will not affect the image distribution. Specifically, we are interested
in how images behave when used in simulations. For this reason, the first two evaluation
methods described in this section are based on a typical simulation. A third method
based on classification is also described.

4.2.1 Contact mechanics simulation

One important feature of surfaces is how they deform when subjected to an external
load. A simple case is when a solid plate gets pressed against the paperboard surface.
The surface will deform due to being in contact with the plate and this will result in
some force between to two objects. The situation is described in Figure 10.
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Figure 10: The solid plate is moved to some distance d from a reference plane located
at the median height of the surface. This deforms the surface in and around the contact
area (boundary highlighted in red). Some force F is required to keep the system in
balance.

We are interested in how the relationship between F and the contact area changes with
d. This can be found out by using the boundary element method. The details of this
method are beyond the scope of this thesis. Tetra Pak provided a script that computes
F and the contact area for a given distance d. The script is used by sweeping over a
range of distances and plotting F and d. Figure 11 shows an example of this.
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Figure 11: 6 examples of force-area curves coming from real surfaces. The script used
expresses force in force units. Note that the unit is irrelevant for analysis of this graph.

Simulations like this are commonly carried out when studying properties of paperboard
surfaces which is why it is used here. The force-area curve provides a relevant method
for characterising surfaces and can therefore be used to validate generated surfaces.
If the force-area curves of generated surfaces match those coming from real data, it
supports the claim that the generated surfaces are suitable for further simulations.

4.2.2 Distance to contact area

The contact mechanics simulation described above can be used in another way to char-
acterise surfaces. Instead of sweeping over different distances, we fix the distance and
solve the deformation problem once for a given surface. This results in a binary image
describing the contact area between the paperboard and the solid plate. For all non-
contact points, the distance to the closest point is calculated. The distribution of these
distances can be seen as yet another way of describing the original surface for some
given distance d. For all analysis in this thesis, we fix d = 1 as this value seemed to
generate the most expressive distributions. Figure 12 visualises the steps required for
this evaluation method.
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Figure 12: Contact area (top left) leads to distance to contact (bottom left). The
distances are plotted as a distribution (right). The distribution is taken from many real
images to show the general trend.

4.2.3 Classification network

The real images used in this thesis come from paperboards of different types. The data
is ultimately combined into groups based on their paperboard machine and GDMs are
trained on each group. We want to ensure that generated images share characteristics
with the group that they were based on. This is tested by implementing neural networks
for classification and seeing if generated images get classified similarly to real images.
The networks for both resolutions were trained on 4 out of 5 of the original images from
each class. After training, the left out data is classified to create a baseline confusion
matrix (Figure 13) for how real images should get classified when subjected to the net-
work [4]. The classification of generated images will be evaluated against this baseline.
The architecture of the classification network is included in the Appendix (7.4).
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Figure 13: Base line confusion matrix from classification of real 64× 64 images. We see
that the network achieves perfect accuracy on the real images.

5 Results

This section presents generated images from the various networks and results from the
evaluation methods described above. The section is ended with the results from at-
tempting to train with class conditioning. A comparison between diffusion and spectral
models as methods for generating paperboard surfaces is also included.

5.1 Visual results

A random selection of images from the 3 64 × 64-pixel models, together with examples
of real images from the same groups, are displayed in Figure 14. Figure 15 shows the
same for CNN256.
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Figure 14: Real and generated images from CNN64-AB, CNN64-CLM and
CNN64-NOUV.



Figure 15: Real and generated images from CNN256-AB

5.2 Contact mechanics

The force-area curves from running the contact mechanics script on data from all models
are displayed in Figure 16.
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Figure 16: Force-area curves from CNN64-AB, CNN64-CLM, CNN64-NOUV and
CNN256-AB. In each plot, 10 generated images are compared to 10 real images from
the corresponding group.

5.3 Distance to contact area

Distributions of distances to nearest contact are displayed in Figure 17.
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Figure 17: Distance to contact distributions from CNN64-AB, CNN64-CLM,
CNN64-NOUV and CNN256-AB. In each plot, 16 generated images are compared
to 10 real images from the corresponding group.

5.4 Classification

Generated images from all 64 × 64-pixel models were classified using the classification
network. The resulting confusion matrix is in Figure 18. Since only one model was
trained on 256 × 256 images, it is not possible to analyse those images in this way.
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Figure 18: Confusion matrix when generated data from CNN64-AB, CNN64-CLM
and CNN64-NOUV is classified with a neural network.

5.5 Results from class conditioned models

The method of class conditioning was used to train various models none of which feature
as any of the final network of this work. The reason for this is that the image quality
greatly suffered when class conditioning was used. Some example images from this type
of model are displayed in Figure 19. The reasons for the lacking image quality are
addressed in the discussion.
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Figure 19: Generated images from model with class conditioning. Each of the images
are conditioned on a random class.

5.6 Comparison to spectral models

As was stated in the introduction, this problem of generating paperboard surfaces has
been previously attempted at Tetra Pak with spectral models. These are based on the
naive assumption that the surface can be modelled as a stationary two dimensional
random process. The spectral density of real images can be estimated and new images
can be generated from this density. An example of one such image is shown in Figure
20. As we can see, the image does not resemble real paperboard visually. This is not
surprising as the assumption is obviously wrong. Paperboard surfaces are not stationary
due to the existence of e.g. fibres. However, for this project to be valid, the images
generated with diffusion must be better than images from a spectral model when used as
input to simulations. To check this, we take random crops from the spectral generated
image and perform the simulation with these. The results are then compared with
real data as is also seen in Figure 20. The generated images give rise to flatter curves
than their real counterparts. When we compare this graph to those of Figure 16, it is
noted that the spectral generated images perform less similar to real data than images
generated with diffusion. This serves to further validate the use of GDMs to generate
paperboard surfaces.
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Figure 20: Example of image from spectral model which is based on paperboard class
A (left). Force-area curves from a spectral generated image and real images (right).

6 Discussion

To conclude this project, we discuss its results and methodologies from a few different
perspectives. At the end, an outlook of what further work can be done is provided.

The generated 64 × 64-pixel images (Figure 14), bear a close visual resemblance to
the images their models were trained on. Fibre structures and holes, which are char-
acteristic of paperboard surfaces, feature in the generated images. This result is not
surprising as diffusion models have been shown to be capable of generating good quality
images again and again. However, it is clear that the 256×256 images (Figure 15) leave
something to be desired in their visual presentation. While fibres and holes are present
in parts of images, other parts are noisy.

The worse results for larger images are likely due to issues with stability encountered
during training and generation. The available GPU restricted the batch size for large
images to 32 (compared to 128 with smaller images) which makes training less stable.
Many attempts were made to find a combination of model and training setup which
produces good, stable, results for larger images. Such a setup is surely possible, but we
were not able to achieve it during the time-frame of this project.

Another challenge with this project was the limited amount of available raw data.
Doing no pre-processing and training on five raw images per class would likely have
resulted in a model at best capable of recreating the raw data i.e. extreme over fitting.
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For this reason, some pre-processing had to be done. Taking different crops of lower
resolution than the original image is a method of creating more data and to broaden
the underlying distribution q(x0) of the data. However, as the crops have to overlap
each other, many of them will contain the same visual features. For example, the same
fibre will feature in many overlapping cropped images. This means that the network
will have a quite limited amount of different visual features to learn from. The network
will generate images with learned visual features stitched together which can be seen
in Figures 14 and 15. This can be seen as another form of over fitting where the model
is unable to come up with many new features. It is noted that this type of over fitting
is not necessarily a big problem in the context of paperboard images. The images are
not made to be looked at. As long as they facilitate simulations, they have served their
purpose.

Beyond visual results we have the evaluation metrics of contact mechanics to anal-
yse. For all models, the force-area curves of generated images (Figure 16) correspond
well to real data. At the very least the similarity is better than what the previously
developed spectral models achieve (Figure 20). We can say with more confidence that
images generated with diffusion suited to be used as input to simulations. The distances
to contact areas (Figure 17) show a general resemblance between real and generated
images which further validates the models. Both of these evaluation methods are de-
veloped with the specific use case of the images in this project in mind. They are a
result of the inherent difficulty of evaluating images. Simply looking at metrics like
image distributions or autocorrelations is not sufficient to characterise a paperboard
image. In the case of image distributions, randomising the position of every pixel while
keeping their value will not impact the distribution. In the case of autocorrelations,
the images generated from spectral models have identical autocorrelations to real data
while looking nothing like paperboard surfaces.

It is noted that the proposed evaluation metrics do not offer a complete characteri-
sation of paperboard images. They are based on just one simulation and does therefore
not guarantee that the generated images will perform similar to real ones when used
in different ways. If the generated images from this project are used in other types of
simulations, it could be discovered that they perform very differently in other contexts.

The classification network used on the 64 × 64 images is able to perfectly place real
images to their paperboard group (Figure 13). This shows that there is a significant
difference between different types of paperboard and validates the decision to split up
data into different groups in the first place. When classification is performed on gener-
ated data, we see that the differences between groups is preserved by the models to some
extent (Figure 18). Here, it is noted that the cases of classifying real and generated
images are different. For real data, the classification network is evaluated on a board
not seen during its training so we have a separation of data. When classifying generated
images, the GDMs base their outputs on all the underlying data. In order to achieve
separation of data with generated images, one would have to train GDMs on data not
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seen by the classification network. Given the limited amount of data, this approach is
seen as unfeasible.

The attempts to implement class conditioning into the models failed because it was
not possible to generate good quality images with this method (Figure 19). The origi-
nal plan was to have one model per image resolution capable of generating images of all
classes. While this would have been elegant, the approach of training separate models
for each group had to be settled for. In the network, class information was combined
with time step information and it is possible that the interference of these two led to
improper training. This combined with potentially sub-optimal network and training
parameters led to poor images. Again, it is surely possible to find a network and train-
ing parameters that achieve a good class conditioned model. This is perhaps something
to investigate further.

To conclude, this project has managed to produce good quality 64 × 64-pixel images
and used some bespoke metrics to evaluate them. Some insights into the challenges
of producing larger images with class conditioning have also been gained. The models
presented can be used to generate more artificial data. It is also possible to train new
models on other classes of data with the training methods provided.

6.1 Further work

Several topics in this project can be expanded upon. The most obvious thing to investi-
gate further is a model and training setup that produces better 256× 256-pixel images.
It would also be interesting to see if class conditioning could be made to work. There
exists several techniques for conditioning on classes with GDMs and only one was tried
here.

Another thing to highlight here is an alternative use of the models developed in the
project. While the models are trained on images of a certain size in terms of pixels, it
is possible to use them to generate larger images. For example, a 256 × 256 Gaussian
image can be de-noised by a model trained for 64 × 64-images. Four such images are
displayed in Figure 21. This way of using the models should be investigated further as
larger images are likely more useful to for some types of simulations.
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Figure 21: Four 256 × 256-images generated with CNN64-AB

Finally, it is noted that the method used in this thesis (GDMs) is not limited to image
generation. It is applicable in other domains such as time series data or 3D data.
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7 Appendix

7.1 Time embedding

The embedding has total dimensionality D = 128 which is split up into two equal parts
of D/2 = 64 dimensions each. A frequency scaling factor is defined as

scale =
log(10000)

D/2 − 1

which allows us to define a vector of frequencies

ωk = exp(−k · scale), k = 1, 2, . . . , D/2

where k is the index of each frequency. The final time embedding vector for a given
timestep t is defined as

embeddingk =

{
sin(t · ωk), if k ≤ D/2

cos(t · ωk−D/2), if k > D/2

7.2 CNN64 and CNN256 architectures

The architectures of the two networks used in this thesis are described in tables 4 and
5
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Table 4: CNN64 architecture.

Layer Type Input Shape Output Shape Details

Initial Conv 1 × 64 × 64 128 × 64 × 64 Conv2D(kernel=3, stride=1)

Downsampling Blocks

Downsample Block 1 128 × 64 × 64 256 × 32 × 32

Main path: Conv2D(4, 2), ReLU,
BatchNorm, Time Embedding,
Conv2D(3, 1), ReLU, BatchNorm
Residual Path: Conv2D(1, 2), BatchNorm

Downsample Block 2 256 × 32 × 32 512 × 16 × 16 —”—

Downsample Block 3 512 × 16 × 16 1024 × 8 × 8 —”—

Bottleneck

Bottleneck Block 1024 × 8 × 8 1024 × 8 × 8

Main path: Conv2D(3, 1), ReLU,
BatchNorm, Time Embedding,
Conv2D(3, 1), ReLU, BatchNorm
Residual Path: Conv2D(1, 1), BatchNorm

Upsampling Blocks

Upsample Block 1 2048 × 8 × 8 512 × 16 × 16

Main path: TransConv2D(4, 2), ReLU,
BatchNorm, Time Embedding,
Conv2D(3, 1), ReLU, BatchNorm
Residual Path: UpsampleConv,
Conv2D(1, 1), BatchNorm

Upsample Block 2 1024 × 16 × 16 256 × 32 × 32 —”—

Upsample Block 3 512 × 32 × 32 128 × 64 × 64 —”—

Output Layer

Output Conv 128 × 64 × 64 1 × 64 × 64 Conv2D(1,1)
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Table 5: CNN256 architecture.

Layer Type Input Shape Output Shape Details

Initial Conv 1 × 256 × 256 128 × 256 × 256 Conv2D(kernel=3, stride=1)

Downsampling Blocks

Downsample Block 1 128 × 256 × 256 128 × 128 × 128

Conv2D(4, 2), ReLU,
BatchNorm, Time Embedding,
Conv2D(3, 1), ReLU,
BatchNorm

Downsample Block 2 128 × 128 × 128 128 × 64 × 64 —”—

Downsample Block 3 128 × 64 × 64 256 × 32 × 32 —”—

Downsample Block 4 256 × 32 × 32 512 × 16 × 16 —”—

Downsample Block 5 512 × 16 × 16 512 × 8 × 8 —”—

Bottleneck

Bottleneck Block 512 × 8 × 8 512 × 8 × 8

Conv2D(3, 1), ReLU,
BatchNorm, Time Embedding,
Conv2D(3, 1), ReLU,
BatchNorm

Upsampling Blocks

Upsample Block 1 1024 × 8 × 8 512 × 16 × 16

TransConv2D(4, 2), ReLU,
BatchNorm, Time Embedding,
Conv2D(3, 1), ReLU,
BatchNorm

Upsample Block 2 1024 × 16 × 16 256 × 32 × 32 —”—

Upsample Block 3 512 × 32 × 32 128 × 64 × 64 —”—

Upsample Block 4 256 × 64 × 64 128 × 128 × 128 —”—

Upsample Block 5 256 × 128 × 128 128 × 256 × 256 —”—

Output Layer

Output Conv 128 × 256 × 256 1 × 256 × 256 Conv2D(1, 1)

7.3 Training process

Figure 22 shows the loss function over the epochs for CNN64-AB. For reference, a
training run like this (300 epochs) takes around 16 hours on the high performance
cluster used in this project.
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Figure 22: Training of CNN64-AB

7.4 Classification network

The architecture of the image classification network is described in table 6.
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Table 6: Network architecture of the image classifier for 64 × 64 resolution

Layer Type Parameters

Conv1 Convolution (2D) Kernel: 3 × 3, Padding: 1, Channels: 1 → 32

BN1 BatchNorm2D Channels: 32

Pool1 MaxPool2D Kernel: 2 × 2, Stride: 2

Conv2 Convolution (2D) Kernel: 3 × 3, Padding: 1, Channels: 32 → 64

BN2 BatchNorm2D Channels: 64

Pool2 MaxPool2D Kernel: 2 × 2, Stride: 2

Conv3 Convolution (2D) Kernel: 3 × 3, Padding: 1, Channels: 64 → 128

BN3 BatchNorm2D Channels: 128

Pool3 MaxPool2D Kernel: 2 × 2, Stride: 2

Conv4 Convolution (2D) Kernel: 3 × 3, Padding: 1, Channels: 128 → 256

BN4 BatchNorm2D Channels: 256

Global Pool AvgPool2D Global Average Pooling

Flatten Flatten -

FC1 Fully Connected Input: 256, Output: 256, Dropout: p = 0.5

FC2 Fully Connected Input: 256, Output: 3
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