
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Codes on Graphs and More

Hug, Florian

2012

Link to publication

Citation for published version (APA):
Hug, F. (2012). Codes on Graphs and More. [Doctoral Thesis (monograph), Department of Electrical and
Information Technology].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/285413fb-05d9-431f-9907-534d636738e3

Codes on Graphs
and More

Florian Hug

Doctoral Dissertation
Information Theory

Lund, May 2012

Florian Hug
Department of Electrical and Information Technology
Information Theory
Lund University
P.O. Box 118, 221 00 Lund, Sweden

Series of licentiate and doctoral dissertations
ISSN 1654-790X; No. 38
ISBN 978-91-7473-284-9

c© 2012 Florian Hug
Typeset in Palatino and Helvetica using LATEX 2ε.
Printed in Sweden by Tryckeriet i E-huset, Lund University, Lund.

No part of this dissertation may be reproduced or transmitted in any form or
by any means, electronically or mechanical, including photocopy, recording,
or any information storage and retrieval system, without written permission
from the author.

Abstract

M odern communication systems strive to achieve reliable and efficient
information transmission and storage with affordable complexity.
Hence, efficient low-complexity channel codes providing low prob-

abilities for erroneous receptions are needed. Interpreting codes as graphs
and graphs as codes opens new perspectives for constructing such channel
codes. Low-density parity-check (LDPC) codes are one of the most recent
examples of codes defined on graphs, providing a better bit error probability
than other block codes, given the same decoding complexity.

After an introduction to coding theory, different graphical representations
for channel codes are reviewed. Based on ideas from graph theory, new algo-
rithms are introduced to iteratively search for LDPC block codes with large
girth and to determine their minimum distance. In particular, new LDPC
block codes of different rates and with girth up to 24 are presented. Woven
convolutional codes are introduced as a generalization of graph-based codes
and an asymptotic bound on their free distance, namely, the Costello lower
bound, is proven. Moreover, promising examples of woven convolutional
codes are given, including a rate 5/20 code with overall constraint length 67
and free distance 120.

The remaining part of this dissertation focuses on basic properties of con-
volutional codes. First, a recurrent equation to determine a closed form ex-
pression of the exact decoding bit error probability for convolutional codes
is presented. The obtained closed form expression is evaluated for various
realizations of encoders, including rate 1/2 and 2/3 encoders, of as many as
16 states. Moreover, MacWilliams-type identities are revisited and a recursion
for sequences of spectra of truncated as well as tailbitten convolutional codes
and their duals is derived. Finally, the dissertation is concluded with exhaus-
tive searches for convolutional codes of various rates with either optimum free
distance or optimum distance profile, extending previously published results.

Contents

Contents v

Preface ix

Acknowledgments xi

1 Introduction 1
1.1 A Basic Digital Communication Model 2

1.2 Some Channel Models . 4
1.2.1 The Binary Symmetric Channel 4
1.2.2 The Additive White Gaussian Noise Channel 5

1.3 Channel Coding . 8
1.3.1 Block Codes . 8
1.3.2 Convolutional Codes . 13
1.3.3 Optimal Decoding Principles 23

1.4 Dissertation Outline . 28

2 Graphs, Codes, and Codes on Graphs 29
2.1 Trees and Trellises for Convolutional Codes 30

2.2 Trees and Trellises for Linear Block Codes 36

2.3 The Viterbi Algorithm . 42

2.4 The BEAST . 46
2.4.1 Finding the Weight Spectrum 46
2.4.2 Finding the Viterbi Spectrum 50

2.4.3 Maximum-Likelihood Decoding 51
2.4.4 Determine the Metric Thresholds 53

2.5 Low-Density Parity-Check Codes and Tanner Graphs 55

2.6 The Belief Propagation Algorithm 59

3 Voltage Graph-Based QC LDPC Block Codes with Large
Girth 65
3.1 Quasi-Cyclic LDPC Block Codes 66

3.2 Base Matrices, Voltages, and their Graphs 69

3.3 Bounds on the Girth and the Minimum Distance 72

3.4 Searching for QC LDPC Block Codes with Large Girth 76
3.4.1 Step I: Creating a Tree Structure 77
3.4.2 Step II: Searching for a Suitable Voltage Assignment . . . 79

3.5 Minimum Distance of QC LDPC Block Codes 83

3.6 All-one Based QC LDPC Block Codes 84

3.7 Alternative Constructions . 86
3.7.1 Steiner Triple Systems Based QC LDPC Block Codes . . . 91
3.7.2 Iterative QC LDPC Block Codes 94
3.7.3 Double-Hamming Based QC LDPC Block Codes 95
3.7.4 Binomial QC LDPC Block Codes 99

3.8 Case Study: IEEE 802.16 WiMAX 100

4 Woven Graph Codes 105
4.1 Graph-based Block Codes with Constituent Codes 106

4.2 Woven Graph Codes . 109

4.3 Asymptotic Bound on the Free Distance of Woven Convolu-
tional Graph Codes . 111

4.4 Examples . 117

4.5 Simulation Results . 119

5 A Closed Form Expression for the Exact Bit Error
Probability 121
5.1 Expressing the Bit Error Probability Using the Average Infor-

mation Weights . 122

5.2 Computing the Vector of Average Information Weights 128

5.3 Solving the Recurrent Equation 132

5.3.1 Determining the Limit of a Power Series 133
5.3.2 Deriving a Closed Form Expression 135

5.4 Additional Examples . 136

6 MacWilliams-type Identities for Convolutional Codes 143
6.1 Weakly Equivalent Matrices . 144

6.2 Block Spectra for Zero-Tail Terminated and Truncated Convo-
lutional Codes . 148

6.3 MacWilliams-Type Identities . 148

6.4 Infinite Sequences of Spectra . 155

7 Optimum and Near-Optimum Convolutional Codes 161
7.1 Distance Properties . 162

7.1.1 Column Distance . 162
7.1.2 Row Distance . 164
7.1.3 Smith Form Decomposition 165

7.2 Optimum Free Distance Convolutional Codes 166

7.3 Optimum Distance Profile Convolutional Codes 171

Acronyms 175

References 177

Preface

This dissertation summarizes the results of my research work at the De-
partment of Electrical and Information Technology at Lund University
in Sweden. Most of the included material has appeared in the following

journal papers or conference contributions:

• I. E. Bocharova, F. Hug, R. Johannesson, and B. D. Kudryashov, »A Closed
Form Expression for the Exact Bit Error Probability for Viterbi Decoding of
Convolutional Codes,« accepted for publication in IEEE Transactions on Infor-
mation Theory, vol. 58, 2012.

• I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov, and R. V.
Satyukov, »Searching for Voltage Graph-Based LDPC Tailbiting Codes with
Large Girth,« IEEE Transactions on Information Theory, vol. 58, no. 4, pp. 2265 –
2279, April 2012.

• I. E. Bocharova, F. Hug, R. Johannesson, and B. D. Kudryashov, »A Note on
Duality and MacWilliams-type Identities for Convolutional Codes,« Problems
of Information Transmission, vol. 48, no. 1, April 2012.

• D. Johnsson, F. Bjärkeson, M. Hell and F. Hug, »Searching for New Convo-
lutional Codes Using the Cell Broadband Engine Architecture,« IEEE Commu-
nications Letters, vol. 15, no. 5, pp. 560 – 562, May 2011.

• I. E. Bocharova, F. Hug, R. Johannesson, and B. D. Kudryashov, »Woven
Convolutional Graph Codes with Large Free Distances,« Problems of Informa-
tion Transmission, vol. 47, no. 1, pp. 3 – 18, January 2011.

• F. Hug, I. E. Bocharova, R. Johannesson, and B. D. Kudryashov, »A Rate
R = 5/20 Hypergraph-Based Woven Convolutional Code with Free Distance
120,« IEEE Transactions on Information Theory, vol. 56, no. 4, pp. 1618–1623,
April 2010.

ix

• I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov, and R. V.
Satyukov, »Some Voltage Graph-Based LDPC Tailbiting Codes with Large
Girth,« in Proc. IEEE International Symposium on Information Theory (ISIT’11),
pp. 732–736, St. Petersburg, Russia, July 31 – August 8, 2011.

• I. E. Bocharova, F. Hug, R. Johannesson, and B. D. Kudryashov, »Double-
Hamming Based QC LDPC Codes with Large Minimum Distance,« in Proc.
IEEE International Symposium on Information Theory (ISIT’11), pp. 923–927, St.
Petersburg, Russia, July 31 – August 8, 2011.

• I. E. Bocharova, F. Hug, R. Johannesson, and B. D. Kudryashov, »An-
other Look at the Exact Bit Error Probability for Viterbi Decoding of Con-
volutional Codes,« in Proc. International Mathematical Conference »50 Years of
IPPI«, Moscow, Russia, July 25 – 29, 2011.

• I. E. Bocharova, F. Hug, R. Johannesson, and B. D. Kudryashov, »On the
Exact Bit Error Probability for Viterbi Decoding of Convolutional Codes,« in
Proc. Information Theory and Applications Workshop (ITA’11), San Diego, USA,
February 2 – 6, 2011.

• I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov, and R. V.
Satyukov, »New Low-Density Parity-Check Codes with Large Girth Based
on Hypergraphs,« in Proc. IEEE International Symposium on Information Theory
(ISIT’10), pp. 819–823, Austin, USA, June 13 – 18, 2010.

• I. E. Bocharova, F. Hug, R. Johannesson, and B. D. Kudryashov, »On
Weight Enumerators and MacWilliams Identity for Convolutional Codes,« in
Proc. Information Theory and Applications Workshop (ITA’10), San Diego, USA,
January 31 – February 05, 2010.

I have also co-authored the following papers not included in this dissertation:

• F. Hug, and F. Rusek, »The BEAST for Maximum-Likelihood Detection in
Non-Coherent MIMO Wireless Systems,« in Proc. IEEE International Conference
on Communications (ICC’10), Cape Town, South Africa, May 23 – 27, 2010.

• F. Hug, »Constructing Error-Correcting Codes with Huge Distances,« in Part-
nership for Advanced Computing in Europe (PRACE) code porting workshop, (in-
vited talk) Linköping, Sweden, October 13 – 14, 2009.

• F. Hug, I. E. Bocharova, R. Johannesson, and B. D. Kudryashov, »Searching
for High-Rate Convolutional Codes via Binary Syndrome Trellises,« in Proc.
IEEE International Symposium on Information Theory (ISIT’09), pp. 1358 – 1362,
Seoul, South Korea, June 28 – July 3, 2009.

• V. V. Zyablov, F. Hug, and R. Johannesson, »Chained Gallager Codes,« in
Proc. International Symposium on Problems of Redundancy in Information and Con-
trol Systems, St. Petersburg, Russia, May 26 – 30, 2009.

The research work included in this dissertation is supported in part by the Swedish
Research Council through Grant 621-2007-6281 and 621-2010-5847.

x

Acknowledgments

A lot of people have contributed to this dissertation in various ways.
I would like to take this opportunity to express my thankfulness to
all of them. In particular, I would like to mention a few:

First of all, my deepest gratitude goes to my supervisor Rolf Johannesson
for sharing all this knowledge and experience with me. Our long lasting
discussions covering both scientific and personal matters have been invaluable
to me. His encouragement and support as well as his optimistic attitude
towards life in all aspects have influenced me greatly. In the end, Rolf is much
more than »just« a supervisor, he’s a really good friend and a person that I
look up to and admire deeply.

During my time in Sweden, I had the honor of working together with Irina
Bocharova and Boris Kudryashov. I highly appreciate their kindness and pro-
found knowledge they shared with me and for always finding the time for dis-
cussions; personally, via mail, or using instant messaging. Moreover, thanks
a lot for being excellent travel guides during our visit in St. Petersburg. I am
grateful to Kamil Zigangirov for his support and the knowledge he shared
with me during several interesting discussions.

My thanks go to all my colleagues and fellow PhD students at the Depart-
ment of Electrical and Information Technology who created a friendly and
inspiring work environment. Especially, I would like to express my gratitude
to Martin Å. and Fredrik for proofreading some chapters of this dissertation.
Also, and in no order of importance, I would like to thank my friends from
the »extended« 3rd floor, Martin H., Paul, Dzevdan, Adnan, and Anders for
introducing me to their Swedish social life and for our interesting lunch and
coffee break discussions. Furthermore, I also would like to express my thanks
and appreciation to the technical and administrative staff at the department.

xi

Being part of the National Graduate School in Scientific Computing as
well as having the possibilities to extensively use the resources at Lunarc,
the Center for Scientific and Technical Computing at Lund University, thanks
to generous grants from the Swedish National Infrastructure for Computing
is highly acknowledged.

I am especially grateful to all my other friends in Sweden, who made sure
that I did not spend all my time in front of the computer screen. In particular,
I would like to mention my »lovely« neighbor Inga who always provided me
with freshly baked buns & cookies, and Feffe for taking me out to learn proper
Swedish. My thanks also go to Elinor for nightlong discussions and to all my
other salsa and bachata friends, in particular, Very, Nata, Philip, and Kicki for
joyful and memorable moments we shared on the dance floors.

Last, but not least, I am utmost grateful to my parents and my sister
Catherina for their invaluable support, encouragement and unconditional
love. But most importantly, my deepest thanks go to my love Daniela with
whom I am looking forward to start a new chapter of our lives.

Florian Hug
Lund, May 2012

xii

1
Introduction

B eing able to communicate over long distances, wherever we are, and
at any time, has become an essential part in our society. Only a few

decades ago, fixed wired analog telephones were the only means of
communication. With the invention of mobile phones, the situation changed
completely and nowadays everybody is reachable worldwide at any given
moment. At the same time, the importance of fixed wired telephony (even
though digital) decreased, which is no longer solely sufficient for daily com-
munications. Today, mobile phones are the most widespread communication
technology in our society.

The ideas which, among others, made this development possible reach back
to the year 1948 when Claude E. Shannon published his landmark paper »A
Mathematical Theory of Communication« [Sha48]. Using probabilistic mea-
sures, Shannon described a new digital communication model and derived its
limits for reliable communication, which laid the foundation for information
and coding theory.

Based on Shannon’s ideas, new concepts and techniques were developed,
striving to practically achieve the previously outlined limits. Examples in-
clude digital cellular wireless networks, like the most popular second gener-
ation Global System for Mobile Communications (GSM) as well as its third-
and fourth-generation successors, Universal Mobile Telecommunications Sys-
tem (UMTS) and Long Term Evolution (LTE), respectively, or Digital Sub-
scriber Line (DSL) technology, which is still the most widespread Internet
access technology. Besides traditional communication networks, new stor-
age systems such as hard disks (HDDs) or solid state flash drives (SSDs) in
computers, as well as compact disks (CDs), digital versatile disks (DVDs), or
blue-ray disks (BDs) use coding for reliable and efficient storage of information.

1

2 Introduction

In Shannon’s communication model, all information, being either transmit-
ted to its receiver or stored for later usage, propagates through some kind of
channel. Such a channel depends largely on the underlying application and
can represent, for example, a coaxial cable for a television signal, air in wire-
less communications, or electronic circuits and imperfect memories in case of
HDDs or SSDs. If the receiver is not able to recover the original information
sequence from its received distorted version, we say that an error event has
occurred.

In order to provide reliable and efficient information transmission and stor-
age, channel coding, also known as error control coding, is commonly used to
protect the information sequences from error events during transmission over
noisy channels or storage in imperfect memories. Channel coding adds ad-
ditional redundant information to the sequences being transmitted or stored,
which can be used to detect errors events and, more importantly, recover the
original information sequences. In general, this can be achieved by two differ-
ent kinds of channel codes: block codes, where a constant ratio of redundancy is
added separately to each information sequence, and convolutional codes, where
redundant information is added continuously using a convolution with con-
secutive information sequences.

In Section 1.1, Shannon’s general model of a communication system is de-
scribed in more detail. Different models for the transmission channel used
within this dissertation are discussed in Section 1.2, while Section 1.3 focuses
on the basic principles of block and convolutional codes, respectively. These
sections are largely based on [Bos98], [JZ99], [LC04], and [PS08].

1.1 A BASIC DIGITAL COMMUNICATION MODEL

Figure 1.1 illustrates a block diagram of a basic digital communication system.
Using sampling and quantizing, every analog signal can be approximated by
a sequence of digital symbols with as high accuracy as required. Thus, the
output of the source, even though representing any kind of analog or digital
source signal like speech, audio, video or data, can be assumed to be an
entirely digital sequence.

Using Shannon’s separation principle, the processing of any (infinite) se-
quence prior to transmission can, without loss of optimality, be separated
into two individual tasks: source encoding and channel encoding.

During source encoding, also known as data compression, a digital sequence is
represented with as few binary digits (bits) as possible. Thereby, the natural
redundancy of the original message is removed, and the bits at the output
are ideally equiprobable, but independently distributed. As source encod-
ing is beyond the scope of this dissertation, we combine the source with the

1.2. Some Channel Models 3

Source
Source
encoder

u Channel
encoder

v

Digital
channel

rChannel
decoder

ûSource
decoder

Destination

Binary symmetric source

Binary destination

Figure 1.1: A model of a basic communication system.

source encoder, and refer to this block as a binary symmetric source (BSS). Such
a BSS emits a (time-discrete) binary, random sequence u, the so-called informa-
tion sequence, consisting of equiprobable, but independently distributed binary
symbols. Similarly, their counterparts at the receiver side, the source decoder
as well as the destination can be combined to a single binary destination; see
Figure 1.1.

Propagation conditions through the channel usually violate the require-
ments for reliable communication, as the probability for erroneous reception
of the transmitted information sequence is unacceptably high. Using a chan-
nel encoder, artificial redundancy is added to the information sequence u in a
controlled manner, forming the code sequence v, also known as the codeword.
The channel decoder at the receiver exploits this artificial redundancy to correct
most of the introduced errors; reducing the overall error probability.

In many applications, the underlying fundamental channel is of analog
nature. Thus, inside the digital channel, tuples of code symbols of the code
sequence v are mapped to a modulation alphabet, converted to analog wave-
forms, modulated, and are finally transmitted over the analog (waveform)
channel. The received analog waveforms, corrupted by noise (errors) during
transmission, are demodulated and possibly quantized, before being emitted
as a sequence of observed values, the so-called received sequence r.

Based on the received sequence r and the structural knowledge of the arti-
ficial redundancy added by the channel encoder, the channel decoder outputs a
decision on the information sequence û. If the decision û coincides with the
information sequence u, the transmission has been successful; otherwise an
uncorrectable error event has occurred. Finally, the sequence û is forwarded
to the source decoder which reconstructs the original information message and
delivers it to its destination.

4 Introduction

1.2 SOME CHANNEL MODELS

1.2.1 THE BINARY SYMMETRIC CHANNEL

One of the most fundamental and purely theoretical channels used within
coding theory is the binary symmetric channel (BSC) as illustrated in Figure 1.2.

1− p

1− p

p

p

1 1

0 0

Figure 1.2: BSC with crossover probability p.

A binary input symbol passes the BSC unchanged with probability 1− p,
while the binary output symbol differs from its input with probability p.
Thus, a BSC is completely characterized by the parameter p, its so-called
crossover probability.

As both the input and output symbols of a BSC are binary, the received
sequence r can be expressed as

r = v⊕ e (1.1)

where ⊕ denotes the modulo-2 addition, v is a code sequence and the error
pattern e is a random sequence, whose elements are 0 with probability 1− p,
and 1 with probability p.

According to Shannon’s channel coding theorem [Sha48], every discrete-input,
memoryless channel (DMC) is characterized by a single parameter C, its ca-
pacity. Assume that the information sequence u is encoded into the code
sequence v of length N, and transmitted over a channel at rate R bits per chan-
nel use. Then it is possible (for sufficiently large N) to achieve an arbitrarily
low (block) error probability, as long as the transmission rate satisfies R ≤ C.
On the other hand, if R > C, we can not reach such an arbitrarily low error
probability.

For example, in case of a BSC with crossover probability p, the channel
capacity is

C = 1− h(p) (1.2)

where
h(x) = −x log2(x)− (1− x) log2(1− x) (1.3)

is the binary entropy function.

1.2. Some Channel Models 5

1.2.2 THE ADDITIVE WHITE GAUSSIAN NOISE CHANNEL

Another more practical channel model for the transmission of analog wave-
forms is the (binary input) additive white Gaussian noise (AWGN) channel. Con-
sider a binary code sequence v, whose code symbols vi ∈ {0, 1}, i = 0, 1, . . .,
are mapped to symbols from a modulation alphabetM with average transmit
energy Es per modulation symbol. Then the corresponding modulation signal
s(t) can be expressed as

s(t) = ∑
k

xk p(t− kT) k = 0, 1, . . . (1.4)

where T denotes the symbol interval, xk ∈ M, and p(t) is a real-valued trans-
mit pulse, which is orthogonal to itself under T-shifts and has unit-energy.

When transmitting the modulation signal s(t) over a (memoryless) analog
waveform channel, a common assumption is disturbance by additive white
Gaussian noise. Such noise can be modeled as a random noise process with a
constant power spectral density (PSD) for all frequencies, where the two-sided
PSD is denoted N0/2. Using an optimum receiver, that is, a matched-filter for
the transmit pulse p(t), the received sequence r can be expressed by

r = x + n (1.5)

where x is the sequence of modulation symbols xk ∈ M and n is a sequence
of independently drawn Gaussian random variables with zero mean and vari-
ance σ2 = N0/2. Given |M| different modulation symbols xk together with
binary code symbols vi, the modulation rate follows as Rm = log2 |M| code
symbols per channel use.

Throughout this dissertation, we will assume binary phase-shift keying
(BPSK) with the modulation alphabet M =

{
−
√

Es,
√

Es
}

. Then, every bi-
nary code symbol vt ∈ {0, 1}, at time instant t, is mapped to a modulation
symbol xt ∈ M according to

xt = (1− 2vt)
√

Es (1.6)

and thus the corresponding received symbol rt can be expressed as

rt = xt + nt = (1− 2vt)
√

Es + nt (1.7)

where nt denotes an independently drawn Gaussian random variable with
zero mean and variance σ2 = N0/2 at time instant t. Hence, the corresponding
transition probability density function (PDF) for an AWGN channel is

p (rt | xt) =
1√

πN0
e−(rt−xt)

2/N0 (1.8)

6 Introduction

−
√

Es 0 +
√

Es

1/
√

πN0

Q
(√

2Es
N0

)

p
(

rt

∣∣∣ xt = +
√

Es

)
p
(

rt

∣∣∣ xt = −
√

Es

)

r

Figure 1.3: Conditional PDF for the AWGN channel using BPSK
modulation.

Alternatively, using (1.6), we obtain
p (rt | vt = 0) =

1√
πN0

e−(rt−
√

Es)2/N0

p (rt | vt = 1) =
1√

πN0
e−(rt+

√
Es)2/N0

(1.9)

which defines the likelihood of the received symbol rt, given that the binary
code symbol vt was transmitted. In Figure 1.3 the conditional PDFs for an
AWGN channel using BPSK modulation are illustrated.

By quantizing the received symbol rt to be either positive or negative, an
AWGN channel is degraded to a BSC (cf. Subsection 1.2.1). The corresponding
crossover probability p for such a channel is indicated by the shaded area in
Figure 1.3 and follows as

p = P
(

rt > 0
∣∣∣ xt = −

√
Es
)
= P

(
rt > 0 | vt = 1

)
= Q

(√
2Es

N0

)
(1.10)

where Q(x) is the complementary Gaussian distribution function

Q(x) =
1√
2π

∫ ∞

x
e−y2/2 dy =

1
2

erfc
(

x√
2

)
(1.11)

Using the »mixed form« of Bayes’ rule [WJ65], the log-likelihood of the binary
code symbol vt given the received symbol rt can be expressed as

L (vt | rt) = ln
P (vt = 0 | rt)

P (vt = 1 | rt)
= ln

p (rt | vt = 0) P (vt = 0)
p (rt | vt = 1) P (vt = 1)

(1.12)

1.2. Some Channel Models 7

If the code symbol vt is a priori equiprobable distributed, then its log-likelihood
value for an AWGN channel follows by combining (1.9) and (1.12) as

L (vt | rt) = ln
1√

πN0
e−(rt−

√
Es)2/N0

1√
πN0

e−(rt+
√

Es)2/N0
=

4rt
√

Es

N0
(1.13)

Applying typical sequences and random coding, the capacity of a real-
valued AWGN channel with signaling energy Es and two-sided PSD N0/2
can be shown to be

C =
1
2

log2

(
1 +

2Es

N0

)
(1.14)

In theory, the capacity C is achievable with a continuous Gaussian modulation
alphabetM. In practical applications, however, the modulation alphabetM is
of finite size, and hence the capacity value given by (1.14) can not be reached.

In the area of channel coding it is often convenient to replace the signal-
to-noise ratio per channel use Es/N0 by the signal-to-noise ratio (SNR) per
information bit Eb/N0, where Es = REb and the rate R denotes the number
of bits transmitted per channel use. Note that within this dissertation, SNR
always refers to the signal-to-noise ratio per information bit Eb/N0.

As mentioned previously, the rate R for reliable communication must sat-
isfy R ≤ C, and thus

R ≤ 1
2

log2

(
1 +

2REb
N0

)
(1.15)

Solving for Eb/N0 yields
Eb
N0
≥ 22R − 1

2R
(1.16)

where the right side is an increasing function of the rate R. By taking the limit
R→ 0, we obtain the Shannon limit

Eb
N0
≥ ln 2 ≈ 0.693

[
− 1.6 dB

]
(1.17)

which specifies the minimal required SNR for reliable communication over a
real-valued AWGN channel at any rate R > 0 in presence of noise.

For a more practical communication channel like the rate R = 1/2, binary
input AWGN channel, the capacity is given by

C =
1
2

∫ ∞

−∞
p (rt | vt = 0) log2

p (rt | vt = 0)
p (r)

dr

+
1
2

∫ ∞

−∞
p (rt | vt = 1) log2

p (rt | vt = 1)
p (r)

dr = 0.188 dB (1.18)

8 Introduction

Even though Shannon’s channel coding theorem specifies the limit for a
reliable communication, it does not specify any practical coding scheme to
achieve an arbitrarily low error probability at rates close to capacity. Instead,
the design of practical coding schemes approaching the Shannon limit has
been a topic of active research, leading to code designs such as turbo codes or
low-density parity-check codes, which shall be discussed in Section 2.5.

1.3 CHANNEL CODING

1.3.1 BLOCK CODES

Consider the stream of binary symbols u at the output of a BSS, parsed into
blocks of K information bits each. The binary K-tuple u = (u0 u1. . . uK−1) with
ui ∈ {0, 1}, i = 0, 1, . . . , K− 1, is called an information sequence.

A block encoder maps every information sequence of length K to a distinct N-
tuple v = (v0 v1. . . vN−1), a so-called codeword of length N. Each of the M =
2K different codewords consists of N code symbols vi, i = 0, 1, . . . , N − 1, in
general taken from a q-ary alphabet vi ∈ {0, 1, . . . , q− 1}. The set of all M
codewords is denoted an (N, K) block code B. In the following all block codes
will be restricted to be binary, that is, q = 2 and thus N ≥ K.

The difference N − K ≥ 0 defines how much redundancy is added to pro-
tect the codewords during transmission. Hence, the code rate Rc is given as
the ratio

Rc =
log2 M

N
=

K
N

(1.19)

and satisfies 0 < Rc ≤ 1. Combined with the modulation rate Rm (cf. Sub-
section 1.2.2), the transmission rate R of the communication system follows
as R = Rc Rm = Rc log2 |M| bits per channel use. Since BPSK signaling is
assumed within this dissertation, it follows that Rm = 1, and thus R denotes
both the transmission rate as well as the code rate.

Moreover, as a block code B is only defined via its set of M distinct code-
words, there exist in total M · (M− 1) · · · 1 = M! different bijective mappings,
that is, M! different block encoders.

LINEAR BLOCK CODES

An (N, K) linear binary block code B is defined as a K-dimensional subspace
of the N-dimensional vector space FN

2 , where F2 denotes the binary (Galois)
field. In other words, a linear binary block code B is a set of M = 2K code-
words vi such that any linear combination satisfies

∑
i

aivi ∈ B i = 0, 1, . . . , M− 1 ai ∈ F2 (1.20)

1.3. Channel Coding 9

that is, the sum of any (two or more) codewords of a linear block code forms
another codeword. In particular, every linear block code includes necessarily
the all-zero codeword v = 0.

Moreover, it follows from (1.20) that every (N, K) linear block code B con-
tains exactly K linearly independent codewords g0, g1, . . . , gK−1 ∈ B which
form a basis for the K-dimensional subspace of the N-dimensional vector
space FN

2 .
In other words, every codeword v ∈ B can be written as a linear combina-

tion of these K codewords

v = u0g0 + u1g1 + . . . + uK−1gK−1 (1.21)

where u = (u0 u1. . . uK−1) is the information sequence to be encoded. Using
a matrix multiplication within the underlying binary field F2, this can be
expressed as

v = uG (1.22)

where the rows of the K × N binary generator matrix G are given by gi, i =
0, 1, . . . , K− 1. Equation (1.22) is a so-called linear encoding rule, which satisfies
(1.20) and ensures that the all-zero information sequence u = 0 is always
mapped to the all-zero codeword v = 0.

Performing elementary row operations on the generator matrix G, yields a
different set of K linearly independent codewords which form another basis
for the same K-dimensional subspace of the N-dimensional vector space FN

2 .
The corresponding generator matrix G′ encodes the same linear block code
B, as only the mapping between u and v has been changed, while the set of
codewords remains the same.

On the other hand, by permuting the columns of the generator matrix G,
the positions of the code symbols vi are exchanged, yielding a different set
of codewords, a so-called equivalent code. More precisely, a linear block code
B′ is said to be equivalent to another linear block code B if there exists a
permutation matrix Π such that every codeword v′ ∈ B′ can be obtained by
applying the permutation Π to a codeword v ∈ B, that is, v′ = v Π.

Among the set of all (equivalent) generator matrices of an (N, K) linear
block code, there are several generator matrices of particular interest. One
such matrix is the systematic generator matrix Gsys which performs a map-
ping between the information sequence u and the codeword v such that the
information symbols ui, i = 0, 1, . . . , K − 1, appear unchanged among the
code symbols vi, i = 0, 1, . . . , N − 1. Performing elementary row operations,
a generator matrix can always be transformed into its so-called reduced row ech-
elon form (RREF). In the RREF, the leading coefficient of each row, also known
as the pivot element, is always strictly to the right of the leading coefficient of
the row above, and is the only nonzero entry in its column. The positions of
these leading coefficients are commonly called the systematic positions. Using

10 Introduction

the concept of equivalent codes, the columns can be permuted in such a way
that all systematic positions are grouped together as the first K columns. Then
the corresponding systematic generator matrix has the form

Gsys = (IK | P) (1.23)

where IK denotes the K × K identity matrix and P is some K × (N − K) ma-
trix, also known as the parity block. Using the linear encoding rule (1.22), a
systematic codeword vsys follows as

vsys = (u0 u1. . . uK−1 vK . . . vN−1) (1.24)

whose first K code symbols coincide with the K information symbols.
Consider the set B of codewords v, such that any codeword can be obtained

from itself or from another codeword by a cyclic shift of t code symbol posi-
tions. Then the linear block code B is said to be cyclic or quasi-cyclic if t = 1
or t > 1, respectively. Among all equivalent generator matrices of a (quasi-)
cyclic block code B, there exists always a generator matrix whose rows are
cyclically shifted t columns. However, a randomly chosen block code B may
neither be cyclic nor quasi-cyclic.

Besides the generator matrix, any linear block code can be determined by
an (N − K) × N parity-check matrix H, whose rows are linearly independent
and orthogonal to those of the generator matrix G, such that

GHT = 0 (1.25)

where 0 denotes the K × (N − K) all-zero matrix. In particular, every code-
word v has to satisfy all N − K parity-checks specified by the rows of the
parity-check matrix H, that is,

vHT = 0 (1.26)

Similar to the generator matrix, the parity-check matrix is not unique, as its
rows can consist of any N − K linearly independent N-tuples which form
an (N − K)-dimensional subspace of the N-dimensional vector space FN

2 , or-
thogonal to the K-dimensional subspace formed by the rows of the generator
matrix. In case of a systematic generator matrix (1.23), a corresponding sys-
tematic parity-check matrix Hsys is given by

Hsys =
(

PT
∣∣∣ IN−K

)
(1.27)

When receiving a binary sequence, for example the received sequence r
given by (1.1) in case of a BSC, the parity-check matrix H can be used for
error detection. Since the syndrome

s = rHT = (v + e) HT = vHT︸︷︷︸
=0

+eHT = eHT (1.28)

1.3. Channel Coding 11

depends only on the binary error pattern e, at least one error occurred during
transmission if the syndrome s 6= 0. However, having a zero syndrome s = 0,
is only a necessary but not a sufficient condition for an error free transmission,
since any binary error pattern e identically to a codeword v also satisfies
eHT = 0. Hence, such a binary error pattern is said to be nondetectable. For
every (N, K) linear block code, there exist 2K − 1 nondetectable error patterns.

BASIC DISTANCE PROPERTIES OF BLOCK CODES

The Hamming weight wH of a binary vector x of length N is defined as the
number of its nonzero elements

wH(x) =
N−1

∑
i=0

wH(xi) with wH(xi) =

{
0, xi = 0
1, xi = 1

(1.29)

Closely related, the Hamming distance dH between any two binary vectors x
and y, both of length N, is defined as their number of different elements

dH(x, y) = wH(x⊕ y) =
N−1

∑
i=0

wH(xi ⊕ yi) (1.30)

The Hamming distance, one of the most important concepts in coding theory,
is a metric. Thus, for any two binary vectors x and y of same length, it satisfies

(i) dH(x, y) ≥ 0 with equality if and only if x = y (positive definiteness)

(ii) dH(x, y) = dH(y, x) (symmetry)

(iii) dH(x, y) ≤ dH(x, z) + dH(z, y) for any binary z (triangle inequality)

The error-detecting and error-correcting capabilities of an (N, K) block code
B are largely determined by its minimum distance dmin which is defined as

dmin = min
v,v′∈B,v 6=v′

{
dH(v, v′)

}
(1.31)

In case of a linear block code, the sum of any two codewords results in another
codeword and (1.31) can be simplified to

dmin = min
v∈B,v 6=0

{wH(v)} (1.32)

Such an (N, K) block code with minimum distance dmin is often referred to as
an (N, K, dmin) block code. In particular, note that the minimum distance dmin
is a code property; it is the same for all equivalent codes.

Next, let the set of all error patterns with at most t errors be denoted

Et = {e | wH(e) ≤ t} (1.33)

12 Introduction

Then, an (N, K, dmin) block code is guaranteed to detect all error patterns in Et
if and only if t < dmin or to correct all error patterns if and only if

t ≤
⌊

dmin − 1
2

⌋
(1.34)

Finally, denote by Aw the number of codewords with Hamming weight w
of an (N, K, dmin) block code B. Then the sequence

A0, A1, . . . , AN (1.35)

is called the weight spectrum of B. As the sum of two (or more) codewords
of a linear block code forms another codeword, the first spectral component
of every linear block code is A0 = 1 (since v + v = 0 ∈ B), while the next
nonzero spectral component is Admin .

Example 1.1 (Single Parity-Check Code):
A single parity-check code (SPC) of length N encodes a block of N − 1 informa-
tion symbols u by appending a single parity-check bit, such that the resulting
codeword v has an even Hamming weight. For N = 3 and K = N − 1 = 2,
the codewords of the (3, 2) SPC block code are

u v
0 0 0 0 0
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

Clearly, an SPC block code is cyclic and systematic. The corresponding
generator matrix G and parity-check matrix H for an (N, K) SPC block code
are given by (1.23) and (1.27), respectively, with

P(K×1) = (1 1 . . . 1)T (1.36)

Since the minimum distance for all SPCs is dmin = 2, any error pattern with
odd weight can be detected, but no error pattern is guaranteed to be corrected.

Example 1.2 (Repetition Code):
An (N, 1) repetition code (RC) of length N consists of the codewords v0 and v1,
obtained by repeating the information symbol u ∈ {0, 1} N times, that is,

v0 = (0 0 . . . 0) v1 = (1 1 . . . 1) (1.37)

with code rate R = 1/N. Moreover, the Hamming distance dH between v0
and v1 is identical to the minimum distance dmin, which is equal to the block
length N. Thus, all error patterns in Et with t ≤ b(N− 1)/2c can be corrected.
Although increasing N improves the error-correcting capabilities of the code,
it decreases the code rate R, which tends to zero for N → ∞.

1.3. Channel Coding 13

Example 1.3 (Hamming Code):
The parity-check matrix of a (2m − 1, 2m − 1−m), m ≥ 2, Hamming code con-
tains all nonzero m-tuples as its columns. For m = 3, we obtain the (7, 4)
Hamming block code with parity-check matrix

H =

 1 0 1 1 1 0 0
1 1 0 1 0 1 0
1 1 1 0 0 0 1

 (1.38)

while for m = 2 the corresponding (3, 1) Hamming code is equal to the (3, 1)
SPC code. Every Hamming code has minimum distance dmin = 3 and is
thereby capable of correcting all single-errors. Moreover, note that the parity-
check matrix (1.38) contains all columns of the identity matrix, and hence is
systematic.

1.3.2 CONVOLUTIONAL CODES

As an alternative to block codes, convolutional codes were introduced by Elias
[Eli55] in 1955. While block codes are based on splitting the stream of in-
formation symbols into separate blocks of length K and encoding each block
independently to a codeword v of length N, convolutional codes continuously
encode a stream of information symbols of (theoretically) infinite length.

A convolutional encoder can be represented as a linear sequential circuit, con-
sisting of only memory elements (shift registers) and modulo-2 adders. At
each time instant, a tuple of b information symbols enters the encoder, while
a tuple of c ≥ b code symbols appears at its output. Thus, the rate of a
convolutional code C is

Rc =
b
c

(1.39)

and satisfies 0 < Rc ≤ 1. As before, the rate R of the communication sys-
tem is given by R = Rc Rm (cf. Subsection 1.2.2), which for BPSK signaling
becomes R = Rc. For example, a convolutional encoder for a rate R = 1/2
convolutional code is illustrated in Figure 1.4.

u

v(0)

v(1)

Figure 1.4: An encoder for a rate R = 1/2 convolutional code C.

14 Introduction

Due to the introduced memory elements in the linear sequential circuit,
the c-tuple of code symbols vt at time instant t depends not only on the
information b-tuple ut at the same time instant, but also on (some of) the
information tuples at previous time instants, ut′ , t′ < t. To be more precise, a
convolutional encoder is a linear time invariant (LTI) system whose code c-tuple
at time instant t follows from

vt = f (ut, ut−1, . . . , ut−m) (1.40)

where the parameter m is called the memory of the encoder, the function f is
a linear function from F(m+1)b

2 to Fc
2, and the information and code sequences

are assumed to be causal, that is, zero for time instant t < 0.
Let the semi-infinite information and code sequences be denoted by u and

v, respectively, such that,

u = (u0 u1. . . ut. . .) =
(

u(0)
0 u(1)

0 . . . u(b−1)
0 u(0)

1 u(1)
1 . . . u(b−1)

1
)

(1.41)

v = (v0 v1. . . vt. . .) =
(

v(0)0 v(1)0 . . . v(c−1)
0 v(0)1 v(1)1 . . . v(c−1)

1
)

(1.42)

where u(i)
t and v(i)

t refer to the ith component of the corresponding b-tuple
ut and c-tuple vt, respectively. Grouping those sequences according to their
input and output, the ith information sequence u(i) as well as the jth code
sequences v(j) follow as

u(i) =
(

u(i)
0 u(i)

1 u(i)
2

)
i = 0, 1, . . . , b− 1 (1.43)

v(j) =
(

v(j)
0 v(j)

1 v(j)
2

)
j = 0, 1, . . . , c− 1 (1.44)

Assuming that the memory elements are zero at time instant t = 0, the
jth code sequence v(j) can be written as the convolution of the information
sequences u(i), i = 0, 1, . . . , b− 1, with the corresponding impulse responses
g (j)

i between input i and output j, that is,

v(j)
t =

b

∑
i=0

m

∑
k=0

u(i)
t−kg(j)

i,k (1.45)

where g (j)
i,k denotes the kth value of the impulse response g (j)

i , also known as
the generator sequence g (j)

i . For any finite impulse response (FIR) LTI system, that
is, for convolutional encoders without feedback, every generator sequence can
be written as

g(j)
i =

(
g(j)

i,0 g(j)
i,1 . . . g(j)

i,m

)
(1.46)

where the memory m denotes the maximum number of memory elements
among all inputs of the corresponding linear sequential circuit.

1.3. Channel Coding 15

Instead of calculating all c code symbols at time instant t separately accord-
ing to (1.45), it is often more convenient to determine the corresponding code
c-tuple vt directly as

vt =
m

∑
k=0

ut−kGk = utG0 + ut−1G1 + · · · ut−mGm (1.47)

where Gk, 0 ≤ k ≤ m, are binary b× c matrices with g (j)
i,k at row i and column j.

Using (1.41) and (1.42), the convolution (1.47) can be written more com-
pactly as the matrix multiplication

v = uG (1.48)

where the semi-infinite generator matrix G is given by

G =


G0 G1 . . . Gm

G0 G1 . . . Gm

G0 G1 . . . Gm
. · · · . . .

 (1.49)

Example 1.4:
Consider the convolutional encoder given in Figure 1.4. Its generator se-
quences (impulse responses) are

g(0)0 =
(

1 1 1
)

g(1)0 =
(

1 0 1
)

(1.50)

with memory m = 2. Thus, its m + 1 binary 1× 2 matrices G0, G1 and G2 are

G0 =
(

1 1
)

G1 =
(

1 0
)

G2 =
(

1 1
)

(1.51)

while its semi-infinite generator matrix G follows as

G =


11 10 11

11 10 11
11 10 11

.

 (1.52)

Using (1.48), the code sequence v corresponding to the information sequence
u = (1 0 1) is given by

v = uG = (11 10 00 10 11) (1.53)

16 Introduction

While the previously introduced notations are suitable for FIR LTI systems,
they have to be chosen more subtle when dealing with infinite impulse response
(IIR) LTI systems, due to their generator sequences of infinite support. To
accurately describe such an IIR LTI system, that is, a convolutional encoder
with feedback, the information sequence u and code sequence v have to be rep-
resented using the D-transform in terms of the delay operator D (D-domain):

u(D) =
∞

∑
t=0

utDt = u0 + u1D + u2D2 + · · · (1.54)

v(D) =
∞

∑
t=0

vtDt = v0 + v1D + v2D2 + · · · (1.55)

Similarly, every generator sequence g (j)
i can be expressed as

gij(D) =
m

∑
t=0

g(j)
i,t Dt = g(j)

i,0 + g(j)
i,1 D + g(j)

i,2 D2 + · · · (1.56)

Note that the indices of the time domain representation g (j)
i and the D-domain

representation gij(D) differ. Using the latter representation, the linear encod-
ing rules (1.45) and (1.48) can be rewritten as

v(D) = u(D)G(D) (1.57)

where the b× c generator matrix G(D) is given by

G(D) =


g00(D) g01(D) . . . g0(c−1)(D)

g10(D) g11(D) . . . g1(c−1)(D)
...

...
. . . · · ·

g(b−1)0(D) g(b−1)1(D) . . . g(b−1)(c−1)(D)

 (1.58)

To guarantee a one-to-one mapping between the information sequence u and
the code sequence v, the generator matrix G(D) has to have full rank. In case
of an IIR LTI system, the generator sequences gij(D) are in general rational
functions of the form f (D)/q(D), where f (D) and q(D) are polynomials in
D describing the feedforward and feedback part, respectively. Moreover, q(D)
is delayfree, that is, its first coefficient is nonzero. Finally, a generator matrix
G(D) is called rational if at least one of its generator sequences is rational,
which holds for IIR LTI systems.

1.3. Channel Coding 17

u

v(1)

v(0)

Figure 1.5: A rate R = 1/2 systematic encoder with feedback for a
convolutional code C.

Example 1.4 (Cont’d):
Applying the D-transform to the generator sequences in (1.50), we obtain

g00(D) = 1 + D + D2 g01(D) = 1 + D2 (1.59)

and hence
G(D) =

(
1 + D + D2 1 + D2) (1.60)

Example 1.5:
The rate R = 1/2 convolutional systematic encoder with feedback, illustrated
in Figure 1.5, represents an IIR LTI system and is determined by the rational
generator matrix

G′(D) =

(
1

1 + D2

1 + D + D2

)
(1.61)

If all generator sequences gij(D) are polynomials, the generator matrix
G(D) is said to be polynomial and its elements are referred to as generator
polynomials. In particular, such a generator matrix can be written as

G(D) = G0 + G1D + · · ·+ GmDm (1.62)

where Gt, t = 0, 1, . . . , m, are the binary b× c matrices used in (1.47). If G0 has
full rank, then G(D) is called an encoding matrix. Moreover, if a polynomial
encoding matrix G(D) has a polynomial right inverse G−1(D), such that

G(D)G−1(D) = I (1.63)

where I is the b× b identity matrix, then G(D) is said to be basic. In partic-
ular, every basic encoding matrix is noncatastrophic, that is, every information
sequence of infinite weight is mapped to a code sequence of infinite weight.
On the other hand, if there exists an information sequence of infinite weight,

18 Introduction

which is mapped to a code sequence of finite weight, the corresponding gen-
erator matrix is said to be catastrophic. In such cases, a finite number of trans-
mission or decoding errors can yield infinitely many bit errors, and hence
such catastrophic matrices should be avoided.

Let the ith constraint length νi of the generator matrix G(D) be given by

νi = max
j=0, 1,..., c−1

{
deg gij(D)

}
= max

{
max

j=0, 1,..., c−1

{
deg f ij(D)

}
, qi(D)

}
(1.64)

where the latter equality holds only for rational encoder matrices with gij(D)=
f ij(D)/qi(D), assuming a common feedback polynomial qi(D) within each
row. Then the overall constraint length ν as well as the memory m of a convolu-
tional encoder can be formally defined as

ν =
b−1

∑
i=0

νi and m = max
i=0, 1,..., b−1

{νi} (1.65)

Apart from the generator matrix, any rate R = b/c convolutional code C
can be fully determined by a (c − b) × c parity-check matrix H(D), whose
rows specify independent parity-checks and are orthogonal to the generator
matrix G(D), such that

G(D)H(D)T = 0 (1.66)

where 0 is the b× (c− b) all-zero matrix. Analogous to (1.26) for block codes,
it follows from (1.57), that every convolutional code sequence v(D) has to
satisfy all c− b parity-checks, and hence

v(D)H(D)T = 0 (1.67)

Similar to (1.62), a parity-check matrix H(D) with syndrome memory ms can
be expressed via its ms + 1 binary submatrices Hi of size (c− b)× c, that is,

H(D) = H0 + H1D + · · ·+ Hms Dms (1.68)

Moreover, the corresponding semi-infinite parity-check matrix H in the time-
domain follows analogously to (1.49) as

H =



H0
H1 H0... H1 H0

Hms

... H1
. . .

Hms

...
. . .

Hms

. . .

. . .


(1.69)

and similar to (1.66)
GHT = 0 (1.70)

1.3. Channel Coding 19

As before, the syndrome of a convolutional code follows as the product of the
received sequence r and the transpose of its semi-infinite parity-check matrix
HT; commonly referred to as the syndrome former.

A convolutional code can be encoded by different generator matrices, which
specify different mappings between the information sequences u and the code
sequences v. If two generator matrices G(D) and G′(D) generate the same
convolutional code C, that is, the same set of code sequences, they are called
equivalent. In other words, two equivalent generator matrices G(D) and G′(D)
satisfy

G(D) = T(D)G′(D) (1.71)

where T(D) is a b× b nonsingular matrix. In particular, every convolutional
code can be described by an equivalent (rational) systematic generator ma-
trix Gsys(D), such that, the information b-tuple at time instant t appears un-
changed among the code c-tuple at the same time instant.

Finally note that every generator matrix can be realized by several differ-
ent sequential circuits. Among those, two realizations are commonly used;
namely, the controller canonical form (CCF) and the observer canonical form (OCF).

• A CCF encoder of a rate R = b/c convolutional code consists of b shift-
registers, one for each input. The length of the ith shift-register is equal
to the ith constraint length νi, and hence a CCF encoder consists of
in total ν memory elements. For example, the two CCF encoders for
the generator matrices (1.60) and (1.61) are shown in Figure 1.4 and
Figure 1.5, respectively.

• An OCF encoder of a rate R = b/c convolutional code consists of c
memory chains, one for each output. Figure 1.6 illustrates for example
the OCF encoder for the systematic generator matrix (1.61).

For any encoder realization, we refer to the contents of its memory ele-
ments as its encoder state. The set of all possible states forms the state space
of the encoder. Since the number of possible states is finite, an encoder for a
convolutional code is an instance of a finite-state machine.

Example 1.6:
The encoder matrices G(D) and G′(D) used in Example 1.4 and 1.5 are equiv-
alent since they satisfy (1.71)(

1 + D + D2 1 + D2)︸ ︷︷ ︸
G(D)

=
(

1 + D + D2)︸ ︷︷ ︸
T(D)

(
1

1 + D2

1 + D + D2

)
︸ ︷︷ ︸

G′(D)

where G′(D) is a systematic encoding matrix. In Figures 1.4 and 1.5 the CCF
encoders for G(D) and G′(D) are illustrated, respectively, while the corre-
sponding OCF encoder for G′(D) is shown in Figure 1.6.

20 Introduction

v(1)

v(0)u

Figure 1.6: A systematic encoder for a rate R = 1/2 convolutional
code C, realized in OCF.

Finding an encoder realization for a given convolutional code with a mini-
mal number of memory elements among all equivalent generator matrices
is of particular interest. Such a generator matrix is referred to as a minimal
generator matrix, while its corresponding realization is said to be a minimal
realization. However, such a minimal realization might be neither in CCF nor
in OCF.

Recall the definition of the generator matrix G(D) in terms of its m + 1
binary submatrices Gi, i = 0, 1, . . . , m in (1.62). It can be shown that for every
minimal generator matrix G(D), the binary submatrix G0 has full rank, and
hence G(D) is a minimal encoding matrix.

Moreover, limiting ourselves to minimal encoding matrices whose minimal
realizations are given in CCF, we obtain the set of, in general, rational canoni-
cal encoding matrices. Imposing the additional restriction to only polynomial
generator sequences yields the subset of so-called minimal-basic encoding ma-
trices, that are polynomial encoding matrices whose CCF realizations have the
smallest number of memory elements ν among all equivalent, maybe rational,
generator matrices.

In particular, it can be shown that for any rational generator matrix, there
exists always an equivalent minimal-basic encoding matrix. Hence, when
referring to the overall constraint length ν or the memory m of a convolutional
code C, those parameters correspond to a minimal realization in CCF of an
equivalent minimal-basic polynomial encoding matrix for the convolutional
code C.

Consider the polynomial generator matrix of a convolutional code with
memory m where each generator polynomial is represented as a binary gen-
erator sequence of length m + 1, grouped into blocks of 3 bits. Converting
each sequence of 3-bit blocks into octal digits, where zeros are being padded
from the right if needed, the commonly used octal notation for a polynomial
generator matrix is obtained. For example, the encoding matrix G(D) in Ex-
ample 1.6 is given by (111 101)2 or (7, 5)8 while the generator polynomial
1 + D2 + D3 + D4 would be represented as (101 110)2 = (56)8.

1.3. Channel Coding 21

BASIC DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

The Hamming weight wH as well as the Hamming distance dH, previously de-
fined for block codes in (1.30) and (1.29), can be similarly defined for convo-
lutional codes, taking into account the binary sequences x and y of (theoreti-
cally) infinite length but finite support:

dH(x, y) = wH(x⊕ y) =
∞

∑
i=0

wH(xi ⊕ yi) (1.72)

with

wH(xi) =

{
0, xi = 0
1, xi = 1

As a counterpart to the minimum distance for a block code, the free distance
dfree determines the error-detecting and error-correcting capabilities for a con-
volutional code C and is defined as the minimum Hamming distance between
any two code sequences v, v′ ∈ C. Due to the linearity of convolutional codes,
this definition is equivalent to the minimum Hamming weight of any nonzero
code sequence, that is,

dfree = min
v∈C,v 6=0

{wH(v)} (1.73)

Given the set of error patterns Et according to (1.33), a convolutional code
with free distance dfree is guaranteed to detect all error patterns in Et as long
as t < dfree or to correct all error patterns if and only if t satisfies (1.34), where
the minimum distance dmin is replaced by the free distance dfree.

RELATIONS BETWEEN CONVOLUTIONAL AND LINEAR BLOCK CODES

Restricting the (theoretically) infinite length of a convolutional code C of mem-
ory m with minimal-basic encoding matrix G(D) to a finite length, a corre-
sponding block code B with similar properties is obtained. Such a block code
B is said to originate from its parent convolutional code C. Commonly used
termination techniques are truncation (TR), zero-tail (ZT) termination, and tail-
biting (TB), which shall be discussed in the following.

Truncation to length M starts the encoding process at the all-zero encoding
state at time instant t = 0. After processing M information b-tuples, that is,
at time instant t = M, the encoding process is terminated regardless of the
current encoder state. This yields a codeword consisting of M c-tuples of an
(Mc, Mb) linear block code. The generator matrix of the corresponding block

22 Introduction

code is given by terminating the semi-infinite generator matrix (1.49) after M
columns

G(tr) =



G0 G1 G2 . . . Gm
G0 G1 G2 . . . Gm.

G0 G1 G2 . . . Gm
G0 G1 . . . Gm−1.

...
G0


(1.74)

As the encoding process is ended after processing M information b-tuples,
the last m information b-tuples are not completely encoded, and hence less
protected against channel distortion. Using zero-tail termination to length M,
m additional »dummy« b-tuples are added to the encoding process, enforcing
the all-zero ending state1. Hence, after having encoded M information b-
tuples at time instant t = M, m additional »dummy« b-tuples are encoded
which guarantee that at time instant t = M + m the all-zero encoding state
is reached. This yields an

(
(M + m)c, Mb

)
linear binary block code with a

slightly decreased code rate

R(zt) =
Mb

(M + m)c
<

b
c
= R (1.75)

The generator matrix of the corresponding block code follows by terminating
the semi-infinite generator matrix (1.49) after M rows, that is, after M + m
columns,

G(zt) =


G0 G1 G2 . . . Gm

G0 G1 G2 . . . Gm.
G0 G1 G2 . . . Gm

 (1.76)

However, the rate loss introduced by zero-tail termination might not be
acceptable in case of a small termination length M. Hence, a third alternative
is tailbiting to length M, which fully encodes the last m information b-tuples
without decreasing the code rate.

Consider the b-shift registers of a convolutional encoder with memory m
and overall constraint length ν, realized in CCF. At time instant t = M, the
contents of the ith shift register is equal to the previous νi information sym-
bols, where νi denotes the ith constraint length, that is,(

u(i)
M−1 u(i)

M−2 . . . u(i)
M−νi

)
(1.77)

1For encoders without feedback this is accomplished by m zero b-tuples, while for
encoders with feedback these b-tuples have to be chosen more carefully and are in
general nonzero.

1.3. Channel Coding 23

Clearly, those information symbols have not yet passed the encoder, that is,
are not yet fully encoded. However, suppose that we initialize the contents of
the memory elements at time instant t = 0 with exactly those last information
symbols given in (1.77). Then, those symbols are already partially encoded
at time instants t = 0, 1, . . . , m− 1 and terminating the encoding process at
time instant t = M does not yield less protected information symbols. Such
an (Mc, Mb) block code is determined by the generator matrix

G(tb) =



G0 G1 G2 . . . Gm
G0 G1 G2 . . . Gm.

G0 G1 G2 . . . Gm
Gm G0 G1 . . . Gm−1...

.
...

G1 . . . Gm G0


(1.78)

Applying the same restriction to the semi-infinite parity-check matrix H
specified in (1.69) with syndrome memory ms yields the corresponding tail-
biting parity-check matrix

H(tb) =



H0 Hms Hms−1 . . . H1
H1 H0 Hms . . . H2
H2 H1

.
...... H2

. . . H0 Hms

Hms

...
. . . H1 H0

Hms

. . . H2 H1
.

Hms Hms−1 . . . H1 H0


(1.79)

where in general m 6= ms. However, the pair G(tb) and H(tb) satisfies

G(tb)
(

H(tb)
)T

= 0 (1.80)

given that (1.70) is fulfilled.

1.3.3 OPTIMAL DECODING PRINCIPLES

When discussing an optimal decoder, it is necessary to distinguish between an
optimal sequence (block) decoder and an optimal symbol decoder. An optimal se-
quence decoder minimizes the block error probability PB, that is, the probability
that the decided information sequence û differs from the actual information
sequence u, that is,

PB = P (u 6= û) = P (v 6= v̂) (1.81)

24 Introduction

For a information sequence u of length K with equiprobable information sym-
bols, an optimal symbol decoder minimizes the (average) bit error probability
Pb given by

Pb =
1
K

K−1

∑
i=0

P (ui 6= ûi) (1.82)

Since a block error occurs if there exists at least one and at most K bit errors,
the block error probability PB can be lower- and upper-bounded by the bit
error probability Pb as

Pb ≤ PB ≤ KPb (1.83)

SEQUENCE DECODING

When communicating over a DMC like the BSC or the binary input, quantized
AWGN channel, the block error probability PB (1.81) can be expressed as

PB = P (u 6= û) = P (v 6= v̂)

= 1− P (v = v̂)

= 1−∑
r

P (v = v̂ | r) P (r)

def
= 1−∑

r
P (v̂ | r) P (r)

= 1−∑
r

P (r | v̂) P (v̂) (1.84)

where the last identity follows from Bayes’ rule. The conditional probability
P (r | v) describes the probability for observing the sequence r given that the
code sequence v has been transmitted. This probability is also known as the
likelihood of the code sequence v and is solely determined by the properties
of the underlying channel. The probability P (v | r) is denoted the a posteriori
probability (APP) of the code sequence v and describes the probability for
the transmission of the code sequence v, given that the received sequence r is
observed.

To minimize the block error probability PB in (1.84) it is sufficient to maxi-
mize the APP P (v | r) for every received sequence r. Such a decoder is called
a maximum a posteriori (MAP) sequence decoder and decides in favor of the
code sequence v̂ with the largest probability, given the received sequence r.
Thus, the MAP decoding rule is

v̂MAP = arg max
v

{
P (v | r)

}
= arg max

v

{
P (r | v) P (v)

}
(1.85)

Such a MAP decoder requires the knowledge of the a priori probabilities
P(v) = P(u) determined by the source, and hence has to be optimized in-
dividually for every communication system.

1.3. Channel Coding 25

On the other hand, a BSS yields equal a priori probabilities for both the
information and the code sequences. Hence, maximizing the APP is equiva-
lent to maximizing the likelihoods P (r | v) and the maximum-likelihood (ML)
decoding rule follows as

v̂ML = arg max
v

{
P (r | v)

}
(1.86)

Such an ML decoder can be applied to any communication system without
demanding knowledge of the a priori probabilities of the underlying source.
However, only in case of equal a priori probabilities, its decision is optimal.

Next, consider a BSC with crossover probability p, and let the likelihood of
a codeword v be given by

P (r | v) = pdH(v,r) (1− p)N−dH(v,r) = (1− p)N
(

p
1− p

)dH(v,r)
(1.87)

where N is the codeword length and dH(v, r) denotes the Hamming distance
between the received sequence r and the codeword v. Since the crossover
probability p ≤ 0.5, we have

0 <
p

1− p
< 1 (1.88)

and hence the likelihood of the codeword v in (1.87) is maximized by mini-
mizing the Hamming distance dH(v, r). In other words, an ML decoder for
a BSC is equivalent to a minimum (Hamming) distance (MD) decoder. Such a
decoder decides in favor of the information sequence û, whose codeword v̂ is
closest to the received sequence r in terms of the Hamming distance

v̂ML = v̂MD = arg max
v

{(
p

1− p

)dH(v,r)
}

= arg min
v

{
dH(v, r)

}
(1.89)

Considering a unquantized AWGN channel with a continuous output al-
phabet, the sum over the conditional probabilities P (r | v) in (1.84) has to
be replaced by the integral over the corresponding conditional PDFs p (r | v).
From (1.8) it follows that

p (r | v) = p (r | x) =
(

1√
πN0

)N
e−‖r−x‖2/N0 (1.90)

where ‖r− x‖2 denotes the squared Euclidean distance between the received
sequence r and the modulated and transmitted sequence x. In particular note
that there exists a unique mapping between the code sequences v and modu-
lated sequences x, and hence their PDFs coincide.

26 Introduction

Moreover, since the exponential function is monotonically increasing, the
ML decoding rule (1.86) can be alternatively expressed as

x̂ML = arg max
x

{
p (r | x)

}
= arg max

x

{
log p (r | x)

}
= arg min

x

{
‖r− x‖2

}
= arg min

x

{
‖r− x‖

}
(1.91)

that is, the corresponding ML decoder is equivalent to a minimum (squared)
Euclidean distance decoder, which decides in favor of the information sequence
û, whose code sequence v̂, and hence modulated sequence x̂, is closest to the
received sequence r in terms of the (squared) Euclidean distance.

Note that the squared Euclidean distance ‖r− x‖2 can be expressed as

‖r− x‖2 = ‖r‖2 + ‖x‖2 − 2 Re
(
〈r, x〉

)
(1.92)

where
〈r, x〉 = rxH = ∑

i
ri x∗i (1.93)

denotes the correlation between two vectors and x∗i is the complex conjugate
of xi. Under the assumption of equi-energy signaling, ‖x‖2 is constant for
all received sequences r, and thus minimizing the squared Euclidean distance
in (1.91) is equivalent to maximizing 〈r, x〉, yielding a maximum correlation
decoder. Moreover, for a real-valued modulation alphabet like BPSK, the cor-
responding decoding rule can be further simplified to

x̂ML = arg max
x

{
〈r, x〉

}
= arg max

x

{
∑

i
rixi

}
(1.94)

Next, we consider the weighted Hamming distance between the received se-
quence r and the code sequence v, defined as

dwH (r, v) = ∑
i∈E(r,x)

|ri| (1.95)

where E(r, x) denotes the set of all error positions

E(r, x) = {i | sign(ri) 6= sign(xi)} (1.96)

For BPSK modulation, the sum in (1.94) can be expressed as

∑
i

rixi = ∑
i
|ri| − 2 ∑

i∈E(r,x)
|ri| = ∑

i
|ri| − 2dwH (r, x) (1.97)

1.4. Dissertation Outline 27

and hence minimizing the (squared) Euclidean distance in (1.91) is equivalent
to minimizing the weighted Hamming distance. That is, the ML decoding
rule for a weighted Hamming distance decoder is given by

x̂ML = arg min
x
{dwH (r, x)} (1.98)

Note that the ML decoding decision is not necessarily uniquely determined,
as several code sequences might have the same probability. Commonly, such
cases are resolved by coin-flipping, that is, by randomly choosing one of the
code sequences with largest likelihood. While such events can occur when
communicating over a BSC or a quantized AWGN channel, their probabili-
ties are zero when communicating over an unquantized AWGN channel, and
hence its ML decision is commonly assumed to be unique.

SYMBOL DECODING

Let {v}ui=u be the set of all code sequences v whose corresponding ith infor-
mation symbol is equal to u ∈ {0, 1}. For a given received sequence r, denote
by

P
(
{x}ui=u

∣∣∣ r
)
= P (ui = u | r) = ∑

u:ui=u
P (u | r) (1.99)

the probability of the set of transmitted sequences x whose ith information
symbol is equal to u ∈ {0, 1}, given the received sequence r.

An optimal symbol decoder decides individually for each information sym-
bol ui, i = 0, 1, . . . , K − 1 in favor of the value u ∈ {0, 1}, which maximizes
(1.99). That is, the MAP symbol decoding rule is given by

ûi MAP = arg max
u∈{0,1}

{
P (ui = u | r)

}
i = 0, 1, . . . , K− 1 (1.100)

where the ith information symbol APP for a DMC is given by

P (ui = u | r) =
1

P(r) ∑
u:ui=u

P (r | u) P (u) (1.101)

While the performance of MAP/ML sequence decoding is equal among
equivalent codes, MAP symbol decoding depends on the mapping between
the information sequence u and the code sequence v. In other words, the
bit error probability Pb is an encoder property and depends on the encoder
realization, while the corresponding block error probability PB is invariant
among equivalent encoders.

28 Introduction

1.4 DISSERTATION OUTLINE

The material in this dissertation is organized as follows: In Chapter 2, pre-
requisites for the remaining chapters are reviewed. In particular, tree- and
trellis-based representations for block and convolutional codes are discussed,
as well as the graphical representation of low-density parity-check (LDPC)
block codes in the form of Tanner graphs. Based on these representations
different (suboptimal) decoding strategies are highlighted. The remaining
material can be divided into two parts:

The first part (Chapter 3 and Chapter 4) is devoted to (generalized) LDPC
block codes. In Chapter 3, algorithms for constructing quasi-cyclic LDPC
block codes with large girth and for determining their minimum distance are
presented. This chapter is largely based on [BHJ+10], [BHJ+11], [BHJK11c]
and [BHJ+12]. Woven graph codes are introduced in Chapter 4 as a gener-
alization of graph-based codes and the existence of such codes satisfying the
Costello lower bound is proven. In particular, a rate R = 5/20 woven graph
convolutional code with free distance as large as 120 is presented. These re-
sults appear in [HBJK10] and [BHJK11a].

The second part of this dissertation (Chapter 5 to Chapter 7) focuses on
properties of convolutional codes. A recurrent equation to determine a closed
form expression of the exact decoding bit error probability for convolutional
codes is presented in Chapter 5. It is largely based on [BHJK11b], [BHJK11d],
and [BHJK12b]. MacWilliams-type identities are revisited in Chapter 6 and
a recursion for sequences of spectra of truncated as well as tailbitten con-
volutional codes and their duals is derived. Most of these results appear
in [BHJK10] and [BHJK12a]. In Chapter 7, exhaustive searches are carried out
for convolutional codes of various rates with either optimum free distance or
optimum distance profile, extending previously published code tables. This
chapter includes partly results from [JBHH11].

2
Graphs, Codes, and

Codes on Graphs

O ften it is useful for analyzing and understanding code properties and
decoding methods to represent a code by its corresponding graph.
Such a graph G = {V , E} is in general determined by a set of ver-

tices or nodes V = {ζi} and a set of edges or branches E = {ei}, where each
edge connects exactly two vertices.

Forney [For67] introduced the trellis for convolutional codes to graphically
describe a finite-state machine, which he used to prove the optimality of the
Viterbi algorithm [Vit67] for ML sequence decoding of (terminated) convolu-
tional codes. A similar trellis representation for linear block codes was later
introduced by [BCJR74] and [Wol78].

The complexity of an exhaustive search for the ML code sequence is in
general exponential in K, the length of its information sequence. On the other
hand, using more advanced algorithms like the Viterbi algorithm, it is possible
to find the same ML code sequence with a complexity which is only linear in K,
but exponential in ν, the overall constraint length of the encoder, where ν �
K. Moreover, by studying graphical representations, the influence of various
code properties can be analyzed more detailed, leading to improved decoding
algorithms. An example of such an improved algorithm is the Bidirectional
Efficient Algorithm for Searching code Trees (BEAST) [BHJK01] [BHJK04].

The concept of bipartite graphs was introduced by Tanner [Tan81] to de-
scribe the structure of linear block codes. Such graphs, also known as Tan-
ner graphs, led to a new interpretation of LDPC codes, invented by Gallager
[Gal62] [Gal63], from a graph theoretical point of view. Decoded iteratively,
for example with the belief propagation (BP) decoding algorithm [Gal63] [Pea88],
LDPC codes provide a better bit error rate (BER) performance than other
block codes, given the same decoding complexity [RU08]. In particular, it

29

30 Graphs, Codes, and Codes on Graphs

was shown that the BER of LDPC block codes with long block lengths N and
being decoded with the BP algorithm can approach the theoretical Shannon
limit closely [SFRU01].

In Section 2.1 and Section 2.2 we discuss the concepts of trees and trel-
lises for convolutional codes and linear block codes. The Viterbi algorithm as
an example of a trellis-based decoding algorithm is described in Section 2.3,
while a more efficient tree-based decoding algorithm, the BEAST, is presented
in Section 2.4. Section 2.5 focuses on LDPC block codes and their graphical
representation as Tanner graphs. This chapter is concluded with Section 2.6,
devoted to the BP algorithm, one of the most commonly used iterative decod-
ing algorithms for LDPC block codes.

2.1 TREES AND TRELLISES FOR CONVOLUTIONAL CODES

The state of a system is defined as a description of its history, which, together
with the present and future inputs, is sufficient to completely determine the
present and future outputs of the system.

Consider a rate R = b/c convolutional encoder realized in CCF with con-
straint lengths νi, i = 0, 1, . . . , b − 1, and overall constraint length ν. Such
an encoder consists of ν memory elements, and hence its state space has size
2ν. For example, its state at time instant t is represented by the ν-tuple σt of
previous information symbols

σt =
(

u(0)
t−1 u(0)

t−2. . . u(0)
t−ν0

u(1)
t−1 u(1)

t−2. . . u(1)
t−ν1

. . . u(b−1)
t−1 u(b−1)

t−2 . . . u(b−1)
t−ν(b−1)

)
(2.1)

For a rate R = 1/c convolutional encoder with memory m and realized in
CCF, the state representation can be simplified to

σt = (ut−1 ut−2. . . ut−m) (2.2)

u

v(0)

v(1)

1/01 0/01

0/111/11

0/10

1/00

1/10

0/00

10 01

00

11

Figure 2.1: A convolutional encoder and its state transition diagram.

2.1. Trees and Trellises for Convolutional Codes 31

1

0

00

11

00

11

10

01

00

11

10

01

11

00

01

10

00

11

10

01

11

00

01

10

00

11

10

01

11

00

01

10

Transmitted
sequence

B

A

Figure 2.2: A rate R = 1/2 code tree.

The corresponding state transition diagram is a graphical representation of
all possible encoder states σ together with their possible transitions from one
state to another.

In general, the state transition diagram of a rate R = b/c convolutional en-
coder with overall constraint length ν consists of 2ν states, with 2b branches
leaving from and arriving at each node. A branch from state σ to state σ′ is
labeled by the information b-tuple u and code c-tuple v corresponding to the
transition σ → σ′; that is, each branch represents one of 2b possible informa-
tion b-tuples at every time instant.

Example 2.1:
Consider the rate R = 1/2 convolutional encoder determined by the encod-
ing matrix G(D) = (1 + D + D2 1 + D2). Its state transition diagram is
illustrated together with its convolutional encoder in Figure 2.1.

An alternative representation is given by the code tree, which represents
the set of code sequences by paths through the tree. The leftmost node of
every such code tree is called the root and, starting from the root, there are
2b branches stemming from each node. The branches leaving a node at depth
(time instant) t are labeled with the code c-tuple vt.

32 Graphs, Codes, and Codes on Graphs

Example 2.1 (Cont’d):
The corresponding code tree for the previously used convolutional encoder
from Figure 2.1 is illustrated in Figure 2.2.

Since this encoder has only one binary input u, there are two branches
leaving each state, where the upper and lower branch correspond to the in-
formation symbols 0 and 1, respectively. Following, for example, the path
for the information sequence 1011 . . . yields the corresponding code sequence
11 10 00 01

Next, consider the two information sequences 010 and 110 which lead to the
nodes A and B in Figure 2.2. While those sequences are different, both drive
the encoder to the same encoder state σ = 01. Thus, the subtrees stemming
from both nodes are identical and could, in principle, be merged together.

Replacing all equivalent nodes by a single node at each depth (time instant)
of the code tree, we obtain a trellis-like structure. As before, the branches for
the transitions σt → σt+1 are labeled with the corresponding code c-tuples vt.
For a rate R = b/c convolutional code with memory m and overall constraint
length ν, there are 2b branches leaving each node. Starting with the all-zero
state at depth zero, the root of the trellis, it takes m time instants, the so-called
start-up phase, until the trellis is fully developed and all 2ν states have been
reached. During the following steady-state phase, the trellis of a convolutional
code has a regular structure with in total 2ν states and 2b branches leaving
from and arriving at each state. As in the code tree, every path in the trellis
corresponds to a possible code sequence.

00

11

00

11

10

01

00

11

11

00

10

01

01

10

00

11

11

00

10

01

01

10

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

. . .

. . .

. . .

. . .

Figure 2.3: A binary trellis for a rate R = 1/2 convolutional code.

Example 2.1 (Cont’d):
Merging all equivalent nodes in the code tree in Figure 2.2 yields the corre-
sponding trellis as illustrated in Figure 2.3, where in our case the upper and
lower branches correspond to the information symbols 0 and 1, respectively.
As before, following the path for the information sequence 1011 . . . in the
trellis, yields the corresponding code sequence 11 10 00 01

2.1. Trees and Trellises for Convolutional Codes 33

Note that in case of a convolutional code with rate R = b/c and b > 1, an
information b-tuple enters the encoder at every time instant, which makes it
necessary to further distinguish different branches. In such cases, the corre-
sponding branches are additionally labeled with their information b-tuple ut.

Besides creating the previously described trellis for a convolutional code
C based on its generator matrix G(D) (cf. Figure 2.3), an equivalent trellis,
the so-called syndrome trellis [SZ94], can be obtained from its corresponding
polynomial parity-check matrix H(D).

Consider a rate R = b/c convolutional code C with overall constraint length
ν and parity-check matrix H(D) with syndrome memory ms. Its semi-infinite
parity-check matrix H in the time domain is given by (1.69) as

H =



H0
H1 H0... H1 H0

Hms

... H1
. . .

Hms

...
. . .

Hms

. . .

. . .


(2.3)

where the ms + 1 binary submatrices Hi, i = 0, 1, . . . , ms, are determined by
(1.68), and H0 is nonsingular with full rank c− b. Such a semi-infinite parity-
check matrix is completely described by its parity-check matrix module H̃ of size
(ms + 1)(c− b)× c given by

H̃ =


H0
H1...

Hms

 (2.4)

whose binary columns are denoted by h̃i, i = 0, 1, . . . , c− 1.
For a rate R = (c− 1)/c convolutional code, the parity-check module is of

size (ms + 1)× c and each of its c columns h̃i, i = 0, 1, . . . , c− 1, is a binary
vector of length ms + 1, corresponding to the parity-check polynomial hi(D),
written in binary notation starting from the top, that is,

h̃i = (hi,0 hi,1. . . hi,ms)
T (2.5)

whose elements are determined by

hi(D) =
ms

∑
j=0

hi,jDj (2.6)

Following [Var98], the syndrome trellis for a rate R = b/c convolutional
code C can be constructed by connecting the identically syndrome subtrel-
lises of the parity-check matrix module H̃ and removing all paths that neither

34 Graphs, Codes, and Codes on Graphs

start nor end in the all-zero encoder state. Such a syndrome subtrellis can be
either conventional or binary (c-sectionalized), which shall both be described for
rate R = (c− 1)/c convolutional codes in the following. Their generalization
to rate R = b/c convolutional codes is straightforward.

The conventional syndrome subtrellis for a rate R = (c− 1)/c convolutional
code C with syndrome memory ms consists of two trellis levels. Each trellis
level contains 2ms different states σ with 2c−1 trellis branches leaving from and
arriving at each state. Moreover, let a state σ be given as the binary ms-tuple

σ = (σ0 σ1. . . σms−1) (2.7)

and let every branch be labeled by the binary c-tuple

vt =
(

v(0)t v(1)t . . . v(c−1)
t

)
(2.8)

Then the state σ at the first trellis level is connected by a branch to the state
σ′ at the second trellis level and labeled by the c-tuple vt, such that

σ0 +
c−1

∑
i=0

v(i)t hi,0 = 0

σj +
c−1

∑
i=0

v(i)t hi,j = σ′j−1 j = 1, 2, . . . , ms − 1

c−1

∑
i=0

v(i)t hi,ms = σ′ms−1

(2.9)

The corresponding binary syndrome subtrellis for a rate R = (c− 1)/c convo-
lutional code is specified by using only two branches arriving at and leaving
from each state. This simplification, however, comes at the cost of c− 1 ad-
ditional intermediate layers in each subtrellis, where each intermediate layer
may consists of as many as 2ms+1 different states.

Example 2.2:
Consider the rate R = 2/3 convolutional code with the polynomial parity-
check matrix

H(D) =
(

1 + D2 1 + D 1 + D + D2) (2.10)

and syndrome memory ms = 2. Its ms + 1 = 3 binary submatrices are

H0 =
(

1 1 1
)

H1 =
(

0 1 1
)

H2 =
(

1 0 1
)

and hence its parity-check matrix module follows as

H̃ =

 H0
H1
H2

 =

 1 1 1
0 1 1
1 0 1

 =
(

h̃0 h̃1 h̃2

)
(2.11)

2.1. Trees and Trellises for Convolutional Codes 35

000
011

101110
101

110
000

011
111

100
010

001
010 001

111
100

00

01

10

11

00

01

10

11

0

1

0

1

0

1

0

1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0

1

1

0

0

1

1

0

00

01

10

11

00

01

10

11

Figure 2.4: Conventional (left) and binary (right) syndrome trellis
module for the rate R = 2/3 convolutional syndrome for-
mer used in Example 2.2.

Its conventional syndrome subtrellis is illustrated on the left side in Figure 2.4,
where the state σ = 00 at the first trellis level is connected by a branch with
labeling vt = 101 to the state σ′ = 10 at the second trellis level, since it satisfies

σ0 + v(0)t h0,0 + v(1)t h0,1 ++v(2)t h0,2 = 0 + 1 · 1 + 0 · 1 + 1 · 1 = 0

σ1 + v(0)t h1,0 + v(1)t h1,1 ++v(2)t h1,2 = 0 + 1 · 0 + 0 · 1 + 1 · 1 = 1 = σ′0

v(0)t h2,0 + v(1)t h2,1 ++v(2)t h2,2 = 1 · 1 + 0 · 0 + 1 · 1 = 0 = σ′1

Introducing c− 1 = 2 additional intermediate layers yields the corresponding
binary syndrome subtrellis as shown on the right side in Figure 2.4, where
only two branches leave from and arrive at each state.

As mentioned before, a convolutional code C is defined as the set of all
its code sequences v; that is, the set of all possible paths within its trellis.
The (i + 1)th Viterbi spectral component of a convolutional encoder is denoted
by ndfree+i and defines the number of paths with Hamming weight dfree + i
which depart from the all-zero path in the root of the code trellis and do not
reach the all-zero encoder state until their termini. The infinite sequence of
the number of code sequences with Hamming weights dfree + i, that is,

ndfree+i, i = 0, 1, . . . (2.12)

is called the Viterbi spectrum (or free distance spectrum) of a convolutional en-
coder in order to distinguish it from the weight spectrum of block codes.
Note that the Viterbi spectrum is an encoder property (cf. Example 6.1). The
corresponding generating function

T(W) =
∞

∑
i=0

ndfree+iWdfree+i (2.13)

is called the path weight enumerator.

36 Graphs, Codes, and Codes on Graphs

(a) Truncation (b) Zero-tail termination (c) Tailbiting

Figure 2.5: Schematic illustrations of different termination methods
for trellises based on generator matrices.

Every convolutional encoder encodes an information sequence of (theoret-
ically) infinite length, and hence the steady state phase of its trellis continues
indefinitely. However, by restricting the length of a convolutional code, that
is, by limiting its steady state phase, we obtain a corresponding block code
with similar properties (cf. Subsection 1.3.2).

From the point of view of a trellis constructed from a convolutional gen-
erator matrix, truncation to length M corresponds to limiting the length of
the steady state phase and ending the encoding process at any of the 2ν pos-
sible states. However, the last m information b-tuples are not fully encoded,
and hence less protected. Zero-tail termination adds m additional »dummy«
b-tuples to fully encode the information sequence, which, however, leads to a
slight rate loss. The last m trellis sections of such a zero-tail terminated code
contain only transitions which lead towards the terminating all-zero encoder
state, the toor (toor = root backwards) of the trellis [Mas78]. When using tail-
biting, the starting and ending state of the trellis have to be identical, but not
necessarily the all-zero state. Hence, a tailbiting trellis of length M contains
all those paths of the code trellis, which start at any of the 2ν states at time
instant 0 and end after M branches in the same state as they started in.

The corresponding trellises for all three termination methods are schemat-
ically illustrated in Figure 2.5. Note that these illustrations are only valid for
trellises constructed from convolutional generator matrices; not for the corre-
sponding syndrome trellises.

2.2 TREES AND TRELLISES FOR LINEAR BLOCK CODES

Similar to convolutional codes, a rate R = K/N linear block code can be
represented by a trellis. Contrary to the trellis of a convolutional code, the
trellis of a linear block code has a fixed length N and a time-varying trellis
structure. A method for constructing such a code trellis based on its parity-
check matrix H was introduced in [BCJR74] and further analyzed in [Wol78].

Consider for example the (N − K)× N parity-check matrix H of an (N, K)
linear block code and denote its ith column by the size N − K binary column
vector hi, i = 0, 1, . . . , N − 1,. Moreover, let the set of all states σ at depth t,
t = 0, 1, . . . , N be given by It, where states at adjoined depths are connected
by separate branches.

2.2. Trees and Trellises for Linear Block Codes 37

Then the trellis of a linear block code can be defined as

I0 = {σroot = 0} (2.14)

It+1 =
{

σ
∣∣∣ σ = σ′ + vt hT

t , vt ∈ {0, 1}, σ′ ∈ It

}
t = 0, 1, . . . , N − 1 (2.15)

where vt denotes the tth binary code symbol of the codeword v of length N
corresponding to a specific path, chosen such that it terminates at the all-zero
state at trellis depth N, that is, IN = {σ = 0}. In other words, every state
σ ∈ It at trellis depth t represents the partial syndrome for the path σroot → σ
with the corresponding partial codeword (v0 v1. . . vt−1).

The state complexity of the trellis at depth t follows as ηt = log2 |It|, where
the (N + 1)-tuple

η = (η0 η1. . . ηN) (2.16)

is called the state complexity profile, with maximum state complexity

ηmax = max
t
{ηt} (2.17)

Example 2.3:
Consider the (6, 3) linear block code B with parity-check matrix

H =

 0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

 (2.18)

obtained by removing the all-one column from the parity-check matrix of the
(7, 4) Hamming code used in Example 1.3. The corresponding trellis diagram
for the (6, 3) shortened Hamming code is illustrated in Figure 2.6 and has the
state complexity profile η = (0 1 2 2 2 1 0).

0

1

0

1

0

1

0

1

0

1
1

0

1

0

0

1

0

1

0

0

1

1

0

1
000 000

011

000

101

011

110

000

101

011

110

000

001

011

010

000

001

000

Figure 2.6: Trellis diagram of the (6, 3) shortened Hamming code.

38 Graphs, Codes, and Codes on Graphs

The complexity of trellis-based algorithms like the Viterbi algorithm (cf. Sec-
tion 2.3) is exponential to the maximum state complexity. Hence, finding the
trellis with the smallest maximum state complexity is of particular interest.
If the state complexity ηt at every depth of the bit-level1 trellis T for a block
code is smaller than or equal to the state complexity η′t of any other bit-level
trellis T ′ for the same block code, we refer to the trellis T as the minimal trellis
for this block code [For88] [Mud88].

Such a minimal trellis can be constructed based on a generator matrix
in its trellis-oriented form [For88] [KS95], also known as its minimal-span form
[McE96]. In particular, using elementary row operations, every generator ma-
trix can be reduced to its minimal-span form. Thus, every linear block code
has a minimal trellis representation, which is moreover unique up to isomor-
phism.

Definition 2.1 (Minimal-Span Form [KS95] [McE96])
Let gi, i = 0, 1, . . . , K − 1 be the ith row of the generator matrix G of an
(N, K) linear block code. Denote by start(gi) and end(gi) the first and the
last nonzero position within the row gi, where 0 ≤ start(gi) ≤ end(gi) < N,
respectively. Then a generator matrix is said to be in its minimal-span form if

start(gi) 6= start(g j) end(gi) 6= end(g j) (2.19)

where i 6= j, i, j = 0, 1, . . . , K− 1. The span of the row gi refers to the interval
[start(gi), end(gi)], while the interval [start(gi), end(gi)− 1] is denoted its
active interval. Moreover, the row gi is said to be active at position j if j ∈
[start(gi), end(gi)− 1].

Based on Gaussian elimination, the minimal-span form of a generator ma-
trix can be obtained as follows:

Algorithm MS (Minimal-span form [KS95])

1. Reduce the generator matrix G by Gauss elimination to its row echelon form
(REF), where the leading coefficient of every row is always strictly to the
right of the leading coefficient of the row above. Hence, every row has a
unique starting position.

2. Perform a second Gaussian elimination »bottom up« to obtain unique
ending positions, that is, start from the last element in the last row and it-
erate upwards, such that the unique starting positions remain unchanged.

1A bit-level trellis describes a trellis, where every branch between two states is labeled
with a single output bit. Using sectionalizing, trellises with several output bits on ev-
ery branch can be obtained, reducing in general the corresponding state complexity.
In the following we will, however, focus only on bit-level trellises.

2.2. Trees and Trellises for Linear Block Codes 39

The active interval of row gi determines the time instants at which the
corresponding information symbol ui influences the encoder state. Hence, the
state complexity ηt+1 at depth t+ 1, t = 0, 1 . . . , N− 1, corresponds directly to
the number of active rows in column t of the minimal-span generator matrix.

Denote by At the set of rows of a minimal-span generator matrix, which
are active in column t. Then the set of all states St+1 at depth t + 1 of the
bit-level trellis is defined as

S0 = {σroot = 0} (2.20)

St+1 = {σ | σ = (σ0 σ1. . . σK−1)} t = 0, 1, . . . , N − 1 (2.21)

where the state σ is a K-tuple with

σi =

{
ui if gi ∈ At

0 otherwise
i = 0, 1, . . . , K− 1 (2.22)

According to Definition 2.1 at most a single row becomes active in column
t, t = 0, 1, . . . , N − 1. Denote such a row (if it exists) by gstart−1(t) and
the corresponding column t of the minimal-span generator matrix G by γt.
Then the branch label vt for the transition between the two states σ ∈ St and
σ′ ∈ St+1 in the bit-level trellis is determined by

vt =

{
σγt + ustart−1(t) if gstart−1(t) exists

σγt otherwise
(2.23)

We note that the start and the end of an active row correspond directly to
either a branch expansion or a branch merge in the bit-level trellis. To be more
precise, a minimal bit-level trellis satisfies the following properties:

(i) if there exists a row g with start(g) = t, then two branches stem from
each state at depth t and are labeled by opposite code symbols

(ii) if there exists a row g with end(g) = t, then two branches merge into a
single state at depth t + 1

(iii) if there exists no row g with either start(g) = t or end(g) = t, then
every state at depth t is connected to exactly one state at depth t + 1

(iv) if there exists a row g with start(g) = end(g) = t (a trivial span), then
every state at depth t is connected by two parallel branches, labeled
with opposite code symbols, to the same state at depth t + 1

Note that the state complexity profile varies among equivalent codes. In
particular, reordering the columns of the generator matrix G might yield
an equivalent block code with an improved state complexity profile [Mas78]
[For88] [Mud88].

40 Graphs, Codes, and Codes on Graphs

0

1

0

1

1

0

0

1

0
1

1

0

1
0

0

1

1

0

0

1

0

1

0

1

(0 0 0) (u1 0 0) (u1 u2 0) (0 u2 u3) (0 u2 u3) (0 u2 0) (0 0 0)

000 000

100

000

100

010

110

000

001

010

011

000

001

010

011

000

010

000

Figure 2.7: Minimal trellis for the (6, 3, 3) shortened Hamming code.

The trellis with the best state complexity profile among all equivalent block
codes is called the absolute minimal trellis [BB93]. Finding such an absolute
minimal trellis is however an NP-hard problem.

Finally, by »unfolding« the bit-level trellis, that is, by ignoring the mergers
that occur in the code trellis, we obtain the corresponding code tree. Similarly
to a code trellis, there are two branches stemming from each state at depth t if
there exists a row g with start(g) = t; otherwise only one. However, unlike
the previously discussed code trees for convolutional codes (cf. Section 2.1), a
code tree for a linear block code has a time-varying structure.

Example 2.3 (Cont’d):
Consider the systematic generator matrix G for the (6, 3) linear block code

G =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

 (2.24)

with minimum distance dmin = 3. Since this generator matrix is already given
in RREF, only the second step of the minimal-span form algorithm has to be
applied to ensure unique endings in each row. Adding the second and third
row to the first row, yields the generator matrix in its minimal-span form

GMS =

1 1 1 0 0 0
0 1 0 1 0 1
0 0 1 1 1 0

  (2.25)

where the active interval for each row is shaded in gray. The correspond-
ing minimal trellis is illustrated in Figure 2.7 and has the state complexity
profile η = (0 1 2 2 2 1 0), where the number of active rows in column t of
its minimal-span generator matrix corresponds to the state complexity ηt+1,
t = 0, 1, . . . , 5.

2.3. The Viterbi Algorithm 41

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

1

0

1

1

0

1

0

0

0

1

1

1

1

0

0

root

Figure 2.8: Forward code tree for the (6, 3, 3) shortened Hamming
code starting with the root node at depth 0.

An active interval starts in each of the columns i = 0, 1, and 2, correspond-
ing to a branch expansion at depth i. Similar, these active intervals end in
either column j = 2, 4, or 5, and hence at each depth j + 1 two branches are
merged together. In particular, this trellis is identical up to a permutation to
the one given in Figure 2.6, which is based on the corresponding parity-check
matrix H.

By »unfolding« the minimal trellis, that is, by ignoring all state mergers, the
corresponding code tree for the (6, 3, 3) shortened Hamming code is obtained
and illustrated in Figure 2.8. Such a code tree is also known as a forward
code tree, where all paths stem from the root node at depth 0 and progress
forward. On the other hand, if we start from the end of the minimal trellis,
the toor node at depth N, and »unfold« the trellis backwards, we obtain a so-
called backward code tree as shown in Figure 2.9. Note that a state expansion
in a forward code tree corresponds to a state merger in the corresponding
backward code tree and vice versa.

0

1

0

1

0

1

0

1

1

0

0

1

0

1

0

1

0

1

0

1

1

0

1

0

0

1

0

1

1

0

0

1

1

0

toor

Figure 2.9: Backward code tree for the (6, 3, 3) shortened Hamming
code starting with the toor node at depth 6.

42 Graphs, Codes, and Codes on Graphs

2.3 THE VITERBI ALGORITHM

The Viterbi algorithm [Vit67] is an ML sequence decoding algorithm for block
and convolutional codes based on their trellis representation. Given a re-
ceived sequence r, an ML sequence decoding algorithm decides in favor of a
certain information sequence u whose code sequence v is most probable, as-
suming equiprobable information and code sequences. That is, depending on
the output-alphabet of the underlying transmission channel, an ML decoding
algorithm maximizes the conditional probability P (r | v) in case of a discrete
output-alphabet (like the BSC or the quantized AWGN channel) or the cor-
responding conditional PDF p (r | v) in case of a continuous output-alphabet
(like the unquantized AWGN channel).

Considering only memoryless transmission channels with a discrete output-
alphabet, the conditional probability can be expressed as

P (r | v) = ∏
t

P (rt | vt) = ∏
t

∏
k

P
(

r(k)t

∣∣∣ v(k)t

)
(2.26)

Taking the logarithm, the ML decoding rule can be formulated as the decision
in favor of a certain information sequence u, whose trellis path maximizes the
cumulative Viterbi branch metric2

µV (r, v) = log P (r | v) = ∑
t

µV (rt, vt) (2.27)

where the branch metric for time instant t is given by

µV (rt, vt) = ∑
k

µV

(
r(k)t , v(k)t

)
(2.28)

Following [Mas84], the individual metric increments µV (r(k)t , v(k)
t) can be ex-

pressed as

µV

(
r(k)t , v(k)t

)
= A

(
log P

(
r(k)t

∣∣∣ v(k)t

)
− f (k)t

(
r(k)t

))
(2.29)

where A is a positive scaling factor and f denotes an arbitrarily chosen func-
tion. For convenience, the function f is often chosen as

f (k)t

(
r(k)t

)
= min

v(k)t

{
log P

(
r(k)t

∣∣∣ v(k)t

)}
(2.30)

2Here the term »metric« does not necessarily satisfy the metric conditions in a strict
mathematical sense. Within coding theory, a metric is commonly used somewhat
loosely to describe a distance measure.

2.3. The Viterbi Algorithm 43

assuming that the minimum exists. For example, in case of a BSC with
crossover probability p it is convenient to choose

f (k)t

(
r(k)t

)
= log p and A = −

(
log

p
1− p

)−1
(2.31)

such that the calculation of the individual metric increments is simplified to

µV

(
r(k)t , v(k)t

)
= 1− dH

(
r(k)t , v(k)t

)
=

{
1, if r(k)t = v(k)t

0, otherwise
(2.32)

For a memoryless unquantized AWGN channel with BPSK modulation, the
derivations of the cumulative Viterbi branch metric (2.27) and the individual
metric increments (2.28) are still valid, if the probability P (r | v) is replaced
by the corresponding PDF p (r | v).

Moreover, since there exists a unique mapping between every code se-
quence v and its modulated and transmitted sequence x, it holds that

p (r | v) = p (r | x) = ∏
t

∏
k

p
(

r(k)t

∣∣∣ x(k)t

)
where the likelihood for the kth received symbol r(k)t at time instant t, con-
ditioned on the corresponding transmitted symbol x(k)

t follows from (1.8) as

log p
(

r(k)t

∣∣∣ x(k)t

)
= log

(
1√

πN0
e−

1
N0

(
r(k)t −x(k)t

)2
)

(2.33)

Using the squared Euclidean distance ‖r− x‖2, that is,

‖r− x‖2 = ∑
t

∑
k

(
r(k)t − x(k)t

)2
(2.34)

as a distance measure, the individual Viterbi metric increments µV (r(k)t , v(k)
t)

in (2.28) are determined by

µV

(
r(k)t , v(k)t

)
= −

(
r(k)t − x(k)t

)2
(2.35)

However, note that the (nonsquared) Euclidean distance does neither satisfy
(2.27) nor (2.28), and hence can not be used as a distance measure for the
Viterbi ML sequence decoding algorithm.

On the other hand, in case of a correlation decoder (1.94) or weighted Ham-
ming distance decoder (1.98), the corresponding Viterbi metric increments are
given by

µV

(
r(k)t , v(k)t

)
= r(k)t x(k)t (2.36)

44 Graphs, Codes, and Codes on Graphs

which, for BPSK modulation, is equivalent to

µV

(
r(k)t , v(k)t

)
=

{
−
∣∣∣r(k)t

∣∣∣ if sign
(

r(k)t

)
= sign

(
x(k)t

)
0 otherwise

(2.37)

Finally, for any given sequence y, denote by y[i,j−1] = y[i,j), 0 ≤ i < j,
its segment (yi yi+1. . . yj−1). Then, the path metric for time instant t, t =
0, 1, . . ., can be recursively computed according to (2.27) using the branch
metrics (2.28), that is,

µV

(
r[0,t+1), v[0,t+1)

)
= µV

(
r[0,t), v[0,t)

)
+ µV (rt, vt) (2.38)

where the initial value is formally defined as

µV

(
r[0,0), v[0,0)

)
= 0 (2.39)

Algorithm V (Viterbi)

1. For a given code, construct its trellis and assign the cumulative Viterbi
branch metric µV = 0 to its stating state at trellis depth t = 0.

2. For each state σt+1 at trellis depth t + 1, determine the cumulative Viterbi
branch metric µV(r[0,t+1), v[0,t+1)) for all paths arriving at this state σt+1
as the sum of the cumulative Viterbi branch metric µV(r[0,t), v[0,t)) stored
in the state of each of its predecessors σt and the branch metric increment
µV(rt, vt) associated with the connecting transition σt → σt+1 (ADD). Find
the maximum among these metrics (COMPARE), assign the resulting value
to the state σt+1, and label it with the shortest path to it (SELECT).

3. If the end of the trellis (the toor) is reached, output as the decided code-
word v̂ (one of) the path(s) with largest Viterbi metric which terminates
at the toor node. This is (one of) the ML path(s). Otherwise, increment t
by 1 and continue with step V-2.

Note that the starting state of a tailbiting block code is not known before-
hand, and thus the Viterbi decoding algorithm has to be applied for each pos-
sible pair of starting and ending states, σroot = σtoor, that is, 2ν times. Then,
the overall ML decision is determined by the Viterbi decoding algorithm as
the trellis path with the largest cumulative Viterbi metric.

2.3. The Viterbi Algorithm 45

00

11

00

11

10

01

00

11

11

00

10

01

01

10

00

11

11

00

10

01

01

10

00

11

10

01

00

11

r = 10 10 00 00 01 11

00 00
1

10
1

00
2

01
3

10
2

11
1

00
4

01
3

10
5

11
3

00
6

01
6

10
5

11
6

00
7

01
8

00
10

Figure 2.10: A binary trellis for a rate R = 1/2 convolutional code.

Example 2.4:
Consider the rate R = 1/2, memory m = 2 convolutional code with genera-
tor matrix G(D) = (1 + D + D2 1 + D2), used to communicate over a BSC
with crossover probability p. Using zero-tail termination, the four information
symbols u = 1011, followed by m = 2 zero »dummy« symbols are encoded to
form the codeword v = (11 10 00 01 01 11) which is transferred over the BSC.
The corresponding trellis for this zero-tail terminated convolutional code is
illustrated in Figure 2.10.

Assuming two transmission errors, one at the second and one at the eighth
code symbol, yields the received sequence

r = (10 10 00 00 01 11)

where the erroneous positions are underlined. At every trellis state, we de-
termine the cumulative Viterbi branch metrics for all subpaths leading to
this state, but discard all except the one with the largest cumulative Viterbi
branch metric. In case of a tie, we commonly use coin-flipping as a tie-breaker,
that is, one of the subpaths with largest cumulative Viterbi branch metric is
randomly chosen. The Viterbi metrics and the discarded subpaths are illus-
trated in Figure 2.10. The decided ML codeword after six trellis sections is
v̂ = (11 10 00 01 01 11) whose information sequence is û = (1 0 1 1), that is,
both transmission errors have been corrected.

The individual steps of the Viterbi algorithm are illustrated in Figure 2.11,
where at each state, the surviving subpath is marked in bold, while the dis-
carded subpath is dashed. Next to each state, the cumulative Viterbi branch
metric of the surviving subpath is given, together with the metric of the dis-
carded subpath in parenthesis (if applicable). After processing all six trellis
sections, the Viterbi algorithm decides in favor of the information sequence
û, whose corresponding path results in the largest cumulative Viterbi branch
metric at the end of the trellis.

46 Graphs, Codes, and Codes on Graphs

(a) 00

10

10
1

1

(b) 00

01

10

11

10
2

2

3

1

(c) 00

01

10

11

00
4(3)

5(2)

3(2)

3(2)

(d) 00

01

10

11

00
6(3)

5(4)

6(4)

6(4)

(e) 00

01

10

11

01
7(7)

8(5)

(f) 00

01

10

11

11
10(7)

Figure 2.11: Development of subpaths through the trellis.

Consider for example Figure 2.11(c). After the startup phase, two branches
arrive at each state σ. For example, at encoder state σ = 00, the two arriving
subpaths 00 → 10 → 01 → 00 and 00 → 00 → 00 → 00 have the cumulative
Viterbi branch metrics µV = 3 and µV = 4, respectively, and hence the first
subpath is discarded in favor of the second one.

2.4 THE BEAST

The BEAST, a Bidirectional Efficient Algorithm for Searching code Trees, was
introduced in [BHJK01] and [BHJK04] as an efficient algorithm for finding the
weight and Viterbi spectrum of block and convolutional codes, respectively.
Since searching for the number of code sequences with a certain Hamming
weight resembles finding the closest code sequence to a given received se-
quence, the BEAST was extended in [BJKL04] and [BHJK05] to decoding of
block codes.

2.4.1 FINDING THE WEIGHT SPECTRUM

Consider a rate R = K/N binary block code, whose codewords are binary N-
tuples v = (v0 v1. . . vN−1). Such a code can be described either by a forward
code tree of length N starting from the root node (at depth 0) and going
forward, or by a backward code tree starting from the toor node (at depth
N) and going backward (cf. Figures 2.8 and 2.9). In the following, we shall
distinguish between the forward and the backward code tree by the subscripts
F and B, respectively.

2.4. The BEAST 47

Every node ζ in such a code tree has a unique parent node ζP, at most two
children nodes ζC, and is characterized by three parameters: its state σ(ζ),
weight ω(ζ), and depth `(ζ). Its depth is equal to the length (in branches)
of the path arriving at node ζ and starting from either the root node ζroot or
toor node ζtoor, while its weight is determined by the accumulated Hamming
weight of the corresponding path.

Consider for example the path ζroot → ζ in the forward code tree corre-
sponding to the codeword segment v[0,`F(ζ)−1]. Its accumulated Hamming
weight is given by

ωF(ζ) = wH

(
v[0,`F(ζ))

)
=

`F(ζ)−1

∑
i=0

wH (vi) (2.40)

where `F(ζroot) = 0, ωF(ζroot) = 0, and σ(ζroot) = 0.
Similarly, the path ζtoor → ζ in the backward code tree corresponds to

the codeword segment v[N−`B(ζ),N−1] and yields the accumulated Hamming
weight

ωB(ζ) = wH

(
v[N−`B(ζ),N)

)
=

N−1

∑
i=N−`B(ζ)

wH (vi) (2.41)

where `B(ζtoor) = 0, ωB(ζtoor) = 0, and σ(ζtoor) = 0.
Clearly, for every codeword v with Hamming weight w, there exists a path

ζroot → ζtoor in the code tree with an intermediate node ζ such that

ωF(ζ) =
⌊w

2

⌋
ωB(ζ) =

⌈w
2

⌉
`F(ζ) + `B(ζ) = N (2.42)

Hence, searching for all such paths (codewords) can be split up into two sep-
arate and independent steps; a forward search for all path segments ζroot → ζ

with Hamming weight wF as well as a backward search for all path segments
ζtoor → ζ with Hamming weight wB, where the forward and backward weights
wF and wB can be chosen freely3 as long as

wF + wB = w (2.43)

Since every branch in a bit-level trellis is labeled by exactly one code sym-
bol, the length of any such path segment has to satisfy

ωF(ζ) ≤ `F(ζ) ≤ N −ωB(ζ) (2.44)

ωB(ζ) ≤ `B(ζ) ≤ N −ωF(ζ) (2.45)

In other words, the maximum depth of the forward and backward code tree
is limited by N − wB and N − wF, respectively.

3In order to efficiently exploit the bidirectional idea behind the BEAST, the size of
the forward and backward code trees should be balanced, that is, the forward and
backward weights wF and wB should be approximately equal.

48 Graphs, Codes, and Codes on Graphs

Algorithm BS (BEAST for finding the spectral component Aw)

1. Forward search: Starting at the root node ζroot, grow a forward code tree to
obtain the set of nodes4

F =
{

ζ
∣∣ ωF(ζ) = wF, ωF(ζ

P) < wF, `F(ζ) ≤ N − wB
}

where wF and wB are chosen according to (2.43). The set F contains the
leaves of the partially explored forward code tree, whose accumulated
Hamming weights are equal to the forward weight wF.

2. Backward search: Starting at the toor node ζtoor, grow a backward code tree
to obtain the set of nodes4

B =
{

ζ
∣∣ ωB(ζ) = wB, ωB(ζ

C) > wB, `B(ζ) ≤ N − wF
}

Similar to step 1, the set B contains the last interior nodes of the partially
explored backward code tree, before their accumulated Hamming weights
exceed the backward weight wB.

3. Matching: Find all pairs of nodes (ζ, ζ ′) ∈ F × B such that

σ(ζ) = σ(ζ ′) `F(ζ) + `B(ζ
′) = N (2.46)

Each such match describes a unique codeword with Hamming weight
w = ωF(ζ) + ωB(ζ ′) = wF + wB. Thus, the number of codewords with
Hamming weight w, that is, the spectral component Aw, follows as

Aw = ∑
(ζ,ζ ′)∈F×B

χ(ζ, ζ ′)

where χ is the match-indicator function, defined as

χ(ζ, ζ ′) =

{
1 if (2.46) holds
0 otherwise

4The conditions ωF(ζ
P) < wF and ωB(ζ

C) > wB in the forward and backward set F
and B, respectively, are necessary to avoid multiple matches corresponding to the
same codeword. While one of these two conditions would be sufficient to avoid such
multiple matches, the second condition helps to additional decrease the number of
stored nodes.

2.4. The BEAST 49

Example 2.5:
Consider the (6, 3, 3) shortened Hamming block code from Example 2.3 whose
forward and backward code trees are given in Figures 2.8 and 2.9, respectively.

Assume that we want to find the number of codewords with Hamming
weight w = dmin = 3, that is, A3. According to (2.43), a possible choice for the
forward and backward weights is given by wF = 2 and wB = 1.

The corresponding, partially explored, forward and backward code trees
are illustrated in Figure 2.12. The nodes stored in the forward set F and in the
backward set B are marked by squares, while dashed lines in the backward
code tree indicate branches to children nodes exceeding the backward weight
wB. In total, the forward and backward sets contain |F | = 6 and |B| = 4
nodes, respectively, which are given below:

F =
{(

σ = (1 0 0), ` = 2
)

,
(

σ = (0 1 0), ` = 3
)

,
(

σ = (0 1 1), ` = 3
)

,(
σ = (0 1 0), ` = 4

)
,
(

σ = (0 0 1), ` = 4
)

,
(

σ = (0 1 0), ` = 5
)}

B =
{(

σ = (0 1 0), ` = 1
)

,
(

σ = (0 1 0), ` = 2
)

,(
σ = (0 0 1), ` = 2

)
,
(

σ = (1 0 0), ` = 4
)}

Comparing these nodes, we find 3 node pairs satisfying the condition (2.46),
which are highlighted in Figure 2.12: state σ = (1 0 0) with `F = 2 and `B = 4
as well as states σ = (0 1 0) and σ = (0 0 1), both with `F = 4 and `B = 2.
Hence, the (6, 3, 3) shortened Hamming code contains A3 = 3 codewords of
Hamming weight w = 3.

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1root

(1 0 0)

(0 1 1)

(0 1 0)

(0 0 1)

(0 1 0)

(0 1 0)

0

1

0

1

0

00

1

toor

(0 1 0)

(0 0 1)

(0 1 0)

(1 0 0)

Figure 2.12: Partially explored forward and backward code trees
used by the BEAST to determine the number of code-
words with Hamming weight w = 3 for the (6, 3, 3)
shortened Hamming code.

50 Graphs, Codes, and Codes on Graphs

2.4.2 FINDING THE VITERBI SPECTRUM

Consider a rate R = b/c convolutional code with free distance dfree. Recall,
that its (i + 1)th Viterbi spectral component is denoted by ndfree+i and is de-
fined as the number of paths with Hamming weight dfree + i, which diverge
from the all-zero path at the root of the code trellis and terminate in the all-
zero encoder state, but do not merge with the all-zero path until their termini.

Similar to the case when finding the spectral component for a given block
code, there exists an intermediate node σ(ζ) 6= 0 for every path with Ham-
ming weight w in the code tree which satisfies exactly one of the following c
conditions

ωF(ζ) =
⌊w

2

⌋
+ j ωB(ζ) =

⌈w
2

⌉
− j j = 0, 1, . . . , c− 1 (2.47)

where the additional term j = 0, 1, . . . , c− 1 originates from the fact that every
branch in the corresponding trellis or code tree is labeled by a code c-tuple.

Since the length of the detour from the all-zero path varies among different
code sequences, several toor nodes have to be taken into account; one for
each possible length of the detour of its code sequences. However, due to the
regular and time-invariant structure of the trellis for convolutional codes, it is
sufficient to only consider a single toor node and instead omit the restriction
to a specific depth (length) in (2.42).

Algorithm BVS (BEAST for finding the Viterbi spectral component nw)

1. Forward search: Starting at the root node ζroot, extend the forward code
tree to obtain c sets indexed by j = 0, 1, . . . , c − 1 containing only the
states σ(ζ) of all nodes ζ satisfying

F+j =
{

ζ
∣∣ ωF(ζ) = wF + j, ωF(ζ

P) < wF, σ(ζ) 6= 0
}

where wF, and hence wB, are chosen according to (2.43).

2. Backward search: Starting at the toor node ζtoor, extend the backward code
tree to obtain c sets indexed by j = 0, 1, . . . , c − 1 containing only the
states σ(ζ) of all nodes ζ satisfying

B−j =
{

ζ
∣∣ ωB(ζ) = wB − j, ωB(ζ

C) > wB, σ(ζ) 6= 0
}

3. Matching: For every pair
{
F+j,B−j

}
, j = 0, 1, . . . , c − 1, find all pairs

of nodes (ζ, ζ ′) ∈ F+j × B−j with equal states σ(ζ) = σ(ζ ′). Then the
number of convolutional code sequences with Hamming weight w follows
as

nw =
c−1

∑
j=0

∑
(ζ,ζ ′)∈F+j×B−j

χ(ζ, ζ ′)

2.4. The BEAST 51

2.4.3 MAXIMUM-LIKELIHOOD DECODING

Besides finding the weight and Viterbi spectrum for block and convolutional
codes, the BEAST can be used for ML sequence decoding of (N, K) block
codes. Assuming that the squared Euclidean distance or the (weighted) Ham-
ming distance is used as a distance measure, ML sequence decoding corre-
sponds to finding the codeword v, whose transmitted sequence x is closest to
the received sequence r in terms of the chosen metric.

Denote by dµ(r, v) the chosen metric between the received sequence r and
the codeword v, where

dµ(r, v) =


‖r− x‖2 squared Euclidean distance, cf. (1.91)
dwH (r, x) weighted Hamming distance, cf. (1.98)
dH (r, v) Hamming distance, cf. (1.89)

(2.48)

If we replace the accumulated Hamming weights (2.40) and (2.41) by the ac-
cumulated decoding metrics, we obtain

ωF(ζ) = dµ

(
r[0,`F(ζ)), v[0,`F(ζ))

)
=

`F(ζ)−1

∑
i=0

dµ (ri, vi) (2.49)

ωB(ζ) = dµ

(
r[N−`B(ζ),N), v[N−`B(ζ),N)

)
=

N−1

∑
i=N−`B(ζ)

dµ (ri, vi) (2.50)

Then the BEAST can be used to find a path in the code trellis with smallest
metric-sum w = wF(ζ) + wB(ζ) = dµ(r, v), that is, the codeword v which
minimizes the metric with respect to the received sequence r, and hence cor-
responds to an ML decoding decision.

However, as the metric of such a path is preliminary unknown, it is nec-
essary to introduce a threshold T (and threshold increments δi, cf. Subsec-
tion 2.4.4), such that the BEAST can be used to determine all codewords whose
metric is smaller than or equal to this threshold T. Similarly to (2.43), let such
a threshold T be split up into a forward and a backward threshold TF and TB,
respectively, satisfying

TF + TB = T (2.51)

Additionally replacing the weight equalities in the previous definitions of the
forward and backward sets by metric inequalities, the BEAST is guaranteed
to find all paths in the code tree whose metrics is smaller than or equal to
the current threshold T. However, since the forward and backward code trees
are extended separately, it is possible that the sum of the two partial metrics
wF(ζ) + wB(ζ) exceeds the threshold T. Such a path does not necessarily
correspond to an ML codeword decision and therefore has to be disregarded.

52 Graphs, Codes, and Codes on Graphs

In particular, only if there exists a matching node pair whose metric-sum is
smaller than or equal to the threshold T, the algorithm is terminated; other-
wise the threshold T is increased by the next threshold increment δi and the
corresponding code trees have to be further extended.

Note, unlike for Viterbi sequence decoding, the metric used by the BEAST
has to be a nondecreasing function of the path lengths. This condition is satis-
fied by the metrics given in (2.48), but is for example violated by the correla-
tion metric (1.94).

Algorithm BML (BEAST for ML decoding of block codes)

1. Initialization: Determine suitable threshold increments δi, i = 1, 2, . . . , N
and set the threshold T to its starting value according to Subsection 2.4.4.
Moreover initialize the forward and backward code trees with the root
and the toor node ζroot and ζtoor, respectively, both with depth `F = `B = 0
and metric ωF = ωB = 0.

2. Forward search: Extend the forward code tree to find the set of nodes

F =

{
ζ

∣∣∣∣ ωF(ζ) ≥ TF, ωF(ζ
P) < TF, `F(ζ) ≤ N −min

ζ ′∈B

{
`B(ζ

′)
}}

In other words, every node whose depth and metric are smaller than N−
minζ ′∈B {`B(ζ ′)} and TF, respectively, shall be extended, where TF, and
hence TB are chosen according to (2.51). Once the metric of a child node
reaches or exceeds TF, the corresponding state is stored in the forward set
F together with its metric, depth, and parent node. The knowledge of the
parent node is necessary in order to be able to perform »backtracking«,
that is, to determine the path segment leading to this node. However, due
to this requirement, it is necessary to additionally store all intermediate
nodes.

3. Backward search: Extend the backward code tree to find the set of nodes

B =

{
ζ

∣∣∣∣ ωB(ζ) ≤ TB, `B(ζ) ≤ N −min
ζ ′∈B

{
`F(ζ

′)
}}

For ML decoding we need to store all interior nodes with metric smaller
than or equal to TB and depth below N −minζ ′∈B {`F(ζ ′)}. In particular,
for every node, its metric, depth, and parent node have to be stored. Note
that the previously used condition on child nodes exceeding TB has to
be dropped since the smallest metric for a complete path is not known
beforehand, and thus all possible path segments smaller than or equal to
the threshold T have to be taken into account.

2.4. The BEAST 53

4. Matching: Find all pairs of nodes (ζ, ζ ′) ∈ F × B such that

σ(ζ) = σ(ζ ′) `F(ζ) + `B(ζ
′) = N (2.52)

Each such match describes a unique codeword with metric w = ωF(ζ) +
ωB(ζ ′) with respect to the received sequence r. If the smallest metric-sum
among all such codewords satisfies w ≤ T, then the ML decoding decision
is found. To determine (one of) the corresponding ML codeword(s) v̂, we
perform backtracking from (one of) its matching node(s) ζ to both the root
and the toor nodes. Otherwise, if the metric-sum of all matching nodes
exceeds the current threshold T, the next threshold increment δi is added
to T, before the algorithm continues with step BML-2.

Note that the calculation of the forward and backward sets in step BML-2
and BML-3 are practically independent and can be carried out in parallel by
neglecting the condition on the maximum search depth, which yields only
a negligible increase in the size of the corresponding forward and backward
sets. Alternatively, the efficiency of the BEAST can be enhanced by only in-
creasing the smaller one of the two code trees. That is, instead of increasing
the threshold T by the next increment δ in step BML-4, it is sufficient to only
increase either TF or TB by δi. Hence, only one code tree has to be recalculated
(extended) while the other one can be reused.

2.4.4 DETERMINE THE METRIC THRESHOLDS

The choice of the threshold increments δi, i = 0, 1, . . . , N− 1, depends largely
on the chosen metric, but is critical to the efficiency of the BEAST. If the
threshold increments δi are chosen too large, the forward and backward code
trees will be extended unnecessarily, while choosing those values too small
results in several (unnecessary) iterations before finding the ML decoding
decision.

When using the Hamming distance measure, the path metric can only grow
in unit steps, and hence δi = 1, i = 0, 1, . . . , N − 1. Moreover, good block
codes can correct error patterns up to roughly half the minimum distance,
and thus a good choice for the initial threshold is

T =
t−1

∑
i=0

δi, with t = ddmin/2e (2.53)

For the weighted Hamming distance measure (1.95), the path metric can
increase in steps of |ri|; hence, the threshold increments follow as the sorted
absolute values |ri| in ascending order, while the initial threshold is similarly
determined by (2.53).

54 Graphs, Codes, and Codes on Graphs

Finally, consider the squared Euclidean distance measure as given by (1.92),
where for BPSK signaling ‖x‖2 = NEs. A suitable initial threshold is given
by the minimal distance between the received sequence r and any possibly
transmitted sequence x, that is,

T = min
x

{
‖r− x‖2

}
= ‖r‖2 + NEs − 2

√
Es

N−1

∑
i=0
|ri| (2.54)

The corresponding threshold increments δi are determined as the sorted ab-
solute values 4

√
Es |ri| in ascending order, such that the threshold

T +
i

∑
j=0

δj (2.55)

corresponds to the minimal squared Euclidean distance between the received
sequence r and any possibly transmitted sequence x, where the i most unreli-
able received symbols have been flipped.

Example 2.6:
Consider the (6, 3, 3) shortened Hamming code with generator matrix (2.25),
used to communicate over an AWGN channel. Suppose we obtain the re-
ceived sequence

r =
(

0.82 −0.42 0.17 1.25 0.83 0.37
)

Using the weighted Hamming distance measure, the threshold increments δi
are given by the sorted absolute received symbols |ri|

{δi}6
i=1 = {0.17, 0.37, 0.42, 0.82, 0.83, 1.25}

and hence the initial threshold follows according to (2.53) as

T =
d3/2e

∑
i=1

δi = δ1 + δ2 = 0.17 + 0.37 = 0.54

A suitable choice for the forward and backward thresholds TF and TB, such
that (2.51) is satisfied, is for example given by

TF = TB = T/2 = 0.27 (2.56)

Growing the corresponding forward and backward code trees according to
BML-2 and BML-3, yields the partially explored code trees as illustrated in
Figure 2.13. The corresponding forward set F and backward set B contain 4
and 7 nodes, respectively, which are given below:

F =
{(

σ = (1 0 0), `F = 1, ωF = 0.82
)

,
(

σ = (0 0 0), `F = 2, ωF = 0.42
)

,(
σ = (0 1 0), `F = 4, ωF = 1.25

)
,
(

σ = (0 1 0), `F = 5, ωF = 1.0
)}

2.5. Low-Density Parity-Check Codes and Tanner Graphs 55

0

1

0

1
0

1

1

0 1
root

0.0

(1 0 0)

0.82

0.42

(0 0 0)

0.0

0.0

0.17

1.25

(0 1 0)
0.17 1.0

(0 1 0)

0

0
0

0

11

toor

0.0

(0 0 0)

0.0

(0 0 0)

0.37

0.0

(0 0 0)

0.83

0.0

(0 0 0)

0.0

(0 0 0)
0.17

(1 0 0)

0.42

0.17

(1 0 0)

0.99

Figure 2.13: Partially explored forward and backward code trees
used by the BEAST when decoding the received se-
quence r from Example 2.6.

B =
{(

σ = (0 0 0), `B = 0, ωB = 0.0
)

,
(

σ = (0 0 0), `B = 1, ωB = 0.0
)

,(
σ = (0 0 0), `B = 2, ωB = 0.0

)
,
(

σ = (0 0 0), `B = 3, ωB = 0.0
)

,(
σ = (1 0 0), `B = 4, ωB = 0.17

)
,
(

σ = (0 0 0), `B = 4, ωB = 0.0
)

,(
σ = (1 0 0), `B = 5, ωB = 0.17

)}
Matching those two sets yields two pairs of nodes satisfying (2.52):

(i) Node σ = (0 0 0) with `F = 2, `B = 4, and metric-sum ω = ωF + ωB =
0.42 + 0.0 = 0.42, corresponding to the all-zero codeword 000000.

(ii) Node σ = (1 0 0) with `F = 1, `B = 5, and metric-sum ω = ωF + ωB =
0.82 + 0.17 = 0.99, corresponding to the codeword 111000.

Clearly, the first pair of nodes has the smallest metric-sum ω = 0.42 and,
moreover, satisfies ω ≤ T = 0.54. Hence, this path determines the ML decod-
ing decision and we obtain the ML codeword v̂ML = 000000.

2.5 LOW-DENSITY PARITY-CHECK CODES AND TANNER GRAPHS

Low-density parity-check (LDPC) codes were initially invented by Gallager
in the early 1960s [Gal62] [Gal63] and constitute an important class of block
codes defined on bipartite graphs. We shall start by introducing some basic
properties of bipartite graphs, before discussing LDPC block codes in more
detail towards the end of this section.

56 Graphs, Codes, and Codes on Graphs

BASIC GRAPH PROPERTIES

An undirected graph G = {E ,V} is defined by a set of vertices V = {ζi} and
a set of edges E = {ei}, where each edge connects exactly two vertices. The
degree of a vertex denotes the number of edges that are connected to it.

Consider the set of vertices V of a graph partitioned into t disjoint subsets
Vk, k = 0, 1, . . . , t− 1. Such a graph is said to be t-partite if no edge connects
two vertices from the same set Vk, k = 0, 1, . . . , t− 1.

Similarly, consider a set of vertices Vk of such a t-partite graph, which is
itself partitioned into s disjoint subsets V (`)

k , ` = 0, 1, . . . , s − 1. Then, the
corresponding set of vertices Vk is said to be s-partite, if and only if there is no
possibility to connect two vertices from the same subset V (`)

k , ` = 0, 1, . . . , s−
1, by using (not more than) two distinct edges.

Suppose that G is a bipartite graph with two disjoint subsets of vertices, V0
and V1, with |V0| > |V1|. Commonly, the vertices in V0 are called symbol nodes
while the vertices in V1 are referred to as constraint or parity-check nodes. Such
a bipartite graph is also known as a Tanner graph [Tan81] and determines a
linear block code B with block length |V0| and dimension at least |V0| − |V1|.

The parity-check matrix H of the corresponding block code B consists of
|V1| rows and |V0| columns, where every row and column corresponds to
a constraint node in V1 and a symbol node in V0, respectively. If an edge
directly connects the symbol node vi ∈ V0 with the constraint node cj ∈ V1,
then the entry in row j and column i of the parity-check matrix H is set to
one; and to zero otherwise.

Example 2.7:
Consider the (6, 3, 3) shortened Hamming code with parity-check matrix

H =


v0 v1 v2 v3 v4 v5

c0 0 1 1 1 0 0
c1 1 0 1 0 1 0
c2 1 1 0 0 0 1

 (2.57)

Its corresponding Tanner graph contains 6 symbol nodes vj, j = 0, 1, . . . , 5,
as well as 3 constraint nodes ci, i = 0, 1, 2, and is given in Figure 2.14. The
symbol nodes in V0 are illustrated by black circles having either degree 1 or
2, while the constraint nodes in V1 are given by white circles having degree 3.

v0 v1 v2 v3 v4 v5

c0 c1 c2

Figure 2.14: Tanner graph of the shortened Hamming (6, 3) code de-
fined by the parity-check matrix (2.57).

2.5. Low-Density Parity-Check Codes and Tanner Graphs 57

From a graph theoretical point of view, every undirected graph G = {E ,V}
can be represented either by its |V| × |E| incidence matrix T = (tij) or by its
|V| × |V| adjacency matrix A = (aij).

If the edge ej, j = 0 , 1, . . . , |E | − 1, is incident (connected) to the vertex
vi, i = 0, 1, . . . , |V| − 1, then the corresponding entry tij of the incidence
matrix T is set to one; and to zero otherwise. Similarly, if the vertex vi is
directly connected to vertex vj, i, j = 0, 1, . . . , |V| − 1, then the entry aij of the
adjacency matrix A is equal to one; and equal to zero otherwise.

For a bipartite graph G with two distinct sets of vertices V0 and V1, the
adjacency matrix A has the following block structure

A =

(
0 B

BT 0

)
(2.58)

where B denotes the |V1| × |V0| biadjacency matrix of the graph G. In particular
note that the biadjacency matrix B of a graph G is equal to the parity-check
matrix H of the corresponding linear block code B.

Example 2.7 (Cont’d):
Consider the Tanner graph determined by the parity-check matrix H in (2.57)
with |V| = 9 vertices and |E | = 9 edges. Its 9× 9 incidence matrix is given by

T =



c0 1 1 1 0 0 0 0 0 0
c1 0 0 0 1 1 1 0 0 0
c2 0 0 0 0 0 0 1 1 1
v0 0 0 0 1 0 0 1 0 0
v1 1 0 0 0 0 0 0 1 0
v2 0 1 0 0 1 0 0 0 0
v3 0 0 1 0 0 0 0 0 0
v4 0 0 0 0 0 1 0 0 0
v5 0 0 0 0 0 0 0 0 1


(2.59)

while its 9× 9 adjacency matrix follows as

A =



c0 c1 c2 v0 v1 v2 v3 v4 v5

c0 0 0 0 0 1 1 1 0 0
c1 0 0 0 1 0 1 0 1 0
c2 0 0 0 1 1 0 0 0 1
v0 0 1 1 0 0 0 0 0 0
v1 1 0 1 0 0 0 0 0 0
v2 1 1 0 0 0 0 0 0 0
v3 1 0 0 0 0 0 0 0 0
v4 0 1 0 0 0 0 0 0 0
v5 0 0 1 0 0 0 0 0 0


(2.60)

In particular note that its biadjacency matrix B coincides with the parity-check
matrix H given in (2.57).

58 Graphs, Codes, and Codes on Graphs

Finally, denote by a path of length ` in a graph G an alternating sequence
of ` + 1 vertices ζi, i = 0, 1, . . . , `, and ` edges ei, i = 0, 1, . . . , ` − 1, with
ei 6= ei+1, such that the vertices ζi and ζi+1 are connected by the edge ei. If
the first and the final vertex of a path coincide, that is, if ζ0 = ζ`, we refer to
such a path as a cycle. It is called a simple cycle if all its vertices and edges are
distinct, except for the first and final vertex, which coincide. The length of the
shortest simple cycle in a graph is denoted its girth g. Note that the girth of a
bipartite graph is by definition always even.

LOW-DENSITY PARITY-CHECK BLOCK CODES

An LDPC block code can be either defined by a Tanner graph G or a sparse
parity-check matrix H, that is, a parity-check matrix »containing mostly 0s
and relatively few 1s« [Gal62] [Gal63]5.

Commonly, LDPC block codes can be characterized by having either ran-
dom / pseudo-random or nonrandom structures, where LDPC block codes with
nonrandom structures are subdivided into regular or irregular, while ran-
dom / pseudo-random LDPC codes are in general irregular.

If the parity-check matrix H contains exactly J ones in each column and
exactly L ones in each row, the corresponding (nonrandom) LDPC block code
is referred to as (J, L)-regular; and irregular otherwise. In particular, we note
that in the Tanner graph of a (J, L)-regular LDPC block code all symbol and
constraint nodes have degree J and L, respectively.

When constructing a (J, L)-regular LDPC block with block length N and
design rate Rd = 1− J/L, we obtain a parity-check matrix of size (N−K)×N.
Since such a matrix can in general have linearly dependent rows, it does not
necessarily have full rank. Removing those rows yields the final parity-check
matrix of an LDPC block code with slightly larger rate R ≥ Rd.

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

c0 c1 c2 c3 c4 c5 c6 c7 c8

Figure 2.15: Tanner graph of the (3, 5)-regular LDPC block code de-
fined by parity-check matrix (2.61).

5Hereinafter, short block codes will often be used within examples. For simplicity,
we will refer to these codes as LDPC block codes, even though the requirement
»containing mostly 0s and relatively few 1s« is not satisfied.

2.6. The Belief Propagation Algorithm 59

Example 2.8:
Consider the 9× 15 parity-check matrix H of the (J = 3, L = 5)-regular LDPC
block code with (design) rate Rd = R = 6/15 = 1− 3/5.

H =



v0 v1 v2 v3 v4 v5 v6 c7 c8 c9 v10 v11 v12 v13 v14

c0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0
c1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0
c2 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0
c3 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0
c4 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0
c5 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0
c6 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1
c7 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1
c8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1


(2.61)

The corresponding Tanner graph with 15 symbol nodes and 9 constraint nodes
is illustrated in Figure 2.15. Every constraint node has degree L = 5 while
every symbol node has degree J = 3. Consider the simple cycle of length 4
given by v0 → c0 → v1 → c1 → v0 which is marked in Figure 2.15. This
simple cycle has the shortest possible length within this graph, and hence the
girth of this (3, 5)-regular LDPC block code follows as g = 4.

Finally, note that in case of a (J, L)-regular LDPC block code with design
rate Rd = K/N, the corresponding Tanner graph consists of N symbol nodes,
N − K constraint nodes, and JN edges. Hence, its incidence and adjacency
matrices are of size (2N − K)× (JN) and (2N − K)× (2N − K), respectively.
Moreover, interpreting the incidence matrix of such a Tanner graph as another
parity-check matrix, we obtain a (JN, (J − 2)N + K) linear block code with
larger block length JN.

2.6 THE BELIEF PROPAGATION ALGORITHM

The belief propagation (BP) algorithm [Gal63] [Pea88] is an efficient iterative
decoding algorithm for LDPC block codes and belongs to the more general
class of iterative message passing algorithms. It is based on computing the
marginal APPs for the code symbols vi, that is,

P (vi = 0 | r) i = 0, 1, . . . , N − 1 (2.62)

where N denotes the block length of the LDPC block code and r is a sequence
of N observed (received) values.

Consider a bipartite graph G = {E ,V} with two disjoint sets of vertices:
the set of symbol nodes V0 and the set of constraint nodes V1. During each

60 Graphs, Codes, and Codes on Graphs

m(`)
v0c0

m(`−1)
c1v0 m(`−1)

c2v0

v0

c0 c1 c2

r0

(a) Symbol node.

m(`)
c0v0

m(`)
v1c0 m(`)

v2c0 m(`)
v3c0 m(`)

v4c0

v0 v1 v2 v4 v6

c0
(b) Constraint node.

Figure 2.16: Computational functions fv and fc evaluated at a symbol
node v0 and constraint node c0, respectively.

iteration `, messages are passed along the edges of the underlying graph from
the symbol nodes in V0 to the constraint nodes in V1 and vice versa.

Denote the set of vertices being adjacent to a vertex x by A(x). Then the
message from the symbol node vi ∈ V0 to the constraint node cj ∈ V1 and vice
versa during iteration ` can be expressed as

m(`)
vicj with cj ∈ A(vi) (vi → cj)

m(`)
cjvi with vi ∈ A(cj) (cj → vi)

To be more precise, the message m(`)
vicj

from symbol node vi to constraint
node cj during iteration ` is based on the observed value ri of the symbol node
vi as well as on the messages received from neighboring constraint nodes dur-
ing the previous iteration `− 1; except the message received from constraint
node cj. Hence, we obtain,

m(`)
vicj = fv

(
m(`−1)

cjvi , ri

)
with m(`−1)

cjvi =
{

m(`−1)
cvi

∣∣∣ c ∈ A(vi)\{cj}
}

(2.63)

where fv () is an arbitrary function evaluated at every symbol node. In Fig-
ure 2.16(a) this function is illustrated for the symbol node v0 as specified by
the (3, 5)-regular LDPC block code in Example 2.8.

Similarly, the message m(`)
cjvi

from constraint node cj to symbol node vi dur-
ing iteration ` is based on the messages received from neighboring symbol
nodes during the same iteration; excluding the message received from sym-
bol node vi, and hence

m(`)
cjvi = fc

(
m(`)

vicj

)
with m(`)

vicj =
{

m(`)
vcj

∣∣∣ v ∈ A(cj)\{vi}
}

(2.64)

where fc() denotes an arbitrary function evaluated at every constraint node.
The corresponding function for the constraint node c0, as specified by the
(3, 5)-regular LDPC block code in Example 2.8, is illustrated in Figure 2.16(b).

2.6. The Belief Propagation Algorithm 61

In a BP algorithm, these messages correspond to probabilities or beliefs. Un-
der the assumption that the received messages are mutually independent, the
functions fv () and fc () can be derived directly. However, since the length
of the shortest simple cycle in a graph is equal to its girth g, this indepen-
dence assumption holds only during the first g/2 iterations. Messages which
are passed along the edges during later iterations violate this assumption, and
yield, in general, a suboptimal decoding decision.

MESSAGES FROM SYMBOL NODES

First, consider the function fv() evaluated at every symbol node. Using
log-likelihoods, the message m(`)

vicj
from symbol node vi to constraint node cj

during iteration ` can be written as

m(`)
vicj = fv

(
m(`−1)

cjvi , ri

)
= L

(
vi

∣∣∣ m(`−1)
cjvi , ri

)
(2.65)

In other words, the message m(`)
vicj

corresponds to the likelihood that the code
symbol (symbol node) vi has a certain binary value, given the received symbol
ri as well as the messages received from all constraint nodes adjacent to the
symbol node vi during the previous iteration ` − 1, excluding the message
received from constraint node cj. Note that the log-likelihood ratios as defined
in (1.12) satisfy

L
(

vi

∣∣∣ m(`−1)
cjvi , ri

)
= L

(
m(`−1)

cjvi , ri

∣∣∣ vi

)
(2.66)

since the code symbols vi are equiprobable. Hence, assuming that the mes-
sages received from different constraint nodes as well as the observed symbol
ri are mutually independent, (2.66) can be re-applied, and

m(`)
vicj = L

(
m(`−1)

cjvi , ri

∣∣∣ vi

)
= ∑

c∈A(vi)\{cj}
L
(

m(`−1)
cvi

∣∣∣ vi

)
+ L (ri | vi)

= ∑
c∈A(vi)\{cj}

L
(

vi

∣∣∣ m(`−1)
cvi

)
+ L (vi | ri) (2.67)

where L (vi | ri) is commonly called the intrinsic information.

MESSAGES FROM CONSTRAINT NODES

Similarly, the message m(`)
cjvi

from constraint node cj to symbol node vi corre-
sponds to the likelihood that the binary code symbol vi has a certain value
given the messages received from all symbol nodes adjacent to the constraint

62 Graphs, Codes, and Codes on Graphs

Pr (v1 = 0 | m(`)
v1cj

)Pr (v0 = 0 | m(`)
v0cj

)

Figure 2.17: Venn diagram of probabilities used by the BP algorithm.

node cj during the same iteration ` except the message received from the sym-
bol node vi. Using log-likelihoods, the corresponding function fc () can be
expressed as

m(`)
cjvi = fv

(
m(`)

cjvi

)
= L

(
vi

∣∣∣ m(`)
vicj

)
(2.68)

Since the modulo-2 sum of all adjacent symbol nodes has to be equal to zero
at every constraint node cj, it follows that⊕

v∈A(cj)
v = 0 (2.69)

or, equivalently,

vi =
⊕

v∈A(cj)\{vi}
v with vi ∈ A(cj) (2.70)

Moreover, let
1− P

(
v0 ⊕ v1 = 0

∣∣∣ m(`)
v0cj , m(`)

v1cj

)
denote the probability of the two equiprobable events v0 = 1, v1 = 0 and
v0 = 0, v1 = 1, which are illustrated by the shaded area in Figure 2.17. This
probability can be alternatively expressed as

P
(

v0 = 0
∣∣∣m(`)

v0cj

)
+ P

(
v1 = 0

∣∣∣m(`)
v1cj

)
− 2 P

(
v0 = 0

∣∣∣m(`)
v0cj

)
P
(

v1 = 0
∣∣∣m(`)

v1cj

)
Hence it follows that

2 P
(

v0 ⊕ v1 = 0
∣∣∣ m(`)

v0cj , m(`)
v1cj

)
− 1

=
(

2 P
(

v0 = 0
∣∣∣ m(`)

v0cj

)
− 1
)(

2 P
(

v1 = 0
∣∣∣ m(`)

v1cj

)
− 1
)

(2.71)

and, by induction, that

2 P
(⊕

v∈A(cj)\{vi}
v = 0

∣∣ m(`)
vcj

)
− 1 = ∏

v∈A(cj)\{vi}

(
2 P
(

v = 0
∣∣∣ m(`)

vcj

)
− 1
)

(2.72)

2.6. The Belief Propagation Algorithm 63

Next, we recall the definition of the log-likelihood function in (1.12) where

P
(

v = 0
∣∣∣ m(`)

vcj

)
=

exp
(

L
(

v
∣∣∣ m(`)

vcj

))
exp

(
L
(

v
∣∣∣ m(`)

vcj

))
+ 1

(2.73)

and thereby conclude that

2 P
(

v = 0
∣∣∣m(`)

vcj

)
− 1 =

exp
(

L
(

v
∣∣∣m(`)

vcj

))
− 1

exp
(

L
(

v
∣∣∣m(`)

vcj

))
+ 1

= tanh
(

1
2

L
(

v
∣∣∣m(`)

vcj

))
(2.74)

Hence the log-likelihood ratio in (2.68) can be written as

m(`)
cjvi = 2 tanh−1

(
2 P
(

vi = 0
∣∣∣ m(`)

vicj

)
− 1
)

(2.75)

and, combining (2.72), (2.74), and (2.75), it follows that

m(`)
cjvi = 2 tanh−1

(
∏

v∈A(cj)\{vi}
tanh

(
1
2

L
(

v
∣∣∣ m(`)

vcj

)))
(2.76)

where the symbol node vi has been replaced by its complementary modulo-2
sum according to (2.70). Moreover, combining (2.67) and (2.76) yields the final
updating rules for the BP algorithm

m(`)
vicj = L (vi | ri) + ∑

c∈A(vi)\{cj}
m(`−1)

cvi (2.77)

m(`)
cjvi = 2 tanh−1

 ∏
v∈A(cj)\{vi}

tanh
(

1
2

m(`)
vicj

) (2.78)

FINAL DECISIONS AND STOPPING CRITERIA

The messages are passed along the edges of the underlying bipartite graph
until a maximum number of iterations `max is reached. Then, the binary
decision for the ith symbol node v̂i after ` = `max iterations is determined
analogously to (2.77) by taking into account all received messages, that is,

v̂(`)i = sign
(

L
(
vi

∣∣∣ BP(`)
))

= sign
(

L (vi | ri) +∑
c∈A(vi)

m(`)
cvi

)
(2.79)

where the condition on BP(`) denotes the information obtained by performing
the BP algorithm with ` iterations. When transmitting over a discrete channel
like the BSC or the quantized AWGN channel, the final log-likelihood ratio
can be zero. In such a case, the binary decision for the symbol node v̂i is
determined by flipping a fair coin.

As a variant, (2.79) can be evaluated during each iteration and ending the
decoding algorithm in advance, once the current tentative symbol node deci-
sions form a valid codeword.

64 Graphs, Codes, and Codes on Graphs

Based on the previous discussions, the BP decoding algorithm can be formu-
lated as follows:

Algorithm BP (Belief Propagation)

1. At iteration ` = 0 initialize the messages from symbol node vi to con-
straint node cj by

m(0)
vicj = L (vi | ri) (2.80)

where ri denotes the ith received symbol, observed at symbol node vi.

2. Update all messages from constraint node cj to symbol node vi according
to (2.78).

3. (i) Stop if the maximum number of iteration `max is reached and deter-
mine the binary symbol node decisions v̂(`max)

i according to (2.79).

(ii) Optionally, determine the current tentative binary symbol node deci-
sions v̂(`)i at iteration ` as given by (2.79) and stop if those values form
a valid codeword.

4. Increase ` by one, update all messages from symbol node vi to constraint
node cj according to (2.77), and go to step BP-2.

Further generalizing the BP algorithm yields the sum-product algorithm for
factor graphs, used among others to determine the marginals of multivariable
PDFs [Wym07].

3
Voltage Graph-Based QC LDPC

Block Codes with Large Girth

D ue to their low decoding complexity and good BER performance close
to the theoretical limit, LDPC block codes are a suitable choice for
modern communication standards [IEE05] [Eur08] [Eur09].

In general, LDPC block codes have a minimum distance which is less than
that of the best known linear codes, but due to their structure they are suitable
for low-complexity iterative decoding algorithm, like for example the BP algo-
rithm (cf. Section 2.6). While the girth of the underlying graph determines the
number of independent decoding iterations, the minimum distance of such a
code seems to play a minor role for iterative decoding algorithms, since the
error-correcting capabilities of such suboptimal procedures are often less than
those guaranteed by the minimum distance. More precisely it was shown
in [DLZ+09] that their BER performance for high SNRs is predominantly dic-
tated by the structure of the smallest so-called absorbing sets. However, since
the size of these absorbing sets is upper-bounded by the minimum distance,
LDPC block codes with large minimum distance are of particular interest.

In this chapter, we shall focus on the class of quasi-cyclic (QC) (J,L)-regular
LDPC block codes, which is a subclass of regular (nonrandom) LDPC codes
(cf. Section 2.5) whose codewords can be obtained from another codeword by
a cyclic shift of t ≥ 1 code symbol positions. Such codes are most most suit-
able for algebraic design and can be efficiently represented in the form of tail-
bitten convolutional codes. Commonly, QC LDPC block codes are constructed
based on combinatorial approaches using either finite geometries [KLF01] or
Steiner Triple Systems (STSs) [JW01a] [JW01b] and have girth g ≥ 6. Among
others, Tanner et al. [TSF01] constructed QC LDPC block codes with rate
R = 2/5 and girth up to 12 based on subgroups of the multiplicative group of
the binary (Galois) field F2. This method was further generalized in [TSS+04].

65

66 Voltage Graph-Based QC LDPC Block Codes with Large Girth

Although QC LDPC block codes are not asymptotically optimal, they can
outperform nonrandom or pseudorandom LDPC block codes (from asymp-
totically optimal ensembles) for short or moderate block lengths [Fos04]. This
motivates searching for good short QC LDPC block codes.

Section 3.1 focuses on QC LDPC block codes constructed from tailbitten
convolutional codes. The corresponding base and voltage graphs, used when
searching for QC LDPC block codes with large girth, are introduced in Sec-
tion 3.2. Bounds on the girth and the minimum distance for QC (J, L)-regular
LDPC block codes are discussed in Section 3.3. In Section 3.4, new search al-
gorithms for QC LDPC block codes are presented. Moreover, a new algorithm
for computing the minimum distance of QC (J, L)-regular LDPC block codes
is described in Section 3.5, while new examples of QC (J, L)-regular LDPC
block codes with girth between 10 and 24 are given in Section 3.6.

Finally, Section 3.7 focuses on constructing QC LDPC block codes from dif-
ferent base matrices, including binomials and STSs, presenting new examples
of QC (J, L)-regular LDPC block codes constructed in such a way. Section 3.8
concludes this chapter by comparing the BER performance of newly found
QC (J, L)-regular LDPC block codes with J = 3, rates R = 1/2, R = 2/3,
R = 3/4, as well as R = 5/6, and block lengths around 576 with the cor-
responding irregular LDPC block codes defined in the IEEE 802.16 WiMAX
standard of same rate and block length.

3.1 QUASI-CYCLIC LDPC BLOCK CODES

Consider a rate R = b/c convolutional code C determined by the parity-check
matrix

H(D) =


h00(D) h01(D) . . . h0(c−1)(D)

h10(D) h11(D) . . . h1(c−1)(D)
...

...
. . .

h(c−b−1)0(D) h(c−b−1)1(D) . . . h(c−b−1)(c−1)(D)

 (3.1)

with syndrome memory ms whose parity-check polynomials are monomial
entries hij(D) = Dwij of degree wij ≤ ms, where wij are nonnegative integers.
Clearly, such a parity-check matrix H(D) can be represented by its degree
matrix W =

(
wij
)
, i = 0, 1, . . . , c − b − 1 and j = 0, 1, . . . , c − 1. Starting

with Section 3.7, the restriction to parity-check matrices with only monomial
entries will be relaxed to additionally allow zero and binomial entries.

The semi-infinite parity-check matrix for such a convolutional code is given
in (1.69). Following Subsection 1.3.2, the M(c − b) × Mc tailbiting parity-
check matrix H(tb) of a corresponding linear QC block code B is obtained by

3.1. Quasi-Cyclic LDPC Block Codes 67

tailbiting the semi-infinite parity-check matrix to length M c-tuples, that is,

H(tb) =



H0 Hms Hms−1 . . . H1
H1 H0 Hms . . . H2

H2 H1
.

...
... H2

. . . H0 Hms

Hms

...
. . . H1 H0

Hms

. . . H2 H1
. . .

.
.

Hms Hms−1 . . . H1 H0


(3.2)

In particular note that every cyclic shift of a codeword v of B by c positions
modulo Mc yields another codeword.

Due to the restriction to only monomial entries in H(D), H(tb) is (J, L)-
regular, that is, it contains exactly J and L ones in each column and row,
respectively. In particular, using a rate R = b/c parent convolutional code, it
follows that J = c− b and L = c. Such a parity-check matrix H(tb) determines a
(J, L)-regular LDPC block code, or, using the concept of biadjacency matrices,
a Tanner graph with vertex and constraint node degree J and L, respectively.
Moreover, to satisfy the sparsity of the parity-check matrix H(tb), we assume
the tailbiting length M to be much larger than L (and hence J), that is, M� L.

Consider the Tanner graph with the biadjacency matrix H(tb), correspond-
ing to a QC (J, L)-regular LDPC code, obtained from the parity-check matrix
of a tailbiting LDPC block code. Clearly, by letting the tailbiting length M
tend to infinity, we return to the convolutional parity-check matrix H(D) (3.1)
of the parent convolutional code C. In terms of Tanner graph representations,
this procedure corresponds to unwrapping the underlying graph and extend-
ing it in the time domain towards infinity. Hereinafter, we will call the girth
of such an infinite Tanner graph the free girth and denote it by gfree.

Finally, note that the first c columns of H(tb) are repeated throughout the
whole matrix in a cyclicly shifted manner. Hence, by reordering the columns
as 0, c, 2c, . . . , (M− 1)c, 1, c+ 1, 2c+ 1, . . . , (M− 1)c+ 1, etc. and the rows as
0, (c− b), 2(c− b), . . . , (M− 1)(c− b), 1, (c− b) + 1, 2(c− b) + 1, . . . , (M−
1)(c − b) + 1, etc. we obtain a parity-check matrix of an equivalent (J, L)-
regular LDPC block code constructed from circulant matrices

H(c) =


Iw00 Iw01 · · · Iw0(c−1)

Iw10 Iw11 · · · Iw1(c−1)

· · · · · · · · · · · ·
Iw(c−b−1)0 Iw(c−b−1)1 · · · Iw(c−b−1)(c−1)

 (3.3)

68 Voltage Graph-Based QC LDPC Block Codes with Large Girth

where wij are the entries of the degree matrix W and Iwij denotes an M×M
circulant matrix, that is, an identity matrix with its rows shifted cyclically to the
left by wij positions. Note, that the (J, L)-regular LDPC block code determined
by H(c) is not quasi-cyclic, although it is equivalent to the QC block code
determined by H(tb).

Example 3.1:
Consider a rate R = 1/4 convolutional code C whose parity-check matrix
consists only of monomial entries, for example,

H(D) =

 1 1 1 1
1 1 D D
1 D 1 D

 (3.4)

with degree matrix

W =

 0 0 0 0
0 0 1 1
0 1 0 1


Tailbiting (3.4) to length M = 2, yields the tailbiting 6× 8 parity-check matrix
of a QC LDPC block code

H(tb) =



v0 v1 v2 v3 v4 v5 v6 v7

c0 1 1 1 1 0 0 0 0
c1 1 1 0 0 0 0 1 1
c2 1 0 1 0 0 1 0 1
c3 0 0 0 0 1 1 1 1
c4 0 0 1 1 1 1 0 0
c5 0 1 0 1 1 0 1 0


(3.5)

In particular, every cyclic shift of a codeword by c = 4 positions modulo
Mc = 8 yields another codeword. By reordering the columns as v0, v4, v1,
v5, v2, v6, v3, v7 and the rows as c0, c3, c1, c4, c2, c5, we obtain an equivalent
rate R = 1− 6/8 (3, 4)-regular LDPC block code whose parity-check matrix
is based on circulants, that is,

H(c) =



v0 v4 v1 v5 v2 v6 v3 v7

c0 1 0 1 0 1 0 1 0
c3 0 1 0 1 0 1 0 1
c1 1 0 1 0 0 1 0 1
c4 0 1 0 1 1 0 1 0
c2 1 0 0 1 1 0 0 1
c5 0 1 1 0 0 1 1 0


(3.6)

Interpreting the parity-check matrix H(tb) (3.5) as a biadjacency matrix,
yields a Tanner graph G which is illustrated in Figure 3.1 and consists of 8
symbol nodes and 6 constraint nodes with girth g = 4.

3.2. Base Matrices, Voltages, and their Graphs 69

v0 v1 v2 v3 v4 v5 v6 v7

c0 c1 c2 c3 c4 c5

Figure 3.1: Tanner graph with girth g = 4 consisting of 8 symbol
nodes vi, i = 0, 1, . . . , 7, and 6 constraint nodes cj, j =
0, 1, . . . , 5.

3.2 BASE MATRICES, VOLTAGES, AND THEIR GRAPHS

A binary matrix B is called base matrix for a tailbiting LDPC block code B
if its parent convolutional code C with parity-check matrix H(D) has only
monomial or zero entries and satisfies

B = H(D)
∣∣
D=1 (3.7)

that is, all nonzero entries in H(D) are replaced by D0 = 1. Note that different
tailbiting LDPC block codes can have the same base matrix B.

The corresponding base graph1 GB follows as the bipartite graph, whose
biadjacency matrix is given by the base matrix B. Denote the girth of such a
base graph by gB.

Next, consider the additive group (Γ,+) where Γ = {γ}. The correspond-
ing voltage graph GV = {EB,VB, Γ} is obtained from a base graph GB = {EB,VB}
by assigning a voltage value γ(e, ζ, ζ ′) to every edge e which connects the ver-
tices ζ and ζ ′ and satisfies the property γ(e, ζ, ζ ′) = −γ(e, ζ ′, ζ). The defini-
tions of a path and a cycle in a voltage graph coincide with those in a regular
graph, except for the additional restriction that two neighboring edges may
not connect the same nodes in reversed order. Moreover, the voltage of a path
and the voltage of a cycle within a voltage graph, follows as the sum of all edge
voltages involved. Note that even though the edges of a voltage graph are not
directed, their edge voltage depends on the passing direction.

Let G = {E ,V} be a lifted graph obtained from a voltage graph GV, where
E = EB × Γ and V = VB × Γ. Two vertices (ζ, γ) and (ζ ′, γ′) are connected in

1The terminology »base graph« originates from graph theory and is equivalent to the
terminology protograph or seed graph.

70 Voltage Graph-Based QC LDPC Block Codes with Large Girth

the lifted graph by an edge if and only if ζ and ζ ′ are connected in the voltage
graph GV with an edge having the voltage value γ(e, ζ, ζ ′) = γ− γ′.

Clearly, every cycle in the lifted graph corresponds to a cycle in the voltage
graph with zero voltage. Consequently, the girth gV of a voltage graph follows
as the length of its shortest cycle with voltage zero, which is equal to its free
girth gfree. Note that such a cycle does not necessarily have to be simple.

When searching for QC LDPC block codes, as for example described in
Section 3.4, we construct a base graph GB and determine its corresponding
voltage graph GV by assigning suitable edge voltages. In particular, these edge
voltages are identical to the monomial degrees wij of the degree matrix W. To
be more precise, denote the edge voltage from symbol node vi to constraint
node cj and vice versa by

µvicj with cj ∈ A(vi) (vi → cj)

µcjvi with vi ∈ A(cj) (cj → vi)

where for parity-check matrices H(D) with only monomial entries, the edge
voltage µvicj determines the monomial degree wij according to{

µvicj = −wji

µcjvi = wji
(3.8)

When searching for LDPC convolutional codes with a given free girth gfree,
integer edge voltages are used, that is, the monomial degrees are chosen from
an infinite additive group. However, when searching for QC LDPC block
codes with a given girth g, obtained by tailbiting a parent convolutional code
to length M, a group of modulo M residues is used and (3.8) is replaced by{

µvicj = −wji mod M

µcjvi = wji mod M
(3.9)

Example 3.1 (Cont’d):
Consider the rate R = 1/4 (3, 4)-regular LDPC convolutional code C whose
parity-check matrix is given (3.4). Its base matrix follows as

B = H(D)
∣∣∣
D=1

=

 1 1 1 1
1 1 1 1
1 1 1 1

 (3.10)

while the corresponding base graph GB is illustrated in Figure 3.2.
By labeling the edges of the base graph GB according to (3.8), the corre-

sponding voltage graph GV is obtained as shown in Figure 3.3. The edge

3.2. Base Matrices, Voltages, and their Graphs 71

v0 v1 v2 v3

c0 c1 c2

Figure 3.2: Base graph GB for the rate R = 1/4 QC (3, 4)-regular
LDPC block code used in Example 3.1.

0

0 0
0

0
0 1

1

0
1 0

1

v0 v1 v2 v3

c0 c1 c2

Figure 3.3: Voltage graph GV for the rate R = 1/4 QC (3, 4)-regular
LDPC block code used in Example 3.1.

from, for example, constraint node c1 to symbol node v2 is labeled according
to

µc1v2 = −µv2c1 = w12 = 1

and hence the parity-check polynomial h12(D) = Dw12 = D. The girth of
this voltage graph follows as gV = 4 (for example, v0 → c0 → v1 → c1 →
v0). The free girth of the infinite Tanner graph, corresponding to the parent
convolutional code C, is determined by the convolutional parity-check matrix
H(D) and is equal to the girth of the voltage graph; and hence we conclude
that gfree = gV = 4.

Tailbiting the parity-check matrix H(D) to length M = 2, yields the 6× 8
tailbiting parity-check matrix of a QC LDPC block code given in (3.5), whose
lifted graph is equivalent to the Tanner graph illustrated in Figure 3.1. From a
graph theoretical point of view this corresponds to duplicating the base graph

72 Voltage Graph-Based QC LDPC Block Codes with Large Girth

M = 2 times and directly connecting the node ζ in the γth copy with another
node ζ ′ in the γ′th copy if and only if ζ and ζ ′ are connected in the voltage
graph with an edge having the voltage value γ− γ′.

For example, the constraint node c1 in each of the M = 2 copies is cyclically
connected to the symbol node v2 in the next copy, since these two nodes
are connected in the voltage graph by an edge labeled with the edge voltage
µc1v2 = 1.

3.3 BOUNDS ON THE GIRTH AND THE MINIMUM DISTANCE

Every voltage graph corresponds to a convolutional parity-check matrix H(D),
and hence describes an infinite sequence of tailbiting QC LDPC block codes
with different truncations lengths M in a rather compact form. Consequently,
such codes can be efficiently analyzed using their voltage graph represen-
tation, and search algorithms can directly consider an infinite sequence of
related QC LDPC block codes. In the following, different relations between
parameters of the base graph GB, voltage graph GV, and the corresponding
infinite sequence of QC LDPC block codes will be established:2

Theorem 3.1 The minimum distance dmin and the girth g of a rate R = K/N
QC LDPC block code B obtained from a rate R = b/c convolutional code C
with free distance dfree and girth gfree by tailbiting to length M are upper-
bounded by the inequalities

dmin ≤ dfree

g ≤ gfree

Proof. The first statement follows directly from the fact that any code sequence
v(D) of the tailbiting block code B, obtained from the parity-check matrix
H(D) of the parent convolutional code C, satisfies

v(D)HT(D) = 0 mod (DM − 1) (3.11)

Since the parent convolutional code C satisfies (3.11) without reduction mod-
ulo (DM − 1) and reducing modulo (DM − 1) does not increase the weight of
a polynomial, the first statement follows.

For the second statement we consider the voltage graph GV representation
of the parent convolutional code C with girth gV = gfree together with the
Tanner graph representation of the QC LDPC block code B with girth g. Sim-
ilar to the relations between the free distance dfree and the minimum distance

2Note that similar relations were previously derived in [BKS09] for the special case
of QC (J = 2, L)-regular LDPC block codes.

3.3. Bounds on the Girth and the Minimum Distance 73

dmin, there exists a relation between each cycle within the voltage graph GV of
the parent convolutional code and the Tanner graph G of the corresponding
block code obtained by tailbiting to length M. As mentioned previously, the
sum of all edge voltages for every cycle in GV is equal to zero. Similarly, every
cycle in G corresponds to a cycle in GV such that its edge voltages sum up to
zero modulo M. From the same argument as before it follows that

g ≤ gV = gfree �

Consider the base graph of a QC (J ≥ 3, L)-regular LDPC convolutional
code with girth gB and let ds denote the sth generalized minimum Hamming
distance of the linear

(
JMc, M((J− 2)c+ b)

)
block code BT determined by the

parity-check matrix which corresponds to the incidence matrix of the Tanner
graph. That is, ds corresponds to the minimal number of nontrivial code
symbols of an s-dimensional linear subcode.

Theorem 3.2 There exists a tailbiting length M and a voltage assignment,
such that the girth g of the Tanner graph for the corresponding tailbiting block
code of length Mc satisfies the inequality

g ≥ 2 max {gB + dgB/2e , d2} (3.12)

where d2 is the second generalized minimum Hamming distance, that is, the
minimum support of a subcode of BT having dimension two. We have equal-
ity in (3.12), if the underlying base graph consists of two connected cycles,
having at least one common vertex.

Proof. According to Theorem 3.1, any cycle in the Tanner graph of a QC
LDPC block code corresponds to a cycle of the same length in the voltage
graph. Since the labels of the voltage Tanner graph can be freely chosen, it
is enough to prove that there is no zero cycle whose length is shorter than
2(gB + dgB/2e), that is, no such cycle whose voltage is zero regardless of the
voltage assignment of the base graph3.

The number of times each edge in such a cycle of the voltage graph is
passed in different directions has to be even. Such a cycle can not be simple,
since in a simple cycle each edge is passed in one direction only. Hence, this
cycle passes through the vertices of a subgraph which contains at least two
different cycles, corresponding to two different nonzero codewords. The mini-
mum distance of the code BT determined by the parity-check matrix which
is the incident matrix to the base graph is equal to the girth gB (cf. [BKS09]).
According to the Griesmer bound, the smallest length of a linear code with

3Note that a cycle whose voltage is zero regardless of the voltage assignment of the
base graph is also known as an inevitable cycle [KNCS07] or balanced cycle [O’S06].

74 Voltage Graph-Based QC LDPC Block Codes with Large Girth

two nonzero codewords of minimum distance d is d + dd/2e, and hence the
first lower bound of inequality (3.12) follows.

Next, consider the second lower bound. The definition of the second gener-
alized minimum Hamming distance implies that the smallest subgraph with
two cycles consists of at least d2 edges. Hence, the second of the two lower
bounds gives the precise value of the girth of a subgraph containing two
connected cycles, having at least one common symbol node. Otherwise, the
second generalized minimum Hamming distance d2 is a lower bound. �

These bounds are tighter than the 3gB bound published in [KNCS07] and
[KW08] but not tight if the shortest nonsimple cycle consists of two simple
cycles connected by a path.

In 2004, Fossorier [Fos04] derived an upper bound on the achievable girth g
for LDPC block codes constructed from all-one base matrices. Using the same
approach, this upper bound can be reformulated to include base matrices with
zero elements as follows:

Theorem 3.3 Consider the parity-check matrix H(D) of a rate R = b/c
convolutional code with base matrix B. Denote the corresponding base graph
by GB and let B′ be the 2× 3 submatrix

B′ =
(

1 1 1
1 1 1

)
(3.13)

If the base matrix B, after possibly reordering its rows and columns, contains
the submatrix B′, then the girth gV of the corresponding voltage graph GV is
upper-bounded by

gV ≤ 12 (3.14)

regardless of the voltage assignment.

Proof. The subgraph determined by the 2× 3 submatrix B′ contains 3 sym-
bol nodes, 2 constraint nodes, and 6 edges. Moreover, there exist 3 shortest
cycles of length 4. Thus, the base graph GB has girth gB = 4 and its second
generalized Hamming distance is d2 = 6. Applying Theorem 3.2, we obtain
the precise value of the achievable girth as 2d2 = 12, which completes the
proof. �

The following upper bound on the minimum distance, was initially derived
by MacKay and Davey [MD99] for LDPC block codes constructed from all-one
base matrices and later reformulated by Bocharova et al. [BKSS09] to include
base matrices with zero elements. Consider the parity-check matrix H(D) of
a rate R = b/c (J, L)-regular LDPC convolutional code C with free distance

3.4. Searching for QC LDPC Block Codes with Large Girth 75

dfree. Tailbiting to length M yields a QC LDPC block code of block length Mc
whose minimum distance dmin can be upper-bounded by

dmin ≤ dfree ≤ (c− b + 1)! (3.15)

which simplifies to (J + 1)! for LDPC block codes constructed from all-one
base matrices.

Next, we shall consider an upper bound on the free distance dfree of rate
R = b/c (J, L)-regular LDPC convolutional codes by Smarandache et al.
[SV11]4. Denote by J a subset of c− b + 1 columns of H(D) and consider its
convolutional subcode, whose code c-tuples have zeros at all positions whose
corresponding columns are not included in J . Deleting those zero positions
yields the shortened convolutional code C̃J with rate R̃ = 1/(c− b + 1), free
distance d̃free ≥ dfree and generator matrix

G̃J (D) =
(

g̃J0 (D) . . . g̃Jc−b−1(D) g̃Jc−b(D)
)

(3.16)

Without loss of generality we can assume that g̃Jc−b(D) 6= 0, and hence an
equivalent systematic generator matrix follows from Cramer’s rule and (1.66)
as

G̃Jsys(D) =

(
∆J0

∆Jc−b

. . .
∆Jc−b−1

∆Jc−b

1

)
(3.17)

or, alternatively,

G̃J (D) =
(

∆J0 . . . ∆Jc−b−1 ∆Jc−b

)
(3.18)

where ∆Ji denotes the determinant of the square matrix obtained from H̃(D)

by removing column i. Thus, the free distance d̃free can be upper-bounded by

d̃free ≤
c−b

∑
i=0

wH

(
∆Ji
)

(3.19)

where wH(∆Ji) denotes the Hamming weight of the polynomial determinant
∆Ji . In particular, the free distance dfree of the rate R = b/c (J, L)-regular
LDPC convolutional code C follows as

dfree ≤ min
J

c−b

∑
i=0

wH

(
∆Ji
)

(3.20)

where the minimization is carried out over all possible subsets of c − b + 1
columns of H(D).

4This upper bound is a generalized version of the upper bound by Bocharova et
al. [BKSS09] which is only valid for LDPC convolutional codes obtained from all-
one base matrices.

76 Voltage Graph-Based QC LDPC Block Codes with Large Girth

3.4 SEARCHING FOR QC LDPC BLOCK CODES WITH LARGE GIRTH

The problem of finding QC LDPC block codes with large girth for a wide
range of code rates was previously considered by several authors, for exam-
ple, in [Fos04], [TSS+04], [MKL06], [O’S06], [KNCS07], and [EG10]. Codes
with girth smaller than or equal to 12 are constructed in [TSF01], [Fos04],
[TSS+04], and [MKL06], while [O’S06] gives examples of rather short codes
with girth 14. QC (J, L)-regular LDPC block codes with girth up to 18 and
J ≥ 3 are presented in [EG10]. In particular it is shown that QC LDPC block
codes with girth greater than or equal to 14 and block length between 34000
and 92000 outperform random codes of the same block length and code rate.

When searching for QC (J, L)-regular LDPC block codes with large girth,
we start with a base graph corresponding to an all-one base matrix of size
J × L. Then, suitable voltage assignments, that is, edge voltages based on
the group of nonnegative integers are determined, such that the girth of this
voltage graph is greater than or equal to a given target girth g. Since shorter
block codes are of particular interest, we replace all edge voltages by their
corresponding modulo M residuals, where the value M is minimized under
the restriction of preserving the girth g.

Applying the previously introduced concept of biadjacency matrices yields
the corresponding degree matrix W, and hence the parity-check matrix H(D)
of a convolutional code whose bipartite graph has girth g = gfree. By tail-
biting the convolutional parity-check matrix to lengths M, we obtain a rate
R = Mb/Mc QC LDPC block code whose parity-check matrix is equal to the
biadjacency matrix of a bipartite graph with girth g.

Note that the process of determining suitable voltage assignments for a
given base graph with target girth g can be split into the following two sepa-
rate steps:

(i) Constructing a list of all (voltage) inequalities which describe all cycles
of length smaller than g within the base graph (cf. Subsection 3.4.1).

(ii) Searching for a suitable voltage assignment of the base graph such that
all inequalities are satisfied (cf. Subsection 3.4.2).

The efficiency of the second step, searching for a suitable voltage assign-
ment, depends on the chosen representation for the list of inequalities deter-
mined during the first step. In general, when searching for all cycles of length
g roughly (J − 1)g different paths have to be considered. However, using a
similar idea as in Section 2.4 when searching for a path within a trellis, a tree
of maximum depth g/2 is created, used to search for identical nodes, and
hence reducing the complexity to roughly (J − 1)g/2.

3.4. Searching for QC LDPC Block Codes with Large Girth 77

3.4.1 STEP I: CREATING A TREE STRUCTURE

In the first step of the algorithm, we consider a base graph GB with c symbol
nodes and c− b constraint nodes which corresponds to an all-one base matrix
of size (c− b)× c. For each of its c symbol nodes vi, i = 0, 1, . . . , c− 1, we
create a separate subtree according to the following description.

First, we will introduce some notations. A node in such a tree is denoted
by ζ, has a unique parent node ζp, and is connected to other nodes accord-
ing to the underlying base graph GB. Since the base graph GB is bipartite
(cf. Section 2.5), every node ζ ∈ Vi, is only connected to nodes ζ ′ ∈ Vj with
i, j ∈ {0, 1}, i 6= j, where V0 and V1 denote the sets of symbol and constraint
nodes, respectively. In other words, a symbol node is only connected to a
constraint nodes and vice versa.

Moreover, every node ζ is characterized by its depth `(ζ) and its number
n(ζ), where n(ζ) = i follows from ζ = vi ∈ V0 or ζ = ci ∈ V1 depending
on whether its depth `(ζ) is even or odd. In particular, note that every node
satisfies

ζ ∈ Vi where i = `(ζ) modulo-2

Next, c separate subtrees Ti, i = 0, 1, . . . , c− 1, are grown, where the root
node ζi,root of the ith subtree is initialized with the ith symbol node ζi,root =
vi ∈ V0 and depth `(ζi,root) = 0. Since the girth of a bipartite graph is always
even, it is sufficient to grow each subtree up to depth (g − 2)/2 in order to
obtain all possible cycles of length smaller than g. In other words, every node
ζ ∈ Vi at depth `(ζ) = n < (g− 2)/2 with i = n modulo 2 is connected by
different branches to all nodes ζ ′ ∈ V(i+1) mod 2 at depth n+ 1 according to the
underlying base graph GB, except for the node ζp which is already connected
to ζ at depth n− 1.

Clearly, all subtrees together contain all possible paths of length up to g− 2
in the voltage graph. Thus, voltage inequalities for all cycles of length at
most g− 2 can be constructed by labeling all edges with their edge voltages
according to (3.8). Then, the voltage for node ζ in the ith subtree Ti follows as
the sum of the edge voltages along the path ζi,root → ζ. Moreover, for every
node pair (ζ, ζ ′) in the same subtree i with the same number n(ζ) = n(ζ ′)
and depth `(ζ) = `(ζ ′) but different parent nodes ζp 6= ζ ′p, the corresponding
voltage inequality follows as the difference between the voltages for the paths
from ζi,root to ζ and ζ ′, respectively, that is,

(ζi,root → ζ)− (ζi,root → ζ ′) 6= 0 (3.21)

If and only if there exists a cycle of length g′ < g, then at depth g′/2 there
exists at least one such pair of nodes (ζ, ζ ′), whose corresponding voltage
inequality is not satisfied; otherwise all voltage inequalities are satisfied.

78 Voltage Graph-Based QC LDPC Block Codes with Large Girth

µc0v0

µc0v1 µc0v2

µc0v3

µc1v0

µc1v1 µc1v2
µc1v3

µc2v0
µc2v1 µc2v2

µc2v3

v0 v1 v2 v3

c0 c1 c2

Figure 3.4: General voltage graph GV for the rate R = 1/4 QC (3, 4)-
regular LDPC block code used in Example 3.2.

Example 3.2:
Consider the rate R = 1/4 (3, 4)-regular LDPC convolutional code from Ex-
ample 3.1 whose base graph with four symbol nodes vi ∈ V0, i = 0, 1, 2, 3, and
three constraint nodes ci ∈ V1, i = 0, 1, 2, is given in Figure 3.2.

By labeling its edges with the edge voltages µcjvi the corresponding general
voltage graph as shown in Figure 3.4 is obtained. Based on this graph, c = 4
separate subtrees are created, where the root node ζroot of the ith subtree is
initialized with the symbol nodes vi, i = 0, 1, 2, 3.

Within this example, we assume that we are interested in finding a voltage
assignment, that is, entries of the degree matrix W, such that the correspond-
ing voltage graph has at least girth g = 6. Hence, it is sufficient to extend each
of the c = 4 subtrees up to depth (g− 2)/2 = 2.

Consider for example the subtree with root node v0 as illustrated in Fig-
ure 3.5 where for each node ζ at depth `(ζ) = 2 the corresponding voltage for
the path ζi,root → ζ is given. Clearly, at depth `(ζ) = 1 there are no identical
nodes, while at depth `(ζ) = 2 there are 3×

(3
2
)
= 9 pairs of identical nodes

(n(ζ) = n(ζ ′)) with different parents.
For example, the voltage inequalities obtained by checking all such node

pairs (ζ, ζ ′) with ζ = v1, that is, n(ζ) = 1, at depth `(ζ) = 2 in the subtree
starting with symbol node v0 as illustrated in Figure 3.5, are(

− µc0v0 + µc0v1

)
−
(
− µc1v0 + µc1v1

)
6= 0 (v0→c0→v1)−(v0→c1→v1) 6=0(

− µc0v0 + µc0v1

)
−
(
− µc2v0 + µc2v1

)
6= 0 (v0→c0→v1)−(v0→c2→v1) 6=0(

− µc1v0 + µc1v1

)
−
(
− µc2v0 + µc2v1

)
6= 0 (v0→c1→v1)−(v0→c2→v1) 6=0

Taking into account that similar subtrees are constructed using the remaining
three symbol nodes v1, v2 and v3 as their root node ζroot, there exist in total
4× 9 = 36 node pairs, that is voltage inequalities. However, among all those
36 voltage inequalities, there are only 18 unique ones.

3.4. Searching for QC LDPC Block Codes with Large Girth 79

v0

−µc0v0

−µc1v0

−µc2v0

µc0v1
µc0v2

µc0v3

µc1v1
µc1v2

µc1v3

µc2v1
µc2v2

µc2v3

c0

v1 → −µc0v0 + µc0v1

v2 → −µc0v0 + µc0v2

v3 → −µc0v0 + µc0v3

c1

v1 → −µc1v0 + µc1v1

v2 → −µc1v0 + µc1v2

v3 → −µc1v0 + µc1v3

c2

v1 → −µc2v0 + µc2v1

v2 → −µc2v0 + µc2v2

v3 → −µc2v0 + µc2v3

Figure 3.5: The subtree T0 with maximum depth two, starting with
symbol node v0, and constructed from the general voltage
graph in Figure 3.4 used in Example 3.2.

Algorithm TR (Constructing a tree representation)

1. Grow c separate subtrees according to the underlying base graph up to
depth g/2− 1, with the root node ζi,root of the ith subtree being initialized
with ζroot = vi ∈ V0 and depth `(ζroot) = 0.

2. Extend every node ζ ∈ Vi at depth `(ζ) = n < g/2− 1 with i = n mod 2
with branches connected to all nodes ζ ′ ∈ Vi+1 mod 2 at depth n+ 1 accord-
ing to the underlying base graph, except ζp which is already connected to
ζ at depth n− 1. Denote the set of all nodes within the ith subtree by Ti.

3.4.2 STEP II: SEARCHING FOR A SUITABLE VOLTAGE ASSIGNMENT

As mentioned previously, all c subtrees Ti, i = 0, 1, . . . , c− 1, with maximum
depth g/2− 1, represent all possible cycles of length smaller than or equal to
g− 2, together with their corresponding voltage inequalities.

Note however, that the same cycle might be found several times within all
c subtrees. Additionally, different cycles can correspond to the same voltage
inequality.

To determine a suitable voltage assignment, a list L of node pairs (ζ, ζ ′)
is created, containing all unique voltage inequalities of all c subtrees Ti, i =

80 Voltage Graph-Based QC LDPC Block Codes with Large Girth

0, 1, . . . , c − 1. In other words, among all identical voltage inequalities we
keep only one. Using this list, every subtree Ti, can be reduced in a similar
way by removing all nodes, not participating in any of the cycles in L. Denote
such a reduced subtree by Ti,min. That is, remove all nodes of the subtree Ti,
which only participate in already known cycles or in new cycles with already
known voltage inequalities.

In the following, we present two different approaches for finding suitable
voltage assignments. They are based on using either the list L or the reduced
subtrees Ti,min, and hence referred to as the VA-L or the VA-T algorithm,
respectively.

The VA-L algorithm labels all edges of the reduced subtrees Ti,min, i =
0, 1, . . . , c− 1, with a set of randomly chosen edge voltages. For every node
pair (ζ, ζ ′) within the list L, the voltage of the corresponding cycle is calcu-
lated according to (3.21) as the difference of the path voltages ζi,root → ζ and
ζi,root → ζ ′. If all inequalities are satisfied, that is, if none of the path volt-
age differences is equal to zero, the girth of the LDPC block code obtained
from combining the underlying base graph with such a voltage assignment is
greater than or equal to g.

Contrary, the VA-T algorithm discards the list L and considers only the
c reduced subtrees Ti,min. After labeling their edges with a set of randomly
chosen voltages, the nodes ζ of each subtree are sorted according to their
path voltage ζi,root → ζ. If there exists no pair of nodes (ζ, ζ ′) with the same
path voltage, number n(ζ) = n(ζ ′), and depth `(ζ) = `(ζ ′), but different
parent nodes ζp 6= ζ ′p, the girth of the LDPC code obtained by combining
the underlying base graph with such a voltage assignment is greater than or
equal to g.

Algorithm VA-L (Constructing a system of voltage inequalities and
searching for an optimum voltage assignment using a list)

1. Create a list L of unique voltage inequalities for all node pairs (ζ, ζ ′)
within all c subtrees Ti, i = 0, 1, . . . , c− 1, with the same number n(ζ) =
n(ζ ′), depth `(ζ) = `(ζ ′), but different parent nodes ζp 6= ζ ′p.

2. Reduce each of the c subtrees Ti by removing all nodes, which do not
participate in any of the found cycles corresponding to the voltage in-
equalities in L, and denote the reduced subtree by Ti,min.

3. Assign randomly chosen voltages to the edges of all trees and perform
the following steps:

(i) Find the path voltages for all paths leading from the root node
ζi,root of the ith reduced subtree Ti,min to all its nodes ζ ∈ Ti,min,
i = 0, 1, . . . , c− 1.

3.4. Searching for QC LDPC Block Codes with Large Girth 81

(ii) Determine the voltage inequality for all cycles (ζ, ζ ′) ∈ L, as the dif-
ference of the corresponding path voltages in Ti,min, i = 0, 1, . . . , c−
1, computed previously.

(iii) If all voltage inequalities are satisfied, the girth of the voltage graph
with such a voltage assignment is greater than or equal to the given
girth g. Otherwise, assign new random voltages to all edges and go
to step VA-L-3(i).

Algorithm VA-T (Constructing a system of voltage inequalities and
searching for an optimum voltage assignment using a tree)

1. Construct the list L and the reduced subtrees Ti,min, i = 0, 1, . . . , c − 1,
according to the steps VA-L-1 and VA-L-2. However note that the corre-
sponding list L is not needed to be stored.

2. Assign randomly chosen voltages to the edges of all trees and perform
the following steps:

(i) Find the voltages for all paths from the root node ζi,root to all nodes
within Ti,min, i = 0, 1, . . . , c− 1, and sort all elements within Ti,min
according to their voltages.

(ii) Search for a pair of nodes (ζ, ζ ′) in the sorted list with the same path
voltage, number n(ζ) = n(ζ ′), and depth `(ζ) = `(ζ ′), but different
parent nodes ζp 6= ζ ′p.

(iii) If no such pair exists, then the girth of the corresponding voltage
graph with such a voltage assignment is greater than or equal to the
given girth g. Otherwise, assign new random voltages to all edges
and go to step VA-T-2(i).

COMPLEXITY CONSIDERATIONS

Denote the number of nodes within all reduced subtrees Ti,min, i = 0, 1, . . . ,
c− 1, and the number of unique inequalities within the list L by NT and NL,
respectively, that is,

NT =
c

∑
i=1
|Ti,min| and NL = |L|

where |X | denotes the number of entries in the set X .

82 Voltage Graph-Based QC LDPC Block Codes with Large Girth

The VA-L algorithm requires NT summations for computing the path volt-
ages and NL comparisons for finding all possible cycles of length at most
g − 2, yielding a complexity estimate of NT + NL. On the other hand, the
VA-T algorithm requires the same number of NT summations for computing
the path voltages, roughly NT log2 NT operations for sorting the set, and NT
comparisons, leading to a total complexity estimate of NT log2 NT.

g = 8 g = 10 g = 12

L NT NL NT NL NT NL

4 53 42 150 231 269 519

5 93 90 286 645 581 1905

6 142 165 485 1470 1060 5430

7 200 273 759 2919 1742 12999

8 267 420 1120 5250 2663 27426

9 343 612 1580 8766 3859 52614

10 428 855 2151 13815 5358 93735

11 522 1155 2845 20790 7210 157410

12 625 1518 3674 30129 9446 251889

Table 3.1: Complexity of a search for suitable voltage assignment for
QC (J = 3, L)-regular LDPC block codes with girth g ≤ 12.

In Table 3.1 the values of NT and NL are given when searching for a suitable
voltage assignment for (J, L)-regular rate R = 1 − J/L QC LDPC convolu-
tional codes with J = 3, arbitrary L ≥ 4, and girth g constructed from all-one
base matrices. In this case, up to girth g = 10, the VA-L algorithm should be
used, while when searching for a voltage assignment with girth g ≥ 12, the
VA-T algorithm yields a better performance.

In the general case, all node pairs have to be considered and as NL can be
approximated by N2

T, we conclude that the VA-T algorithm performs asymp-
totically better (when NT → ∞).

3.5. Minimum Distance of QC LDPC Block Codes 83

3.5 MINIMUM DISTANCE OF QC LDPC BLOCK CODES

Usually the girth of the Tanner graph for a QC LDPC block code is considered
to be the most important parameter affecting the BER performance of the BP
decoding algorithm, since it determines the number of independent decoding
iterations (cf. Section 2.6). Hence, most effort is focused on finding QC LDPC
block codes with large girth, while their corresponding minimum distance is
mostly unknown. Dolecek et al. showed in 2009 that the BER performance
of the BP decoding algorithm at high SNRs depends on the structure and the
size of the smallest absorbing sets, where the latter can be upper-bounded by
the minimum distance of the corresponding block code.

From (1.26) it follows that the minimum distance dmin of any linear block
code B with parity-check matrix H is equal to the minimum number of
columns of H which sum up to zero. Hence, exploiting the regularity and
sparsity of the parity-check matrix for QC LDPC block codes, the subset of all
linear combination with a limited number of columns can be easily computed.

Consider an M(c − b) × Mc parity-check matrix H(tb) of a (J, L)-regular
rate R = Mb/Mc tailbiting block code B with block-length Mc (1.79). As
mentioned in Section 3.1, the first c columns of H(tb) are repeated throughout
the whole matrix in a cyclicly shifted manner. Hence, it is sufficient to con-
struct c separate trees, starting with each of the first c columns of H(tb) as a
root node, where each node ζ is characterized by its depth `(ζ) and its partial
syndrome state column vector σ(ζ).

The partial syndrome state column vector of the root node ζi,root of the
ith tree is initialized with the ith column of the corresponding parity-check
matrix H(tb), that is, σ(ζi,root) = hi, i = 0, 1, . . . , c − 1. Then, each tree is
grown such, that every branch between any two nodes ζ and ζ ′ is labeled by
a column vector hj, j 6= i, with σ(ζ ′) = σ(ζ) + hj, where every branch label
on the path ζi,root → ζ ′ occurs at most once.

Assuming that the kth position of the partial syndrome state column vec-
tor σ(ζ) is nonzero, there exist at most L− 1 columns which can cancel this
nonzero position and have not been considered previously. Hence, at most
L− 1 branches per nonzero position are stemming from each node ζ.

However, such a tree would grow indefinitely, until all possible linear com-
binations have been found. Assuming the minimum distance to be restricted
by dmin < t, the maximum depth of each of the c trees is limited to t − 1.
Consequently, a node ζ at depth `(ζ) will not be extended, if the number
of nonzero positions in its partial syndrome state column vector σ(ζ) ex-
ceeds J(t− `(ζ)− 1), since at most J nonzero entries can be canceled by each
branch. Moreover, note that the partial syndrome state column vector for
a node ζ can be expressed as σ(ζ) = (σT

0 (ζ) σT
1 (ζ). . . σT

(c−b−1)(ζ))T, where
σ j(ζ), j = 0, 1, . . . , c− b− 1 is a column vector of length M. Hence, by ini-

84 Voltage Graph-Based QC LDPC Block Codes with Large Girth

tially reordering the columns of the parity-check matrix H(tr) such that each of
the c− b nonoverlapping blocks of M rows contains at most one nonzero en-
try per column, the stopping criterion can be strengthened as follows: A node
ζ at depth `(ζ) will not be extended, if the number of nonzero positions in
each of its partial syndrome state column vectors σ j(ζ), j = 0, 1, . . . , c− b− 1
exceeds t − `(ζ) − 1, since at most one nonzero entry in each block can be
canceled by each branch.

Note that such a reordering of the parity-check matrix H(tb) corresponds to
the parity-check matrix H(c) (3.3) of the equivalent (J, L)-regular LDPC block
code constructed from circulant matrices, and hence is only feasible for such
LDPC block codes.

Algorithm MD (Determine the minimum distance of a rate R = b/c
(J, L)-regular LDPC block code)

1. Assume a suitable restriction t on the minimum distance dmin < t.
2. Grow c separate trees as follows:

(i) Initialize the root node of the ith tree by σ(ζroot,i) = hi with depth
`(ζ) = 0, with i = 0, 1, . . . , c− 1.

(ii) Extend all nodes ζ as long as the Hamming weights of their partial
syndrome state column vector wH(σ(ζ)) ≤ J(t− `(ζ)− 1).
Note that, for QC LDPC block codes with blocks of M rows contain-
ing only a single nonzero entry, this criterion can be strengthen to
wH(σ j(ζ)) ≤ t− `(ζ)− 1, j = 0, 1, . . . , c− b− 1.

(iii) The minimum distance dmin follows as
dmin = min

ζ
{`(ζ) | σ(ζ) = 0}

If there exists no node ζ at any depth within any of the c trees having
a zero partial syndrome state column vector, then the minimum dis-
tance of the corresponding block code is lower-bounded by dmin ≥ t.

3.6 ALL-ONE BASED QC LDPC BLOCK CODES

Using the previously introduced algorithms TR, VA-L, and VA-T, we obtain
QC (3, L)-regular LDPC block codes with girth g = 6, 8, 10, and 12 as given
in Tables 3.2 – 3.5. These LDPC block codes are constructed from all-one base
matrices, and hence their parent convolutional parity-check matrices H(D)
contain only monomial entries.

To reduce the number of possible (permuted) voltage assignments, the fol-
lowing restrictions have been applied during the search process:

3.6. All-one Based QC LDPC Block Codes 85

(i) Since the girth of a voltage graph GV is defined as the length of the
shortest cycle with voltage zero, while the sign of the voltage depends
on the direction of the edge, we can add an arbitrary offset to the volt-
ages of all edges being connected to the same node. Hence, without loss
of generality, the voltages of all edges connected to one symbol node as
well as those connected to one constraint node can be set to zero by ad-
justing the edge voltages of their neighboring edges. (For consistency
with QC LDPC block codes constructed using alternative base matrices,
which shall be introduced later, we choose always the first symbol node
and the last constraint node. This corresponds to a degree matrix with
zeros in its first column and last row.)

From a graph theoretical point of view, this procedure is equivalent
to creating a spanning tree S of the base graph GB and assigning the
zero edge voltage all edges within S by adjusting the edge voltages
of all adjacent edges not in S . In particular, the spanning tree above
is created such that it contains all edges connected to the first symbol
node as well as all edges connected to the last constraint node.

For example, the degree matrix of the (J = 3, L = 4) QC LDPC block
code with girth g = 8 from Table 3.3 follows as

W =

 0 1 4 6
0 5 2 3
0 0 0 0


(ii) To further reduce the number of only permuted degree matrices, the

following restrictions are applied:

• The first row is sorted in ascending order.

• When sorting the first and the second row in ascending order, the
first row is lexicographically less than the second row.

• The maximum degree is less than the tailbiting length M for which
there exists a QC (J = 3, L)-regular LDPC block code with given
girth g.

(iii) QC (J = 3, L = 4)-regular LDPC block codes were found by exhaustive
search over the previously defined set of restricted edge voltages.

(iv) QC (J = 3, L = U)-regular LDPC block codes with U > 4 were obtained
by adding one additional, randomly chosen column to the best degree
matrices of QC LDPC block codes with L = U − 1 and same girth
g, obtained during the previous step. The maximum degree within
this additional column is limited by twice the maximum degree of the
previous code.

86 Voltage Graph-Based QC LDPC Block Codes with Large Girth

The obtained QC (J = 3, L)-regular LDPC block codes with girth g = 6, 8, 10,
and 12 satisfying these restrictions are presented in Tables 3.2 – 3.5.

The first column contains L, the number of nonzero elements per row,
which corresponds to the number of columns of the matrices H(D) and W.
Since all entries in the first column and the last row of the degree matrix W are
zero, they are omitted in the submatrix W ′ which is given in the last column.

Next, consider the parity-check matrix H(D) of the rate R = 1− J/L con-
volutional code C with only monomial entries corresponding to the degree
matrix W. By tailbiting the semi-infinite parity-check matrix H to length M
(given in the fourth column), we obtain the parity-check matrix H(tb) of an
(N, K) block code B with minimum distance dmin, where (N, K) and dmin fol-
low from the second and third column, respectively. Due to linearly depen-
dent rows in H(tb) the rate of the block code B might be larger than 1− J/L.

The codes presented in Tables 3.2 and 3.3 coincide with the QC LDPC block
codes found by the »hill-climbing« algorithm in [WYD08], but we determined
their previously unknown minimum distance using the MD algorithm. Ta-
bles 3.4 and 3.5 contain new QC (J = 3, L)-regular LDPC block codes, which,
to the best of our knowledge, are shorter than the previously known codes ob-
tained from all-one base matrices and presented in [TSF01], [O’S06], [WYD08],
and [ZW10]. In particular, these codes are significantly shorter than the codes
presented in [EG10], which are obtained from base matrices with zeros. How-
ever, due to the zeros in their base matrix, the minimum distance of their
LDPC block codes can exceed (J + 1)!.

For example, using the MD algorithm, the minimum distance dmin of the
(444, 111) QC (3, 4)-regular LDPC block code with girth g = 12 in [EG10]
is determined to be 28, while the corresponding code in Table 3.5, that is,
the (292, 75) QC (3, 4)-regular LDPC block code, has only minimum distance
dmin = 24, but shorter block length. Using the BEAST, the free distance of
the parent convolutional code for the QC LDPC block code from [EG10] is
calculated to be dfree = 46. Hence, using the approach described in Section 3.4
together with a larger tailbiting length, it is possible to construct additional
QC (3, 4)-regular LDPC block codes with minimum distance up to 46.

3.7 ALTERNATIVE CONSTRUCTIONS

In order to find QC (J = 3, L)-regular LDPC block codes with girth g ≥ 14, the
restriction on only monomial entries in the convolutional parity-check matrix
H(D) has to be relaxed to additionally include zero entries. Theorem 3.3
states as a necessary condition that the corresponding base matrix B must not
contain a 2× 3 all-one submatrices, while according to Theorem 3.2 such a
code exists if the base graph has the girth gB satisfying (3.12).

3.7. Alternative Constructions 87

L (N, K) dmin M W ′

short codes

4 (20, 7) 6 5
1, 2, 4
3, 1, 2

5 (25, 12) 6 5
1, 2, 3, 4
3, 1, 4, 2

6 (42, 23) 4 7
1, 2, 3, 4, 6
3, 5, 2, 1, 4

7 (49, 30) 4 7
1, 2, 3, 4, 5, 6
3, 5, 2, 1, 6, 4

8 (72, 47) 4 9
1, 2, 3, 4, 5, 7, 8
3, 6, 2, 1, 8, 5, 4

9 (81, 56) 4 9
1, 2, 3, 4, 5, 6, 7, 8
3, 6, 2, 1, 8, 7, 5, 4

10 (110, 79) 6 11
1, 2, 3, 4, 5, 6, 8, 9, 10
3, 1, 7, 2, 10, 9, 4, 6, 5

11 (121, 90) 4 11
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
3, 1, 7, 2, 10, 9, 8, 4, 6, 5

12 (156, 119) 6 13
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12
3, 1, 8, 2, 9, 12, 4, 11, 5, 7, 6,

large distance codes

4 (92, 25) 22 23
1, 2, 4
5, 3, 12

5 (245, 100) 22 49
1, 3, 10, 14
40, 31, 33, 30

6 (414, 209) 22 69
3, 4, 21, 26, 67
34, 15, 64, 33, 44

7 (763, 438) 22 109
1, 3, 11, 15, 45, 93
101, 34, 18, 9, 1, 4

8 (1224, 767) 22 153
2, 10, 26, 57, 89, 4, 49
22, 19, 5, 23, 61, 90, 123

Table 3.2: Degree matrices for QC (J = 3, L)-regular
LDPC codes with girth g = 6.

88 Voltage Graph-Based QC LDPC Block Codes with Large Girth

L (N, K) dmin M W ′

short codes

4 (36, 11) 6 9
1, 4, 6
5, 2, 3

5
(65, 28)

10 13
1, 3, 7, 11(

(75, 30) [EG10]
)

10, 4, 5, 6

6
(108, 56)

10 18
2, 3, 5, 7, 9(

(156, 78) [EG10]
)

4, 6, 13, 1, 16

7 (147, 86) 10 21
2, 3, 8, 15, 17, 20
4, 6, 7, 9, 12, 13

8 (200, 127) 8 25
1, 3, 4, 10, 14, 15, 19
5, 6, 11, 24, 2, 9, 12

9 (270, 182) 8 30
1, 3, 10, 16, 23, 25, 26, 28
2, 6, 5, 9, 8, 12, 14, 22

10 (350, 247) 8 35
2, 6, 7, 18, 19, 26, 29, 31, 34
4, 5, 3, 13, 10, 16, 12, 11, 23

11 (451, 330) 8 41
1, 4, 8, 20, 27, 28, 29, 33, 39, 40
5, 7, 6, 9, 10, 19, 13, 21, 14, 35

12 (564, 425) 8 47
3, 7, 8, 22, 24, 27, 29, 35, 40, 41, 43
6, 2, 4, 5, 14, 16, 1, 21, 28, 9, 34

large distance codes

4 (116, 31) 24 29
3, 14, 21
7, 1, 17

5 (225, 92) 24 45
1, 3, 10, 14
40, 31, 33, 30

6 (431, 218) 24 72
3, 4, 21, 26, 67
34, 15, 64, 33, 44

7 (777, 446) 24 111
3, 11, 15, 45, 93, 110
34, 18, 9, 1, 4, 101

8 (1280, 802) 24 160
2, 4, 10, 26, 49, 57, 89
22, 90, 19, 5, 123, 23, 61

9 (1386, 926) 20 154
6, 9, 26, 65, 79, 99, 124, 153
24, 16, 14, 1, 46, 62, 137, 84

Table 3.3: Degree matrices for QC (J = 3, L)-regular
LDPC codes with girth g = 8.

3.7. Alternative Constructions 89

L (N, K) dmin M W ′

short codes

4
(148, 39)

14
37 1, 14, 17(

(144, 36) [EG10]
) (

39 [WYD08]
)

11, 6, 2

5
(305, 124)

24
61 2, 20, 54, 60(

(550, 220) [EG10]
) (

61 [TSF01]
)

26, 16, 31, 48

6
(606, 305)

24
101 2, 24, 25, 54, 85(

(780, 390) [EG10]
) (

103 [WYD08]
)

21, 15, 11, 8, 59

7 (1113, 638) 24
159 2, 14, 27, 67, 97, 130(

160 [WYD08]
)

21, 24, 1, 6, 75, 58

8 (1752, 1097) 24
219 3, 14, 26, 63, 96, 128, 183(

233 [WYD08]
)

24, 6, 19, 46, 4, 77, 107

9 (2871, 1916) 24
319 6, 9, 26, 65, 99, 153, 233, 278(

329 [WYD08]
)

24, 16, 14, 1, 62, 84, 200, 137

10 (4300, 2912) 24

9, 11, 26, 67, 101, 161, . . .
430 233, 302, 395(

439 [WYD08]
)

23, 5, 1, 54, 33, 96, . . .
120, 104, 244

11 (6160, 4482) 24

2, 11, 25, 62, 101, 162, 225, . . .
560 268, 421, 492(

577 [WYD08]
)

24, 21, 5, 55, 6, 59, 178, . . .
132, 204, 311

12 (8844, 6635) 22

2, 22, 23, 63, 101, 147, 219, . . .
737 322, 412, 569, 601(

758 [WYD08]
)

16, 9, 6, 58, 34, 91, 126, . . .
155, 185, 298, 232

large distance codes

4 (176, 46) 24 44
1, 14, 17
11, 6, 2

Table 3.4: Degree matrices for QC (J = 3, L)-regular
LDPC codes with girth g = 10.

90 Voltage Graph-Based QC LDPC Block Codes with Large Girth

L (N, K) dmin M W ′

short codes

4
(292, 75)

24
73 2, 25, 33(

(444, 111) [EG10]
) (

97 [O’S06]
)

18, 6, 5

5
(815, 328)

24
163 5, 33, 42, 117(

(1700, 680) [EG10]
) (

181 [TSF01]
)

36, 35, 25, 57

6
(1860, 932)

24
310 1, 24, 38, 145, 246(

(4680, 2340) [EG10]
) (

393 [ZW10]
)

16, 36, 5, 82, 110

6 (1836, 920) 24
306 9, 36, 38, 154, 204(

393 [ZW10]
)

33, 1, 13, 54, 123

7 (3962, 2266) 24
566 3, 10, 33, 147, 297, 442(

881 [O’S06]
)

31, 22, 4, 93, 133, 219

8 (6784, 4242) 24
848 4, 24, 31, 143, 303, 498, 652(

1493 [O’S06]
)

32, 9, 6, 70, 130, 193, 222

9 (12384, 8258) 24

4, 20, 32, 160, 284, . . .
1376 569, 794, 1133(

2087 [O’S06]
)

30, 7, 1, 92, 169, . . .
350, 437, 645

10 (21030, 14723) 24 2103

6, 13, 28, 150, 291, 565, . . .
678, 1258, 1600

30, 16, 5, 64, 225, 207, . . .
491, 838, 746

11 (34507, 25098) 24 3137

9, 11, 24, 150, 306, 508, . . .
666, 1279, 1765, 1958

31, 28, 1, 83, 131, 160, . . .
429, 550, 956, 1391

12 (56760, 42572) 24 4730

3, 15, 22, 140, 286, 537, . . .
811, 1113, 1878, 2524, 3349

31, 26, 1, 66, 95, 210, 373, . . .
729, 878, 1365, 1644

Table 3.5: Degree matrices for QC (J = 3, L)-regular
LDPC codes with girth g = 12.

3.7. Alternative Constructions 91

In the following, different approaches for creating such base matrices shall
be described, utilizing Steiner Triple Systems, short QC LDPC block codes
obtain from all-one matrices, or (double) Hamming codes. Moreover, the ex-
tension from monomial to binomial entries is discussed shortly. Note that
when searching for QC LDPC block codes with short block lengths, the short-
est possible base matrix should be considered.

3.7.1 STEINER TRIPLE SYSTEMS BASED QC LDPC BLOCK CODES

A Steiner Triple System (STS) is a set S of triples such that every 2-subset
occurs in exactly one triple of S . In 1846, Kirkman [Kir47] showed that an STS
of order n (STS(n)) exists if and only if n modulo 6 is equal to 1 or 3, where n
denotes the total number of unique elements within all its triples.

In [JW01a], [JW01b], and [TAD04], a (shortened) STS of order c− b with c
different triples is used to construct a (c− b)× c base matrix BSTS(c−b) such
that its nonzero positions within the ith column are determined by the ith
triple. In particular note that such a base matrix does not contain an all-
one 2 × 3 submatrix and thus satisfies the necessary condition imposed by
Theorem 3.3. Applying the previously described algorithms to such a base
matrix yields QC LPDC block codes with girth g ≥ 14.

As before, a certain subset of edges of the voltage graphs can be labeled
with the zero edge voltage, such that the number of possible voltage assign-
ments is decreased. From a graph theoretical point of view, this corresponds
to creating a spanning tree S and assigning the zero edge voltage to all its
edges by adjusting the edge voltages of all adjacent edges not in S .

The following algorithm deterministically creates such a spanning tree, by
reordering the rows and columns of the base matrix such that the number of
zero elements in its lower left corner is maximized. In such a base matrix, it
is always possible to label the last nonzero entry in each column with degree
zero. Moreover, in each of the remaining rows at the top of the base matrix,
at least one nonzero entry can be labeled with degree zero5. Parity-check
matrices fulfilling these criteria are for example given by (3.22) and (3.23).

Algorithm STS (Construction of a (J, L)-regular (c− b)× c base graph B
obtained from an STS(c− b))

1. Initialize a counter u with the number of nonzero entries per row, that
is, u = L. Moreover, denote the current row and column by s and t,
respectively, starting from the right-most entry in the last row, that is,
s = c− b− 1 and t = c− 1.

5Hereinafter the first element in each of the remaining rows shall always be labeled
with zero voltage.

92 Voltage Graph-Based QC LDPC Block Codes with Large Girth

2. Set the u entries in row s and column t, t− 1, . . . , t− u + 1 to one, that is,
bij = 1 with i = s and j = t, t− 1, . . . , t− u + 1.

3. Choose the remaining J − 1 nonzero positions in each of those u columns
such that the properties of an STS are satisfied. If possible, choose the
positions bij to minimize i. That is, avoid using the lowest rows s− 1, s−
2, . . ., if possible due to the restrictions imposed by the STS.

4. Finally, decrease t by u. If t < 0, then stop as all c columns have been
used. Otherwise, set s to s− 1, denote the number of nonzero elements
this new row s by w, set u = L− w, and go to step STS-2.

By removing the last row and the last L columns of such a (J, L)-regular
(c− b)× c base matrix B constructed using an STS(c− b), we obtain a short-
ened (c− b− 1)× (c− L) (J, L− 1)-regular base matrix B′. Deleting additional
columns and rows, yields base matrices of intermediate sizes, which are, how-
ever, irregular.

Example 3.3:
In the following, (J = 3, L)-regular base matrices of dimension 9× 12 (L =
4), dimension 13 × 26 (L = 6), and dimension 25 × 100 (L = 7) shall be
constructed. Using the STS algorithm, the following STSs (base matrices) of
order 9 (STS(9)), 13 (STS(13)) and 25 (STS(25)) are obtained:

STS(9) =
{
{1, 2, 4}, {0, 3, 5}, {0, 2, 6}, {1, 5, 6}, {3, 4, 6},
{0, 1, 7}, {4, 5, 7}, {2, 3, 7}, {0, 4, 8}, {1, 3, 8},
{2, 5, 8}, {6, 7, 8}

}
STS(13) =

{
{0, 3, 6}, {0, 2, 7}, {1, 5, 7}, {3, 4, 7}, {3, 5, 8},
{1, 4, 8}, {2, 6, 8}, {2, 4, 9}, {5, 6, 9}, {0, 1, 9},
{1, 3, 10}, {0, 4, 10}, {6, 7, 10}, {2, 5, 10}, {8, 9, 10},
{7, 8, 11}, {4, 6, 11}, {1, 2, 11}, {0, 5, 11}, {3, 9, 11},
{10, 11, 12}, {7, 9, 12}, {0, 8, 12}, {1, 6, 12}, {4, 5, 12},
{2, 3, 12}

}
STS(25) =

{
{4, 5, 10}, {1, 9, 10}, {7, 8, 11}, {1, 6, 11}, {2, 3, 12},
{0, 9, 12}, {6, 8, 12}, {8, 9, 13}, {6, 7, 13}, {0, 5, 13},
{2, 10, 13}, {3, 4, 14}, {1, 12, 14}, {0, 2, 14}, {7, 9, 14},
{5, 11, 14}, {5, 6, 15}, {3, 10, 15}, {4, 12, 15}, {1, 7, 15},
{0, 8, 15}, {11, 13, 16}, {5, 7, 16}, {6, 10, 16}, {2, 8, 16},

3.7. Alternative Constructions 93

{3, 9, 16}, {0, 4, 16}, {9, 11, 17}, {12, 13, 17}, {1, 3, 17},
{4, 7, 17}, {0, 6, 17}, {2, 5, 17}, {8, 17, 18}, {3, 11, 18},
{2, 4, 18}, {13, 15, 18}, {0, 10, 18}, {1, 16, 18}, {6, 14, 18},
{9, 18, 19}, {4, 8, 19}, {14, 15, 19}, {10, 11, 19}, {0, 3, 19},
{2, 7, 19}, {12, 16, 19}, {1, 5, 19}, {17, 19, 20}, {9, 15, 20},
{10, 12, 20}, {0, 11, 20}, {5, 8, 20}, {1, 4, 20}, {13, 14, 20},
{3, 7, 20}, {2, 6, 20}, {5, 18, 21}, {4, 6, 21}, {1, 13, 21},
{16, 17, 21}, {10, 14, 21}, {2, 9, 21}, {3, 8, 21}, {11, 15, 21},
{7, 12, 21}, {19, 21, 22}, {18, 20, 22}, {0, 7, 22}, {10, 17, 22},
{3, 5, 22}, {6, 9, 22}, {2, 15, 22}, {1, 8, 22}, {11, 12, 22},
{4, 13, 22}, {14, 16, 22}, {20, 21, 23}, {0, 1, 23}, {6, 19, 23},
{15, 16, 23}, {2, 11, 23}, {7, 18, 23}, {5, 12, 23}, {14, 17, 23},
{4, 9, 23}, {8, 10, 23}, {3, 13, 23}, {0, 21, 24}, {22, 23, 24},
{1, 2, 24}, {16, 20, 24}, {7, 10, 24}, {8, 14, 24}, {13, 19, 24},
{3, 6, 24}, {12, 18, 24}, {15, 17, 24}, {5, 9, 24}, {4, 11, 24}

}
Note that the set of all c triples in an STS(c − b), contains each number
0, 1, . . . , c− b− 1 exactly L times, but is not necessarily uniquely determined.

The corresponding base matrices of dimension 9× 12 STS(9), dimension
13 × 26 STS(13), and dimension 25 × 100 STS(25) are sparse matrices with
nonzero elements in column i and row j, if and only if the ith triple contains
the value j. The 9× 12 (3, 4)-regular base matrix constructed from the STS(9)
is denoted by BSTS(9) and is for example given by

BSTS(9) =



0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 1 0 0 1 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 0 1 0 0
2 1 0 1 0 0 0 0 1 0 0 1 0
3 0 1 0 0 1 0 0 1 0 1 0 0
4 1 0 0 0 1 0 1 0 1 0 0 0
5 0 1 0 1 0 0 1 0 0 0 1 0
6 0 0 1 1 1 0 0 0 0 0 0 1
7 0 0 0 0 0 1 1 1 0 0 0 1
8 0 0 0 0 0 0 0 0 1 1 1 1


(3.22)

Entries which are part of the spanning tree S , determined by the STS algo-
rithm, are marked in bold and are hereinafter labeled with degree zero.

94 Voltage Graph-Based QC LDPC Block Codes with Large Girth

Removing its last row as well as its last L = 4 columns, yields the shortened
8× 8 (3, 3)-regular base matrix BS-STS(9)

BS-STS(9) =



0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 0 0
1 1 0 0 1 0 1 0 0
2 1 0 1 0 0 0 0 1
3 0 1 0 0 1 0 0 1
4 1 0 0 0 1 0 1 0
5 0 1 0 1 0 0 1 0
6 0 0 1 1 1 0 0 0
7 0 0 0 0 0 1 1 1


(3.23)

This corresponds to removing the four triples of the STS(9) containing the
number (8) of the last row of (3.22). Shortening the 9× 12 base matrix BSTS(9)
to obtain the shortened 8× 8 base matrix BS-STS(9) is unpractical as its code
rate becomes R = 1− 8/8 = 0. However, shortening the 13× 25 base matrix
BSTS(13) in the same way, yields the 12× 20 base matrix BS-STS(13) with feasible
code rate R = 8/20.

In Table 3.6, newly found QC (J = 3, L)-regular LDPC block codes with
girth g = 14, 16, and 18 constructed from STSs are presented. While the
number of nonzero elements in each column is fixed to J = 3, the number of
nonzero elements in each row L depends on the underlying STS and is given
in the first column. The second column specifies the obtained girth g, while
in the next columns the dimensions of the block code (N, K) after tailbiting to
length M are presented. The fifth column contains the STS used to construct
the underlying base graph. Since the corresponding degree matrices W are too
large, those matrices are omitted, but are available in [BHJ+12] and [BHJ+].

3.7.2 ITERATIVE QC LDPC BLOCK CODES

Besides using base matrices constructed from STSs, previously obtained QC
(J = 3, L)-regular LDPC block codes of smaller block size and smaller girth
can be reused as base matrices for larger QC LDPC block codes.

In the following, QC (J = 3, L)-regular LDPC block codes with girth g = 8
and binary parity-check matrices of size 27× 36, 39× 65, and 54× 108 are
used as base matrices (cf. Table 3.3). (Re-)applying the previously described
algorithms yields QC (J = 3, L)-regular LDPC block codes with girth g = 20,
22, and 24, respectively, as presented in Table 3.7. As before, the first column
denotes L, the number of nonzero elements in each column; the obtained girth
g and the dimensions of the block code (N, K) after tailbiting to length M are
given in the following columns. Since the corresponding degree matrices are
too large, they are omitted in Table 3.7, but are available at [BHJ+].

3.7. Alternative Constructions 95

L g (N, K) M Base graph

4 14
(1812, 453) 151

(9× 12), STS(9)(
(2208, 732) [EG10]

) (
184 [EG10]

)
5 14

(9720, 3888)
486 (12× 20), S-STS(13)(

(11525, 4612) [EG10]
)

6 14
(29978, 14989) 1153

(13× 26), STS(13)(
(37154, 18577) [EG10]

) (
1429 [EG10]

)
12 14 (80000000, 60000000) 800000 (25× 100), STS(25)

4 16 (7980, 1995) 665 (9× 12), STS(9)

5 16
(51240, 20496)

2562 (12× 20), S-STS(13)(
(62500, 25000) [EG10]

)
6 16

(227032, 113516) 8732
(13× 26), STS(13)(

(229476, 114738) [EG10]
) (

8826 [EG10]
)

4 18 (32676, 8169)
2723

(9× 12), STS(9)(
2855 [EG10]

)
5 18

(271760, 108704)
13588 (12× 20), S-STS(13)(

(371100, 148440) [EG10]
)

Table 3.6: Degree matrices for QC (J = 3, L)-regular LDPC codes
with girth between g = 14 and g = 18.

Note that these codes are (probably) not practical due to their long block
length. However, the table illustrates that by interpreting QC (J, L)-regular
LDPC block codes as new base matrices and (re-)applying our algorithms it
is possible to find QC (J, L)-regular LDPC block codes of »any« girth g.

3.7.3 DOUBLE-HAMMING BASED QC LDPC BLOCK CODES

Next, a new class of QC (J, L)-regular LDPC block codes constructed from
binary base matrices of size 2J × 2L shall be considered. This class of QC
LDPC block codes will be referred to as Double-Hamming based QC LDPC block
codes since its base matrix BDH is constructed by using the parity-check matrix
of a Hamming code twice, that is,

BDH =

(
IJ P 1 0 W1
Pp IJ 0 1 W2

)
(3.24)

96 Voltage Graph-Based QC LDPC Block Codes with Large Girth

L g (N, K) M Base graph (Table 3.3)

4 20 (1296000, 324002) 36000 (27× 36), g = 8

5 20 (31200000, 12480002) 480000 (39× 65), g = 8

6 20 (518400000, 259200002) 4800000 (54× 108), g = 8

4 22 (7200000, 1800002) 200000 (27× 36), g = 8 [EG10]

5 22 (325000000, 130000002) 5000000 (39× 65), g = 8

4 24 (39600000, 9900002) 1100000 (27× 36), g = 8

Table 3.7: Properties of QC (J = 3, L)-regular LDPC codes with
girth g ≥ 20.

where IJ is the J × J identity matrix, and 0, 1 denote the all-zero and all-one
column vectors, respectively. The submatrix (P 1) corresponds to the parity
part of the parity-check matrix of the (2J − 1, J) Hamming code (cf. Exam-
ple 1.3), while Pp denotes a permutation of P.

Depending on the desired code rate of the QC (J, L)-regular LDPC block
code, the dimensions of the matrices W1 and W2 are adjusted correspondingly.
These matrices can be chosen arbitrarily, but with the restriction that the num-
ber of nonzero elements in each column and in each row of the base matrix B
has to be equal to J and L, respectively, avoiding identical columns in B.

Example 3.4:
The base matrix BDH for an R = 2/8 (3, 4)-regular QC LDPC code is given by

BDH =



v0 v1 v2 v3 v4 v5 v6 v7

c0 1 0 0 1 1 0 1 0
c1 0 1 0 0 1 1 1 0
c2 0 0 1 1 0 1 1 0
c3 0 1 1 1 0 0 0 1
c4 1 0 1 0 1 0 0 1
c5 1 1 0 0 0 1 0 1


(3.25)

where the matrices W1 and W2 are not present.

3.7. Alternative Constructions 97

Since there always exist at least two columns within the base matrix BDH
which coincide in at least two positions, the girth of the corresponding base
graph is gB = 4. Hence, it follows from Theorem 3.2 that the achievable
girth of such a code construction is g ≥ 3gB = 12. However, since the sec-
ond generalized Hamming distance d2 of the R = 10/24 convolutional code,
whose parity-check matrix coincides with the incidence matrix of the base
graph specified by (3.25), is equal to 7, it follows from the same theorem that
a Double-Hamming based QC LDPC block code with g ≥ 2d2 = 14 exists.

Example 3.4 (Cont’d):
Applying the VA-B algorithm to the base matrix given in (3.25) yields a
(2112, 528) QC LDPC block code with girth g = 14 by labeling the edges
of its base graph with (0, 0, 0, 0), (0, 13, 0, 181), (0, 87, 66, 101), (7, 260, 245, 0),
(0, 154, 33, 6), (107, 0, 130, 85), where the ith entry within the jth 4-tuple corre-
sponds to the monomial degree of the ith nonzero entry in the jth row of the
base matrix. Hitherto, the shortest published QC LDPC code of rate R = 1/4
with g = 14 had length 2208 and was reported in 2010 by Esmaeili and Gho-
lami [EG10].

Additionally, this construction can be generalized to J ≥ 3 in a straight
forward manner as seen in the following example:

Example 3.5:
Consider, for example, the rate R = 8/16 base matrix of a (4, 8)-regular QC
LDPC code, given by

BDH =

(
I4 P1 P2 1 0

P2p P1p I4 0 1

)
(3.26)

where the parity part P of the Hamming code in (3.24) has been split into
two submatrices P1 and P2 for notational convenience. The submatrices of the
parity part of the corresponding Hamming code are P2 = P2p = Ic

4, where Ic
4

denotes the complement of the identity matrix I4, as well as,

P1 =


0 0 1 0 1 1
0 1 0 1 0 1
1 0 0 1 1 0
1 1 1 0 0 0

 (3.27)

and

P1p =


0 1 0 1 1 0
1 0 1 0 1 0
0 0 1 1 0 1
1 1 0 0 0 1

 (3.28)

98 Voltage Graph-Based QC LDPC Block Codes with Large Girth

(N, K, dmin) dfree(d̂free) g M Edge Voltages

Rate R = 1/4

(168, 42, 30) 54 (≤ 66) 8 21
7, 3, 0, 5 ; 1, 0, 4, 10 ; 0, 4, 7, 9 ;
7, 6, 0, 3 ; 0, 0, 7, 6 ; 7, 7, 0, 10

(160, 40, 32) 76 (≤ 102) 10 20
0, 6, 15, 11 ; 6, 9, 0, 0 ; 6, 0, 2, 14 ;
19, 0, 12, 4 ; 13, 4, 0, 4 ; 12, 0, 5, 0

Rate R = 2/5

(380, 144, 26) ≥ 40 (≤ 72) 8 38
0, 5, 0, 19, 9 ; 3, 0, 0, 11, 0 ;
3, 12, 9, 0, 4 ; 0, 0, 12, 9, 14 ;
6, 5, 13, 0, 2 ; 5, 0, 5, 0, 0

(370, 148,≥ 30)
(dmin ≤ 36)

≥ 38 (≤ 86) 10 37
0, 22, 28, 6, 24 ; 0, 7, 0, 0, 11 ;
0, 8, 25, 0, 0 ; 19, 6, 0, 15, 0 ;
14, 8, 0, 31, 21 ; 0, 11, 5, 27, 6

Rate R = 1/2

(1080, 540,≥ 28) (≤ 90) 10 90

40, 47, 17, 77, 36, 10 ; 19, 74, 43,
24, 86, 31 ; 86, 56, 3, 83, 52, 56 ;
26, 38, 0, 22, 81, 25 ; 77, 47, 13,
6, 6, 70 ; 76, 0, 56, 11, 20, 57

Table 3.8: Parameters of new Double-Hamming based rate R = 1/4
(J = 3, L = 4)-regular, R = 2/5 (J = 3, L = 5)-regular, and
R = 1/2 (J = 3, L = 6)-regular QC LDPC codes.

Using the base matrix (3.26), applying the VA-B algorithm, and tailbiting
the obtain convolutional parity-check matrix to length M = 1168, yields a
(18688, 9344) QC (J = 4, L = 8)-regular LDPC block code with girth g = 10.
The corresponding voltage assignment is omitted, but is available at [BHJ+].

Additional examples of newly found Double-Hamming based QC LDPC
block with base matrix (3.24) are presented in Table 3.8. The first column
specifies its dimension K and block length N, as well as its minimum distance
dmin, while the free distance dfree of its parent convolutional code is, if pos-
sible, given together with the corresponding upper bound d̂free (3.20) in the
second column.

Tailbiting to length M according to the fourth column yields a QC LDPC
block code with girth g, as specified in the third column. The voltage as-
signment for the base graph B, obtained by applying the VA-B algorithm, are
given in the last column, where different rows are separated by a semicolon,

3.8. Case Study: IEEE 802.16 WiMAX 99

while zero entries in the base matrix are omitted. Hence, the jth edge voltage
in kth block corresponds to the monomial degree of the jth nonzero entry in
the kth row of its base matrix BDH.

For comparison, we would like to mention the hitherto shortest published
R = 2/5 (3, 5)-regular QC LDPC code with g = 10 was found by Esmaeili
and Gholami in 2010 [EG10] and has block length N = 550.

3.7.4 BINOMIAL QC LDPC BLOCK CODES

Generalizing the previously discussed construction to allow parallel edges
between two vertices is straight forward. Consider the base matrix B = B′ +
B′′, where B′ and B′′ are two »ordinary« base matrices of the same size. Hence,
if two vertices are connected by an edge in both base matrices B′ and B′′, they
will be connected by two parallel edges in B. In particular, such a base matrix
B contains the integer entries {0, 1, 2}, where 2 denotes a binomial entry,
corresponding to a parallel edge in the underlying base graph.

In [SV11], Smarandache et al. derive different upper bounds on the girth
and on the minimum distance of such binomial QC LDPC block codes. For
rate R = 1/4 QC LDPC block codes it is shown that, depending on the chosen
edge voltages, their minimum distance is upper-bounded either by 32 with
girth ≤ 8 or by 30 and 28 with girth ≤ 10. Moreover, for codes of rate R = 2/5,
the minimum distance is less than or equal to 28 with girth ≤ 8. In particular,
a (184, 47) QC LDPC block code with minimum distance dmin = 32 and girth
g = 8 is presented, achieving the derived upper bounds.

Applying our previously presented VA-B algorithm to the base matrix

BBin =

 2 0 1 1
1 1 2 0
0 2 0 2

 (3.29)

yields QC (3, 4)-regular LDPC block codes with minimum distance up to 30
as well as very short block codes of length N = 96 and minimum distance
dmin = 24 as summarized in Table 3.9.

The code length N, dimension K, and minimum distance dmin of the ob-
tained QC LDPC block code are given in the first column of Table 3.9, fol-
lowed by the tailbiting length M, the free distance dfree of the parent LDPC
convolutional code, and the achievable girth g. Additionally, the obtained
voltage assignment for the base graph BBin is specified in the last column,
where the edge voltages for each row are separated by a semicolon. Note that
a tuple (a, b) corresponds to a binomial entry (Da + Db) while a single value
(a) refers to a monomial entry (Da). As before, zero entries of the base matrix
are omitted, that is, the jth edge voltage in the kth block corresponds to the
degree(s) of the jth nonzero entry in the kth row of the base matrix BBin.

100 Voltage Graph-Based QC LDPC Block Codes with Large Girth

(N, K, dmin) M dfree g Edge Voltages

(96, 25, 24) 24 30 8

(4, 0), (13), (4) ;
(4), (3), (0, 1) ;
(10, 0), (3, 0)

(112, 29, 26) 28 30 8

(124, 32, 28) 31 30 8

(144, 37, 30) 36 30 8

(108, 28, 24) 27 28 8

(0, 2), (13), (2) ;
(10), (3), (0, 1) ;
(13, 0), (0, 3)

(116, 30, 26) 29 30 8

(136, 35, 28) 34 30 8

(152, 39, 30) 38 30 8

Table 3.9: Parameters for new binomial rate R = 1/4 (J = 3, L = 4)-
regular QC LDPC codes.

3.8 CASE STUDY: IEEE 802.16 WIMAX

Due to their low decoding complexity when decoded with the BP algorithm
(cf. Section 2.6) and their good BER performance close to the theoretical limit,
LDPC block codes are a suitable choice for modern communication stan-
dards [IEE05] [Eur08] [Eur09]. For example, within the IEEE 802.16 WiMAX
standard [IEE05], QC irregular LDPC block codes with code rate from 1/2 up
to 5/6 and block length between 576 and 2304 are defined. To the best of our
knowledge, nobody reported QC LDPC block codes of such rates with better
BER performance, especially for block lengths as short as N ≈ 576.

Using the algorithms described in Section 3.4, we search for QC (J = 3, L)-
regular LDPC block codes of same rate R and similar block length, that is,
N ≈ 576, but larger girth g, based on all-one base matrices or STSs (only
for R = 1/2). In Table 3.10, newly found QC (J, L)-regular LDPC block codes
with rate R = 1/2 and R = 2/3 are presented, together with the parameters of
the corresponding QC irregular LDPC block code of the same rate as defined
within the IEEE 802.16 WiMAX standard. The block length of all codes is
N = 576, except for the QC LDPC block code constructed from STSs, whose
block length is slightly shorter with N = 572. Additionally, a QC LDPC
block code constructed from an all-one base matrix with randomly chosen
edge voltages is included. For each code, its girth g, tailbiting length M,

3.8. Case Study: IEEE 802.16 WiMAX 101

Base Matrix Class g M Edge Voltages

R = 1/2

12× 24 IEEE 802.16 irregular 4 24 see [IEE05]

13× 26 STS(13)* (3, 6)-reg. 8 22 see [BHJ+]

3× 6 All-one (3, 6)-reg. 8 96
4, 15, 24, 69, 86
22, 58, 79, 23, 25

3× 6 All-one
(3, 6)-reg.
(random)

4 96
13, 46, 52, 92, 93
76, 91, 26, 91, 15

R = 2/3

8× 24 IEEE 802.16 (A) irregular 6 24 see [IEE05]

8× 24 IEEE 802.16 (B) irregular 4 24 see [IEE05]

3× 9 All-one (3, 9)-reg. 8 64
6, 7, 13, 26, 36, 42, 44, 58
37, 12, 16, 51, 14, 34, 35, 43

3× 9 All-one
(3, 9)-reg.
(random)

4 64
2, 2, 20, 24, 31, 41, 50, 52
17, 60, 44, 28, 11, 28, 48, 6

Table 3.10: Parameters of rate R = 1/2 and R = 2/3 QC LDPC block
codes with block length N = 576 (N∗ = 572).

and, if possible, its edge voltages are specified. The QC LDPC block codes
specified within the IEEE 802.16 WiMAX standard are irregular, and hence
have a higher degree of freedom, possibly yielding a better BER performance.

Using the BP decoding algorithm (Section 2.6), the BER performance for
those LDPC block codes is simulated and illustrated in Figure 3.6 and Fig-
ure 3.7 for rate R = 1/2 and rate R = 2/3, respectively. Similarly, newly
found QC (J, L)-regular rate R = 3/4 and R = 5/6 LDPC block codes with
block length N = 572 are given in Table 3.11 together with the corresponding
QC irregular LDPC block codes defined within the IEEE 802.16 WiMAX stan-
dard, while their BER performance is compared in Figure 3.8 and Figure 3.9
for rate R = 3/4 and rate R = 5/6, respectively. All simulations results are,
except if stated otherwise, based on at least 100 different block error events.

102 Voltage Graph-Based QC LDPC Block Codes with Large Girth

2.0 2.5 3.0 3.5 4.0 4.5

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10

SNR [dB]

Pb

IEEE 802.16 irregular
(3, 6)-reg. STS(13)
(3, 6)-reg. all-one base matrix
(3, 6)-reg. all-one base matrix (random)

Figure 3.6: BER performance for R = 1/2 LDPC block codes.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10

10−11

SNR [dB]

Pb

IEEE 802.16 (A) irregular
IEEE 802.16 (B) irregular
(3, 9)-reg. all-one base matrix
(3, 9)-reg. all-one base matrix (random)

Figure 3.7: BER performance for R = 2/3 LDPC block codes, where
the simulation results for 5.25 dB and 5.5 dB are based
only on at least 25 and 8 block error events, respectively.

3.8. Case Study: IEEE 802.16 WiMAX 103

Base Matrix Class g M Edge Voltages

R = 3/4

6× 24 IEEE 802.16 (A) irregular 4 24 see [IEE05]

6× 24 IEEE 802.16 (B) irregular 4 24 see [IEE05]

3× 12 All-one (3, 12)-reg. 6 64

1, 7, 8, 23, 26, 32, 37, . . .
43, 44, 46, 47

4, 38, 42, 36, 10, 17, 44, . . .
3, 41, 25, 19

3× 12 All-one
(3, 12)-reg.
(random)

4 64

7, 9, 13, 17, 32, 35, 37, . . .
41, 45, 48, 57

31, 16, 21, 43, 44, 8, 14, . . .
10, 48, 16, 13

R = 5/6

4× 24 IEEE 802.16 irregular 4 24 see [IEE05]

3× 18 All-one (3, 18)-reg. 6 64

1, 5, 6, 7, 8, 12, 13, 14, 16, . . .
17, 19, 21, 23, 24, 25, 27, 30

31, 20, 2, 4, 24, 21, 23, 19, 9, . . .
7, 11, 10, 27, 15, 12, 3, 18

3× 18 All-one
(3, 18)-reg.
(random)

4 64

0, 0, 2, 3, 4, 5, 5, 7, 8, 9, . . .
14, 16, 17, 18, 22, 26, 29

10, 24, 14, 30, 26, 25, 19, 29, . . .
20, 16, 2, 24, 31, 15, 23, 27, 4

Table 3.11: Parameters of rate R = 3/4 and R = 5/6 QC LDPC block
codes with block length N = 576.

Somewhat surprisingly, our newly found QC regular LDPC block codes
yield a better BER performance for rate R = 1/2, 3/4, and 5/6; typically
around 0.5 − 1 dB for small and medium SNR values. For the code rate
R = 2/3 we were only able to improve the BER performance for one of the
two QC irregular LDPC block codes defined in the IEEE 802.16 WiMAX stan-
dard, while the second one still yielded the overall best BER performance for
small SNRs. Compared to the QC regular LDPC block codes with random
edge voltages, the advantages by choosing suitable edge voltages is eminent.
Moreover, applying our algorithms to irregular base matrices, should poten-
tially yield QC LDPC block codes with further improved BER performance.

104 Voltage Graph-Based QC LDPC Block Codes with Large Girth

3.0 3.5 4.0 4.5 5.0 5.5

10−2

10−4

10−5

10−6

10−7

10−8

10−9

SNR [dB]

Pb

IEEE 802.16 (A) irregular
IEEE 802.16 (B) irregular
(3, 12)-reg. all-one base matrix
(3, 12)-reg. all-one base matrix (random)

Figure 3.8: BER performance for R = 3/4 LDPC block codes.

3.5 4.0 4.5 5.0 5.5 6.0 6.5

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10

SNR [dB]

Pb

IEEE 802.16 irregular
(3, 18)-reg. all-one base matrix
(3, 18)-reg. all-one base matrix (random)

Figure 3.9: BER performance for R = 5/6 LDPC block codes.

4
Woven Graph Codes

W oven graph codes are generalizations of (J, L)-regular graph-based
codes with either constituent block or convolutional codes [BKJZ07]

[BKJZ10]. Their distinguishing feature is that the codeword length of
the constituent code is a multiple of the constraint node degree L, that is, their
length is equal to LM, where M is an integer. In particular, when M tends to
infinity we obtain woven graph codes with constituent convolutional codes.
While, for example, serial concatenated convolutional codes are obtained by
combining their generator matrices, woven graph codes are obtained by com-
bining their corresponding parity-check matrices.

Within the ensemble of woven graph codes with constituent block codes,
based on bipartite graphs, the existence of codes satisfying the Varshamov-
Gilbert (VG) bound has been proven [BKJZ10]. Due to the simple structure
of woven graph codes, such codes can be analyzed with low computational
complexity while their minimum distance is rather close to the minimum
distance of the best known linear block codes of same length and dimension.

Graph-based block codes with constituent codes will be introduced in Sec-
tion 4.1, while Section 4.2 focuses on their generalization to woven graph
codes with either constituent block codes or constituent convolutional codes.
An asymptotic bound on the free distance of woven convolutional graph
codes, namely, the Costello lower bound, is proven in Section 4.3. Exam-
ples of promising woven convolutional graph codes are given in Section 4.4,
including a rate R = 5/20 woven convolutional graph code with overall con-
straint length ν = 67 and free distance dfree = 120. This chapter is concluded
in Section 4.5 with a short BER comparison of a woven convolutional graph
code with overall constraint length ν = 26 and free distance dfree with (near-)
optimal convolutional codes of same complexity or free distance.

105

106 Woven Graph Codes

4.1 GRAPH-BASED BLOCK CODES WITH CONSTITUENT CODES

A graph-based (J, L)-regular block code with a rate R̂ = b̂/ĉ constituent block
code B̂ is based on a bipartite graph G whose set of constraint nodes V1
is s-partite with equally sized partitions. Using the concept of biadjacency
matrices, the corresponding parity-check matrix for such a graph G can be
expressed as

H =


H̃0
H̃1...

H̃s−1

 (4.1)

where each of the s parity-check submatrices H̃i of size n(ĉ − b̂) × nĉ, i =
0, 1, . . . , s− 1, corresponds to one disjoint set of n(ĉ− b̂) constraint nodes V (i)

1 .
By reordering its rows and columns, it is possible, without loss of generality,
to represent the first parity-check submatrix H̃0 as an n× n block structure

H̃0 =


Ĥ 0 . . . 0
0 Ĥ . . . 0...

...
. . .

...
0 0 . . . Ĥ

 (4.2)

where Ĥ is a (ĉ − b̂) × ĉ parity-check matrix of the constituent block code
B̂. The remaining s− 1 parity-check matrices H̃k are column permutations of
H̃0, determined by the underlying graph G. In particular, note that for this
construction we obtain J = s(ĉ− b̂) and L = ĉ.

Assigning different constituent block codes B̂ of rate R̂ = b̂/ĉ to the same
bipartite graph G, whose set of constraint node is s-partite with equally sized
partitions, yields a set of related graph-based block codes. Since the total
number of parity-checks of such a block code is at most sn(ĉ − b̂), its code
rate R follows as

R ≥ nĉ− sn(ĉ− b̂)
nĉ

= 1− s(1− R̂) (4.3)

with equality if and only if all parity-checks are linearly independent.
In particular, QC (J, L)-regular LDPC block codes (cf. Chapter 3) are graph-

based codes with constituent single parity-check block codes of rate R̂ =
(L − 1)/L, constructed from a bipartite graph G with a J-partite set of con-
straint nodes. Following Chapter 3, it is convenient to represent such bi-
partite graph-based codes by their parent convolutional parity-check matrix.
Although such a representation is not necessary for the following proofs and
theorems, all examples of bipartite graphs will be given in the form of their
parent convolutional parity-check matrices.

4.1. Graph-based Block Codes with Constituent Codes 107

Example 4.1:
Consider the rate R = 1/4 convolutional code C with free distance dfree = 8
determined by its monomial parity-check matrix

H(D) =

 1 1 1 1
1 D D2 D3

1 D3 D D2

 (4.4)

which is constructed by combining the 3× 4 all-one base matrix B with the
corresponding weight matrix W, where

B =

 1 1 1 1
1 1 1 1
1 1 1 1

 (4.5)

and

W =

 0 0 0 0
0 1 2 3
0 3 1 2

 (4.6)

respectively. Tailbiting H(D) to length M = 4 yields the 12 × 16 tailbiting
parity-check matrix of a QC (J = 3, L = 4)-regular LDPC block code

H(tb) =



v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

c0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
c1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
c2 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
c3 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
c4 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
c5 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
c6 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
c7 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
c8 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0
c9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
c10 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
c11 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0



(4.7)

Interpreting this parity-check matrix as a biadjacency matrix yields the cor-
responding Tanner graph G with 16 symbol nodes, 12 constraint nodes, and
girth g = 4 as illustrated in Figure 4.1. Constructing such a bipartite graph G
based on a monomial parity-check matrix of a rate R = b/c parent convolu-
tional code, ensures that its set of constraint nodes is at least (c− b)-partite.
Hence, in our example, the set of constraint nodes V1 is 3-partite, that is, it
consists of the 3 disjoint subsets V (i)

1 , i = 0, 1, 2.

108 Woven Graph Codes

c0 c3 c6 c9

v0 v3 v4 v7 v8v1 v5 v9 v13v2 v6 v10 v14v11 v12 v15

c1 c4 c7 c10 c2 c5 c8 c11

Figure 4.1: Tanner graph with 16 symbol nodes and 12 constraint
nodes. The three disjoint sets of constraint nodes are rep-
resented by white, light gray, and dark gray vertices.

Reordering the rows of (4.7) as c0, c3, c6, c9, c1, c4, c7, . . ., yields an equivalent
parity-check matrix

H(tb)′ =



v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

c0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
c3 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
c6 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
c9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
c1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
c4 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
c7 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
c10 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
c2 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
c5 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
c8 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0
c11 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0



(4.8)

where the three submatrices H̃k, k = 0, 1, 2, are separated by horizontal lines.
Its constituent block code B̂ of rate R̂ = (L − 1)/L is a single parity-check
block code with block length L, determined by the parity-check matrix

Ĥ =
(

1 1 1 1
)

(4.9)

Since the rows in (4.7) and (4.8) are linearly dependent, two parity-checks
have to be removed, yielding a (16, 6) linear graph-based block code. Clearly,
its rate satisfies inequality (4.3) since

R = 6/16 ≥ 1− s (1− R̂) = 1− 3 (1− 3/4) = 1/4 (4.10)

4.2. Woven Graph Codes 109

4.2 WOVEN GRAPH CODES

Woven graph codes are generalizations of graph-based codes with either con-
stituent block or convolutional codes. Consider a binary (Mĉ, Mb̂) linear block
code, determined by the parity-check matrix

Ĥ =


Ĥ00 Ĥ01 . . . Ĥ0(ĉ−1)
Ĥ10 Ĥ11 . . . Ĥ1(ĉ−1)...

...
. . .

...
Ĥ(ĉ−b̂−1)0 Ĥ(ĉ−b̂−1)1 . . . Ĥ(ĉ−b̂−1)(ĉ−1)


where Ĥij ∈ BM×M, i = 0, 1, . . . , ĉ− b̂− 1, j = 0, 1, . . . , ĉ− 1, is a size M×M
binary submatrix and BM×M denotes the set of all possible binary matrices of
size M×M. The corresponding graph-based code of length Mĉn with a con-
stituent block code, determined by its M(ĉ− b̂)×Mĉ parity-check matrix Ĥ,
is called a woven graph code with a constituent block code. In other words, we
generalize graph-based codes to woven graph codes by assigning a length M
subblock of a length Mĉ codeword to each node within a group of ĉ consecu-
tive symbol nodes. Similarly, a block of M parity-check equations is assigned
to each constraint node. As a special case, we obtain graph-based block codes
for M = 1.

Woven graph codes with constituent convolutional codes, hereinafter re-
ferred to as woven convolutional graph codes, can be considered as a straightfor-
ward generalization of woven graph codes with constituent block codes.

Let Ĥ(D) denote the minimal-basic (ĉ− b̂)× ĉ parity-check matrix of a rate
R̂ = b̂/ĉ convolutional code

Ĥ(D) =


ĥ00(D) ĥ01(D) . . . ĥ0(ĉ−1)(D)

ĥ10(D) ĥ11(D) . . . ĥ1(ĉ−1)(D)
...

...
. . .

...
ĥ(ĉ−b̂−1)0(D) ĥ(ĉ−b̂−1)1(D) . . . ĥ(ĉ−b̂−1)(ĉ−1)(D)

 (4.11)

where
ĥij(D) = ĥ(0)ij + ĥ(1)ij D + ĥ(2)ij D2 + · · · (4.12)

with i = 0, 1, . . . , ĉ − b̂ − 1, and j = 0, 1, . . . , ĉ − 1, is a binary polynomial.
Denote by F2((D)) the field of binary Laurent series and regard a rate R̂ =
b̂/ĉ convolutional code as a block code of same rate over the field of binary
Laurent series. Then, the corresponding codewords are elements of Fĉ

2((D)),
which is a ĉ-dimensional vector space over the field of binary Laurent series.

In other words, we assign a length ĉ subblock to a group of ĉ consecutive
symbol nodes, which corresponds to a time-cut of a length Mĉ code sequence,
where M tends towards infinity.

110 Woven Graph Codes

Exploiting the above definitions in connection with the Tanner graph rep-
resentation in Figure 4.1, the n constituent convolutional codes at the top can
be regarded as a warp with nĉ threads. Each of the n constituent convolu-
tional codes at the bottom are tacked on ĉ of the threads in the warp such that
each thread of the warp is tacked on exactly once. Thus, this construction is a
special case of a woven code [HJZ02].

Example 4.2:
The parity-check matrix Hwg(D) of a woven convolutional graph code, based
on the Tanner graph with parity-check matrix (4.8) from Example 4.1, is for
example given by

Hwg(D) =



v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

c0 ĥ0 ĥ1 ĥ2 ĥ3 0 0 0 0 0 0 0 0 0 0 0 0
c3 0 0 0 0 ĥ0 ĥ1 ĥ2 ĥ3 0 0 0 0 0 0 0 0
c6 0 0 0 0 0 0 0 0 ĥ0 ĥ1 ĥ2 ĥ3 0 0 0 0
c9 0 0 0 0 0 0 0 0 0 0 0 0 ĥ0 ĥ1 ĥ2 ĥ3
c1 t̂0 0 0 0 0 0 0 t̂3 0 0 t̂2 0 0 t̂1 0 0
c4 0 t̂1 0 0 t̂0 0 0 0 0 0 0 t̂3 0 0 t̂2 0
c7 0 0 t̂2 0 0 t̂1 0 0 t̂0 0 0 0 0 0 0 t̂3
c10 0 0 0 t̂3 0 0 t̂2 0 0 t̂1 0 0 t̂0 0 0 0
c2 l̂0 0 0 0 0 l̂1 0 0 0 0 0 l̂3 0 0 l̂2 0
c5 0 0 l̂2 0 l̂0 0 0 0 0 l̂1 0 0 0 0 0 l̂3
c8 0 0 0 l̂3 0 0 l̂2 0 l̂0 0 0 0 0 l̂1 0 0
c11 0 l̂1 0 0 0 0 0 l̂3 0 0 l̂2 0 l̂0 0 0 0



(4.13)

ĥ0 = ĥ0(D) ĥ1 = ĥ1(D) ĥ2 = ĥ2(D) ĥ3 = ĥ3(D)

t̂0 = t̂0(D) t̂1 = t̂1(D) t̂2 = t̂2(D) t̂3 = t̂3(D)

l̂0 = l̂0(D) l̂1 = l̂1(D) l̂2 = l̂2(D) l̂3 = l̂3(D)

where the parity-check matrix of the rate R̂ = 3/4 constituent convolutional
code with free distance d̂free = 5 is determined by

Ĥ(D) =
(

ĥ0(D) ĥ1(D) ĥ2(D) ĥ3(D)
)

(4.14)

with

ĥ0(D) = 1 + D + D2 + D4 ĥ1(D) = 1 + D + D2 + D3 + D4

ĥ2(D) = 1 + D + D3 + D5 ĥ3(D) = 1 + D2 + D5

and
(
t̂0(D), t̂1(D), t̂2(D), t̂3(D)

)
and

(
l̂0(D), l̂1(D), l̂2(D), l̂3(D)

)
are two out

of 24 possible permutations of
(
ĥ0(D), ĥ1(D), ĥ2(D), ĥ3(D)

)
.

4.3. Asymptotic Bound on the Free Distance of Woven Convolutional Graph Codes 111

Combining the parity-check matrix (4.4) of the parent convolutional code
of the underlying graph with the parity-check matrix (4.14) of the constituent
convolutional code and its permutations, yields the two-dimensional, rate R =
1/4 graph-based parent woven convolutional code with parity-check matrix

H(D, Z) =

 ĥ1(D) ĥ2(D) ĥ3(D) ĥ4(D)
t̂1(D) t̂2(D)Z t̂3(D)Z2 t̂4(D)Z3

l̂1(D) l̂2(D)Z3 l̂3(D)Z l̂4(D)Z2

 (4.15)

over the two formal variables D and Z. In particular, by tailbiting (4.15) in
the Z-dimension to length M = 4, we return to the rate R = 4/16 woven
convolutional graph code (4.13).

4.3 ASYMPTOTIC BOUND ON THE FREE DISTANCE OF WOVEN CONVO-
LUTIONAL GRAPH CODES

Consider a woven graph code whose constituent block code is obtained by
tailbiting a rate R̂ = b̂/ĉ convolutional code Ĉ with overall constraint length
ν̂, memory m̂, and syndrome memory m̂s, where in general m̂ 6= m̂s. Denote
the length of a codeword of the tailbiting block code in nĉ-tuples by M and
let the minimum distance of the woven graph code be dwg

min, while its rate is
given by Rwg = 1− s(1− R̂) according to (4.3). Considering tailbiting codes
(instead of zero-tail or other termination techniques) simplifies the analysis
since their code rate coincides with the rate of the parent convolutional code.
Moreover, if M tends towards infinity, the minimum distance of a tailbiting
code coincides with the free distance of its parent convolutional code, that is,
dwg

min = dwg
free if M→ ∞.

Since the overall constraint length νwg of such a woven convolutional graph
code is at most snν̂, its memory mwg can be upper-bounded by

mwg ≤ νwg ≤ snν̂ ≤ snb̂m̂ (4.16)

Theorem 4.1 (Costello lower bound) For any ε > 0, some m0 > 0, and for
all mwg > m0 within the random ensemble of rate Rwg = 1− s(1− R̂) woven
graph codes over bipartite graphs with an s-partite set of constraint nodes
with equally sized partitions, as well as constituent convolutional codes of rate
R̂ = b̂/ĉ and memory m̂, there exists a woven convolutional graph code such
that its relative free distance δ

wg
free satisfies the Costello lower bound [JZ99],

δ
wg
free =

dwg
free

ĉmwg
≥ −

Rwg

log2

(
21−Rwg − 1

) − ε (4.17)

if
s ≥

{
2, if Rwg ≤ 0.402
3, if Rwg > 0.402

(4.18)

112 Woven Graph Codes

Proof. Analogously to the derivations within the proof of the Varshamov-
Gilbert bound in [BKJZ10], let w denote the Hamming weight of the codeword
v of the random binary woven graph code determined by the time-varying
random parity-check matrix

Hwg =


π1

(
H̃0

)
π2

(
H̃1

)
...

πs

(
H̃s−1

)

 (4.19)

where πi(H̃i) denotes a random column permutation of H̃i. Each of the s
submatrices H̃i, i = 0, 1, . . . , s− 1, is an n× n block matrix (or in other words
a binary matrix of size nM(ĉ− b̂)× nMĉ)

H̃i =


Ĥ(0)

i 0 . . . 0
0 Ĥ(1)

i . . . 0
...

...
. . .

...
0 0 . . . Ĥ(n−1)

i


where n denotes the number of constituent block codes within each subset of
constraint nodes.

Note that within the initial construction in (4.1), the submatrix H̃0 had a
regular block structure, while all other submatrices H̃i, i = 1, 2, . . . , s − 1,
were random column permutation. In (4.19), we consider its generalization
where all submatrices are independent, random column permutations of their
corresponding submatrices H̃i with regular block structure.

Moreover, each of the n nonzero blocks within H̃i denotes a random parity-
check matrix Ĥ(t)

i , t = 0, 1, . . . , n− 1, i = 0, 1, . . . , s− 1, given by

Ĥ(t)
i =



Ĥ00 Ĥm̂s(M−m̂s) . . . Ĥ2(M−2) Ĥ1(M−1)

Ĥ10 Ĥ01
. H2(M−1)

Ĥ20 Ĥ11
. . . Ĥm̂s(M−2)

...... Ĥ21
. . . Ĥ0(M−m̂s−1) Ĥm̂s(M−1)

Ĥm̂s0

...
. . . Ĥ1(M−m̂s−1) Ĥ0(M−m̂s)

Ĥm̂s1
. . . Ĥ2(M−m̂s−1) Ĥ1(M−m̂s)

. Ĥ0(M−2)

Ĥm̂s(M−m̂s−1) Ĥ(m̂s−1)(M−m̂s) . . . Ĥ1(M−2) Ĥ0(M−1)


(4.20)

which can be interpreted as the parity-check matrix of a rate R = Mb̂/Mĉ
tailbiting block code with tailbiting length M obtained from a parent rate

4.3. Asymptotic Bound on the Free Distance of Woven Convolutional Graph Codes 113

R̂ = b̂/ĉ convolutional code Ĉ with memory m̂ and syndrome memory m̂s.
All binary matrices Ĥkl , k = 0, 1, . . . , m̂s, l = 0, 1, . . . , M − 1, in (4.20) have
size (ĉ − b̂) × ĉ and can be obtained separately for each block matrix Ĥ(t)

i
by randomly and independently choosing 0s and 1s from an equiprobable
distribution.

In the following, we are going to find the parameter d, such that the proba-
bility P (vHT

wg = 0 | w) that there exists a woven graph code with a codeword
v of Hamming weight wH(v) = w tends to zero for w < d, when M tends to
infinity. In particular note that for M→ ∞ the constituent block code becomes
a constituent convolutional code.

Clearly, P (vHT
wg = 0 | w) can be written as

P
(

vHT
wg = 0

∣∣∣ w
)
= ∑

h
P
(

vHT
wg = 0

∣∣∣ w, h
)

P
(

h
∣∣∣ w
)

≤ max
h

{
P
(

vHT
wg = 0

∣∣∣ h, w
) }

(4.21)

where h ≤ M denotes the number of nontrivial subblocks of length ĉ in each
of the constituent codewords v̂ of length Mĉ. The conditional probability in
the last inequality can be expressed as

P
(

vHT
wg = 0

∣∣∣ h, w
)
= ∑

j
P
(

vHT
wg = 0

∣∣∣ h, w, j
)

P (j | h, w) (4.22)

where j = (j0, j1, . . . , js−1), whose elements ji, i = 0, 1, . . . , s− 1, denote the
number of nontrivial constituent codewords of length Mĉ which are part of
the woven graph codeword of length nMĉ within the ith subset of constraint
nodes V (i)

1 .
The events that a random codeword v and a random matrix H̃i satisfy the

ith subset of parity checks, that is, vH̃T
i = 0, for different i are stochastically

dependent in the product space of random equiprobable sequences v and
random parity-check matrices, because the same fragments of v participate in
different sets of parity checks. However, for all v satisfying the conditions w,
h, and j, the probabilities of vH̃T

i = 0 depend only on H̃i, and thus the events
are conditionally independent for given v, w, h, and j. Taking into account
that there exist not more than (nĉh

w) codewords v satisfying the mentioned
conditions, we obtain the upper bounds

P
(

vHT
wg = 0

∣∣∣ h < M, w, j
)
≤ M2Ms/m̂

(
nĉh
w

)(s−1

∏
i=0

2ji (h− m̂)b̂2−jihĉ

)
(4.23)

and

P
(

vHT
wg = 0

∣∣∣ h = M, w, j
)
≤
(

nMĉ
w

)(s−1

∏
i=0

2ji Mb̂2−ji Mĉ

)
(4.24)

114 Woven Graph Codes

Within the derivation of (4.23) we used that a constituent codeword v̂ of
length Mĉ which contains h nontrivial ĉ-subblocks is generated by at most
h− m̂ nontrivial binary information b̂-tuples. Moreover, the number of possi-
ble locations of these h out of M subblocks can be upper-bounded by M2M/m̂,
taking into account that every codeword contains one or more (cyclic) triv-
ial bursts which originate from at least m̂ consecutive all-zero information
b̂-tuples. Thus, the number of bursts can not be larger than M/m̂. Addition-
ally, since there are at most M possible starting positions for each burst and
less than M possible ending positions within each of the s subsets of con-
straint nodes, the maximum total number of possible choices for h nontrivial
subblocks is upper-bounded by (M2(M/m̂))s.

On the other hand, if all M subblocks are nontrivial, that is if h = M, these
considerations do not have to be taken into account and the corresponding
probability can be upper-bounded by the tighter expression (4.24).

Before continuing with the proof we shall recall the following Lemma,
proven in [BKJZ10], in order to estimate the probability P (j | h, w) for a woven
graph code with a constituent block code.

Lemma 4.2 For the random ensemble of binary woven graph codes
with constituent block codes the probability P (j | h, w) that a wo-
ven graph codeword of length nMĉ with h nontrivial subblocks of
length nĉ and Hamming weight w consists of j = (j0, j1,. . ., js−1)
nonzero constituent codewords of length Mĉ with h nontrivial sub-
blocks of length ĉ within the s subsets of constraint nodes can be
upper-bounded by

P (j | h, w) ≤
s−1

∏
i=0

(n
ji
)(ĉh

w/ji
)

ji
(w−1

ji−1)

(nĉh
w)

Combining (4.22) and (4.23) with Lemma 4.2 yields

P
(

vHT
wg = 0

∣∣∣ h < M, w
)

≤ M2Ms/m̂ ∑
j

(
nĉh
w

)1−s s−1

∏
i=0

2ji b̂(h−m̂)−ji ĉh
(

n
ji

)(
ĉh

w/ji

)ji(w− 1
ji − 1

)

≤ M2Ms/m̂
(

nĉh
w

)1−s
(n + 1)s

×max
(j0,...,js−1)

s−1

∏
i=1

2jib(h−m̂)−ji ĉh
(

n
ji

)(
ĉh

w/ji

)ji(w− 1
ji − 1

)
≤ M2Ms/m̂(n + 1)s

(
nĉh
w

)1−s

×max
j≤n

{(
2jb̂(h−m̂)−jĉh

(
n
j

)(
ĉh

w/j

)j(w− 1
j− 1

))s}
(4.25)

4.3. Asymptotic Bound on the Free Distance of Woven Convolutional Graph Codes 115

If all M codeword blocks are nontrivial, (4.23) can be replaced by (4.24), and
hence it follows from (4.22), (4.24), and Lemma 4.2 in a similar way that

P
(

vHT
wg = 0

∣∣∣ h = M, w
)

≤ (n + 1)s
(

nMĉ
w

)1−s
max
j≤n

{(
2jM(b̂−ĉ)

(
n
j

)(
ĉl

w/j

)j(w− 1
j− 1

))s}
(4.26)

Letting the tailbiting length M tend to infinity, we obtain a woven convolu-
tional graph code (with constituent convolutional code). In the following, we
will prove that in such a case the probabilities in (4.25) and (4.26) are strictly
below one for a sufficiently large memory m̂ of the constituent code, that is,
there exists a woven convolutional graph code with free distance dwg

free > w.
When expressing these probabilities by their exponents to base 2, normalized
by mwg, while the memory m̂ of their constituent code tends to infinity, this
holds if and only if at least one of the corresponding exponents is strictly
positive. Hence, we obtain

Fh<M(δ) = lim
m̂→∞

− log2 P
(

vHT
wg = 0

∣∣∣ h < M, w
)

ĉsnb̂m̂

≥ min
γ∈(0,1], µ≥1

{(
1− 1

s

)
µh
(

δs
µ

)
+ γ

(
1 +

µ− 1
s

(1− Rwg)

)
−γµh

(
δs
γµ

)}
(4.27)

Fh=M(δ) = lim
m̂→∞

− log2 P
(

vHT
wg = 0

∣∣∣ h = M, w
)

ĉsnb̂m̂

≥ max
θ>1

min
γ∈(0,1]

{(
1− 1

s

)
θh
(

δs
θ

)
+ γθ

1− Rwg

s
− γθh

(
δs
γθ

)}
(4.28)

where we neglected all terms not depending on M (and hence h) and used
the fact that

log2

(
b
a

)
' bh

(a
b

)
where h(x) is the binary entropy function (1.3), and introduced the following
abbreviations

δ =
w

ĉsnb̂m̂
, µ =

h
b̂m̂

, θ =
M
b̂m̂

, and γ =
j
n

Similarly, the exponent of (4.21) can be lower-bounded by combining (4.27)
and (4.28) as

F(δ) = lim
m̂→∞

− log2 P
(

vHT
wg = 0

∣∣∣ w
)

ĉsnb̂m̂
= min {Fh<M(δ), Fh=M(δ)}

116 Woven Graph Codes

Since the truncation length M tends towards infinity, that is, θ → ∞, it
is straightforward to verify that Fh=M → ∞ and only Fh<M determines the
probability exponent F(δ). Moreover, to find the minimum of Fh<M(δ) over µ
and γ, we use the fact that the function

f (x) = βx− xh
(α

x

)
is convex if x > α > 0 and achieves its minimum

f (x0) = α log2(2
β − 1)

at the point

x0 =
α

1− 2−β

Minimizing (4.27) similarly over 0 < γ ≤ 1, leads to

γopt = min
{

1,
δs

µ(1− 2−β)

}
(4.29)

with

β =
s + (µ− 1)(1− Rwg)

sµ
(4.30)

Obviously, if s is chosen large enough, γopt follows from (4.29) as γopt = 1
and the probability exponent in (4.27) can be expressed by

Fh<M(δ) ≥ min
µ≥1

{
−µ

s
h
(

δs
µ

)
+

µ

s
(1− Rwg)

}
+ 1−

1− Rwg

s
(4.31)

Minimizing this expression over µ yields

µopt =
δs

1− 2Rwg−1 (4.32)

and thus

Fh<M(δ) ≥ δ log2

(
21−Rwg − 1

)
+ 1−

1− Rwg

s
(4.33)

As mentioned previously, for the Costello bound (4.17) to hold, F(δ) needs
to be strictly positive, such that the probability of codewords with relative
Hamming weight below the Costello bound is strictly below one if s is large
enough. To complete the proof we determine the minimal value of s for which
this is satisfied. The lower limit on s within our derivation is imposed by the
assumption that γopt = 1, which holds as long as

δs
µ(1− 2−β)

≥ 1 (4.34)

where β is defined by (4.30). By combining (4.17), (4.29), and (4.32), it follows
that (4.34) is fulfilled if s is selected according to (4.18), which completes the
proof. �

4.4. Examples 117

Graph (N, K)
Constituent

convolutional code Perm. ν dfree Spectrum

Rate Rwg = 1/4

girth g = 4 1 1 1 1
1 D D2 D3

1 D3 D D2


(16, 4) ĥ0(D) = 1 + D + D2 + D4

ĥ1(D) = 1 + D + D2 + D3 + D4

ĥ2(D) = 1 + D + D3 + D5

ĥ3(D) = 1 + D2 + D5

d̂free = 5

(1, 3, 2, 4)

(3, 4, 1, 2)
49 68 1,0,0,0,1,0,0,0,0,0,. . .

(20, 5)
(0, 2, 3, 1)

(2, 3, 0, 1)
67 120

1,. . .

Rate Rwg = 1/3

girth g = 8(
1 1 1
1 D D2

)
(9, 3) ĥ0(D) = 1 + D + D4

ĥ1(D) = 1 + D + D3 + D4 + D5

ĥ2(D) = 1 + D2 + D3 + D4 + D5

d̂free = 6

(2, 0, 1) 26 30 4,0,0,0,0,0,3,0,6,0,. . .

girth g = 12(
1 1 1
1 D D3

)
(21, 7) (0, 2, 1) 64 32 7,0,0,0,0,0,7,0,7,0,. . .

Rate Rwg = 1/2

girth g = 8(
1 1 1 1
1 D D2 D3

)
(16, 8)

ĥ0(D) = 1 + D + D2 + D4

ĥ1(D) = 1 + D + D2 + D3 + D4

ĥ2(D) = 1 + D + D3 + D5

ĥ3(D) = 1 + D2 + D5

d̂free = 5

(2, 3, 1, 0) 38 31 8,14,16,16,112,185,. . .

Table 4.1: Examples of promising woven convolutional graph codes.

4.4 EXAMPLES

Parameters for some promising examples of woven convolutional graph codes
with rate R = 1/4, R = 1/3, and R = 1/2 and free distance up to dfree = 120
are presented in Table 4.1.

For each entry, the underlying graph is specified in the first column by the
parity-check matrix H(D) of its parent convolutional code together with its
girth g. Tailbiting H(D) yields the parity-check matrix H of the graph-based
block code B, whose dimensions (N, K) are specified in the second column.
Interpreting the tailbiting parity-check matrix H as a biadjacency matrix yields
the corresponding bipartite graph G (cf. Section 3.1).

The corresponding rate R̂ = b̂/ĉ constituent convolutional code is deter-
mined by its parity-check polynomials in column three together with the used
permutation matrices in column four. Interpreting these codes as block codes
of the same rate over the field of binary Laurent series yields the final woven
convolutional graph code.

118 Woven Graph Codes

In column five, the overall constraint length ν of the corresponding minimal-
basic generator matrix Gwg(D) of the woven convolutional graph code is spec-
ified. Its free distance dfree as well as its first Viterbi spectral components,
determined by the BEAST (cf. Section 2.4), are given in the last two columns
of Table 4.1. Even though the girth of the underlying graph as well as the
free distance d̂free of the constituent convolutional code are in general rather
small, it is possible to construct woven convolutional graph codes with free
distances up to at least 120.

Consider for example the second entry in Table 4.1, whose parent convolu-
tional code is determined by the parity-check matrix

H(D) =

 1 1 1 1
1 D D2 D3

1 D3 D D2

 (4.35)

By tailbiting its semi-infinite parity-check matrix H to length M = 5, we ob-
tain the parity-check matrix H(tb) of a rate R = 5/20 block code as specified
in column two. Using the concept of biadjacency matrices yields the corre-
sponding bipartite graph G with 15 symbol nodes and 20 constraint nodes,
whose set of constraint nodes is 3-partite with equally sized partitions.

While we assign the four parity-check polynomials ĥi(D) of the rate R =
3/4 constituent convolutional code from column three to the first set of con-
straint nodes in their natural order, that is, (ĥ0(D), ĥ1(D), ĥ2(D), ĥ3(D)), the
constituent parity-check polynomials for the second and third set of con-
straint nodes are permuted according to (0, 2, 3, 1) and (2, 3, 0, 1), that is,
(ĥ0(D), ĥ2(D), ĥ3(D), ĥ1(D)) and (ĥ2(D), ĥ3(D), ĥ0(D), ĥ1(D)), respectively.

This yields a rate Rwg = 5/20 woven convolutional graph code, whose
minimal-basic generator matrix has an overall constraint length of ν = 67. It
is well known that the row distances dr

i , i = 0, 1, . . ., upper-bound the free
distance (cf. Subsection 7.1.2). For the considered minimal-basic generator
matrix we obtain dr

0 = dr
1 = dr

2 = 130 and dr
3 = . . . = dr

6 = 120, and hence we
conclude that its free distance is upper-bounded by dfree ≤ 120.

For further code analysis, we use the BEAST (cf. Section 2.4) . Calculating
the free distance for such a code would take prohibitively long time with-
out splitting the computational workload on several processors. Using par-
allel computing, the free distance of this woven convolutional graph code
is determined to be as large as dfree = 120, where the individual forward
and backward sets are sorted and merged on individual processors. More-
over, there exists only one codeword of weight 120 with corresponding length
(1 + 3 + 11)20 = 300. Based on our experience obtained from studying
less complex woven convolutional graph codes, we conjecture that the next
nonzero spectral component occurs at weight 130 (cf. the sequence of row
distances shown above).

4.5. Simulation Results 119

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10−6

10−5

10−4

10−3

10−2

10−1

SNR [dB]

Pb

OFD Convolutional Code (ν = 15, dfree = 30)
Woven Convolutional Graph Code (ν = 26, dfree = 30)
ODP Convolutional Code (ν = 26, dfree = 40)

Figure 4.2: Comparison of BER performances for Viterbi decoding for
a rate Rwg = 3/9 woven convolutional graph code with
ν = 26 and dfree = 30 in comparison to a rate R = 1/3
ODP convolutional code with ν = 26 and dfree = 40 as
well as a rate R = 1/3 OFD convolutional code with ν =
15 and dfree = 30.

4.5 SIMULATION RESULTS

To demonstrate the error-correcting capabilities of woven convolutional graph
codes, the BER performance for the minimal-basic encoding matrix of a rate
Rwg = 3/9 woven convolutional graph code with overall constraint length ν =
26 and free distance dfree = 30 is simulated and illustrated in Figure 4.2. For
comparison we include the corresponding BER performance for the minimal-
basic encoding matrices of the rate R = 1/3 optimum distance profile (ODP)
convolutional code (cf. Chapter 7) with the same overall constraint length
ν = 26 but with larger free distance dfree = 40, as well as the rate R = 1/3
optimum free distance (OFD) convolutional code (cf. Chapter 7) with the same
free distance dfree = 30 but with smaller overall constraint length ν = 15.

For low SNRs (0.0–0.5 dB) the woven convolutional graph code yields al-
most the same BER performance as the ODP convolutional code, despite the
large difference in their free distances. However, for higher SNRs, with BER
around 10−5, the woven convolutional graph codes loses about 0.2 dB com-
pared to the ODP convolutional code. The OFD convolutional code, on the
other hand, has a significantly worse BER performance over the whole range
of SNRs.

5
A Closed Form Expression for the

Exact Bit Error Probability

The achievable BER performance when using a convolutional code to com-
municate over a BSC or a quantized AWGN channel together with an
ML decoding algorithm like the Viterbi algorithm (cf. Section 2.3) is

of particular interest. In 1971, Viterbi [Vit71] published a nowadays classi-
cal upper bound on the bit error probability Pb, derived from the extended
path weight enumerators obtained by using a signal flow chart technique for
convolutional encoders. Later, van de Meeberg [Van74] used a very clever
observation to tighten Viterbi’s bound for large signal-to-noise ratios (SNRs).

The challenging problem of deriving an expression for the exact (decoding)
bit error probability was first addressed by Morrissey in 1970 [Mor70] for a
suboptimal feedback decoding algorithm. He obtained the same expression
for the exact bit error probability of the rate R = 1/2, memory m = 1 (2-
state) convolutional encoder with generator matrix G(D) = (1 1 + D) that
Best et al. [BBL+95] obtained for the Viterbi algorithm. The latter method
is based on considering a Markov chain of the so-called metric states of the
Viterbi decoder; an approach due to Burnashev and Cohn [BC90]. In 2004,
Lentmaier et al. [LTZ04] published among other contributions an extension
of this method to the rate R = 1/2 memory m = 2 (4-state) convolutional
encoder with generator matrix G(D) = (1 + D2 1 + D + D2).

Within this chapter we shall use a different and more general approach
to derive a closed form expression for the exact (decoding) bit error proba-
bility for Viterbi decoding of convolutional encoders, when communicating
over a BSC as well as a quantized AWGN channel. This new method allows
the calculation of the exact bit error probability for more complex encoders
in a wider range of code rates than the methods of [BBL+95] and [LTZ04].
By considering a random tie-breaking strategy, we average the information

121

122 A Closed Form Expression for the Exact Bit Error Probability

weights over the sequences of channel noises and random coin-flipping deci-
sions (where the coin may have more than two sides, depending on the code
rate). Unlike the backward recursion in [BBL+95] and [LTZ04], the bit error
probability averaged over time is obtained by deriving and solving a recur-
rent matrix equation for the average information weights at the current and
previous states of a trellis section, when the maximum-likelihood branches
are decided by the Viterbi decoder at the current state.

To illustrate our method, we use a rate R = 2/3 systematic convolutional
2-state encoder whose minimal realization is given in OCF, since this encoder
is both general and simple.

In Section 5.1, the problem of computing the exact bit error probability is
reformulated via the average information weights and the concept of normal-
ized cumulative metrics is introduced. A recurrent matrix equation for these
average information weights is derived in Section 5.2. The derivations used
to solve this general equation are discussed in Section 5.3, before presenting
additional examples of various rate R = 1/2 and R = 2/3 convolutional en-
coders with different memories in Section 5.4. Furthermore, a rate R = 1/2 (4-
state) encoder used to communicate over a quantized AWGN channel is given
an its bit error probability is compared for different quantization schemes.

Before proceeding, we would like to emphasize that the bit error probabil-
ity is an encoder property, neither a generator matrix property nor a convolu-
tional code property.

5.1 EXPRESSING THE BIT ERROR PROBABILITY USING THE AVERAGE
INFORMATION WEIGHTS

Assume that the all-zero sequence is transmitted over a BSC with crossover
probability p and let Wt(σ) denote the Hamming weight of the information
sequence corresponding to the code sequence decided by the Viterbi decoder
(cf. Section 2.3) at state σ and time instant t, where the state σ is given by
(2.1). If the initial value Wt=0(σ) is known, then the random process Wt(σ),
t = 0, 1, 2 . . . is a function of both the random sequence of the received c-
tuples rτ , τ = 0, 1, . . . , t− 1, and the coin-flippings used to resolve ties.

In the following, the mathematical expectation of the random variable Wt(σ)
over this ensemble shall be determined, since for rate R = b/c minimal con-
volutional encoders the bit error probability can be computed as the limit

Pb = lim
t→∞

E [Wt(σ = 0)]
tb

(5.1)

assuming that this limit exists.
Note that if we consider nonminimal encoders, we have to additionally take

all states equivalent to the all-zero state into account.

5.1. Expressing the Bit Error Probability Using the Average Information Weights 123

In Section 2.3, the cumulative Viterbi branch metric for a rate R = b/c
convolutional code is computed recursively in (2.38) as

µV

(
r[0,t+1), v[0,t+1)

)
= µV

(
r[0,t), v[0,t)

)
+ µV (rt, vt) (5.2)

where rt and vt denote the received c-tuple and code c-tuple at time instant
t, while the sequences r[0,t) and v[0,t), t > 0, correspond to the segments
(r0 r1. . . rt−1) and (v0 v1. . . vt−1), respectively, and µV refers to the cumulative
Viterbi branch metric.

Let ∑ denote the total number of different encoder states σ in either CCF
and OCF (cf. Subsection 1.3.2). To simplify notations, we will index the en-
coder states by ζ and refer to the ith encoder state σ as ζ = i, with ζ ∈
{0, 1, . . . , |∑| − 1}, where the state σ = 0 corresponds to ζ = 0.

Denote by µt−1 (ζ) and µ(t)(ζ ′) the cumulative Viterbi branch metrics for
the code sequence segments v[0,t) and v[0,t+1) leading to the encoder states ζ

and ζ ′ at time instants t − 1 and t, respectively. Then the calculation of the
cumulative Viterbi branch metric (5.2) can be alternatively expressed as

µ(t)(ζ
′) = µ(t−1) (ζ) + µV (rt, vt) (5.3)

where the branch between the two encoder states ζ and ζ ′ is labeled by the
corresponding code c-tuple vt.

Combining all cumulative Viterbi branch metrics for time instant t yields
the cumulative Viterbi branch metric vector µt given by

µt = (µt(0) µt(1) . . . µt(|∑| − 1)) (5.4)

It is convenient to normalize these metrics such that the cumulative Viterbi
branch metrics at every all-zero state are equal to zero, that is, we subtract
the value µt(0) from µt(1), µt(2), . . . , µt(|∑| − 1) and introduce the normalized
cumulative (Viterbi) branch metric vector

φt =
(

φt(1) φt(2) . . . φt(|∑| − 1)
)

=
(

µt(1)−µt(0) µt(2)−µt(0) . . . µt(|∑| − 1)−µt(0)
)

For example, using a 2-state encoder we obtain the scalar

φt = µt(1)−µt(0) = φt(1)

while for a 4-state encoder we have the vector

φt =
(

µt(1)−µt(0) µt(2)−µt(0) µt(3)−µt(0)
)

=
(

φt(1) φt(2) φt(3)
)

124 A Closed Form Expression for the Exact Bit Error Probability

The elements of the random vector φt belong to a set whose cardinality
M depends on the channel model, encoder structure, and the tie-breaking
rule. Enumerate the vectors φt by numbers φt which are random variables
taking on M different integer values φ(0), φ(1), . . . , φ(M−1). The sequence of
numbers φt forms an M-state Markov chain Φt with transition probability

matrix Φ =
(

φjk

)
, where

φjk = Pr
(

φt+1 = φ(k)
∣∣∣ φt = φ(j)

)
(5.5)

Let W t be the vector of information weights at time instant t that depends
both on the |∑| encoder states ζt and on the M normalized cumulative metrics
φt; that is, W t is expressed as the following vector with M |∑| entries

W t=
(

W t(ζ = 0) W t(ζ = 1) . . . W t(ζ = |∑|−1)
)

(5.6)
where

W t(ζ)=
(

Wt(φ
(0), ζ) Wt(φ

(1), ζ) . . . Wt(φ
(M−1), ζ)

)
(5.7)

Then (5.1) can be rewritten as

Pb = lim
t→∞

E[Wt(σ = 0)]
tb

= lim
t→∞

E[Wt(ζ = 0)]
tb

= lim
t→∞

∑M−1
i=0 E[Wt(φ(i), ζ = 0)]

tb
= lim

t→∞

E[W t(ζ = 0)]1T
1,M

tb

= lim
t→∞

wt(ζ = 0)1T
1,M

tb
= lim

t→∞

wt

tb
(
11,M 01,M . . . 01,M)T (5.8)

where 11,M and 01,M denote the all-one and the all-zero row vectors of length
M, respectively, wt represents the length M |∑| vector of the average informa-
tion weights, while the length M vector of average information weights at the
state ζ is given by wt(ζ). Note that the mathematical expectations in (5.8) are
computed over sequences of channel noises and coin-flipping decisions.

To illustrate the introduced notations, we use the rate R = 2/3 memory
m = 1 minimal encoder with overall constraint length ν = 2 and systematic
generator matrix

G(D) =

(
1 0 1 + D
0 1 1 + D

)
(5.9)

whose 2-state realization in OCF is illustrated in Figure 5.1.
Assuming that the normalized cumulative metric is φt = 0, we obtain the

eight trellis sections given in Figure 5.2, where bold branches correspond to
branches decided by the Viterbi decoder at time instant t + 1. When we have
more than one branch with the maximum normalized cumulative metric en-
tering the same state, we have a tie, which we resolve in this analysis by fair
coin-flipping.

5.1. Expressing the Bit Error Probability Using the Average Information Weights 125

u(0) v(0)

u(1) v(1)

v(2)

Figure 5.1: A minimal encoder for the generator matrix given in
equation (5.9).

The eight trellis sections in Figure 5.2 yield the normalized cumulative met-
rics {−1, 0, 1}. Starting with φt = −1 and φt = 1, yields 16 additional trellis
sections and the two additional normalized cumulative metrics {−2, 2}. From
the metrics φt = −2 and φt = 2, we get another 16 trellis sections but those
will not yield any new metrics.

Thus, in total we have M = 5 normalized cumulative metrics φt ∈ {−2,−1,
0, 1, 2}. Together with the eight different received triples, rt = 000, 001, 010,
100, 011, 101, 110, and 111, they correspond to in total 40 different trellis
sections. Hence, the normalized cumulative metric Φt is a 5-state Markov
chain with transition probability matrix Φ =

(
φjk
)
, 1 ≤ j, k ≤ 5.

From the four trellis sections Figure 5.2(a), (b), (g), and (h), we obtain for
example that

φ0(−1) = P (rt = 000) + P (rt = 001) + P (rt = 110) + P (rt = 111)

= q3 + pq2 + p2q + p3 = p2 + q2 (5.10)

while the four trellis sections, Figure 5.2(c), (d), (e), and (f) yield

φ01 = pq2 + pq2 + p2q + p2q = 2pq (5.11)

where q = 1− p. Similarly, we obtain the remaining transition probabilities
from the 32 trellis sections that are not included in Figure 5.2.

Finally, their transition probability matrix follows as

Φ =



-2 -1 0 1 2 φ(k)

-2 q3 + p2q 0 p3 + 3pq2 0 2p2q
-1 q3 + p2q 0 p3 + 3pq2 0 2p2q
0 0 p2 + q2 0 2pq 0
1 p3 + pq2 0 q3 + 3p2q 0 2p2q
2 p3 + pq2 0 q3 + 3p2q 0 2p2q
φ(j)

 (5.12)

whose state diagram of the metric Markov chain is shown in Figure 5.3.

126 A Closed Form Expression for the Exact Bit Error Probability

000 3
110 1

001

2

111

0
101

1

011

1

010 2
100 2

0

0

3

2

rt = 000
µt

φt = 0 φt+1 = −1

0

1

0

1

(a)

000 2
110 0

001

3

111

1
101

2

011

2

010 1
100 1

0

0

3

2

rt = 001
µt

φt = 0 φt+1 = −1

0

1

0

1

(b)

000 2
110 2

001

1

111

1
101

0

011

2

010 3
100 1

0

0

2

3

rt = 010
µt

φt = 0 φt+1 = 1

0

1

0

1

(c)

000 2
110 2

001

1

111

1
101

2

011

0

010 1
100 3

0

0

2

3

rt = 100
µt

φt = 0 φt+1 = 1

0

1

0

1

(d)

000 1
110 1

001

2

111

2
101

1

011

3

010 2
100 0

0

0

2

3

rt = 011
µt

φt = 0 φt+1 = 1

0

1

0

1

(e)

000 1
110 1

001

2

111

2
101

3

011

1

010 0
100 2

0

0

2

3

rt = 101
µt

φt = 0 φt+1 = 1

0

1

0

1

(f)

000 1
110 3

001

0

111

2
101

1

011

1

010 2
100 2

0

0

3

2

rt = 110
µt

φt = 0 φt+1 = −1

0

1

0

1

(g)

000 0
110 2

001

1

111

3
101

2

011

2

010 1
100 1

0

0

3

2

rt = 111
µt

φt = 0 φt+1 = −1

0

1

0

1

(h)

Figure 5.2: Eight (of a total of 40) trellis sections for the rate R = 2/3,
2-state encoder in Figure 5.1.

5.2. Computing the Vector of Average Information Weights 127

p3 + pq2 2p2q

2pq2

q3 + p2q

q3 + 3p2q

p3 + 3pq2

2pq

q3 + 3p2q

p3 + 3pq2

p2 + q2

q3 + p2q

2p2q

p3 + pq2

2pq2

01 -1

2

-2

Figure 5.3: Illustration of the 5-state Markov chain formed by the se-
quences of normalized cumulative metrics φt.

Let pt =(p(0)t p(1)t . . . p(M−1)
t) denote the probabilities of the M different nor-

malized cumulative metrics of Φt at time instant t, that is, φt∈{φ(0), φ(1), . . . ,
φ(M−1)}. Their corresponding stationary probability distribution is denoted
by p∞ = (p(0)

∞ p(1)
∞ . . . p(M−1)

∞) and follows as the solution of, for example, the
first M− 1 equations of

p∞Φ = p∞ (5.13)

and
M−1

∑
i=0

p(i)∞ = 1 (5.14)

For the 2-state convolutional encoder with systematic generator matrix (5.9)
and realized in OCF, we obtain the stationary metric distribution

pT
∞ =

1
1− p + 10p2 − 20p3 + 20p4 − 8p5

×


1 + 7p− 28p2 + 66p3 − 100p4 + 96p5 − 56p6 + 16p7

− 3p + 16p2 − 46p3 + 80p4 − 88p5 + 56p6 − 16p7

− 3p + 10p2 − 20p3 + 20p4 − 8p5

− 6p2 + 26p3 − 60p4 + 80p5 − 56p6 − 16p7

− 2p2 − 6p3 + 40p4 − 72p5 + 56p6 − 16p7



128 A Closed Form Expression for the Exact Bit Error Probability

5.2 COMPUTING THE VECTOR OF AVERAGE INFORMATION WEIGHTS

In order to compute the (exact) bit error probability according to (5.8), it is
necessary to determine wt(ζ = 0). In the following, we will derive a recurrent
matrix equation for the average information weights and illustrate how to
obtain its components using as an example the rate R = 2/3 memory m = 1
minimal encoder determined by (5.9).

The vector wt describes the dynamics of the information weights when we
proceed along the trellis, and hence satisfies the recurrent matrix equation{

wt+1 = wt A + btB

bt+1 = btΠ
(5.15)

where A and B are M |∑| ×M |∑| nonnegative matrices, and Π is an M |∑| ×
M |∑| stochastic matrix, with |∑| = 2m. Both matrices A and B have a |∑| ×
|∑| block structure, containing the submatrices Aij and Bij of size M × M,
respectively, where the former satisfy

|∑|−1

∑
i=0

Aij = Φ, j = 0, 1, . . . , |∑| − 1 (5.16)

since we consider only encoders for which every encoder state is reachable
with probability 1.

The matrix A represents the linear part of the affine transformation of the
information weights while the matrix B describes their weight increments.
That is, their submatrices Aij and Bij specify the updating of the average
information weights if the transition from encoder state i to encoder state j
exists; and are zero otherwise. Moreover, the vector bt of length M |∑| is
a concatenation of the |∑| stochastic vectors pt, and hence the matrix Π is
determined by

Π =


Φ 0 . . . 0
0 Φ . . . 0
...

...
. . .

...
0 0 . . . Φ

 (5.17)

From the initial formula for the exact bit error probability (5.1), it follows that
we are interested in the asymptotic values. Hence, we can choose the initial
value of the vector of information weights at time instant 0 as

w0 = 0 (5.18)

Continuing the previous example, we will illustrate how the 10× 10 matri-
ces A and B can be obtained directly from all 40 trellis sections. For example,

5.2. Computing the Vector of Average Information Weights 129

the eight trellis sections shown in Figure 5.2 determine all transitions from
φt = 0 to either φt+1 = −1 or φt+1 = 1.

To be more precise, consider all transitions from ζt = 0 and φt = 0 to
ζt+1 = 0 and φt+1 = −1, as shown in Figure 5.2(a), (b), (g), and (h). Only
Figure 5.2(a) and (g) have transitions decided by the Viterbi algorithm, which
are vt = 000 and vt = 110, respectively, and thus the entry ζt = 0, φt = 0,
ζt+1 = 0, φt+1 = −1 within matrix A follows as

P (rt = 000) + P (rt = 110) = q3 + p2q

and within matrix B as

β (000) P (rt = 000) + β (110) P (rt = 110) = 0 + 2p2q = 2p2q

where β (vt) denotes the number of information 1s corresponding to vt.
Since we use coin-flipping to resolve ties, we obtain from the trellis sections

in Figure 5.2(c) and (d) that the entry ζt = 0, φt = 0, ζt+1 = 0, φt+1 = 1 within
matrix A is

1
2

P (rt = 010) +
1
2

P (rt = 010) +
1
2

P (rt = 100) +
1
2

P (rt = 100)

=
1
2

pq2 +
1
2

pq2 +
1
2

pq2 +
1
2

pq2 = 2pq2

while for matrix B we obtain

1
2

β (000) P (rt = 010) +
1
2

β (110) P (rt = 010)

+
1
2

β (000) P (rt = 100) +
1
2

β (110) P (rt = 100)

=
1
2
· 0 + 1

2
· 2pq2 +

1
2
· 0 + 1

2
· 2pq2 = 2pq2

Similarly the entry ζt = 1, φt = 0, ζt+1 = 0, φt+1 = −1 follows from Fig-
ure 5.2(b) and (h) in matrix A as

pq2 + p3

and in matrix B as
0 + 2p3 = 2p3

Finally, according to Figure 5.2(e) and (f), the entry ζt = 1, φt = 0, ζt+1 = 0,
φt+1 = 1 in matrix A is given by

1
2

p2q +
1
2

p2q +
1
2

p2q +
1
2

p2q = 2p2q

130 A Closed Form Expression for the Exact Bit Error Probability

and in matrix B by

1
2
· 0 + 1

2
· 2p2q +

1
2
· 0 + 1

2
· 2p2q = 2p2q

The trellis sections in Figure 5.2 additionally determine the entries for the
transitions ζt = 0, φt = 0, ζt+1 = 1, φt+1 = −1 and ζt = 0, φt = 0, ζt+1 = 1,
φt+1 = 1 as well as the transitions ζt = 1, φt = 0, ζt+1 = 1, φt+1 = −1 and
ζt = 1, φt = 0, ζt+1 = 1, φt+1 = 1.

All other transitions with φt = 0 are never decided by the Viterbi algorithm,
and hence the remaining entries in the corresponding rows within the matri-
ces A and B are zero. The eight trellis sections in Figure 5.2 yield 20 out of
100 entries in each of the two matrices A and B, while the 32 trellis sections
not shown in Figure 5.2 yield the remaining 80 entries for each matrix. In
summary, for the convolutional encoder shown in Figure 5.1, we obtain the
matrices

A =

(ζt+1 = 0 ζt+1 = 1

ζt = 0 A00 A01
ζt = 1 A10 A11

)
(5.19)

where

A00 =



-2 -1 0 1 2

-2 q3+p2q 0 p3+3pq2 0 2p2q
-1 q3+p2q 0 1

2 p3+ 5
2 pq2 0 p2q

0 0 q3+p2q 0 2pq2 0
1 0 0 1

2 q3+ 1
2 p2q 0 pq2

2 0 0 0 0 0

 (5.20)

A01 =



-2 -1 0 1 2

-2 p2q+q3 0 p3+3pq2 0 2p2q
-1 1

2 p3+ 1
2 pq2 0 p2q 0 0

0 0 p3+pq2 0 2p2q 0
1 1

2 q3+ 1
2 p2q 0 p3+2pq2 0 2p2q

2 0 0 0 0 0

 (5.21)

A10 =



-2 -1 0 1 2

-2 0 0 0 0 0
-1 0 0 1

2 p3+ 1
2 pq2 0 p2q

0 0 p3+pq2 0 2p2q 0
1 p3+pq2 0 1

2 q3+ 5
2 p2q 0 pq2

2 p3+pq2 0 3p2q+q3 0 2pq2

 (5.22)

5.3. Computing the Vector of Average Information Weights 131

A11 =



-2 -1 0 1 2

-2 0 0 0 0 0
-1 1

2 p2q+ 1
2 q3 0 pq2 0 0

0 0 p2q+q3 0 2pq2 0
1 1

2 pq2+ 1
2 p3 0 2p2q+q3 0 2pq2

2 p3+pq2 0 3p2q+q3 0 2pq2

 (5.23)

and

B =

(ζt+1 = 0 ζt+1 = 1

ζt = 0 B00 B01
ζt = 1 B10 B11

)
(5.24)

where

B00 =



-2 -1 0 1 2

-2 2p2q 0 p3+2pq2 0 2p2q
-1 0 0 p2q 0 pq2

0 0 2p2q 0 2pq2 0
1 2p2q 0 p3+2pq2 0 p2q
2 0 0 0 0 0

 (5.25)

B01 =



-2 -1 0 1 2

-2 p2q+q3 0 p3+3pq2 0 2p2q
-1 1

2 p3+ 1
2 pq2 0 p2q 0 0

0 0 p3+pq2 0 2p2q 0
1 1

2 q3+ 1
2 p2q 0 p3+2pq2 0 2p2q

2 0 0 0 0 0

 (5.26)

B10 =



-2 -1 0 1 2

-2 0 0 0 0 0
-1 0 0 p3 0 p2q
0 0 2p3 0 2p2q 0
1 2p3 0 3p2q 0 pq2

2 2p3 0 4p2q 0 2pq2

 (5.27)

B11 =



-2 -1 0 1 2

-2 0 0 0 0 0
-1 1

2 p2q+ 1
2 q3 0 pq2 0 0

0 0 p2q+q3 0 2pq2 0
1 1

2 pq2+ 1
2 p3 0 2p2q+q3 0 2pq2

2 p3+pq2 0 3p2q+q3 0 2pq2

 (5.28)

132 A Closed Form Expression for the Exact Bit Error Probability

5.3 SOLVING THE RECURRENT EQUATION

Consider the second equation in (5.15). It follows from (5.8) that we are only
interested in the asymptotic values, and hence letting t tend to infinity yields

b∞ = b∞Π (5.29)

where b∞ can be chosen as

b∞ = (p∞ p∞ . . . p∞) (5.30)

To obtain the last equality, we took into account that Π is a block-diagonal
matrix whose diagonal elements are given by the transition probability matrix
Φ which satisfies (5.13). Based on these observations, (5.15) is simplified to

wt+1 = wt A + b∞B (5.31)

By iterating this simplified recurrent matrix equation together with its ini-
tial value from (5.18), we obtain the vector of the information weights at time
instant t + 1 as

wt+1 = b∞BAt + b∞BAt−1 + · · ·+ b∞B (5.32)

Before continuing, we would like to recall the following theorem on the con-
vergence of the arithmetic mean of a sequence.

Theorem 5.1 (Cesàro mean [Har92]) Consider the sequences 〈an〉 and 〈cn〉,
where

cn =
1
n

n

∑
i=1

ai (5.33)

is the arithmetic mean of the first n elements of 〈an〉. If the sequence 〈an〉
converges, then

lim
n→∞

cn = lim
n→∞

an = a∞ (5.34)

Hence, taking the limit t→ ∞, it follows from (5.32) that

lim
t→∞

wt

tb
= lim

t→∞

wt+1

tb
= lim

t→∞

1
tb

t

∑
j=0

b∞BAt−j =
1
b

b∞BA∞ (5.35)

where A∞ denotes the limit of the sequence 〈At〉 when t tends to infinity.
Moreover, it follows from (5.16) and (5.17) that the vector

eL = (p∞ p∞. . . p∞) (5.36)

satisfies
eL A = eL (5.37)

and hence is a left eigenvector with eigenvalue λ = 1 for the matrix A. Sim-
ilarly, let eR denote a corresponding right eigenvector, normalized such that
eLeT

R = 1.

5.3. Solving the Recurrent Equation 133

Based on these preliminaries, we will prove in the following subsection that
the eigenvalue λ = 1 is a maximal and simple eigenvalue for the matrix A,
and hence the limit of the power series of A is given by

lim
m→∞

Am = A∞ = eT
LeR (5.38)

5.3.1 DETERMINING THE LIMIT OF A POWER SERIES

First, we will recall two basic Lemmas and one Corollary from matrix theory,
which shall be useful later:

Corollary 5.2 (Corollary 8.1.30 in [HJ90]) Suppose that A is a nonnegative
square matrix with a positive left eigenvector eL > 0 and spectral radius ρ(A).
Then the corresponding eigenvalue is ρ(A), that is, |λ| < ρ(A) for any other
eigenvalue λ.

Lemma 5.3 (Lemma 8.2.7, statement (i) in [HJ90]) Let A be a square ma-
trix with eigenvalue λ 6= 0 and denote the corresponding left and right eigen-
vectors by eL and eR, such that eLeT

R = 1. If the eigenvalue λ has geomet-
ric multiplicity 1, it is the only eigenvalue with modulus ρ(A), and satisfies
|λ| = ρ(A) > 0, where ρ(A) denotes the spectral radius of A, and

lim
m→∞

(
λ−1 A

)m
= eT

ReL (5.39)

Lemma 5.4 (Lemma 8.4.3 in [HJ90]) If A is a nonnegative square matrix
and Ak > 0 for some k ≥ 1, then ρ(A) is an algebraically simple eigenvalue
of A, where ρ(A) denotes the spectral radius of A.

Depending on the ML decisions of the Viterbi decoder, there might be a
state ζ with normalized cumulative metric φt, whose leaving transitions are
never decided by the Viterbi algorithm. Clearly, such a state corresponds to
an all-zero row in the matrix A, and hence does not contribute to the bit error
probability and can be ignored. Additionally, all transitions arriving at such
a state can be ignored, since those transitions can never be decided by the
Viterbi algorithm during the following time instant. Hence, without loss of
generality, all rows with only zero elements, as well as their corresponding
columns can be removed. Denote the remaining matrix by Â.

Note that due to those all-zero rows within the matrix A, the corresponding
elements in the left eigenvector eL have to be zero. Hence, removing those
zero elements, yields the reduced vector êL which satisfies

êL Â = êL (5.40)

and hence is a left eigenvector of the matrix Â with eigenvalue λ = 1.

134 A Closed Form Expression for the Exact Bit Error Probability

For example, in case of the 2-state convolutional encoder with generator
matrix (5.9), such states which are never decided by the Viterbi algorithm are
given by ζ = 0 with normalized cumulative metric φ = 2 as well as by ζ = 1
with normalized cumulative metric φ = −2 (cf. submatrices (5.20) – (5.23)).
That is, the corresponding matrix A can be written as

A =

−2

−1

0

1

2

−2

−1

0

1

2

−2 −1 0 1 2 −2 −1 0 1 2

...
...

...
...

ζt = 0

ζt = 1

ζt+1 = 0 ζt+1 = 1

∗ ∗

∗ ∗
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
∗ ∗

∗ ∗




(5.41)

where the all-zero rows and their corresponding columns with arbitrary en-
tries are shaded in gray. After removing these rows and columns, we obtain
the 8× 8 nonnegative matrix Â.

In particular, note that every state ζ within Â is reachable from any other
state, and hence it follows that

Â > 0 for some k ≥ 1 (5.42)

Moreover, since the entries of the corresponding left eigenvector êL represent
the probabilities of the stationary distribution of the Markov Chain where
each state is reachable with probability 1, the eigenvector êL has to be strictly
positive.

Thus, it follows from Corollary 5.2 and Lemma 5.4 that λ = 1 is a simple
and maximal eigenvalue for the reduced matrix Â with left eigenvector êL.

Finally, we will prove that the same result is valid for the eigenvalue λ = 1
of the matrix A with eigenvector eL. Therefore, we consider the matrix Â′,
obtained by extending the matrix Â with an additional all-zero row and an
additional column with arbitrarily chosen elements represented by ∗

Â′ =

 Â
∗
∗
∗

0 . . . 0 0

 (5.43)

Since the characteristic polynomials of Â and Â′ satisfy

det
(

λI − Â′
)
= λ det

(
λI − Â

)
(5.44)

5.3. Solving the Recurrent Equation 135

it follows that Â′ and Â share the same eigenvalues, except the additional
eigenvalue λ = 0 for Â′.

By induction we conclude that the eigenvalues of the matrices A and Â
differ at most by (the multiplicity of) the eigenvalue λ = 0. In particular, it
follows that the eigenvalue λ = ρ(A) = 1 for the matrix A is a simple and
maximal eigenvalue with left eigenvector eL.

Hence, the assumptions of Lemma 5.3 are satisfied and it follows that

A∞ = eT
ReL (5.45)

5.3.2 DERIVING A CLOSED FORM EXPRESSION

Combining (5.35), (5.36), and (5.45), the limit of the recurrent matrix equation
can be expressed as

lim
t→∞

wt

tb
=

1
b

b∞BeT
ReL =

1
b

b∞BeT
R (p∞ p∞. . . p∞) (5.46)

Following (5.8), we obtain the closed form expression for the exact bit error
probability by summing up the first M components of the vector (p∞ p∞. . . p∞)
on the right side of (5.46), and hence

Pb =
1
b

b∞BeT
R (5.47)

To summarize, the exact bit error probability Pb for Viterbi decoding of a
rate R = b/c minimal convolutional encoder, when communicating over a
BSC, is calculated as follows:

(i) Construct the set of normalized cumulative (Viterbi) metrics and find
the corresponding stationary probability distribution p∞ of its metric
state Markov chain.

(ii) Determine the matrices A and B as in Section 5.1 and compute the right
eigenvector eR normalized such that (p∞ p∞ . . . p∞)eT

R = 1.

(iii) Calculate the exact bit error probability Pb using (5.47).

For the encoder shown in Figure 5.1 we obtain

Pb =
(

4p− 2p2 + 67p3 − 320p4 + 818p5 − 936p6 − 884p7 + 5592p8

−11232p9 + 13680p10 − 11008p11 + 5760p12 − 1792p13 + 256p14
)

/(
2− 5p + 41p2 − 128p3 + 360p4 − 892p5 + 1600p6

−1904p7 + 1440p8 − 640p9 + 128p10
)

= 2p + 4p2 +
5
2

p3 − 431
4

p4 − 125
8

p5 +
32541

16
p6 − 70373

32
p7

−1675587
64

p8 +
7590667

128
p9 +

67672493
256

p10 − · · · (5.48)

136 A Closed Form Expression for the Exact Bit Error Probability

1
2 10−1 10−2

10−5

10−4

10−3

10−2

10−1

1
2

BSC crossover probability p

Pb

2 states, G(D) = (1 1 + D)

4 states, G(D) = (1 + D2 1 + D + D2)

8 states, G(D) = (1 + D2 + D3 1 + D + D2 + D3)

16 states, G(D) = (1 + D + D4 1 + D + D2 + D3 + D4)

Figure 5.4: Exact bit error probability for the rate R = 1/2 minimal
encoders of memory 1 (2-state), memory 2 (4-state), mem-
ory 3 (8-state), and memory 4 (16-state).

If the minimal generator matrix (5.9) would be instead realized in CCF, we
obtain a nonminimal (4-state) encoder with M = 12 normalized cumulative
metrics, whose exact bit error probability is slightly worse than that of its
minimal realization in OCF (cf., the note after (5.1)).

5.4 ADDITIONAL EXAMPLES

In the following section, the exact bit error probability shall be calculated for
various convolutional codes, realized in either CCF or OCF, and being used
to communicate over a BSC or a quantized AWGN channel.

As our first example, we consider four different rate R = 1/2 convolutional
encoders with memory m = 1, 2, 3, and 4; that is, encoders with 2, 4, 8, and
16 states, realized in CCF. Their corresponding exact bit error probability is
plotted in Figure 5.4.

Example 5.1:
Consider the rate R = 1/2, memory m = 1 (2-state) convolutional encoder
with generator matrix G(D) = (1 1 + D). Its CCF realization yields 20 dif-
ferent trellis sections with the normalized cumulative metrics {−2,−1, 0, 1, 2},
while the stationary probability distribution of its metric state Markov chain
is given by

pT
∞ =

1
1 + 3p2 − 2p3


1− 4p + 8p2 − 7p3 + 2p4

2p− 5p2 + 5p3 − 2p4

2p− 3p2 + 3p3

2p2 − 3p3 + 2p4

p2 + p3 − 2p4

 (5.49)

5.4. Additional Examples 137

Based on these 20 trellis sections, the 10× 10 matrices A and B are constructed
as the following block matrices

A =

(ζt+1 = 0 ζt+1 = 1

ζt = 0 A00 A01
ζt = 1 A10 A11

)
(5.50)

=



-2 -1 0 1 2 -2 -1 0 1 2

-2 q2 0 2pq 0 p2 q2 0 2pq 0 p2

-1 q2 0 3pq/2 0 p2/2 q2/2 0 3pq/2 0 p2

0 0 q2 0 pq 0 0 pq 0 p2 0
1 0 0 q2/2 0 pq/2 pq/2 0 p2/2 0 0
2 0 0 0 0 0 0 0 0 0 0

-2 0 0 0 0 0 0 0 0 0 0
-1 0 0 pq/2 0 p2/2 q2/2 0 pq/2 0 0
0 0 pq 0 p2 0 0 q2 0 pq 0
1 pq 0 q2/2 + p2 0 pq/2 pq/2 0 q2 + p2/2 0 pq
2 pq 0 q2 + p2 0 pq pq 0 q2 + p2 0 pq


and

B =

(ζt+1 = 0 ζt+1 = 1

ζt = 0 05,5 A01
ζt = 1 05,5 A11

)
(5.51)

where 05,5 denotes the 5× 5 all-zero matrix. Moreover, we obtain the corre-
sponding normalized right eigenvector of A as

eR =
(

0 0 0 0 0 0 pq
2

4pq
2−p+4p2−4p3

(2+7p−12p2+13p3−12p4+4p5)
2(2−p+4p2−4p3)

1
)

Inserting (5.49), (5.51), and (5.52) into (5.47) yields the following expression
for the exact bit error probability

Pb =
14p2 − 23p3 + 16p4 + 2p5 − 16p6 + 8p7

(1 + 3p2 − 2p3)(2− p + 4p2 − 4p3)

= 7p2 − 8p3 − 31p4 + 64p5 + 86p6 − 635
2

p7

−511
4

p8 +
10165

8
p9 − 4963

16
p10 − · · · (5.52)

which coincides with the exact bit error probability formula given in [BBL+95].

138 A Closed Form Expression for the Exact Bit Error Probability

00 2

11

0

11

0

00

2

01

1

10

110

1

01 1

00

01

10

11

00

01

10

11

µt

0

0

0

0

µt+1

2

1

2

1

rt = 00

φt+1 = (−1 0−1)φt = (0 0 0)

00 1

11

1

11

1

00

1

01

2

10

010

0

01 2

00

01

10

11

00

01

10

11

µt

0

0

0

0

µt+1

1

2

1

2

rt = 01

φt+1 = (1 0 1)φt = (0 0 0)

00 1

11

1

11

1

00

1

01

0

10

210

2

01 0

00

01

10

11

00

01

10

11

µt

0

0

0

0

µt+1

1

2

1

2

rt = 10

φt+1 = (1 0 1)φt = (0 0 0)

00 0

11

2

11

2

00

0

01

1

10

110

1

01 1

00

01

10

11

00

01

10

11

µt

0

0

0

0

µt+1

2

1

2

1

rt = 11

φt+1 = (−1 0−1)φt = (0 0 0)

Figure 5.5: Four different trellis sections of the in total 124 for the
G(D) = (1 + D2 1 + D + D2) generator matrix.

Example 5.2:
For the rate R = 1/2, memory m = 2 (4-state) convolutional encoder with gen-
erator matrix G(D) = (1 + D2 1 + D + D2) and realized in CCF, we obtain
in total 124 different trellis sections, for example, the four trellis sections for
φt = (000) plotted in Figure 5.5 whose corresponding normalized cumulative
metrics at time instant t + 1 are φt+1 = (−1 0 −1) and φt+1 = (1 0 1).

Completing the set of trellis sections yields M = 31 different normalized
cumulative metrics, and hence the 124× 124 matrices A and B have the block
structure

A =


A00 031,31 A02 031,31
A10 031,31 A12 031,31

031,31 A21 031,31 A23
031,31 A31 031,31 A33

 (5.53)

and

B =


031,31 031,31 A02 031,31
031,31 031,31 A12 031,31
031,31 031,31 031,31 A23
031,31 031,31 031,31 A33

 (5.54)

Following the method for calculating the exact bit error probability described
in Section 5.3 we obtain

Pb = 44p3 +
3519

8
p4 − 14351

32
p5 − 1267079

64
p6 − 31646405

512
p7

+
978265739

2048
p8 +

3931764263
1024

p9 − 48978857681
32768

p10 − · · · (5.55)

which coincides with the previously obtained result given in [LTZ04].

5.4. Additional Examples 139

Example 5.3:
For the rate R = 1/2, memory m = 3 (8-state) convolutional encoder with
generator matrix G(D) = (1 + D2 + D3 1 + D + D2 + D3) and realized in
CCF, we have M = 433 normalized cumulative metrics yielding the matrices
A and B of size 433 · 23 × 433 · 23.

Since the the complexity of the symbolic derivations increases greatly, we
can only obtain a numerical solution of (5.47) as shown in Figure 5.4.

Example 5.4:
For the rate R = 1/2, memory m = 4 (16-state) convolutional encoder with
generator matrix G(D) = (1 + D2 + D3 + D4 1 + D + D4) and realized in
CCF, we have as many as M = 188687 normalized cumulative metrics. Thus,
the matrices A and B are of size 188687 · 24 × 188687 · 24.

The corresponding numerical solution of (5.47) is given in Figure 5.4.

The obvious next step would be to try a rate R = 1/2, memory m = 5
(32-state) convolutional encoder. We considered the generator matrix G(D) =
(1+ D+ D2 + D3 + D4 + D5 1+ D3 + D5) realized in CCF, but we were only
able to show that its number of normalized cumulative metrics M exceeds
4130000.

Example 5.5:
Next, consider the generator matrix

G1(D) =
(

1 + D2 1 + D + D2) (5.56)

and its equivalent systematic generator matrices

G2(D) =
(

1 1+D2

1+D+D2

)
(5.57)

and
G3(D) =

(
1 1+D+D2

1+D2

)
(5.58)

When realized in CCF all three realizations have M = 31 normalized cumula-
tive metrics. The exact bit error probability for G1(D) is given by (5.55). For
G2(D) and G3(D) we obtain

Pb =
163
2

p3 +
365

2
p4 − 24045

8
p5 − 1557571

128
p6 +

23008183
512

p7

+
1191386637

2048
p8 +

4249634709
8192

p9 +
132555764497

8192
p10 − · · · (5.59)

and

Pb =
141

2
p3 +

1739
8

p4 − 71899
32

p5 − 1717003
128

p6 +
2635041

128
p7

+
540374847

1024
p8 +

9896230051
8192

p9 − 402578056909
32768

p10 − · · · (5.60)

respectively. The corresponding numerical results are shown in Figure 5.6.

140 A Closed Form Expression for the Exact Bit Error Probability

1
2 10−1 10−2

10−4

10−3

10−2

10−1

1
2

BSC crossover probability p

Pb

G1(D) =
(
1 + D2 1 + D + D2)

G2(D) =
(
1 (1 + D2)/(1 + D + D2)

)
G3(D) =

(
1 (1 + D + D2)/(1 + D2)

)

Figure 5.6: Exact bit error probability for rate R = 1/2, memory 2
minimal encoders.

Example 5.6:
The exact bit error probability for the rate R = 2/3 generator matrices with
4, 8, and 16 states, specified in Table 5.1 and realized in CCF, is plotted in
Figure 5.7. For example, in case of the 4-state encoder we obtain the exact bit
error probability

Pb =
67
2

p2 +
17761

48
p3 − 2147069

648
p4 − 1055513863

46656
p5 +

123829521991
559872

p6

+
67343848419229

60466176
p7 − 27081094434882419

2176782336
p8

−477727138796620247
8707129344

p9 +
1944829319763332473469

2821109907456
p10 + · · · (5.61)

G(D) #states dfree M(
D 1 + D 1 + D
1 D 1 + D

)
4 3 19(

1 + D D 1
D2 1 1 + D + D2

)
8 4 347(

D + D2 1 1 + D2

1 D + D2 1 + D + D2

)
16 5 15867

Table 5.1: Rate R = 2/3 generator matrices.

If the BSC is replaced by a quantized AWGN channel, the calculation of the
exact bit error probability follows the same method as described in Section 5.3,
but its computational complexity increases dramatically as illustrated by the
following example.

5.4. Additional Examples 141

1
2 10−1 10−2 10−3

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1
2

BSC crossover probability p

Pb

4 states
8-state
16-state

Figure 5.7: Exact bit error probability for the rate R = 2/3, overall
constraint length ν = 2, 3, and 4 (4-state, 8-state, and 16-
state, respectively) encoders whose generator matrices are
given in Table 5.1.

Example 5.7:
Consider the generator matrix G(D) = (1+ D2 1+ D + D2) realized in CCF
and used to communicate over a quantized AWGN channel. We use differ-
ent quantization methods, namely, uniform quantization [HJ71] [OCC93] and
Massey quantization [Mas74] [JZ99]; see Figure 5.8.

In both cases we optimized the cut-off rate R0 to determine the quantization
thresholds, but allowed nonuniform quantization intervals only for the latter
case. When using uniform quantization with 7, 8, and 9 quantization levels,
we obtained the same number of normalized cumulative metrics for all SNRs,
namely M = 1013, M = 2143, and M = 2281, respectively. On the other hand,

Uniform
7-levels−3 −2 −1 0 1 2 3

8-levels−4 −3 −2 −1 1 2 3 4

9-levels−4 −3 −2 −1 0 1 2 3 4

Massey

7-levelsT1 T2 T3 T4 T5 T6

8-levelsT1 T2 T3 T4 T5 T6 T7

9-levelsT1 T2 T3 T4 T5 T6 T7 T8

Figure 5.8: Examples of uniform and Massey quantizations for an
AWGN channel with signal to noise ratio SNR = 0 dB.

142 A Closed Form Expression for the Exact Bit Error Probability

0 0.5 1 1.5 2 2.5 3 3.5

10−2

10−1

1
2

SNR

Pb

0 0.5 1 1.5 2 2.5 3 3.5

10−2

10−1

1
2

SNR

Pb

0 0.5 1 1.5 2 2.5 3 3.5

10−2

10−1

1
2

SNR

Pb

Figure 5.9: Exact bit error probability for the rate R = 1/2, memory 2
(4-state) encoder with G(D) = (1 + D2 1 + D + D2) used
to communicate over an quantized AWGN channel with
different quantization levels.

for Massey quantization, the number of normalized cumulative metrics varies
with both the number of quantization levels and the chosen SNR. Moreover,
these numbers are much higher. For example, considering the SNR interval
between 0 dB and 3.5 dB with 8 quantization levels, we have M = 16639 nor-
malized cumulative metrics for Eb/N0 ≤ 2.43 dB, while for Eb/N0 > 2.43 dB
we obtain M = 17019.

The exact bit error probability for this 4-state encoder is plotted for all dif-
ferent quantizations in Figure 5.9, ordered from worst (top) to best (bottom):

(i) Uniform quantization with 8 levels
(ii) Uniform quantization with 7 levels

(iii) Massey quantization with 7 levels
(iv) Uniform quantization with 9 levels
(v) Massey quantization with 8 levels

(vi) Massey quantization with 9 levels

All differences are very small, and hence it is hard to distinguish all curves.
It is interesting to note that using 7 instead of 8 uniform quantization levels
yields a better bit error probability. However, this is not surprising since the
presence of a quantization bin around zero typically improves the quantiza-
tion performance. Moreover, the number of normalized cumulative metrics
for 7 quantization levels is only about one half of that for 8 quantization lev-
els. Note that such a subtle comparison of channel output quantizers has
only become possible due to the closed form expression for the exact bit error
probability.

6
MacWilliams-type Identities

for Convolutional Codes

Convolutional codes are often thought of as nonblock linear codes over
a finite field. Sometimes, however, it is an advantage to regard con-
volutional codes as block codes over certain infinite fields; that is, as

the F2((D)) row space of the generator matrix G(D) or, in other words, as
a rate R = b/c block code over the infinite field of Laurent series encoded
by G(D). From this point of view it seems rather natural that convolutional
codes would have similar properties as block codes and satisfy proper refor-
mulations of theorems valid for block codes.

It is well-known, starting with the paper by Shearer and McEliece [SM77],
that MacWilliams identity [MS77] does not hold for the Viterbi spectra of
convolutional encoders. In [AG92], [GLS08], and [GLS09], MacWilliams-type
identities were established, not for the Viterbi spectrum but for the so-called
weight adjacency matrix (WAM) [McE98]. A MacWilliams-type identity with
respect to WAMs for the encoders of an arbitrary convolutional code and its
dual was formulated in [GLS08] and proved in [GLS09] by Gluesing-Luerssen
and Schneider. Their work inspired Forney, and in [For09] and [For11] he
proved their results in terms of the »constraint« code corresponding to each
node of the trellis diagram and its dual. Moreover, he generalized them to the
complete WAM as well as to group codes defined on graphs.

In Section 6.1, the concept of weakly equivalent convolutional generator
matrices is introduced and it is shown that such matrices yield the same tail-
biting block code spectrum. A similar comparison between the spectra of
zero-tail terminated and truncated codes as well as the Viterbi spectra of their
parent convolutional codes is presented in Section 6.2. The MacWilliams iden-
tity and various notations of duality for convolutional codes are revisited in
Section 6.3. In particular, it is shown that MacWilliams identity holds for

143

144 MacWilliams-type Identities for Convolutional Codes

properly truncated convolutional codes and their duals. Finally, it is proven
in Section 6.4, that the spectra of truncated or tailbitten convolutional codes
together with the corresponding spectra of their duals satisfy recursions of an
order less than or equal to the rank r of the WAM of the minimal encoder
of the convolutional code. In other words, it is enough to know 2r consecu-
tive spectra of block codes obtained by truncating or tailbiting a convolutional
code at lengths c, 2c, . . . , 2rc, in order to find the infinite sequence of spectra of
block codes which are terminations of the corresponding dual and vice-versa.

6.1 WEAKLY EQUIVALENT MATRICES

Consider the code trellis of a rate R = b/c minimal convolutional encoder
with memory m, terminated by either truncation, zero-tail termination or tail-
biting. When using the Viterbi algorithm (cf. Section 2.3) to decode long se-
quences of received symbols, an erroneously decoded path will in general
remerge with the correct path long before the end of the trellis. Hence, a typ-
ical error event consists of a detour from the correct path, corresponding to
a burst of erroneously decoded information symbols, which starts and ends
always with a code symbol error.

Communicating over a BSC with crossover probability p and using ML
decoding, the burst error probability PB of a convolutional code can be upper-
bounded [Vit71] by

PB < T(W)
∣∣∣
W=2
√

p(1−p)
(6.1)

where T(W) is the path weight enumerator (2.13) of the convolutional en-
coder. Since the Viterbi spectrum is an encoder property, equivalent encoders
might not necessarily yield the same upper bound on PB.

Example 6.1:
The systematic generator matrix

G1(D) =

(
1 0 1 + D
0 1 D

)
realized in OCF has the path weight enumerator

T(ocf)
1 (W) =

W2 + W3 −W5

1−W −W2

= W2 + 4W3 + 5W4 + 8W5 + 13W6 + · · ·

while its CCF realization yields the path weight enumerator

T(ccf)
2 (W) =

W2 + 3W3 −W5

1−W −W2 − 2W3 + W5

= W2 + 4W3 + 5W4 + 10W5 + 23W6 + · · ·

6.1. Weakly Equivalent Matrices 145

u(2)

u(1)

v(1)

v(3)
v(2)

Figure 6.1: A minimal encoder for the minimal generator matrix
G2(D).

Clearly, its OCF realization yields the better path weight enumerator, and
hence, a better upper bound on the burst error probability, which is however
a code property. This is not surprising since its OCF realization is a minimal
encoder for the convolutional code determined by G1(D). Moreover, consider
all paths within a code trellis of Hamming weights up to 2dfree − 1, that is,
paths consisting of one complete (merging with the all-zero path) detour plus
an incomplete detour starting from the zero state. The Hamming weights of
such paths are a code property, and hence equivalent generator matrices have
identical path weight enumerators at least up to Hamming weight 2dfree − 1.

Example 6.2:
The minimal realization of the minimal generator matrix [JZ99]

G2(D) =

(
1 + D D 1

1 + D2 + D3 1 + D + D2 + D3 0

)
is neither in CCF nor OCF, while its realization shown in Figure 6.1 is a min-
imal encoder. Somewhat surprisingly the path weight enumerators are the
same for all three realizations, namely,

T(min)
2 (W) = T(ccf)

2 (W) = T(ocf)
2 (W)

= W4 + 5W5 + 24W6 + 71W7 + 238W8 + · · ·

Example 6.3:
Consider the following two generator matrices

G3(D) =
(

1 1 + D
)

G4(D) =
(

D2 1 + D
)

146 MacWilliams-type Identities for Convolutional Codes

and their path weight enumerators

T(ccf)
3 (W) =

W3

1−W
= W3 + W4 + W5 + W6 + · · ·

T(ccf)
4 (W) =

W3

1−W −W3

= W3 + W4 + W5 + 2W6 + · · ·

Since the two path weight enumerators are different, they yield different
Viterbi bounds on the burst error probability PB.

Moreover, if we use sequential decoding, the computational performance
using G4(D) will be much worse since its distance profile is not optimum
while it is for G3(D). On the other hand, if we consider the convolutional
code C4, encoded by G4(D), and shift the first code symbol in each tuple two
steps to the left, we obviously obtain the first convolutional code. Hence, it can
be expected that these convolutional codes share some common properties.

As mentioned in Chapter 2, two convolutional codes C and C ′ are equiva-
lent if the code sequences v ∈ C are finite-memory permutations of the code
sequences v′ ∈ C ′. Hence, we introduce the following concept:

Definition 6.1
Two generator matrices G(D) and G′(D) are weakly equivalent (WE) if they
encode equivalent convolutional codes.

Consider a generalized permutation matrix Π(D), whose entries are either
zero or monomials Di, where i is a (possibly) different integer for each nonzero
entry, and let G(D) be a generator matrix of a rate R = b/c convolutional code
C. By multiplying G(D) from the right with a generalized permutation ma-
trix Π(D) of size c× c we obtain a generator matrix G′(D) of an equivalent
convolutional code C ′.

Thus, it follows from Definition 6.1 that all generator matrices G′(D) of the
form

G′(D) = T(D)G(D)Π(D)

are WE to G(D), where T(D) is a nonsingular b × b matrix and Π(D) is a
c× c generalized permutation matrix.

Example 6.3 (Cont’d):
For the previously used generator matrices G3(D) and G4(D) we obtain that

G4(D) = G3(D)

(
D2 0
0 1

)
and hence these generator matrices are WE to each other.

6.2. Block Spectra for Zero-Tail Terminated and Truncated Convolutional Codes 147

Example 6.4:
The following matrices

G5(D) =

 1 1 1 1 0
0 1 + D 1 + D 0 1
0 D 1 1 + D D



G6(D) =

 1 + D 1 + D 0 1 0
D 1 1 + D D 0
D D D 0 1



G7(D) =

 1 1 + D D 0 1
D D 0 1 1

D2 + D 0 D 0 1 + D


are considered »equivalent« in [TLF06] since they can be obtained from each
other by cyclic shifting of their trellis module. In our terminology these ma-
trices are WE because

G6(D) = T(D)G5(D)Π(D)

and

G7(D) = T(D)G6(D)Π(D)

where

T(D) =

 0 D−1 0
0 0 D−1

1 0 0


and

Π(D) =


0 0 0 0 1
D 0 0 0 0
0 D 0 0 0
0 0 D 0 0
0 0 0 D 0


If we tailbite the convolutional codes encoded by the WE generator matrices

G5(D), G6(D), and G7(D), we obtain the same (block code) spectrum for all
three codes, even though they have different overall constraint lengths. For
example, using the tailbiting length M = 1000 yields the block code spectrum

B(tb)
M=1000(W) = 1 + 1000W4 + 12000W5 + 32000W6 + · · ·

for all three tailbitten convolutional codes.

148 MacWilliams-type Identities for Convolutional Codes

6.2 BLOCK SPECTRA FOR ZERO-TAIL TERMINATED AND TRUNCATED
CONVOLUTIONAL CODES

Consider a rate R = b/c convolutional code with memory m, zero-tail termi-
nated to length M + m c-tuples. Computing the (block code) spectrum for the
two zero-tail terminated convolutional codes with WE parent generator matri-
ces G3(D) and G4(D) with termination length M = 1000 yields the identical
spectra

B(zt)
3,M=1000(W) = B(zt)

4,M=1000(W) =

1 + 1000W3 + 999W4 + 998W5 + 499498W6 + · · ·

Note that the block length for C (zt)
4 has to be chosen to be one c-tuple longer

than that for C (zt)
3 since m4 = m3 + 1 = 2.

Next, consider the rate R = 1/2 convolutional codes with free distance
dfree = 6 and memory m = 3, determined by its generator matrix

G8(D) =
(

1 + D + D2 + D3 1 + D2 + D3)
Its normalized (by M) zero-tail terminated and truncated spectra are shown
in Table 6.1.

Clearly, the zero-tail terminated spectrum is a good approximation up to
2dfree − 1 of the Viterbi spectrum (2.12) for the corresponding minimal en-
coder. Since the length of the detour of weight dfree is m + 2, not m + 1
c-tuples, we do not get integers when computing the normalized spectrum
for the zero-tail terminated convolutional code. Had its length been m + 1
c-tuples, it would yield perfect agreement at least for dfree.

However, zero-tail termination causes a slightly decreased code rate (1.75).
Truncating a convolutional code after M c-tuples does not introduce such
a rate loss, but yields a different normalized truncated spectrum as can be
seen in Table 6.1. Only the spectral components for weights dfree = 6 and
dfree + 1 = 7 of the truncated normalized spectrum (since c = 2 in this case)
are a good approximation of the corresponding components in the Viterbi
spectrum. For higher weights, a significant number of code sequences with
weights dfree+ c, dfree+ c + 1, . . ., that will not merge with the all-zero state
contribute to the normalized truncated spectrum.

6.3 MACWILLIAMS-TYPE IDENTITIES

A natural approach to study duality and MacWilliams-type identities for con-
volutional codes is based on obtaining sequences of block codes from a par-
ent convolutional code and applying the MacWilliams identity to these block

6.3. MacWilliams-Type Identities 149

Weight
Viterbi

spectrum

Normalized
ZT spectrum

Normalized
TR spectrum

M = 1000 M = 200 M = 1000

0 0 0.001 0.005 0.001

1 0 0 0 0

2 0 0 0.005 0.001

3 0 0 0.015 0.003

4 0 0 0.035 0.007

5 0 0 0.080 0.016

6 1 0.999 1.150 1.030

7 3 2.995 3.305 3.061

8 5 4.981 6.635 6.127

9 11 10.940 18.185 17.237

10 25 24.829 48.015 46.403

11 55 54.541 120.910 118.582

12 121 614.319 390.185 788.037

13 267 3227.073 1272.990 3675.400

Table 6.1: Normalized zero-tail terminated and truncated spectra for
the generator matrix G8(D).

codes. Hence, we will start by recalling MacWilliams identity for block codes
together with two duality definitions for convolutional codes:

Theorem 6.1 (MacWilliams identity for block codes [MS77]) Let B be a
binary block code of rate R = K/N and let B⊥ be its dual of rate R = (N −
K)/N. Then their spectra satisfy

SB⊥(x, y) =
1
2k SB(x + y, x− y) (6.2)

where the spectrum of the block code B is given by

SB(x, y) = ∑
v∈B

xn−wH(v)ywH(v)

and wH (v) denotes the Hamming weight of the codeword v.

150 MacWilliams-type Identities for Convolutional Codes

Definition 6.2
A dual code C⊥ to a rate R = b/c convolutional code C is the set of all c-tuples
of code sequences v⊥ such that the inner product(

v, v⊥
)
= v

(
v⊥)

)T
= 0 (6.3)

that is, v and v⊥ are orthogonal for all code sequences v ∈ C.

The dual code C⊥ of a rate R = b/c convolutional code is a rate R =
(c − b)/c convolutional code encoded by the semi-infinite generator matrix
G⊥ which satisfies

G
(

G⊥
)T

= 0 (6.4)

Moreover, it is a vector space of dimension c − b over F2((D)). In [GLS09],
the dual code C⊥ is called sequence space dual.

Definition 6.3
The convolutional dual code C⊥ to a convolutional code C, which is encoded
by the rate R = b/c generator matrix G(D), is the set of all code sequences
encoded by any rate R = (c− b)/c generator matrix G⊥(D) such that

G(D)GT
⊥(D) = 0 (6.5)

In [GLS09], the convolutional dual code C⊥ is called module-theoretic dual.
In other words, Definition 6.2 is related to the orthogonality of the vectors

(G0, G1, . . ., Gm) and (G⊥0 , G⊥1 , . . ., G⊥m⊥) while Definition 6.3 is based on the
orthogonality of the polynomials G(D) and G⊥(D). In particular, note that
for two arbitrary polynomials

a(x) = a0 + a1x + · · ·+ an−1xn−1 (6.6)

and
b(x) = b0 + b1x + · · ·+ bn−1xn−1 (6.7)

it follows from the equality

a(x)b(x) = 0 (6.8)

that (
a,
←−
b
)
= 0 (6.9)

but in general (a, b) 6= 0, where a = (a0 a1. . . an−1) and
←−
b = (bn−1 bn−2. . . b0).

Since we deal with a particular case of the above statement, it can be easily
shown that the polynomial generator matrix G⊥(D) of the dual code C⊥ is

6.3. MacWilliams-Type Identities 151

the reversal with respect to the polynomial generator matrix G⊥(D) of the
convolutional dual code C⊥, that is,

G⊥(D) = G⊥(D−1)Dm⊥ =
←−
G ⊥(D)

where
G⊥(D) = G⊥0 + G⊥1 D + · · ·+ G⊥m⊥Dm⊥

and ←−
G ⊥(D) = Gm⊥ ,⊥ + Gm⊥−1,⊥D + · · ·+ G0,⊥Dm⊥

from which G⊥j = Gm⊥−j,⊥, j = 0, 1, . . . , m⊥ and m⊥ = m⊥ follow. In general,
the dual code and the corresponding convolutional dual code are different.

Based on these definitions, MacWilliams identities for convolutional codes
can be interpreted in different ways.

We start by considering the codewords of a terminated convolutional code
CM and analyze which termination procedure does not violate (6.3). Clearly,
both zero-tail termination as well as tailbiting satisfy (6.3). However, duals
of zero-tail terminated convolutional codes are not zero-tail terminated con-
volutional dual codes since terminations to length M + m and M + m⊥ of G
and G⊥, respectively, yield generator matrices of the two block codes of rates
Mb/(M + m)c and M(c− b)/(M + m⊥)c which are not duals of each other
(since, in general, m 6= m⊥).

On the other hand, truncating G and G⊥ to length M c-tuples yields the
two generator matrices G(tr)

M and G(tr)⊥
M of size Mb×Mc and M(c− b)×Mc,

respectively, but
G(tr)

M

(
G(tr)⊥

M

)T
6= 0

That is, the truncated versions of C and C⊥ are not orthogonal since the last
t − m + 1 rows of G(tr)

M as well as the last t − m⊥ + 1 rows of G(tr)⊥
M are not

complete; they do not contain all submatrices Gi, i = 0, 1, . . . , m, and not
all submatrices G⊥i , i = 0, 1, . . . , m⊥, respectively. The products of these
incomplete rows are equal to incomplete matrix convolutions.

Considering however the generator matrix of the dual code C⊥ reverse-
truncated by M and given by

←−
G

(tr)⊥
M =



G⊥m⊥
G⊥m⊥−1 G⊥m⊥...

...
. . .

G⊥0 G⊥1 · · · G⊥m⊥
G⊥0 · · · G⊥m⊥−1 G⊥m⊥.

G⊥0 · · · G⊥m⊥−1 G⊥m⊥


(6.10)

152 MacWilliams-type Identities for Convolutional Codes

we obtain that

G(tr)
M

(
←−
G

(tr)⊥
M

)T
= 0

Note that
←−
G

(tr)⊥
M is not a generator matrix of a truncated convolutional code,

but writing both its rows and columns in reversed order, yields the truncated
reversal of G(tr)⊥

M as

G⊥m⊥ · · · G⊥1 G⊥0
G⊥m⊥ · · · G⊥1 G⊥0.

G⊥m⊥ · · · G⊥1 G⊥0
G⊥m⊥ · · · G⊥1. . .

...
G⊥m⊥


which is a generator matrix of a truncated convolutional code.

Since terminated (truncated and tailbitten) convolutional codes and their
duals are block codes, their spectra satisfy MacWilliams identity (cf. Theo-
rem 6.1).

The spectra of the corresponding zero-tail terminated, truncated, and tail-
bitten convolutional codes can be computed via the 2ν × 2ν WAM A(W) ∈
Z[[W]]2

ν×2ν
of the encoder of the parent convolutional code (see, for exam-

ple, [McE98]), whose entries are generating functions of the formal variable
W. Its (i, j)th entry is a sum of monomials ∑w Ww whose degrees w are deter-
mined by the Hamming weights w of all parallel branches directly connecting
the states i and j in its state-transition diagram (cf. Section 2.1). In particular,
such an entry is a monomial in case of only one connecting branch and zero
if there is no connecting branch.

Since the (i, j)th entry of A(W)M is a generating function of the Hamming
weights of paths of length M branches going from state i to state j, the spectra
of the corresponding zero-tail terminated, truncated, and tailbitten convolu-
tional codes are

B(zt)
M (W) = zA(W)MzT (6.11)

B(tr)
M (W) = zA(W)M1T (6.12)

B(tb)
M (W) = Tr

(
A(W)M

)
(6.13)

where z=(1 0 . . . 0) and 1=(1 1 . . . 1) are row vectors of length 2ν, and B()
M(W)

is a polynomial in W with integer coefficients, that is, B()
M(W) ∈ Z[W].

6.3. MacWilliams-Type Identities 153

Theorem 6.2 Let CM be a binary convolutional code of rate R = b/c, trun-
cated after M c-tuples and let C⊥M be its dual code. Then

Mc

∑
i=0

A⊥i xMc−iyi =
1

2Mb

Mc

∑
i=0

Ai (x + y)Mc−i (x− y)i (6.14)

with

zA(W)M1T =
Mc

∑
i=0

AiWi (6.15)

and

1A⊥(W)MzT =
Mc

∑
i=0

A⊥i Wi (6.16)

where A(W) and A⊥(W) are WAMs obtained from the state-transition dia-
grams for the minimal encoders of C and C⊥, respectively. In particular, note
that (6.14) corresponds directly to (6.2) with N = Mc and K = Mb. In [For11]
it is showed that the same approach holds for tailbiting codes.

The following example illustrates the considered notions of duality for the
convolutional code analyzed in [SM77] where the absence of the MacWilliams
identity for the Viterbi spectra was stated.

Example 6.5:
Shearer and McEliece [SM77] considered the generator matrix

G(D) =
(

1 D 1 + D
)

and its convolutional dual [JZ99]

G⊥(D) =

(
1 1 1
D 1 0

)
where

G(D)
(

G⊥(D)
)T

= 0

and showed that MacWilliams identity does not hold for the Viterbi spectra
of their minimal encoders.

We consider the same generator matrix G(D) together with the generator
matrix of its dual, given in minimal-basic form

G⊥(D) =

(
1 1 1
0 1 + D 1

)

154 MacWilliams-type Identities for Convolutional Codes

It is easy to verify that G(D)
(
G⊥(D)

)T 6= 0, but for their corresponding code
sequences it holds that

v
(

v⊥
)T

= 0

The generator matrix G(D) has the semi-infinite binary generator matrix

G =

 101 011
101 011

.


As a simple example, we consider the corresponding terminated convolu-
tional code with truncation length M = 2, whose generator matrix is

GM=2 =

(
101 011
000 101

)
On the other hand, the reversal of its dual code follows as

←−
G ⊥(D) =

(
D D D
0 1 + D D

)
or in minimal-basic form as

←−
G ⊥mb(D) =

(
1 1 1
0 1 + D D

)
.

For truncation length M = 2 we have

←−
G ⊥M=2 =


111 000
010 011

000 111
000 010


or, equivalently, the generator matrix for the dual of the truncated convolu-
tional code CM=2 is

G⊥M=2 =


000 111
011 010

111 000
010 000


It is easy to verify that

GM=2

(
G⊥M=2

)T
=

(
101 011
000 101

)


00 10
01 11
01 10

10 00
11 00
10 00


= 0

6.4. Infinite Sequences of Spectra 155

The corresponding WAMs for G(D) and G⊥(D), realized in CCF, are

A(W) =

(
1 W2

W2 W2

)
(6.17)

and

A⊥(W) =

(
1 + W3 W + W2

W + W2 W + W2

)
(6.18)

Hence, the spectra for CM=2 and its dual C⊥M=2 follow as

zA(W)21T = 1 + W2 + 2W4

1A⊥(W)2zT = 1 + W + 3W2 + 6W3 + 3W4 + W5 + W6 (6.19)

where z = (1, 0) and 1 = (1, 1). Clearly, MacWilliams identity holds for those
block code spectra.

In [GLS09] and [For11] another interpretation of MacWilliams-type iden-
tities for convolutional codes is considered. In particular, MacWilliams-type
identities with respect to the WAMs of the minimal encoders of the dual code
C⊥ and convolutional dual code C⊥ are proven. For completeness, we include
the results of [GLS09] and [For11] for binary convolutional codes, where it is
shown that

A⊥(W) = 2−b (1 + W)c HA
(

1−W
1 + W

)
HT

and
A⊥(W) = 2−b (1 + W)c HAT

(
1−W
1 + W

)
HT

where
H =

{
(−1)(ui ,uj)

}
, i, j = 0, 1, . . . , 2ν − 1

is the 2ν × 2ν Hadamard transform matrix, ν is the overall constraint length of
the convolutional code C, and ui denotes a binary row vector of length ν with
ui 6= uj for i 6= j.

6.4 INFINITE SEQUENCES OF SPECTRA

In practical applications, convolutional codes are always used together with
some kind of termination procedure. Hence, it is important to know the
spectra of the corresponding terminations (block codes) of different lengths.
Certainly, these spectra can be computed for both the parent convolutional
code and its dual via their encoder WAMs with complexity of order 2ν, where
ν is the overall constraint length of the minimal encoder. However, the sparsity
of WAMs, that is, the number of nonzero terms in each row of a WAM can be
different for convolutional codes and their duals.

156 MacWilliams-type Identities for Convolutional Codes

In this section a recursion for spectra of sequences of truncated as well as
tailbitten dual codes shall be derived, using only the WAM of the encoder of
the corresponding parent convolutional code and applying a MacWilliams-
type identity. In particular, the order of this recursion shall be proven to be
less than or equal to the rank of the WAM of the minimal encoder of the
parent convolutional code.

Let the sequence of (block code) spectra for both terminations be given by

BM(W) = B0 + B1W + · · ·+ BMcWMc M = 0, 1, 2, . . .

where

Bi =

{
Ai, for truncated codes (cf. (6.15))
Ti, for tailbiting codes

and

Tr
(

A(W)M
)
=

Mc

∑
i=0

TiWi

Note, that the spectral components Bk can be obtained from the spectral com-
ponents B⊥i , i = 0, 1, . . . , Mc, of the dual code C⊥M as

Bk =
1

2Mc

Mc

∑
i=0

B⊥i Pk(i) k = 0, 1, . . . , Mc (6.20)

where Pk(i) is a Krawtchouk polynomial [MS77].

Theorem 6.3 Let C be a rate R = b/c convolutional code whose minimal
encoder WAM A(W) has rank r and let CM be a truncated or tailbiting block
code of C with block length M c-tuples. Then there exists an integer l ≤ r
such that the (block code) spectra of CM satisfy

BM(W) =
l

∑
i=1

ai(W)BM−i(W) M = l, l + 1, . . .

where ai(W), i = 1, 2, . . . , r, are the coefficients of the characteristic equation
for A(W).

Proof. Any matrix over a commutative ring satisfies its Hamilton-Cayley (char-
acteristic) equation [Bro93, Ch. 7, p.62]. Since A(W) has size 2ν× 2ν it satisfies

det (A(W)− λI) = λ2ν −
2ν

∑
i=1

ai(W)λ2ν−i = 0 (6.21)

where λ is a formal variable. Thus, it follows that

A(W)2ν
=

2ν

∑
i=1

ai(W)A(W)2ν−i (6.22)

6.4. Infinite Sequences of Spectra 157

Multiplying both sides of (6.22) by A(W)k, k = 0, 1, 2, ..., yields the following
recurrent equation

A(W)M =
2ν

∑
i=1

ai(W)A(W)M−i M = 2ν, 2ν + 1, . . . (6.23)

Assuming that A(W) has rank r, all of its minors of order higher than r are
zero, while there exists at least one nonzero minor of order r. It is straightfor-
ward to show that the coefficient ai(W) of the characteristic equation (6.21) is
completely determined by the (2ν

i) principal minors of order i. Thus, we can
conclude that all ai(W) for i = r + 1, r + 2, . . . , 2ν are zero, and hence (6.23)
can be reduced to

A(W)M =
r

∑
i=1

ai(W)A(W)M−i M = r, r + 1, . . . (6.24)

Multiplying both sides with z and 1T from the left and right, respectively,
yields that the (block) spectrum B(tr)

M (W) = zA(W)M1T of the a truncated
convolutional code satisfies the main statement of Theorem 6.3.

Denote by ek a row vector of length 2ν with a single 1 as its kth entry and ze-
ros elsewhere. Multiplying (6.24) by ek and eT

k from the left and right, respec-
tively, we obtain that the statement of Theorem 6.3 is valid for ek A(W)MeT

k .
Taking into account that

2ν−1

∑
k=0

ek A(W)MeT
k = Tr

(
A(W)M

)
yields

Tr
(

A(W)M
)
=

r

∑
i=1

ai(W)Tr
(

A(W)M−i
)

M = r, r + 1, . . . (6.25)

and thus the main statement of Theorem 6.3 is also valid for the spectra of
tailbitten convolutional codes.

Finally, note that the order of (6.24) can be less than r, for example, if the
only nonzero minors of order r within A(W) are nonprinciple minors. �

It follows from Theorem 6.3 that for the (block code) spectra of truncated
as well as tailbitten convolutional codes, both codes, CM and C⊥M, satisfy the
recursion of the same order l but with different coefficients, namely the coef-
ficients of the Hamilton-Cayley equations for A(W) and A⊥(W), respectively.
Since the coefficients of a recurrent equation over Z[W] of order l can be found
from 2l output values by solving a system of l linear equations, 2l spectra of

158 MacWilliams-type Identities for Convolutional Codes

i ai(W) a⊥i (W)

1 1 + W2 1 + W + W2 + W3

2 W4 −W2 2W3 −W5 −W

3 W2 −W6 W + W2 −W3 −W4 −W5 −W6 + W7 + W8

4 3W6 − 2W4 −W2 −W − 3W2 −W3 + 4W4 + 2W5 − 2W6 + 2W7+

4W8 −W9 − 3W10 −W11

5 W12 + W10 − 3W8 −W6 + 2W4 3W2 −W3 − 5W4 −W5 − 2W6 + 6W7 + 6W8 − 2W9

−W10 + 5W11 −W12 + 3W13

6 −W14 −W12 + 2W10 −2W2 + 2W4 + 6W6 − 6W8 − 6W10

+2W8 −W6 −W4 +6W12 + 2W14 − 2W16

7 0 0

8 W16 −W14 − 2W12 + 2W10 −W3 − 2W4 + 6W5 + 8W6 − 8W8 − 8W9−

+W8 −W6 8W10 + 6W11 + 20W12 + 6W13 − 8W14

−8W15 − 8W16 + 8W18 + 3W19 − 2W20 −W21

9 −W18 + 3W14 − 3W10 + W6 W3 + 3W4 − 8W6 − 9W7 − 3W8 + 8W9 + 24W10

+18W11 − 10W12 − 24W13 − 24W14 − 10W15 + 18W16

+24W17 + 8W18 − 3W19 − 9W20 − 8W21 + 3W23 + W24

Table 6.2: Coefficients of the recursions in Example 6.6.

terminated codes are sufficient to obtain the recursion for the sequence of
the spectra of their duals and vice versa. Note that in general such a system
of linear equations can be solved with reduced complexity by applying the
Berlekamp-Massey algorithm [Bla85]1.
The following example illustrates the statement of Theorem 6.3.

Example 6.6:
Consider a rate R = 1/3 convolutional code determined by the generator
matrix

G(D) =
(

1 + D + D2 + D3 + D4 1 + D + D4 1 + D3)
1Although the coefficients ai(W) belong to a polynomial ring, they can be found by
computations over the field of rational functions. Alternatively, the inversion-free
modification of the Berlekamp-Massey algorithm [RST91] can be used.

6.4. Infinite Sequences of Spectra 159

The WAM of its minimal encoder realized in CCF is

A(W) =



1 0 0 0 0 0 0 0 W2 0 0 0 0 0 0 0
W3 0 0 0 0 0 0 0 W 0 0 0 0 0 0 0
0 W2 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 W 0 0 0 0 0 0 0 W3 0 0 0 0 0 0
0 0 W 0 0 0 0 0 0 0 W 0 0 0 0 0
0 0 W2 0 0 0 0 0 0 0 W2 0 0 0 0 0
0 0 0 W 0 0 0 0 0 0 0 W 0 0 0 0
0 0 0 W2 0 0 0 0 0 0 0 W2 0 0 0 0
0 0 0 0 W2 0 0 0 0 0 0 0 W2 0 0 0
0 0 0 0 W 0 0 0 0 0 0 0 W 0 0 0
0 0 0 0 0 W2 0 0 0 0 0 0 0 W2 0 0
0 0 0 0 0 W 0 0 0 0 0 0 0 W 0 0
0 0 0 0 0 0 W 0 0 0 0 0 0 0 W3 0
0 0 0 0 0 0 W2 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 W3 0 0 0 0 0 0 0 W
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 W2


Since the eight rows i and i + 1, i = 5, 7, 9, 11, of A(W) are pairwise linearly
dependent, the matrix A(W) does not have full rank 2ν = 24 = 16, but rank
r = 12. Moreover, it can be shown that the spectra of the sequences of trun-
cated convolutional codes satisfy the system of linear equations

B(tr)
M (W) =

l

∑
i=1

ai(W)B(tr)
M−i(W) t = l, l + 1, . . . , 2l − 1 (6.26)

of order l = 9, where the spectrum B(tr)
M (W) is computed according to (6.12).

By solving (6.26) we obtain the coefficients ai(W), i = 1, 2, . . . , 9, and hence
according to Theorem 6.3, for any finite truncation length M, the spectra of
the truncated sequence of the convolutional codes satisfy the equation of order
l = 9 with coefficients ai(W), i = 1, 2, . . . , 9, presented in the second column
of Table 6.2.

By applying MacWilliams identity to the sequence of the spectra B(tr)
0 , B(tr)

1 ,
. . . , B(tr)

2l−1 we find the sequence of the spectra B(tr)⊥
0 , B(tr)⊥

1 ,. . ., B(tr)⊥
2l−1 of the

corresponding reverse truncations of the dual code. Inserting them into (6.26)
with coefficients a⊥i (W), i = 1, 2, . . . , 9, yields the coefficients a⊥i (W), i =
1, 2, . . . , 9. Thus, the dual spectra satisfy the equation of order l = 9 with
coefficients a⊥i (W), i = 1, 2, . . . , 9, presented in the third column of the same
table. Note that the WAM of the minimal encoder of its corresponding dual
code, which is not shown here, contains four nonzero entries in each row since
it has rate R = 2/3

7
Optimum and Near-Optimum

Convolutional Codes

The error-detecting and error-correcting capabilities of convolutional codes
are mainly determined by their free distance dfree (cf. Section 1.3.2),
and, in case of equal free distances, by their Viterbi spectra. This mo-

tivates the search for convolutional codes with an optimum free distance and
an optimum Viterbi spectrum, so-called OFD codes, for a given rate R and
overall constraint length ν.

However, when searching for optimum free distance (OFD) convolutional
codes with increased overall constraint length ν, the computational complex-
ity becomes prohibitively large. On the other hand, the set of convolutional
codes with an optimum column distance profile, so-called ODP codes, con-
tains only a fraction of possible generator matrices with nevertheless near-
optimum free distance. Hence, searching »only« among ODP codes, it is pos-
sible to obtain convolutional codes with both large overall constraint lengths
ν as well as near-optimum free distance dfree.

In Section 7.1, different distance properties of convolutional generator ma-
trices, like the column and row distance, as well as the Smith form decompo-
sition are discussed. Section 7.2 is devoted to finding OFD encoding matrices
with various rates between 1/2 and 4/5 and memory up to 26, extending pre-
viously published code tables. In particular, by searching among the ensemble
of convolutional parity-check matrices and apply the BEAST (cf. Section 2.4) to
their syndrome trellis (cf. Section 2.1), it becomes possible to determine high-
rate OFD convolutional codes with moderate search complexity. This chapter
is concluded by a similar search for systematic and nonsystematic ODP convo-
lutional encoders in Section 7.3, yielding previously unknown ODP encoder
matrices with rate 1/2 and 1/3 as well as overall constraint length up to 40.

161

162 Optimum and Near-Optimum Convolutional Codes

7.1 DISTANCE PROPERTIES

7.1.1 COLUMN DISTANCE

Consider a convolutional code C with memory m and generator matrix G(D),
whose causal information sequence

u(D) = u0 + u1D + u2D2 + · · ·

is encoded to form the causal code sequence

v(D) = v0 + v1D + v2D2 + · · ·

according to v(D) = u(D)G(D) as given in (1.57).
The jth order column distance dc

j of the generator matrix G(D) was intro-
duced in 1969 by Costello [Cos69] and is defined as the minimum Hamming
distance dH between any two code sequences v[0,j] of length (j + 1) c-tuples,
resulting from two causal information sequences u[0,j] with different u0.

Due to the linearity of convolutional codes, the jth order column distance
dc

j coincides with the minimum Hamming weight of any path v[0,j] resulting
from the causal information sequence u[0,j] with u0 6= 0, that is,

dc
j = min

u0 6=0

{
wH(v[0,j])

}
(7.1)

where wH denotes the Hamming weight.
Moreover, in case of a polynomial generator matrix G(D), let Gc

j denote the
truncation of the semi-infinite matrix G (1.49) after j + 1 columns; that is,

Gc
j =


G0 G1 G2 . . . Gj

G0 G1 Gj−1

G0 Gj−2
. . .

...
G0

 (7.2)

where Gi = 0 when i > m. Then the sequence v[0,j] can be expressed by

v[0,j] = u[0,j]G
c
j (7.3)

and the jth order column distance in (7.1) is simplified to

dc
j = min

u0 6=0

{
wH(u[0,j]G

c
j)
}

(7.4)

7.1. Distance Properties 163

Note that the column distances of a generator matrix satisfy the following
conditions [JZ99]:

(i) dc
j ≤ dc

j+1, j = 0, 1, . . .

(ii) The sequence dc
0, dc

1, dc
2, . . . is bounded from above.

(iii) dc
j becomes stationary as j increases.

Since the free distance dfree is equal to the upper limit of the sequence of
column distances, it follows that

lim
j→∞

dc
j = dc

∞ = dfree (7.5)

(OPTIMUM) DISTANCE PROFILE

Consider a generator matrix G(D) of memory m and let the (m + 1)-tuple

dp = (dc
0, dc

1, . . . , dc
m) (7.6)

denote the distance profile of the generator matrix G(D), where dc
j , 0 ≤ j ≤ m is

its jth order column distance.
Note that the distance profile is a generator matrix property. However, since

the jth order column distance is invariant over equivalent generator matrices
and the memory m is identical for equivalent minimal-basic encoding matrices
(cf. Subsection 1.3.2), the distance profile of a convolutional code C with minimal-
basic encoding matrix Gmb(D) of memory m is defined as the (m + 1)-tuple

dp = (dc
0, dc

1, . . . , dc
m) (7.7)

where dc
j denotes the jth order column distance of Gmb(D).

Such a distance profile dp is said to be superior to another distance profile
d̃p of same rate R and memory m if there exists an integer ` such that

dc
j

{
= d̃c

j j = 0, 1, . . . , `− 1

> d̃c
j j = l

(7.8)

Moreover, a convolutional code C is said to have an optimum distance profile
(to be an ODP code) if there exists no other convolutional code of the same
rate and memory with a better distance profile.

Finally, let G′(D) be an encoding matrix of memory m′ and denote by
G(D) = G′(D)

∣∣
m the truncation of all numerator and denominator polyno-

mials to degree m ≤ m′. Then it follows that the encoding matrix G(D) of
memory m and the encoding matrix G′′ = T(D)G(D)

∣∣
m where T(D) is a

b× b nonsingular matrix, are equivalent over the first memory length m. In
particular, they share the same distance profile dp.

164 Optimum and Near-Optimum Convolutional Codes

7.1.2 ROW DISTANCE

Denote as the zero state driving information sequence for a rate R = b/c generator
matrix of memory m and realized in CCF, the sequence of information tuples
that causes all memory elements to be successively filled with zeros. Clearly,
the length of such a sequence is at most m information b-tuples, while it might
be shorter if the first memory elements contain already zeros. To simplify
notations, we shall denote the zero driving sequence by uzs

(t,t+m], regardless of
its actual length.

Then the jth order row distance dr
j [Cos69] for the generator matrix G(D) of

memory m and realized in CCF is defined as the minimum Hamming weight
of the code sequences v[0,j+m] resulting from the causal information sequences

u[0,j+m] = u[0,j]uzs
(j,j+m) (7.9)

with u[0,j] 6= 0.
Similarly to (7.2), denote in case of a polynomial generator matrix G(D),

the truncation of the semi-infinite matrix G (1.49) after j + 1 rows

Gr
j =


G0 G1 . . . Gm

G0 G1 . . . Gm
G0 G1 . . . Gm.

G0 G1 Gm

 (7.10)

Hence its jth order row distance dr
j can be expressed as

dr
j = min

u[0,j] 6=0

{
wH

(
u[0,j]G

r
j

)}
(7.11)

Note that truncating the semi-infinite matrix G in such a way corresponds to
zero-tail termination (cf. Subsection 1.3.2).

Similarly to the column distance dc
j , the row distance dr

j is a generator ma-
trix property and satisfies the following conditions [JZ99]:

(i) dr
j+1 ≤ dr

j , j = 0, 1, . . .

(ii) dr
j > 0, j = 0, 1, . . .

(iii) dr
j becomes stationary as j increases.

Since the column distance dc
i denotes the minimum Hamming weight of a

path segments of length i + 1 which diverges from the all-zero state at time
instant t = 0, it is obvious that

dc
i ≤ dr

j ∀i, j (7.12)
and, in particular

dc
0 ≤ dc

1 ≤ . . . ≤ dc
∞ = dfree ≤ dr

∞ ≤ . . . dr
1 ≤ dr

0 (7.13)

where dr
∞ denotes the lower limit of sequence of row distances, which is equal

to the free distance dfree in case of noncatastrophic encoders.

7.1. Distance Properties 165

7.1.3 SMITH FORM DECOMPOSITION

Let G(D) be a b× c polynomial generator matrix with rank r. Using the Smith
form decomposition, such a matrix can be written as

G(D) = A(D)Γ(D)B(D) (7.14)

where A(D) and B(D) are polynomial matrices of size b× b and c× c, respec-
tively, and have unit determinant. The matrix Γ(D) is called the Smith form of
G(D) and is a diagonal polynomial matrix of size b× c, given by

Γ(D) =



γ1(D)
γ2(D)

. . .
γr(D)

0
. . .

0 . . . 0


(7.15)

with nonzero elements γi(D), i = 1, 2, . . . , r, on its diagonal positions. These
elements are called the invariant factors of G(D) and are uniquely determined
polynomials satisfying

γi(D) | γi+1(D), i = 1, 2, . . . , r (7.16)

The pre- and post-multipliers, A(D) and B(D), respectively, are defined
as the product of the following two types of elementary matrices. The first
matrix type interchanges either two rows or two columns. For example, to
interchange the ith and the jth row (or column), the corresponding pre- (or
post-) multiplier, is given by

Pij =



1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1



row i

row j

The second matrix type adds all elements in one row (or column) to the cor-
responding elements in another row (or column), multiplied by a fixed poly-
nomial p(D). For example, to add all the elements of the ith row (or column)

166 Optimum and Near-Optimum Convolutional Codes

to the corresponding elements of the jth row (or column), multiplied by a
constant polynomial factor p(D), the corresponding multiplier is

Rij (p(D)) =



1
. . .

1 p(D)

. . .

1
. . .

1



row i

row j

Premultiplication by any of these elementary matrices results in the asso-
ciated transformation being performed on the rows, whereas postmultiplica-
tion yields the same for columns. In particular, note that these matrices satisfy
P−1

ij = Pij and R−1
ij (p(D)) = Rij(−p(D)) and have unit determinant, that is,

det(Pij) = det(Rij(p(D))) = 1.
Since both elementary matrices are polynomial square matrices with unit

determinant and have a polynomial inverse, the same holds for their products,
that is, the pre- and post-multiplier A(D) and B(D) [JZ99]. Moreover, using
its Smith form decomposition, it can be shown that a rate R = b/c polynomial
encoding matrix is noncatastrophic if and only if its largest invariant factor
satisfies γb(D) = Ds for some nonnegative integer s ≥ 0.

7.2 OPTIMUM FREE DISTANCE CONVOLUTIONAL CODES

When searching for OFD convolutional codes for a given rate R and com-
plexity ν (or memory m) an exhaustive code search for all possible encoding
polynomials (and their different combinations) has to be performed. Even
though the BEAST (cf. Section 2.4) is a very fast and efficient algorithm to
determine the free distance for a given encoding matrix, it becomes rather
time-consuming and quickly infeasible to examine all possible combination.

For example, when searching for a rate R = 1/2, overall constraint length
ν = 24 (that is, memory m = 24) OFD encoding matrix G(D) with

G(D) = G0 + G1D + · · ·GmDm (7.17)

where G0 = (11) and Gm = (10), (01), or (11), the total number of possible
encoding matrices is 3× 22m−2 ≈ 2.11 · 1014. However, using different rejection
rules based on the previously discussed distance properties, the ensemble
of encoders can be limited to a small fraction, which nevertheless contains
all OFD encoding matrices. The efficiency of these rejection rules shall be
numerically illustrated on the previously mentioned example.

7.2. Optimum Free Distance Convolutional Codes 167

As the free distance dfree is invariant among the set of equivalent encod-
ing matrix G(D) = (g0(D) g1(D)), an obvious first step is to eliminate all
equivalent encoding matrices G(D)′ = (g1(D) g0(D)). In other words, for a
given encoding polynomial g0(D) we shall only consider such combinations
with another polynomial g1(D), that satisfy g0(D) < g1(D) (in obvious bi-
nary notation). Thereby, the number of remaining encoding matrices can be
reduced to 3×

(
22m−3 − 2m−2) = 1.05 · 1014.

To further reduce this number, all catastrophic encoding matrices (cf. Sub-
section 1.3.2) shall be rejected. As mentioned in Subsection 7.1.3 an encoding
matrix of a rate R = b/c convolutional code is noncatastrophic, if and only if,
its largest invariant factor γb(D) = Ds with some nonnegative integer s ≥ 0.
Moreover, since we are only interested in encoding matrices with a realizable
right inverse, this rejection rule can be further strengthened to γb(D) = 1.

However, applying the Smith form decomposition to an encoding matrix in
order to obtain its invariant factors is rather complex. On the other hand, for
rate R = 1/c encoding matrices, the only invariant factor γ1(D) can be easily
determined as the greatest common divisor of its encoding polynomials

γ1(D) = γb(D) = gcd
{

g0(D), g1(D), . . . gc−1(D)
}

(7.18)

Finally, the row distances (cf. Subsection 7.1.2) can be used as a last rejec-
tion rule to upper-bound the free distance dfree. Hoping to find an encoding
matrix with a certain target free distance dt

free, all encoding matrices with row
distances dr

j < dt
free, j = 0, 1, . . . , n, are rejected, where n is an arbitrarily

chosen positive integer and typically ≈ 20 in our implementation.
Hence, applying the row distance rejection rule with target free distance

dt
free = 27, the number of encoding matrices is further decreased to approxi-

mately 6.3 · 106. Finally their free distance and Viterbi spectrum is determined
by the BEAST (cf. Section 2.4), yielding an OFD encoding matrix. In Table 7.1,
the results of similar searches for rate R = 1/2 OFD encoding matrices with
memory between 12 and 26 are given, where free distances satisfying the cor-
responding Griesmer bound [JZ99] are highlighted by ∗.

These OFD encoding matrices coincide to a large extent with the previously
published results in [BHJK04, Table II] and [JZ99, Table 8.3]. However, the
previously published OFD encoding matrices for memory m = 23 and m = 24
presented in [BHJK04] are not optimal and have been further improved. For
memory m = 23, an encoding matrix with better Viterbi spectrum was found,
reducing the number of code sequences with Hamming weight dfree = 26
from 51 to 45, while for memory m = 24 the free distance was increased from
26 to 27. Additionally, the previously unknown OFD encoding matrices for
memory m = 25 and m = 26 have been determined.

Note that an encoding matrix of a rate R = b/c convolutional code contains
in general bc generator polynomials, while its corresponding parity-check ma-

168 Optimum and Near-Optimum Convolutional Codes

m g0(D) g1(D) dfree spectrum

12 53734 72304 ∗ 16 14, 38, 35, 108, 342, 724 a

13 63676 45272 16 1, 17, 38, 69, 158, 414
14 75063 56711 ∗ 18 26, 0, 165, 0, 845, 0 a

15 533514 653444 19 30, 67, 54, 167, 632, 1402 a, b

16 626656 463642 ∗ 20 43, 0, 265, 0, 1341, 0 a, b

17 611675 550363 20 4, 24, 76, 150, 354, 826 a, b

18 4551474 6354344 22 65, 0, 349, 0, 1903, 0 a, b

19 7504432 4625676 22 5, 52, 116, 163, 456, 1135 b

20 6717423 5056615 ∗ 24 145, 0, 225, 0, 3473, 0 b

21 63646524 57112134 24 17, 95, 136, 138, 679, 2149 b

22 64353362 41471446 25 47, 88, 137, 313, 912, 2172 b

23 75420671 45452137 26 45, 0, 364, 0, 1968, 0
24 766446634 540125704 27 50, 135, 118, 294, 1481, 3299
25 662537146 505722162 28 71, 196, 112, 339, 2053, 4548
26 637044367 450762321 28 9, 66, 152, 307, 757, 1823

(a) previously listed in [JZ99]. (b) previously listed in [BHJK04].

Table 7.1: Viterbi spectra ndfree+1, i = 0, 1, . . . , 5, for nonsystem-
atic rate R = 1/2 OFD encoding matrices G(D) =
(g0(D) g1(D)) and memory m = 12, 13, . . . , 26.

trix consists of (c − b)c = c2 − bc parity-check polynomials. Hence, when
searching for OFD encoding matrices with rate R = (c− 1)/c it is more con-
venient to search over the complete ensemble of corresponding parity-check
matrices H(D) since

(c− 1)c > c2 − (c− 1)c (7.19)

Consider for example parity-check matrix of such a rate R = (c− 1)/c convo-
lutional code C given by

H(D) =
(

h0(D) h1(D) . . . hc−1(D)
)

(7.20)

Since catastrophic error propagation is an encoder property, not a code prop-
erty, the corresponding rejection rule for catastrophic encoding matrices can
not be applied. However, if and only if

gcd
{

h0(D), h1(D), . . . , hc−1(D)
}
= 1 (7.21)

the corresponding parity-check matrix is minimal, that is, there exists no parity-
check with smaller overall constraint length for the same convolutional code.

7.2. Optimum Free Distance Convolutional Codes 169

ν h0(D) h1(D) h2(D) dfree spectrum

1 6 6 4 2 1, 2, 4, 10, 20, 40 a

2 7 6 5 3 1, 4, 14, 40, 116, 339 b

3 74 64 54 4 1, 5, 24, 71, 238, 862 c

4 62 56 52 5 2, 13, 45, 143, 534, 2014 a

5 61 55 53 6 6, 27, 70, 285, 1103, 4063 d

6 634 514 504 7 17, 53, 133, 569, 2327, 8624 e

7 772 662 576 8 41, 0, 528, 0, 7497, 0 d

8 631 555 477 8 6, 42, 153, 510, 1853, 7338 c

9 7264 6214 4504 9 17, 81, 228, 933, 3469, 13203 c

10 7642 6406 4232 10 69, 0, 925, 0, 13189, 0 c

11 7741 6667 5715 10 10, 80, 260, 864, 3336, 13131
12 70754 62364 42074 11 32, 144, 477, 1769, 6718, 25717
13 72166 60302 52536 12 116, 0, 1768, 0, 24984, 0
14 71341 64657 40773 12 22, 134, 464, 1702, 6477, 24767

(a) previously listed in [AMB04]. (b) previously listed in [CCG79].
(c) previously listed in [CHL97]. (d) previously listed in [BK97].
(e) previously listed in [Paa74].

Table 7.2: Viterbi spectra ndfree+1, i = 0, 1, . . . , 5, for nonsystematic
rate R = 2/3 OFD convolutional encoders specified by
their parity-check matrices with overall constraint length
ν = 1, 2, . . . , 14.

Moreover, using the relationship between (1.23) and (1.27), it is possible
to obtain c different, not necessarily minimal, generator matrices G(i), i =
0, 1, . . . , c− 1, for the given convolutional code C, namely,

G(i)(D) =



hi(D) h0(D)
. . .

...
hi(D) hi−1(D)

hi(D) hi+1(D)
. . .

...
hi(D) hc−1(D)


(7.22)

Clearly, the row distances dr(i)
j , j = 0, 1, . . . , n, for these (nonminimal) gener-

ator matrices upper-bound their free distance dfree. Hence, hoping to find a
convolutional code C with a certain target free distance dt

free, all matrices are
rejected if any row distance among those c (nonminimal) generator matrices

170 Optimum and Near-Optimum Convolutional Codes

ν h0(D) h1(D) h2(D) h3(D) dfree spectrum

1 6 6 4 4 2 2, 8, 17, 40, 96, 224 a

2 7 6 5 2 3 6, 23, 80, 284, 1027, 3724 b

3 74 64 54 44 4 5, 36, 152, 708, 3424, 16312 c

4 72 62 56 46 4 1, 16, 84, 376, 1912, 9728 a

5 77 65 61 47 5 7, 45, 223, 1066, 5612, 29012 d

6 604 564 554 434 6 27, 118, 529, 2978, 15201, 79518 e

7 702 632 556 422 6 5, 65, 292, 1442, 7618, 39734 e

8 767 743 551 461 7 25, 184, 714, 4081, 20038, 110599
9 7464 6774 5114 4104 8 131, 0, 3574, 0, 97035, 0

10 7276 6252 5642 4406 8 25, 202, 919, 4552, 24327, 128857

(a) previously listed in [AMB04]. (b) previously listed in [CCG79].
(c) previously listed in [Paa74]. (d) previously listed in [TLUF06].
(e) previously listed in [CHL97].

Table 7.3: Viterbi spectra ndfree+1, i = 0, 1, . . . , 5, for nonsystematic
rate R = 3/4 OFD convolutional encoders specified by
their parity-check matrices with overall constraint length
ν = 1, 2, . . . , 10.

is less than the target free distance dt
free, that is,

min
0≤i<c

{
dr(i)

j

}
< dt

free j = 0, 1, . . . , n (7.23)

Finally, the BEAST is applied to the syndrome trellis specified by the parity-
check matrix H(D) to determine the free distance and Viterbi spectrum for all
remaining parity-check matrices.

Note that for rate R = b/c convolutional codes, the computational com-
plexity of determining the row distances increases exponentially with b. On
the other hand, applying the BEAST to syndrome trellis of high rate con-
volutional codes with moderate overall constraint length ν, efficiently yields
their free distance. Hence, as a complexity tradeoff, we typically use only the
first two row distances as a rejection rule, before determining the actual free
distance as well as the Viterbi spectrum with the BEAST.

The parity-check matrices for rate R = 2/3, R = 3/4, and R = 4/5 OFD
codes are given in Tables 7.2 – 7.4. Even though most of these parity-check
polynomials (or their corresponding generator matrices) have been listed in
previous publications by [Paa74], [CCG79], [BK97], [CHL97], [AMB04], and
[TLUF06], their OFD property was mostly unknown.

7.3. Optimum Distance Profile Convolutional Codes 171

ν h0(D) h1(D) h2(D) h3(D) h4(D) dfree spectrum

1 6 6 6 4 4 2 4, 12, 39, 148, 492, 1632 a

2 7 7 6 5 2 2 1, 9, 47, 229, 1095, 5265 a

3 74 70 64 54 44 3 1, 21, 139, 776, 4583, 27380 a

4 72 62 66 56 46 4 7, 56, 376, 2236, 14385, 92304 a

5 71 66 57 45 41 4 1, 36, 220, 1349, 8976, 58757

6 774 704 624 554 514 5 11, 100, 620, 4024, 26557, 177078

7 772 762 612 506 426 6 70, 245, 2504, 11894, 104486

8 717 667 571 535 441 6 14, 174, 1080, 6936, 46364, 309835

9 7754 6514 6304 5524 4474 6 1, 80, 576, 3374, 22207, 151637

(a) previously listed in [AMB04].

Table 7.4: Viterbi spectra ndfree+1, i = 0, 1, . . . , 5, for nonsystematic
rate R = 4/5 OFD convolutional encoders specified by
their parity-check matrices with overall constraint length
ν = 1, 2, . . . , 9.

7.3 OPTIMUM DISTANCE PROFILE CONVOLUTIONAL CODES

For convolutional codes with increased overall constraint length ν the com-
plexity of an exhaustive code search becomes prohibitively large. However,
limiting ourselves to the subclass of ODP codes (cf. Subsection 7.1.1), it is
possible to determine convolutional encoding matrices with large overall con-
straint length ν and near-optimum free distance.

Denote by Gsys,m the set of all rate R = 1/2 systematic convolutional en-
coders Gsys(D) = (1 g(D)) of memory m having an optimum column dis-
tance profile dp (7.6). While all such encoding matrices share the same mini-
mum distance dmin = dr

m, they differ in the number of (truncated) codewords
v[0,m] with Hamming weight dmin.

In Table 7.5, the number of such encoding matrices with memory m =
25, 26, . . . , 40, is given together with their minimum distance dmin. Addition-
ally, one (among many) systematic, rate R = 1/2 ODP encoding matrix with
the fewest number of (truncated) codewords v[0,m] of Hamming weight dmin
is specified.

As previously mentioned in Subsection 7.1.1, multiplying a size b × c en-
coding matrix G(D) of memory m with a b× b nonsingular matrix T(D) and
truncating all polynomials at degree m does not change its distance pro-
file dp. Hence, multiplying a systematic, rate R = 1/2, encoding matrix

172 Optimum and Near-Optimum Convolutional Codes

m
∣∣Gsys,m

∣∣ dmin #v[0,m] of weight dmin g(D)

25 48 11 5 671145432

26 96 11 1 671145431

27 36 12 27 6711454574

28 72 12 8 6711454306

29 144 12 2 6711454306

30 12 13 43 67114545754

31 24 13 15 67114545754

32 48 13 4 67114545755

33 96 13 1 671145457554

34 12 14 34 671145457556

35 24 14 14 67114545447

36 48 14 5 6711454544704

37 96 14 2 6711454306444

38 16 15 31 6711454575564

39 32 15 12 6711454306444

40 64 15 3 67114545755712

Table 7.5: Number of systematic, ODP, rate R = 1/2 encoding matri-
ces with memory m = 25, 26, . . . , 40, together with their
minimum distance dmin and one (among many) encod-
ing matrix G(D) = (1 g(D)) with the fewest number of
(truncated) codewords v[0,m] of Hamming weight dmin.

Gsys,m(D) ∈ Gsys,m of memory m with a randomly chosen polynomial t(D)
of degree at most m and truncating their product at degree m, yields the non-
systematic, rate R = 1/2 ODP encoding matrix

G(D) = t(D)
(

1 g(D)
) ∣∣∣

m
=
(

t(D) t(D)g(D)
∣∣∣
m

)
(7.24)

Since the polynomial t(D) can be freely chosen for a given memory m, there
exist 2m different nonsystematic encoding matrices Gt(D)(D) based on a single
systematic encoding matrix Gsys(D) with the same rate and memory.

After applying the previously described rejection rules to the set of non-
systematic ODP encoding matrices, the BEAST is used to determine their free
distance and Viterbi spectrum. For each memory between 25 and 40, the best

7.3. Optimum Distance Profile Convolutional Codes 173

m g0(D) g1(D) dfree spectrum

25 746411326 544134532 27 14, 58, 120, 264, 569, 1406

26 525626523 645055711 28 24, 56, 131, 273, 736, 1723 a

27 7270510714 5002176664 28 1, 28, 66, 138, 366, 789

28 7605117332 5743521516 30 54, 0, 356, 0, 2148, 0 a

29 7306324763 5136046755 30 5, 47, 97, 211, 514, 1171 a

30 60425367524 45542642234 32 143, 0, 240, 0, 3870, 0

31 51703207732 66455246536 32 14, 65, 136, 336, 753, 1860

32 41273467427 70160662325 33 28, 61, 167, 372, 898, 2168

33 407346436304 711526703754 34 44, 0, 338, 0, 2081, 0

34 410174456276 702647441572 34 5, 35, 84, 229, 532, 1320

35 627327244767 463171036121 36 111, 0, 553, 0, 3309, 0

36 7664063056054 5707165143064 36 12, 53, 146, 360, 783, 1917

37 7267577012232 5011131253046 37 18, 73, 163, 381, 884, 2232

38 6660216760717 4131271202755 38 30, 83, 225, 524, 1152, 2761

39 42576550101264 66340614757214 38 2, 38, 97, 219, 575, 1324

40 26204724041271 37146123573117 40 78, 0, 532, 0, 6040, 0

(a) previously listed in [BHJK04].

Table 7.6: Viterbi spectra ndfree+1, i = 0, 1, . . . , 5, for nonsystematic
rate R = 1/2 ODP convolutional encoders with memory
m = 25, 26, . . . , 40.

ODP encoding matrix is given in Table 7.6. Note that the rate R = 1/2 en-
coding matrices for memory m = 26, 28, and 29 coincide with the previously
published results in [BHJK04]. For memories m = 25, 37, 31, 33, 34, 36, and
38 we found nonsystematic ODP encoding matrices with improved spectral
components, while for memories m = 30, 32, 35, 37, and 40 the corresponding
free distance have been improved.

Generalizing the previously described approaches to rate R = 1/c convo-
lutional codes, yields the systematic and nonsystematic, rate R = 1/3 ODP
encoding matrices as presented in Tables 7.7 and 7.8, respectively, extending
previously published results in [JZ99] to memory m = 38 and m = 26 for
systematic and nonsystematic encoding matrices, respectively.

174 Optimum and Near-Optimum Convolutional Codes

m g1(D) g2(D) dfree spectrum

29 6766735721 5312071307 33 3, 2, 5, 12, 16, 31 a

30 73251313564 51445320354 34 1, 6, 6, 5, 14, 31 a

31 71261062646 65376166062 36 9, 0, 22, 0, 52, 0
32 73251267417 51445036206 34 1, 1, 3, 3, 11, 18
33 732512674174 514450362064 36 1, 2, 5, 6, 8, 14
34 732512674172 514450362066 38 4, 0, 14, 0, 36, 0
35 732512674172 514450362067 39 4, 12, 3, 4, 43, 58
36 7325126741734 514450362066 40 12, 0, 25, 0, 78, 0
37 732512674173 5144503620676 40 8, 0, 15, 0, 55, 0
38 7127344503677 6530553473343 40 1, 0, 7, 0, 12, 0

(a) previously listed in [JZ99].

Table 7.7: Viterbi spectra ndfree+1, i = 0, 1, . . . , 5, for systematic rate
R = 1/3 ODP convolutional encoders with memory m =
29, 30, . . . , 38.

m g0(D) g1(D) g2(D) dfree spectrum

18 4551064 6247274 7730474 34 28, 0, 44, 0, 182, 0 a

19 5531236 6151572 7731342 35 8, 18, 29, 32, 54, 78 a

20 5361071 6561265 7237543 36 3, 14, 21, 25, 48, 92
21 54564334 60721124 76366644 38 11, 0, 55, 0, 129, 0
22 42441722 66766532 72142746 39 13, 14, 24, 36, 50, 83
23 47446663 66164457 77054535 40 2, 9, 17, 36, 53, 86
24 105264111 157347063 176625137 42 10, 14, 36, 37, 64, 116
25 331576613 211707125 365742567 44 41, 0, 45, 0, 206, 0
26 515357647 644225425 740663661 44 1, 10, 19, 35, 42, 78

(a) previously listed in [JZ99].

Table 7.8: Viterbi spectra ndfree+1, i = 0, 1, . . . , 5, for nonsystematic
rate R = 1/3 ODP convolutional encoders with memory
m = 18, 19, . . . , 36.

Acronyms

APP A Posteriori Probability

AWGN Additive White Gaussian
Noise

BD Blue-ray Disk

BEAST Bidirectional Efficient
Algorithm for Searching
code Trees

BER Bit decoding Error Rate

BP Belief Propagation

BPSK Binary Phase-Shift Keying

BSC Binary Symmetric Channel

BSS Binary Symmetric Source

CCF Controller Canonical Form

CD Compact Disk

CWAM Complete Weight
Adjacency Matrix

DMC Discrete Memoryless
Channel

DSL Digital Subscriber Line

DVD Digital Versatile Disk

FIR Finite Impulse Response

GSM Global System for Mobile
Communications

HDD Hard Disk Drive

IEEE Institute of Electrical and
Electronics Engineers

IIR Infinite Impulse Response

LDPC Low-Density Parity-Check

LFSR Linear Feedback Shift
Register

LTE 3GPP Long Term
Evolution

LTI Linear Time Invariant

MAP Maximum A Posteriori

MB Minimal-Basic

MD Minimum (Hamming)
Distance

175

176 Acronyms

ML Maximum-Likelihood

OCF Observer Canonical Form

ODP Optimum Distance Profile

OFD Optimum Free Distance

PDF Probability Density
Function

PSD Power Spectral Density

QC Quasi-Cyclic

RC Repetition Code

REF Row Echelon Form

RREF Reduced Row Echelon
Form

SNR Signal-to-Noise Ratio

SPC Single Parity-Check Code

SSD Solid State Flash Drive

STS Steiner Triple System

TB Tailbiting

TB Truncation

UMTS Universal Mobile
Telecommunications
System

VG Varshamov-Gilbert

WAM Weight Adjacency Matrix

WE Weakly Equivalent

WiMAX Worldwide
Interoperability for
Microwave Access

ZT Zero-Tail

References

[AG92] K. A. S. Abdel-Ghaffar, »On unit constraint-length convolu-
tional codes,« IEEE Transactions on Information Theory, vol. IT-38,
no. 1, pp. 200 – 206, January 1992.

[AMB04] A. Amat, G. Montorsi, and S. Benedetto, »Design and decod-
ing of optimal high-rate convolutional codes,« IEEE Transactions
on Information Theory, vol. 50, no. 5, pp. 867 – 881, May 2004.

[BB93] Y. Berger and Y. Be’ery, »Bounds on the trellis size of linear block
codes,« IEEE Transactions on Information Theory, vol. 39, no. 1, pp.
203 – 209, January 1993.

[BBL+95] M. R. Best, M. V. Burnashev, Y. Levy, A. Rabinovich, P. C. Fish-
burn, A. R. Calderbank, and D. J. Costello, Jr., »On a tech-
nique to calculate the exact performance of a convolutional code,«
IEEE Transactions on Information Theory, vol. 41, no. 2, pp. 441 –
447, March 1995.

[BC90] M. V. Burnashev and D. L. Cohn, »Symbol error probability for
convolutional codes,« Problems of Information Transmission, vol. 26,
no. 4, pp. 289 – 298, 1990.

[BCJR74] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, »Optimal decoding
of linear codes for minimizing symbol error rate,« IEEE Transac-
tions on Information Theory, vol. IT-20, no. 2, pp. 284 – 287, March
1974.

[BHJ+] I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov,
and R. V. Satyukov, »Degree matrices for QC LDPC codes,«
Online: http://www.eit.lth.se/goto/QC_LDPC_Codes.

177

178 References

[BHJ+10] I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov,
and R. V. Satyukov, »New low-density parity-check codes with
large girth based on hypergraphs,« in Proc. IEEE International Sym-
posium on Information Theory (ISIT’10), Austin, USA, June 13 – 18,
2010, pp. 819 – 823.

[BHJ+11] I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov,
and R. V. Satyukov, »Some voltage graph-based LDPC tailbiting
codes with large girth,« in Proc. IEEE International Symposium on
Information Theory (ISIT’11), St. Petersburg, Russia, July 31 – Au-
gust 5, 2011, pp. 732 – 736.

[BHJ+12] I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov,
and R. V. Satyukov, »Searching for voltage graph-based LDPC
tailbiting codes with large girth,« IEEE Transactions on Information
Theory, vol. 58, no. 4, pp. 2265 – 2279, April 2012.

[BHJK01] I. E. Bocharova, M. Handlery, R. Johannesson, and B. D.
Kudryashov, »A BEAST for prowling in trees,« in Proc. 39th An-
nual Allerton Conference on Communication, Control, and Computing,
Monticello, USA, October 3 – 5, 2001, pp. 52 – 61.

[BHJK04] I. E. Bocharova, M. Handlery, R. Johannesson, and B. D.
Kudryashov, »A BEAST for prowling in trees,« IEEE Transactions
on Information Theory, vol. 50, no. 6, pp. 1295 – 1302, June 2004.

[BHJK05] I. E. Bocharova, M. Handlery, R. Johannesson, and B. D.
Kudryashov, »BEAST decoding of block codes obtained via con-
volutional codes,« IEEE Transactions on Information Theory, vol. 51,
no. 5, pp. 1880 – 1891, May 2005.

[BHJK10] I. E. Bocharova, F. Hug, R. Johannesson, and B. D.
Kudryashov, »On weight enumerators and MacWilliams identity
for convolutional codes,« in Proc. Information Theory and Applica-
tions Workshop (ITA’10)’, San Diego, USA, January 31 – February
5, 2010.

[BHJK11a] I. E. Bocharova, F. Hug, R. Johannesson, and B. D.
Kudryashov, »Woven convolutional graph codes with large free
distances,« Problems of Information Transmission, vol. 47, no. 1, pp.
3 – 18, 2011.

179

[BHJK11b] I. E. Bocharova, F. Hug, R. Johannesson, and B. D.
Kudryashov, »Another look at the exact bit error probability for
Viterbi decoding of convolutional codes,« in International Mathe-
matical Conference ’50 Years of IPPI’, Moscow, Russia, July 25 – 29,
2011.

[BHJK11c] I. E. Bocharova, F. Hug, R. Johannesson, and B. D.
Kudryashov, »Double-Hamming based QC LDPC codes with
large minimum distance,« in Proc. IEEE International Symposium
on Information Theory (ISIT’11), St. Petersburg, Russia, July 31 –
August 5, 2011, pp. 923 – 927.

[BHJK11d] I. E. Bocharova, F. Hug, R. Johannesson, and B. D.
Kudryashov, »On the exact bit error probability for Viterbi de-
coding of convolutional codes,« in Proc. Information Theory and
Applications Workshop (ITA’11), San Diego, USA, February 6 – 11,
2011.

[BHJK12a] I. E. Bocharova, F. Hug, R. Johannesson, and B. D.
Kudryashov, »A note on duality and MacWilliams-type identi-
ties for convolutional codes,« Problems of Information Transmission,
vol. 48, no. 1, 2012.

[BHJK12b] I. E. Bocharova, F. Hug, R. Johannesson, and B. D.
Kudryashov, »A closed form expression for the exact bit error
probability for Viterbi decoding of convolutional codes,« accepted
for publication in IEEE Transactions on Information Theory, vol. 58,
2012.

[BJKL04] I. E. Bocharova, R. Johannesson, B. D. Kudryashov, and

M. Lončar, »BEAST decoding of block codes,« European Trans-
actions on Telecommunications, vol. 15, no. 4, pp. 297 – 305, July
2004.

[BK97] I. E. Bocharova and B. D. Kudryashov, »Rational rate punc-
tured convolutional codes for soft-decision Viterbi decoding,«
IEEE Transactions on Information Theory, vol. 43, no. 4, pp. 1305
– 1313, July 1997.

[BKJZ07] I. E. Bocharova, B. D. Kudryashov, R. Johannesson, and V. V.
Zyablov, »Asymptotically good woven codes with fixed con-
stituent convolutional codes,« in Proc. IEEE International Sympo-
sium on Information Theory (ISIT’07), Nice, France, June 24 – 29,
2007, pp. 2326 – 2330.

180 References

[BKJZ10] I. E. Bocharova, B. D. Kudryashov, R. Johannesson, and V. V.
Zyablov, »Woven graph codes: Asymptotic performances and ex-
amples,« IEEE Transactions on Information Theory, vol. 56, no. 1, pp.
121 – 129, January 2010.

[BKS09] I. E. Bocharova, B. D. Kudryashov, and R. V. Satyukov, »Graph-
based convolutional and block LDPC codes,« Problems of Informa-
tion Transmission, vol. 45, no. 4, pp. 357 – 377, 2009.

[BKSS09] I. E. Bocharova, B. D. Kudryashov, R. V. Satyukov, and

S. Stiglmayr, »Short quasi-cyclic LDPC codes from convolutional
codes,« in Proc. IEEE International Symposium on Information Theory
(ISIT’09), Seoul, South-Korea, June 28 – July 3, 2009, pp. 551 – 555.

[Bla85] R. E. Blahut, Fast Algorithms for Digital Signal Processing. Boston,
USA: Addison-Wesley Publishing Co., 1985.

[Bos98] M. Bossert, Kanalcodierung, 2nd ed. Stuttgart, Germany: Teubner,
1998.

[Bro93] W. C. Brown, Matrices over commutative rings. New York, USA:
Marcel Dekker, 1993.

[CCG79] J. Cain, G. Clark, and J. Geist, »Punctured convolutional codes
of rate (n − 1)/n and simplified maximum likelihood decod-
ing (corresp.),« IEEE Transactions on Information Theory, vol. IT-25,
no. 1, pp. 97 – 100, January 1979.

[CHL97] J.-J. Chang, D.-J. Hwang, and M.-C. Lin, »Some extended results
on the search for good convolutional codes,« IEEE Transactions on
Information Theory, vol. 43, no. 5, pp. 1682 – 1697, September 1997.

[Cos69] D. J. Costello, Jr., »A construction technique for random-error-
correcting convolutional codes,« IEEE Transactions on Information
Theory, vol. IT-15, no. 5, pp. 631 – 636, May 1969.

[DLZ+09] L. Dolecek, P. Lee, Z. Zhang, V. Anantharam, B. Nikolic,
and M. Wainwright, »Predicting error floors of structured LDPC
codes: Deterministic bounds and estimates,« IEEE Journal on Se-
lected Areas in Communications, vol. 27, no. 6, pp. 239 – 246, August
2009.

[EG10] M. Esmaeili and M. Gholami, »Structured quasi-cyclic LDPC
codes with girth 18 and column-weight J ≥ 3,« International Jour-
nal of Electronics and Communications (AEU), vol. 64, no. 3, pp. 202
– 217, March 2010.

181

[Eli55] P. Elias, »Coding for noisy channels,« in Proc. IRE Convention
Record, vol. 4, 1955, pp. 37 – 46.

[Eur08] Digital Video Broadcasting (DVB), European Telecommunications
Standards Institute ETSI EN 302 755, Rev. 1.1.1, July 2008.

[Eur09] Digital Video Broadcasting (DVB), European Telecommunications
Standards Institute ETSI EN 302 307, Rev. 1.2.1, August 2009.

[For67] G. D. Forney, Jr., »Review of random tree codes,« NASA Ames
Research Center, Moffett Field, California, Contract NAS2-3637, NASA
CR 73176, Final Report, Appendix A, December 1967.

[For88] G. D. Forney, Jr., »Coset codes II: Binary lattices and related
codes,« IEEE Transactions on Information Theory, vol. IT-34, no. 5,
pp. 1152 – 1187, September 1988.

[For09] G. D. Forney, Jr., »MacWilliams identities for codes on graphs,«
in Proc. IEEE Information Theory Workshop (ITW’09), Taormina,
Italy, October 11 – 16, 2009, pp. 120 – 124.

[For11] G. D. Forney, Jr., »Codes on Graphs: Duality and MacWilliams
identities,« IEEE Transactions on Information Theory, vol. 57, no. 3,
pp. 1382 – 1397, March 2011.

[Fos04] M. P. C. Fossorier, »Quasi-cyclic low-density parity-check codes
from circulant permutation matrices,« IEEE Transactions on Infor-
mation Theory, vol. 50, no. 8, pp. 1788 – 1793, August 2004.

[Gal62] R. G. Gallager, »Low-density parity-check codes,« IRE Transac-
tions on Information Theory, vol. IT-8, pp. 21 – 28, January 1962.

[Gal63] R. G. Gallager, »Low-density parity-check codes,« Ph.D. disser-
tation, MIT Press, Cambridge, USA, 1963.

[GLS08] H. Gluesing-Luerssen and G. Schneider, »On the MacWilliams
identity for convolutional codes,« IEEE Transactions on Information
Theory, vol. 54, no. 4, pp. 1636 – 1550, April 2008.

[GLS09] H. Gluesing-Luerssen and G. Schneider, »A MacWilliams iden-
tity for convolutional codes: The general case,« IEEE Transactions
on Information Theory, vol. 55, no. 7, pp. 2920 – 2930, July 2009.

[Har92] G. H. Hardy, Divergent Series, 2nd ed. Providence, USA: American
Mathematical Society, November 1992.

182 References

[HBJK10] F. Hug, I. E. Bocharova, R. Johannesson, and B. D.
Kudryashov, »A rate R=5/20 hypergraph-based woven convolu-
tional code with free distance 120,« IEEE Transactions on Informa-
tion Theory, vol. 56, no. 4, pp. 1618 – 2623, April 2010.

[HJ71] J. A. Heller and I. M. Jacobs, »Viterbi decoding for satellite and
space communication,« IEEE Transactions on Communications, vol.
COM-19, no. 5, pp. 835 – 848, October 1971.

[HJ90] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, Eng-
land: Cambridge University Press, February 1990.

[HJZ02] S. Höst, R. Johannesson, and V. V. Zyablov, »Woven convolu-
tional codes I: Encoder properties,« IEEE Transactions on Informa-
tion Theory, vol. 48, no. 1, pp. 149 – 161, January 2002.

[IEE05] Air Interface for Fixed and Mobile Broadband Wireless Access Systems,
IEEE P802.16e/D12 Draft, October 2005.

[JBHH11] D. Johnsson, F. Bjärkeson, M. Hell, and F. Hug, »Searching for
new convolutional codes using the cell broadband engine archi-
tecture,« IEEE Communications Letters, vol. 15, no. 5, pp. 560 – 562,
May 2011.

[JW01a] S. J. Johnson and S. R. Weller, »Construction of low-density
parity-check codes from Kirkman triple systems,« in Proc. IEEE
Global Telecommunications Conference (GLOBECOM’01), vol. 2, San
Antonio, USA, November 25 – 29, 2001, pp. 970 – 974.

[JW01b] S. J. Johnson and S. R. Weller, »Regular low-density parity-
check codes from combinatorial designs,« in Proc. IEEE Informa-
tion Theory Workshop (ITW’01), Cairns, Australia, September 2 – 7,
2001, pp. 90 – 92.

[JZ99] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolu-
tional Coding. Piscataway, USA: IEEE Press, 1999.

[Kir47] T. P. Kirman, »On a problem in combinatorics,« Cambridge and
Dublin mathematical Journal, vol. 2, pp. 191 – 204, 1847.

[KLF01] Y. Kou, S. Lin, and M. P. C. Fossorier, »Low-density parity-check
codes based on finite geometries: A rediscovery and new results,«
IEEE Transactions on Information Theory, vol. 47, no. 7, pp. 2711 –
2736, November 2001.

183

[KNCS07] S. Kim, J.-S. No, H. Chung, and D.-J. Shin, »Quasi-cyclic low-
density parity-check codes with girth larger than 12,« IEEE Trans-
actions on Information Theory, vol. 53, no. 8, pp. 2885 – 2891, August
2007.

[KS95] F. R. Kschischang and V. Sorokine, »On the trellis structure of
block codes,« IEEE Transactions on Information Theory, vol. 41, no. 6,
pp. 1924 – 1937, November 1995.

[KW08] C. A. Kelley and J. L. Walker, »LDPC codes from voltage
graphs,« in Proc. IEEE International Symposium on Information The-
ory (ISIT’08), Toronto, Canada, July 6 – 11, 2008, pp. 792 – 796.

[LC04] S. Lin and D. J. Costello, Jr., Error Control Coding, 2nd ed. Upper
Saddle River, USA: Prentice Hall, 2004.

[LTZ04] M. Lentmaier, D. V. Truhachev, and K. S. Zigangirov, »Ana-
lytic expressions for the bit error probabilities of rate-1/2 memory
2 convolutional encoders,« IEEE Transactions on Information Theory,
vol. 50, no. 6, pp. 1303 – 1311, June 2004.

[Mas74] J. L. Massey, »Coding and modulation in digital communica-
tions,« in Proc. International Zurich Seminar on Digital Communi-
cations, Zurich, Switzerland, March 1974, pp. E2(1) – E2(4).

[Mas78] J. L. Massey, »Foundations and methods of channel coding,« in
Proc. International Conference on Information Theory and Systems,
vol. 65, Berlin, Germany, September 1978.

[Mas84] J. L. Massey, »The how and why of channel coding,« in Proc. Inter-
national Zurich Seminar on Digital Communications, Zurich, Switzer-
land, March 1984, pp. 67 – 73.

[McE96] R. J. McEliece, »On the BCJR trellis for linear block codes,« IEEE
Transactions on Information Theory, vol. 42, no. 4, pp. 1072 – 1092,
July 1996.

[McE98] R. J. McEliece, »How to compute weight enumerators for con-
volutional codes,« in Communications and Coding (P. G. Farrell 60th
Birthday Celebration), M. Darnell and B. Honary, Eds. Hoboken,
USA: Wiley-Blackwell, 1998, pp. 121 – 141.

[MD99] D. J. C. MacKay and M. C. Davey, »Evaluation of Gallager codes
for short block length and high rate applications,« in Codes, Sys-
tems and Graphical Models. Berlin, Germany: Springer-Verlag, 1999,
pp. 113 – 130.

184 References

[MKL06] O. Milenkovic, N. Kashyap, and D. Leyba, »Shortened array
codes of large girth,« IEEE Transactions on Information Theory,
vol. 52, no. 8, pp. 3707 – 3722, August 2006.

[Mor70] T. N. Morrissey, Jr., »Analysis of decoders for convolutional
codes by stochastic sequential machine methods,« IEEE Transac-
tions on Information Theory, vol. IT-16, no. 4, pp. 460 – 469, July
1970.

[MS77] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-
Correcting Codes. Amsterdam, Netherlands: North Holland, 1977.

[Mud88] D. J. Muder, »Minimal trellises for block codes,« IEEE Transactions
on Information Theory, vol. IT-34, no. 5, pp. 1049 – 1053, September
1988.

[OCC93] I. M. Onyszchuk, K.-M. Cheung, and O. Collins, »Quantization
loss in convolutional decoding,« IEEE Transactions on Communica-
tions, vol. 41, no. 2, pp. 261 – 265, February 1993.

[O’S06] M. E. O’Sullivan, »Algebraic construction of sparse matrices with
large girth,« IEEE Transactions on Information Theory, vol. 52, no. 2,
pp. 718 – 727, February 2006.

[Paa74] E. Paaske, »Short binary convolutional codes with maximal free
distance for rates 2/3 and 3/4 (corresp.),« IEEE Transactions on
Information Theory, vol. IT-20, no. 5, pp. 683 – 689, January 1974.

[Pea88] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference, 2nd ed. San Francisco, USA: Morgan Kauf-
mann, 1988.

[PS08] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New
York, USA: McGraw Hill, 2008.

[RST91] I. Reed, M. Shih, and T. Truong, »VLSI design of inverse-free
Berlekamp-Massey algorithm,« Computers and Digital Techniques,
IEE Proceedings-E, vol. 138, no. 5, pp. 295 – 298, September 1991.

[RU08] T. Richardson and R. Urbanke, Modern Coding Theory. Cam-
bridge, England: Cambridge University Press, 2008.

[SFRU01] C. Sae-Young, G. D. Forney, Jr., T. J. Richardson, and R. Ur-
banke, »On the design of low-density parity-check codes within
0.0045 db of the shannon limit,« IEEE Communications Letters,
vol. 5, no. 2, pp. 58 – 60, February 2001.

185

[Sha48] C. E. Shannon, »A mathematical theory of communication,« Bell
System Technical Journal, vol. 27, pp. 379 – 423 (Part I), 623 – 656
(Part II), 1948.

[SM77] J. B. Shearer and R. J. McEliece, »There is no MacWilliams iden-
tity for convolutional codes,« IEEE Transactions on Information The-
ory, vol. IT-23, no. 6, pp. 775 – 776, November 1977.

[SV11] R. Smarandache and P. O. Vontobel, »Quasi-cyclic LDPC codes:
Influence of proto- and Tanner-graph structure on minimum
Hamming distance upper bounds,« IEEE Transactions on Informa-
tion Theory, vol. 58, no. 2, pp. 585 – 607, February 2011.

[SZ94] V. Sidorenko and V. Zyablov, »Decoding of convolutional codes
using a syndrome trellis,« IEEE Transactions on Information Theory,
vol. 40, no. 5, pp. 1663 – 1666, September 1994.

[TAD04] J. Thorpe, K. Andrews, and S. Dolinar, »Methodologies for
designing LDPC codes using protographs and circulants,« in
Proc. IEEE International Symposium on Information Theory (ISIT’04),
Chicago, USA, June 27 – July 2, 2004, p. 238.

[Tan81] R. M. Tanner, »A recursive approach to low-complexity codes,«
IEEE Transactions on Information Theory, vol. IT-27, no. 5, pp. 533 –
546, September 1981.

[TLF06] H.-H. Tang, M.-C. Lin, and B. F. U. Filho, »Minimal trellis mod-
ules and equivalent convolutional codes,« IEEE Transactions on In-
formation Theory, vol. 52, no. 8, pp. 3738 – 3746, April 2006.

[TLUF06] H.-H. Tang, M.-C. Lin, and B. Uchoa-Filho, »Minimal trellis
modules and equivalent convolutional codes,« IEEE Transactions
on Information Theory, vol. 52, no. 8, pp. 3738 – 3746, August 2006.

[TSF01] R. M. Tanner, D. Sridhara, and T. Fuja, »A class of group-
structured LDPC codes,« in Proc. 6th International Symposium on
Communication Theory and Applications, Ambleside, England, July
15 – 20, 2001, pp. 365 – 370.

[TSS+04] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J.
Costello, Jr., »LDPC block and convolutional codes based on
circulant matrices,« IEEE Transactions on Information Theory, vol. 50,
no. 12, pp. 2966 – 2984, December 2004.

186 References

[Van74] L. Van de Meeberg, »A tightened upper bound on the error prob-
ability of binary convolutional codes with Viterbi decoding,« IEEE
Transactions on Information Theory, vol. IT-20, no. 3, pp. 389 – 391,
May 1974.

[Var98] A. Vardy, »Trellis Structure of Codes,« in Handbook of Coding The-
ory, R. A. Brualdi, W. C. Huffman, and V. Pless, Eds. Amster-
dam, The Netherlands: Elsevier Science & Technology, November
1998, pp. 1989 – 2018.

[Vit67] A. J. Viterbi, »Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,« IEEE Transactions
on Information Theory, vol. IT-13, no. 2, pp. 260 – 269, April 1967.

[Vit71] A. J. Viterbi, »Convolutional codes and their performance in com-
munication systems,« IEEE Transactions on Communications, vol.
COM-19, no. 5, pp. 751 – 772, October 1971.

[WJ65] J. M. Wozencraft and I. M. Jacobs, Principles of Communication
Engineering. Hoboken, USA: Wiley, 1965.

[Wol78] J. Wolf, »Efficient maximum likelihood decoding of linear block
codes using a trellis,« IEEE Transactions on Information Theory, vol.
IT-24, no. 1, pp. 76 – 80, January 1978.

[WYD08] Y. Wang, J. S. Yedidia, and S. C. Draper, »Construction of high-
girth QC-LDPC codes,« in Proc. 5th International Symposium on
Turbo Codes and Related Topics, Lausanne, Switzerland, September
1 – 5, 2008, pp. 180 – 185.

[Wym07] H. Wymeersch, Iterative Receiver Design. Cambridge, England:
Cambridge University Press, 2007.

[ZW10] G. Zhang and X. Wang, »Girth-12 quasi-cyclic LDPC codes with
consecutive lengths,« arXiv: 1001.3916v1, January 2010.

	Contents
	Preface
	Acknowledgments
	Introduction
	A Basic Digital Communication Model
	Some Channel Models
	The Binary Symmetric Channel
	The Additive White Gaussian Noise Channel

	Channel Coding
	Block Codes
	Convolutional Codes
	Optimal Decoding Principles

	Dissertation Outline

	Graphs, Codes, and Codes on Graphs
	Trees and Trellises for Convolutional Codes
	Trees and Trellises for Linear Block Codes
	The Viterbi Algorithm
	The BEAST
	Finding the Weight Spectrum
	Finding the Viterbi Spectrum
	Maximum-Likelihood Decoding
	Determine the Metric Thresholds

	Low-Density Parity-Check Codes and Tanner Graphs
	The Belief Propagation Algorithm

	Voltage Graph-Based QC LDPC Block Codes with Large Girth
	Quasi-Cyclic LDPC Block Codes
	Base Matrices, Voltages, and their Graphs
	Bounds on the Girth and the Minimum Distance
	Searching for QC LDPC Block Codes with Large Girth
	Step I: Creating a Tree Structure
	Step II: Searching for a Suitable Voltage Assignment

	Minimum Distance of QC LDPC Block Codes
	All-one Based QC LDPC Block Codes
	Alternative Constructions
	Steiner Triple Systems Based QC LDPC Block Codes
	Iterative QC LDPC Block Codes
	Double-Hamming Based QC LDPC Block Codes
	Binomial QC LDPC Block Codes

	Case Study: IEEE 802.16 WiMAX

	Woven Graph Codes
	Graph-based Block Codes with Constituent Codes
	Woven Graph Codes
	Asymptotic Bound on the Free Distance of Woven Convolutional Graph Codes
	Examples
	Simulation Results

	A Closed Form Expression for the Exact Bit ErrorProbability
	Expressing the Bit Error Probability Using the Average Information Weights
	Computing the Vector of Average Information Weights
	Solving the Recurrent Equation
	Determining the Limit of a Power Series
	Deriving a Closed Form Expression

	Additional Examples

	MacWilliams-type Identities for Convolutional Codes
	Weakly Equivalent Matrices
	Block Spectra for Zero-Tail Terminated and Truncated Convolutional Codes
	MacWilliams-Type Identities
	Infinite Sequences of Spectra

	Optimum and Near-Optimum Convolutional Codes
	Distance Properties
	Column Distance
	Row Distance
	Smith Form Decomposition

	Optimum Free Distance Convolutional Codes
	Optimum Distance Profile Convolutional Codes

	Acronyms
	References

