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Abstract

This master’s thesis describes nonlinear finite element analysis and ex-
perimental verification tests of a corrugated board panel when loaded
in-plane. Detailed modelling of a panel, where both the liner and fluting
is represented in detail, is compared to simplified shell modelling with a
solid core and to experimental tests. In the experimental tests, Stereo-
scopic Digital Speckle Photography is used to obtain the in-plane as well
as the out-of-plane displacements. The analyses shows that a local phe-
nomenon as buckling of the liner between the corrugations is important
for the global load-displacement response. It is also shown that it is pos-
sible to predict the load carrying capacity with a simple composite model
if a failure criterion that considers both material and structural failure is
used.

Keywords: FEM, finite element analysis, corrugated board, buckling,
postbuckling, tests, strength, collapse, packages

The cover picture illustrates the local deformation pattern of the facing and

the numerical model used in the computer simulations.
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Summary

The purpose of this master’s thesis was to perform a detailed finite ele-
ment analysis of a 400x400 mm corrugated board panel. Previous work
in this area has mostly been concerned with simplified composite models
where the corrugated layer is replaced by a solid core. In this work a
detailed finite element analysis (FEA) is performed, where the veritable
geometry is modelled, i.e. the corrugated fluting is modelled by struc-
tural elements. The purpose is to study the influence of the local buckling
of the facings on the global performance of the panel, see figure 1.

Figure 1: The local buckling pattern and shape of liner 200 WTK.

The results from the detailed FEA are compared with results from a
simplified model and with results from experimental tests. In order to
examine the effects of local buckling on the board’s total load carrying
capacity, a material as well as a structural failure criterion, is considered.

It is shown that a good agreement between the load-displacement paths
of the FEA and the experimental tests can be achieved even when a
linear-elastic orthotropic material model is used. In the detailed analy-
sis, the collapse load for both structural and material failure is close to
the mean collapse load from the experimental tests, 1677 N. The collapse
loads are 5.8 % and 2.8 % lower for structural and material failure respec-
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tively. Concerning the simplified analysis, the collapse load predicted by
material failure will overestimate the strength with 16.3 %. For struc-
tural failure, the collapse load is 3.2 % larger than the collapse load from
the tests.

Computational analyses were also made for various out-of-plane shear
stiffnesses of the papers. These analyses indicated a significant effect of
these shear stiffnesses on the load bearing capacity of the panels.
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Chapter 1

Introduction

1.1 Background

Corrugated board is used mostly as a packaging material, e.g. in storage
boxes. The most important loading case for this type of application
is compressive loading, e.g. from boxes standing on top of each other.
When the loading of a board becomes large, the board will collapse,
either by structural or by material failure. Before the collapse of the
board, local buckling between the corrugations may occur, which might
have a significant effect on the board’s total load carrying capacity.

As the field of application for corrugated board is widened, the need
for optimization of the material properties increases. In order to op-
timize the material properties and the geometrical shape for different
purposes, design curves are required. Such design curves can be created
by performing several numerical analyses, e.g. finite element analyses
(FEA), on the same model with different material-, geometry- and load-
parameter combinations. This use of FEA is only justified if it is shown
that the response of the model is in agreement with the actual response.

1.2 Aim and scope of the thesis

The purpose of this master thesis is to perform a detailed finite element
analysis of a corrugated board panel when loaded in-plane. In the de-
tailed analysis, the veritable geometry is modelled, i.e. both the liner and

1



2 CHAPTER 1. INTRODUCTION

the fluting is represented by their actual plane and corrugated geometry,
respectively. The results from the FEA are to be compared with those
from an experimental study, therefore the geometrical and material prop-
erties of the FE model must agree with the test panel. In the analysis,
both local and global stability is to be considered, especially the effects
of local buckling on the board’s total load carrying capacity. In addition
to the detailed model is a simplified model analysed, where the corru-
gated layer is replaced by a solid core. The solid core stiffness properties
in this model are determined as effective stiffnesses, equivalent to those
of the corrugated medium. The purpose of this analysis is to verify if
a simplified composite stress analysis is possible in order to accurately
simulate the collapse of the board. This thesis is also meant to be the
base for a parametric study at SCA Research, in order to obtain design
curves to optimize the material properties. Since the material represents
approximately half of the product cost there is a lot of money to save
even in a small reduction of the material consumption.

The size of the modelled panel is limited by computer resources, due
to the large amount of degrees of freedom. The material behaviour is
approximated to be linear-elastic by two reasons. One is that currently,
no accurate nonlinear material model for paper is available and, secondly,
the computation time would most probably increase very much if, in
addition to the nonlinear geometry modelling, also nonlinear material
modelling is included.

1.3 Formulation of the problem

When the board is loaded in-plane it will have a very complex nonlinear
load-deformation path and may fail by different failure modes. In order
to capture this nonlinear response in the FEA an incremental technique
is required.

1.4 Procedure of solving the problem

The commercial general purpose FE-program Abaqus and the commer-
cial mathematics and matrix program Matlab were used in the compu-
tational work. The different steps in solving the present task can be
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summarized as:

- Create the detailed model and its corresponding Abaqus input file
using Matlab for easy change of model parameters. The composite
model is generated solely by Abaqus.

- Perform a convergence study on a local structural part, using eigen-
value buckling prediction, to decide which element type and mesh
to use.

- Estimate the elastic buckling load of the board and calculate the
first buckling mode by eigenvalue extraction. This is done for both
the detailed model and the composite model. The modes are then
used as imperfections of the panel geometry in the nonlinear anal-
yses.

- A nonlinear post buckling analysis is performed, for the two models.
From the analyses, load-deformation paths are obtained and it is
possible to visualize the influence of local buckling and how this
effects the total load carrying capacity of the corrugated board
panel.

- Evaluate the computed stresses by means of a material failure cri-
teria to get an estimation of the instant of material failure. In
addition, the stress state at collapse is compared with a structural
(local buckling) failure criteria.

- Finally, an experimental study is performed in order to verify and
evaluate the theoretical models.
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Chapter 2

Corrugated board

2.1 History

In 1856 two Englishmen, Healy and Allen, received the first patent on
corrugated paper. With a simple hand-driven machine they produced a
corrugated paper that was used as a lining in hats. The American Al-
bert L Jones attached a plane sheet to the corrugated paper and patented
the technique in which heat was used to corrugate paper in 1871. This
product was used to protect fragile goods as bottles. Then in 1874 the
American Oliver Long patented the concept of strengthening the corru-
gated paper by adding another facing. The first Swedish manufacturing
of corrugated board was started in Malmö by Carl Th Norén in 1905.
The improvement of the machines made it possible to produce corrugated
board of higher quality and in the 1920’s the boxes made of corrugated
board started to compete with the ones made of wood. [1, 2]

2.2 Manufacturing

Corrugated board consists of one or several layers of corrugated paper
which is glued on or in between plane sheets of paper, see figure 2.1.

The manufacturing process can roughly be divided into two parts. The
wet part, where the fluting is corrugated between two rolls and then glued
onto the liner, see figure 2.2, and the dry part, where heat is applied to
dry the corrugated board. A problem in the manufacturing of corrugated

5



6 CHAPTER 2. CORRUGATED BOARD

a) b)

c) d)

Figure 2.1: Different types of corrugated board: a) Single face. b) Single
wall. c) Double wall. d) Triple wall.

board is when the moisture contents in the different layers are out of
balance. Then the corrugated board can deform in a buckling shape or
as a dip in the facings between the corrugations. These phenomena are
called warp and washboard respectively [3].

Corrugated board

Fluting LinerLiner

Figure 2.2: The manufacturing of a single wall corrugated board.

As well as there are different types of panels there are different flute
profiles, see table 2.11.

Corrugated board is often considered to be the packaging material of the

1The inconsequence in profile notation, for profiles B and C, in regard to the height,
is due to the order in which the two profiles were invented.
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Table 2.1: Different flute profiles.
Flute profile Height (mm) Number of corrugations/m
A 4.8 110
B 2.4 150
C 3.6 130
E 1.2 290
F 0.7 350
G & N 0.5 550

future. There are many advantages and very few disadvantages. Some
of them are:

+ Low weight. Saves money when transporting.

+ Can be entirely customised for the purpose.

+ It is strong and stiff compared to its weight.

+ Easy to handle.

+ Easy to print.

+ Fully recyclable. In Sweden 98 % of the produced corrugated board
is recycled [4].

- Very sensitive to humidity.

2.3 Today’s field of application

Corrugated board is mainly used in packaging and can be customised
entirely for its purpose. If a moisture-repellent membrane is applied on
the surface the box can contain wet products, see figure 2.3. In the fish
industries this is useful, because the box is only used once and does not
need to be washed or transported back after delivery. Instead, the box
can be recycled immediately after it has served its purpose. An example
of a new type of application is pallets, on which goods can be stapled.
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Figure 2.3: A box made of corrugated board containing wet products, in
this case fish.

2.4 Future development

The development of flute profiles with very small wave-heights, micro-
flute, has made corrugated board to a strong competitor to cardboard.
A new product area, is e.g. consumer packages. Here the high stiffness
of the thin corrugated board type, in comparison with the small amount
of material used, makes it a favourable alternative to cardboard.



Chapter 3

Theory

This chapter describes theory used in chapter 4 and should be considered
only as a brief introduction.

3.1 The principles of a sandwich structure

The studied corrugated board consists of a core, the fluting, and of two
facings, the liners. As for a typical sandwich material, the purpose of the
facings are to carry normal stresses resulting from in-plane deformation
and curvature of the board. The purpose of the core is to carry shear
stresses and to keep the facings apart. Since the core is supposed to
stabilize the facings it must posses sufficient rigidity against deformation
in planes normal to the facings. It is these two properties that gives rise
to the outstanding strength and stiffness characteristics, compared to the
low weight, of a sandwich structure. The distance between the facings
also affects the stiffness properties of the sandwich. The larger distance,
the stiffer the composite will be in bending. The layers can be very weak
when separated, but together they create a stiff composite.

3.2 Constitutive properties of paper

Since paper is made of oriented wood fibres the stiffness and strength
properties are anisotropic. Commonly the fibre orientation is approxi-

9



10 CHAPTER 3. THEORY

mately symmetric. This means that the stiffness properties can be as-
sumed to be orthotropic, i.e. three symmetry planes for the elastic prop-
erties can be found. Therefore, the constitutive relation, the relation
between stresses and strains, for paper is assumed to be:

εx
εy
εz
γxy
γxz
γyz

 =



1
Ex

−νyx
Ey

−νzx
Ez

0 0 0
−νxy
Ex

1
Ey

−νzy
Ez

0 0 0
−νxz
Ex

−νyz
Ey

1
Ez

0 0 0

0 0 0 1
Gxy

0 0

0 0 0 0 1
Gxz

0

0 0 0 0 0 1
Gyz




σx
σy
σz
τxy
τxz
τyz

 (3.1)

Symmetry leads to

νxy
Ex

=
νyx
Ey

,
νxz
Ex

=
νzx
Ez

,
νyz
Ey

=
νzy
Ez

(3.2)

Now only nine unknown parameters remain, Ex, Ey, Ez, νxy, νxz, νyz,
Gxy, Gxz, Gyz. Generally, these parameters have to be measured. How-
ever, some of the parameters are not straightforward to measure, due to
the small dimension in the thickness direction of paper. The in-plane
properties, Ex and Ey, can fairly easy be obtained by standard tests, e.g.
stress-strain curves. For the rest of the parameters, estimations can be
used to obtain approximate values.

According to [5] is

Ez =
Ex
200

(3.3)

a good approximation for the Young’s modulus in the out-of-plane direc-
tion. The shear moduli are approximated according to [6, 7] with

Gxy = 0.387
√
ExEy

Gxz = Ex/55
Gyz = Ey/35

(3.4)

The values of νxy, νxz and νyz are set according to [14]. In addition
to the approximations in (3.4), are values of Gxz and Gyz, suggested in
[14], also used in the analyses. A trial and error procedure has also been
performed, in which different values of Gxz and Gyz have been tested, in
order to get results that are as similar as possible to the tests.



3.3. BUCKLING OF A STRUCTURAL CORE SANDWICH 11

3.3 Buckling of a structural core sandwich

A slender structure carries its load by axial or membrane action, see
figure 3.1, rather than by bending action. The out-of-plane deformation
is usually very small at load levels below the critical buckling load. When
the critical load is reached, the structure often deforms rapidly and the
in-plane stiffness decreases.

Figure 3.1: Plate loaded in-plane.

Corrugated board can buckle in two different ways, globally or locally.
Local buckling occurs when the board facings buckles between the cor-
rugations and global is when the entire board buckles, see figure 3.2.
The theory is the same in the two cases, it is only the geometry of the
structure and the boundary and loading conditions that are different.

a) b)

Figure 3.2: a) Global and b) local buckling of a corrugated board.
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3.4 Eigenvalue buckling prediction

Eigenvalue buckling analysis is often used to predict the critical buckling
load and failure mode of a structure. In the general eigenvalue buck-
ling problem the critical load is given when the stiffness matrix becomes
singular, so that (3.5) has nontrivial solutions.

Kν = 0 (3.5)

K is the tangent stiffness matrix when the loads are applied and ν are
the nontrivial displacement solutions. In Abaqus [8], an incremental
technique is used in the eigenvalue buckling problem:

(K0 + λiK∆)νi = 0 (3.6)

K0 is the initial stiffness matrix, K∆ is the differential stiffness matrix
due to the applied load, λi are the eigenvalues and νi are the corre-
sponding eigenvectors, i.e. the shape of the buckling modes. The critical
buckling load is obtained by multiplying the applied load with the lowest
eigenvalue, λ1. The eigenvectors νi are normalized so that the maximum
displacement component has a magnitude of 1.0. The direction, i.e. the
sign, of the buckling displacement is not found by the eigenvalue analysis.
In order to stipulate which direction to use in the postbuckling analysis,
there are two possibilities. One is to perform a nonlinear postbuckling
analysis on a geometrically perfect panel and from this get the correct
direction. This is possible if the panel consists of a non-symmetric lay-
up of individual layers, i.e. a coupling exists between membrane and
bending action. The other is to study in which direction a real panel
buckles, when exposed to a compression test. The results from the two
possibilities, might not be similar if the real panel have an imperfection
large enough to affect which buckling mode the panel gets when loaded.
They will also differ if the panel is forced to buckle in a certain mode by
the testing equipment, e.g. by asymmetric loading conditions.
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3.5 Nonlinear postbuckling analysis

The nonlinear geometry response due to large deformations, requires an
incremental technique to capture the complex load and displacement per-
formance during the analysis, see figure 3.3. In a displacement controlled
analysis, the displacement, ∆a1, is prescribed in the first iteration in each
increment and then the internal forces, f int, are calculated at this new
load level. The difference between the total applied load, P , and the
internal forces are the out-of-balance forces, ψ, for this iteration. Then
the largest out-of-balance force at any degree of freedom is compared
to the out-of-balance tolerance and if it is less then the structure is in
equilibrium. If not, then these out-of-balance forces are the load in the
following iterations until equilibrium is reached for this increment.
Abaqus uses the full Newton Raphson method, i.e the model’s stiffness
matrix is updated in each iteration and the system of equations are solved
for each iteration in this nonlinear analysis. This is very time consuming,
since the tangential stiffness has to be formed and assembled in each it-
eration but the advantage is a very fast convergence. Abaqus also has an
automatic increment control, so if the solution appears to diverge then
it will restart the increment with a smaller increment length and if the
solution converges easily then the increment length is increased for the
next increment.

Load
K1
t

K0
t

a2

Displacement

P

a1

21

∆a1
a0

f2
int

f1
int

∆P

ψ2 ψ1

Figure 3.3: Graph illustrating the equilibrium iterations of an increment.
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Iteration scheme for a displacement controlled analysis using the full
Newton-Raphson method.

- Initiation of quantities ε0, Kt, a0

- For increment inc=1,2, . . . ,Nmax

- Set boundary condition to load the body

- Set ψi = 0

- Set ψnorm > tolerance

- Iterate while ψnorm > tolerance

- Calculate the tangential stiffness matrix, Kt

- Calculate ∆ai from Kt∆ai = ψi

- Set boundary condition to zero

- Calculate ∆εi = B∆ai

- Calculate internal forces fint

- Calculate out-of-balance forces ψi+1 = −fint

- Calculate ψnorm =
∣∣ψi+1

∣∣
norm

- End iteration

- Accept quantities ε, σ, a, Fint

- End increment

3.6 Damped postbuckling

Abaqus may run into difficulties when local buckling of the corrugated
board starts to occur. This problem and a method of solving this, is
described in the Abaqus manual [8]. ”If the instability is localized, there
will be a local transfer of strain energy from one part of the model to
neighbouring parts and global solution methods do not work. This class of
problems has to be solved either dynamically or with the aid of (artificial)
damping; for example, by using dashpots. Abaqus provides an automatic
mechanism for stabilizing unstable static problems through the automatic
addition of volume proportional damping to the model”.
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If the STABILIZE parameter is included in the input file, then viscous
forces

F υ = cMȧ (3.7)

are added to the global equilibrium equations.

P − f int − F υ = 0 (3.8)

M is an artificial mass matrix, c is a damping coefficient and ȧ is the
vector of nodal velocities. While the buckling is stable, the viscous energy
dissipated is very small, but when local instabilities occur and the local
velocities increase then the strain energy is dissipated by the applied
damping. The damping coefficient, c, is calculated so that the dissipated
energy is a small fraction of the strain energy in the first increment.
The value of this fraction, called the dissipation intensity, is by default
2.0 × 10−4, but should be specified by the user so that the influence of
the applied damping is as small as possible.

3.7 Failure criteria of the facings

One of the most commonly used criterion for material failure of paper
loaded in-plane is the Tsai-Wu tensor polynomial criterion [9]. The re-
lations between the stresses in the Cartesian coordinate system and the
stresses in the spherical coordinate system are

σ11 = σR sinφ cos θ

σ12 = σR sinφ sin θ 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π (3.9)

σ22 = σR cosφ

where σR is the length of the stress vector σ, see figure 3.4.

The Tsai-Wu failure criterion in a spherical coordinate system is then(
F11n

2
11 + F22n

2
22 + F66n

2
12 + 2F12n11n22

) (
σRtw
)2

+

(F1n11 + F2n22)σ
R
tw − 1 = 0, σRtw > 0 (3.10)
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(σ11, σ12, σ22)φ

θ

σ22

σR σ12

σ11

Figure 3.4: The stress vector in the Cartesian coordinate system.

where

n11 = sinφ cos θ n12 = sinφ sin θ n22 = cosφ (3.11)

and

F1 =
1

Xt

+
1

Xc

, F2 =
1

Yt
+

1

Yc
, F11 = −

1

XtXc

, F22 = −
1

YtYc
, F66 =

1

T 2

(3.12)

Xt = Tensile strength in MD
Xc = Compressive strength in MD
Yt = Tensile strength in CD
Yc = Compressive strength in CD
T = Shear strength

σRtw is the failure stress radius for material failure.

The tensile and compressive strength for both MD and CD must be de-
termined by experimental tests. Because of the difficulties to determine
the shear strength, T , and the equibiaxial strength, F12, by experimental
tests some approximations are used that have been proven to be reason-
able for paper [10, 11].

F12 = f
√
F11F22 where f = −0.36 (3.13)

T = α
√
XcYc where α = 0.78 (3.14)
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The critical stress for structural failure [12], i.e. when the facings becomes
instable due to local buckling, can be calculated with

σRcr =

∑33
i=1 gi

60a2hλ2 (−c2n11 + 2a2µ |n12| − a2n22)
∑27

i=1 hi
(3.15)

σRcr > 0, [λ, µ] ∈ xcr

where h is the thickness of the facing, 2λ is the buckling wavelength, µ is
the inclination of nodal lines and a is the wavelength of the corrugated
core, see figure 3.5. The coefficients gi and hi are described in [13].
σRcr is the failure stress radius for structural failure and the numerical
value of this parameter can be found by an unconstrained minimization
procedure. A failure index can then be calculated as

Φ (σ11, σ12, σ22) =
‖σ‖

σRf
(3.16)

where

σRf = min
{
σRtw, σ

R
cr

}
(3.17)

λ µa

a

2

1

Figure 3.5: Buckle subjected to transverse shear.
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Chapter 4

Finite element analysis

In this chapter are the finite element analyses of the detailed model and
the simplified model described as well as the post-processor developed in
Matlab for visualization of the local buckling.

4.1 Detailed model

This section describes how the corrugated paper board is modelled by
the finite element method with veritable geometry.

4.1.1 Geometry modelling

The board dimensions are given by the available test equipment. The
test rig is designed to fit in a quadratic panel of 400 mm width. The
fluting is shaped approximately as a sine wave and has a wavelength of
7.77 mm. The distance between the two liners are 3.68 mm as shown in
figure 4.1.

0.264

3.68

(mm)

0.263

7.77
0.269

Fluting "150 SC"

Liner "200 KL"

Liner "200 WTK"

Figure 4.1: Dimensions of the corrugated paper board.

19



20 CHAPTER 4. FINITE ELEMENT ANALYSIS

In order to translate the geometry to a FE model some basic assump-
tions has to be made. Of course, the fluting cannot be modelled with a
perfect sine shape, figure 4.2 and in order to avoid constraint equations,
the contact nodes between fluting and liner are modelled without offset,
figure 4.3. Because the fluting and liner are connected to the same node,
the bending stiffness of the fluting to liner connections will be overesti-
mated. The coordinates of the nodes for the fluting are adjusted so that
the length of the fluting elements will be almost the same.

Figure 4.2: Shape of the fluting.

3.68 mm

Figure 4.3: Model with and without offset.

4.1.2 Material modelling

The material behaviour is orthotropic, as seen in section 3.2, and ap-
proximated as linear-elastic. This approximation is made because no
nonlinear material model suitable for paper was available, and to reduce
the computation time. The FEA is taking large deformations in account
and if the material behaviour also would be nonlinear, the number of it-
erations would have increased significantly. This would, having approx-
imately 400000 degrees of freedom in the model, give an unendurably
long computation time.

The material parameters, Ex and Ey are from experimental measure-
ments. Ez and Gxy are calculated according to (3.3) and (3.4), respec-
tively and the Poisson’s ratios are set according to [14]. These parame-
ters, which are the same for all analyses, are presented in table 4.1. Since
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the shear moduli, Gxz and Gyz, are difficult to estimate, three analyses
were performed with different values of these parameters. The differ-
ent values used in the analyses were, values suggested by Nordstrand
[14], (No. 3), values calculated with Baum’s approximations (3.4), (No.
1), and values adjusted to fit the load versus out-of-plane displacement
curves from the tests, (No. 2). The values of Gxz and Gyz for the three
analyses are presented in table 4.2. The tensile and compressive strength
parameters in table 4.3 are determined from experimental tests and are
used for the failure criteria.

Table 4.1: Material parameters for the three layers.
Liner Fluting Liner

200 WTK 150 SC 200 KL
Ex (GPa) 7.60 5.40 6.66
Ey (GPa) 4.02 2.28 3.31
Ez (GPa) 0.038 0.027 0.033
νxy 0.34 0.34 0.34
νxz 0.01 0.01 0.01
νyz 0.01 0.01 0.01
Gxy (GPa) 2.14 1.36 1.82
Thickness (mm) 0.269 0.263 0.264

Table 4.2: Values of Gxz and Gyz for the three layers.
200 WTK 150 SC 200 KL

No. 1 Gxz (GPa) 0.138 0.098 0.121
Gyz (GPa) 0.115 0.065 0.095

No. 2 Gxz (GPa) 0.020 0.020 0.020
Gyz (GPa) 0.070 0.065 0.070

No. 3 Gxz (GPa) 0.007 0.007 0.007
Gyz (GPa) 0.070 0.070 0.070

Table 4.3: Tensile and compressive strength parameters of the layers.
200 WTK 150 SC 200 KL

F t
x (MN) 90.0 50.0 68.6
F c
x (MN) 27.7 21.8 25.1
F t
y (MN) 49.2 20.6 40.1
F c
y (MN) 19.7 13.3 17.9
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4.1.3 Finite element mesh

The first step in a FEA is to decide what kind of elements to use and
how dense the FE mesh has to be in order to obtain valid results.

Due to the high degree of orthotropy, the transverse shear deformation is
important and a thick shell element must be chosen. To save computa-
tion time reduced integration is chosen. This also usually provides more
accurate results, since otherwise the stiffness of the finite elements would
be overestimated. Considering this, the Abaqus elements S4R and S8R
are possible choices. S4R is a four-node quadrilateral thick shell element,
see figure 4.4, with linear shape functions and S8R is an eight-node ele-
ment with quadratic shape functions. Two identical analyses, eigenvalue
buckling analyses of a small part of the board, with the two types of
elements showed that there is no significant difference in the results be-
tween them, when the same number of elements are used. The model just
becomes larger for S8R. Therefore, S4R is chosen. The global coordinate
system coincides with the local coordinate system for the liner elements
but not for the fluting elements, because of the wavy shape of the fluting.
The output stresses and strains are given in local coordinates, i.e. the
coordinates of the deformed shell.

Bottom surface

Top surface
n

4 3

1 2

u1 u4

u2

u5

u3

u6

1
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Figure 4.4: Element definition for four-node quadrilateral shell element
and the definition of the degrees of freedom.

To decide the size of the elements a convergence study was performed. In
this case an eigenvalue bifurcation prediction was performed, see chapter
3.4, for a small plate, see figure 4.5. The width of the simply supported
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plate, a, is the same as the length between the corrugations, i.e. 7.77
mm. The appropriate wave length λ is, for the case when only pure
bending is considered, calculated with (4.1), see [15], and for the case
when transverse shear also is considered calculated by minimization of
(3.15) [16]. For liner 200 WTK the appropriate lengths are 6.63 mm and
7.18 mm respectively.

λ

a
= 4

√
Ey
Ex

(4.1)
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Figure 4.5: Part of the liner used in the convergence study.

As seen in figure 4.7, five elements would be sufficient to capture local
buckling. However, since an evenly distribution of elements is necessary
to obtain a correct junction between the liner and fluting elements, six
elements where chosen. This yields a model with 73008 elements and
398926 degrees of freedom.

Another thing to keep in mind is the output from Abaqus. Since the
Simpson’s integration rule is used, the default output will be the section
points that are located exact on the bottom surface and top surface of
the shell element.

200 mm

Figure 4.6: Finite element mesh.
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Figure 4.7: Convergence study of mesh.

4.1.4 Boundary conditions

The aim was to model the boundary conditions as close as possible to
the testing mounting, see section 5.1.1. The panel is considered to be
simply supported. To obtain the same behaviour in the FEA, some con-
straint equations had to be established for the boundary edge subjected
to load. At the symmetry boundaries one translation and two rotations
are prescribed, see figure 4.8. For example at the symmetry boundary
where x is constant, the degrees of freedom, see figure 4.4, u1, u5 and u6

are set to zero. At the other symmetry boundary, where y is constant,
the degrees of freedom u2, u4 and u6 are set to zero. At the boundary
where x is 0, the degrees of freedom u3 and u4 are set to zero.

Now only the loaded boundary remains. If the load is applied as a bound-
ary condition on all the nodes on the edge, the rotation u4 is prevented.
This leads to an almost fixed support for these nodes. To avoid this,
the load is instead applied on a master node that is not involved in the
structure. This master node must then be connected to the boundary
nodes with constraint equations to control the motion of the boundary
nodes. Note that only degree of freedom u2 is active for the master node.
This since the node is not connected to any element and the only way
it participates in the calculations is by the prescribed translation in the
y-direction. The purpose of the constraint equations is to allow rotation
about the x-axis and to keep a plane edge during the compression, see
figure 4.9.
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Figure 4.8: The studied quarter of the board with symmetry lines.
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Figure 4.9: The loaded boundary that is controlled by constraint equa-
tions.
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The translation in the y-direction is for all nodes described by

un2 + znun4 − u
m
2 = 0 (4.2)

where n denotes layer and m denotes the master node. The rotation
about the x-axis{

u1
4 − u

2
4 = 0

u2
4 − u

3
4 = 0

or u1
4 − u

3
4 = 0 (4.3)

The translation in the z-direction

u1
3 + u3

3 = 0 (4.4)

4.2 Buckling

The linear buckling analysis, described in section 3.4, is performed to
obtain the most likely buckling shape and an estimation of the critical
buckling load. This buckling shape is used as an imperfection in the
nonlinear analysis. The results also provides an opportunity, in the post
processor, to visually control that the boundary conditions are correct,
by the shape of the deformed panel. A reference load is applied and the
critical buckling load is calculated by multiplying the eigenvalue from the
analysis by the reference load.

4.3 Postbuckling

The geometrically nonlinear behaviour requires an incremental technique
to follow the load path, as described in section 3.5. To reflect the ex-
perimental tests, the FEA is displacement controlled. An imperfection
might be necessary for several reasons. One is that the panels used in
the tests possessed imperfections. Another reason is that a numerical
solution to the buckled shape might not be possible if the panel is geo-
metrically perfect. A typical 400x400 mm panel showed an imperfection
of 0.8 mm in the centre. Also a damped postbuckling analysis, described
in section 3.6, might be necessary to overcome the numerical problems
when a bifurcation point is reached.
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In the input file to Abaqus some loading parameters have to be defined.
These are, the total deformation value, the maximum number of incre-
ments in a step, the initial displacement increment , the time period of
the step, the minimum displacement of an increment and the maximum
displacement increment. A parameter that makes Abaqus take account
for geometric nonlinearity in the calculations must be included and if the
STABILIZE-option is chosen, then the value of the dissipation intensity
also should be defined.

The results that are wanted from the FEA are:

• A load-displacement path, to follow the applied load and out-of-
plane displacement.

• Surface plots of the Tsai-Wu failure criterion.

• Surface plots of the failure index given by (3.16).

• Surface plots of the deformations, to follow the development of the
deformations and the local buckling.

• Surface plots of strains and stresses.

4.4 Simplified model

In order to verify if a simplified composite model provides satisfying re-
sults in terms of load-deformation path and collapse load, a composite
model with a solid core was created, see figure 4.10. The material pa-

Figure 4.10: Transformation to a composite model.

rameters of the facings are the same as in section 4.1.2, which imply that
three analyses must be performed also for the simplified model. Since the
fluting has been replaced with a core, the equivalent properties for this
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layer needs to be calculated. According to Nordstrand [14] the effective
core moduli can be approximated as

Ec
x ≈ 0

Ec
y ≈ α

(
tf
tc

)
Ec
CD

(4.5)

where α is the take-up factor, tf is the thickness of the flute material
and tc is the core height. α is the ratio between the arclength and the
wavelength of the corrugations, which is 1.416 for a sine shaped fluting.
If Ec

x is set to zero there will be numerical difficulties in the FEA and
the analysis will be terminated. Therefore, Ec

x is set to a low value that
does not affect the analysis. The lowest value possible for Ec

x was 5 MPa
and this was used in the calculations. Gc

xy should also be a low value [14]
and is therefore set to 0.1% of Ec

y. The values of Gc
xz, G

c
yz, E

c
z, ν

c
xy, ν

c
xz

and νcyz are set according to Nordstrand [14]. The material parameters
that are similar in the three analyses are seen in table 4.4 and the ones
that differ are presented in table 4.5.

Table 4.4: Material parameters for the layers of the composite.
Liner 200 WTK Core Liner 200 KL

Ex (MPa) 7600 5.0 6660
Ey (MPa) 4020 231 3310
Ez (MPa) 38 3000 33
νxy 0.34 0.05 0.34
νxz 0.01 0.01 0.01
νyz 0.01 0.01 0.01
Gxy (MPa) 2140 0.231 1820
Thickness (mm) 0.269 3.677 0.264

In Abaqus there is a command that handles layered composite shell el-
ements so that the user only has to create one layer of nodes and then
specify the properties of the three materials. The 200x200 mm panel
was divided into 2500 composite elements which yields 15606 degrees of
freedom. Because there is only one layer of nodes no equations, as in
section 4.1.4, are needed to prescribe the correct boundary conditions
at the loaded edge. Besides this, the analysis is performed in the same
manner as for the model with the structural core.
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Table 4.5: The different values of Gxz and Gyz for the layers of the
composite.

200 WTK Core 200 KL
No. 1 Gxz (MPa) 138 3.5 121

Gyz (MPa) 115 35 95
No. 2 Gxz (MPa) 20 3.5 20

Gyz (MPa) 70 35 70
No. 3 Gxz (MPa) 7 3.5 7

Gyz (MPa) 70 35 70

4.5 Matlab post-processor

When the calculations are performed in Abaqus the numerical results
can be post-processed by Abaqus/Viewer. Since the calculation is per-
formed in numerous increments, which each is saved in the output data
files, this becomes a very time consuming process. One of the main pur-
poses in this master thesis was to study local buckling. Therefore, it
was of great importance to visualize the occurrence of this phenomena.
In Abaqus/Viewer this is not possible, since the, in comparison to the
global out-of-plane displacement, small buckles disappear in the global
deformation.

To avoid the above stated problems, a new post-processor was devel-
oped. The interesting information that should be presented by the post-
processor was load-deformation path, displacements, stresses, strains and
the failure index for each increment.

In order to obtain the local buckling pattern of the board, the global de-
formation mode has to be filtrated, see figure 4.11. This was done by sub-
tracting the global out-of-plane displacement, from the total out-of-plane
displacement for each node. The difference in out-of-plane displacement
between the two end nodes of a corrugation, ui3 and ui+6

3 , is calculated.
These displacements are equal to both the global and the total out-of-
plane displacements. Then the linear interpolated value of the global
out-of-plane displacement for the nodes between these are calculated,
e.g. ui+2

3,g , and subtracted from the total out-of-plane displacement, ui+2
3 .

The remaining deformation is the displacement caused by local buckling,
ui+2

3,l .
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X
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ui+2
3 ui+2

3,g ui3 ui+6
3

Figure 4.11: Calculation of local deformation.

ui+j3,g =
[(
ui+6

3 − ui3
)
/ (xi+6 − xi)

]
(xi+j − xi) + ui3

ui+j3,l = ui+j3 − ui+j3,g where 0 ≤ j ≤ 6
(4.6)

To get the wanted results from the calculations, the resultsfile, ”job-
name”.fil was used. The output data from each increment was extracted
from the resultsfile with Fortran routines and then it was exported to
.mat files for evaluating in Matlab. In Fortran was also the calculations,
that was needed to obtain the local deformations, performed. In order to
easily change which type of result to present, a graphical user interface
was developed in Matlab, see figure 4.12. By using this, it is easy to
choose which increment and layer to study. With the use of the menus
and buttons the different kind of results can be changed.



4.5. MATLAB POST-PROCESSOR 31

Figure 4.12: Screen-dump of the post-processor developed in Matlab.
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4.6 Results

4.6.1 Detailed model

The output from the linear buckling analysis, as mentioned in section 4.2,
is the pertinent buckling shape and provides an estimate of the critical
buckling load. The most likely shape of the panel is the first mode, see
figure 4.13, and the critical loads for the three analysis are given in table
4.6.

Table 4.6: Critical buckling load for detailed model.
Material Ncr (N)
No. 1 955
No. 2 935
No. 3 902

Figure 4.13: Global out-of-plane displacement for the detailed model No.
2. Load = 1580 N.
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Because of the convergence problems in the FEA at singular points, the
artificial damping described in section 3.6 had to be introduced. The
influence of the applied damping was large when using the default value
(2 × 10−4) of the dissipation intensity. Therefore, this coefficient was
decreased and set to 2× 10−5 to minimize the influence, see figure 4.14,
but still to overcome the singular points in all analysis. Although, it is
possible to decrease the dissipation intensity even more for some material
configurations.
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Figure 4.14: The influence of the applied damping for material No. 3.

The load-displacement response for the three different materials of the
detailed model can be seen in figure 4.15. The shear moduli Gxz and Gyz

are of great importance and have to be carefully determined. It is also
seen that the critical load for structural failure is less than the critical
load for material failure for weak materials. This implies that structural
failure must be considered. The stiffness of the board increases after the
first bifurcation point. This is due to the linear-elastic material model
and the geometrical stiffness which increases with deformation.

An important issue to remember, is to check the boundary conditions
so that the shape according to a simply supported plate is achieved, see
figure 4.16.

There are warning messages for negative eigenvalues in the Abaqus .msg-
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file, i.e. singular points where the eigenvalue changes from positive to
negative. A singular point can either be a bifurcation point where the
load-displacement curve can develop several paths or a point where the
load has reached a local maximum [18]. This occurs, for the No. 2 and
the No. 3 material, in the increments following after the increment where
the structural failure index for local buckling exceeds 1.0, as seen in table
4.7. It can clearly be seen in figure 4.17 and 4.18 that the local buckling
develops close after the first singular point.

The failure indices are presented, in figure 4.19, when the structural
failure index exceeds 1.0 and in figure 4.20, when the material failure
index exceeds 1.0. Note that, in figure 4.20, the local deformations have
developed normal stresses that are not homogeneous in the thickness
direction of the liner. Thus, the structural index should be treated with
care.

Table 4.7: First negative eigenvalue in the FEA compared to structural
and material failure.

Negative eigenvalues Struc. fail. Mat. fail.
Material Inc. Load (N) Inc. Load (N) Inc. Load (N)
No. 1 46 2254 36 1928 34 1858
No. 2 28 1615 27 1580 34 1630
No. 3 18 1187 16 1060 80 1232
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Figure 4.15: Load vs. out-of-plane displacement at point x = y = 200
mm, for the three different materials.
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Figure 4.16: Shape at symmetry sections for detailed model.
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Figure 4.17: Local out-of-plane displacement for the detailed model No.
2 at increment 31. Load = 1627 N. Liner 200 WTK.

Figure 4.18: Local out-of-plane displacement for the detailed model No.
2 at increment 32. Load = 1628 N. Liner 200 WTK.
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Figure 4.19: Material and structural failure criterion for the detailed
model No. 2. Load = 1580 N. Liner 200 WTK.
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Figure 4.20: Material and structural failure criterion for the detailed
model No. 2. Load = 1630 N. Liner 200 WTK.
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4.6.2 Simplified model

The global deformation pattern of the panel is presented in figure 4.22,
and the shape of the symmetry sections, in figure 4.21.

The shear moduli Gxz and Gyz are of less importance in this type of
analysis because the liners are attached to the solid core and cannot
buckle locally. This makes the differences between the three analyses
very small as seen for the critical buckling loads from the linear buckling
analysis in table 4.8, and the load-displacement paths in figure 4.23. The
material failure index is also the same for the three analysis, while they
differ substantially for structural failure. This is because the stresses do
not depend (or very little) on the out-of-plane shear moduli, Gxz and
Gyz, and the Tsai-Wu failure criterion does not consider the out-of-plane
shear moduli as the structural failure criterion do.

The failure indices are presented in figure 4.24 and 4.25, when the com-
bined and the material failure index exceeds 1.0, respectively.

Table 4.8: Critical buckling load for simplified model.
Material Ncr (N)
No. 1 1006
No. 2 1004
No. 3 1003
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Figure 4.21: Shape at symmetry sections for simplified model.
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Figure 4.22: Global out-of-plane displacement for the simplified model
No. 2. Load = 1582 N.
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Figure 4.23: Load vs. out-of-plane displacement for the three different
materials.
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Figure 4.24: Material and combined failure criterion for the simplified
model No. 2. Load = 1730 N. Liner 200 WTK.
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Figure 4.25: Material and combined failure criterion for the simplified
model No. 2. Load = 1950 N. Liner 200 WTK.



Chapter 5

Experimental study

In order to verify the theoretical load-deformation response, obtained by
finite element analysis, experimental compression tests on a corrugated
board panel were performed at SCA Packaging Research in Sundsvall.

5.1 Equipment and set-up

The panel was loaded in compression in a displacement controlled MTS
frame, see figure 5.1, that can register load and in-plane boundary dis-
placement. To obtain in-plane and out-of-plane deformations of the cor-
rugated board panel, stereoscopic Digital Speckle Photography (DSP)
was used.

5.1.1 MTS test frame

The MTS test frame has one movable crosshead between two fixed cross-
heads. Depending on the test, the specimen can be mounted either be-
tween the lower and the movable crosshead or the upper and the movable
crosshead. In this test the axial load monitoring cell was mounted on the
upper fixed crosshead and had a capacity of 2 kN, with a tolerance of
0.02%. Thus, the movable crosshead is moved upwards to compress the
panel.

The panel is mounted, as seen in figure 5.2a, to be simply supported. If
the horizontal supports would have been designed in the same way as the

43
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Figure 5.1: Photo of the MTS test frame and the two CCD-cameras.

a) b)

Figure 5.2: a) Photo of vertical and horizontal support. b) The panel
mounted in the horizontal support.
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vertical, the free rotation would have been restrained when compressed.
Thus, the horizontal supports had to be designed differently, in this case
as seen in figure 5.2b. This design makes, of course, the edge stiffer but it
does not affect the results. Note that the panel has to be a few millimetres
wider than the distance between the vertical supports to prevent it from
falling off.

5.1.2 Digital Speckle Photography

The general procedure of speckle photography is to expose a photographic
plate to one speckle field before and one after the object has been de-
formed. This negative, also referred to as a specklegram, can then be seen
as two slightly displaced images. When a narrow laser beam is pointed
on the specklegram a diffraction halo will appear, see figure 5.3. From
this the in-plane displacements can be calculated. This procedure is very
time consuming because each point has to be evaluated individually.
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Specklegram

Diffraction halo

Laser beam

Figure 5.3: The general procedure of speckle photography.

To get a more time efficient line of work, Digital Speckle Photography,
DSP, where the photographic plate is replaced with a CCD-camera and
the analysis is made by a computer, was developed by Sjödahl [19]. It
uses a digital image correlation technique to obtain the deformations with
great accuracy. The DSP can be combined with a stereo imaging sys-
tem to obtain three dimensional deformations [20], see figure 5.4. For a
stereo-DSP system the standard deviation for the out-of-plane deforma-
tion component are less than 6% of the pixel size of the CCD-camera [21].
The standard deviation of the in-plane deformations are about 1% of the
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Translated lens

Studied object

CCD-cameras

Figure 5.4: Basic configuration for stereoscopic vision using the trans-
lated lens method.

pixel size. With a 512x512 resolution of the CCD-camera and an object
size of 200x200 mm the typical error for the out-of-plane and in-plane de-
formation is approximately 23 µm and 4 µm respectively. Compared to
an out-of-plane deformation of a few millimetres this error is negligible.

5.2 Test procedure

Before the testing procedure is started a speckle pattern, i.e. a random
pattern of small dots, is printed on the panels, see figure 5.5. The speckle
pattern is printed on a quarter of the panel (symmetry) to increase the
resolution and on a smaller part to study local buckling in particular.
The panels are then stored for a couple of days at 23◦C and 50% rela-
tive humidity which is a standard procedure before testing. The distance
from the panel to the lenses is approximately 1120 mm and the distance
between the lenses 218 mm. This arrangement of the setup equipment
gives a picture size of 171x171 mm. The first step in calibrating the
system is to align the cameras, figure 5.6, so that they are parallel and
cover exactly the same area. This is done with help of the calibration
program, see figure 5.7, which compares the images in real time and tells
the user when the system setup is correct. Then a photo is taken and the
cameras are moved, e.g. 4 mm backwards (z-direction). Then another
photo is taken and the computer calculates the calibration parameters.
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~ 80 mm

Figure 5.5: Photo of the speckle pattern.

The system is now calibrated and this is verified by performing a rigid
body motion of 2 mm in the z-direction. The mean out-of-plane dis-
placement from this test was 2±0.02 mm. Compare this value with the
typical out-of-plane error of 23 µm.

The MTS can register load and in-plane displacement of the movable
crosshead versus time and because there is no connection to the DSP the
synchronization has to be made by hand. The MTS is set up to compress
the panel with a speed of 1 mm per minute and to register the load every
0.2 second. Thus, the test session can be summarized as:

1. Take a photo of the unloaded panel.

2. Start to compress the panel with a speed of 1 mm per minute.

3. When the load reaches 200 N, start to take a photo every 2 seconds
until the panel breaks.

4. Let the computer calculate the 3D shape of the panel for each pair
of photos and then the displacements from the difference in 3D
shapes1.

5. Extract the load for every 2 seconds starting at 200 N.

1The cross correlation takes approximately 1 minute for each pair of photos on a
SGI 540 (2x550 MHz Pentium III Xeon, 1 Gb Ram)
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Figure 5.6: The camera to the left can be rotated and adjusted in the
horizontal direction. The camera to the right can be adjusted in both
the horizontal and the vertical direction.

Figure 5.7: Screen-dump of calibration tool for the DSP.
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Because that the edges are not perfectly straight they will be crushed
until the force can be distributed over the whole edge. This behaviour
varies a lot between the samples and that is the reason why no photos
are taken before the load has reached 200 N.

5.3 Results

Seven tests were performed successfully and the load-displacement re-
sponses are seen in figure 5.8. Since the mid point of the test panel was
not include in the area that the CCD-cameras covered, this value had
to be calculated by extrapolation. This in order to be able to compare
with the load-deformation curves from the FEA. The average peak load
is 1677 N and the standard deviation is 2.6 % which is to be considered
as a low value.
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Figure 5.8: Load vs. displacement from experimental tests.

The shape of the cross sections in figure 5.9 shows that the panel can be
considered to be simply supported. Although, the shape of the panel is
not perfect symmetric as in the FEA.

As mentioned in section 5.2 was a smaller area studied in order to obtain a
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Table 5.1: Results from experimental tests.
Peak load (N) Number of photos

Test 1 1758 63
Test 2 1618 57
Test 3 1705 65
Test 4 1673 63
Test 5 1668 66
Test 6 1665 59
Test 7 1651 59
Mean 1677
Std. Deviation 44.2
Std. Dev./Mean 0.026

local buckling pattern. In the colour plots of the results, no such pattern
could be found, due to the much larger global deformation. However,
the local buckles could clearly be seen during the tests. To filtrate the
global deformation, in the same way as it was done in the results from
the FEA, was in this case not possible, since the exact locations of the
output points were not known. Instead a photo was taken on the area
where local buckling occurs, see figure 5.10. A photo of the most common
collapse pattern was also taken, see figure 5.11. The global deformation
pattern of the test panel, obtained from evaluation of the output results
from the DSP-program, is seen in figure 5.12.
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Figure 5.9: Shape along lines X=180 and Y=180 mm. Load ≈ 1600 N.

400 mm

Figure 5.10: Photo of local buckling.
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Figure 5.11: Photo of collapse pattern.
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Figure 5.12: Global deformation pattern of a test panel.



Chapter 6

Comparison of results

In this chapter, the results from the FEA of the detailed and the sim-
plified model No. 2 and the experimental tests are compared and the
similarities and dissimilarities are discussed.

6.1 Load-displacement response

The load-displacement paths from the FEA1 follows the ones from the
experimental tests quite well as seen in figure 6.1. The initial stiffness
is overestimated, but this is normal in a FEA of a perfect panel. Fur-
thermore, it is reasonable that the panel looses stiffness during the begin-
ning of the analysis when the edge is compressed. The load-displacement
curves from the FEA that are presented in figure 6.1 do both have the No.
2 material parameters. These parameters gave the results that was most
similar to the tests both considering the shape of the load-displacement
curves and the location of where failure occurs.

A comparison of the section shape at cross section Y = 180 mm between
the FEA and the tests, see figure 6.2, shows that both the detailed and
the simplified model have section shapes very similar to the tests. The
cross section where Y = 180 mm is chosen because in this section, no
extrapolation of the out-of-plane displacement is done for the test. The
somewhat larger out-of-plane displacement for the simplified model com-

1Due to the large amount of disc space used, the simulations were halted closely
after the first point of local buckling (singular point, see section 4.6.1).
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Figure 6.1: Load vs. out-of-plane displacement for experimental tests and
the detailed and simplified models with the No. 2 material parameters.
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Figure 6.2: Comparison of shape along line Y=180 mm for detailed and
simplified model No. 2 and Test 3.
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pared to the detailed, is a consequence of the large increment lengths
that the analysis of the simplified model was performed in.

6.2 Stress development

In figure 6.3 it is shown how the stress levels changes with increasing
out-of-plane displacement at two points, A and B, for the detailed and
the simplified model. These points are both situated on the outer side
of liner 200 WTK, on which the local buckling will occur. At point B
the stress levels for the two models do not differ very much. For σ11 a
small tendency of divergence of the two models can be seen, at an out-of-
plane displacement of approximately 11 mm. Otherwise, the behaviour
of the detailed and the simplified model is quite similar at this point.
At point A, the stresses follows each other fairly until a certain point is
reached. From this point the stress-displacement curves for the detailed
model diverge from the prior shared path. The point where this occur
corresponds well to the point where local buckling first can be observed.
The stress levels for the detailed model then becomes substantially higher
than for the simplified model, at the same out-of-plane displacement.
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Figure 6.3: Stress vs. out-of-plane deformation for detailed and simplified
model No. 2. Liner 200 WTK
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6.3 Failure criteria

In figure 6.4 and 6.5, the structural failure index is presented for the de-
tailed and simplified model respectively. The load level, when structural
failure is initiated, is for the detailed model 1580 N, 5.8 % less than the
mean peak load for the tests, 1677 N, and for the simplified model 1730
N, which is 3.2 % larger than the tests mean value. Thus, both of the
models yields reasonable values of the load level when failure occurs.

An investigation of where the structural failure index has the largest
value, showed that this place is almost identical for the detailed and
the simplified model, namely on the upper symmetry boundary, close
to the centre. However, from the tests it was observed that the region
where collapse, i.e. material failure, was initiated, was situated closer
to the corner. If instead the Tsai-Wu criterion for the detailed and the
simplified model is examined, see figure 6.6 and 6.7, the locations, where
the failure index exceeds 1.0, corresponds more accurate to the tests. For
the detailed model the largest value of the Tsai-Wu criterion is situated
in the area where local buckling occurs. For the simplified model this
point is situated closer to the corner of the plate.

The load level for the detailed model, when the material failure index
exceeds 1.0, is 1630 N. This is less than 3 % lower than the mean value
of the peak load for the tests, 1677 N. For the simplified model, the
load level when the material failure index exceeds 1.0, is 1950 N. This is
16.3 % larger than the mean value of the tests. This shows that the local
buckling phenomena has an influence, at which load level material failure
is initiated. Thus, a detailed model which in detail models the fluting, is
needed to accurately get a value of the load level when material failure
first occurs.

Table 6.1: Comparison of the load level at failure between the experi-
mental tests and the FEA of the detailed and simplified model No. 2.

Exp. tests Detailed model Simplified model
Struc. fail. (N) 1677 1580 -5.8 % 1730 +3.2 %
Mat. fail. (N) 1677 1630 -2.8 % 1950 +16.3 %
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Figure 6.4: Structural failure criterion for the detailed model No. 2.
Load = 1580 N. Out-of-plane displacement = 10.1 mm. Liner 200 WTK.

Figure 6.5: Structural failure criterion for the simplified model No. 2.
Load = 1730 N. Out-of-plane displacement = 10.7 mm. Liner 200 WTK.
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Figure 6.6: Material failure criterion for the detailed model No. 2.
Load = 1630 N. Out-of-plane displacement = 10.6 mm. Liner 200 WTK.

Figure 6.7: Material failure criterion for the simplified model No. 2.
Load = 1950 N. Out-of-plane displacement = 12 mm. Liner 200 WTK.
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Chapter 7

Concluding remarks

7.1 Conclusions

The agreement of the load-displacement responses are good even when a
linear-elastic material model is used. With the use of a failure criterion
that takes both material and structural failure in account, the collapse
load can be estimated with acceptable accuracy both for the detailed and
the simplified model.

Choosing the material parameters is not easy. They can be chosen within
a wide range and be reasonable, but still the result from the FEA may
differ somewhat from the experimental test. The out-of-plane shear mod-
uli, Gxz and Gyz, are of great importance for the magnitude of the local
buckling load.

7.2 Future work and improvements

The most important improvement could be to introduce an orthotropic
material model that incorporates plasticity. This would prevent the stiff-
ness from increasing after buckling. Another area could be the connection
between the liner and fluting. In this analysis, the connection is mod-
elled as a rigid coupling and this makes the stiffness of the structure
overestimated.

The introduction of local perturbations could also decrease the initial
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tangential stiffness, so that the load-displacement paths are in better
agreement before the first bifurcation point.

Instead of using the global load for comparison between the FEA and
experiments, a better response measure would be the local strains at
collapse compared to calculated strains. This requires calculations of
gradients of the measured displacements, since the only output from the
DSP is the displacements.
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