
ISSN 0280-5316
ISRN LUTFD2/TFRT--5732--SE

Control Loop Performance Monitor

Fredrik Holstein

Department of Automatic Control
Lund Institute of Technology

December 2004

Document name
MASTER THESIS
Date of issue
December 2004

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5732--SE
Supervisor
Alexander Horch at ABB in Västerås
Tore Hägglund LTH in Lund

Author(s)
Fredrik Holstein

Sponsoring organization

Title and subtitle
Control Loop Performance Monitor (Regulatorövervakningsmonitor)

Abstract
In this thesis a control loop asset monitor is developed for ABB's automation
system 800xA. The asset monitor developed here is based on ABB's Loop Performance
Manager, which also is described here as well as the general properties and
functions of an asset monitor. The asset monitor is a prototype for the 800xA
system and a detailed description of how to implement asset monitors into the
system is given. The control loop asset monitor was tested on stored data from
real processes as well as on a lab scale process. This asset monitor will be used
as a base for further control loop asset monitors and the report will help
further asset monitor development in the 800xA system.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
75

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46
222 42 43

Contents

1 Introduction 6

2 Control Performance Monitoring 8
2.1 General . 8
2.2 OptimizeIT LPM . 8

3 Asset Optimization 16
3.1 General . 16
3.2 800xA Asset Optimization . 17
3.3 Asset monitor . 18

4 Control loop asset monitor 19
4.1 Asset monitor SDK . 19
4.2 Implementing the asset monitor 20
4.3 Simple asset monitor example . 20
4.4 The LPM asset monitor . 40
4.5 Testing the LPM Asset Monitor 43

5 Applications 47
5.1 Simulink environment . 47
5.2 Lab process with industrial automation 48

6 Final conclusions 53

A Indices for LPM 55

B Hypotheses for LPM 57

C Visual Basic code Simple example 58

D Matlab functions in the LPM Asset Monitor 61

E Visual Basic code LPM Asset Monitor 63

3

List of Figures

2.1 Thresholds for diagnosis. 11
2.2 Oscillating control loop . 13
2.3 Well performing control loop . 14
2.4 Control loop in manual mode . 15

3.1 Maintenance labor usage. 16
3.2 800xA, platform for the complete integration of all data. 17
3.3 800xA Plant Explorer. 18

4.1 Implementation steps. 19
4.2 Step one: Matlab code. 21
4.3 The COM Builder GUI. 22
4.4 New Project. 23
4.5 Step two: Asset monitor structure in Excel. 24
4.6 Asset Monitor de�nition. 24
4.7 Conditions. 25
4.8 Asset Parameters. 26
4.9 Input Records. 26
4.10 Output Records. 27
4.11 Step three: Main logic code in Visual Basic. 27
4.12 Visual Basic properties. 28
4.13 Visual Basic references. 29
4.14 View of Visual Basic window. 30
4.15 Step four: Asset monitor creation 800xA. 33
4.16 Adding a new object. 34
4.17 Adding a Alarm and Event List aspect. 35
4.18 Adding a general properties aspect. 36
4.19 Con�g View of asset monitor. 37
4.20 Con�gure path to input records. 37
4.21 Set the input records. 38
4.22 Starting the server. 38
4.23 Testing the asset monitor. 39
4.24 Output records in 800xA. 39
4.25 Conditions for LPM asset monitor. 41

4

LIST OF FIGURES 5

4.26 Asset parameters for LPM asset monitor. 41
4.27 Input records for LPM asset monitor. 42
4.28 Output records for LPM asset monitor. 42
4.29 Oscillating control loop data . 44
4.30 Oscillating control loop alarms. 44
4.31 Ok control loop data . 45
4.32 Ok control loop alarms. 45
4.33 Saturated control loop data . 46
4.34 Saturated control loop alarms. 46

5.1 Data for stiction model . 47
5.2 Stiction alarms. 48
5.3 Lab process as seen in the 800xA plant explorer. 49
5.4 Lab process. 49
5.5 Lab process data . 50
5.6 Lab process alarms. 50
5.7 Lab process data . 51
5.8 Lab process alarms. 52

A.1 Indices in the LPM. 56

B.1 Hypotheses in the LPM. 57

Chapter 1

Introduction

This thesis reports work done at ABB Corporate Research in Ladenburg, Ger-
many. ABB's two main businesses are power technologies and automation tech-
nologies. ABB Power Technologies provide products, systems and services for
power transmission, distribution and automation. ABB Automation Technolo-
gies deliver solutions for control, motion, protection and plant integration across
the full range of process and utility industries.

The newest automation system from ABB is called ABB's IndustrialIT

Extended Automation System 800xA and includes a component called
Asset Optimization. This component contains tools for tuning, improving
or optimizing productive systems or end products, which all leads to reduced
maintenance.

Maintenance is a major expense for all companies today, which is the reason
why considerable savings are possible in this area. Maintenance is carried out
when something is broken or when something is found to be working badly at
routine checks. This could mean high costs if processes have to be shut down
to be able to repair what is broken. If the problems could be identi�ed at an
early stage this might be avoided and both costs and work can be reduced.

One of the core functionalities in ABB's 800xA Asset Optimization is asset
monitoring. The main purposes of an asset monitor are to identify equipment
failure, performance degradation and e�ciency degradation that may impact
production output or quality. The purpose of the work done in this thesis
was to implement an asset monitor, which can monitor various control loops.
The asset monitor developed is a prototype for the 800xA system and should
be simple, but still work su�ciently well. Due to the prototype character of
the implementation, examples of how to implement asset monitors into the
800xA system will also be given, in order to facilitate later implementations
and improvements.

The asset monitor developed here evaluates certain control loop performance
indices that are calculated from data, collected online from the monitored con-
trol loop. These indices give an indication of how well the control loop is cur-
rently performing.

6

7

In order to implement the asset monitor into the 800xA system, the di�er-
ent performance indices �rst had to be determined and then implemented in
Matlab. This code was then used to implement the asset monitor in Visual
Basic. The visual basic code constitutes the main logic of the asset monitor in
800xA. This together with the asset monitor structure, that is constructed in
the Asset Monitor Software Development Kit, forms the asset monitor.

To be able to understand how the asset monitor should function, control
performance monitoring, asset optimization and the 800xA system are explained
in Chapters 2 and 3. Then the steps to implement an asset monitor into the
800xA system are described through an example in Chapter 4. In this Chapter
the main asset monitor that is developed for this thesis, called the LPM Asset
Monitor, is also described. The asset monitor was tested on stored data values
and compared to earlier tests to this data. Finally, described in Chapter 5, the
asset monitor was tested online, both on simulated data and on data from a lab
scale process.

Chapter 2

Control Performance

Monitoring

2.1 General

Most controllers in industries today are P-, PI- and PID controllers. These
are often only tuned once, during commissioning, or sometimes even not at
all. To be able to spot a badly working controller the plant engineer has to
be experienced and has to monitor the control loop closely, which can be hard
if many control loops have to be monitored, which usually is the case. If the
detection of badly performing control loops could be made automatic a lot of
resources could be saved and the quality of the control loop would increase.

The problems with automatic control loop monitors are to obtain informa-
tion about the control loop by a passive monitoring tool and how to quantify
what kind of behaviour that is deemed acceptable [2]. The industry also de-
mands the following of an control loop performance monitor:

• Non invasiveness, it should be a passive observer.

• No new sensors, should only use what is already available.

• Minimal process knowledge, ideally assume no knowledge.

• Simple algorithms, should monitor many loops at the same time.

There are some control performance monitoring tools on the market, achiev-
ing these goals. One of them being the Loop Performance Manager tool from
ABB.

2.2 OptimizeIT LPM

ABB's OptimizeIT Loop Performance Manager (LPM) is a product that
helps monitor and tune process control loops [1]. The LPM contains an au-

8

2.2. OPTIMIZEIT LPM 9

diting module that performs control loop monitoring. The performance of the
monitored control loops is evaluated through certain indices in the LPM. Each
index contains a value that describes how a certain part of the control loop is
behaving. Some of the indices are direct measures of how the control loop is
performing, some carry more indirect information about the control loop. The
LPM evaluates 38 indices. Some of these indexes are described in this chap-
ter. From the indices a diagnosis is made containing 11 hypotheses describing
the performance of the control loop, for example the hypothesis control loop
oscillating can be given the evaluation value true, false or undecided.

The LPM is given a batch of data from the monitored control loop and then
evaluates its performance and creates a report of the evaluation. The report
can then be viewed, so that if the control loop is not working satisfactory it can
be corrected. The di�erent hypotheses are described at the end of this chapter.

2.2.1 Indices

The LPM calculates values for 38 indices that all in some way or other describe
how the control loop is performing. Some of the more important indices are
described here. For a short description of all the indices see Appendix A.

Standard deviation

An easy value to calculate for the collected data batch is the standard deviation
of the process error. The absolute value of the standard deviation itself does
not indicate bad behaviour, but the trend of it between batches would. If the
standard deviation were to increase in time, it would mean that the controller
is working worse and worse and should be scheduled for an inspection.

Oscillation index/amplitude

A major problem with control loops is oscillation. This will give bad perfor-
mance and excessive controller movement, which increases the wear on the ma-
chinery. The integrated error between set point crossings are calculated and
compared to each other. If there are several similar area sizes and times be-
tween set point crossings there is oscillation present. This is a very important
index, since there is much to be gained if one can remove oscillations from a
control loop. The amplitude is estimated as well together with the oscillation
frequency.

Automatic/saturated mode

To be able to use the calculated indices at all, the mode of the control loop
has to be evaluated �rst. If the control loop has been in manual mode or if
it has been saturated for a longer time this may a�ect the values of the other
indices. If the mode has been in manual for too long time the value of the
other indices are not considered valid, since the controller has to be active to
be able to evaluate its performance. A control loop that is saturated too much,

10 2. CONTROL PERFORMANCE MONITORING

probably has to be readjusted so that it moves within its ranges. To see if the
controller is in manual mode or not, adjacent control loop values are evaluated,
if they do not change over several data points the controller is considered to
be in manual mode during this time. If these data points are above or below
certain limits, the loop is considered to be in saturated mode. The automatic
index gives a percentage of how much of the data points in the batch that are in
automatic mode. This has to be su�ciently large so that the other indices give
an accurate picture of how the controller is performing. The saturated index
gives, in the same way, a percentage of how many data points are saturated. If
this value is too large the controller values should be recon�gured.

Valve travel

This is an index that gives a value of how much the control signal moves during
the data batch. If the actuator varies a lot it means that a lot of extra energy
is spent to keep the process variable at the desired value. This could be avoided
by readjusting the controller parameters. The index gives a count of how many
times the control signal has moved a percentage of its range. The bigger the
value the more the actuator is working.

Setpoint crossing

If a controller is working well the process variable should be close to the set
point. This means that the process error should be small and that the process
variable will cross over the set point often. If there are few set point crossings,
reasons could be sluggish control, oscillations or an o�set (e.g. pure P-control).

Shut o� PV

An important monitor for �ow loops is the shut o� process variable index. This
index is the value of the process variable at times when the control signal is
considered to be zero, meaning that the controller is shut o�, so there should
not be any �ow through the loop. If there is a leakage in the loop the process
variable will have a value greater than zero. The Shut o� PV index gives a mean
value of the process variable for all the times the control signal is zero, or very
small. Small leakage may be expected, but if the value is over a legal limit, an
alarm should be activated.

Harris index

To get an index for how good the controller of the process is performing the
Harris index is calculated [3]. This index compares how big the standard devi-
ation of the control error is to a minimum variance controller. The minimum
achievable variance is estimated from the data that is collected. To be able to
estimate a minimum variance controller for the process the dead time has to
be known. The dead time is generalized to di�erent kinds of control loops, e.g.
liquid �ow loops.

2.2. OPTIMIZEIT LPM 11

2.2.2 Diagnosis

After the indices are calculated a diagnosis is to be made whether the control
loop is working satisfactory or not (and if not: why). To be able to make the
diagnosis, sensible limits for the di�erent indices have to be set. These limits
are generalised for every group of controllers, every loop category. Some of the
limits can be seen in Figure 2.1.

Figure 2.1: Thresholds for diagnosis.

The diagnosis is made by evaluating the following 11 hypotheses, they can
be true (1), false (0) or undecided (-1) and are based on one or several of the
indices compared to their limits. The Valve Problem hypothesis is based on
several indices. If one of the indices does not indicate valve problems while
the others do, it is not certain that there are valve problems. Therefore this
hypothesis has two di�erent values of true, depending on if all indices indicate
valve problems or not.

H1: Sluggish tuning
H2: Oscillating loop
H3: Possible valve problems
H4: Valve leakage or instrument zero error
H5: Oscillating setpoint
H6: Excessive valve movement
H7: Excessive measurement noise
H8: Acceptable tracking behaviour
H9: Basic statistics o.k.
H10: Controller in saturation
H11: Acceptable overall performance

All of the hypothesis can not always be calculated. E.g. the valve leakage
hypothesis can only be calculated for control loops that monitor a �ow. To be

12 2. CONTROL PERFORMANCE MONITORING

sure that no leakage is present, the control signal and the process variable both
have to be zero for su�ciently many of the data points. If the control signal is
not turned o� a certain time of the monitored interval, the hypothesis can not
be evaluated.

The last hypothesis is based on eight preconditions. All o� the preconditions
have to be true for the overall performance to be good. The preconditions are
as follows.

P1: Harris index good
P2: Set point crossing large enough
P3: Loop not oscillating
P4: Loop not saturated
P5: Loop not in manual mode
P6: Tracking acceptable
P7: No valve leakage
P8: No sluggish tuning

For an overlook of the hypotheses see Appendix B.

2.2.3 Testing the LPM

This section presents diagnoses for three di�erent industrial examples. A plot of
the collected data is shown in a �gure as well as the diagnosis of the hypotheses.

The �rst data set was collected from an oscillating loop. The collected data
can be seen in Figure 2.2.

The values calculated for the hypotheses can be seen in Table 2.1. The
performance of the monitored control loop can be read out of the diagnoses. For
this example hypotheses 1,2,3 and 11 are of interest. The conclusion of these
hypotheses is that the loop is not oscillating due to valve problems. The problem
lies either in the controller tuning or comes from an external disturbance.

Table 2.1: Diagnosis of oscillating example.

Hypothesis No. Hypothesis Name Value
1 Sluggish Tuning 0
2 Loop Oscillating 1
3 Valve Problem 0
4 Valve Leakage/Zero Error -1
5 Setpoint Oscillating 0
6 Valve Travel 1
7 Noise 0
8 Acceptable Tracking -1
9 Statistical behavior ok 0
10 Controller Saturated 0
11 Acceptable Performance 0

2.2. OPTIMIZEIT LPM 13

Figure 2.2: Oscillating control loop. Setpoint and process value(top) and con-
troller output(bottom).

The second data set was collected from an ok behaving loop. The data can
be seen in Figure 2.3

The values calculated for the hypotheses can be seen in Table 2.2. The
hypothesis of interest is the last one, that says that the control loop is performing
well, and no action is to be taken.

The next set of data is collected from a control loop that is in manual mode.
Since the control signal is zero at all data points the signal is saturated as well.
The data can be seen in Figure 2.4

The values given for the hypotheses can be seen in Table 2.3. The hypothesis
of interest is number 10. This tells us that there is bad performance since the
controller is �dead� ≡ 0. The control loop does not calculate any valve leakage,
since it is not a �ow loop.

14 2. CONTROL PERFORMANCE MONITORING

Figure 2.3: Well performing control loop. Setpoint and process value(top) and
controller output(bottom).

Table 2.2: Diagnosis of ok example.

Hypothesis No. Hypothesis Name Value
1 Sluggish Tuning 0
2 Loop Oscillating 0
3 Valve Problem -1
4 Valve Leakage/Zero Error -1
5 Setpoint Oscillating 0
6 Valve Travel 0
7 Noise 1
8 Acceptable Tracking -1
9 Statistical behavior ok 0
10 Controller Saturated 0
11 Acceptable Performance 1

2.2. OPTIMIZEIT LPM 15

Figure 2.4: Control loop in manual mode. Setpoint and process value(top) and
controller output(bottom).

Table 2.3: Diagnosis of saturated example.

Hypothesis No. Hypothesis Name Value
1 Sluggish Tuning 0
2 Loop Oscillating 0
3 Valve Problem -1
4 Valve Leakage/Zero Error -1
5 Setpoint Oscillating 0
6 Valve Travel 0
7 Noise 0
8 Acceptable Tracking -1
9 Statistical behavior ok 0
10 Controller Saturated 1
11 Acceptable Performance 0

Chapter 3

Asset Optimization

3.1 General

The term Asset Optimization is widely used among companies these days. The
meaning of the term and the goal of all companies, is to maximize the produc-
tion and pro�t from the available resources. Having an asset working at peak
performance, and more important keeping it there, is what is needed. Failures
occur, and maintenance is at some point always needed, for all assets. It is
at these moments most gains in production can be made. By minimizing the
downtime of the asset and spotting an asset that is not working at peak perfor-
mance as early as possible, much can be gained. To spot these assets, a lot of
maintenance labour is wasted on routine checks, when no maintenance is needed
as seen in Figure 3.1.

Figure 3.1: Maintenance labor usage.

16

3.2. 800XA ASSET OPTIMIZATION 17

If the asset that is not working at peak performance can be spotted without
routine checks, they are not needed, and a lot of labour can be gained. What is
needed is a system that spots these assets and the root cause of the problems
automatically.

3.2 800xA Asset Optimization

ABB's state-of-the-art automation system is called IndustrialIT Extended
Automation System 800xA. The system contains a single environment for
engineering, operation and information management. 800xA collects, aggregates
and analyzes real-time information from the whole plant and makes the neces-
sary information available for the right people in real-time. The information
�ow in 800xA can be seen in Figure 3.2.

Figure 3.2: 800xA, platform for the complete integration of all data.

One of the core components within 800xA is called Asset Optimization.
This component contains tools for tuning, improving or optimizing productive
systems and end products as well as tools for monitoring control loops and other
assets.

The plant explorer in 800xA is divided into three parts, as seen in Figure 3.3.
The �rst part is the object browser. Here all objects in the current structure
are displayed. Objects can be any kind of asset in the plant. The second part is
the aspect browser. All aspects that the current object has, are displayed here.
An aspect contains properties for the object. In the third part the details for
the current aspect can be viewed and altered.

18 3. ASSET OPTIMIZATION

Figure 3.3: 800xA Plant Explorer.

3.3 Asset monitor

An object that constantly monitors the performance of an asset, is called an
Asset Monitor. The object of this thesis is to implement an asset monitor
for control loops in the 800xA system, and document how to do this. Typical
objectives for an asset monitor are to [4]:

• Identify equipment failure indicators and implement predictive mainte-
nance strategies.

• Identify performance degradation that may impact production output or
quality.

• Identify e�ciency degradation that may have economic or process impact.

• Identify faulty equipment.

The concrete implementation and architecture of an asset monitor is de-
scribed in the next chapter.

Chapter 4

Control loop asset monitor

4.1 Asset monitor SDK

Several steps are needed to implement an asset monitor into the 800xA. They
can be divided into four bigger steps as seen in Figure 4.1.

Figure 4.1: Implementation steps.

If the asset monitor has to perform complex computations, these should
�rst be implemented in Matlab. This will make the main code implementation
in Visual Basic easier later on. The next step is to create an asset monitor
category, the structure for a whole category of assets. For example a boiler
asset monitor category, which can monitor boilers. The asset monitor category is
constructed through the Asset Monitor Software Development Kit (SDK)
in Microsoft Excel. An asset monitor category could be something simple,
like a high value check asset monitor category. That is an asset monitor category
that checks if an input value is higher than a given limit value. All asset monitors
in this category has the same structure, but they (could) have di�erent input

19

20 4. CONTROL LOOP ASSET MONITOR

signals and limit values. That means that the category only de�nes the structure
of the asset monitor. All individual settings are then made in the 800xA system.

The structure of the control loop asset monitor should de�ne how the per-
formance and the state of the control loop are quanti�ed. The asset monitor
status is described through so-called conditions. Each condition can generate
an alarm, the alarm depends on the subconditions that are de�ned for each con-
dition. All conditions and subconditions have to be de�ned through the SDK.
The number of inputs and outputs that the asset monitor category needs are
also de�ned in the same Excel �le.

The SDK enables the creation of a standard asset monitor form in Excel.
This form contains several sheets, that describe what information the asset
monitor category needs, and how it should be �lled in. For example in one
sheet the conditions and subconditions have to be de�ned. In another a �le
name, pointing to a visual basic program that should contain the logic for the
asset monitor category, shall be de�ned. The SDK can then create the asset
monitor category, making it available in the 800xA system.

Examples of exactly how to do this will be given later in this thesis.

4.2 Implementing the asset monitor

Once the structure of the asset monitor category is given, the logic of the asset
monitor has to be implemented. This is done in Visual Basic. The basic
structure of this logic is always the same. Among other things there must be
an initialize function, that initializes variables, and an execute logic subroutine
that implements the logic itself. In the execution logic, the variables' values
that are de�ned in 800xA must be read and stored if they have been changed in
800xA. This could for example be the limit value in the high value check asset
monitor category. Then the input records should be read, and their values be
updated for the control loop asset monitor. The performance and status of the
monitored control loop can then be calculated. If the calculations are complex
or hard to implement in Visual Basic, they can be implemented as functions
in e.g. Matlab, and then simply be called from the Visual Basic code. A call
is then made to the 800xA updating the conditions and alarms there. A more
detailed description will be given with the examples below.

4.3 Simple asset monitor example

Introduction

In this example the steps to implement a simple asset monitor in the 800xA
system will be described in detail. This simple asset monitor will monitor if a
control loop error is outside any of two di�erent limits. First a simple Matlab
function that does the mathematical computations will be developed. The con-
ditions and input records for the asset monitor are de�ned in an Excel worksheet
and uploaded automatically to the 800xA system through the asset monitor

4.3. SIMPLE ASSET MONITOR EXAMPLE 21

SDK. A .dll �le is then made out of a Visual Basic program, which contains
the main logic. The Visual Basic code calls the Matlab function and uses the
conditions and input records de�ned in the Excel worksheet. The asset monitor
is then added into the 800xA system and the asset monitor can be tested. It
is required that Matlab, Visual Basic, Microsoft Excel and a 800xA system are
available on the used computer. The 800xA system must have the OptimizeIT

Asset Optimization option and the OptimizeIT Asset Monitor SDK installed.

Matlab code

Figure 4.2: Step one: Matlab code.

The �rst step, as seen in Figure 4.2, is to implement the mathematical com-
putations in Matlab. The Matlab function should in this example check if the
absolute value sent to the function is larger than two limits provided to it. The
return value of the function, diagnosis, should return an integer that should
be zero if the input is smaller than both limits, one if the input is larger than
the lower one of the limits and a two if the input is larger than the upper one
of the limits. For example the code could be as follows, where limit1 should
be smaller than limit2:

22 4. CONTROL LOOP ASSET MONITOR

checkLimits.m

function [diagnosis] = checkLimits(input, limit1, limit2)

if abs(input) > limit2

diagnosis = 2;

elseif abs(input) > limit1

diagnosis = 1;

else

diagnosis = 0;

end

This code is not very advanced and could of course be implemented straight
into Visual Basic. But the purpose here is only to show how to use Matlab
functions in a Visual Basic program. This is useful for programs that have to
compute advanced mathematical computations, which are easier to implement
in Matlab.

To be able to use the Matlab function in Visual Basic the function has to
be converted into a .dll �le. The �rst step is to save the function, and to make
sure that the path name to the �le does not contain any blanks. If it does the
Matlab function cannot be compiled into the .dll �le. The compilation could
also fail if the Matlab �le contains some variable names that are forbidden, for
example the variable name Auto will constrain the compilation to work. The
Matlab COM Builder [5] is used, to create the .dll �le (there are also other
ways). This is accessed by writing: comtool, in the Matlab control window.
The COM Builder graphical user interface (GUI) will then open, see Figure 4.3.

Figure 4.3: The COM Builder GUI.

Here the folder that should store the dll �le will be created and the compi-

4.3. SIMPLE ASSET MONITOR EXAMPLE 23

lation of the Matlab function into a .dll �le will be made. Choose File→New
Project... Here the component has to be given a name, for example twoLimi-
tExample. Then click in the class name box. The rest of the �elds will then be
�lled in automatically, as seen in Figure 4.4.

Figure 4.4: New Project.

Leave it like that and click OK. When asked weather to have this folder
created, click OK. Click on the folder twoLimitExample in the COM Builder
main window. Now the Matlab �le has to be added to the project. This is
done by clicking on the Add File button and choosing the checkLimits.m �le.
If several Matlab �les wants to be added, they have to be added one at a time.
When the �le is added press the Build button. If no problems are encountered
this will create the .dll �le. Save the project and exit the program.

This completes the Matlab part of this example.

Asset monitor category

The steps to implement an asset monitor into the 800xA system are described
in the Asset Monitor SDK user's guide [4]. Some steps are described more
in detail there, and should be consulted for more information or if problems are
encountered. But there are things that are not dealt with in the SDK manual
that are described here.

The next step is to de�ne the asset monitor category in Excel, as seen in
Figure 4.5.

24 4. CONTROL LOOP ASSET MONITOR

Figure 4.5: Step two: Asset monitor structure in Excel.

The conditions and input records (the signals from which the asset monitor
should collect its data) for the asset monitor can conveniently be assigned in
Microsoft Excel through the Asset Monitor SDK add-in. When Excel is opened
there should be a toolbar with two buttons, Update AM Category and Export
AM Category, in the Excel worksheet if the OptimizeIT Asset Monitor SDK is
correctly installed. Open a new �le and press the Update AM Category button
and disregard the error messages. This will create the standard sheets that are
needed to assign conditions and input records for the asset monitor category.
Save the �le, for example as Two Limit Example De�nitions, and then press the
AM De�nition sheet. There the red cells have to be �lled in with information
about the asset monitor name and what the name of the asset monitor logic is.
An example of how to �ll them in is given in Figure 4.6.

Figure 4.6: Asset Monitor de�nition.

The name of the asset monitor should describe the asset monitor, this will

4.3. SIMPLE ASSET MONITOR EXAMPLE 25

make it easier to use and �nd later. The AM Logic Prog ID should be the
name of the logic that will be implemented in Visual Basic later on, this should
be remembered when the Visual Basic project is named. If the Update AM
Category button is pressed again the red cells containing valid data will turn
grey.

Next, click on the Conditions sheet. Here the di�erent conditions and sub-
conditions that should be monitored have to be de�ned. Every condition is
something the asset monitor should observe and generate alarms for, for exam-
ple if a value is over a limit. This means that each condition should have at
least two subconditions. One of the subconditions should be the normal state,
in which no alarm is active, this is where the control loop should be operating.
The other subconditions generate di�erent kind of alarms for the condition. For
each subcondition a description of the alarm can be given, as well as a suggested
action to correct it. Each subcondition should be given a di�erent ENUM num-
ber (number that de�nes the di�erent subconditions), this is used when the logic
is implemented, to set the di�erent subconditions. To measure how severe each
alarm is, each sub condition is given a severity number. A higher number means
that the alarm is more severe. The range of the severity number is 1-1000. The
condition for this example can be seen in Figure 4.7.

Figure 4.7: Conditions.

In this example there is only one condition with three subconditions. The
condition can be named arbitrarily, here it is named OverLimit. The ENUM

should contain the subcondition number. The zero has been reserved for the
normal state. This state should also have one as severity number, since it is the
normal state and no alarm should be active.

In the Asset Parameters sheet the two limits that are chosen should be �lled
in. All variables �lled in here can have their values changed in the 800xA
system later on. Suitable names for the parameters in this example are Limit1
and Limit2. This can be seen in Figure 4.8.

Next thing to add into the Excel �le is the input records. In this sheet the
input signals, that the asset monitor should receive, have to be de�ned. Here
three input signals are used, INHIBIT, PV and SP. The �rst input is used to

26 4. CONTROL LOOP ASSET MONITOR

Figure 4.8: Asset Parameters.

inhibit the asset monitor from doing anything. This is used if the monitored
asset is under maintenance or if there is temporary need to suppress alarms
from the asset monitor. The other two should represent the process variable
and the setpoint for a control loop, which are used to compute the control error
for which the limit supervision is desired. See Figure 4.9 to see how to �ll them
in.

Figure 4.9: Input Records.

The last things to add are the output records. These are used to make values
visible in the 800xA system. In this example the control error will be displayed.
Supported output record data types are: VT_BSTR (string), VT_I4 (long),
VT_R8 (double), VT_BOOL (boolean) and VT_DATE (date). An example
of how to �ll the �elds is shown in Figure 4.10.

Now all the required de�nitions have been made. To upload the asset monitor
category to the 800xA system press the Export AM Category button. Choose
the Two Limit Example Asset Monitor and press Export asset monitor into

Excel. Then press the Update AM Category button. This makes the Two Limits

Example Asset Monitor available in the 800xA system. But there is no logic
connected to the asset monitor. This has to be implemented in Visual Basic.

4.3. SIMPLE ASSET MONITOR EXAMPLE 27

Figure 4.10: Output Records.

Visual Basic

The logic of the asset monitor is implemented in Visual Basic. This is the next
step in the asset monitor implementation, seen in Figure 4.11.

Figure 4.11: Step three: Main logic code in Visual Basic.

Start Visual Basic and choose to open a new ActiveX DLL project. Open the
project properties. The project should here be given a suitable name, remember
what logic name was given in the Excel work sheet. In this example the name
should be TwoLimExAM. The property settings are shown in Figure 4.12.

The project also has to make some references. Open the project references
(in the project menu). Here the following �ve references should be added, also
seen in Figure 4.13.

• AbbAoCommonUtils

• AbbAoMSservice

• AbbAoAmHelper

28 4. CONTROL LOOP ASSET MONITOR

Figure 4.12: Visual Basic properties.

• Microsoft XML, v3.0

• twoLimitExample 1.0 Type Library

The �rst four references are needed to get the asset monitor working. The
last reference is such that the Matlab function that was written can be found
and used. The class name in the project then has to be changed to Logic. This
can be done in the Visual Basic main view of the project.

Then create an original dll �le by choosing Make TwoLimExAM.dll in the
File menu. In the project properties under the Component tab then choose the
Binary Compability option. If the �le has not yet been saved, this should be
done. Remember to have the class named Logic, and the project named the
same as in the Excel �le.

Now it is time to start implementing the main code. To be able to use all
needed commands and functions the following has to be written in the header
of the code:

Option Explicit

Option Compare Text

Implements AbbAoMSservice.ILogic

Private m_utils As AbbAoAmHelper.AssetMonitorUtils

Private lim As twoLimitExample.twoLimitExample

The �rst line always has to be written in Visual Basic when variables are to
be declared. The next three lines are there such that the asset monitor and the

4.3. SIMPLE ASSET MONITOR EXAMPLE 29

Figure 4.13: Visual Basic references.

dll made from the Visual Basic code can communicate. The last line declares a
variable that is an instance of the Matlab dll �le. The name of the two private
variables can of course be di�erent than above. Then the following property,
function and subroutines have to be implemented in the code window in the
Visual Basic project as seen in Figure 4.14.

• Property Get Version() As String

• Function Initialize(ByRef Config As MSXML2.IXMLDOMNode) As String

• Sub ExecuteLogic(ByRef Assetmonitor_IN As AssetMonitor)

• Sub Terminate()

The property get version is used to get the version of the implemented logic.
This could be useful to keep track of di�erent versions of the same logic out in
the �eld. A typical implementation looks as:

Private Property Get ILogic_Version() As String

ILogic Version = App.Major & �.� & App.Minor & �.�

& App.Revision

End Property

The initialize function should initialize the private variables and return an
empty string if this is successful. If any errors occur the error message should
be returned, which is taken care of in the last part of the function. It will look

30 4. CONTROL LOOP ASSET MONITOR

Figure 4.14: View of Visual Basic window.

as follows for this example:

Private Function ILogic_Initialize(Configuration

As MSXML2.IXMLDOMNode) As String

ILogic_Initalize = � �

Set lim = New twoLimitExample.twoLimitExample

Set m_utils = New AbbAoAmHelper.AssetMonitorUtils

If Err.Number <> 0 Then

Debug.Assert False

ILogic_Initialize = Err.Description

Err.Clear

End If

On Error GoTo 0

End Function

The terminate subroutine is quite simple and should only set the m_utils

variable as nothing.

Private Sub ILogic_Terminate()

Set m_utils = Nothing

End Sub

The last subroutine is the one containing the main logic. Here the limits and
input records have to be read, the Matlab �le should be called and the status

4.3. SIMPLE ASSET MONITOR EXAMPLE 31

of the asset monitor should be updated. First the variables needed in the sub-
routine have to be declared. The beginning of the subroutine could be as follows.

Private Sub ILogic_ExecuteLogic(ByRef AssetMonitor_IN

As Asset Monitor)

Dim oValueElement As C_ValueElement

Dim oSubCondition As C_SubCondition

Dim InputPV As Double

Dim InputSP As Double

Dim diagnosis As Variant

Dim ControlError as Double

The �rst variable is needed to get the values of the input records. The second
one to set the subconditions. These two are in other words always needed. Next
come the variables needed especially for this example. The diagnosis variable
has to be of the Variant instance. The variables used in a call to a Matlab
function have to be of the right instance, so that Matlab and Visual Basic can
use the variable correctly. All variables that are returned from a call to a Matlab
function have to be of the Variant instance. The variables sent in to the Matlab
code should be of a suitable instance, depending on how it is used in the Matlab
function. If an integer variable is sent into a Matlab �le from Visual Basic, there
can be no multiplications or divisions with this variable in the Matlab code, the
call from Visual Basic to the Matlab function can in this case be unsuccessful
and empty variables will be returned.

Next the limits have to be collected.

On Error Resume Next

With AssetMonitor_IN

If .ConfigurationChanged Then

.LogicBlockParameter1Desc = �The first limit�

.LogicBlockParameter1 = CDbl(

.AssetParameters.selectSingeNode(�Limit1�).text)

.LogicBlockParameter2Desc = �The second limit�

.LogicBlockParameter2 = CDbl(

.AssetParameters.selectSingeNode(�Limit2�).text)

End If

The �rst line is used in case an error occurs in the code when run. The
second row is there so that AssetMonitor_IN does not have to be written every
time it is called. It is enough to write a dot followed by the command in the
AssetMonitor_IN that is wanted. The if line checks if the limits have been
changed in 800xA, in this case they have to be loaded and stored again. The if
line is also true the �rst time it is checked. There are 10 LogicBlockParameters,
and they can contain any kind of variable, even vectors. These are used to store
variable values for the individual asset monitors. It would not work with a
public variable, since there can be many instances of the same asset monitor

32 4. CONTROL LOOP ASSET MONITOR

category.

.InputRecords.Read

If m_utils.IsAssetMonitorInhibit(AssetMonitor_IN, "True",

"INHIBIT") Then

Exit Sub

End If

.Status = m_utils.GetIORecordVE(.InputRecords,oValueElement,

�PV�,NumericType)

If Len(.Status) = 0 Then

This piece of code �rst reads the input records. Then the INHIBIT value is
checked. If the value is equal to the second parameter, in this case True, then
all conditions will be set to the normal state and have the status Inhibit and
the quality goodLocalOverride. After that the subroutine will be exited. If the
asset monitor is not inhibited the next input record value will be read and if no
errors occurs, .Status will be empty. The code should continue to run in this
case. Inside the if case the next input record has to be read, after the �rst one
has been stored in a local variable.

InputPV = oValueElement.Value

.Status = m_utils.GetIORecordVE(.InputRecords,oValueElement,

�SP�,NumericType)

If Len(.Status) = 0 Then

After this the calculation part of the code can be executed.

InputSP = oValueElement.Value

ControlError = InputPV - InputSP

Call lim.checklimits(1, diagnosis, ControlError,

.LogicBlockParameter1 , .LogicBlockParameter2)

.StatusQuality = qualityStatusENUM.good

.Status = .Status & m_utils.WriteToOutputRecord(

AssetMonitor_IN, ControlError, "ControlError", False)

Set oSubCondition = m_utils.SetCurrentSubCondition(

AssetMonitor_IN, 1, diagnosis, False, .StatusQuality,

.Status, False)

In this piece of code, the values for the variables are �rst stored. Then
the call to the Matlab function is done. First, in the parameters given to the
function, is the number of outputs, one in this case. Then the outputs should
be given, they all have to be of the Variant instance. Last the inputs are given,
in this case, the two limits. Once the call is successfully made, the quality of
the conditions are given the value good. Then the output records are written

4.3. SIMPLE ASSET MONITOR EXAMPLE 33

to. If that is done successfully, the .Status will be empty. Otherwise the
error message is stored there. Last the subcondition is set to the value given in
diagnosis. This is done in the .SetCurrentSubCondition. The place where
diagnosis variable is placed is the place where the ENUM should be placed
for the wanted subcondition, and this is conveniently the same value as in the
diagnosis. If there is an error message in .Status , this will be shown in the
description of the condition in 800xA.

Finally after the if cases have been ended the errors have to be taken care
of.

End If

End If

If Err.Number <> 0 Then

Debug.Assert False

.Status = �Unhandled runtime error in

ILogic_ExecuteLogic(): � & Err.Description

.StatusQuality = qualityStatusENUM.bad

Err.Clear

End If

End With

On Error GoTo 0

End Sub

The �nal thing to do is to make the dll �le for the project once more, this
has to be done every time a change has been made in the code.

That concludes the Visual Basic part of the asset monitor. An overview of
the code can be seen in Appendix C.

800xA

Figure 4.15: Step four: Asset monitor creation 800xA.

34 4. CONTROL LOOP ASSET MONITOR

Now the asset monitor will be added into the 800xA system and tested. This
is the last step in the asset monitor implementation, see Figure 4.15.

The asset monitor should be added in the control structure of the 800xA sys-
tem. In the Control Structure, Root, add a new object to the Asset Monitoring

Server as seen in Figure 4.16.

Figure 4.16: Adding a new object.

In this, object aspects then have to be added so that the asset monitor can
function properly. First add a new Alarm and Event List aspect to the Two

Limit Example object shown in Figure 4.17.
Next an aspect that generates input records has to be created. This aspect

is needed to generate test data so that the asset monitor can be tested, and
contains the value of the INHIBIT variable. Add this by choosing to add a new
aspect, to the object, that is under Basic Property Aspects, Basic Property
Properties and is called General Properties. Name the aspect Input Records

as seen in Figure 4.18.
Last the asset monitor aspect has to be added. The Two Limits Example

Asset Monitor can be found under Asset Monitoring and then Asset Monitors.
All the aspects that are needed have now been added. Now the aspects will

be con�gured so the asset monitor can be tested. Go to the Con�g View of the
Two Limits Example Asset Monitor as shown in Figure 4.19.

Under the Server tab set the Monitoring Server as Default. Then go to the
Input Records tab and set all input records to be Default data source aspects.
The Data Source Item is the path to where the asset monitor can �nd the input

4.3. SIMPLE ASSET MONITOR EXAMPLE 35

Figure 4.17: Adding a Alarm and Event List aspect.

records. To test the data we create input records in the Input Records aspect
that was created earlier. The paths to these data are %ID%:INHIBIT, %ID%:PV
and %ID%:SP. This can be seen in Figure 4.20. If the path is not known the
Open Properties Browser button to the bottom right can be clicked and the
path to the input records found by clicking through the folders. Click Apply to
apply the new settings.

Next go to the Con�g View of the Input Records Aspect. Here the three
input records, INHIBIT, PV and SP, have to be added. They should both be
readable and writable, PV and SP should be of the data type real, and INHIBIT

of the type Boolean (or String, but then the value of the variable has to be
written manually every time it is changed). This can be seen in Figure 4.21.

After all the input records have been added, apply the settings by pressing
the Apply button. Now the asset monitor is ready to be tested.

Testing the asset monitor

To test the asset monitor the asset monitoring server has to be started. Go to
the Con�g View of the asset monitoring server seen in Figure 4.22

Press the Download/Restart button. Now the asset monitor should be run-
ning. To see if it is running properly, go to the Main view of the server and
press the Status button. The status should be good, otherwise there is prob-
ably something wrong with the implemented asset monitor and it cannot get

36 4. CONTROL LOOP ASSET MONITOR

Figure 4.18: Adding a general properties aspect.

initiated. Once the server is up and running go to the input records and change
the values so that the di�erence between them is larger than one of the limits
that has been de�ned, remember to press the Apply button. Then go to the
asset monitor aspect and the severity should change as seen in Figure 4.23 The
output records can be seen by going to the AssetMonitorProperties aspect, seen
in Figure 4.24. If the value of the INHIBIT input record is set to True the asset
monitor should be inhibited.

If the alarms work as they should, a working asset monitor has been cre-
ated. For more advanced asset monitors, the basics are still the same as in this
example.

4.3. SIMPLE ASSET MONITOR EXAMPLE 37

Figure 4.19: Con�g View of asset monitor.

Figure 4.20: Con�gure path to input records.

38 4. CONTROL LOOP ASSET MONITOR

Figure 4.21: Set the input records.

Figure 4.22: Starting the server.

4.3. SIMPLE ASSET MONITOR EXAMPLE 39

Figure 4.23: Testing the asset monitor.

Figure 4.24: Output records in 800xA.

40 4. CONTROL LOOP ASSET MONITOR

4.4 The LPM asset monitor

Introduction

This is the big example that is based on the Loop Performance Manager auditing
visual software. The asset monitor uses the same Matlab functions as the LPM,
but with a few modi�cations. This means that a batch of data has to be collected
before the call to the Matlab functions can be made. So the alarms for the asset
monitor will not be updated after every new sample that is collected. But it
is not crucial for an asset monitor to inform about a problem the second it
appears, most problems appear due to wear of the equipment and are spotted
fast enough anyway. If more acute problems occur, these will be spotted through
other means than asset monitors.

The basic steps to implement the asset monitor are the same as for the
previous example, see Figure 4.1.

Matlab code

The Matlab code in this example is basically the same as implemented in LPM.
There are two calls to Matlab functions from the Visual Basic code in this asset
monitor. The �rst one is to CLPA_Indices, that calculates the indices from
vectors containing control signal, process variable and set point values. The
other call is made to CLPA_Diagnosis, that evaluates the hypotheses from the
current indices. The inputs and outputs for the Matlab functions can be seen
in Appendix D.

The Matlab functions have gone through some smaller changes to agree
better with the asset monitor implementation in Visual Basic. Some code has
been added, to make sure that the indices and hypotheses vectors are column
vectors, ensuring that Visual Basic can recognise them as vectors. Changes have
also been made in the diagnosis evaluation. Since the hypotheses sometimes are
true for good performance and sometimes for bad, this was changed so that all
hypotheses are true for bad performance. The last hypothesis was also divided
into the di�erent preconditions, some the same as some hypotheses, giving a
total of 13 hypotheses. The valve problems hypothesis was also changed, it has
two di�erent levels of bad performance, so that a 2 is returned instead of 0.75
for the less certain bad performance. This was done so that two levels of the
same alarm can be generated for this hypothesis in 800xA.

Asset monitor category

The asset monitor category is built up the same way as in the simple example,
but with more parameters. The conditions for the LPM asset monitor can be
seen in Figure 4.25.

The conditions are set so that the values returned from the diagnosis made
from the Matlab code can be used directly when setting the conditions.

Some of the asset parameters given here are most for testing the asset mon-
itor, when there is no real process to test it on. On a real process they could

4.4. THE LPM ASSET MONITOR 41

Figure 4.25: Conditions for LPM asset monitor.

also be given as input records and read in automatically. The asset parameters
can be seen in Figure 4.26.

Figure 4.26: Asset parameters for LPM asset monitor.

The variable N represents the size of the batch; it is the number of values
stored in each vector before evaluation. To get all hypotheses evaluated cor-
rectly, there should be more than 200 data points. Ts is the sampling time. The
OP limits are the limits for the control signal and the LR limits are the limits
for the process variable and the set point.

The input records are the control signal, process variable, set point and an
inhibit signal. These can be seen in Figure 4.27.

The inhibit signal is used when repairing the monitored control loop, or if
for some reason the asset monitor should not collect data for a period of time.
The logic implemented in visual basic should load the new input records, store
them in the vectors and if they are full make a diagnosis of the asset monitor.

42 4. CONTROL LOOP ASSET MONITOR

Figure 4.27: Input records for LPM asset monitor.

In the output records, most of the indices will be displayed, as seen in Figure
4.28.

Figure 4.28: Output records for LPM asset monitor.

Visual Basic

The Visual Basic code has the same structure as the simple example. The
get version, initialize and terminate functions are the same. Even the structure
inside the execute logic subroutine is the same: check if con�guration is changed,
read input records, call Matlab functions and update status in 800xA. Since
there are many values to update if the con�guration is changed, this is made in
its own subroutine, called AssetMonitorCon�gurationChanged. Here the asset
parameter values are read and stored in .LogicBlockParameters, the same
for the batch vectors. Since there are more parameters that should be stored
than there are .LogicBlockParameters, some of the parameters are stored in

4.5. TESTING THE LPM ASSET MONITOR 43

a vector, that is stored in one of the .LogicBlockParameters. To ensure that
variables are kept in their right form, some of the values will be sent back and
forth between .LogicBlockParameters and local variables, here and later in
the code.

Then the input records will be read and the current control signal, process
variable and the set point will be stored in the batch vectors. If the batches are
full, the calls to the Matlab functions are made, and new indices and hypotheses
values are calculated. The index thresholds are set in a Matlab function that is
called by the hypotheses calculation function.

The alarms will then be set, according to the hypotheses, in 800xA. The
output records will be displayed through a call to a local subroutine. Their
values are sent to a local variable, before the call to display the output record
is made, to ensure that the variable is of the right instance.

The complete code can be seen in Appendix E.

800xA

As for the simple example, an object has to be added to the control structure
of 800xA. The aspects for Alarms and Events and for the Input Records then
have to be added. The asset monitor aspect that is added should be of the LPM
Asset Monitor kind. After the right path for the input records have been set,
and the asset parameters have their correct values, the asset monitor can be
tested.

4.5 Testing the LPM Asset Monitor

Once the asset monitor was completely implemented into the 800xA system it
was tested on the same test data as the LPM, see section 2.2.3. This was done
by creating an OPC (Object linking and embedding for Process Control) client
that reads the values from a Microsoft Excel �le and sends them to an OPC
server once every sampling time. The 800xA can then read the values from the
server. If the asset monitor samples with too short sampling time it will read
the same value for more than one sampling time. It was found that a sampling
time of at least �ve seconds prevented this. This means that the server updates
its values every �ve seconds and that the asset monitor reads new values every
�ve seconds. If the length of the batches collected is the same as for the Matlab
code in section 2.2.3, this would take too long time to collect for just testing. So
the length of the batches was set to 250 samples instead. This does not change
the result of the evaluations. But more samples usually make the indices more
accurate. The lower limit for how many samples that are needed are among
other things in the Harris index calculation. To be able to identify a good time
series model, at least 200 samples are needed. The data collected in the batch
for the �rst example, the oscillating control loop, can be seen in Figure 4.29.

And the alarms generated by the asset monitor in 800xA can be seen in
Figure 4.30.

44 4. CONTROL LOOP ASSET MONITOR

Figure 4.29: Oscillating control loop data. Setpoint and process value(top) and
controller output(bottom).

Figure 4.30: Oscillating control loop alarms.

As can be seen in Figure 4.30, the result of the evaluation is the same as
for the LPM. Which should be expected, since the asset monitor uses the same
Matlab functions for its evaluations. Remember that some of the hypotheses
have been changed, so that the performance is bad if they are true in the asset
monitor.

4.5. TESTING THE LPM ASSET MONITOR 45

For the next example, again only 250 data points were used. The data
collected in the batch for the evaluation can be seen in Figure 4.31.

Figure 4.31: Ok control loop data. Setpoint and process value(top) and con-
troller output(bottom).

And the alarms generated by the asset monitor in 800xA can be seen in
Figure 4.32. All more severe alarms (e.g. Oscillation and Harris) are ok, but
the controller can probably still be tuned better. See Figure 4.25, to see what
the di�erent alarms mean and examples of how to �x the problems. This can
also be seen in 800xA, in the Con�g view of the asset monitor.

Figure 4.32: Ok control loop alarms.

46 4. CONTROL LOOP ASSET MONITOR

For the next example the same number of data points were used again. The
data collected in the batch for the evaluation can be seen in Figure 4.33. The
control signal is here turned o� and will be viewed as saturated.

Figure 4.33: Saturated control loop data. Setpoint and process value(top) and
controller output(bottom).

The alarms generated by the asset monitor in 800xA can be seen in Figure
4.34. If the control loop had been a �ow loop, the valve leakage alarm would
also have been raised.

Figure 4.34: Saturated control loop alarms.

This concludes the stored data testing of the LPM Asset Monitor. The asset
monitor is working as it should and can now be tested on live data. This is
described in the next chapter.

Chapter 5

Applications

5.1 Simulink environment

One cause of oscillating loops could be stiction. It was decided to test the asset
monitor for this kind of oscillations. Stiction is when the control valve is stuck
in a certain position due to high static friction. When the control signal is large
enough, the valve will start to move and then often it will move over to the
other side of the desired set point, where it will get stuck again. This will then
go on, making the control loop oscillating. Typical stiction data is when the
control signal looks like a triangle wave, and the process variable signal looks
more like a square wave.

A stiction model [6] was implemented in Matlab Simulink. Through an OPC
server the values could be sent to 800xA, and the LPM asset monitor could be
tested on this live data. The data batch that the asset monitor collected can be
seen in Figure 5.1, where the typical stiction signals can be seen clearly.

Figure 5.1: Data for stiction model. Setpoint and process value(top) and con-
troller output(bottom).

47

48 5. APPLICATIONS

The alarms generated in the asset monitor can be seen in Figure 5.2. The
interesting alarms in this case are the oscillation and valve problems alarms.
These indicate that the loop is oscillating, and that the cause of the problem
could be stiction. This means that the actuator and the valve in the control
loop have to be checked and maybe be reassembled or exchanged.

Figure 5.2: Stiction alarms.

In the following example, the monitored control loop will be part of a real
process with the industrial control system 800xA.

5.2 Lab process with industrial automation

The asset monitor was tested on a lab scale process with industrial components.
The view of the process in 800xA can be seen in Figure 5.3 and a photo of the
real process in Figure 5.4.

The big tank in the bottom supplies the two upper tanks with �uid. The
�ow from the bottom tank can be changed in the 800xA system. Both upper
tanks have their levels measured and controlled. The level of the tank to the left
is controlled by a control loop that changes the �ow from the tank by opening
and closing a valve. The input to the tank is seen as a disturbance and since
only the level in the tank is measured and not the �ows in or out, the process is
very slow. The tank to the right has the same features as the other but it has
an additional �ow meter and a controller at the �ow out from the tank. This
control loop takes the desired output �ow from the level control loop as its set
point. It is on this control loop the asset monitor has been tested.

5.2. LAB PROCESS WITH INDUSTRIAL AUTOMATION 49

Figure 5.3: Lab process as seen in the 800xA plant explorer.

Figure 5.4: Lab process.

50 5. APPLICATIONS

The values of the control input(OP), process variable(PV) and set point(SP)
for a time period while the asset monitor was tested can be seen in Figure 5.5.

Figure 5.5: Lab process data: OP - blue (top), PV - yellow (fast osc) and SP -
green (slow osc).

The time span for this picture is just over three minutes. When testing the
asset monitor a sampling time of �ve seconds was chosen, for the same reasons as
earlier when the asset monitor was tested, see Section 4.5. The small oscillations
will then hardly be seen as oscillations since the oscillations are so small. But
these oscillations mean that the controller has to work very hard to keep the
process variable close to the set point, the control signal travels a lot. This can
be seen in the alarms that are generated for the control loop seen in Figure 5.6.

Figure 5.6: Lab process alarms.

5.2. LAB PROCESS WITH INDUSTRIAL AUTOMATION 51

There is an alarm generated for the slow oscillation that the set point has.
This means that the level control loop is oscillating. The oscillation is due to
that the process is slow and it takes to long time to get the desired out �ow,
and by the time the desired out �ow is reached a new is already wanted. The
two other alarms suggest that the �ow controller can be tuned better.

To get a clearer picture of how the control loop is performing, the level
controller was turned o�, and the �ow controller was fed with a constant set
point. Data from this test can be seen in Figure 5.7.

Figure 5.7: Lab process data: OP - green (top), PV - pink (lower moving) and
SP - orange (constant).

Again the control signal seems to move a lot and the process variable does
not settle to a constant value. It looks like the controller could be tuned better.
A look at the alarms that were generated con�rm this, as seen in Figure 5.8,
con�rms this. Both alarms that are generated suggest that the controller tuning
should be recon�gured.

The main reasons for this test was to import the asset monitor into another
800xA system than it was developed on and test run it on data from a process
with real industrial automation. This was successful and the asset monitor is
ready for tests on real automation systems out in the industry.

52 5. APPLICATIONS

Figure 5.8: Lab process alarms.

Chapter 6

Final conclusions

The main purpose of this thesis was to implement a prototype asset monitor
for control loops in ABB's automation system 800xA. To be able to understand
the purpose and function of the asset monitor, control performance monitoring,
asset optimization and the 800xA system were described and explained. The
developed asset monitor is based on the Loop Performance Manager from ABB,
so to be able to understand how the asset monitor is suppose to work this
tool has to be understood. The LPM is given a batch of collected data. From
this data several index values are calculated. Each index is a measure of how
a certain part of the control loop is performing. The index values are then
compared to preset limits. Depending on how the indices relate to the limits
a diagnosis of the control loop is made. The diagnosis is described through
hypotheses, statements, that can be true, false or unknown. This means, that
given a diagnosis it can for example be said about the loop that it is oscillating,
it is not saturated and so on.

The developed asset monitor works in the same manner. But it collects its
own data, and when enough data (the amount set by the user) is colleted a
diagnosis is made. The asset monitor is operating continuously, and as soon as
something in a diagnosis is bad, events will be generated in the 800xA system
with hints of what could be the cause of the problem.

The asset monitor was �rst tested on o�ine data, which the LPM also had
been tested on. The results from the asset monitor were compared with the
results from the LPM, and it was seen that the asset monitor worked as it
should. It was then tested on online data, �rst on a control loop simulated in
Matlab Simulink and then on a lab scale process. The asset monitor generated
the alarms that were expected and worked as it should.

The SDK user manual[4] gave basic instructions of how to implement an
asset monitor into 800xA. But at some points this manual is inferior. Much
of the code for an asset monitor had to be generated through trial and error,
since the code is not explained satisfactory in the manual. There were also
problems to get the Matlab functions to operate as they should when called
from the Visual Basic code. A lot of testing with di�erent kind of variables

53

54 6. FINAL CONCLUSIONS

sent back and forth had to be done before the LPM Asset Monitor worked as it
should. To facilitate further improvements and asset monitor implementations
an implementation guide is also included in the thesis. This guide describes the
basic steps to implement an asset monitor, into the 800xA system, in detail.

The next step for the asset monitor would be to test it in a real plant, on
control loops that are operating in a real factory. For real industrial use the
asset monitor has to be con�gured, so that all individual asset monitor settings
are made automatically when the asset monitor is added to the desired object.
This have to made manually as the asset monitor is now.

Improvements on the asset monitor functionality can be made in many areas,
and among them are:

- more events can be added, for other control loop functionalities.
- each event can be divided to several levels with di�erent severities.
- the algorithms that calculate the index values can be extended.
- new real time algorithms can be developed, so that the asset monitor

can update the alarms for every new data sample that is collected.

These improvements are just examples for this control loop asset monitor,
but also asset monitors in general have great potential for further research and
development.

Appendix A

Indices for LPM

On the following page the details for all 38 indices in the LPM are displayed.

55

56 A. INDICES FOR LPM

F
ig
u
re

A
.1
:
In
d
ices

in
th
e
L
P
M
.

Appendix B

Hypotheses for LPM

Here all the hypotheses and preconditions for the LPM are displayed.

Figure B.1: Hypotheses in the LPM.

57

Appendix C

Visual Basic code Simple

example

Option Explicit

Option Compare Text

Implements AbbAoMSservice.ILogic

Private m_utils As AbbAoAmHelper.AssetMonitorUtils

Private lim As twoLimitExample.twoLimitExample

Private Property Get ILogic_Version() As String

ILogic_Version = App.Major & "." & App.Minor & "." & App.Revision

End Property

Private Function ILogic_Initialize(Configuration As MSXML2.IXMLDOMNode) As String

ILogic_Initialize = ""

Set lim = New twoLimitExample.twoLimitExample

Set m_utils = New AbbAoAmHelper.AssetMonitorUtils

If Err.Number <> 0 Then

Debug.Assert False

ILogic_Initialize = Err.Description

Err.Clear

End If

On Error GoTo 0

End Function

Private Sub ILogic_ExecuteLogic(ByRef AssetMonitor_IN As AssetMonitor)

Dim oValueElement As C_ValueElement

58

59

Dim oSubCondition As C_SubCondition

Dim InputPV As Double

Dim InputSP As Double

Dim diagnose As Variant

Dim ControlError As Double

On Error Resume Next

With AssetMonitor_IN

If .ConfigurationChanged Then

.LogicBlockParameter1Desc = "The first limit"

.LogicBlockParameter1 = CDbl(.AssetParameters.selectSingleNode

("Limit1").Text)

.LogicBlockParameter2Desc = "The second limit"

.LogicBlockParameter2 = CDbl(.AssetParameters.selectSingleNode

("Limit2").Text)

Call .ConfigurationChangedAck

End If

.InputRecords.Read

If m_utils.IsAssetMonitorInhibit(AssetMonitor_IN, "True", "INHIBIT") Then

Exit Sub 'If inhibit then exit

End If

.Status = m_utils.GetIORecordVE(.InputRecords, oValueElement, "PV",

NumericType)

If Len(.Status) = 0 Then

InputPV = oValueElement.Value

.Status = m_utils.GetIORecordVE(.InputRecords, oValueElement, "SP",

NumericType)

If Len(.Status) = 0 Then

InputSP = oValueElement.Value

ControlError = InputPV - InputSP

Call lim.checklimits(1, diagnose, ControlError,

.LogicBlockParameter1, .LogicBlockParameter2)

.StatusQuality = qualityStatusENUM.good

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

ControlError, "ControlError", False)

Set oSubCondition = m_utils.SetCurrentSubCondition(AssetMonitor_IN,

1, diagnose, False, .StatusQuality, .Status, False)

End If

60 C. VISUAL BASIC CODE SIMPLE EXAMPLE

End If

If Err.Number <> 0 Then

Debug.Assert False

.Status = "Unhandled runtime error in ILogic_ExecuteLogic():

" & Err.Description

.StatusQuality = qualityStatusENUM.bad

Err.Clear

End If

End With

On Error GoTo 0

End Sub

Private Sub ILogic_Terminate()

Set m_utils = Nothing

End Sub

Appendix D

Matlab functions in the LPM

Asset Monitor

CLPA_Indeices.m

[Indices, err, warn, IndexNames] = CLPA_Indices(y, r, u, ylow, yhigh,

ulow, uhigh, Ts, Looptype, cascade)

Where

Indices The calculated indices for the current batch of data.
err An array with error information.
warn An array with warning information.
IndexNames String containing the short names of all indices.
y Vector containing all process values for the current batch.
r Vector containing all controller set points for the current batch.
u Vector containing all controller out puts for the current batch.
ylow/yhigh Loop low/high range.
ulow/uhigh Controller output limits.
Ts Sample Time of log in seconds.
Looptype Loop category for monitored control loop.
cascade Cascade type ('master', 'slave').

61

62 D. MATLAB FUNCTIONS IN THE LPM ASSET MONITOR

CLPA_Diagnosis.m

[H,err,warn] = CLPA_Diagnosis(Indices)

Where

H The evaluations of the hypotheses.
err An array with error information.
warn An array with warning information.
Indices The calculated indices for the current batch of data.

Appendix E

Visual Basic code LPM Asset

Monitor

Option Explicit

Option Compare Text

Implements AbbAoMSservice.ILogic ' Asset Monitor Logic must implement this interface

Private m_utils As AbbAoAmHelper.AssetMonitorUtils ' Asset Monitor Helper functions

Private lim As LPMfunctions.matlabFunctions ' Matlab functions

Private Property Get ILogic_Version() As String

' Returns the Version for this Logic.

ILogic_Version = App.Major & "." & App.Minor & "." & App.Revision

End Property

Private Function ILogic_Initialize(Configuration As MSXML2.IXMLDOMNode) As String

' Called once upon startup to Initialize the Asset Monitor Logic

' Must Return "" if successful.

ILogic_Initialize = ""

Set lim = New LPMfunctions.matlabFunctions

Set m_utils = New AbbAoAmHelper.AssetMonitorUtils

If Err.Number <> 0 Then

Debug.Assert False

ILogic_Initialize = Err.Description

Err.Clear

End If

On Error GoTo 0

63

64 E. VISUAL BASIC CODE LPM ASSET MONITOR

End Function

Private Sub ILogic_ExecuteLogic(ByRef AssetMonitor_IN As AssetMonitor)

Dim oValueElement As C_ValueElement ' used to get input values

Dim InputRecordY As Double ' stores current process variable value

Dim InputRecordR As Double ' stores current set point value

Dim InputRecordU As Double ' stores current control signal value

Dim oSubCondition As C_SubCondition ' used to set sub conditions

Dim hypotheses As Variant ' returned hypothesis from matlab function,

' must be variant

Dim errors As Variant ' returned errors from matlab function,

' must be variant

Dim warn As Variant ' returned warnings from matlab function,

' must be variant

Dim names As Variant ' returned index names from matlab function,

' must be variant

Dim i As Integer ' used for For loops

Dim vectorSize As Integer ' stores the size of vectors

Dim returnedIndices As Variant' returned indices from matlab function,

' must be variant

Dim y() As Double ' process variable batch

Dim r() As Double ' set point batch

Dim u() As Double ' control signal batch

Dim TempVector() As Double ' used to store vectors betweeen variables,

' needed since the LBP are of the Variant instance

On Error Resume Next

With AssetMonitor_IN

' Checks if Asset Monitor Configuration has changed

If .ConfigurationChanged Then

Call AssetMonitorConfigurationChanged(AssetMonitor_IN)

End If

' if any problems were encountered a description

' is stored in .LogicBlockParameter9

.Status = .LogicBlockParameter9

If Len(.Status) > 0 Then

' Bad Configuration

.StatusQuality = qualityStatusENUM.badConfigurationError

' Sets all the Asset Monitor Conditions to

' Normal - badConfigurationError quality and EXIT.

Call m_utils.SetAllCurrentSubConditions(AssetMonitor_IN,

1, True, .StatusQuality, .Status, False)

65

Exit Sub

End If

.InputRecords.Read ' read all input records

'**** Inhibit Logic ***

' The following is the Standard inhibit logic that should be implemented in

' every Asset Monitor.

' LogicBlockParameter2 contains the value of the

' INHIBIT_VALUE Asset Parameter.

If m_utils.IsAssetMonitorInhibit(AssetMonitor_IN, "True", "INHIBIT") Then

Exit Sub 'If inhibit then exit

End If

'**** Store Values **

.Status = m_utils.GetIORecordVE(.InputRecords, oValueElement, "U",

NumericType)

If Len(.Status) = 0 Then ' no problems found if .status is empty

InputRecordU = oValueElement.Value

.Status = m_utils.GetIORecordVE(.InputRecords, oValueElement, "Y",

NumericType)

If Len(.Status) = 0 Then ' no problems found if .status is empty

InputRecordY = oValueElement.Value

.Status = m_utils.GetIORecordVE(.InputRecords, oValueElement, "R",

NumericType)

If Len(.Status) = 0 Then ' no problems found if .status is empty

InputRecordR = oValueElement.Value

' store values in batches if all input records are read with

' no problems,

' need to move values betweeen variables since LBP are of the

' variant instance

y = .LogicBlockParameter7

r = .LogicBlockParameter8

u = .LogicBlockParameter6

y(.LogicBlockParameter3) = InputRecordY ' LBP3=position in batch

.LogicBlockParameter7 = y

r(.LogicBlockParameter3) = InputRecordR ' LBP3=position in batch

.LogicBlockParameter8 = r

u(.LogicBlockParameter3) = InputRecordU ' LBP3=position in batch

.LogicBlockParameter6 = u

' if batches are full then.LBP3 = position,LBP2(6)=size of batch

If .LogicBlockParameter3 = .LogicBlockParameter2(6) Then

'**** Make Diagnosis ***

66 E. VISUAL BASIC CODE LPM ASSET MONITOR

' calculate indices

Call lim.clpa_indices(4, returnedIndices, errors, warn, names,

.LogicBlockParameter7, .LogicBlockParameter8, .LogicBlockParameter6,

.LogicBlockParameter2(4), .LogicBlockParameter2(5), .LogicBlockParameter2(2),

.LogicBlockParameter2(3), .LogicBlockParameter2(1), .LogicBlockParameter1(1),

.LogicBlockParameter1(2))

TempVector = .LogicBlockParameter4

' store values in vector

If IsArray(returnedIndices) Then

vectorSize = UBound(returnedIndices)

For i = 1 To vectorSize

TempVector(i) = returnedIndices(i, 1)

Next

End If

' store now indices

.LogicBlockParameter4 = TempVector

' make diagnosis

Call lim.clpa_diagnosis(3, hypotheses, errors, warn,

TempVector)

TempVector = .LogicBlockParameter5

' store values in vector

If IsArray(hypotheses) Then

vectorSize = UBound(hypotheses)

For i = 1 To vectorSize

TempVector(i) = hypotheses(i, 1)

Next

End If

' store new hypotheses

.LogicBlockParameter5 = TempVector

' reset values

.LogicBlockParameter3 = 0

ReDim y(1 To .LogicBlockParameter2(6))

ReDim r(1 To .LogicBlockParameter2(6))

ReDim u(1 To .LogicBlockParameter2(6))

.LogicBlockParameter6 = u

.LogicBlockParameter7 = y

.LogicBlockParameter8 = r

67

End If

' next position, LBP3 = position in batch

.LogicBlockParameter3 = .LogicBlockParameter3 + 1

End If

End If

End If

'**** Set Conditions **

.StatusQuality = qualityStatusENUM.good

.Status = ""

' set output records

Call SetAllOutputRecords(AssetMonitor_IN)

' if any problems were encountered a description is stored in

' .LogicBlockParameter9

.Status = .LogicBlockParameter9

' set subconditions, problems will be displayed with .status

For i = 1 To 13

If .LogicBlockParameter5(i) = -1 Then

Set oSubCondition = m_utils.SetCurrentSubCondition(AssetMonitor_IN,

i, 0, False, badLastKnownValue, .Status, False)

Else

Set oSubCondition = m_utils.SetCurrentSubCondition(AssetMonitor_IN,

i, .LogicBlockParameter5(i), False, .StatusQuality, .Status, False)

End If

Next

If Err.Number <> 0 Then

Debug.Assert False

.Status = "Unhandled runtime error in ILogic_ExecuteLogic():

" & Err.Description

.StatusQuality = qualityStatusENUM.bad

Err.Clear

End If

End With

On Error GoTo 0

End Sub

Private Sub ILogic_Terminate()

Set m_utils = Nothing

End Sub

Private Sub AssetMonitorConfigurationChanged(AssetMonitor_IN As AssetMonitor)

' Perform Configuration Change handling here.

68 E. VISUAL BASIC CODE LPM ASSET MONITOR

' This method is used to validate the Asset Monitor configuration such as

' Asset Parameters and Input Records.

' This method is called only if the AssetMonitor_IN.ConfigurationChanged flag is set.

' The ConfigurationChanged flag is set upon the very first execution or if the

' Asset Monitor COnfiguration is modified

' during runtime.

Dim pos As Integer ' position in batch

Dim H(1 To 13) As Integer ' hypothesis vector

Dim indices(1 To 38) As Double ' index vector

Dim y() As Double ' process variable batch

Dim r() As Double ' set point batch

Dim u() As Double ' control signal batch

Dim loopCategory As String ' loop category

Dim cascade As String ' slave or master cascade loop

Dim Ts As Double ' sampling time

Dim OPmin As Double ' The minimum control signal value

Dim OPmax As Double ' The maximum control signal value

Dim LRmin As Double ' The minimum output value

Dim LRmax As Double ' The maximum output value

Dim N As Double ' size of the batch

Dim LCandCascade(1 To 2) As String ' vector containing loopcategory and

' cascade values

Dim TsOPLRandN(1 To 6) As Double ' vector containing Ts, OPmin/max,

' LRmin/max and N

Dim i As Double ' used in For loops

On Error Resume Next

With AssetMonitor_IN

For i = 1 To 13

H(i) = -1 ' value of all hypothesis unknown

Next

For i = 1 To 38

indices(i) = -99999 ' value of all indices unknown

Next

' get asset parameter values

loopCategory = CStr(.AssetParameters.selectSingleNode

("LoopCategory").Text)

cascade = CStr(.AssetParameters.selectSingleNode("Cascade").Text)

N = CStr(.AssetParameters.selectSingleNode("N").Text)

Ts = CStr(.AssetParameters.selectSingleNode("Ts").Text)

OPmin = CStr(.AssetParameters.selectSingleNode("OPmin").Text)

OPmax = CStr(.AssetParameters.selectSingleNode("OPmax").Text)

69

LRmin = CStr(.AssetParameters.selectSingleNode("LRmin").Text)

LRmax = CStr(.AssetParameters.selectSingleNode("LRmax").Text)

' store in vektors, so that fewer .LBP are used

LCandCascade(1) = loopCategory

LCandCascade(2) = cascade

TsOPLRandN(1) = Ts

TsOPLRandN(2) = OPmin

TsOPLRandN(3) = OPmax

TsOPLRandN(4) = LRmin

TsOPLRandN(5) = LRmax

TsOPLRandN(6) = N

' reset batch vektors

pos = 1

ReDim y(1 To N)

ReDim r(1 To N)

ReDim u(1 To N)

For i = 1 To N

y(i) = -99999

u(i) = -99999

r(i) = -99999

Next

' store values in .LBP

.LogicBlockParameter9Desc = "Errors" ' variable containging errors

.LogicBlockParameter9 = "" ' initially empty

.LogicBlockParameter1Desc = "Loopcategory and slave or master

cascade loop"

.LogicBlockParameter1 = LCandCascade

.LogicBlockParameter2Desc = "Sampling time, OPmin/max, LRmin/max and

batch size"

.LogicBlockParameter2 = TsOPLRandN

.LogicBlockParameter3Desc = "Position in the batch"

.LogicBlockParameter3 = pos

.LogicBlockParameter4Desc = "Indices calculated for control loop during

last batch"

.LogicBlockParameter4 = indices

.LogicBlockParameter5Desc = "Hypotheses calculated for control loop

during last batch"

.LogicBlockParameter5 = H

.LogicBlockParameter6Desc = "Vector contaning control signals"

.LogicBlockParameter6 = u

.LogicBlockParameter7Desc = "Vector containing process variables"

70 E. VISUAL BASIC CODE LPM ASSET MONITOR

.LogicBlockParameter7 = y

.LogicBlockParameter8Desc = "Vector containing set points"

.LogicBlockParameter8 = r

' acknowladge that values have been updated

Call .ConfigurationChangedAck

If Err.Number <> 0 Then

Debug.Assert False

.LogicBlockParameter9 = .LogicBlockParameter9 & "Unhandled runtime

error in AssetMonitorConfigurationChanged(): " & Err.Description

Err.Clear

End If

End With

On Error GoTo 0

End Sub

Private Sub SetAllOutputRecords(AssetMonitor_IN As AssetMonitor)

' variable used to ensure that parameter is String in WriteToOutputRecord

Dim IndexValueAsString As String

On Error Resume Next

With AssetMonitor_IN

' write all outputs

IndexValueAsString = .LogicBlockParameter4(1)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "mean_CE", False)

IndexValueAsString = .LogicBlockParameter4(2)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "stdev_CE_norm", False)

IndexValueAsString = .LogicBlockParameter4(4)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "mean_PV", False)

IndexValueAsString = .LogicBlockParameter4(5)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "stdev_OP", False)

IndexValueAsString = .LogicBlockParameter4(6)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "skew_CE_norm", False)

IndexValueAsString = .LogicBlockParameter4(7)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

71

IndexValueAsString, "kurt_CE_norm", False)

IndexValueAsString = .LogicBlockParameter4(8)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "maxbicoher_CE", False)

IndexValueAsString = .LogicBlockParameter4(11)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "ratio_CE_OP", False)

IndexValueAsString = .LogicBlockParameter4(12)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "mode_automatic", False)

IndexValueAsString = .LogicBlockParameter4(13)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "mode_saturation", False)

IndexValueAsString = .LogicBlockParameter4(14)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "mode_cascade", False)

IndexValueAsString = .LogicBlockParameter4(17)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "shutoffvalue_PV", False)

IndexValueAsString = .LogicBlockParameter4(18)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "oscillation_CE", False)

IndexValueAsString = .LogicBlockParameter4(20)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "osc_period_time", False)

IndexValueAsString = .LogicBlockParameter4(21)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "osc_period_freq", False)

IndexValueAsString = .LogicBlockParameter4(22)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "osc_amplit_time", False)

IndexValueAsString = .LogicBlockParameter4(23)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "osc_amplit_freq", False)

IndexValueAsString = .LogicBlockParameter4(24)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "osc_severity", False)

IndexValueAsString = .LogicBlockParameter4(25)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "flag_stiction1", False)

IndexValueAsString = .LogicBlockParameter4(26)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "flag_stiction2", False)

IndexValueAsString = .LogicBlockParameter4(28)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "valve_travel", False)

72 E. VISUAL BASIC CODE LPM ASSET MONITOR

IndexValueAsString = .LogicBlockParameter4(29)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "ACF_ratio_index", False)

IndexValueAsString = .LogicBlockParameter4(32)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "crossing_SP", False)

IndexValueAsString = .LogicBlockParameter4(33)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "tracking_SP", False)

IndexValueAsString = .LogicBlockParameter4(34)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "travel_ratio_SP_PV", False)

IndexValueAsString = .LogicBlockParameter4(35)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "control_performance", False)

IndexValueAsString = .LogicBlockParameter4(38)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

IndexValueAsString, "outlier", False)

If Err.Number <> 0 Then

Debug.Assert False

.LogicBlockParameter9 = "Unhandled runtime error in

SetAllOutputRecords(): " & Err.Description

Err.Clear

End If

End With

On Error GoTo 0

End Sub

Bibliography

[1] ABB. OptimizeIT Loop Performance Manager User Manual. 2004.

[2] Horch, Alexander. ConditionMonitoring of Control Loops. PHD thesis, De-
partment of signals, sensors and systems, Royal Institute of Technology,
Stockholm, 2000.

[3] Biao Huang and Sirish L. Shah. Performance assessment of control loops:
theory and applications, Department of Chemical and Materials Engineer-
ing, University of Alberta, Edmonton, Alberta, Canada, T6G 2G6. 1999.

[4] ABB. Asset Monitor SDK User's Guide. WE-DOC-04562-C Litho, U.S.A.
2003.

[5] The MathWorks. MATLAB COM Builder User's Guide. 2002.

[6] M.A.A.S. Choudhury*, N.F. Thornhill** and S.L. Shah**. A data-driven
model for valve stiction,*Department of Chemical and Materials Engineer-
ing University of Alberta, Edmonton AB, Canada, T6G 2G6, **Depart-
ment of Electronic and Electrical Engineering University College London,
UK, WC1E 7JE

73

