ISSN 0280-5316
ISRN LUTFD2 /TFRT--5732--SE

Control Loop Performance Monitor

Fredrik Holstein

Department of Automatic Control
Lund Institute of Technology
December 2004

H Document name
Departmept of Automatic Control MASTER THESIS
Lund Institute of Technology

Date of issue

Box 118 December 2004

SE-221 00 Lund Sweden Document Number
ISRNLUTFD2/TFRT--5732--SE

Author(s) Supervisor

Fredrik Holstein Alexander Horch at ABB in Vésteras

Tore Hagglund LTH in Lund

Sponsoring organization

Title and subtitle
Control Loop Performance Monitor (Regulatorévervakningsmonitor)

Abstract

In this thesis a control loop asset monitor is developed for ABB"s automation
system 800xA. The asset monitor developed here is based on ABB®"s Loop Performance
Manager, which also is described here as well as the general properties and
functions of an asset monitor. The asset monitor is a prototype for the 800xA
system and a detailed description of how to implement asset monitors into the
system is given. The control loop asset monitor was tested on stored data from
real processes as well as on a lab scale process. This asset monitor will be used
as a base for further control loop asset monitors and the report will help
further asset monitor development in the 800xA system.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 75

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46
2224243

Contents

1 Introduction

2 Control Performance Monitoring

21
2.2

General
Optimize!” LPM

3 Asset Optimization

3.1
3.2
3.3

General
800xA Asset Optimization . . .
Asset monitor

4 Control loop asset monitor

4.1
4.2
4.3
4.4
4.5

Asset monitor SDK
Implementing the asset monitor
Simple asset monitor example .
The LPM asset monitor
Testing the LPM Asset Monitor

5 Applications

5.1

Simulink environment

5.2 Lab process with industrial automation

[=>}

5 O Q & »

Final conclusions
Indices for LPM

Hypotheses for LPM

Visual Basic code Simple example
Matlab functions in the LPM Asset Monitor

Visual Basic code LPM Asset Monitor

co @@

16
16
17
18

19
19
20
20
40
43

47
47
48

53

55

57

58

61

63

List of Figures

21
2.2
2.3
24

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

Thresholds for diagnosis. 11
Oscillating control loop 13
Well performing control loop 14
Control loop in manual mode 15
Maintenance labor usage. oL 16
800xA, platform for the complete integration of all data. 17
800xA Plant Explorer. 18
Implementation steps. 19
Step one: Matlab code.o Lo 21
The COM Builder GUIL. 22
New Project. oo 23
Step two: Asset monitor structure in Excel. 24
Asset Monitor definition.o 24
Conditions. e 25
Asset Parameters. 26
Input Records. 26
Output Records. Lo 27
Step three: Main logic code in Visual Basic. 27
Visual Basic properties. o 28
Visual Basic references. L. 29
View of Visual Basic window. 30
Step four: Asset monitor creation 800xA. 33
Adding anew object. oL 34
Adding a Alarm and Event List aspect. 35
Adding a general properties aspect. L. 36
Config View of asset monitor. 37
Configure path to input records. 37
Set the input records. L 38
Starting the server. oL 38
Testing the asset monitor., 39
Output records in 800xA. 39
Conditions for LPM asset monitor. 41

LIST OF FIGURES

4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34

5.1
5.2
5.3
5.4
3.5
5.6
5.7
5.8

Al

B.1

Asset parameters for LPM asset monitor. 41
Input records for LPM asset monitor. 42
Output records for LPM asset monitor. 42
Oscillating control loop data. 44
Oscillating control loop alarms. 44
Ok control loop data 45
Ok control loop alarms. 45
Saturated control loop data 46
Saturated control loop alarms. 46
Data for stiction model L. 47
Stiction alarms.o Lo 48
Lab process as seen in the 800xA plant explorer. 49
Lab process. e 49
Lab processdata oL 50
Lab process alarms. 50
Lab processdata 51
Lab process alarms. 52
Indices in the LPM. 56
Hypothesesin the LPM. a7

Chapter 1

Introduction

This thesis reports work done at ABB Corporate Research in Ladenburg, Ger-
many. ABB’s two main businesses are power technologies and automation tech-
nologies. ABB Power Technologies provide products, systems and services for
power transmission, distribution and automation. ABB Automation Technolo-
gies deliver solutions for control, motion, protection and plant integration across
the full range of process and utility industries.

The newest automation system from ABB is called ABB’s Industrial/”
Extended Automation System 800xA and includes a component called
Asset Optimization. This component contains tools for tuning, improving
or optimizing productive systems or end products, which all leads to reduced
maintenance.

Maintenance is a major expense for all companies today, which is the reason
why considerable savings are possible in this area. Maintenance is carried out
when something is broken or when something is found to be working badly at
routine checks. This could mean high costs if processes have to be shut down
to be able to repair what is broken. If the problems could be identified at an
early stage this might be avoided and both costs and work can be reduced.

One of the core functionalities in ABB’s 800xA Asset Optimization is asset
monitoring. The main purposes of an asset monitor are to identify equipment
failure, performance degradation and efficiency degradation that may impact
production output or quality. The purpose of the work done in this thesis
was to implement an asset monitor, which can monitor various control loops.
The asset monitor developed is a prototype for the 800xA system and should
be simple, but still work sufficiently well. Due to the prototype character of
the implementation, examples of how to implement asset monitors into the
800xA system will also be given, in order to facilitate later implementations
and improvements.

The asset monitor developed here evaluates certain control loop performance
indices that are calculated from data, collected online from the monitored con-
trol loop. These indices give an indication of how well the control loop is cur-
rently performing.

In order to implement the asset monitor into the 800xA system, the differ-
ent performance indices first had to be determined and then implemented in
Matlab. This code was then used to implement the asset monitor in Visual
Basic. The visual basic code constitutes the main logic of the asset monitor in
800xA. This together with the asset monitor structure, that is constructed in
the Asset Monitor Software Development Kit, forms the asset monitor.

To be able to understand how the asset monitor should function, control
performance monitoring, asset optimization and the 800xA system are explained
in Chapters 2 and 3. Then the steps to implement an asset monitor into the
800xA system are described through an example in Chapter 4. In this Chapter
the main asset monitor that is developed for this thesis, called the LPM Asset
Monitor, is also described. The asset monitor was tested on stored data values
and compared to earlier tests to this data. Finally, described in Chapter 5, the
asset monitor was tested online, both on simulated data and on data from a lab
scale process.

Chapter 2

Control Performance
Monitoring

2.1 General

Most, controllers in industries today are P-, PI- and PID controllers. These
are often only tuned once, during commissioning, or sometimes even not at
all. To be able to spot a badly working controller the plant engineer has to
be experienced and has to monitor the control loop closely, which can be hard
if many control loops have to be monitored, which usually is the case. If the
detection of badly performing control loops could be made automatic a lot of
resources could be saved and the quality of the control loop would increase.

The problems with automatic control loop monitors are to obtain informa-
tion about the control loop by a passive monitoring tool and how to quantify
what kind of behaviour that is deemed acceptable [2]. The industry also de-
mands the following of an control loop performance monitor:

e Non invasiveness, it should be a passive observer.

e No new sensors, should only use what is already available.

e Minimal process knowledge, ideally assume no knowledge.

e Simple algorithms, should monitor many loops at the same time.

There are some control performance monitoring tools on the market, achiev-
ing these goals. One of them being the Loop Performance Manager tool from
ABB.

2.2 Optimize’” LPM

ABB’s Optimize!” Loop Performance Manager (LPM) is a product that
helps monitor and tune process control loops [1]. The LPM contains an au-

2.2. OPTIMIZE!T LPM

diting module that performs control loop monitoring. The performance of the
monitored control loops is evaluated through certain indices in the LPM. Each
index contains a value that describes how a certain part of the control loop is
behaving. Some of the indices are direct measures of how the control loop is
performing, some carry more indirect information about the control loop. The
LPM evaluates 38 indices. Some of these indexes are described in this chap-
ter. From the indices a diagnosis is made containing 11 hypotheses describing
the performance of the control loop, for example the hypothesis control loop
oscillating can be given the evaluation value true, false or undecided.

The LPM is given a batch of data from the monitored control loop and then
evaluates its performance and creates a report of the evaluation. The report
can then be viewed, so that if the control loop is not working satisfactory it can
be corrected. The different hypotheses are described at the end of this chapter.

2.2.1 Indices

The LPM calculates values for 38 indices that all in some way or other describe
how the control loop is performing. Some of the more important indices are
described here. For a short description of all the indices see Appendix A.

Standard deviation

An easy value to calculate for the collected data batch is the standard deviation
of the process error. The absolute value of the standard deviation itself does
not indicate bad behaviour, but the trend of it between batches would. If the
standard deviation were to increase in time, it would mean that the controller
is working worse and worse and should be scheduled for an inspection.

Oscillation index/amplitude

A major problem with control loops is oscillation. This will give bad perfor-
mance and excessive controller movement, which increases the wear on the ma-
chinery. The integrated error between set point crossings are calculated and
compared to each other. If there are several similar area sizes and times be-
tween set point crossings there is oscillation present. This is a very important
index, since there is much to be gained if one can remove oscillations from a
control loop. The amplitude is estimated as well together with the oscillation
frequency.

Automatic/saturated mode

To be able to use the calculated indices at all, the mode of the control loop
has to be evaluated first. If the control loop has been in manual mode or if
it has been saturated for a longer time this may affect the values of the other
indices. If the mode has been in manual for too long time the value of the
other indices are not considered valid, since the controller has to be active to
be able to evaluate its performance. A control loop that is saturated too much,

2. CONTROL PERFORMANCE MONITORING

probably has to be readjusted so that it moves within its ranges. To see if the
controller is in manual mode or not, adjacent control loop values are evaluated,
if they do not change over several data points the controller is considered to
be in manual mode during this time. If these data points are above or below
certain limits, the loop is considered to be in saturated mode. The automatic
index gives a percentage of how much of the data points in the batch that are in
automatic mode. This has to be sufficiently large so that the other indices give
an accurate picture of how the controller is performing. The saturated index
gives, in the same way, a percentage of how many data points are saturated. If
this value is too large the controller values should be reconfigured.

Valve travel

This is an index that gives a value of how much the control signal moves during
the data batch. If the actuator varies a lot it means that a lot of extra energy
is spent to keep the process variable at the desired value. This could be avoided
by readjusting the controller parameters. The index gives a count of how many
times the control signal has moved a percentage of its range. The bigger the
value the more the actuator is working.

Setpoint crossing

If a controller is working well the process variable should be close to the set
point. This means that the process error should be small and that the process
variable will cross over the set point often. If there are few set point crossings,
reasons could be sluggish control, oscillations or an offset (e.g. pure P-control).

Shut off PV

An important monitor for flow loops is the shut off process variable index. This
index is the value of the process variable at times when the control signal is
considered to be zero, meaning that the controller is shut off, so there should
not be any flow through the loop. If there is a leakage in the loop the process
variable will have a value greater than zero. The Shut off PV index gives a mean
value of the process variable for all the times the control signal is zero, or very
small. Small leakage may be expected, but if the value is over a legal limit, an
alarm should be activated.

Harris index

To get an index for how good the controller of the process is performing the
Harris index is calculated [3]. This index compares how big the standard devi-
ation of the control error is to a minimum variance controller. The minimum
achievable variance is estimated from the data that is collected. To be able to
estimate a minimum variance controller for the process the dead time has to
be known. The dead time is generalized to different kinds of control loops, e.g.
liquid flow loops.

2.2. OPTIMIZE!T LPM

11

2.2.2 Diagnosis

After the indices are calculated a diagnosis is to be made whether the control
loop is working satisfactory or not (and if not: why). To be able to make the
diagnosis, sensible limits for the different indices have to be set. These limits
are generalised for every group of controllers, every loop category. Some of the
limits can be seen in Figure 2.1.

Threshold values for CLPA diagnoses

T T2 T3 T4 T5 T6 7 T8 9
T B lgj_ =
EE 5 = & = 5 2
& Bi:|ssPlsss| | 2 | B |B.sl: |2
,¢§?+ S22 |E8< |EEE| = z = EES| E 5
R ¥ EsZ|TEE|TES = = Es |228 | £33 %3
or Sz | g2E G20 S = 3 =8 = =
S 252 |8£5|SFE| 5 3 T2 |£¥5| &8 | &¢
Flow _liguid 0.5 0.3 0.1 60 10 500 10 0.6 2
Flow_other 0.4 0.3 0.1 60 10 500 10 0.6 2
Temperature 0.5 0.3 0.1 60 10 200 5 0.6 Mal
Composition 1 0.3 0.1 60 10 200 10 0.6 2
Pressure 1 0.3 0.1 60 10 200 10 0.6 Mak
Level_tight 1 0.3 0.1 60 10 500 10 0.6 Mal
Level_average 20 0.3 0.1 50 10 500 3 0.4 Makl
otherSRP 1 0.3 0.1 60 10 500 10 0.6 Mal
otherlNT 1 0.3 0.1 60 10 200 10 0.6 Mal

Figure 2.1: Thresholds for diagnosis.

The diagnosis is made by evaluating the following 11 hypotheses, they can
be true (1), false (0) or undecided (-1) and are based on one or several of the
indices compared to their limits. The Valve Problem hypothesis is based on
several indices. If one of the indices does not indicate valve problems while
the others do, it is not certain that there are valve problems. Therefore this
hypothesis has two different values of true, depending on if all indices indicate
valve problems or not.

Hi: Sluggish tuning
H2: Oscillating loop
H3: Possible valve problems

H4: Valve leakage or instrument zero error
H5: Oscillating setpoint

H6: Excessive valve movement

H7: Excessive measurement noise

HS8: Acceptable tracking behaviour
H9: Basic statistics o.k.

H10: Controller in saturation

H11: Acceptable overall performance

All of the hypothesis can not always be calculated. E.g. the valve leakage
hypothesis can only be calculated for control loops that monitor a flow. To be

12

2. CONTROL PERFORMANCE MONITORING

sure that no leakage is present, the control signal and the process variable both
have to be zero for sufficiently many of the data points. If the control signal is
not turned off a certain time of the monitored interval, the hypothesis can not
be evaluated.

The last hypothesis is based on eight preconditions. All off the preconditions
have to be true for the overall performance to be good. The preconditions are
as follows.

P1: Harris index good

P2: Set point crossing large enough
P3: Loop not oscillating

P4: Loop not saturated

P5: Loop not in manual mode

P6: Tracking acceptable

P7: No valve leakage

P8: No sluggish tuning

For an overlook of the hypotheses see Appendix B.

2.2.3 Testing the LPM

This section presents diagnoses for three different industrial examples. A plot of
the collected data is shown in a figure as well as the diagnosis of the hypotheses.

The first data set was collected from an oscillating loop. The collected data
can be seen in Figure 2.2.

The values calculated for the hypotheses can be seen in Table 2.1. The
performance of the monitored control loop can be read out of the diagnoses. For
this example hypotheses 1,2,3 and 11 are of interest. The conclusion of these
hypotheses is that the loop is not oscillating due to valve problems. The problem
lies either in the controller tuning or comes from an external disturbance.

Table 2.1: Diagnosis of oscillating example.

Hypothesis No. | Hypothesis Name Value
1 Sluggish Tuning 0
2 Loop Oscillating 1
3 Valve Problem 0
4 Valve Leakage/Zero Error -1
5 Setpoint Oscillating 0
6 Valve Travel 1
7 Noise 0
8 Acceptable Tracking -1
9 Statistical behavior ok 0
10 Controller Saturated 0
11 Acceptable Performance 0

2.2. OPTIMIZE!T LPM

13

R =TE
File Edit View Insert Tools Window Help
lDedsE|(xA 2/ 2o
& : : ; ; ;
., S L SO -GN 0 AOMSSON) SOOI 0 O MR N =] ol N 5. 4
ik |
o)
= 40 \ A
= 4 3]
o :]]
0 : : : :
- i i i i i
1} 200 400 &00 800 1000 1200
Data point
= T T T T T
& BT T | i Ay
= i i i i i
0 200 400 B00 g00 1000 1200
Data point

Figure 2.2: Oscillating control loop. Setpoint and process value(top) and con-
troller output(bottom).

The second data set was collected from an ok behaving loop. The data can
be seen in Figure 2.3

The values calculated for the hypotheses can be seen in Table 2.2. The
hypothesis of interest is the last one, that says that the control loop is performing
well, and no action is to be taken.

The next set of data is collected from a control loop that is in manual mode.
Since the control signal is zero at all data points the signal is saturated as well.
The data can be seen in Figure 2.4

The values given for the hypotheses can be seen in Table 2.3. The hypothesis
of interest is number 10. This tells us that there is bad performance since the
controller is “dead” = 0. The control loop does not calculate any valve leakage,
since it is not a flow loop.

14 2. CONTROL PERFORMANCE MONITORING

-loix]

File Edit Wiew Insert Tools Window Help

lozaa/ xa s @po

320

310

Y/ SP

300

280

- i i i i i
0 200 400 EO0 800 1000 1200
Data point

0 200 400 GO0 800 1000 1200
Data point

Figure 2.3: Well performing control loop. Setpoint and process value(top) and
controller output(bottom).

Table 2.2: Diagnosis of ok example.

Hypothesis No. | Hypothesis Name Value
1 Sluggish Tuning 0
2 Loop Oscillating 0
3 Valve Problem -1
4 Valve Leakage/Zero Error -1
5 Setpoint Oscillating 0
6 Valve Travel 0
7 Noise 1
8 Acceptable Tracking -1
9 Statistical behavior ok 0
10 Controller Saturated 0
11 Acceptable Performance 1

2.2. OPTIMIZE!T LPM

-Imix]

Fie Edit Wiew Insert Tools ‘Window Help

lczEa A2/ 2P0

€ ! ! ! ! !

48

Py | SP

| — — TR T .

T — — NN N W — .

47 ! ! ! ! !
i] 200 400 500 800 1000 1200
Data point

0P
o

| 200 400 600 800 1000 1200
Data point

Figure 2.4: Control loop in manual mode. Setpoint and process value(top) and
controller output(bottom).

Table 2.3: Diagnosis of saturated example.

Hypothesis No. | Hypothesis Name Value
1 Sluggish Tuning 0
2 Loop Oscillating 0
3 Valve Problem -1
4 Valve Leakage/Zero Error -1
5 Setpoint Oscillating 0
6 Valve Travel 0
7 Noise 0
8 Acceptable Tracking -1
9 Statistical behavior ok 0
10 Controller Saturated 1
11 Acceptable Performance 0

Chapter 3

Asset Optimization

3.1 General

The term Asset Optimization is widely used among companies these days. The
meaning of the term and the goal of all companies, is to maximize the produc-
tion and profit from the available resources. Having an asset working at peak
performance, and more important keeping it there, is what is needed. Failures
occur, and maintenance is at some point always needed, for all assets. It is
at these moments most gains in production can be made. By minimizing the
downtime of the asset and spotting an asset that is not working at peak perfor-
mance as early as possible, much can be gained. To spot these assets, a lot of
maintenance labour is wasted on routine checks, when no maintenance is needed
as seen in Figure 3.1.

D%

63% of maintenance labor

P results in no action!!
DR

35% -

30% -

25% 1
20% -

15% 1
10% -
5% -
0% - : . : : .
R outine Mo Calibration Zero Off Flugged Fzilzd
check Problerm =hift lines

Source: Shell Global Solutions

Figure 3.1: Maintenance labor usage.

16

3.2. 800XA ASSET OPTIMIZATION

17

If the asset that is not working at peak performance can be spotted without
routine checks, they are not needed, and a lot of labour can be gained. What is
needed is a system that spots these assets and the root cause of the problems
automatically.

3.2 800xA Asset Optimization

ABB’s state-of-the-art automation system is called Industrial’” Extended
Automation System 800xA. The system contains a single environment for
engineering, operation and information management. 800xA collects, aggregates
and analyzes real-time information from the whole plant and makes the neces-
sary information available for the right people in real-time. The information
flow in 800xA can be seen in Figure 3.2.

Enterprise Domain Flant Management

Efficient Engineerirg Vertical Integration and Optimization
i .'.-.l‘:- Managamsﬂt _g e Il:-_j_ =
Optimization T Hﬁﬁ
Operation
Lifecycle Domain
Harizontal Integration
Design Commissioning Calibration Senvice Retrofit
@ Contral =
: - Plant = =
Intelligent ’ B w——
Devices ey Salpoents Ry g
Diagnosis and
:::_.'.i Process Maintenance

Management

A

Figure 3.2: 800xA, platform for the complete integration of all data.

One of the core components within 800xA is called Asset Optimization.
This component contains tools for tuning, improving or optimizing productive
systems and end products as well as tools for monitoring control loops and other
assets.

The plant explorer in 800xA is divided into three parts, as seen in Figure 3.3.
The first part is the object browser. Here all objects in the current structure
are displayed. Objects can be any kind of asset in the plant. The second part is
the aspect browser. All aspects that the current object has, are displayed here.
An aspect contains properties for the object. In the third part the details for
the current aspect can be viewed and altered.

18

3. ASSET OPTIMIZATION

ﬂ M500017 System // Plant Explorer Workplace 1 =10 il
| - |2 [Enter search name) - |IND Filter <15 [replace]| %% @ | %] %m
T2 Control Structure « [l Aspects of Med 5td" | Modified | Desc... | Inherted | Category name | version |
58 oot Domain (=] plarm and Event List 19.07.2004 16:4... This... False #larm and Even... ver 1.0
- Assst Moritoring Server, Asset Monitoring [AssetMoritorProperties 14.09.2004 11:0,.. The... False #sset Monitor P, ver 1.0
9 LPM Asset Manitor | Contral Structure 30.05.2004 15:1... [Con... False Contral Structure wer 1.0
i Tl Med Std (5" nput record 19,07.2004 16:4... False General Propert.., ver 1.0
| & Output Test CI[LPM Asset Monitor 14.09.2004 11:0,.. Loop... False LPM Asset Manitor ver 1.0
T Sample Boiler i Name 19.07.2004 16:4... The.. False Hame: ver 1.0
i Sample Simple
L gl Several Stages AM
© & Slimit
g Tre Input Test
g Two Limit Exampls EO & = | Med Std:LPM Asset Manitor HBFE O
- Two Lt Test Med 5td - LPM Asset Monitor Asset Monitor
'l Vekbor Asset Moritor -
B Q Lost And Found Asgzet Monitor Status: good
e E apc best, Generic OPC Server Network Severily| Condition Sub Conditi D ipti Ti | Ruality Status
1 Shuggish Tuning Mormal 14.09.2004 11:05:19 good
Loop Oscilating Dscillating Loop Oscillating 14.09.2004 11:05:19 good
B Walve Problem Froblem Stiction or backlash 14.09.2004 11:05:19 . gond
1 Valve Leakage Mormal 14.09.2004 10:39:42 badLastKnowny alus
1 Setpoint Oscillating :Mormal 14.09.2004 11:0%:13 good
1 1 Valve Travel Mormal 14.09.2004 11:0%:15 : good
1 Excessive Moise “Momal 14.09.2004 11:05:19 - goad
i Tracking Mormal 14.09.2004 10:33:42 badlastnownt/ alue
Statistical Behavior Bad Bad Basic Statistics 14092004 110579 good
Contraller Saturated Mormal 14.09.2004 11:05:19 good
Harris Index Bad Bad Harriz Index 14.09.2004 11:05:13: good
Setpoint Crossings Bad Few Setpaint Crossings 14.09.2004 11.05:19 - good
Manual Mode Hormal 14.09.2004 11:05:13 good
4 3
| |8 - =0a ABS

3.3 Asset monitor

Figure 3.3: 800xA Plant Explorer.

An object that constantly monitors the performance of an asset, is called an
Asset Monitor. The object of this thesis is to implement an asset monitor
for control loops in the 800xA system, and document how to do this. Typical
objectives for an asset monitor are to [4]:

e Identify equipment failure indicators and implement predictive mainte-

nance strategies.

e Identify performance degradation that may impact production output or

quality.

o Identify efficiency degradation that may have economic or process impact.

e Identify faulty equipment.

The concrete implementation and architecture of an asset monitor is de-
scribed in the next chapter.

Chapter 4

Control loop asset monitor

4.1 Asset monitor SDK

Several steps are needed to implement an asset monitor into the 800xA. They
can be divided into four bigger steps as seen in Figure 4.1.

Implement code for
Matlab | ratrmatical computations
S)
Define asset monitor
Excel category structure
| P
Visual Basic Implement main code
for asset monitor
S N
Add asset monitor
800xA into 800xA system

Figure 4.1: Implementation steps.

If the asset monitor has to perform complex computations, these should
first be implemented in Matlab. This will make the main code implementation
in Visual Basic easier later on. The next step is to create an asset monitor
category, the structure for a whole category of assets. For example a boiler
asset monitor category, which can monitor boilers. The asset monitor category is
constructed through the Asset Monitor Software Development Kit (SDK)
in Microsoft Excel. An asset monitor category could be something simple,
like a high value check asset monitor category. That is an asset monitor category
that checks if an input value is higher than a given limit value. All asset monitors
in this category has the same structure, but they (could) have different input

19

20

4. CONTROL LOOP ASSET MONITOR

signals and limit values. That means that the category only defines the structure
of the asset monitor. All individual settings are then made in the 800xA system.

The structure of the control loop asset monitor should define how the per-
formance and the state of the control loop are quantified. The asset monitor
status is described through so-called conditions. Each condition can generate
an alarm, the alarm depends on the subconditions that are defined for each con-
dition. All conditions and subconditions have to be defined through the SDK.
The number of inputs and outputs that the asset monitor category needs are
also defined in the same Excel file.

The SDK enables the creation of a standard asset monitor form in Excel.
This form contains several sheets, that describe what information the asset
monitor category needs, and how it should be filled in. For example in one
sheet the conditions and subconditions have to be defined. In another a file
name, pointing to a visual basic program that should contain the logic for the
asset monitor category, shall be defined. The SDK can then create the asset
monitor category, making it available in the 800xA system.

Examples of exactly how to do this will be given later in this thesis.

4.2 Implementing the asset monitor

Once the structure of the asset monitor category is given, the logic of the asset
monitor has to be implemented. This is done in Visual Basic. The basic
structure of this logic is always the same. Among other things there must be
an initialize function, that initializes variables, and an execute logic subroutine
that implements the logic itself. In the execution logic, the variables’ values
that are defined in 800xA must be read and stored if they have been changed in
800xA. This could for example be the limit value in the high value check asset
monitor category. Then the input records should be read, and their values be
updated for the control loop asset monitor. The performance and status of the
monitored control loop can then be calculated. If the calculations are complex
or hard to implement in Visual Basic, they can be implemented as functions
in e.g. Matlab, and then simply be called from the Visual Basic code. A call
is then made to the 800xA updating the conditions and alarms there. A more
detailed description will be given with the examples below.

4.3 Simple asset monitor example

Introduction

In this example the steps to implement a simple asset monitor in the 800xA
system will be described in detail. This simple asset monitor will monitor if a
control loop error is outside any of two different limits. First a simple Matlab
function that does the mathematical computations will be developed. The con-
ditions and input records for the asset monitor are defined in an Excel worksheet
and uploaded automatically to the 800xA system through the asset monitor

4.3. SIMPLE ASSET MONITOR EXAMPLE

21

SDK. A .dll file is then made out of a Visual Basic program, which contains
the main logic. The Visual Basic code calls the Matlab function and uses the
conditions and input records defined in the Excel worksheet. The asset monitor
is then added into the 800xA system and the asset monitor can be tested. It
is required that Matlab, Visual Basic, Microsoft Excel and a 800xA system are
available on the used computer. The 800xA system must have the Optimize!”
Asset Optimization option and the Optimize!” Asset Monitor SDK installed.

Matlab code

Implement code for
mathmatical computations

Figure 4.2: Step one: Matlab code.

The first step, as seen in Figure 4.2, is to implement the mathematical com-
putations in Matlab. The Matlab function should in this example check if the
absolute value sent to the function is larger than two limits provided to it. The
return value of the function, diagnosis, should return an integer that should
be zero if the input is smaller than both limits, one if the input is larger than
the lower one of the limits and a two if the input is larger than the upper one
of the limits. For example the code could be as follows, where 1limit1 should
be smaller than 1imit2:

22

4. CONTROL LOOP ASSET MONITOR

checkLimits.m
function [diagnosis] = checkLimits(input, limitl, 1limit2)

if abs(input) > 1limit2
diagnosis = 2;

elseif abs(input) > limitl
diagnosis = 1;

else
diagnosis = 0;

end

This code is not very advanced and could of course be implemented straight
into Visual Basic. But the purpose here is only to show how to use Matlab
functions in a Visual Basic program. This is useful for programs that have to
compute advanced mathematical computations, which are easier to implement
in Matlab.

To be able to use the Matlab function in Visual Basic the function has to
be converted into a .dll file. The first step is to save the function, and to make
sure that the path name to the file does not contain any blanks. If it does the
Matlab function cannot be compiled into the .dll file. The compilation could
also fail if the Matlab file contains some variable names that are forbidden, for
example the variable name Auto will constrain the compilation to work. The
Matlab COM Builder [5] is used, to create the .dll file (there are also other
ways). This is accessed by writing: comtool, in the Matlab control window.
The COM Builder graphical user interface (GUI) will then open, see Figure 4.3.

) MATLAB COM Builder N =10l x|

File Project Build Component Help

rProject Fil Build Statu:

AdFilE

-

Figure 4.3: The COM Builder GUI.

Here the folder that should store the dll file will be created and the compi-

4.3. SIMPLE ASSET MONITOR EXAMPLE

lation of the Matlab function into a .dll file will be made. Choose File— New
Project... Here the component has to be given a name, for example twoLimi-
tExample. Then click in the class name box. The rest of the fields will then be
filled in automatically, as seen in Figure 4.4.

-} New Project Settings] ;Iglll

r Project naming

Component name

I twoLimitE =armple

Classes

Class name twoLimitE xample «
I— Add »> | _I
Remove | ﬂ

Project wersion
|10

Project directary

I F:\StudentenHolstein®Fredrik \A epartE xampleshSimplettwoLimitt

Browse... |

r Compile code in
(Ol
e

r Compiler options
™ Use Handle Graphics library
™ Build debug version
™ Show verbose output

oK I Cancel Help

Figure 4.4: New Project.

Leave it like that and click OK. When asked weather to have this folder
created, click OK. Click on the folder twoLimitEzample in the COM Builder
main window. Now the Matlab file has to be added to the project. This is
done by clicking on the Add File button and choosing the checkLimits.m file.
If several Matlab files wants to be added, they have to be added one at a time.
When the file is added press the Build button. If no problems are encountered
this will create the .dll file. Save the project and exit the program.

This completes the Matlab part of this example.

Asset monitor category

The steps to implement an asset monitor into the 800xA system are described
in the Asset Monitor SDK user’s guide [4]. Some steps are described more
in detail there, and should be consulted for more information or if problems are
encountered. But there are things that are not dealt with in the SDK manual
that are described here.

The next step is to define the asset monitor category in Excel, as seen in
Figure 4.5.

24

4. CONTROL LOOP ASSET MONITOR

Define asset monitor
category structure

Figure 4.5: Step two: Asset monitor structure in Excel.

The conditions and input records (the signals from which the asset monitor
should collect its data) for the asset monitor can conveniently be assigned in
Microsoft Excel through the Asset Monitor SDK add-in. When Excel is opened
there should be a toolbar with two buttons, Update AM Category and Export
AM Category, in the Excel worksheet if the Optimize!” Asset Monitor SDK is
correctly installed. Open a new file and press the Update AM Category button
and disregard the error messages. This will create the standard sheets that are
needed to assign conditions and input records for the asset monitor category.
Save the file, for example as Two Limit Example Definitions, and then press the
AM Definition sheet. There the red cells have to be filled in with information
about the asset monitor name and what the name of the asset monitor logic is.
An example of how to fill them in is given in Figure 4.6.

FA Microsoft Excel - Two Limit Example Definitions.xls

J@ File Edit Wiew Insett Format Tools Dats Bulk Data Manager Window Help
DEE|@RY|s4BRS| o o (R 8l E| B 0w -
J BI‘! m E ' . . | END Syster “ & Update &M Category .Y Export &M Category

Hza -]
A | B &

| 1 |Asset Monitor Category Name “Twao Limits Example Asset Manitor
| 2 |AM Logic Prog ID “TwaLirmExAM. Logic
| 3 |Logic Execution Interval (milliseconds)] 5000
| 4 |Asset URL b
| 5 |Short Description “Twao Limits Example Asset Manitor
| 5 |Long Description Z
| 7 |Asset Monitor SDK Version 73.1.0634

Figure 4.6: Asset Monitor definition.

The name of the asset monitor should describe the asset monitor, this will

4.3. SIMPLE ASSET MONITOR EXAMPLE 25

make it easier to use and find later. The AM Logic Prog ID should be the
name of the logic that will be implemented in Visual Basic later on, this should
be remembered when the Visual Basic project is named. If the Update AM
Category button is pressed again the red cells containing valid data will turn
grey.

Next, click on the Conditions sheet. Here the different conditions and sub-
conditions that should be monitored have to be defined. Every condition is
something the asset monitor should observe and generate alarms for, for exam-
ple if a value is over a limit. This means that each condition should have at
least two subconditions. One of the subconditions should be the normal state,
in which no alarm is active, this is where the control loop should be operating.
The other subconditions generate different kind of alarms for the condition. For
each subcondition a description of the alarm can be given, as well as a suggested
action to correct it. Each subcondition should be given a different ENUM num-
ber (number that defines the different subconditions), this is used when the logic
is implemented, to set the different subconditions. To measure how severe each
alarm is, each sub condition is given a severity number. A higher number means
that the alarm is more severe. The range of the severity number is 1-1000. The
condition for this example can be seen in Figure 4.7.

E3 Microsoft Excel - Two Limit Example Definitions.xls

J File Edit Wew Insert Format Tools Data Bulk Data Manager MWindow Help

DEHSRY sBRS o- [@= a4 2 @0 -3 e

IEﬂ E ’ . . | mNo Siysten |J :t; Update &M Category ;;’; Expart AM Cateqgory
G4 =

El
A]BJ] ¢] D = F 6] H JITJ]K]
ER Condition ENUN SubCondi Description Possible Cat Suggested Action " Corret Severity Impa Impat Impac
| 2 |OwverLimit 0 Mormal 1 0 0 0
3 | OwerLimit 1 High Error over limit 1 Big error Move P closer to SP 500 0 0 0

:OverLimit 2 %ery High Error over limit 2 Very big error Move PV closer to SFi _l 1000 0 0 0

T |

o

Figure 4.7: Conditions.

In this example there is only one condition with three subconditions. The
condition can be named arbitrarily, here it is named OverLimit. The ENUM
should contain the subcondition number. The zero has been reserved for the
normal state. This state should also have one as severity number, since it is the
normal state and no alarm should be active.

In the Asset Parameters sheet the two limits that are chosen should be filled
in. All variables filled in here can have their values changed in the 800xA
system later on. Suitable names for the parameters in this example are Limit1
and Limit2. This can be seen in Figure 4.8.

Next thing to add into the Excel file is the input records. In this sheet the
input signals, that the asset monitor should receive, have to be defined. Here
three input signals are used, INHIBIT, PV and SP. The first input is used to

26

4. CONTROL LOOP ASSET MONITOR

J@ File Edit Wiew Insert Format Tools Data Window Bulk Diaka Mans
DeH SRy t2BS o= &= 5

| sk Update am

JEKE E “ .. |N05y5tem

Ed [= =
A | B | ¢ | D
| 1 |Asset Parameter Namé Parameter Value
| 2 |Lirnit1 2
| 3 |Lirnit2 5
4] —1

Figure 4.8: Asset Parameters.

inhibit the asset monitor from doing anything. This is used if the monitored
asset is under maintenance or if there is temporary need to suppress alarms
from the asset monitor. The other two should represent the process variable
and the setpoint for a control loop, which are used to compute the control error
for which the limit supervision is desired. See Figure 4.9 to see how to fill them
in.

D@H|§@.i&°\éﬂg®|n,nv @ = A 2 o

J il RN N | o system |J & Update &M Categary <Y, Export AM Category |

JB | =

A | B [E [
1 |InputRecord If Description Y Units' Discrete Data Source Aspecl Data ltem
2 |INHIBIT Inhibit value FALSE
E The Process “ariable 1 FALSE
A [SE The Set Foint 1 FALSE
izl
=

Figure 4.9: Input Records.

The last things to add are the output records. These are used to make values
visible in the 800xA system. In this example the control error will be displayed.
Supported output record data types are: VI _BSTR (string), VT 14 (long),
VT _R8 (double), VT _BOOL (boolean) and VT _DATE (date). An example
of how to fill the fields is shown in Figure 4.10.

Now all the required definitions have been made. To upload the asset monitor
category to the 800xA system press the Export AM Category button. Choose
the Two Limit Example Asset Monitor and press Ezport asset monitor into
Excel. Then press the Update AM Category button. This makes the Two Limits
Example Asset Monitor available in the 800xA system. But there is no logic
connected to the asset monitor. This has to be implemented in Visual Basic.

4.3. SIMPLE ASSET MONITOR EXAMPLE 27

J File Edit Wew Insert Format Tools Data Bulk Data Manager Window Help
|03 @ﬂ|§@."& o E@’|n. v | T 58] §l|ﬂ£}wu% Z @,“nrial

J EM E E ' . . | ND System J :lg'g Update AM Category :";': Expork AM Category
i3 | =

ol ! B 1072000 =0 - = | H |
_1 |OutputRecord ID" Description Units' Discrete' Data Type Minimum Maximum No. of Decimals
2 |ContralError the control errar 1 FALSE T |4 0 100 1
3] | | _ | [
A
g

Figure 4.10: Output Records.

Visual Basic

The logic of the asset monitor is implemented in Visual Basic. This is the next
step in the asset monitor implementation, seen in Figure 4.11.

1]
: Implement main code

Figure 4.11: Step three: Main logic code in Visual Basic.

Start Visual Basic and choose to open a new ActiveX DLL project. Open the
project properties. The project should here be given a suitable name, remember
what logic name was given in the Excel work sheet. In this example the name
should be TwoLimExAM. The property settings are shown in Figure 4.12.

The project also has to make some references. Open the project references
(in the project menu). Here the following five references should be added, also
seen in Figure 4.13.

e AbbAoCommonUtils
e AbbAoMSservice
e AbbAoAmHelper

4. CONTROL LOOP ASSET MONITOR

Projectl - Project Properties] L ﬂ
General | Make I Compile | Component | [ebugging |
Project Type: Startup Objeck:
Jactivex DL =zl Jovione) =]
Project Name:
| TwwoLimExam
Project Help
Help File Marme: Conkexk ID:

| INE

Project Descripkion:

Threading Model

¥ Unattended Execution
w . | Inpartment Threaded j
v Upagrade Activex Controls

R4 & Thread per Ohiject
I~ Require: License key: % ThreadFodl m threads
™ Retained In Memary

ak I Cancel | Help

Figure 4.12: Visual Basic properties.

e Microsoft XML, v3.0

o twoLimitExample 1.0 Type Library

The first four references are needed to get the asset monitor working. The
last reference is such that the Matlab function that was written can be found
and used. The class name in the project then has to be changed to Logic. This
can be done in the Visual Basic main view of the project.

Then create an original dll file by choosing Make TwoLimExAM.dII in the
File menu. In the project properties under the Component tab then choose the
Binary Compability option. If the file has not yet been saved, this should be
done. Remember to have the class named Logic, and the project named the
same as in the Excel file.

Now it is time to start implementing the main code. To be able to use all
needed commands and functions the following has to be written in the header
of the code:

Option Explicit

Option Compare Text

Implements AbbAoMSservice.ILogic

Private m_utils As AbbAoAmHelper.AssetMonitorUtils
Private lim As twolimitExample.twoLimitExample

The first line always has to be written in Visual Basic when variables are to
be declared. The next three lines are there such that the asset monitor and the

4.3. SIMPLE ASSET MONITOR EXAMPLE 29

References - TwolimExAM

Available References: oK

vl visual Basic For Applications ﬂ Cancel
W] visual Basic runtime objects and procedures

W] visual Basic objects and procedures
W] SLE Automation Browse...
[w] sbbaosmHelper

abbaaCommaonUtils ﬂ
abbAoMSservice

[w] Microsaft ¥ML, w3.0 Priarity
Bl oLirnitE < armple 1.0 Tvpe Library
[145 Helper COM Component 1.0 Type Library il
[] 185 RADIUS Protocal 1.0 Type Libeary

[:-) videnSaft YSFlexGrid 7.0 (Light/Unicads)

| 4BE Advart Extended Primitives Type Library (1,00

TIABB Advant Primitives T\ine Library (1,00 _lLI

4 »

)

Help

—bwoLimitExample 1.0 Tvpe Library

Location: 4Data-sry1\PublictStudenteniHolstein!FredrikiReport Example
Language: Standard

Figure 4.13: Visual Basic references.

dll made from the Visual Basic code can communicate. The last line declares a
variable that is an instance of the Matlab dll file. The name of the two private
variables can of course be different than above. Then the following property,
function and subroutines have to be implemented in the code window in the
Visual Basic project as seen in Figure 4.14.

e Property Get Version() As String
e Function Initialize(ByRef Config As MSXML2.IXMLDOMNode) As String
e Sub ExecuteLogic(ByRef Assetmonitor_IN As AssetMonitor)

e Sub Terminate()

The property get version is used to get the version of the implemented logic.
This could be useful to keep track of different versions of the same logic out in
the field. A typical implementation looks as:

Private Property Get ILogic_Version() As String
ILogic_Version = App.Major & ’.”” & App.Minor & *’.”
& App.Revision
End Property

The initialize function should initialize the private variables and return an
empty string if this is successful. If any errors occur the error message should
be returned, which is taken care of in the last part of the function. It will look

30 4. CONTROL LOOP ASSET MONITOR

sy, TWOLIMERAM - Microsoft Yisual Basic [design]

fle Edit View Project Format Debug Run Query Disgram Took Add-ns Window Help

”ﬁ'ﬁ'ﬁlﬁﬂ‘%%ﬂﬂlﬂ ol 0 om[B RS R E] s

o | e GRS
’T ILogic ~| [rerminate = (=25 TwoLimExAM (Twe
— 149 Class Modules
A Jabl Option Explicit = B
5 ogic (Logic.c
- Option Compare Text
B = Implements MshbioMSservice. ILogic
s Private m ntils As ikbhoimBelper.issetMonitorUrils
Private lim A5 twolimitExawple.twolimitExawple
El e
Private Property Get ILogic Wersion(] ks String
gy 4 ILogic_Version = pp.Major & .7 & App.Hinor & "." & App.Revision
. End Property
=
: Private Function ILogic Initialize(Configuration As MSEHLZ.IXHLDOMNode] ks String
o ILogic_Initialize = "
Set lim = New tyolimitExample.tvolimitExample
Set m utils = New ibbiokwfelper.issetHonitorUtils
If Err.Number <> 0 Then
Debug. kssert False
ILogic_Initialize = Err.Description
Err.Clear
End If = =
On Error GoTo O
End Function Logic Classttodule
alphabetic |categnnzed 1
Private Sub ILogic_Executelogic (ByRef kssetlonitor IN ks AssetMonitor)
Dim oValueElement is C_ValusElement Logic
Din oSubCondition ks C_SubCondition DatabinvdniPehiavior (0. ¢
Dir THputPV As Dousle DataSourcetizhavior 0 - vbi
Dim InputSP &3 Dounle Instancing 5-Mu
Dirm diagnose s Variant MTSTransactionMade 0 - No
Din ControlError is Double IR lPersistable DN
On Frrar Resmme Nest

Figure 4.14: View of Visual Basic window.

as follows for this example:

Private Function ILogic_Initialize(Configuration

As MSXML2.IXMLDOMNode) As String
ILogic_Initalize = > »
Set 1lim = New twolimitExample.twolLimitExample
Set m_utils = New AbbAoAmHelper.AssetMonitorUtils
If Err.Number <> O Then
Debug.Assert False
ILogic_Initialize = Err.Description
Err.Clear
End If
On Error GoTo O
End Function

The terminate subroutine is quite simple and should only set the m_utils
variable as nothing.

Private Sub ILogic_Terminate()
Set m_utils = Nothing
End Sub

The last subroutine is the one containing the main logic. Here the limits and
input records have to be read, the Matlab file should be called and the status

4.3. SIMPLE ASSET MONITOR EXAMPLE

31

of the asset monitor should be updated. First the variables needed in the sub-
routine have to be declared. The beginning of the subroutine could be as follows.

Private Sub ILogic_ExecuteLogic(ByRef AssetMonitor_IN
As Asset Monitor)
Dim oValueElement As C_ValueElement
Dim oSubCondition As C_SubCondition
Dim InputPV As Double
Dim InputSP As Double
Dim diagnosis As Variant
Dim ControlError as Double

The first variable is needed to get the values of the input records. The second
one to set the subconditions. These two are in other words always needed. Next
come the variables needed especially for this example. The diagnosis variable
has to be of the Variant instance. The variables used in a call to a Matlab
function have to be of the right instance, so that Matlab and Visual Basic can
use the variable correctly. All variables that are returned from a call to a Matlab
function have to be of the Variant instance. The variables sent in to the Matlab
code should be of a suitable instance, depending on how it is used in the Matlab
function. If an integer variable is sent into a Matlab file from Visual Basic, there
can be no multiplications or divisions with this variable in the Matlab code, the
call from Visual Basic to the Matlab function can in this case be unsuccessful
and empty variables will be returned.

Next the limits have to be collected.

On Error Resume Next
With AssetMonitor_IN
If .ConfigurationChanged Then
.LogicBlockParameteriDesc = ’The first limit”’
.LogicBlockParameterl = CDbl(
.AssetParameters.selectSingeNode (”’Limit1”’) .text)
.LogicBlockParameter2Desc = ’’The second limit”’
.LogicBlockParameter2 = CDbl(
.AssetParameters.selectSingeNode (”’Limit2’’) . text)
End If

The first line is used in case an error occurs in the code when run. The
second row is there so that AssetMonitor_IN does not have to be written every
time it is called. It is enough to write a dot followed by the command in the
AssetMonitor_IN that is wanted. The if line checks if the limits have been
changed in 800xA, in this case they have to be loaded and stored again. The if
line is also true the first time it is checked. There are 10 LogicBlockParameters,
and they can contain any kind of variable, even vectors. These are used to store
variable values for the individual asset monitors. It would not work with a
public variable, since there can be many instances of the same asset monitor

4. CONTROL LOOP ASSET MONITOR

category.

. InputRecords.Read
If m_utils.IsAssetMonitorInhibit(AssetMonitor_IN, "True",
"INHIBIT") Then

Exit Sub
End If
.Status = m_utils.GetIORecordVE(.InputRecords,oValueElement,

»PV*’ , NumericType)
If Len(.Status) = 0 Then

This piece of code first reads the input records. Then the INHIBIT value is
checked. If the value is equal to the second parameter, in this case True, then
all conditions will be set to the normal state and have the status Inhibit and
the quality goodLocalOverride. After that the subroutine will be exited. If the
asset monitor is not inhibited the next input record value will be read and if no
errors occurs, .Status will be empty. The code should continue to run in this
case. Inside the if case the next input record has to be read, after the first one
has been stored in a local variable.

I

oValueElement.Value
m_utils.GetIORecordVE(.InputRecords,oValueElement,
»*SP*’ NumericType)

InputPV
.Status

If Len(.Status) = 0 Then
After this the calculation part of the code can be executed.

InputSP = oValueElement.Value
ControlError = InputPV - InputSP

Call lim.checklimits(l, diagnosis, ControlError,
.LogicBlockParameterl , .LogicBlockParameter2)

.StatusQuality = qualityStatusENUM.good

.Status = .Status & m_utils.WriteToOutputRecord(
AssetMonitor_IN, ControlError, "ControlError", False)

Set oSubCondition = m_utils.SetCurrentSubCondition(
AssetMonitor_IN, 1, diagnosis, False, .StatusQuality,
.Status, False)

In this piece of code, the values for the variables are first stored. Then
the call to the Matlab function is done. First, in the parameters given to the
function, is the number of outputs, one in this case. Then the outputs should
be given, they all have to be of the Variant instance. Last the inputs are given,
in this case, the two limits. Once the call is successfully made, the quality of
the conditions are given the value good. Then the output records are written

4.3. SIMPLE ASSET MONITOR EXAMPLE

to. If that is done successfully, the .Status will be empty. Otherwise the
error message is stored there. Last the subcondition is set to the value given in
diagnosis. This is done in the .SetCurrentSubCondition. The place where
diagnosis variable is placed is the place where the ENUM should be placed
for the wanted subcondition, and this is conveniently the same value as in the
diagnosis. If there is an error message in .Status , this will be shown in the
description of the condition in 800xA.

Finally after the if cases have been ended the errors have to be taken care
of.

End If

End If
If Err.Number <> O Then

Debug.Assert False

.Status = ’Unhandled runtime error in

ILogic_Executelogic(): °

.StatusQuality = qualityStatusENUM.bad
Err.Clear
End If
End With
On Error GoTo O
End Sub

> & Err.Description

The final thing to do is to make the dll file for the project once more, this
has to be done every time a change has been made in the code.

That concludes the Visual Basic part of the asset monitor. An overview of
the code can be seen in Appendix C.

800xA

Add asset monitor
into 800xA system

Figure 4.15: Step four: Asset monitor creation 800xA.

4. CONTROL LOOP ASSET MONITOR

Now the asset monitor will be added into the 800xA system and tested. This
is the last step in the asset monitor implementation, see Figure 4.15.

The asset monitor should be added in the control structure of the 800xA sys-
tem. In the Control Structure, Root, add a new object to the Asset Monitoring
Server as seen in Figure 4.16.

=10l x|

&% M500017 System // Plant Explorer Work
=@ [|[rtor soorch none) 1o Feer e e [R |
& Control Structure jl Aspects of 'Asset Monitaring Server' | Modified [Desc... [Inherited
= 9 Root, Domain JI Afw OPC-DA Asset Monitor Data 5., 22.08.2003 20:2..

5 8 Asset Manitaring Server, Asset Manitaring 3| EEarm List 06.11,2003 22:0..,
New OF} e -~ =004 1215..,

[New Object K 3 | i

[Category name | Version |
Asset Monitor D.

Alarm and Even, ..
Asset Manitarn...
Asset Monitorin. .

Asset Reporter

False ver 1.0

ver 1.0
ver 1.0
ver 1.0

This ... True

Falsz.
False
004 09:4... This ..

False ver 1.0

Commen | Product Type Structure |

[~ @bject description

*Generic Type
= Obect Types
[3-rd parky OPC server support
[ABB System
- Asset Monikors

Additional Argumertts

003 20:2...
004 16:4..
003 22:0..,

[Con.
This ..
003 20:2.. The...

Falsz
False
True
False

Asset Viewer
Control Structure
Alarm and Even, ..
Name.

ver 1.0
ver 1.0
ver 1.0
ver 1.0

e

[+ Asset Optimization
[Control System

[Functional Planning
- Industrial

Chject Iron

Name.

Two Limik Example

F howal T List presentation

Create I

Advanced. . Set GUID... Cancel | Help |

\ |8 -o0a ABS

Figure 4.16: Adding a new object.

In this, object aspects then have to be added so that the asset monitor can
function properly. First add a new Alarm and FEvent List aspect to the Two
Limit Example object shown in Figure 4.17.

Next an aspect that generates input records has to be created. This aspect
is needed to generate test data so that the asset monitor can be tested, and
contains the value of the INHIBIT variable. Add this by choosing to add a new
aspect, to the object, that is under Basic Property Aspects, Basic Property
Properties and is called General Properties. Name the aspect Input Records
as seen in Figure 4.18.

Last the asset monitor aspect has to be added. The Two Limits Fxample
Asset Monitor can be found under Asset Monitoring and then Asset Monitors.

All the aspects that are needed have now been added. Now the aspects will
be configured so the asset monitor can be tested. Go to the Config View of the
Two Limits Example Asset Monitor as shown in Figure 4.19.

Under the Server tab set the Monitoring Server as Default. Then go to the
Input Records tab and set all input records to be Default data source aspects.
The Data Source Item is the path to where the asset monitor can find the input

4.3. SIMPLE ASSET MONITOR EXAMPLE

35

@Msnuuﬂsystgm / Plant Explorer Workplace _(of %]
|| - [IFR) [Enter swarch name) —_[||_Nu Fer TP |[rereee =183 @ i | %R
2 Control Structure = |[Aspects of Tuwo Limit Example’ [Modified [Desc... [Irherted | Category name | Wersion |
5@ Root, Domain | Control Structure 26.07.2004 10:1.., [Con... False Control Structure— ver 1.0
Egnsset Morikoring Server, Asset Monitaring § = Mame 26.07.204 10:1.., The.. False Name ver 1.0
i & Medstd
- Gl Sample Boler
& Sample Simple
L - Slimit
i g Tre Input Test
- g Two Limit Example

New Aspect x|
-~ Mspect description—————————————— 1% 5 = -
j This aspect category is used to create

?ﬂf Comman |Prndu[t Type Structure |
= Aspect System Structure

alarm and event list aspects. Alarm

AC B00M/C Connect andjor evertt lists shows the current

AES Error Conkext alarms or the event sequences recarded

- Aes warishle Table inthe system,

BesMHTMLAapter

BesPMCakegorySupervision

- pesPropertyTransfer

=} Alarms and Events Aspect Teon
D Alarm and Event: List

{#)- Alarm and Event List Carfigu
i Name

(¥ Alarm Band =
i 5 Alarm and Event List

[¥ Snavial T List presentation

Crests I Cancel | Help. |

Figure 4.17: Adding a Alarm and Event List aspect.

records. To test the data we create input records in the Imput Records aspect
that was created earlier. The paths to these data are %ID%:INHIBIT, %ID%:PV
and %ID%:SP. This can be seen in Figure 4.20. If the path is not known the
Open Properties Browser button to the bottom right can be clicked and the
path to the input records found by clicking through the folders. Click Apply to
apply the new settings.

Next go to the Config View of the Input Records Aspect. Here the three
input records, INHIBIT, PV and SP, have to be added. They should both be
readable and writable, PV and SP should be of the data type real, and INHIBIT
of the type Boolean (or String, but then the value of the variable has to be
written manually every time it is changed). This can be seen in Figure 4.21.

After all the input records have been added, apply the settings by pressing
the Apply button. Now the asset monitor is ready to be tested.

Testing the asset monitor

To test the asset monitor the asset monitoring server has to be started. Go to
the Config View of the asset monitoring server seen in Figure 4.22

Press the Download/Restart button. Now the asset monitor should be run-
ning. To see if it is running properly, go to the Main view of the server and
press the Status button. The status should be good, otherwise there is prob-
ably something wrong with the implemented asset monitor and it cannot get

36

4. CONTROL LOOP ASSET MONITOR

% M500017 System // Plant Explorer Workplace | =101 x|
50| 0| @ [Eoter searchrame) =] [vorker _ 15 |[[Repece 1| 48] @ i [%] |
[T2 Cantrol Structure ~~| [#spects of Tuo Lt Example [Modified [Desc.. [Inherted | Categoryname | version |
=& Roak, Doman (=] Alarm and Event List 26.07.2004 10:2.., This... False Alarm and Even... ver 1.0
(53 6@ Asset Monitoring Server, Assst Monitoring § 5| Control Structure 26.07.2004 10:1... [Con... False Control Struckure — ver 1.0
g Med Std 2 hame 26.07.2004 10:1... The... False Hame ver 1.0
g Sample Bailer
{ - Sample Simple
-G it
+-fg Tre Input Test
|-G Two Limit Example
fliNew Aspect Il 4|
% e
% Common | praduct Type Structure | aspect desarpton—————————— FI® 8 &
=1 Basic Praperty Aspects -]
- Basic Froperty Aspect Name
EI-Basic Property Properties
-~ ACAOOMC SEZ Migration
Asset Moritor Properties e
Comercial Information
- Function Enumerations =
: Function Settings
H L
i General Praperties - i
. i — ’ Input Records
7 show sl T Lst presentation
Create | Cancel | Help |
4| | »
‘ |8 ~ soia ABB

Figure 4.18: Adding a general properties aspect.

initiated. Once the server is up and running go to the input records and change
the values so that the difference between them is larger than one of the limits
that has been defined, remember to press the Apply button. Then go to the
asset monitor aspect and the severity should change as seen in Figure 4.23 The
output records can be seen by going to the AssetMonitorProperties aspect, seen
in Figure 4.24. If the value of the INHIBIT input record is set to True the asset
monitor should be inhibited.

If the alarms work as they should, a working asset monitor has been cre-
ated. For more advanced asset monitors, the basics are still the same as in this
example.

4.3. SIMPLE ASSET MONITOR EXAMPLE

& M500017 System // Plant Explorer Workplace] =18 x|
| ||| [Enter search name) =] e Fiker =16 [repece =1/ 48] @ |W\\!M

T2 Control Structure] [Aspects of Tuwo Limit Exampe’ [Modified [Desc... [Inherited | Category name | Wersion |

= Rost, Domain B AssetManitorProperties 26,007, 2004 10:5... Fase Asset Moitor P... ver 1.0
15+ fisset Mrikaring Server, Aisset Moritaring 3| 140 Limis Exaimple Assek Monitor 26,07,2004 10:5. Fase Two Limits Exa... ver 1,0
LG Med std E5' Input Records 26,07.2004 10:3... False Genersl Propert... ver 1.0
& Sample Boiler [E=] alarrn and Evert List 26.07.2004 10:2... This... False alarm and Even... ver 1.0

- Sampl Simple |2 Contral Structure 26.07.2004 10:1... [Con.. Faise Contral Structure ver 1.0

@ Slimit %3 ame: 26072004 10:1... The... False Hame ver 1.0

& Tre Input Test

- Two Limit Excample
@ Two Limit Test

-l Vektor Asset Manitor

) Lost And Found HO & = [Twa Limit Excample:Twa Umits Examel = | 8 & &l O+

5 opc test, Generic OPC Server Netwark e
Server |c:-nmt|uns | Asset Parameters | Input Records | Output Reco ¥ =2MMa Yiew!
Main View

Logic Execution Interval [seconds), |5

Monitaring Server. [Hone

Bsset Monior Failure Alamn Severty: [1000

4 — cocel | ey | hee |

‘ | & ~ soova

Figure 4.19: Config View of asset monitor.

-1l
@ E [earremey lerer = [reee |82 @ 1 %]
[

T2 Control structure = [Aspects of Truo Linit Example’ [tedfied Desc... | Inherted | Categoryneme | Wersion |
El 9 Roat, Domain A\arm and Event List 26.07.2004 10:; This ... False Alarm and Even.., ver 1.0
=68 et Maritcring Server, Asset Morikoring ' AssetonitorProperties 07.09.2004 09: The... False Asset Moritor P, ver 1.0
g LPM Asset Monitor %/ Control Structure 26.07.2004 1 [Con... False Control Structure ver 1.0
& Med 5td B Input Records 07.09.2004 09:4.. False Gerersl Propert... ver 1.0
& Output Test % Hame 26.07.2004 10:1... The... Fake Hame ver 1.0
= g Sample Boiler Two Limits Example Asset Monitor 07.09.2004 09:4... Two.. False Two Limiks Exa... wver1.0

& Sample Simple
- g Several Stages AM
& slimit
& Tre Input Test
g Twa Linit Example JJQ & = [Two Limit Example:Twa Linits Exampl =] %5 0% [» () =

& Two Limit Test

& Vektor Asset Manitor server | Conditions | Asset Parameters InpLt Records IOutput Recards | Logic |
9 ost i e | oo e
test, Generlc OPC Server Nek
W piestyeeliens el e D D Unit: Di } Data Source Data Source
escr nits iscrete At e
INHIBIT Inhibit value False Default IDZINHIBIT
Py The Fiocess 1 False Diefault %DV
Variable

SP The Set Point 1 False Default #D%5P

Open Propertes Browser
Carice] o e ||
4 | | Emy | I

[| & - eonsa

Figure 4.20: Configure path to input records.

38

4. CONTROL LOOP ASSET

MONITOR

~ioix
[e s | s e =
T2 Contral Structure =] [Bspects of Tus Linit Example! [Modied [Desc.. [Inherked | Categoryname | Version |
=& Roct, Domein [E=]Alarm and Evert List False Alarm and Even... ver 1.0
51 6 Asset Moritoring Server, Asset Monitoring J[E AssetMonitorPropstiies False Asset Moritor P, ver 1.0
g LM fsset Monitar 2| Cantrol Structure False Control Struckurs — ver 1.0
| & Med std & Input Records False General Propert... ver 1.0
-l Output Test % ame False Hame ver 1.0
-G Sample Boiler Tuwo Limits Excample Asset Moritor 07.09.200409:4,.. Two ... False Two Limits Exa... ver 1.0
- -G Sample Simple
i - Several Stages AM
-Gl Slimit
L -G Tre Input Test
& Two Limt Examole Uﬁ) & = [Two Limit ExamplerTnput Records = 8 &% (6] » (1 =
-l Two Limit Test
' -G vektor Asset Monitor Praperty Defiritions |
= § Lost And Found =
(31 535 op kest, Generic OPC Server Network hlame. P Add
Description
Readable? Ves Delete . ..
Permission
Vititabie? Ves
Permission
Data Type Real
Value o,600000
Narme Value Type | Description | Read | RPermission | veite | wiF
INHISIT Felse Boolean Ves Yes
Y 2200000 Real Ves s
P 0000000 Real ves Yes
Al |
" — i A (T
\ [ERE: A

Figure 4.21: Set the input records.

g M500017 System // Plant Explorer Workplace - o] x|
=] £ {Enker search name) | [uo Fiter 7|5 |[replace 1| %3] @ 0| % @M
s Control structure = | [Aspects of Asset Monitoring Server” | Madied Desc.. |Inherted | Categoryname | Wersion |
[
5 & Roor, Doman Afw OPC-DA Assel Monitor Daka 5., 22,08,2003 20:2... False Asset Monikor D, ver 1.0
=16 Asset Manitoring Server, Azset Moritaring [E5] Alarm List 06.11.200322:0... This.. True #larm and Even... ver 1.0
[g Med 5td Asst Monitoring Server 20.07.2004 12:5... False Asset Monikarin,., ver 1.0
& Sample Boller Asset Manitoring Server Type Ref... 22.08.2003 20:2.. False Asset Monikorin... ver 1.0
& Sample Simple 26.07.2004 10:2... This... False Asset Reporter ver 1.0
g Slimit 22.08,2003 20:2... False isset Viever ver 1.0
& Tre Input Test | Contral Structre 26.07.2004 10:2... [Con., Fake Control Structurs ver 1.0
@ Twa Limit Example E=lEvent List 06.11,200322:0... This.. True Alarm and Even... ver 1.0
@ Two Limit Test i ame 22.08.200320:2... The.. Fake Name ver1.0

1 vehtor Asset Monitor
Lot And Found
45 ope test, Generic OPC Server Network

HQ & = [Bsset Moritoring Server asset Monit =] 5 % [» () =

g Server Co

MeritaringServer Hastiame: [En0017 Setto AD Serveilode
Alam Severty 11000} [iany

I~ Enable Auto Startup W Default Monitoring Server

e — T T
Password: lH—

Confirm Passwornd:

Download £ Restart

Fieset | Al |

Last Configuration Download: [20.1ul-2004 1258

Help |

| & - e

Figure 4.22: Starting the server.

4.3. SIMPLE ASSET MONITOR EXAMPLE

39

0017 System // Plant Explorer Workplace =100 x|
& O [Fl[Eversemhramey S[erter =] R |43 0 | %[]|
% Control structure = [Aspects of Tuuo Limit Example’ [Modied [Desc... [Inherited | Categoryname | Version |
=) Root, Doman [E=) Alarm and Evvent List 26.07.2004 10:2... This... False Alarm and Even.., ver 1.0
=g sset Monitoring Server, Asset Monitoring &' assetManitorPraperties The .. False Asset Monitor P, ver 1.0
- Med 5td % Control Structure [Can.., False Cortrol Structure — ver 1.0
& Sample Boikr Input Records 26.07.2004 11:5.. False General Propert.... ver 1.0
& Sample Sirple: % Name 26.07.2004 10:1... The... False Mame ver 1.0
g slmit Two Limits Exaniple Asset Monitar 26.07.2004 122.., Twa .., False Two Limiks Exa,.. ver 1.0

& Tre Input Test
& Twa Limit Example
g Two Limit Test
& Vektor Asset Monitor
Lost And Found
S5 ope test, Generic OPC Server Netwark

JJQ & ~ [Two Limit Example: Tova Linits Exampl =] 95 5% [» () =

Two Limit Example - Two Limits Example Asset Monitor Asset Monitor

[By szet Monitor Status: good

}Eve tv| Condition| Sub Condition] i [estamp | Quality Status]
500 [Overlmt High Ertor over it 1 26.07.2004 122347 good

| & - eooxa

Figure 4.23: Testing the asset monitor.

) (Enter ssarch name) Mo Filter 7|5 |[replce]| %3] @ & | % @ﬂ[
E@ntm\ Structure = | [Aspects of Tuwa Lt Example [Modified [Desc... [inherited | categoryneme | version |
5 & ook, Doman [E=]Alarm and Event List 26.07.2004 10 This.. Fabse Alarm and Even... wer 1.0
G Asset Moritoring Serves, Assst Moritoring 3|87 AssettonitorProperties 24.08.200409:2... The.. Fabse Asset Monitor P... ver 1.0
G LPH sset Monitor) Control Structure 26.07.2004 10 [Con... Fabse Contral Structure wer 1.0
- Med 5td B3 nput Records 17.08,2004 15:4... False General Propert... ver 1.0
& Output Test %73 ame 26.07,2004 10:1 False Namme wer 10
& Sample Boller 1| Twwo Limits Excample Asset Monikor — 24,08.2004 09 False Towo Limits Exa,. ver 1.0
&g Sample Simple
Bl Several Stages AM
g Slimit
gl Tre Input Test
-G Twa Linit Exanmple @ & - [0 it ExamplezpssemiontorPron =] % 5 &)+ g5 -
g Twa Limi: Test
- Wektor Asset Mankor Meme: Walue Type Description | Readable? | RPermission | Wiikable? | %+
Lost And Found Two Limits Example As
£ opc best, Generic OPC Server Nekwork OutputRecords
Controrror
VEValue 1,250000 Real Yes Ves
VEQualtyLimitStat 0 Ves Yes
VEGualtyStatus 192 Yes Ves
VETimeStamp 12004-08-24 032 Yes es
Step False Yes Ves
Units 1 e ver
Description the contral error String Yes Ves
MeasurmentRecar CortrolErrar “String Yes Ves
OverLimit :
TimeStame 2004-06-24 09:20' String Yes Ves
Reporteddy Siring Yes es
ImpactonGudlity 10,0000 Real Yes Ves
ImpactonAvaiiailty 0,000000 Real e ver
ImpactonPertorman 0000000 Real Yes Ves
Severty 1 Integer Yes Ves
CorrectivesctionTak String Ves Yes
v shar ki b G s
4 e |
i o concel || Apdly || b |
‘ ‘ A ~ Bona

Figure 4.24: Output records in 800xA.

40

4. CONTROL LOOP ASSET MONITOR

4.4 The LPM asset monitor

Introduction

This is the big example that is based on the Loop Performance Manager auditing
visual software. The asset monitor uses the same Matlab functions as the LPM,
but with a few modifications. This means that a batch of data has to be collected
before the call to the Matlab functions can be made. So the alarms for the asset
monitor will not be updated after every new sample that is collected. But it
is not crucial for an asset monitor to inform about a problem the second it
appears, most problems appear due to wear of the equipment and are spotted
fast enough anyway. If more acute problems occur, these will be spotted through
other means than asset monitors.

The basic steps to implement the asset monitor are the same as for the
previous example, see Figure 4.1.

Matlab code

The Matlab code in this example is basically the same as implemented in LPM.
There are two calls to Matlab functions from the Visual Basic code in this asset
monitor. The first one is to CLPA_Indices, that calculates the indices from
vectors containing control signal, process variable and set point values. The
other call is made to CLPA_Diagnosis, that evaluates the hypotheses from the
current indices. The inputs and outputs for the Matlab functions can be seen
in Appendix D.

The Matlab functions have gone through some smaller changes to agree
better with the asset monitor implementation in Visual Basic. Some code has
been added, to make sure that the indices and hypotheses vectors are column
vectors, ensuring that Visual Basic can recognise them as vectors. Changes have
also been made in the diagnosis evaluation. Since the hypotheses sometimes are
true for good performance and sometimes for bad, this was changed so that all
hypotheses are true for bad performance. The last hypothesis was also divided
into the different preconditions, some the same as some hypotheses, giving a
total of 13 hypotheses. The valve problems hypothesis was also changed, it has
two different levels of bad performance, so that a 2 is returned instead of 0.75
for the less certain bad performance. This was done so that two levels of the
same alarm can be generated for this hypothesis in 800xA.

Asset monitor category

The asset monitor category is built up the same way as in the simple example,
but with more parameters. The conditions for the LPM asset monitor can be
seen in Figure 4.25.

The conditions are set so that the values returned from the diagnosis made
from the Matlab code can be used directly when setting the conditions.

Some of the asset parameters given here are most for testing the asset mon-
itor, when there is no real process to test it on. On a real process they could

4.4. THE LPM ASSET MONITOR 41

[] A B] [| D I E I F [6 | H
1_|Condition ID “ENUM" SubConditiol Description “Possible Cause “Suggested Action " Correc! Sever
Sluggish Tuning D Morrnal 1
Sluggish Tuning 1 Bad Sluggish Tuning Controller tuning too slow Retune controller 1000
Loop Oscillating 0 Mormal 1
Loop Oscillati 1 Oscillati Loop Oscillati Bad controller tuning, actuator fault or extemal distubance Scrutinize control loop 1000
“alve Problem 0 MNormal 1
Walve Problerm 1 Problerm Stiction or hacklash Fault within the actuatorivalve assembly Check actuator and valve 1000
“alve Problem 2 Problem Stiction or backlash Fault within the actuatorivalve assembly Check actuator and valve 750
| Valve Leakage 0 Normal 1
0 [Walve Leakage 1 Leak Walve Leakage Walve not tight shut-off or flowmeter zero is incorrectly set Check valve and flowmeter 1000
11 |Setpoint Oscillating 0 Normal 1
2 |Setpoint Oscillating 1 Oscillating Set Paoint Oscillating Oscillating cascade master loop Check master loop 1000
Walve Travel 0 Normal 1
| Valve Travel 1 High Excessive Movernent Tight contraller tunirg Retune contraller 1000
|Excessive Moise 0 Mormal 1
| Excessive Noise 1 High Excessive Measurment Moise Contraller tuning or sensor Check contraller and sensor 1000
Tracking 0 Maormal 1
Tracking 1 Bad Tracking Behavior Bad Bad controller tuning Retune controller 1000
19 |Statistical Behavior 0 MNormal 1
Statistical Behavior 1 Bad Bad Basic Statistics Bad controller tuning, quanitisation or non-linearity Check controller and signal processing 1000
Controller Saturated 0 Mormal 1
Controller Saturated 1 High Loop Saturated Bad controller tuning or bad dimensioning of actuator Retune controller and check actuator 1000
3 |Harris Index 0 MNormal 1
4 |Harris Index 1 Bad Bad Harris Index Bad controller tuning Retune coniroller 1000
26 |Setpoint Crossings 0 Normal 1
25 |Setpoint Crossings 1 Bad Few Setpoint Crossings Bad controller tuning, actuator fault or extemal distubance Scrutinize control loop 1000
Manual Mode 0 Normal 1
Manual Mode 1 High Loop In Manual Mode Controller set in manual mode Check reason for manual mode 1000

Figure 4.25: Conditions for LPM asset monitor.

also be given as input records and read in automatically. The asset parameters
can be seen in Figure 4.26.

A | B
| Asset Parameter Name * Parameter Yalue
 |LoopCategary Flone_liguid
Cascade slave
I 1000
Ts 1
OPnin 0
DPmax 10a
LRmin 0
LRmax 100

Figure 4.26: Asset parameters for LPM asset monitor.

The variable N represents the size of the batch; it is the number of values
stored in each vector before evaluation. To get all hypotheses evaluated cor-
rectly, there should be more than 200 data points. T5 is the sampling time. The
OP limits are the limits for the control signal and the LR limits are the limits
for the process variable and the set point.

The input records are the control signal, process variable, set point and an
inhibit signal. These can be seen in Figure 4.27.

The inhibit signal is used when repairing the monitored control loop, or if
for some reason the asset monitor should not collect data for a period of time.
The logic implemented in visual basic should load the new input records, store
them in the vectors and if they are full make a diagnosis of the asset monitor.

42 4. CONTROL LOOP ASSET MONITOR
B A | B [(e T [| E_ |
_1 |InputRecord If Description " Units’ Discrete Data Source Data Item
2 |INHIBIT Inhibit =ignal TRUE Default Yol D %: INHIBIT
L Cantral sighal 0,01 FALSE default
AR Process variable 0,01 FALSE default
5 R Set point 001 FALSE default
Figure 4.27: Input records for LPM asset monitor.
In the output records, most of the indices will be displayed, as seen in Figure
4.28.
A | B {2 O 5 0 =290
_1 |OutputRecord ID |Description lUnits' Discrete' Data Ty] Minimuri Maximi No."
_ 2 |mean_CE cantral errar, SP-PY 1 FALSE “T_l4 99893 89988 2
3 |stdew CE_narm standard deviation of normalised control errar 1 FALSE %T_l4] 100 2
_ 4 maan_PY rmean process variable, current operating point 1 FALSE %T 14 0 fooo 2
5 |stdev OP standard deviation of controller output 1 FALSE “T_l4 o oo 2
_ B |gkew CE norm rmeasure of signal symmetry 1 FALSE %T 14 aelnEleln BEE Ay o
kurt_CE_narm reasure of signal flatness 1 FALSE “T_l4 SEBEEE nE e
maxbicoher CE test data for nonlinearity, linear if <1.x 1 FALSE T |4 0 99388 2
) |ratio_CE_OP ratio of contral error and controller output 1 FALSE “T_l4 -99999 59933 2
0 |mode_automatic percentage of samples where loop in automatic 1 FALSE %T |4 0 00 2
| |maode_saturation percentage of samples when loop saturated 1 FALSE “T_l4 0 100 2
maode_cascade percentage of samples when loop acts as slave 1 FALSE %T_I4 0 100 2
shutoffealue_PY P walue if OF is saturated on lower limit 1 FALSE “T 14 0 1fooo 2
14 |oscillation_CE oscillation index control errar 1 FALSE %T |4 0 1 2
1 |0sc_period_time petiod [s] based on time-damain analysis 1 FALSE “T 14 R EElElEl s
16 josc_penad_freq petiod [s] based on frequency-domain analysis 1 FALSE “T_l4 [EEEOEEICT o]
7 |osc_amplit_time amplitude based on time-domain analysis 1 FALSE T 4 B ESEls sl 5y
osc_armplit_freg amplitude based on frequency-domain analysis 1 FALSE “T_l4 HEREE R B oy
osc_severity percentage of varition contribution of main oscillation frequency 1 FALSE %T_l4] 100 2
0 [flag_stiction] stiction test based on cross-correlation method 1 FALSE “T_l4 0 1 2
flag_stiction2 stiction test based on histogram method 1 FALSE %T_l4] 1 2
22 |valve_travel integrated valve mavemnent per hour (with deadzane) 1 FALSE “T_l4 0 99388 2
3 |ACF_ratin_index Harris-like index on ACF instead of closed loop impulse response 1 FALSE %T 4 0 500 2
24 |crossing SP ratio # of setpaing crossings and all samples 1 FALSE %T_ 14 0 o0 2
tracking_SP ratio # of setpoint movements and all samples 1 FALSE “T_l4 0 oo 2
travel_ratio SP_PV ratio movement of 5P and PY 1 FALSE “T 14 ZElelelsler s S
" |contral_perfarmance Harris index based on FCOR algarithm 1 FALSE “T_l4 0 1 2
26 |autlier number of identified (not remaoved!l) outlier in promille 1 FALSE %T_l4 0 1000 2

Figure 4.28: Output records for LPM asset monitor.

Visual Basic

The Visual Basic code has the same structure as the simple example. The
get version, initialize and terminate functions are the same. Even the structure
inside the execute logic subroutine is the same: check if configuration is changed,
read input records, call Matlab functions and update status in 800xA. Since
there are many values to update if the configuration is changed, this is made in
its own subroutine, called AssetMonitorConfigurationChanged. Here the asset
parameter values are read and stored in .LogicBlockParameters, the same
for the batch vectors. Since there are more parameters that should be stored
than there are .LogicBlockParameters, some of the parameters are stored in

4.5. TESTING THE LPM ASSET MONITOR

43

a vector, that is stored in one of the .LogicBlockParameters. To ensure that
variables are kept in their right form, some of the values will be sent back and
forth between .LogicBlockParameters and local variables, here and later in
the code.

Then the input records will be read and the current control signal, process
variable and the set point will be stored in the batch vectors. If the batches are
full, the calls to the Matlab functions are made, and new indices and hypotheses
values are calculated. The index thresholds are set in a Matlab function that is
called by the hypotheses calculation function.

The alarms will then be set, according to the hypotheses, in 800xA. The
output records will be displayed through a call to a local subroutine. Their
values are sent to a local variable, before the call to display the output record
is made, to ensure that the variable is of the right instance.

The complete code can be seen in Appendix E.

800xA

As for the simple example, an object has to be added to the control structure
of 800xA. The aspects for Alarms and Events and for the Input Records then
have to be added. The asset monitor aspect that is added should be of the LPM
Asset Monitor kind. After the right path for the input records have been set,
and the asset parameters have their correct values, the asset monitor can be
tested.

4.5 Testing the LPM Asset Monitor

Once the asset monitor was completely implemented into the 800xA system it
was tested on the same test data as the LPM, see section 2.2.3. This was done
by creating an OPC (Object linking and embedding for Process Control) client
that reads the values from a Microsoft Excel file and sends them to an OPC
server once every sampling time. The 800xA can then read the values from the
server. If the asset monitor samples with too short sampling time it will read
the same value for more than one sampling time. It was found that a sampling
time of at least five seconds prevented this. This means that the server updates
its values every five seconds and that the asset monitor reads new values every
five seconds. If the length of the batches collected is the same as for the Matlab
code in section 2.2.3, this would take too long time to collect for just testing. So
the length of the batches was set to 250 samples instead. This does not change
the result of the evaluations. But more samples usually make the indices more
accurate. The lower limit for how many samples that are needed are among
other things in the Harris index calculation. To be able to identify a good time
series model, at least 200 samples are needed. The data collected in the batch
for the first example, the oscillating control loop, can be seen in Figure 4.29.

And the alarms generated by the asset monitor in 800xA can be seen in
Figure 4.30.

44 4. CONTROL LOOP ASSET MONITOR

i

File

[ia= = R=Y B

WL N Y

Control eror

10,
20
] 0 100, 150, 200 250
Data point
32,
- n A

NEW AT

Control output
5 o5
=g

50, 100, 180, 200, 240,
Data poirt

Figure 4.29: Oscillating control loop data. Setpoint and process value(top) and
controller output(bottom).

“J i = [LPM Asset Maritor. P Asset Morite =] 5 &l .] - |
LPM As=et Monitor - LPM As=et Monitor Asset Monitor

tus: good
Sub Conditio Descii Timestamp Quality Status
Normal 09.2004 10:07:23 good
Loop Oscillating Oscillating 09.2004 10:07:23 good =

"alve Problem Normal good
|Valve Leakage Mormal badLastKnownalue

1 Selpoint Dseilating - Nomal . :07:25 gaod
alve Travel High Evcessive Movement
1 Evcessive Noiss Mol 07

1 Tracking Normal 09.2004 10:07:29 badLastinownvaiue
Statistical Behavior ‘Bad Bad Basic Statistics 09.2004 10:07:23 good

Cantaller Saturated Momal good
Hartis Index Bad Bad Harris Index good
Setpoint Crossings - Bad Few Setpoint Crossings 09.2004 10:07:29 good

1 Manual Mode Normal

09,2004 10:07:29 good

Figure 4.30: Oscillating control loop alarms.

As can be seen in Figure 4.30, the result of the evaluation is the same as
for the LPM. Which should be expected, since the asset monitor uses the same
Matlab functions for its evaluations. Remember that some of the hypotheses

have been changed, so that the performance is bad if they are true in the asset
monitor.

4.5. TESTING THE LPM ASSET MONITOR

45

For the next example, again only 250 data points were used. The data
collected in the batch for the evaluation can be seen in Figure 4.31.

[novere 1 _ioix|

File:

Insmal e

300,

295, W\F‘A"“ }Wﬂ\‘ﬂv\j\ 'JJU’”U_JH ‘r\nﬂ'lvf\“r"\ﬁv "\H'NJ\UAWU

290,

Set point and Process variable

5
o, =0, 100 150, 200, 250,

03
0.2

0,1 \ Nl
I e,]
299 \ Fm \n V\lr\n.fl

288
0,

Control output

0, 100, 150, 200, 20,
Data paint

Figure 4.31: Ok control loop data. Setpoint and process value(top) and con-
troller output(bottom).

And the alarms generated by the asset monitor in 800xA can be seen in
Figure 4.32. All more severe alarms (e.g. Oscillation and Harris) are ok, but
the controller can probably still be tuned better. See Figure 4.25, to see what
the different alarms mean and examples of how to fix the problems. This can
also be seen in 800xA, in the Config view of the asset monitor.

1@ @ = [PW asset Manitor:LPM Asset Monito +] 5 7 [» || w \
LPM Asset Monitor - LPM Asset Monitor Asset Monitor

Asret Monitor Status: good

Seveiily] _Condition | 5ub Condition] Description Timestamp | Quality Status |
1 Sluggish Tuning Nomal 14103 2004 103215 good ;
i Loop Dscillati Kormal 14092004 10:32:15 good

1

1 scillating Momal

1 Valve Travel homal

g N

1

| Bad Basic Staisties 141

1 14.09.2004 10:32:45

i Hartis Index Homal 14.09.2004 10:32:15 gond

1 Setpoint Crossings Namal | F e 4032004103215 000

1 Manual Mode al d

Figure 4.32: Ok control loop alarms.

46

4. CONTROL LOOP ASSET MONITOR

For the next example the same number of data points were used again. The
data collected in the batch for the evaluation can be seen in Figure 4.33. The
control signal is here turned off and will be viewed as saturated.

I

File

lisR=2 = F=JPcRoRs

R

IS
™

IS
=

Set point and Process variable
-
&

IS
o
o
=}
=
=
o
=}
IS
=}
=
N
in
=}

05

Contral output

0.5

o, a0, 100, 180, 200, 280,
Data point

Figure 4.33: Saturated control loop data. Setpoint and process value(top) and
controller output(bottom).

The alarms generated by the asset monitor in 800xA can be seen in Figure
4.34. If the control loop had been a flow loop, the valve leakage alarm would
also have been raised.

HQ 5 = [LPM Asset Moritor P Asset Monito =] B 0 &+ | = |
LPM Asset Monitor - LPM Asset Monitor Asset Monitor

Asset Monitor Status: good

Severily

Loop Dscillsting
Valve Problem

v 14.09.2004 11:47.28 g
Ercessive Noist .2004 11:47.21
Tracking .09.2004 11:26:19 badL astKnown\alue

Statistical Behavior 4 14.03.2004 11:47:28 good

Contraller Saturated: High u 14.09.2004 11:47:28 good

Hariis Bad 2004 11:47.28: good

Setpoint Crossings Bad Few Setpoint Crossings 114.09.2004 11:47.28: good

Manual Mode High Loop In Manual Mode 14.03.2004 11:47 28 gond

Figure 4.34: Saturated control loop alarms.

This concludes the stored data testing of the LPM Asset Monitor. The asset
monitor is working as it should and can now be tested on live data. This is
described in the next chapter.

Chapter 5

Applications

5.1 Simulink environment

One cause of oscillating loops could be stiction. It was decided to test the asset
monitor for this kind of oscillations. Stiction is when the control valve is stuck
in a certain position due to high static friction. When the control signal is large
enough, the valve will start to move and then often it will move over to the
other side of the desired set point, where it will get stuck again. This will then
go on, making the control loop oscillating. Typical stiction data is when the
control signal looks like a triangle wave, and the process variable signal looks
more like a square wave.

A stiction model [6] was implemented in Matlab Simulink. Through an OPC
server the values could be sent to 800xA, and the LPM asset monitor could be
tested on this live data. The data batch that the asset monitor collected can be
seen in Figure 5.1, where the typical stiction signals can be seen clearly.

=IOl
_\TEDD"EIS\@B“

e et e
o | 7y
U] J [|
e M

_;Z m T 4 s

- TANTANMTANTARIA
R IRY Y RV

Figure 5.1: Data for stiction model. Setpoint and process value(top) and con-
troller output(bottom).

47

5. APPLICATIONS

The alarms generated in the asset monitor can be seen in Figure 5.2. The
interesting alarms in this case are the oscillation and valve problems alarms.
These indicate that the loop is oscillating, and that the cause of the problem
could be stiction. This means that the actuator and the valve in the control
loop have to be checked and maybe be reassembled or exchanged.

LPM Aszet Monitor - LPM Asset Monitor Asset Monitor

Azzet Monitor Status: good

Severity] Condition Sub Conditi Di Tii Quality Status |
1 Sluggish Tuning __ Homal 2409 2004 10.54 18 good
Loop Dscillating Ozcillating Laop Dscillating 24.09.2004 10:54:18 good

Problern Stiction of backlash ‘2409 2004 10:54:18 good :
Mormal £ 24.09.2004 10:33:15 badl astknovntalue
Mommal 24.09 2004 10:54 18 good -

" High Excessive Movement 24.09.2004 10:54:18 good
Narmal 24.09.2004 10:54:18 good
Momal 24.09.2004 10:33:15 badL astKnowvny alue :

Bad Bad Basic Statistics 24.03.2004 10:54:18 good
24.09.2004 10:5418 good

Bad Harris Index 24.09.2004 10:54:18 good

Figure 5.2: Stiction alarms.

In the following example, the monitored control loop will be part of a real
process with the industrial control system 800xA.

5.2 Lab process with industrial automation

The asset monitor was tested on a lab scale process with industrial components.
The view of the process in 800xA can be seen in Figure 5.3 and a photo of the
real process in Figure 5.4.

The big tank in the bottom supplies the two upper tanks with fluid. The
flow from the bottom tank can be changed in the 800xA system. Both upper
tanks have their levels measured and controlled. The level of the tank to the left
is controlled by a control loop that changes the flow from the tank by opening
and closing a valve. The input to the tank is seen as a disturbance and since
only the level in the tank is measured and not the flows in or out, the process is
very slow. The tank to the right has the same features as the other but it has
an additional flow meter and a controller at the flow out from the tank. This
control loop takes the desired output flow from the level control loop as its set
point. It is on this control loop the asset monitor has been tested.

5.2. LAB PROCESS WITH INDUSTRIAL AUTOMATION 49

Tl e

Figure 5.4: Lab process.

50

5. APPLICATIONS

The values of the control input(OP), process variable(PV) and set point(SP)
for a time period while the asset monitor was tested can be seen in Figure 5.5.

Figure 5.5: Lab process data: OP - blue (top), PV - yellow (fast osc) and SP -
green (slow osc).

The time span for this picture is just over three minutes. When testing the
asset monitor a sampling time of five seconds was chosen, for the same reasons as
earlier when the asset monitor was tested, see Section 4.5. The small oscillations
will then hardly be seen as oscillations since the oscillations are so small. But
these oscillations mean that the controller has to work very hard to keep the
process variable close to the set point, the control signal travels a lot. This can
be seen in the alarms that are generated for the control loop seen in Figure 5.6.

_! & &3 ~ LM asset Monitor:LPM Asset Monito = %5 % 5w |] =

LPM Asset Monitor - LPM Asset Monitor Asset Monitor

Azzet Monitor Status: good
Severity Condition [Sub Condition] ipli i p Quality Status |

Figure 5.6: Lab process alarms.

5.2. LAB PROCESS WITH INDUSTRIAL AUTOMATION

o1

There is an alarm generated for the slow oscillation that the set point has.
This means that the level control loop is oscillating. The oscillation is due to
that the process is slow and it takes to long time to get the desired out flow,
and by the time the desired out flow is reached a new is already wanted. The
two other alarms suggest that the flow controller can be tuned better.

To get a clearer picture of how the control loop is performing, the level
controller was turned off, and the flow controller was fed with a constant set
point. Data from this test can be seen in Figure 5.7.

‘.nlil.ll.k‘nn“ ;lnll__n.imill;l
"‘HY WYYV TRV TV ' UANATRVAY

Figure 5.7: Lab process data: OP - green (top), PV - pink (lower moving) and
SP - orange (constant).

Again the control signal seems to move a lot and the process variable does
not settle to a constant value. It looks like the controller could be tuned better.
A look at the alarms that were generated confirm this, as seen in Figure 5.8,
confirms this. Both alarms that are generated suggest that the controller tuning
should be reconfigured.

The main reasons for this test was to import the asset monitor into another
800xA system than it was developed on and test run it on data from a process
with real industrial automation. This was successful and the asset monitor is
ready for tests on real automation systems out in the industry.

52

5. APPLICATIONS

LPM Asset Monitor - LPM Asset Monitor Asset Monitor

Azset Monitor Status: good

Severily Condition |Sub Condition Description Timestamp Quality Status
1 Sluggish Tuning Morrnal 10411704 12:14:21 Ph i good
1 Loop Oszcillating MHarmal 10411/04 11:53:18 &M :good
1 ValveProblem Nomsl 10/07/04 100315 &M badLsstnowrivae
1 Yalve Leakage Hormal 1040704 10:03:15 Aibd : badl stk nownvalue
1 Setpoint Dzcillating Mormal 10411704 11:53:18 &b - good ;
ﬁ“ﬁ'veﬁave' . High Escessive Movement 10/11/04 good
1 Excessive Noise MNormal 10411/04 11:53:18 &M ‘good

Tracking Mormal 10407404 171:06: 28 ik : badl astk.nown alue

g

Statistical Behavior

Bad

Bad Basic Statistics

10/11/04 11:53:18 &AM

good

1 Controller Saturated Mormal 10411404 11:53:.18 AM ‘good
1 Haris Indews Marmal 010041 ER B8 AM g0d
1 Setpoint Crossings - Mormal 10/11/04 12:14:21 Ph : good
1 tanual Mode Mormal 10/11/04 12:14:21 Pk : good

Figure 5.8: Lab process alarms.

Chapter 6

Final conclusions

The main purpose of this thesis was to implement a prototype asset monitor
for control loops in ABB’s automation system 800xA. To be able to understand
the purpose and function of the asset monitor, control performance monitoring,
asset optimization and the 800xA system were described and explained. The
developed asset monitor is based on the Loop Performance Manager from ABB,
so to be able to understand how the asset monitor is suppose to work this
tool has to be understood. The LPM is given a batch of collected data. From
this data several index values are calculated. Each index is a measure of how
a certain part of the control loop is performing. The index values are then
compared to preset limits. Depending on how the indices relate to the limits
a diagnosis of the control loop is made. The diagnosis is described through
hypotheses, statements, that can be true, false or unknown. This means, that
given a diagnosis it can for example be said about the loop that it is oscillating,
it is not saturated and so on.

The developed asset monitor works in the same manner. But it collects its
own data, and when enough data (the amount set by the user) is colleted a
diagnosis is made. The asset monitor is operating continuously, and as soon as
something in a diagnosis is bad, events will be generated in the 800xA system
with hints of what could be the cause of the problem.

The asset monitor was first tested on offline data, which the LPM also had
been tested on. The results from the asset monitor were compared with the
results from the LPM, and it was seen that the asset monitor worked as it
should. It was then tested on online data, first on a control loop simulated in
Matlab Simulink and then on a lab scale process. The asset monitor generated
the alarms that were expected and worked as it should.

The SDK user manual[4] gave basic instructions of how to implement an
asset monitor into 800xA. But at some points this manual is inferior. Much
of the code for an asset monitor had to be generated through trial and error,
since the code is not explained satisfactory in the manual. There were also
problems to get the Matlab functions to operate as they should when called
from the Visual Basic code. A lot of testing with different kind of variables

93

6. FINAL CONCLUSIONS

sent back and forth had to be done before the LPM Asset Monitor worked as it
should. To facilitate further improvements and asset monitor implementations
an implementation guide is also included in the thesis. This guide describes the
basic steps to implement an asset monitor, into the 800xA system, in detail.

The next step for the asset monitor would be to test it in a real plant, on
control loops that are operating in a real factory. For real industrial use the
asset monitor has to be configured, so that all individual asset monitor settings
are made automatically when the asset monitor is added to the desired object.
This have to made manually as the asset monitor is now.

Improvements on the asset monitor functionality can be made in many areas,
and among them are:

- more events can be added, for other control loop functionalities.

- each event can be divided to several levels with different severities.

- the algorithms that calculate the index values can be extended.

- new real time algorithms can be developed, so that the asset monitor
can update the alarms for every new data sample that is collected.

These improvements are just examples for this control loop asset monitor,
but also asset monitors in general have great potential for further research and
development.

Appendix A

Indices for LPM

On the following page the details for all 38 indices in the LPM are displayed.

39

A. INDICES FOR LPM

56

Index

index class unit min max | nominal] lower limit Jupper limi] brief description
basic statistics real n.a n.a.] n.a. n.a. contral errar, SP-PY
basic statistics % 0 100% 0 0 g standard deviation of normalised contral error
basic statistics | eng.unit | LRmin LRrmax 0 0 n.a. standard deviation of control errar in engineeting units
basic statistics | eng.unit | LRmin LRrmax n.a. n.a. n.a. mean process vatiable, current operating point
basic statistics % 0 100% r.a. r.a. f.a. standard deviation of controller output
basic statistics real n.a n.a. 0 -1 1 measure of signal symmetry
basic statistics real n.a r.a.] 1.5 15 reasure of signal flatness
basic statistics real 0 inf]] 15 test data for nonlinearity, linear if <1.x
basic statistics prob. 0 1 1 0.9 1 Gaussianity test using higher-order statistics
basic statistics real n.a. n.a. 1 05 2 Linearity test, test statistics is ratio
modes real -inf inf n.a n.a. n.a. ratio of control error and controller output
modes % 0 100% 100 0 10 percentage of samples where loop in automatic
modes % 0 100%]] 2 percentage of samples when loop saturated
modes % 0 100% n.a 0 10 percentage of samples when loop acts as slave
flag is loop is master or not (slave / inner loop in cascade). Single
flags [! ! ne e na _aamum m:am_n_ be classified mM slave, i.e. Bmmwm;m@ =0) :
we (wm | om |9 [me | me | o [EUSGCReEmRREsmRRm.s
eng.unit | LRmin | LRmax n.a. n.a. n.a. P walue if OF is saturated on lower limit
real 0 1 n.a. 0 0.3 oscillation index contral error
real 0 1 r.a.] 0.3 oscillation index setpoint
[s] 0 inf n.a. n.a. n.a. period [s] based on time-domain analysis
[5] 0 inf r.a. r.a. r.a. period [s] based on frequency-domain analysis
% 0 inf n.a. n.a. n.a. amplitude based on time-domain analysis
% 0 inf n.a. n.a. n.a. amplitude based on frequency-domain analysis
% 0 100 n.a. 0 25 percentage of varition contribution of main oscillation frequency
flag 0 1 n.a. n.a. n.a. stiction test based on cross-correlation method
flag 0 1 n.a. n.a. n.a. stiction test based on histogram method
S 0 100% n.a. n.a. n.a. percentage of direction changes in PV
0 inf n.a. n.a. n.a. integrated valve movernent per hour {with deadzone)
perf. index real 0 500 1] 2 Harris-like index on ACF instead of closed loop impulse response
perf. index real 0 inf n.a. n.a. n.a. estimation of time-delay
perf. index flag 0 1 n.a. n.a. n.a. flag if data is suitable for plant model identification
modes % 0 100% 25 15 100 ratio # of setpoing crossings and all samples
modes % 0 100% 0 20 100 ratio # of setpoint moverents and all samples
maodes real -inf inf 1 0.5 15 ratio moverment of 5P and PV
perf. index real 0 1 1 06 1 Harris index
parameter samples 1 inf r.a. r.a. f.a. default values for each loop category, stored for docurmentation only
pararmeter integer 1 9 n.a n.a. .. number which represents the loop categories
basic statistics ofoo 0 1000 0 0 1 nurmber of identified (not removed!l) outlier in promille

Figure A.1: Indices in the LPM.

Appendix B

Hypotheses for LPM

Here all the hypotheses and preconditions for the LPM are displayed.

Hypothesis

name
numher

sluggish tuning

loop oscillating

valve problem

valve leakage / zero error
setpoint oscillating
valve trawvel

noise

acceptable tracking
statistical behaviour
controller saturated
acceptable performance

| S0 | el | S| | e | | P [

|
-

Preconditions for "acceptahle performance’
1 Harris index good
setpoint crossings index large
loop not oscillating
loop not saturated
loop not in manusl
tracking acceptable
no wahe leakage
no sluggish tuning

S0 [el | S| | e | L e

Figure B.1: Hypotheses in the LPM.

o7

Appendix C

Visual Basic code Simple
example

Option Explicit

Option Compare Text

Implements AbbAoMSservice.ILogic

Private m_utils As AbbAoAmHelper.AssetMonitorUtils
Private 1lim As twoLimitExample.twoLimitExample

Private Property Get ILogic_Version() As String
ILogic_Version = App.Major & "." & App.Minor & "." & App.Revision
End Property

Private Function ILogic_Initialize(Configuration As MSXML2.IXMLDOMNode) As String
ILogic_Initialize = ""
Set 1lim = New twolLimitExample.twoLimitExample
Set m_utils = New AbbAoAmHelper.AssetMonitorUtils
If Err.Number <> O Then
Debug.Assert False
ILogic_Initialize = Err.Description
Err.Clear
End If
On Error GoTo 0O
End Function

Private Sub ILogic_ExecuteLogic(ByRef AssetMonitor_IN As AssetMonitor)
Dim oValueElement As C_ValueElement

98

99

Dim oSubCondition As C_SubCondition
Dim InputPV As Double

Dim InputSP As Double

Dim diagnose As Variant

Dim ControlError As Double

On Error Resume Next
With AssetMonitor_IN

If .ConfigurationChanged Then
.LogicBlockParameteriDesc = "The first limit"
.LogicBlockParameterl = CDbl(.AssetParameters.selectSingleNode
("Limit1") .Text)
.LogicBlockParameter2Desc = "The second limit"
.LogicBlockParameter2 = CDbl(.AssetParameters.selectSingleNode
("Limit2") .Text)
Call .ConfigurationChangedAck
End If

. InputRecords.Read

If m_utils.IsAssetMonitorInhibit(AssetMonitor_IN, "True", "INHIBIT") Then
Exit Sub ’If inhibit then exit
End If

.Status = m_utils.GetIORecordVE(.InputRecords, oValueElement, "PV",
NumericType)
If Len(.Status) = O Then

InputPV

.Status
NumericType)

If Len(.Status) = O Then

1]

oValueElement.Value
m_utils.GetIORecordVE(.InputRecords, oValueElement, "SP",

InputSP = oValueElement.Value
ControlError = InputPV - InputSP

Call lim.checklimits(l, diagnose, ControlError,
.LogicBlockParameterl, .LogicBlockParameter2)

.StatusQuality = qualityStatusENUM.good
.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,
ControlError, "ControlError", False)
Set oSubCondition = m_utils.SetCurrentSubCondition(AssetMonitor_IN,
1, diagnose, False, .StatusQuality, .Status, False)
End If

60 C. VISUAL BASIC CODE SIMPLE EXAMPLE
End If
If Err.Number <> O Then
Debug.Assert False
.Status = "Unhandled runtime error in ILogic_ExecuteLogic():
" & Err.Description
.StatusQuality = qualityStatusENUM.bad
Err.Clear
End If
End With
On Error GoTo 0O
End Sub

Private Sub ILogic_Terminate()
Set m_utils = Nothing
End Sub

Appendix D

Matlab functions in the LPM
Asset Monitor

CLPA Indeices.m

[Indices, err, warn, IndexNames] = CLPA_Indices(y, r, u, ylow, yhigh,
ulow, uhigh, Ts, Looptype, cascade)

Where
Indices The calculated indices for the current batch of data.
err An array with error information.
warn An array with warning information.
IndexNames String containing the short names of all indices.
y Vector containing all process values for the current batch.
T Vector containing all controller set points for the current batch.
u Vector containing all controller out puts for the current batch.

ylow/yhigh Loop low/high range.
ulow/uhigh Controller output limits.

Ts Sample Time of log in seconds.
Looptype Loop category for monitored control loop.
cascade Cascade type (‘master’; ’slave’).

61

62

D. MATLAB FUNCTIONS IN THE LPM ASSET MONITOR

CLPA _Diagnosis.m

[H,err,warn] = CLPA_Diagnosis(Indices)

Where

H

err
warn
Indices

The evaluations of the hypotheses.

An array with error information.

An array with warning information.

The calculated indices for the current batch of data.

Appendix E

Visual Basic code LPM Asset
Monitor

Option Explicit

Option Compare Text

Implements AbbAoMSservice.ILogic ’ Asset Monitor Logic must implement this interface
Private m_utils As AbbAoAmHelper.AssetMonitorUtils °’ Asset Monitor Helper functions
Private 1lim As LPMfunctions.matlabFunctions > Matlab functions

Private Property Get ILogic_Version() As String
> Returns the Version for this Logic.

ILogic_Version = App.Major & "." & App.Minor & "." & App.Revision
End Property

Private Function ILogic_Initialize(Configuration As MSXML2.IXMLDOMNode) As String
> Called once upon startup to Initialize the Asset Monitor Logic
> Must Return "" if successful.

ILogic_Initialize = ""

Set 1lim = New LPMfunctions.matlabFunctions
Set m_utils = New AbbAoAmHelper.AssetMonitorUtils

If Err.Number <> O Then
Debug.Assert False
ILogic_Initialize = Err.Description
Err.Clear

End If

On Error GoTo O

63

E. VISUAL BASIC CODE LPM ASSET MONITOR

End Function

Private Sub ILogic_ExecuteLogic(ByRef AssetMonitor_IN As AssetMonitor)
Dim oValueElement As C_ValueElement ’ used to get input values

Dim InputRecordY As Double °’ stores current process variable value

Dim InputRecordR As Double °’ stores current set point value

Dim InputRecordU As Double ’ stores current control signal value

Dim oSubCondition As C_SubCondition ’ used to set sub conditions

Dim hypotheses As Variant > returned hypothesis from matlab function,
’ must be variant

Dim errors As Variant > returned errors from matlab function,
’ must be variant

Dim warn As Variant ’ returned warnings from matlab function,
’ must be variant

Dim names As Variant > returned index names from matlab function,
’ must be variant

Dim i As Integer > used for For loops

Dim vectorSize As Integer ’ stores the size of vectors

Dim returnedIndices As Variant’ returned indices from matlab function,
’ must be variant

Dim y() As Double > process variable batch

Dim r() As Double ’ set point batch

Dim u() As Double > control signal batch

Dim TempVector() As Double ’ used to store vectors betweeen variables,

’ needed since the LBP are of the Variant instance
On Error Resume Next

With AssetMonitor_IN
’ Checks if Asset Monitor Configuration has changed
If .ConfigurationChanged Then
Call AssetMonitorConfigurationChanged(AssetMonitor_IN)
End If

> if any problems were encountered a description
’ is stored in .LogicBlockParameter9
.Status = .LogicBlockParameter9

If Len(.Status) > O Then
> Bad Configuration
.StatusQuality = qualityStatusENUM.badConfigurationError
> Sets all the Asset Monitor Conditions to
’ Normal - badConfigurationError quality and EXIT.
Call m_utils.SetAllCurrentSubConditions(AssetMonitor_IN,
1, True, .StatusQuality, .Status, False)

65

Exit Sub
End If

. InputRecords.Read > read all input records

Vakokk Inhibit Logic skskkokskokskokokkokkokakokakokok ok dok ok ko sk ook ok ok ko sk ok ok ok ko ok ok ok ok ko ok

> The following is the Standard inhibit logic that should be implemented in
> every Asset Monitor.

> LogicBlockParameter2 contains the value of the

> INHIBIT_VALUE Asset Parameter.

If m_utils.IsAssetMonitorInhibit(AssetMonitor_IN, "True", "INHIBIT") Then

Exit Sub ’If inhibit then exit
End If

Ydokkok Store Values kskokskskokskok sk skok s ok sk sk ok sk ok ok sk ok sk sk ok s ok ok s ok ok sk ok 3 ok ok e ok k ok ok k ok ok 3 ok ok ok ok ok ok ok 3 ok k ok ok
.Status = m_utils.GetIORecordVE(.InputRecords, oValueElement, "U",
NumericType)
If Len(.Status) = O Then >’ no problems found if .status is empty
InputRecordU = oValueElement.Value
.Status = m_utils.GetIORecordVE(.InputRecords, oValueElement, "Y",

NumericType)
If Len(.Status) = 0 Then >’ no problems found if .status is empty
InputRecordY = oValueElement.Value
.Status = m_utils.GetIORecordVE(.InputRecords, oValueElement, "R",
NumericType)

If Len(.Status) = O Then ’ no problems found if .status is empty
InputRecordR = oValueElement.Value

> store values in batches if all input records are read with
> no problems,

>’ need to move values betweeen variables since LBP are of the
> variant instance

= .LogicBlockParameter7

.LogicBlockParameter8

.LogicBlockParameter6

e R <
I

y(.LogicBlockParameter3) = InputRecordY ’ LBP3=position in batch
.LogicBlockParameter7 =y
r(.LogicBlockParameter3) = InputRecordR ’ LBP3=position in batch
.LogicBlockParameter8 = r
u(.LogicBlockParameter3) = InputRecordU > LBP3=position in batch
.LogicBlockParameter6 = u

> if batches are full then.LBP3 = position,LBP2(6)=size of batch
If .LogicBlockParameter3 = .LogicBlockParameter2(6) Then
Vikkk Make Diagnosis sskskskoorkoksoksdohhoh ook desekonok ook skl e ko oo ok

66

E. VISUAL BASIC CODE LPM ASSET MONITOR

> calculate indices

Call lim.clpa_indices(4, returnedIndices, errors, warn, names,
.LogicBlockParameter7, .LogicBlockParameter8, .LogicBlockParameter6,
.LogicBlockParameter2(4), .LogicBlockParameter2(5), .LogicBlockParameter2(2),
.LogicBlockParameter2(3), .LogicBlockParameter2(1l), .LogicBlockParameter1(1),
.LogicBlockParameter1(2))

TempVector = .LogicBlockParameter4
’ store values in vector
If IsArray(returnedIndices) Then
vectorSize = UBound(returnedIndices)
For i = 1 To vectorSize
TempVector (i) = returnedIndices(i, 1)
Next
End If

> store now indices
.LogicBlockParameter4 = TempVector

’ make diagnosis
Call lim.clpa_diagnosis(3, hypotheses, errors, warn,
TempVector)

TempVector = .LogicBlockParameterb

’ store values in vector

If IsArray(hypotheses) Then
vectorSize = UBound(hypotheses)
For i = 1 To vectorSize

TempVector (i) = hypotheses(i, 1)

Next

End If

’ store new hypotheses
.LogicBlockParameter5 = TempVector

’ reset values

.LogicBlockParameter3 = 0

ReDim y(1 To .LogicBlockParameter2(6))
ReDim r(1 To .LogicBlockParameter2(6))
ReDim u(l To .LogicBlockParameter2(6))

.LogicBlockParameter6 = u
.LogicBlockParameter7 =y
.LogicBlockParameter8 = r

67

End If

> next position, LBP3 = position in batch
.LogicBlockParameter3d .LogicBlockParameter3 + 1
End If
End If
End If

Yakkk Set Conditioms ssokskoksksokskoksk ook ok ook ok kokokok ok skl ok ks ok sk ok sk s ok sk ok o e ok ok
.StatusQuality = qualityStatusENUM.good
.Status = ""
’ set output records
Call SetAllOutputRecords(AssetMonitor_IN)
> if any problems were encountered a description is stored in
’ .LogicBlockParameter9
.Status = .LogicBlockParameter9
’ set subconditions, problems will be displayed with .status
For i = 1 To 13
If .LogicBlockParameter5(i) = -1 Then
Set oSubCondition = m_utils.SetCurrentSubCondition(AssetMonitor_IN,
i, 0, False, badLastKnownValue, .Status, False)
Else
Set oSubCondition = m_utils.SetCurrentSubCondition(AssetMonitor_IN,
i, .LogicBlockParameter5(i), False, .StatusQuality, .Status, False)
End If
Next

If Err.Number <> O Then
Debug.Assert False
.Status = "Unhandled runtime error in ILogic_ExecuteLogic():
" & Err.Description
.StatusQuality = qualityStatusENUM.bad
Err.Clear

End If
End With
On Error GoTo O

End Sub

Private Sub ILogic_Terminate()
Set m_utils = Nothing
End Sub

Private Sub AssetMonitorConfigurationChanged(AssetMonitor_IN As AssetMonitor)
> Perform Configuration Change handling here.

E. VISUAL BASIC CODE LPM ASSET MONITOR

> This method is used to validate the Asset Monitor configuration such as

> Asset Parameters and Input Records.

> This method is called only if the AssetMonitor_IN.ConfigurationChanged flag is set.
> The ConfigurationChanged flag is set upon the very first execution or if the

> Asset Monitor COnfiguration is modified

> during runtime.

Dim pos As Integer ’ position in batch

Dim H(1 To 13) As Integer > hypothesis vector

Dim indices(l To 38) As Double > index vector

Dim y() As Double > process variable batch

Dim r() As Double ’ set point batch

Dim u() As Double > control signal batch

Dim loopCategory As String > loop category

Dim cascade As String ’ slave or master cascade loop

Dim Ts As Double ’ sampling time

Dim OPmin As Double ’ The minimum control signal value

Dim OPmax As Double > The maximum control signal value

Dim LRmin As Double ’ The minimum output value

Dim LRmax As Double > The maximum output value

Dim N As Double ’ size of the batch

Dim LCandCascade(l To 2) As String ’ vector containing loopcategory and
’ cascade values

Dim TsOPLRandN(1 To 6) As Double > vector containing Ts, OPmin/max,
> LRmin/max and N

Dim i As Double ’ used in For loops

On Error Resume Next

With AssetMonitor_IN

For i = 1 To 13

H(i) = -1 > value of all hypothesis unknown
Next
For i = 1 To 38

indices(i) = -99999 > value of all indices unknown
Next

’ get asset parameter values

loopCategory = CStr(.AssetParameters.selectSingleNode
("LoopCategory") . Text)

cascade = CStr(.AssetParameters.selectSingleNode("Cascade").Text)

N = CStr(.AssetParameters.selectSingleNode("N").Text)

Ts = CStr(.AssetParameters.selectSingleNode("Ts") .Text)

OPmin = CStr(.AssetParameters.selectSingleNode("0Pmin").Text)

OPmax = CStr(.AssetParameters.selectSingleNode("0Pmax") .Text)

69

LRmin
LRmax

CStr(.AssetParameters.selectSingleNode ("LRmin") .Text)
CStr(.AssetParameters.selectSingleNode ("LRmax") .Text)

’ store in vektors, so that fewer .LBP are used
LCandCascade(1) = loopCategory

LCandCascade(2) = cascade

TsOPLRandN(1) = Ts

TsOPLRandN(2) = OPmin

TsOPLRandN (3) = OPmax
TsOPLRandN(4) = LRmin
TsOPLRandN(5) = LRmax
TsOPLRandN(6) = N

’ reset batch vektors

pos =1

ReDim y(1 To N)

ReDim r(1 To N)

ReDim u(1 To N)

For i =1 To N
y(i) = -99999
u(i) -99999
r(i) -99999

Next

’ store values in .LBP

.LogicBlockParameter9Desc = "Errors" > variable containging errors
.LogicBlockParameter9 = "" ’ initially empty
.LogicBlockParameterlDesc = "Loopcategory and slave or master

cascade loop"

batch size"

last batch"

.LogicBlockParameterl = LCandCascade
.LogicBlockParameter2Desc = "Sampling time, OPmin/max, LRmin/max and

.LogicBlockParameter2 = TsOPLRandN

.LogicBlockParameter3Desc = "Position in the batch"
.LogicBlockParameter3 = pos
.LogicBlockParameter4Desc = "Indices calculated for control loop during

.LogicBlockParameter4 = indices
.LogicBlockParameterbDesc = "Hypotheses calculated for control loop

during last batch"

.LogicBlockParameter5 = H
.LogicBlockParameter6Desc
.LogicBlockParameter6 = u
.LogicBlockParameter7Desc = "Vector containing process variables"

"Vector contaning control signals"

70 E. VISUAL BASIC CODE LPM ASSET MONITOR

.LogicBlockParameter7 =y
.LogicBlockParameter8Desc = "Vector containing set points"
.LogicBlockParameter8 = r

’ acknowladge that values have been updated
Call .ConfigurationChangedAck

If Err.Number <> O Then
Debug.Assert False

.LogicBlockParameter9 = .LogicBlockParameter9 & "Unhandled runtime
error in AssetMonitorConfigurationChanged(): " & Err.Description
Err.Clear
End If

End With

On Error GoTo O
End Sub

Private Sub SetAllOutputRecords(AssetMonitor_IN As AssetMonitor)

> variable used to ensure that parameter is String in WriteToQutputRecord
Dim IndexValueAsString As String

On Error Resume Next
With AssetMonitor_IN

> write all outputs

IndexValueAsString = .LogicBlockParameter4(1)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,
IndexValueAsString, "mean_CE", False)

IndexValueAsString = .LogicBlockParameter4(2)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,
IndexValueAsString, "stdev_CE_norm", False)

IndexValueAsString = .LogicBlockParameter4(4)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,
IndexValueAsString, "mean_PV", False)

IndexValueAsString = .LogicBlockParameter4(5)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,
IndexValueAsString, "stdev_0P", False)

IndexValueAsString = .LogicBlockParameter4(6)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,
IndexValueAsString, "skew_CE_norm", False)

IndexValueAsString = .LogicBlockParameter4(7)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

71

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

IndexValueAsString,

"kurt_CE_norm", False)

IndexValueAsString = .LogicBlockParameter4(8)
.Status =
"maxbicoher_CE", False)

IndexValueAsString = .LogicBlockParameter4(11)
.Status =
"ratio_CE_QOP", False)

IndexValueAsString = .LogicBlockParameter4(12)
.Status =
"mode_automatic", False)

IndexValueAsString = .LogicBlockParameter4(13)
.Status =
"mode_saturation", False)

IndexValueAsString = .LogicBlockParameter4(14)
.Status =
"mode_cascade", False)

IndexValueAsString = .LogicBlockParameter4(17)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

"shutoffvalue_PV", False)

IndexValueAsString = .LogicBlockParameter4(18)
.Status =
"oscillation_CE", False)

IndexValueAsString = .LogicBlockParameter4(20)
.Status =
"osc_period_time", False)

IndexValueAsString = .LogicBlockParameter4(21)
.Status =
"osc_period_freq", False)

IndexValueAsString = .LogicBlockParameter4(22)
.Status =
"osc_amplit_time", False)

IndexValueAsString = .LogicBlockParameter4(23)
.Status =
"osc_amplit_freq", False)

IndexValueAsString = .LogicBlockParameter4(24)
.Status =
"osc_severity", False)

IndexValueAsString = .LogicBlockParameter4(25)
.Status =
"flag_stictionl", False)

IndexValueAsString = .LogicBlockParameter4(26)
.Status =
"flag_stiction2", False)

IndexValueAsString = .LogicBlockParameter4(28)
.Status =
"valve_travel", False)

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

.Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,

E. VISUAL BASIC CODE LPM ASSET MONITOR

IndexValueAsString = .LogicBlockParameter4(29)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,
IndexValueAsString, "ACF_ratio_index", False)

IndexValueAsString = .LogicBlockParameter4(32)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,
IndexValueAsString, "crossing SP", False)

IndexValueAsString = .LogicBlockParameter4(33)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,
IndexValueAsString, "tracking_SP", False)

IndexValueAsString = .LogicBlockParameter4(34)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,
IndexValueAsString, "travel_ratio_SP_PV", False)

IndexValueAsString = .LogicBlockParameter4(35)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,
IndexValueAsString, "control_performance", False)

IndexValueAsString = .LogicBlockParameter4(38)

.Status = .Status & m_utils.WriteToOutputRecord(AssetMonitor_IN,
IndexValueAsString, "outlier", False)

If Err.Number <> O Then
Debug.Assert False
.LogicBlockParameter9 = "Unhandled runtime error in
SetAllOutputRecords(): " & Err.Description
Err.Clear
End If

End With

On Error GoTo O
End Sub

Bibliography

1]
2]

3]

[4]

[5]
[6]

ABB. Optimize!™ Loop Performance Manager User Manual. 2004.

Horch, Alexander. ConditionMonitoring of Control Loops. PHD thesis, De-
partment of signals, sensors and systems, Royal Institute of Technology,
Stockholm, 2000.

Biao Huang and Sirish L. Shah. Performance assessment of control loops:
theory and applications, Department of Chemical and Materials Engineer-
ing, University of Alberta, Edmonton, Alberta, Canada, T6G 2G6. 1999.

ABB. Asset Monitor SDK User’s Guide. WE-DOC-04562-C Litho, U.S.A.
2003.

The MathWorks. MATLAB COM Builder User’s Guide. 2002.

M.A.A.S. Choudhury*, N.F. Thornhill** and S.L. Shah**. A data-driven
model for valve stiction,*Department of Chemical and Materials Engineer-
ing University of Alberta, Edmonton AB, Canada, T6G 2G6, **Depart-
ment of Electronic and Electrical Engineering University College London,
UK, WCIE 7JE

73

