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Abstract

The lack of availability and relevance of both credit ratings and traded
market instruments, forces financial institutions to find alternative ways to
validate the credit qualities of their counterparties. To address this issue,
existing bankruptcy prediction models are evaluated and re-estimated. Fur-
thermore a new model is constructed that outperforms the previous models
in terms of default classification. By adjusting for the rarity of defaults
and the utilised sampling techniques, the output of the constructed model
becomes more accurate and less biased than previous models. The model
is also validated to be rank consistent with US and Nordic S&P ratings as
well as with spreads of Credit Default Swaps on the US market.

Keywords: Credit Quality Assessment, Default & Bankruptcy Prediction,
Altman Z-score, Ohlson O-score, Logistic Regression, Rare-Event Bias Cor-
rection.
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1

Introduction

”Begin at the beginning,” the King said, gravely, ”and go on till
you come to an end; then stop.”

– Lewis Carroll

1.1 Background

1.1.1 Credit Quality

Since the start of the financial services industry, credit quality assessment
has constituted an integral part of financial institutions’ core business. In
essence, credit quality is a measure of a debtors ability to cover its financial
obligations. If a debtor can not meet its obligations, i.e. experience a credit
event, it will result in losses for its counterparties.

In the aftermath of the financial crisis, credit quality assessment has
become increasingly important. A plethora of regulations has been intro-
duced that forces financial institutions to hold additional capital to offset
counterparty risk. Restrictions on the amount of capital available for in-
vestments decrease the potential profitability of financial institutions. By
having precise credit quality assessments, the amount of capital held and
the fees assigned to contracts can be made as accurate as possible. It is a
game where one balances temporary profitability against severe unexpected
losses while staying within the regulatory boundaries. As is common in the
financial industry, having access to the best information is key to long-term
profitability.

There are three main types of corporate credit quality assessment sources
addressed in this thesis, (1) Third party credit ratings; (2) Traded spreads on
CDS-contracts or bonds; and (3) Credit and bankruptcy prediction models.
This thesis focuses mainly on the third type, even though the first two are
the more commonly known.
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1.1.2 Credit Ratings

The need for credit quality assessments has given rise to the creation of large
credit rating agencies, such as Moody’s, Standard and Poor’s (S&P), and
Fitch Group. The primary purpose of these agencies is to set credit grades,
commonly known as ratings, on companies, bonds and other financial instru-
ments. A higher rating of a company is viewed as positive as it lowers the
company’s expected cost of new capital. Ratings are also observed closely
by the rated companies’ counterparties as a safer company has, all else being
equal, a lower expected loss given default, which intuitively should require
less capital to be held.

1.1.3 Market Implied Credit Quality

The credit qualities of companies can, fortunately or unfortunately, also be
implied by assets traded on the market, such as Credit Default Swaps (CDS)
or corporate bonds. While credit rating agencies can take long time between
their credit rating updates, the CDS and bond prices are in almost all cases
updated more frequently as they are traded on the market. The soaring
CDS prices seen during the financial crisis raises the question whether the
CDS contracts are really limited to capturing the company specific default
risk. Some claim that other factors, such as the liquidity of the contracts
play an important part in the pricing.

1.1.4 Model Implied Credit Quality

A model implied credit quality assessment attempts to independently of
rating agencies, accurately and objectively assess credit quality in and out
of time of crisis. There has been a considerable amount of academic research
developed around bankruptcy prediction and credit scoring models. The
output of these models can be used for objective credit quality assessment.
Two famous models are Altman’s Z-score and Ohlson’s O-Score, both of
which are used by practitioners. Many of the academic models, including
Ohlson’s O-score, yield a nominal, rather than ordinal, value interpretable
as the probability of bankruptcy.

1.2 Relevant Literature

One of the classic works in the area of bankruptcy prediction was con-
ducted by Beaver (1966). He performed univariate analysis for a number
of bankruptcy predictors and set the stage for the multivariate analyses
that followed. Beaver (1966) found several predictors that can discriminate
between matched samples of failed and non-failed firms.
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Altman (1968) is the first one using multivariate analysis of ratios to
predict bankruptcies. In his well-known paper he uses data from American
manufacturing companies ranging from 1946 to 1965. Altman shows that
by using a combination of observed accounting ratios it is possible to predict
corporate bankruptcy. Altman’s research was groundbreaking at the time
and kindled an interest for similar analyses.

A logistic regression approach is undertaken by Ohlson (1980) for pre-
diction of bankruptcies within American industrial companies using data
ranging from 1970 to 1976. His model uses variables similar to that of Alt-
man’s Z-score model but his approach mitigates some of the critique directed
at the statistical technique utilised by Altman (1968).

With a non-financial background and with applications to social sciences
in mind, King and Zeng (2001) exhibit and provide solutions to issues sur-
rounding sampling and rare-event bias introduced by sloppy application of
sampling techniques. In their paper they also criticise the lack of consider-
ation for these problems seen from applied statisticians. Using the method-
ology proposed by King and Zeng (2001) is supposed to give more accurate
probability estimates when conducting logistic regression for rare-event pre-
diction.

1.3 Problem Discussion

Main issues with credit quality assessment concerns the availability and
reliability of data. Take credit ratings from the third party rating agencies
as an example. Are there ratings available for the company of interest? Are
these ratings, if they exist, truly unbiased? To answer the first question,
consider the Nordic market, where only a few, of the biggest companies,
have ratings provided by the major agencies. The applicability of credit
ratings on the Nordic market is therefore limited. One reason giving doubt
to the second question is that companies can pay for earlier credit rating
updates. Intuition suggests that such payments are only done when a higher
rating is likely to be given. This gives rise to a possible bias towards too
high ratings as well as a lagged introduction of lower ratings.

An alternative approach to the credit quality assessment conundrum
presents itself by consideration of CDS-data observable on the market. But
the previously discussed sparsity issue, present for the rating data, is an
arguably even greater issue for the CDS data. Although the CDS-contracts
are updated more frequently and constructed to capture the true credit event
probabilities, the CDS-spreads suffer from liquidity issues, are impacted by
herd behaviour and are by their contractual nature driven by supply and
demand.

As a third option one can instead rely on famous models such as Altman’s
Z-score and Ohlson’s O-score for implied credit quality, but it has been
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decades since Altman and Ohlson constructed their respective models. In
the meantime, the world, and most companies in it, have changed. It is
therefore reasonable to question if their models are still applicable today, and
if so, are they accurate? Besides, as companies and the financial industry
have evolved it is likely that other ratios, than those originally considered by
Altman and Ohlson, are better suited for credit quality assessment today.

Just as much as the fundamentals of companies may have changed, statis-
tical theory has also evolved. Consideration of relatively recent advances in
regression analysis enables more accurate estimates of true credit event prob-
abilities. For example, although Ohlson’s model has probabilities as output,
these are severely biased and not taking the population wide-probability of
default into account. They are instead calibrated to the sample probability
of default. The expected average output from the models should be close
to the true population-wide default rate, but this is not the case as they
have been calibrated on a biased subset of the population. By applying the
techniques suggested by King and Zeng (2001) it should be possible to come
closer to the true probabilities.

For a model to be applicable for credit quality assessment, not only the
absolute probability estimates are of interest. If one intends to use the model
for companies that have no ratings or CDS-spreads, and one additionally
wants to assess a proxy rating or CDS-spread to these companies, then at
least some rank consistencies between the model and these data types are
desired. If rank consistency exists then an un-rated company could have its
credit quality assessed without the need to consult the credit rating agencies.
Consider an example where three companies are present, two already have
ratings and a proxy rating is requested for the third. It is then possible to,
by use of a model, for which rank consistency is relatively strong, rate the
third company by ordinal comparison. For example, say that the first and
second company have a rating and model score pair of (B, 3 %) and (AA+,
0.5 %) respectively. Then the third company can be given a proxy rating
depending on the model score. For a model score between 0 % and 0.5 % a
rating of at least AA+ is implied. if the model score is between 0.5 % and 3
% then the corresponding implied rating is between B and AA+ and finally
a model score greater than 3 % would imply a lower rating than B. The same
relative ranking procedure would also be applicable to CDS-spreads if the
model’s output is concluded to be relatively rank consistent to CDS-spreads.

1.4 Problem Formulation

The questions addressed in this thesis are:

• How do Altman’s Z-score and Ohlson’s O-score perform on a more
recent data set?
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• Will a re-estimation of Altman’s Z-score and Ohlson’s O-score, to bet-
ter suit recent market conditions, improve their performances?

• Is it possible to construct a logistic regression model which performs
superior to Altman’s and Ohlson’s models for prediction of credit
events?

• Can the constructed logistic regression model’s output probabilities be
made more realistic?

• Is the constructed logistic regression model rank consistent with the
credit qualities implied by S&P and CDS-spreads?

1.5 Thesis Outline

The outline for the rest of this thesis is as follows:

Chapter 2: Statistical and financial theory will be introduced, along with
concepts that are of importance for this report.

Chapter 3: The common denominator for all the models considered in this
report is the need for credit event and non-credit event companies. For
each company the models require data from exactly one annual state-
ment. The gathering process along with a description of the retrieved
data is described in detail in this chapter.

Chapter 4: In this chapter the following issues are resolved, (1) How a
logistic regression model is built from the data described in Chapter
3; (2) How different models are evaluated against each other; (3) How
model output is tested for rank consistency with CDS and Rating data.

Chapter 5: This chapter simply presents results obtained by following the
methodology outlined in Chapter 4.

Chapter 6: In this chapter, (1) The resulting model from the model build-
ing stage is presented and discussed in detail; (2) All models’ per-
formances are discussed and the performance is related to CDS and
Rating data; (3) Emerging issues from the model building stage are
discussed, along with other important clarifications; (4) It is presented
how the resulting model can be used in practice.

Chapter 7: Interesting suggestions for future research are presented here.

Chapter 8: The final chapter summarises and concludes the thesis.

5



2

Theory and Concepts

Everything should be made as simple as possible, but not simpler.
– Albert Einstein

2.1 Statistical Theory

2.1.1 Logistic Regression

This thesis concerns explanation and prediction of credit events through
in advance observable data. Since the occurrence of a credit event is a
dichotomous event, a linear regression would fail to capture the dynamics
of the response-variable. Instead a more general class of regression tools
is utilised in this report, namely generalised linear models (GLM), see for
instance Dobson and Barnett (2007) for an introduction to the subject.
Logistic regression is a special case within the GLM-family and it is useful
when the response is a binary categorical variable.

The goal of logistic regression is to explain the relation between the k
explanatory variables in the column vector Xi = {1, Xi,1, ..., Xi,k}T and the
outcome variables Yi, for i = 1, ..., n. In logistic regression Yi is a binary
response s.t. Yi ∼ Bernoulli(pi). Yi thus takes on the value 1 w.p. pi and
takes on the value 0 w.p. 1 − pi, that is P (Yi = yi) = pyii (1 − pi)1−yi , for
yi = 0, 1. The value pi is thought to follow an inverse logistic function of a
(k + 1)× 1 vector xi,

pi =
1

1 + e−x
T
i ·β

(2.1)

where all xi are, jointly independent, observations of Xi, for i = 1, ..., n.
Furthermore, β is a (k+1)×1 vector, with an intercept in the first row. The
objective is to calibrate the vector β so that for each new set of explanatory
variables, xi the model gives a probability that the corresponding response
is a successful Bernoulli event, i.e. in this thesis a credit event. (Agresti,
2007; King & Zeng, 2001)
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2.1.2 Maximum Likelihood

Consider a sample of n random vectors X1,X2, ...,Xn, with joint distri-
bution function, f(x1,x2, ...,xn|θ) where θ ∈ Θ, and Θ is the parameter
space. Define the likelihood function L(θ) = f(x1,x2, ...,xn|θ) and observe
that, given a sample x1,x2, ...,xn, this is a function of θ. Furthermore if
X1,X2, ...,Xn are mutually independent then L(θ) = f(x1|θ) · ... · f(xn|θ),
where f(xi|θ) =

∫∞
∞ f(x1,x2, ...,xn|θ)dx1, ..., dxi−1, dxi+1, dxn. The maxi-

mum likelihood estimate (MLE) of θ is the value θ̂ = maxΘ L(θ). Further-
more define log (L(·)) to be the log-likelihood function and note that since
the logarithm function is monotone, the maximum of the log-likelihood func-
tion is obtained at the MLE θ̂, which is normally distributed under regular-
ity conditions (“The Concise Encyclopedia of Statistics,” 2008). The Score
Function is furthermore defined as the gradient of the log-likelihood func-
tion, and the (expected) Fisher Information Matrix I(θ) is defined as the
variance of the Score Function, lastly the inverse I(θ)−1 is the asymptotic
variance of the MLE. (Geyer, 2003) The consistent estimate I(θ̂)−1 is often
used as a proxy when the true parameter θ is unknown.

2.1.3 Wald Test

In order to test if the MLE θ̂ differ significantly from zero it is possible to
use the Wald test statistic. From asymptotic theory of MLE the difference
between the estimated coefficient θ̂ and its corresponding true mean under
H0 (often set to θ = 0) will be approximately normally distributed with
mean θ. By subtracting the true mean from the MLE and dividing the
result with the standard deviation of the MLE the result is a standard
normal distribution if H0 is true. By knowing the distribution a p-value is
easily calculated.a(Harrell, 2015)

2.1.4 Monte Carlo

Given that it is possible to generate an i.i.d. sequence X1, X2, ..., Xn with
common density f and given an integral of interest, I =

∫
m(x)f(x)dx.

Then relying on the strong law of large numbers and the central limit the-
orem Î = 1

n

∑
m(Xi) is a consistent, unbiased and asymptotically normal

estimate of I. (Zamar, 2014)
If one can induce negative correlation within the sequence X1, ..., Xn the

variance of the estimated integral Î will decrease. A crude way to do this is
by using antithetic variates, where one, if possible, simply set Xn+1, ..., Xn+n

equal to −X1, ...,−Xn to construct an additional n observations of the se-
quence. (Givens & Hoeting, 2013)

aThis is the method used by MATLAB for logistic regression p-value calculations. For
example the resulting value can be tested to the 5 % significance level by comparing the
value obtained to ±1.96. If the resulting value is outside this level it is deemed significant.
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2.1.5 Two-Sample t-Test

Equal Variance

A two-sample t-test can be used to determine if two populations’ means differ
significantly or not. The test involves testing the following hypotheses,

H0 :
1

n1

n1∑
i=1

X1,i =
1

n2

n2∑
j=1

X2,j

H1 :
1

n1

n1∑
i=1

X1,i 6=
1

n2

n2∑
j=1

X2,j

(2.2)

The populations from which the samples are drawn should be normally
distributed. The normality assumption should be tested for both samples
independently. The standard deviations of the two populations should also
be equal for the equal variance two-sample t-test. There is no requirement
of equal size of the samples. The test statistic is calculated as follows,

t =
X̄1 − X̄2

sX1X2 ·
√

1
n1

+ 1
n2

(2.3)

where

sX1X2 =

√
(n1 − 1) · s2

X1
+ (n2 − 1) · s2

X2

n1 + n2 − 2
(2.4)

The null hypothesis should be rejected at significance level α if |t| >
t1−α/2,v, where t1−α/2,v is the critical value of the t distribution with v
degrees of freedom, calculated as v = n1 + n2 − 2 when assuming equal
variance. (“The Concise Encyclopedia of Statistics,” 2008)

Welch’s t-Test (or Unequal Variance t-Test)

Welch’s t-test is similar to the equal variance two-sample t-test, both deter-
mine if two populations have significantly different means or not. Ruxton
(2006) argues that Welch’s t-test should always be used instead of the equal
variance t-test. Given the same hypotheses as above the t-statistic is calcu-
lated as follows,

t =
X̄1 − X̄2

sX̄1,X̄2

(2.5)

where

sX̄1,X̄2
=

√
s2

1

n1
+
s2

2

n2
(2.6)
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For use in significance testing the distribution of the test statistic is ap-
proximated with an ordinary Student’s t distribution with degrees of freedom
calculated as,

d.f. =
(s2

1/n1 + s2
2/n2)2

(s2
1/n1)2/(n1 − 1) + (s2

2/n2)2/(n2 − 1)
(2.7)

Welch’s t-test keeps the normality assumption of the populations from
the equal variance t-test but differs with respect to the assumption of equal
variance. (Welch, 1947)

2.1.6 Levene’s Test & Brown Forsythe’s Test

Levene’s test (Levene, 1960) is used to test if two or more samples have
significantly different variances or not. The Levene test for k samples is
defined as,

H0 : σ2
1 = σ2

2 = ... = σ2
k

H1 : σ2
i 6= σ2

j for at least one pair (i,j)
(2.8)

The k samples have sample sizes n1, ..., nk, s.t.
∑k

i=1 ni = N from k corre-
sponding random variables X1, ..., Xk (which could be equally distributed).
By Xij the j’th value, within sample i, is referred to. Levene’s test statistic
is defined as,

W =
N − k
k − 1

·
∑k

i=1 ni(Z̄i. − Z̄..)2∑k
i=1

∑ni
j=1(Zij − Z̄i.)2

(2.9)

where Zij can have one of the three following definitions,

1. Zij = |Xij − X̄i.| , where X̄i. is the mean of the i-th sample.

2. Zij = |Xij − X̃i.| , where X̃i. is the median of the i-th sample.

3. Zij = |Xij − X̃ ′i.| , where X̃ ′i. is the 10 % trimmed mean of the i-th
sample.

Z̄i. are the group means of the Zij , where j = 1, ..., ni, and Z.. is the mean
of all N values Zij .

Levene’s original paper only proposed use of the first alternative defini-
tion of Zij . Brown and Forsythe (1974) extended Levene’s test to use either
the trimmed mean or the median. In this thesis Levene’s test corresponds
to the use of the mean and Brown Forsythe’s test corresponds to the use of
the median. The definition based on the median is usually recommended as
the choice for non-normal data, as it is more robust. (NIST, 2012)
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2.1.7 Kolmogorov-Smirnov Test

One Sample Test

The Kolmogorov-Smirnov (or K-S) test is a nonparametric test that deter-
mines if an i.i.d. sample X1, ..., Xn, drawn from an unknown distribution
F , could have been drawn from a particular distribution F0 at a given sig-
nificance level. The hypothesis to test is as follows,

H0 : F = F0

H1 : F 6= F0
(2.10)

Let F (x) = P (X1 ≤ x), a cumulative distribution function (c.d.f.) of a
true underlying distribution of the data. An empirical c.d.f. is furthermore
defined as,

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x) (2.11)

That counts the proportion of the sample points below level x. The strong
law of large numbers implies that Fn(x)→ F (x) a.s., and by the Gilvenko-
Cantelli theorem the convergence is even uniform in x which gives an intu-
ition for the Kolmogorov-Smirnov statistic as

||Fn − F ||∞ ≡ sup
t∈R
|Fn(t)− F (t)| a.s.−−→ 0 (2.12)

Theorem 1. Following the same notations as above. If F (x) is continuous
then the distribution of

sup
t∈R
|Fn(t)− F (t)|

does not depend on F .

Proof. See Panchenko (2006).

Theorem 2. Furthermore,

P(
√
n sup
x∈R
|Fn(x)− F (x)| ≤ t)→ H(t) = 1− 2

∞∑
i=1

(−1)i−1e−2i2t

where H(t) is the c.d.f. of Kolmogorov-Smirnov distribution.

Proof. See Breiman (1968).

The rule is to rejectH0 ifDn > c, whereDn =
√
n supx∈R |Fn(x)−F0(x)|,

and the threshold c depends on the significance level and can be found from
the condition α = P (Dn ≥ c|H0). Under H0 the distribution of Dn can be
tabulated for each n and the threshold can be found. If n is large then the
Kolmogorov-Smirnov distribution can be used to find c since α = P (Dn ≥
c|H0) ≈ 1−H(c). (Panchenko, 2006)
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Two Sample Test

The Kolmogorov-Smirnov test for two samples works similar to the one-
sample test. Suppose that for the first sample, m observations are drawn
from a distribution with c.d.f. F (x) and for the second sample n observations
are drawn from a distribution with c.d.f. G(x). The aim of the K-S two
sample test is then to test,

H0 : F = G

H1 : F 6= G
(2.13)

Denote the corresponding empirical distributions as Fm(x) and Gn(x).
Then the test statistic is,

Dmn = (
mn

m+ n
)1/2 sup

x
|Fm(x)−Gn(x)| (2.14)

which satisfies theorem 1 and 2 above. And the rest is the same. (Panchenko,
2006)

2.1.8 Bonferroni Familywise Error Rate

When conducting multiple tests the risk of getting a False Positive is in-
creasing in the number of tests performed. One can introduce the concept
of Family Wise Error Rate (FWER) to correspond to the probability of
making at least one type one error, i.e. a False Positive. To keep this
FWER within control Bonferroni suggests to divide the significance level of
each test by the number of times the test will be performed in total. From
Boole’s inequality it follows that this simple adjustment keeps the FWER
below the predefined significance level. (Holm, 1979)

2.1.9 Correction for Choice Based Sampling

If a logistic regression model has discriminative power between, in this the-
sis, companies that have experienced a credit event (credit event compa-
nies) and companies that have not experienced credit events (non-credit
event companies), then, in general, the credit event companies will be given
larger probabilities, p, of experiencing credit events than the non-credit event
companies. This is of course very natural. Another consequence in a rare
event situation is that as events by definition are unlikely to occur then
the estimated probabilities are rarely higher than 0.5. Thus, as a rule of
thumb pNon-Credit Event Company < pCredit Event Company < 0.5. Furthermore,

the asymptotic covariance matrix of the MLE β̂ is, under regularity condi-
tionsb, given by the inverse of the Information Matrix I(β)−1, or a consistent
estimate thereof, such as the inverse of the expected Information Matrix eval-
uated at the MLE β̂, Var(β̂) = 1/(

∑
i pi(1 − pi)xTi xi), where pi = 1

1+e−xiβ̂
.
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Studying this function more closely, one notes that the constituent pi(1−pi)
where pi ∈ [0, 1] is maximised for pi = 0.5 and the function is unimodal.

Conclusively, relying on the rule of thumb and the interpretation of the
impact of probability estimates on the covariance matrix, it is noted that
including additional credit event companies, instead of non-credit event com-
panies, in the data sample contributes more to reducing the variance of the
MLE β̂. Therefore as many credit event companies as possible are desired.
A choice based sampling method (also known as case-control or endogenous
stratified sampling) uses all available, or some randomly selected observa-
tions for which a credit event took place and then selects randomly within
the non-credit event companies. This yields a design that is consistent and
efficient, but only with the appropriate correction. Two such choices of
corrections are Prior Correction and Weighting. (King & Zeng, 2001)

Prior Correction

This is the simpler correction method of the two concerned with in this the-
sis, both conceptually and computationally. One initiates with the ordinary
MLE calculation and once one has obtained the β0 term, one corrects this
factor by the ratio of the odds of a credit event within the sample and the
true odds of a credit event for the whole population.

β̂0,corr = β̂0 − log(
1− τ
τ
· ȳ

1− ȳ
), (2.15)

where τ is the true fraction of credit events in the population and ȳ is
the fraction of credit events within the sample. See Appendix B in King
and Zeng (2001) for a proof of consistency of Prior Correction for logistic
regression.

Weighting

Instead of maximising the usual log-likelihood function, a weighted log-
likelihood function is introduced (King & Zeng, 2001),

ln(Lw(β|y)) = w1 ·
∑
{Yi=1}

log(pi) + w0 ·
∑
{Yi=0}

log(1− pi)

= −
n∑
i=1

wi · log(1 + e(1−2yi)xiβ),

(2.16)

where

bThe regularity conditions include the following: the true parameter value β must be
interior to the parameter space, the log-likelihood function must be thrice differentiable,
and the third derivatives must be bounded. (Rodŕıguez, 2001)
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w1 = τ/ȳ

w0 = (1− τ)/(1− ȳ)

wi = w1Yi + w0(1− Yi).
(2.17)

The expression of the weighted log-likelihood may look complex, but im-
plementing the method is trivial because the weights wi in Equation 2.17
can be calculated in advance. Any sophisticated logistic regression software
will take weights as input. But, as discussed by Manski and Lerman (1977)
and Xie and Manski (1989), the usual method for calculations of standard
errors, based on the Information Matrix, is incorrect for Weighting. Further-
more King and Zeng (2001) mentions that the ”[...] problem is explained by
the Information Matrix equality not holding under choice-based sampling.”
and they proceed by illustrating the severity of the bias, and the increase of
the bias in the number of left out non-event companies. They also present a
solution, to apply the Huber-White (robust) standard error estimate. The
Huber-White estimate of standard errors is the method utilised when calcu-
lating the Wald Statistics for Weighting in this thesis. See Freedman (2006)
for an introduction.

The disadvantage of Prior Correction is that it is less robust than Weight-
ing if the model is misspecified and with a large sample Weighting performs
better. (Xie & Manski, 1989) However, when confident about the explana-
tory variables and the functional form of the model, Prior Correction is
preferable. (King & Zeng, 2001) But it should be noted that Prior Correc-
tion is not always inferior to Weighting, as the latter is asymptotically less
efficient. The illustration of this result, evident in a small sample situation,
is attributed to (Scott & Wild, 1986; Amemiya & Vuong, 1987).

2.1.10 Two-Step Bias Correction

Illustration of Rare-Event Bias

First of all, there exists a bias inherent in any logistic regression estimation
based on a sample not equal to the entire population; furthermore this
bias is increasing in the rarity of the events. The bias in this thesis is
towards underestimating the probability of experiencing credit events for
companies, and thus overestimating the probability of surviving. To see this
intuitively consider a model using one covariate with good discriminative
power. If there are few credit events present in the credit event sample,
only little information about the distribution of the covariate is obtained
for these companies. Whereas there will be a more stable distribution for
the non-credit event companies if there is a comparatively higher number of
non-credit event observations. See Figure 2.1 for an illustration.
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Figure 2.1: The few observed credit event companies (Y = 1) are marked
as short vertical lines, along with the (solid) line for the density from which
they were drawn. The many (Y = 0) non-credit event observations do not
appear but their density is shown with the dotted line. (King & Zeng, 2001)

The left (non-credit event) distribution is dense and the right (credit
event) distribution is relatively sparse, i.e. a rare event situation. Consider
a classification between credit event companies and non-credit event compa-
nies based on the two given distributions. The maximum of the non-credit
event population distribution will likely correspond well to the maximum of
the non-credit event sample distribution; meanwhile, the minimum of the
credit event sample is unlikely to correspond well to the minimum of the
credit event population in a rare event situation. If the goal of the classi-
fication is to minimise the number of misclassifications, and type one and
type two errors are equally important to consider, then the optimal value
used for discrimination, i.e. the cutoff, will be very close to the minimum
value within the credit event sample. As this minimum corresponds poorly
to the minimum of the credit event population the model is biased towards
classifying observations as non-credit events. This is the same as saying
that any observation will be given too low probability of being classified as
a credit event, and thus of course, also too high probability of being clas-
sified as a non-event company. This gives cause to the bias, and illustrates
that the bias is increasing in the rarity of the events. Please see King and
Zeng (2001) for a more thorough illustration of this effect.

Calculating and Compensating for the Bias in Beta

Following on McCullagh and Nelder (1989), who give an explicit estimation
formula for the bias of any generalised linear regression model, King and
Zeng (2001) gives proof for the special logistic regression case. Below the
needed results for rare event bias correction of β are presented. Please see
Section 15.2 and Appendix C of the former and latter named references for
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the full derivation.

bias(β̂) = (X
′
WX)−1X

′
Wξi (2.18)

where,

ξ = 0.5Qii[(1 + w1)p̂i − w1],

Qii are the diagonal elements of Q = X(X
′
WX)

−1
X

′
,

W = diag{p̂i(1− p̂i)wi} and

p̂i is the expected probability of an event based on the MLE estimates.

Note that this can be viewed as a simple weighted least square regression.
The bias-corrected estimate is then β̃ = β̂−bias(β̂) which by an approxima-
tion has variance Var[β̃] = (n(n + k))2Var[β̂] (King & Zeng, 2001). Where
n is the number of observations and k is the number of columns in X, i.e.
the number of covariates in the model plus one. Be aware that the variance
estimation is a crude approximation which works better for small values of
β (McCullagh & Nelder, 1989).

Uncertainty in Beta

β̃ is preferable to β̂ to use for calculation of the consistent expected proba-
bilities, since β̃ is less biased and also, based on the estimation above, has
lower variance than the MLE estimate β̂. However, neither of these two
estimates are optimal since they disregard the uncertainty in beta existing
due to the fact that β is estimated rather than known. Furthermore, the
uncertainty in beta is evident by a non-zero variance of the estimate. Since
it is known that the MLEs of β in a logistic regression situation are asymp-
totically normally distributed, it is possible to mitigate the impact of the
known uncertainty by utilising the law of total probability. (King & Zeng,
2001)

P(Yi = 1) = Eβ̃[P(Yi = 1|β̃)] =

∫
P(Yi = 1|β∗)P(β∗)dβ∗ (2.19)

A simple way to calculate Equation 2.19 is to use a Monte Carlo scheme
by drawing from the distribution of β̃.

2.1.11 Jackknife

The Jackknife method is commonly used to reduce bias and to calculate
variances of cumbersome parameter estimates. It is especially useful if the
parameter of interest has no explicit function. It is a re-sampling technique,
part of a bigger family of methods known as bootstrapping, but the Jackknife
method predates the more general bootstrapping methods. The method is
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applied by simply calculating the leave one out samples of the vector of
observed values.

Given a vector of observations x containing values x1, ..., xn, the Jack-
knife leave one out samples are the n vectors of length n − 1. The i’th
Jackknife sample vector is

x[i] =


{x2, ..., xn}, for i = 1
{x1, ..., xi−1, xi+1, ..., xn}, for i = 2, ..., n− 1
{x1, ..., xn−1}, for i = n

(2.20)

Computing the variance of a parameter θ = g(x) is then easy. The n
values θ[i] ≡ g(x[i]) are computed from which the estimate of the variance of
θ follows as Var(θ̂) = 1/(n− 1)

∑
i(θ[i]− θ0)2, where θ0 is the estimate of θ,

retrieved by using the full data set. For large n, the jackknife estimate θ̂ =
1/n

∑
i θ[i] is approximately normally distributed around the true parameter

θ so it is possible to use the Jackknife method for constructing confidence
intervals for θ. (Zhou, Obuchowski, & McClish, 2011)

2.1.12 Spearman’s Rank Correlation

Spearman’s rank correlation is a non-parametric statistic that can be used
to test the strength of association between two variables. The statistic
does not assume anything about the distribution of the variables except
that the relationship between them is monotone and that the variables can
be ranked ordinally. The statistic is simply defined and computed as the
Pearson Correlation of the ranks in the data, i.e. the ”usual correlation
formula” computed on the ranks. The following formula can also be used to
calculate Spearman’s rank correlation in the case of distinct integer ranks,

ρ = 1−
6
∑

i d
2
i

n(n2 − 1)
(2.21)

where

ρ = Spearman’s Rank Correlation,

di = The rank difference of paired observations i, for i = 1, ..., n,

n = Number of observations in each data set.

Spearman’s ρ is bounded by -1 and 1. Significance of the Spearman’s
rank correlation coefficient is based on a statistic which for large n is approxi-
mated by a normal or t-distribution. The details for the test are omitted but
available in Kendall and Smith (1939). The p-value indicates the probability
of seeing the observed correlation or stronger.

Cohen’s standard, see Table 2.1, can be used to evaluate the Spearman’s
correlation coefficient to determine the strength of the relationship between
the two variables. (Cohen, Cohen, West, & Aiken, 2002)
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Spearman’s ρ Degree of Association

0.10-0.29 Small
0.30-0.49 Medium
0.50- Large

Table 2.1: Cohen’s Standard for Degree of Association

2.1.13 Winsorisation

Winsorisation is a method utilised to avoid and prevent the influence of
outliers in data. The method has been used by previous researchers within
the field of bankruptcy prediction, see Ohlson (1980) and Shumway (2001)
for two examples. Before conducting a new experiment the 1 % and 99 %
quantiles are computed for each covariate within the two samples of credit
event companies and non-credit event companies. Values of covariates that
fall outside of the corresponding sample quantiles are set to be equal to the
value of the bounding quantile value. To the authors’ knowledge, previous
research has not performed winsorisation for credit event and non-credit
event companies independently. There is a downside inherent in the pro-
posed approach as it helps to separate the covariates which simplifies finding
significant regression coefficients.cOn the other hand, with a data set where
the number of observations for the two groups differs greatly, there is an ob-
vious downside to winsorising across the entire population. One introduces
the risk of losing a lot of information for the smaller subset. Furthermore
the negative impact of this effect is greatly enhanced by the discriminative
efficiency of the covariate and the rarity of events in the population and in
the sample. See Example 2.1.1 for an illustrative example.

Example 2.1.1. In preparation for the example 1000 i.i.d. normally dis-
tributed points are drawn with expected value 1 and standard deviation
0.5, these points are grouped in Group 1. 198 i.i.d. normally distributed
points with expected value 3 and standard deviation 1 are also drawn which
together with two outliers, manually put at 0, are grouped in Group 2. It
should be noted that in a situation where the two groups are of equal size
and the observations are identically distributed, the two winsorisation meth-
ods are expected to yield the same result. This would, however, translate
to a situation in which a covariate would have very limited discriminative
power, and where events would not be considered rare. In Figure 2.2 the
top plot illustrate the distribution of the original example data. Note the 2
outliers at x = 0. The middle plot shows the same data but winsorised on
covariate level, i.e. across both samples, at 2.5 % and 97.5 % levels. Note

cAll winsorisations are naturally limited to only be used on the estimation set, as
there is no feasible way to winsorise when the model is put into practice, and therefore,
correcting the validation set would be a severe mistake.
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now that the Group 2 data is greatly impacted by the large value of obser-
vations within Group 1. The winsorisation on the 97.5 % quantile impacts
15.0 % of all observations in Group 2. But the true outliers, located at 0
are not impacted. Meanwhile in the bottom plot the approach with group
independent winsorisation yields a data set where the outliers are success-
fully altered and the data is not distorted asymmetrically between the two
groups.
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Figure 2.2: Winsorization Example

The group independent approach relies on the assumption that data is
drawn from two distinct distributions, in this example it is obvious but in
the data for this thesis such a conclusion is less trivial to draw.d

2.2 Financial Theory

2.2.1 Corporate Bonds

Corporate bonds are securities that are sold by corporations in order to
raise money today in exchange for promised future payments. The terms
of the bond are described as part of the bond certificate, which indicates
the dates and amounts of all future payments. The last payment is on the
maturity date, the final repayment date. Bonds typically have two different
types of payments, one is the interest payment of the bond, or coupon, and
the other is the principal payment. The coupons are often paid periodically

dAs indicated by both Welch’s t-test and especially by Kolmogorov-Smirnov two sam-
ple test, the distributions of the covariates in this thesis are indeed, in many cases, distinct.
Thus a group independent winsorisation not only avoids the problems illustrated above
but is also the more theoretically sound method of the two.
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with a pre-specified frequency (e.g. quarterly, semi-annual or annual) until
the maturity date of the bond. The principal payment of the bond is repaid
at the maturity date. (Berk & DeMarzo, 2013)

By investing in a bond the investor runs the risk of not being paid the
promised future payments of the bond, as the corporation may not pay back
the full amount. The risk of default of a bond is known as the bond’s credit
risk. (Berk & DeMarzo, 2013)

2.2.2 Credit Default Swaps

In a credit default swap (CDS), the buyer pays a periodic premium to the
seller of the swap and receives a payment from the seller if the underlying
security (often bond) defaults. The contracts allow market practitioners to
transfer the credit risk of a company. Traditionally, CDS spreads represent
the fair insurance price for the credit risk of a company. CDS contracts
are written between counterparties and traded over-the-counter (OTC). A
buyer or seller who wants to unwind a position can’t sell or buy the contract
on an exchange like stocks, but is instead forced to enter into an offsetting
CDS contract with a possibly new counterparty. (Berk & DeMarzo, 2013,
p. 728-729). The contractual nature of CDS contracts makes them less
influenced by convenience or liquidity factors than bond assets. (Arakelyan
& Serrano, 2012)

2.2.3 Financial Statements

Financial statements are accounting reports periodically (usually quarterly
and annually) issued by corporations. They present a snapshot and sum-
marise past and current information of a corporation’s financial status. Pub-
lic companies (i.e. companies traded on a stock exchange) are forced to
submit an annual report with their financial statements to their sharehold-
ers each year. Private companies (i.e. companies not traded on any public
exchange) often prepare and publish the same type of reports, even though
they are not obliged to. (Berk & DeMarzo, 2013, p. 22)

Public corporations have to present four financial statements; the bal-
ance sheet, the income statement, the statement of cash flows, and the
statement of changes in shareholders’ equity. The authors assume that the
reader has basic knowledge of financial statements and refer to Berk and
DeMarzo (2013) for a thorough discussion of the subject.

2.2.4 Financial Ratios

Financial ratios play an important role in financial reporting. A financial ra-
tio consists of a numerator and denominator relating two financial amounts.
The financial amounts can be from any of the four financial statements that
the corporation issues. Financial ratios aid in the benchmarking process
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of a corporation’s performance as they, by introducing comparability, help
to identify problem areas within a corporation’s operations, liquidity, debt
position, profitability, etc. (Faello, 2015)

Financial ratios not only provide information of past performance of
a company but many also interpret them as guidance of where a firm is
heading. For example, negative trends, or states, of financial ratios could
indicate that a firm is in decline and provide insights into the prediction of
corporate failure. (Faello, 2015)

2.2.5 Credit Rating Agencies and Credit Ratings

A central issue in finance is the lender’s uncertainty concerning whether a
borrower will fulfill all the contractual obligations of a loan or not. This can
be thought of in terms of asymmetric information, i.e. the borrower knows
more of its capabilities and financial status than the lender does. Conse-
quently, the lender will, prior to extending a loan, want to gather information
about prospective borrowers, in order to determine their creditworthiness.
Following the extension of a loan, the lender will want to monitor the bor-
rower’s actions, and creditworthiness, to be reassured that the contractually
obliged repayments are not in jeopardy.

Credit rating agencies provide a means to reduce the named asymmet-
ric information inherent in financial markets. The “Big Three” agencies are
Standard & Poor’s (S&P), Moody’s and Fitch Group. After collecting infor-
mation about the bond issuers, the credit rating agencies offer judgements,
called “opinions”e, about the creditworthiness of bonds, corporations, and
sovereigns. The judgements are in the form of ratings of which Standard
& Poor’s are the most well-known and have the structure of AAA, AA, A,
BBB, BB,..., C, D (including +/-). (White, 2010)

2.2.6 Definition of Credit Event

This thesis uses Moody’s definition of default which is applicable to debt or
debt-like obligations (e.g. bonds, swap agreements, etc.) (Moody’s Investor
Services, 2016). Moody’s has four events that fall under their definition of
default,

• a missed or delayed disbursement of a contractually-obliged interest
or principal payment (excluding missed payments cured within a con-

e”The rating agencies prefer that word because it allows them to portray themselves
as publishers, akin to the publishers of newspapers, and thereby gain the protection of the
First Amendment of the U.S. Constitution when they are sued by unhappy investors (e.g.,
who claim that they were injured by ratings that were subsequently shown to be overly
optimistic) or by issuers (e.g., who claim that they were injured by overly pessimistic
ratings)” (White, 2010)
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tractually allowed grace period), as defined in credit agreements and
indentures;

• a bankruptcy filing or legal receivership by the debt issuer or obligor
that will likely cause a miss or delay in future contractually-obliged
debt service payments;

• a distressed exchange whereby 1) an obligor offers creditors a new or
restructured debt, or a new package of securities, cash or assets that
amount to a diminished financial obligation and 2) the exchange has
the effect of allowing the obligor to avoid a bankruptcy or payment
default in the near future;

• a change in the payment terms of a credit agreement or indenture
imposed by the sovereign that results in a diminished financial obli-
gation, such as a forced currency re-denomination (imposed by the
debtor, himself, or his sovereigns) or a forced change in some other
aspect of the original promise, such as indexation or maturity.

2.3 Earlier Models

2.3.1 Altman Z-Score

Professor Edward I. Altman introduced the first multivariate bankruptcy
prediction model in 1968 (Altman, 1968). His model, which is now more
known as the Z-score model, was a breakthrough in the academic field of
bankruptcy prediction, based on financial ratios and other variables to sys-
tematically assess credit qualities. In his 1968 paper, Altman uses a data
set containing 66 American manufacturing companies. In his data set, half
of the companies had filed for bankruptcy during the period 1946-1965. The
non-bankrupt companies were chosen in, what Altman describes as, a strati-
fied random basis (comparable to case-control as described in Section 2.1.9),
based on industry, asset size and that they were still existent in 1966. The
financial ratios needed are obtained from financial statements one reporting
period prior to bankruptcy. Altman uses a total of 22 ratios, some from
past studies and others introduced by him as likely successful predictors of
financial distress. From the original 22 ratios, five are included in his model.
In order to arrive at the final ratios, Altman’s procedure combines the fol-
lowing four points, ”(1) observation of the statistical significance of various
alternative functions, including determination of the relative contributions
of each independent variable; (2) evaluation of inter-correlations among the
relevant variables; (3) observation of the predictive accuracy of the various
profiles; and (4) judgment of the analyst.” (Altman, 1968).

Altman utilises Multiple Discriminant Analysis (MDA) to obtain his fi-
nal model. MDA is a statistical technique which classifies observed response
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variables into predefined groups dependent on the characteristics of the in-
dividual observation. When using the resulting MDA model a company
specific score can be calculated by use of a discriminant function. Compar-
ing the resulting score to calibrated or predefined values yields a classifica-
tion. The procedure in his 1968 paper results in the discriminant function
in Equation 2.22,

Z = 0.012X1 + 0.014X2 + 0.033X3 + 0.006X4 + 0.999X5 (2.22)

where,

X1 = WC/TA = Working Capital/Total Assets

X2 = RE/TA = Retained Earnings/Total Assets

X3 = EBIT/TA = Earnings Before Interest & Taxes/Total Assets

X4 = MCAP/TL = Market Value Equity/Book Value of Total Debt

X5 = Rev/TA = Sales/Total Assets

Furthermore, variable X1 to X4 should be inserted as percentage values
(i.e. 1 % is written as 1 rather than 0.01) and X5 is inserted in the normal
decimal way (i.e. 1 % is written as 0.01 rather than 1). Due to this obvious
practical confusion a more convenient version of the model has emerged
and is presented in Equation 2.23, where all values are used in the normal
decimal way (i.e. 1 % is written as 0.01 rather than 1). This version is also
suggested by Altman (2000). It is important to note that Altman’s Total
Assets variable uses Tangible Assets if available.

Z = 1.2X1 + 1.4X2 + 3.3X3 + 0.6X4 + 1.0X5 (2.23)

Altman introduces a cutoff to enable use of the model for discrimination
between high and low risk of bankruptcy, where a Z-score higher than the
cutoff indicates a high risk and a Z-score lower than the cutoff is associated
with a low risk. Using his Z-score and a cutoff of 2.67, Altman achieves
95 % correct classification of his 66 in-sample companies. Furthermore, he
manages to predict 24 of 25 bankrupt companies correctly in an out-of-
sample test. In addition, he applies the model to 66 distressed, but still
not bankrupt companies, and among these he manages to predict 79 %
companies correctly, i.e. as non-bankrupt.

Altman appreciates that all companies are unlikely to be easily divided
into two mutually exclusive groups based on a cutoff. In an attempt to
mitigate the risk of misclassification he expands his model to include a grey
zone, i.e. a non-certain zone. Therefore, after empirically testing the model,
Altman suggests that a company with a Z-score below 1.81 should be consid-
ered bankrupt and companies with a Z-score above 2.99 should be considered
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“non-bankrupt”. A company with a Z-score between 1.81 and 2.99 should
be put in the grey zone, or zone of ignorance. (Altman, 1968)

The Altman Z-score model has since 1968 been revisited and several
newer versions have been constructed, such as the Z’ and Z” models which
address US Private Manufacturing and US Non-Manufacturing and Foreign
Firms respectively. (Altman, 2000) These newer models are not considered
in this report.

2.3.2 Ohlson O-Score

Professor James Ohlson developed a bankruptcy prediction model based on
logistic regression in 1980. Ohlson chose to use logit analysis as he wanted to
avoid well-known problems associated with MDA. In his 1980 report he lists
three of these problems, (1) The covariance matrix of the predictors should
be the same for failed and non-failed firms, and a requirement of normally
distributed predictors rules out the applicability of dummy variables, (2)
The score from the MDA model has no intuitive interpretation since it is
in essence an ordinal ranking tool, (3) The matching procedure between
failed and non-failed firms, typically utilised for MDA, is often based on
size, industry, and other measures which Ohlson argues tend to be arbitrary
and could instead be considered as predictors. (Ohlson, 1980)

Ohlson uses a sample of 105 bankrupt and 2,058 non-bankrupt industrial
firms from 1970 to 1976. In his paper he estimates three models based on
nine independent variables. The first model predicts bankruptcy within one
year, the second within two years, and the third within one or two years.
His first model is of interest in this thesis and it is presented in Equation
2.24. The O-score is then converted to a probability with Equation 2.25.

O =− 1.32− 0.407X1 + 6.03X2 − 1.43X3 + 0.0757X4

− 2.37X5 − 1.83X6 + 0.285X7 − 1.72X8 − 0.521X9
(2.24)

p =
1

1 + e−O
(2.25)

Where,

X1 = Size = log(Total Assets/GNP price-level index), where 1968 is
used as a base value of 100 for the index

X2 = TL/TA = Total Liabilities/Total Assets

X3 = WC/TA = Working Capital/Total Assets

X4 = CL/CA = Current Liabilities/Current Assets

X5 = NI/TA = Net Income/Total Assets

X6 = FU/TL = Funds Provided by Operations/Total Liabilitiesf
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X7 = INTWO = One if NI was Negative for the Last Two Years,
Zero Otherwise

X8 = OENEG = One if TL > TA, Zero Otherwise

X9 = CHIN = NI(t)−NI(t−1)
|NI(t)|+|NI(t−1)|

cutoff = 0.50

WC/TA, CL/CA and INTWO are not significant in Ohlson’s paper, but
he still included them. Ohlson had 96.12 % correct predictions for his data
sample when he used 0.5 as the cutoff probability. Ohlson did not perform
any out-of-sample testing. (Ohlson, 1980)

2.4 Model Evaluation Theory

2.4.1 Classification Table

One common way to summarise the predictive power of a logistic regression
model is by use of a classification table (or confusion matrix ). The table
orders the actual binary outcome (y = 0 or 1) together with the prediction
given by the model (ŷ = 1 or 0) in a 2× 2 matrix. The prediction of ŷ = 1
is given if the pi > cutoff and ŷ = 0 if pi ≤ cutoff. If the model predicts
a company to survive (ŷ = 0) but it actually has failed, then it is called a
False Negative. If a company survived (y = 0) while the prediction is positive
(ŷ = 1), then it is called a False Positive. A company that survived (y = 0)
that has been correctly classified is called a True Negative result and a
correct prediction of a failing company is called a True Positive. By changing
the cutoff probability, cutoff, the predictions would change and therefore also
the classification table would change. The choice of cutoff probability should
be such that the overall cost of misclassification is minimised. (Agresti, 2007,
p.142-143)

Two crude measures of model performance are the Positive and Negative
Predictive Values, defined as the empirical estimates of the probabilities
P (y = 1|ŷ = 1) and P (y = 0|ŷ = 0). Two other useful measures of predictive
power are sensitivity P (ŷ = 1|y = 1) and specificity P (ŷ = 0|y = 0). The
overall proportion of correct classification can also be used as a summary of
predictive power. It is defined as: P (correct classification) = P (y = 1∩ ŷ =
1) + P (y = 0 ∩ ŷ = 0), and can be thought of as a weighted average of
sensitivity and specificity.

fIn this thesis Cash From Operations will be used as a proxy for Funds Provided by
Operations
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Model
Prediction

Actual Outcome

y = 1 y = 0

ŷ
=

1
True
Positive
(TP)

False
Positive
(FP) Pos. Pred. Value

ŷ
=

0

False
Negative
(FN)

True
Negative
(TN) Neg. Pred. Value

Sensitivity Specificity

Table 2.2: Classification Table; Where Sensitivity = TP
TP+FN , Specificity

= TN
FP+TN , Positive Predictive Value = TP

TP+FP and Negative Predictive

Value = TN
FN+TN

2.4.2 Cumulative Accuracy Profile

In order to assess the discriminative power of a model the method of Cu-
mulative Accuracy Profile (CAP) can be used as a visual tool. To construct
the CAP curve, companies are ranked in increasing order of credit quality
according to their score from the model. “The CAP curve is constructed
by plotting the fraction of all defaults that occurred among borrowers rated
x or worse against the fraction of all borrowers that are rated x or worse”
(Löffler & Posch, 2007, p.148-151). A default prediction model that per-
forms well should assign the highest probabilities of defaults in the sample
to the companies that have defaulted. For a model that has no discrimina-
tive power, i.e. a model no better than guessing, the CAP curve is expected
to form a ”45 degree line”, a random assignment line.

Example 2.4.1. In Figure 2.3 an example of three CAP curves is pre-
sented. In the example there are 20 companies that have experienced a
credit event (credit event companies) and 80 companies that have not ex-
perienced credit events (non-credit event companies). The perfect model
assigns the 20 highest probabilities to the credit event companies. The ac-
ceptable model manages to find all 20 credit event companies after going
through the 40 worst companies according to the model’s ranking. A model
that has no discriminative power is expected to have slope 1, 45 degree line.
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Figure 2.3: Example of Cumulative Accuracy Profiles

2.4.3 Area Under Curve (or Accuracy Ratio)

The information provided by the CAP curve can in large be captured by
a single number, the Area Under Curve (AUC). The AUC for a model is
defined as the ratio between two areas, (1) The area between the CAP-curve
of the model and the random assignment line, and (2) The area between the
perfect model ’s CAP-curve and the random assignment line. The acceptable
model in Example 2.3 has an AUC = 0.75. The AUC is always bounded
by [−1, 1]. The AUC for a model should be above zero as it otherwise is
outperformed by a model that randomly assigns ranks. Löffler and Posch
(2007) state that credit rating systems that are used in practice have a
typical AUC between 0.5 and 0.9. AUC and CAP should be used carefully
as they do not discriminate between the cost of type I and type II errors.

2.4.4 Receiver Operating Characteristic

Sensitivity and specificity and other measures of classification performance
computed from the classification tables depend on a single cutoff probabil-
ity. A better and more complete description of classification accuracy of a
model is the area under the Receiver Operating Characteristic curve (ROC-
curve). The ROC-curve plots the sensitivity and (1 - specificity) for a range
of cutoff probabilities. This method has according to Hosmer, Lemeshow,
and Sturvidant (2013) become the standard for evaluating a fitted model’s
discriminative ability. Understanding the construction of the ROC-curve
yields an intuitive interpretation of the choice of cutoff probability, for dis-
criminative models, as the intersection of the sensitivity and (1 - specificity)
curves. This cutoff is furthermore a common choice in practice. (Hosmer
et al., 2013)
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The area under the ROC-curve, known as ROC, ranges from 0.5 to 1.0,
where 0.5 indicates no discrimination and 1.0 indicates perfect discrimina-
tion. According to Hosmer et al. (2013) there is no area under the ROC-
curve that indicates a clear difference between a good or bad model but a
suggestion from Hosmer et al. (2013) is to use the rule of thumb in Equation
2.26.

If =


ROC = 0.5 No discrimination.
0.5 < ROC < 0.7 Poor discrimination.
0.7 ≤ ROC < 0.8 Acceptable discrimination.
0.8 ≤ ROC < 0.9 Excellent discrimination.
ROC ≥ 0.9 Outstanding discrimination.

(2.26)

The ROC-curve is a tool similar to the CAP, both show sensitivity on the
y-axis but against different x-axes. The similarity between the ROC-curve
and CAP is further reflected in that there is a linear relationship between
the area under the CAP-curve, AUC, and the area under the ROC-curve,
ROC,

AUC = 2 ·ROC − 1 (2.27)

Please see Löffler and Posch (2007, p.151-152) for more information on the
subject.
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3

Data

Data! Data! Data! I can’t make bricks without clay!
– Sir Arthur Conan Doyle

All models considered in this report, need financial data that are made
available through financial statements for credit event and non-credit event
companies. The choice of which annual statement to use for credit event
companies is straightforward, the one from one year prior to the credit event
feels the most natural. The decision concerning which annual statement to
include for the non-credit event companies is more ambiguous. The goal
of this data section is to resolve the ambiguity and to construct a credit
event sample and a non-credit event sample so that the characteristics of
credit events are able to be captured, rather than sample differences. The
two samples are, within reason, tried to be made as similar as possible in
terms of asset size, industry classification and year-distribution of the annual
statements.

3.1 Credit Event Sample

Through Moody’s annual “Corporate Default and Recovery Rates” reports
(for an example see Services (2015)), access is granted to credit events that
have occurred in the United States between the years 2002-2014. For credit
events prior to 2002, accounting data on the trading platform Bloomberg is
too sparse to prove useful. The data gathering from Moody’s reports results
in 736 credit events. Some events are registered for the same companies, the
later occurring events are disregarded due to the risk of temporal depen-
dence this can introduce between the observations.aThis filtration results in
a sample of companies containing 654 credit events.

aIndependence among observations is for example needed for calculating the MLEs
of coefficients and in extension of the probabilities. Furthermore, a company that has
experienced a credit event previously may act differently compared to one which has not.

28



From the Moody’s reports the names of the companies and the years
of the credit events are obtained. For some reports the industry of the
company, the initial default event type and the month of the default are
also listed. The Bloomberg terminal is then used to gather accounting data
for the companies. Unfortunately the names of the companies in Moody’s
reports do not exactly or uniquely match the names of companies in the
Bloomberg terminal. Preferable would be if the companies in the reports
also have BBG-tickers available, but they do not. This forces a manual task
where each credit event is checked for the unique matching company with
the correct financial statement. Companies are used if and only if,

• a unique company can be found;

• accounting data is available for the year prior to the year of the credit
event;

• the company is non-financial and not a real estate company or a real
estate investment trust (REIT);

• the company is not a subsidiary of, and has not been acquired by,
another company in the sample;

• the company has not been charged for fraudulent accounting practice
in the time period investigated.

345 companies out of the 654 credit events in the sample are removed
using the five criteria above.bThe final sample of credit events thus therefore
consists of 309 companies.

The criteria that Bloomberg must have data on the companies is of
course unfortunate as this introduces a sort of undeniable bias. The bias,
however, can be viewed from multiple standpoints. The two most important
implications, for the purposes of this report, are: (1) A bias towards inclusion
of larger and more popular companies and (2) A bias towards exclusion of
earlier defaulted companies. Both of these biases can however be seen as
positive. As the potential bias is towards more important companies from
the practitioners’ points of view. As a final note, the criteria is necessary,
since the data gathering process is limited to use of the Bloomberg database.

Therefore, the model can only be calibrated to predict the first occurrence of a credit event
for a company. An obvious limitation in the data gathering is that it was not tractable
to check for credit events prior to 2002, but since such observations are unused in the
calibration, no temporal dependence issues are introduced by the credit event filtration.

bBloomberg classified 43 companies as Financials or REITs and were thus removed.
260 companies for which we couldn’t find a unique company and/or accounting data were
also removed. The remaining 42 companies are removed for other reasons which include,
but are not limited to, (1) Being subsidiaries of or have been acquired by other companies
that have registered credit events at an earlier time or (2) The company has been caught
for fraudulent accounting practices.
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3.2 Non-Credit Event Sample

The non-credit event sample should ideally be all those companies over-
looked by Moody’s but that have not yet experienced any credit event.
Such a non-credit event sample is unfortunately not obtainable and a proxy
is therefore constructed. The full non-credit event sample consists of 1,002
companies. For full disclosure, see Appendix A which concerns the construc-
tion of the proxy, i.e. the non-credit event sample.

3.2.1 Selection Bias

All of the companies in the credit event sample are retrieved from Moody’s
database, thus all have been, or are currently, tracked by Moody’s. Mean-
while, the non-credit event companies are chosen so that an issuer rating
from either Moody’s, S&P or Fitch exist in the Bloomberg Database. This
introduces a selection bias as the non-credit event companies could poten-
tially not share the characteristics of “being tracked by Moody’s”. By in-
cluding S&P- and Fitch-data for non-credit event companies the asset sizes
of the two cohorts are more similar in terms of asset size. This naturally
increases the number of observations, which is considered beneficial.

3.3 Final Adjustments to the Samples

3.3.1 Sample Differences in Total Assets

After observing the asset size data for the two cohorts it appears that the
credit event sample has 30 companies whose total asset size is above $5 bn.
The non-credit event data set has 392 companies above the same threshold.
To include all companies from the two samples unabashedly would be a
terrible mistake, because the two total asset size distributions for the samples
would greatly differ. To avoid this complication, a restriction is put on the
total asset sizes for the credit event companies at $10 bn. It is furthermore
noted that above $5 bn the credit event data is worrisome sparse, with only
11 companies between $5 bn and $10 bn. Therefore, 11 companies with
total assets size between $5bn and $10bn are randomly drawn from the non-
credit event sample. The asset size distribution matching above is made
as large companies can behave quite differently in times of crisis (Vassalou
& Yuhang, 2004), which can for example be explained through disposals of
subsidiaries.

After the sample differences in total assets are adjusted for, the final
data set consists of 292 credit event companies and 619 non-credit event
companies.
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3.3.2 Synchronizing the Year Distributions

As mentioned in the introduction to the Data section, the non-credit event
sample should share characteristics with the credit event sample. More
specifically, the years from which annual statements are taken within the
non-credit event sample are desired to be unbiased with respect to the dis-
tributions of years and industries within the credit event sample.

This is obtained by modelling the distribution of years for each industry
within the credit event sample as independent multinomial distributions.
I.e. for an arbitrary credit event company the industry specific distribution,
of when the credit event occurred, is assumed to be multinomial with one
category for each of the years 2002-2014. The MLE of the probabilities of
experiencing a credit event in any of the possible years is simply the ratio
of the number of credit-events occurring in that year, and industry, divided
by the total number of credit events for the same industry. For an arbitrary
non-credit event company, a draw is made from the recently constructed
industry specific year distribution. This yields approximately the same dis-
tribution of years for annual statements among non-credit event companies
and credit event companies. A key assumption is that non-credit event and
credit event companies are from the same industry specific populations. By
extension approximately equal sample wide year distributions are obtained
by aggregation.

In Figure 3.1 the industry specific year distributions are illustrated. In
Figure 3.2 the aggregated year distribution and sector distribution of the
whole sample is illustrated.
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Figure 3.1: Year distribution for all of the sectors in the sample
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Figure 3.2: Aggregated year distribution and BICS sector distribution

3.4 Ratios

The ratiosc that will be considered in the model building phase are listed in
Table 3.1. The ratios are taken from Altman’s and Ohlson’s models together
with an aggregation of ratios that are mainly obtained from Beaver (1966)
and market practitionersd. Since logistic regression assumes linearity of
covariates in the output (log-odds), the logarithm is taken of ratios that
have strictly positive support. The Bloomberg formulae that are used to
extract the financial data are available in Appendix B along with definitions
of all ratio constituents.

cIn all ratios where Total Assets are used, it is in first hand attempted to use Tangible
Assets, if such a data point exist. The same procedure is also followed by Altman.

dSpecial thanks to Ingvar and Pia at Swedbank.
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Type # Ratio Description Abbreviation From
C

as
h

F
lo

w

1 Cash from Operations to Total Liabilities Cash From Operations/Total Liabilities CFO/TL Ohlson 1980
2 Cash Ratio 1 Cash and Near Cash/Current Liabilities Cash Ratio 1 Beaver 1966
3 Cash Ratio 2 Cash, Cash Eq. & STI /Current Liabilities Cash Ratio 2 -
4 Cash to Sales Cash and Near Cash/Revenue CASH/Rev Beaver 1966
5 Cash to Total Assets Cash and Near Cash/Total Assets CASH/TA Beaver 1966
6 Free Cash Flow to Total Liabilities Free Cash Flow/Total Liabilities FCF/TL -
7 Interest Service Cover Ratio Free Cash Flow/Financial Expenditure IntSerCR -

P
ro

fi
ta

b
il

it
y

8 EBIT margin EBIT/Revenue EBIT margin -
9 EBIT to Total Assets EBIT/Total Assets EBIT/TA Altman 1968

10 EBIT to Total Interest Expense EBIT/Total Interest Expense EBIT/TIntExp -
11 EBITDA margin EBITDA/Revenue EBITDA margin -
12 EBITDA to Net Debt EBITDA/Net Debt EBITDA/ND -
13 EBITDA to Total Debt EBITDA/Total Debt EBITDA/TD -
14 EBITDA to Total Interest Expense EBITDA/Total Interest Expense EBITDA/TIntExp -
15 Net Income margin Net Income/Revenue NI/Revenue Beaver 1966
16 Net Income to Total Assets Net Income/Total Assets NI/TA Ohlson & Beaver
17 Net Income to Total Debt Net Income/Total Debt NI/TD Beaver 1966
18 Net Income to Total Equity Net Income/Total Equity NI/TE -
19 Net Income to Total Liability Net Income/Total Liability NI/TL -
20 Retained Earnings to Total Assets Retained Earnings/Total Assets RE/TA Altman 1968

D
eb

t,
L

ia
b

il
it

y
&

E
q
u
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y

21 Intangibles to Total Equity Intangibles/Total Equity INT/TE -
22 Long Term Debt to Total Assets Long Term Debt/Total Assets LTD/TA -
23 Long Term Debt to Total Debt Long Term Debt/Total Debt LTD/TD -
24 Long Term Debt to Total Invested Capital Long Term Debt/Total Invested Capital LTD/TotInvCap -
25 OENEG 1 if TL > TA, 0 otherwise OENEG Ohlson 1980
26 Short Term Debt to Total Debt Short Term Debt/Total Debt STD/TD -
27 Short Term Debt to Total Invested Capital Short Term Debt/Total Invested Capital STD/TotInvCap -
28 Solvency Total Equity/Total Assets Solvency -
29 Solvency Without Goodwill (TE - Goodwill)/(Total Assets - Goodwill) SwG -
30 Total Equity to Long Term Debt Total Equity/Long Term Debt TE/LTD -
31 Total Equity to Net Debt Total Equity/Net Debt TE/ND -
32 Total Equity to Short Term Debt Total Equity/Short Term Debt TE/STD -
33 Total Equity to Total Debt Total Equity/Total Debt TE/TD -
34 Total Equity to Total Liabilities Total Equity/Total Liabilities TE/TL -
35 log(Total Liabilities to Total Assets) log(Total Liabilities/Total Assets) TL/TA Ohlson & Beaver

Size 36 Size log(Total Assets/GDP Price Index) Size Ohlson 1980

L
iq

u
id

A
ss

et
s

37 log(Current Assets to Revenue) log(Current Assets/Revenue) CA/Revenue Beaver 1966
38 log(Current Assets to Total Assets) log(Current Assets/Total Assets) CA/TA Beaver 1966
39 log(Current Liabilities to Current Assets) log(Current Liabilities/Current Assets) CL/CA Ohlson & Beaver
40 log(Current Liabilities to Total Assets) log(Current Liabilities/Total Assets) CL/TA Beaver 1966
41 log(Quick Ratio) log(Quick Ratio) QR -
42 Working Capital to Revenue Working Capital/Revenue WC/Revenue Beaver 1966
43 Working Capital to Total Assets Working Capital/Total Assets WC/TA Altman, Ohlson & Beaver

A
ct

iv
it

y

44 Accounts Payable Turnover Accounts Payable Turnover APT -
45 Accounts Receivable to Accounts Payable Accounts Receivable/Accounts Payable AR/AP -
46 Accounts Receivable to Revenue Accounts Receivable/Revenue AR/Revenue Beaver 1966
47 log(Accounts Receivable Turnover) log(Accounts Receivable Turnover) ACT -
48 Cash Conversion Cycle Acc. Rec. T. + Inv. T. - Acc. Pay. T Cash C. C. -
49 log(Inventory Turnover) log(Inventory Turnover) IT -
50 Inventory Turnover to Working Capital Inventory Turnover/Working Capital IT/WC -
51 log(Quick Assets to Current Liabilities) log((Acc. Rec. + Cash and Near Cash)/CL) QA/CL Beaver 1966
52 log(Quick Assets to Sales) log((Acc. Rec. + Cash and Near Cash)/Revenue) QA/Revenue Beaver 1966
53 log(Quick Assets To Total Assets) log((Acc. Rec. + Cash and Near Cash)/TA) QA/TA Beaver 1966
54 Revenue to Total Assets Revenue/Total Assets Revenue/TA Altman & Beaver
55 log(Revenue to Total Debt) log(Revenue/Total Debt) Revenue/TD -

M
ar

ke
t 56 log(Market Capitalization to Total Liabilities) log(Market Capitalization/Total Liabilities) MCAP/TL Altman 1968

57 Net Income to Market Value Total Assets Net Income/Market Value Total Assets NI/MTA -
58 Total Liabilities to Market Value Total Assets Total Liabilities/Market Value Total Assets TL/MTA -
59 Working Capital to Market Capitalization Working Capital/Market Capitalization WC/MCAP -

O
th

er

60 Change In Net Income (CHIN) (NI(t) + NI(t-1))/(abs(NI(t))+abs(NI(t-1)) CHIN Ohlson 1980
61 Current Asset Quality to Current Liability Quality Accts Rec/Current Assets*Current Liabilties/Accts Pay CAQ/CLQ -
62 INTWO 1 if NI negative past 2 years, 0 otherwise INTWO Ohlson 1980
63 Net Sales Change (Rev(t) - Rev(t-1))/Rev(t-1) Net Sales Change -

Table 3.1: Illustration of ratios that are used

3.5 Estimation & Validation Sets

The final data set of credit and non-credit event companies is by randomiza-
tion separated into two sets of equal size, namely the estimation- and valida-
tion set. The estimation set is used for building and calibrating models and
the validation set is only used to evaluate the out-of-sample performance of
the different models.

3.6 Market Data

As a final part of this thesis, two types of rank consistency for the final
model’s output are examined. Firstly, rank consistency to credit ratings pro-
vided by S&P. Secondly, rank consistency to market observed CDS spreads.
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Both types are checked using data from the US and the Nordic market.

3.6.1 Rating Data

Similarly to the non-default data set the EQS tool in Bloomberg is used to
retrieve a population of rated companies. The filters that are applied for the
US and Nordic markets are listed in Appendix C. For the US market 1,054
companies are found and the same number for the Nordic market is 35.

3.6.2 CDS Data

US Companies

The source of the data is again the Bloomberg Terminal, but now the GCDS
tool is utilised, see Appendix C for the details. For the US, 436 CDS con-
tracts are found. For each contract the corresponding reference entity’s
latest annual statement is selected, from which the financial ratios are ex-
tracted. For all of the CDS contracts the spreads are taken from the reference
entities financial statements’ announcement dates and from dates in the fol-
lowing 4 weeks.eIn order for the company to be selected the latest annual
statement has to be from 2014 or 2015. Furthermore, if the company is
missing 2 or more of the 5 CDS spreads then the company is removed from
the sample. 115 companies remains after applying these restrictions. The
mean of these obtained spreads is then computed for each company, which
the ranking is based on.

Nordic Companies

For the Nordic region 29 CDS contracts are found. 23 of these are selected
as they all have annual statement issued for 2015. The gathering process of
the CDS spreads is unfortunately not possible to automate, as for the US
companies. Consequently, the simplified approach for each of the 23 CDS
contracts is instead to find the four end of week spreads (the last traded
spread of each week) following each company’s annual announcement date.
As for the US CDS data a ranking is then constructed after computing the
mean of the CDS spreads for each company.

eA company that has an annual statement announcement date at the 1st of February
the CDS spreads are attempted to be retrieved for the 1st, 8th, 15th, 22nd of February
and 1st of March (That is the announcement date +0, +7, +14, +21 and +28).
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4

Method

Data do not give up their secrets easily. They must be tortured to
confess.

– Jeff Hopper

This section concerns, (1) How a model is built from the data described in
the Data section; (2) How different models will be evaluated against each
other; and (3) How model output is tested for rank consistency with CDS
and Rating data.

4.1 Model Building

In order for a model to perform well, one needs ratios that can discriminate
between credit event and non-credit event companies. A logistic regression
approach is chosen, but the choice of covariates within the model building
phase is far from trivial. The goal of any model building method is to find
the “best” possible model based on the available resources. In order to
achieve this goal one must have a plan for selection of explanatory variables
as well as a sound method for assessing the performance of the model. As
Hosmer et al. (2013) put it: “Successful modeling of a complex data set
is part science, part statistical methods, and part experience and common
sense.”.

4.1.1 Flexible Data Set

All companies in the estimation and validation sets have annual statements
available, but that does not imply that all ratios from Table 3.1 are available
for analysis. For every additional ratio considered for analysis, all companies
that lack the additional ratio need to be temporarily excluded. If a limitation
is put to include only the companies that have all 63 ratios available, then the
number of credit event companies available for analysis, would be reduced
from 292 to 66. This is of course unwanted as the final model is not likely to
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contain all ratios. By the use of a flexible data set it is possible to retain as
many companies, and therefore, as much information as possible, for each
step in the analysis. The implemented flexible data set approach is more
dynamic and theoretically sound but in practice slightly more demanding. In
theory 263 subsets of the final credit event and non-credit event populations
are considered, as each company either has the ratios of interest or they do
not.

The flexible data set introduces no bias in the calibration or testing
phases, but one could argue that there is a bias introduced in the model
building phase, this is discussed briefly below. For a pseudo code implemen-
tation of the flexible data set utilised throughout the report see Appendix
D. For each analysis after the flexible data set has been constructed, all
companies for which the needed ratios exist are included. Winsorizations
are performed, as described in the theory section, on the considered sub-
set of companies. If all subsets of ratios would be considered, then 263 − 1
winsorizations would unavoidably have to be performed.

4.1.2 Potential Model Building Bias

A potential systematic bias could be introduced as, although it is known that
the original data set contains a set of non-credit event companies agreeing
well with the credit event companies there is no systematic implemented
way to control each of the flexible data set-subsets. There does potentially
exist combinations of ratios which have very few corresponding companies,
but among which a model performs well. This gives reason for caution, but
should, since the problem has been identified, be easy to avoid if the effect
is deemed to have significant importance. Furthermore, the effect will be
supervised by simply noting how many companies that are available for each
analysis step.

4.1.3 Univariate Analysis

Because of the large number of covariates three initial tests are conducted
for each ratio. The tests are Welch’s t-test, Kolmogorov-Smirnov 2-sample
test and a simple logistic regression. A Bonferroni correction will also be
applied to the significance levels.

Welch’s t-Test

The justification for choosing Welch’s t-test in favor of the usual t-test is
that it was confirmed by Levene’s and Brown Forsythe’s tests, that the ratios
in many cases are rejected to be of equal variance. Testing for significantly
different means is not imperative for application of logistic regression, but
it is nevertheless an indication of some discriminative power.
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Two-Sample Kolmogorov-Smirnov Test

Welch’s t-test assumes normality, which is violated for many ratios consid-
ered in this report. A non-parametric test with few underlying assumptions
is therefore warranted. Within this subset of tests the Kolmogorov-Smirnov
2-sample test is chosen. This test is hoped to capture differences in the
ratios’ behaviour beyond that which is discernible in means of artificially
assigned parametric distributions.

Logistic Regression

Another important factor for determining if a ratio will have high discrimi-
native power in the resulting model or not, is to consider it in a univariate
regression. A simple logistic regression is performed for each of the ratios
and it is noted whether the corresponding regression coefficient is significant
on the 20 % level, based on the assumed univariate distribution of the re-
gression coefficient, i.e. based on the Wald Statistic, where under H0 the
coefficient follows a normal distribution around 0. The 20 % significance
level is chosen as a ratio may only be significant when regressed together
with specific combinations of other ratios. Therefore, a lower restriction
on significance than what may otherwise be appropriate is applied. A false
positive is not disheartening here, but too many false negatives can quickly
reduce the expected discriminative power of the resulting model.

Covariate Families

Based on the results from Welch’s t-test at the 5 % significance level, the
Kolmogorov-Smirnov 2-sample test at the 5 % significance level and the
univariate regression at the 20 % significance level, the ratios are divided
into four groups of ranked importance. The first, second and third and
fourth group will consist of ratios for which all, two, one and zero tests are
significant. The criteria are chosen, and deemed adequate, because they all,
in distinct ways, indicate discriminative power; one test in terms of mean
differences, one test in terms of distribution differences and the final test
indicates discriminative power in a logistic regression model.

4.1.4 Correlation & Visual Analysis

Going beyond the univariate analysis, the correlations between the ratios are
analysed. Keep in mind that the flexible data set is used throughout this
correlation analysis, i.e. for each ratio-pair all the available companies in the
estimation set, for that specific pair, are utilised. In situations where there is
very high correlation (defined as having absolute value above 0.8) one of the
ratios is deleted. If there is a difference in rank of the ratios with very high
correlation, the family rank of the ratios decides which one to delete from
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further analysis. In the cases where the ratios are of equal family-rank then
the deletion is based on economic intuition and visual analysis of scatter
plots.

For ratio pair-correlations classified as high but not very high (defined
as having absolute value between 0.7 and 0.8) one of the following actions
is performed, (1) Both ratios are kept; (2) An interaction term is formu-
lated; or (3) One of the ratios is removed. The decision of which action to
perform is based on, (i) Visual analysis of a 2-dimensional scatter plot; and
(ii) Economic intuition. Absolute correlation above 0.7 is, for convenient
notation, defined as high or very high. To more directly address point (2), if
evident clustering of credit event companies or non-credit event companies
in two dimensions emerge then the methodology is to try to formulate inter-
action terms, such as categorical terms or functions of ratios. However, one
must tread carefully as one does not wish to overfit the estimation sample,
through capturing noise which is unlikely to be present in the validation
sample or another sample from the population. A covariate introduced by
a correlation- or visual analysis procedure is included in the lowest ranked
corresponding Covariate Family of the two or more ratios considered.

4.1.5 Controlled Selection of Covariates

Economic intuition will guide the inclusion and exclusion of additional co-
variates as needed and will also guide the exclusion of covariates if for exam-
ple ratios are considered to be obvious linear combinations of other ratios.

4.1.6 Best Discriminant Stepwise Inclusion/Exclusion

In order to deal with the large number of covariates a stepwise algorithm
approach was chosen. The Stepwise Inclusion/Exclusion utilised in this re-
port is a custom built algorithm, constructed with the aim of maximizing
discriminative power, while maintaining significance of the included covari-
ates. At each step the algorithm adds the covariate with the best additional
discriminative power, measured as the resulting model’s sum of sensitivity
and 1-specificity. After adding a covariate the p-values of all covariates,
currently in the new model, are compared to 0.1.

This can be viewed as a two-step greedy algorithm. Step one consists
of evaluating all neighboring models, in terms of discriminative power, and
improving the model by including the best additional covariate. Step two
consists of removing the covariate with the highest p-value if a p-value is
above 0.1, which is also considered an improvement of the model. The next
iteration only considers inclusion of additional variables not removed in the
last iteration. The algorithm terminates if the model becomes too large or
if the improvement is too small. The algorithm can therefore be considered
greedy, since at each step the best possible move is being made until no
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further improvements can be made. (Kleinberg & Tardos, 2005)
The algorithm is first applied to the covariates in Covariate Family 1,

where the flexible data set has been applied with family-wide ratio restric-
tions. After the first run of the algorithm, a preliminary model is obtained.
This model is the starting point for a second iteration of the algorithm where
the covariates from Covariate Family 2 are considered. The flexible data set
is in the second run restricted by use of the covariates in the preliminary
model along with all covariates from Covariate Family 2. A third and a
fourth run, including Covariate Family 3 and 4, is thereafter performed in
a similar fashion.

See Appendix E for a pseudo code implementation of the Best Discrimi-
nant Stepwise Inclusion/Exclusion Algorithm along with application to the
successive family expansion.

4.1.7 Final Ratios

The ratios that are retrieved after the fourth iteration of the algorithm will
be the constituents of the final model. The model will be re-estimated, for
illustrative purposes, with the flexible data set restricted only by the ratios
included in the final model.

4.1.8 Correction for Finite Sample- & Rare Event Bias

Once the final ratios are found the coefficients are re-estimated, using the
same data set, with the addition of the finite sample and rare event bias
reduction techniques, as described in the theory. The resulting impact of the
bias reductions are calculated and new levels of significance will be examined,
and is expected to determine the choice of finite sample correction method.
The impact of different population wide default rates is also investigated.
The final model will be calibrated using one finite sample technique and
rare event bias and a set of coefficients compensated for rare event bias and
will be based on a suggested population-wide default rate. Significance of
the ratios are evaluated using Wald Statistics, and in the case of Weighting,
the Wald Statistics corresponding standard error is calculated using Huber-
White (robust) standard errors as described briefly in the theory.

4.1.9 Uncertainty in Beta

As described in the theory, probabilities are estimated based on multiple
draws of β̃ in a discretised version of the integral in Equation 2.19. This is
thus a Monte Carlo approach which is implemented with the use of antithetic
variates. This is solely done to illustrate the impact that uncertainty in beta
has, and is mostly of theoretical interest as it does not impact the point
estimates of model coefficients, as it is excluded from cutoff optimizations.
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4.2 Earlier Models

Altman’s Z-score will be calculated for all companies in the validation data
set that have all of Altman’s variables available, in accordance with the
application of the flexible data set. The discriminative power will be inves-
tigated by use of a classification table. Furthermore, the Altman’s Z-score
model will be recalibrated using the estimation data set. The re-calibrated
model’s discriminative power will be investigated by use of a classification
table, and the model’s performance will be compared to that of the original
Z-score model. The same process is followed for Ohlson’s O score.

4.3 Model Evaluation

Following the Model Building section, the resulting model will, as stated in
the problem formulation, be evaluated against Altman’s original Z-score and
Ohlson’s original O-score using CAP-curves and ROC-curves. Confidence
intervals, along with unbiased estimates of the AUC and ROC, will for all
models be calculated by Jackknifing.

A comparison of rank consistency between the model and the Nordic
and US CDS and Rating data will also be presented. Both in plots based on
actual ratings/rankings, in order to enable a visual guidance of the perfor-
mance of the model, and through computation of correlations. More specif-
ically Spearman’s ρ will be calculated based on the rankings derived from
the model and the Rating and CDS data sets respectively. For CDS spreads,
as there are no ties in the CDS data, the calculations of Spearman’s ρ along
with its corresponding p-values are straightforward. However, as there are
more companies than possible ratings it follows trivially, or by Dirichlet’s
principle, that some companies inevitably must have the same rating. If one
does not fully trust the crude classification provided by the rating agencies,
then it makes intuitive sense to measure the information truncation inher-
ent in the agencies’ ratings. This measure is obtained by resolving all tied
ranks, in an unbiased way, which introduces variance. Confidence intervals
are then based on a Monte Carlo scheme using the newly obtained ranks,
called pseudo ranks. For each Monte Carlo simulation all ties within the
data are resolved through randomly assigning an unbiased pseudo ranking,
for each group of companies with the same rank, e.g. (1224), is resolved as
(1234) or (1324) with 50 % probability each. Based on each pseudo ranking
calculating Spearman’s ρ is trivial, in extension the estimated expected value
of Spearman’s ρ follows by averaging over all calculated pseudo correlations.
Confidence intervals for the true expected value will also be obtained, the
width of the confidence interval measures the uncertainty introduced by the
tied ranks.
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5

Results

I pass with relief from the tossing sea of Cause and Theory to the
firm ground of Result and Fact.

– Winston S. Churchill

5.1 Model Building

5.1.1 Univariate Analysis

Following the construction of the estimation data set and after multiple re-
calibrations of the flexible data set some resulting descriptive statistics for
all 63 ratios are presented in Appendix F. All of the ratios are tested by use
of Welch’s t-test (at 5 % level), Kolmogorov-Smirnov’s two-sample test (at
5 % level) and a univariate logistic regression p-value test (at 20 % level).
Depending on how many tests that are rejected for each ratio, the ratios
are separated into one out of four Covariate Families as described in the
Method.aWhich tests that are rejected, together with the family classifica-
tion for each ratio is presented in Appendix G.

5.1.2 Correlation & Visual Analysis

As part of the multivariate analysis 49 ratio pairs are identified for which the
correlations are high or very high. The full correlation matrix is available in
Appendix H, where a red field indicates very high correlation and an orange
field indicates high but not very high correlation.bThe 15 ratios that are
removed due to having very high correlations are listed in Table 5.1 along

aIt was attempted to apply a Bonferroni correction to the significance levels, but
this resulted in too few rejected tests for convenient application of the covariate family
approach.
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with which ratio in the ratio pair that is kept and a short comment on the
choice between the two.

# Removed In Favour of Comment

2 Cash Ratio 1 QR
One of four ratios with pairwise high correlation3 Cash Ratio 2 QR

51 QA/TL QR

6 FCF/TL CFO/TL CFO/TL is used as Ohlson proxy

8 EBIT margin EBITDA margin
EBITDA deemed more representative of payment means available

10 EBIT/TIntExp EBITDA/TIntExp

16 NI/TA NI/MTA
One of three ratios with pairwise high or very high correlation

57 NI/MTA NI/TL

17 NI/TD EBITDA/TD
One of four ratios with pairwise high correlation33 TE/TD EBITDA/TD

55 Rev/TD EBITDA/TD

23 LTD/TD STD/TD Obviously, equal to -1

27 STD/TInvCap WC/TA
Family Rank Difference

40 CL/TA WC/TA

52 QA/Rev CA/Rev CA/Rev exists for higher number of companies

Table 5.1: Ratios removed due to having very high correlation (>0.8)

The remaining 34 ratio-pairs are analysed in scatter plots. As most of
this analysis merely shows noise and non-evident patterns, the description
of this analysis is quite limited compared to the full amount of scatter plots
analysed. More precisely plots are presented for two cases where decisions
of inclusion/exclusion of ratios are made based on visual analysis and in
Appendix I three examples representative for the full analysis are available.
In all plots the top left and bottom right subplots show the univariate distri-
bution of the ratios. The top right and bottom left plots show the bivariate
distributions. In all plots red circles indicate credit event companies and
blue circles indicate non-credit event companies. The difference in the bi-
variate distribution plots is the order the different colored circles are plotted
and also which ratio goes on which axis.

In Figure 5.1 a combined scatter plot for WC/Rev and WC/TA is dis-
played. The bivariate distributions are deemed to be too similar to the
univariate plots, i.e. too close to a linear relationship.cTherefore, one of the
ratios in the pair is removed. WC/TA has been used for removal of other
ratios earlier, due to very high correlation. Those ratios that were removed
earlier in the analysis do not have as high correlation to WC/Rev. So, if
WC/TA is removed now, the formerly removed ratios would have to be rein-

bLet us stress a point briefly mentioned in the method description. To fully understand
and appreciate the correlation calculations, and in extension the correlation matrix, note
that each point of the correlation matrix is calculated using a potentially very different
set of companies, due to the flexible data set. The approach is believed to yield the best
possible point-wise estimates for each of the pair-wise correlations within the correlation
matrix, but as the companies vary across the rows and columns the correlations’ inter-
relationships should not be scrutinised, as contradictions may be present if interpreted as
a normal correlation matrix. The matrix is furthermore not scalable to a classical estimate
of the covariance matrix.
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troduced. Instead, by removing WC/Rev, WC/TA represents an additional
ratio for further analysis.
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Figure 5.1: Visual analysis guidance for WC/Rev and WC/TA

In Figure 5.2, although no bivariate patterns are evident, the mono-
tone discriminative power of WC/TA is identifiable. It also seems like
WC/MCAP is a non-monotonic discriminant. The non-credit event com-
panies seem to be located in the middle of the top left scatter-plot. This
indicates that WC is either large or small in relation to MCAP for the credit
event companies compared to the non-credit event companies. Therefore the
log-odds of experiencing a credit-event is unlikely to be linear in the ratio
WC/MCAP, which is an assumption for logistic regression. WC/MCAP is
therefore removed in favor of WC/TA.

cThe scatter plot is also seen to illustrate what is referred to as a self explanatory
region as described in Appendix I.
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Figure 5.2: Visual analysis guidance for WC/MCAP and WC/TA

5.1.3 Controlled Selection of Covariates

Although not evident from the correlation analysis, there are some obvious
duplicates or very similar ratios which need to be highlighted and removed
before the model is built. The ratios that are removed due to this are found
in Table 5.2.

Removed In Favour of

Solvency Solvency without Goodwill
EBITDA/Total Debt EBITDA/Total Interest Expense
Net Income margin EBITDA margin

Table 5.2: Ratios removed from controlled selection

Solvency - Solvency Without Goodwill

The ratios Solvency (with Goodwill) and Solvency without Goodwill intu-
itively share the same economic characteristics, they are equal if subtracting
Goodwill from the nominator and denominator in the Solvency ratio. The
company’s Goodwill is thought to dilute the traditional solvency measure.
Therefore Solvency (with Goodwill) is removed in favor of Solvency without
Goodwill in hope that it will be a better indicator of the company’s health.

EBITDA to Total Debt - EBITDA to Total Interest Expense

In the very high correlation analysis several variables are removed due to
correlation with EBITDA/Total Debt. The conversion from Total Debt to
Total Interest Expense is however company specific. The same amount of
Total Debt may therefore accrue different amounts of Total Interest Expense
for distinct companies. As EBITDA is a measure of how much money that
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is available before interests are payed, it makes sense to compare against
interest expenses. Considering also the definition of credit event along with
the one year prediction horizon it is concluded that EBITDA to Total In-
terest Expense is a more accurate measure of risk than EBITDA to Total
Debt.d

Net Income margin - EBITDA margin

Both ratios are classified as profitability ratios. EBITDA is however a mea-
sure of profitability at an earlier stage in the Income Statement; namely,
Before Interest, Taxes, Depreciation and Amortization. Cash generation is
believed to be of higher importance than end of the line profits, for a one
year credit event prediction. EBITDA is therefore believed to be a better
measure to put in relation to sales.

Market Capitalization to Total Liabilities - Total Equity to Total
Liabilities

It is noted in the correlation analysis that the ratio TE/TL has a very
high correlation with MCAP/TL. Since MCAP does not exist for private
companies it is thought to be suitable to make an exception and in this case
not remove a ratio, as the method otherwise suggests. Instead, TE/TL and
MCAP/TL are both kept in Covariate Family 1 for further analysis, but
they will not be used simultaneously as they are thought to be too similar.e

5.1.4 Final Covariate Families

In Table 5.3 the updated, and final, Covariate Families are displayed.

dIn addition, CFO to Total Debt remains in Covariate Family 1 and CFO is more
reasonable to use against Total Debt as CFO better captures how much money that is
generated for repayments of principals.

eIn the estimation set the inclusion of MCAP/TL as a ratio in Family 1 restricts the
number of companies within the flexible data set, from 80 to 52 credit event companies and
160 to 155 non-credit event companies. Since the restriction is quite substantial among
credit event companies, and since the rare events are more informative, as described in the
theory section, the inclusion of MCAP/TL is questionable. One argument for including
the ratio is the strength the covariate has in previous studies. (Altman, 1968)
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Subset # Ratio

C
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1

1 Cash from Operations to Total Liabilities
5 Cash to Total Assets
9 EBIT to Total Assets

11 EBITDA margin
12 EBITDA to Net Debt
14 EBITDA to Total Interest Expense
19 Net Income to Total Liabilities
20 Retained Earnings to Total Assets
29 Solvency without Goodwill
30 Total Equity to Long Term Debt
32 Total Equity to Short Term Debt
34 Total Equity to Total Liabilities
37 log (Current Assets to Revenue)
38 log (Current Assets to Total Assets)
41 log (Quick Ratio)
43 Working Capital to Total Assets
53 log (Quick Assets to Total Assets)
56 log (Market Capitalization to Total Liabilities)
60 Change in Net Income (CHIN)
63 Net Sales Change

C
ov

ar
ia

te
F

am
il
y

2

4 Cash to Revenue
7 Interest Service Cover Ratio

22 Long Term Debt to Total Assets
24 Long Term Debt to Total Invested Capital
25 OENEG
26 Short Term Debt to Total Debt
35 log (Total Liabilities to Total Assets)
39 log (Current Liabilities to Current Assets)
46 Accounts Receivable to Revenue
58 Total Liabilities to Market Value Total Assets
61 Current Asset Quality to Current Liability Quality
62 INTWO

C
ov

.
F

am
il
y

3 18 Net Income to Total Equity
21 Intangibles to Total Equity
31 Total Equity to Net Debt
36 Size
49 log (Inventory Turnover)
50 Inventory Turnover to Working Capital

C
.

F
am

.
4

44 Accounts Payable Turnover
45 Accounts Receivable to Accounts Payable
47 log (Accounts Receivable Turnover)
48 Cash Conversion Cycle
54 Revenue to Total Assets

Table 5.3: Updated and Final Covariate Families
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5.1.5 Family-wise Stepwise Inclusion/Exclusion

Covariate Family 1

Analysis with MCAP/TL The stepwise algorithm is applied to Co-
variate Family 1 with MCAP/TL instead of TE/TL. The algorithm gives
a model that only includes two ratios, MCAP/TL and NI/TL. The two
ratios EBITDA/Rev and Cash/TA are temporarily considered by the al-
gorithm, as the individual contribution to the discriminative power is high
enough, but they are both excluded immediately due to too high p-values.
Three models are therefore estimated; one model with the two main ratios
(this model is called MCAP-A below), one model which in addition includes
EBITDA/Rev (MCAP-B) and one model which replaces EBITDA/Rev with
Cash/TA (MCAP-C ). The coefficients and the p-values for each of the es-
timated models are presented in Table 5.4. The change of significance is
explained by use of the flexible data set, which as usual allows more compa-
nies when less restrictive ratios are being considered. It turns out that for
all three re-fitted models it is only MCAP/TL that is significant at the 5 %
significance level. There are however reasons to doubt the applicability of
MCAP/TL as foundation of a model. See Discussion 6.3.5 Exclusion of Mar-
ket Capitalization for a more elaborate explanation. The ratio MCAP/TL,
along with derivative models based on its inclusion, are excluded from fur-
ther investigation.

MCAP-A MCAP-B MCAP-C

Coefficient value p-value value p-value value p-value

Intercept -3.856 8.00E-15 -4.069 2.98E-12 -3.360 2.36E-10
Cash/TA - - - - -8.756 0.0591
EBITDA/Rev - - 1.017 0.4354 - -
log(MCAP/TL) -2.133 9.79E-13 -2.173 1.68E-12 -2.101 4.65E-12
NI/TL -1.469 0.1592 -1.746 0.1107 -1.582 0.1466

Table 5.4: Coefficient values and p-values of re-estimated stepwise models

Analysis without MCAP/TL If TE/TL is included in Covariate Family
1 and MCAP/TL is temporarily removed, then the custom stepwise algo-
rithm yields the ratios presented in Table 5.5, when applied to Covariate
Family 1.

The ratio Cash/TA is the last ratio to be added by the stepwise algo-
rithm, but it is removed as it has a p-value of 0.1189, i.e. above 0.1. Due
to the still relatively low p-value, inclusion of the ratio is worth to investi-
gate further. Two models are therefore estimated; one model with the three
main ratios in Table 5.5 (this model is called TE-A) and one model which
in addition includes Cash/TA (TE-B). The coefficients and the p-values for
each of the estimated models are presented in Table 5.6. Note that in the
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re-estimation the ratio Cash/TA is significant. The change of significance is
explained by the use of the flexible data set. Since all four ratio coefficients
are now significant, and since inclusion of Cash/TA increase the discrimi-
native power, the resulting model from the Family 1 stepwise section is the
model consisting of the ratios in Table 5.5, with the addition of the ratio
Cash/TA, i.e. this is the same as model TE-B in Table 5.6.

# Description

10 Cash From Operations / Total Liabilities
18 EBITDA / Total Interest Expense
44 Total Equity / Total Liabilities

Table 5.5: Output from the stepwise algorithm when applied to Covariate
Family 1 without MCAP/TL

TE-A TE-B

Coefficient value p-value value p-value

Intercept 1.783 1.46E-10 2.192 8.48E-10
Cash/TA - - -5.033 0.0396
CFO/TL -8.220 8.50E-05 -7.999 1.50E-04
EBITDA/TIntExp -0.248 1.01E-04 -0.271 1.37E-04
TE/TL -3.681 5.72E-11 -3.760 8.43E-11

Table 5.6: Coefficient values and p-values of re-estimated stepwise models

Covariate Family 2

Starting with the Family 1-model as input, the stepwise algorithm is applied
so that any of the ratios from Covariate Family 2 are allowed to be included,
in addition to the four ratios already in the Family 1-model. The resulting
model is the Family 1-model with the addition of ratio #26, Short-Term
Debt to Total Debt. Table 5.7 shows the refitted coefficient values and p-
values. Inclusion of the ratio STD/TD makes Cash/TA insignificant at the
5 % level. However, as described in the Method section, the algorithm is
only allowed to remove ratios if the 10 % p-value level is breached. From
a pragmatic standpoint, keeping the ratio must be considered, despite its
slight insignificance, due to the ratio’s economic soundness and intuitiveness.
All five ratios are kept and this model is referred to as the Family 1,2 -model.
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Family 1,2-model

Coefficient value p-value

Intercept 1.869 4.60E-07
Cash/TA -4.868 0.0530
CFO/TL -8.437 7.07E-05
EBITDA/TIntExp -0.294 3.06E-05
STD/TD 2.005 2.01E-03
TE/TL -3.812 2.99E-10

Table 5.7: Coefficient values and p-values of re-estimated stepwise models

Covariate Families 3 & 4

Starting with the Family 1,2 -model the stepwise algorithm does not suggest
that any of the ratios in Covariate Family 3 or 4 should be included.

5.1.6 Final Ratio Model

The final model from the stepwise model building phase is equal to the
Family 1,2 -model as no ratios were added from Covariate Family 3 or 4,
this model is referred to as the Final Ratio Model. Descriptive statistics for
the final ratios are illustrated in Table 5.8. In Figure 5.3 a histogram of the
Final Ratio Model output illustrates the discriminative power of the model
and so does Classification Table 5.9. See Appendix J for an illustration of
the univariate discriminative power for all of the ratios in the Final Ratio
Model.

Mean Std.Dev. Min Median Max

# Ratio C NC C NC C NC C NC C NC

1 Cash/TA 0.010 0.19 0.095 0.19 -0.49 -0.15 0.017 0.14 0.30 1.20
5 CFO/TL 0.068 0.11 0.075 0.11 0 0 0.044 0.064 0.31 0.42

14 EBITDA/TIntExp 0.95 16.36 1.73 47.66 -7.00 -29.04 1.06 6.08 7.20 367.82
26 STD/TD 0.30 0.13 0.42 0.21 0 0 0.032 0.036 1 1
34 TE/TL -0.027 0.91 0.35 1.18 -0.65 -0.35 -0.083 0.66 1.74 9.59

Table 5.8: Descriptive Statistics for the final ratios, based on the 108 and
201 Credit Event Companies (C) and Non-Credit Event Companies (NC),
in the estimation set
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Figure 5.3: In- and out-of-sample frequency and distribution plots for the
probabilities obtained from the Final Ratio Model

Outcome
C. Event Non-C. Event

Prediction
C. Event 85 (TP) 29 (FP) P. Pred. = 74.6 %
Non-C. Event 23 (FN) 172 (TN) N. Pred. = 88.2 %

Sen. = 78.7 % Spec. = 85.6 %

Table 5.9: Out of Sample Classification Table for the Final-Ratio Model

5.1.7 Bias Correction

The finite-sample-, rare event bias-, and uncertainty in beta techniques,
described in the theory section are applied to the final ratio-model. First,
the Prior Correction and the Rare Event Bias Correction are jointly applied
to the model, secondly the combination Weighting and Rare Event Bias
Correction is considered and finally a crude analysis of the impact from
uncertainty in beta is conducted. The true population-wide probability of
default utilised for the bias correction techniques is 2.5 %.f

Finite Sample & Rare Event Bias Correction

Table 5.10 presents the bias of the ratios along with the corresponding ra-
tio coefficients and Wald statistics (bold if significant at 5 % level) when
applying Prior Correction and Rare Event Bias Correction. The resulting
coefficient values can be seen in the second column from the right. All the
ratios except Cash/TA still have significant coefficients. Cash/TA is how-
ever, as previously, very close to being significant (compare Wald statistic

fSlightly above the average of the issuer-weighted corporate default rate for 2008-2013.
(Services, 2015)
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to ±1.96). The resulting model in Table 5.10 will be referred to as the Bias
Corrected Model.

Table 5.11 contains the same type of information as Table 5.10, with the
difference that Weighting instead of Prior Correction is applied. In contrast
to Prior Correction, Weighting affects all of the estimated coefficients in
the model. In Table 5.11 it is seen that combining Weighting and Rare
Event Bias Reduction yields the same significant variables, based on Wald
statistics adjusted with new custom standard errors, based on White-Huber
(robust) standard error calculations.

In both Table 5.10 and Table 5.11 it can be readily seen that all co-
efficients have positive bias according to the Rare Event Bias Correction,
drawing β towards 0 as expected.

Coefficient β Pc: ∆β βPc Re: ∆β ∆% βPc+Re Wald

Intercept 1.869 3.081 -1.212 0.142 7.6 % -1.355 -3.720
CFO/TL -8.437 0 -8.437 -0.840 10.0 % -7.598 -3.643
Cash/TA -4.868 0 -4.868 -0.147 3.0 % -4.722 -1.911
EBITDA/TIntExp 0.294 0 -0.294 -0.304 11.7 % -0.259 -3.746
STD/TL 2.005 0 2.005 0.307 15.3 % 1.697 2.663
TE/TL -3.811 0 -3.811 -0.347 9.1 % -3.464 -5.829

Table 5.10: Impact on ratios from Prior Correction (PC) and Rare Event
Bias Correction (RE)

Coefficient β W: ∆β βW Re: ∆β ∆% βW+Re Wald

Intercept 1.869 3.335 -1.466 0.112 6.0 % -1.574 -15.948
CFO/TL -8.437 1.381 -9.818 -0.988 11.7 % -8.830 -2.152
Cash/TA -4.868 -1.030 -3.838 -0.021 0.4 % -3.817 -1.420
EBITDA/TIntExp 0.294 -0.194 -0.100 -0.013 4.3 % -0.087 -68.460
STD/TL 2.005 0.178 1.827 0.229 11.4 % 1.598 2.522
TE/TL -3.811 0.588 -4.400 -0.322 8.4 % -4.078 -19.197

Table 5.11: Impact on ratios from Weighting (W) and Rare Event Bias
Correction (RE)

Uncertainty in Beta

In order to illustrate the uncertainty in beta for the bias corrected model
in Table 5.10, the probabilities are corrected by a Monte Carlo scheme. By
the use of Antithetic Variates 1,000 versions of βunbiased are drawn from the
asymptotic distribution βunbiased ∼ N (β,Var(βunbiased)), from which, by
the consistency of βunbiased, probabilities are calculated. Figure 5.4 shows
the difference between the new estimated probabilities of experiencing a
credit event, without uncertainty in beta, and the probabilities obtained by
use of the point estimate of βunbiased. The top part of Figure 5.4 illustrates
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the actual differences and the bottom part illustrates the absolute differ-
ences. A horizontal line is drawn at 0 in the top plot, and vertical lines
are drawn in both plots to separate credit event companies (red) from non-
credit event companies (green). The average percentage point correction
is 0.54 for credit event companies and 0.22 for non-credit event companies.
The impact of uncertainty in beta is in many cases greater than the mean
correction, which is especially true for the credit event companies, but the
largest differences are, somewhat surprisingly, found among the non-credit
event companies.
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Figure 5.4: Illustrates the uncertainty in beta remaining in the bias corrected
model from

Model Corresponding to Different Population-Wide Default Rates

Varying the population-wide default rate, τ , in the bias reduction step,
changes the coefficients and the cutoffs of the models. The bias-reduction
techniques used for this section are Prior Correction and Rare-Event Bias
Correction. The following analysis contains variations of the Bias Corrected
Model referred to above, which in that case used τ = 2.5% as population-
wide default rate. Table 5.12 shows the model coefficients and the optimal
cutoff for different population-wide default rates τ .

τ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Intercept -3.026 -2.345 -1.909 -1.596 -1.355 -1.159 -0.994 -0.851 -0.725 -0.611
CFO/TL -5.923 -6.482 -7.028 -7.379 -7.598 -7.738 -7.831 -7.894 -7.983 -7.969
Cash/TA -5.367 -4.995 -4.853 -4.774 -4.722 -4.684 -4.656 -4.635 -4.619 -4.607
EBITDA/TIntExp -0.252 -0.250 -0.254 -0.257 -0.259 -0.261 -0.262 -0.264 -0.265 -0.265
STD/TD 1.204 1.494 1.598 1.657 1.697 1.727 1.751 1.769 1.785 1.798
TE/TL -2.989 -3.169 -3.312 -3.405 -3.464 -3.505 -3.534 -3.555 -3.571 -3.584

Cutoff 0.83 % 1.69 % 2.49 % 3.18 % 3.87% 4.60 % 5.34 % 6.07% 6.80 % 7.52 %

Table 5.12: Models corresponding to different population-wide default rates
τ = 0.5%, ..., 5%
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5.1.8 5-Factor Model

The final models that are obtained all use the five ratios from the Final
Ratio Model. The coefficients of these ratios, and the cutoff, depend on the
chosen population-wide default rate as shown in Table 5.12. In the model
evaluation section below the model corresponding to 2.5 % default rate will
be used. This model is hereafter called the 5-Factor Model and is restated
for convenience:

L = −1.355− 7.598X1 − 4.722X2 − 0.259X3 + 1.697X4 − 3.464X5 (5.1)

p =
1

1 + e−L
(5.2)

Where,

X1 = CFO/TL

X2 = Cash/TA

X3 = EBITDA/TL

X4 = STD/TD

X5 = TE/TL

cutoff = 3.87 %

The performance of the 5-Factor Model is depicted in Figure 5.5 and
Table 5.13. The discriminative power is barely visible in the histogram plot
as many probabilities are pulled towards the anticipated population-wide
default rate, τ = 2.5%. By comparing the classification tables for the 5-
Factor Model and the Final Ratio Model in Table 5.13 and Table 5.9 it is seen
that the performance is almost unchanged after applying bias corrections,
as the number of miss-classifications only differ by two companies.
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Figure 5.5: In- and out-of-sample frequency and distribution plots for the
probabilities obtained from the 5-Factor Model
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Outcome
C. Event Non-C. Event

Prediction
C. Event 84 (TP) 28 (FP) P. Pred. = 75.0 %
Non-C. Event 24 (FN) 173 (TN) N. Pred. = 87.8 %

Sen. = 77.8 % Spec. = 86.1 %

Table 5.13: Out of Sample Classification Table for the 5-Factor Model

5.2 Earlier Models

In this section the performances of Altman’s and Ohlson’s original models
are presented. The original models are also re-estimated with the estimation
set by use of logistic regression and new coefficients and cutoffs are presented.
The discriminative power of the original and re-estimated models are also
compared in the validation set.

5.2.1 Altman Z-Score

Original

In the validation set there are 58 credit event companies and 224 non-credit
event companies that have information for all of Altman’s ratios. These
companies are assigned a Z-score value according to Altman’s model. Com-
panies are classified in the three groups depending on their Z-score; high
bankruptcy risk, grey zone and low bankruptcy risk. The discriminative
ability for Altman’s model is illustrated in Figure 5.6 and Table 5.14. The
plots to the left in Figure 5.6 show the amount of companies in the differ-
ent groups and the plots to the right in the figure show a more granular
distribution of the companies.
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Figure 5.6: Distribution of Z-scores for credit and non-credit event compa-
nies

Outcome
C. Event Non-C. Event

Prediction
C. Event 39 (TP) 68 (FP) P. Pred. = 36.4 %
Grey Zone 11 53
Non-C. Event 8 (FN) 103 (TN) N. Pred. = 92.8 %

- -

Table 5.14: Discriminative ability of Altman’s original model

Re-Estimated

In the estimation set there are 73 credit event companies and 224 non-credit
event companies that have information for all of Altman’s ratios. These
companies are used to re-estimate the coefficients for Altman’s ratios. The
re-estimated coefficients and their respective p-values are found in Table
5.15. Only one of the ratios from Altman’s model has a p-value above 10
%. This is an indication that Altman’s original ratios still have good predic-
tive power, note especially MCAP/TL which has a p-value of 5E-7. Table
5.16 illustrates the out-of-sample discriminative ability of the re-estimated
version of Altman’s model in a Classification Table. See Appendix K for
in- and out of sample frequency and distribution plots of the probabilities
obtained from Altman’s re-estimated model.
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Altman Re-Estimated

Coefficient value p-value

Intercept 1.1669 0.0166
WC/TA -4.868 0.0284
RE/TA -8.437 0.0817
EBIT/TA -0.294 0.0993
MCAP/TL 2.005 5.06E-07
Rev/TA 0.1958 0.3369

Cutoff 40.1 % -

Table 5.15: Altman’s re-estimated coefficient values and p-values

Outcome
C. Event Non-C. Event

Prediction
C. Event 41 (TP) 25 (FP) P. Pred. = 62.1 %
Non-C. Event 17 (FN) 199 (TN) N. Pred. = 92.1 %

Sen. = 70.7 % Spec. = 88.8 %

Table 5.16: Out of Sample Classification table for the re-estimation of Alt-
man’s original model

5.2.2 Ohlson’s O-Score

Original

In the validation set there are 110 credit event companies and 231 non-credit
event companies that have information for all of Ohlson’s ratios. Companies
are assigned an O-score value according to Ohlson’s model. The correspond-
ing probabilities are then compared to the cutoff probability of 0.5. If they
are above, they are considered as having high risks of bankruptcy, otherwise
as having low risks of bankruptcy.The discriminative ability for Ohlson’s
model is illustrated in Figure 5.7 and Table 5.17. It is evident from Figure
5.7 that Ohlson’s model is better at identifying credit event companies than
non-credit event companies.
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Figure 5.7: Distribution of O-scores for credit and non-credit event compa-
nies

Outcome
C. Event Non-C. Event

Prediction
C. Event 100 (TP) 97 (FP) P. Pred. = 50.8 %
Non-C. Event 10 (FN) 134 (TN) N. Pred. = 93.1 %

Sen. = 90.9 % Spec. = 58.0 %

Table 5.17: Out of Sample Classification table for Ohlson’s original model

Re-Estimated

In the estimation set there are 125 credit event companies and 237 non-credit
event companies that have information for all of Ohlson’s ratios. These
companies are used to re-estimate the coefficients for Ohlson’s ratios. The
old coefficients, the re-estimated coefficients and the respective p-values for
all re-estimated coefficients are found in Table 5.18. Only five out of Ohlson’s
nine ratios are significant in the re-estimation. Table 5.19 illustrates the out-
of-sample discriminative ability of the re-estimated version of Ohlson’s model
in a Classification Table. The re-estimated model classifies 90.0 % of the
non-credit event companies correctly, compared to just 58.0% for Ohlson’s
original model. See Appendix K for in- and out of sample frequency and
distribution plots of the probabilities obtained from Ohlson’s re-estimated
model.
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Ohlson O-Score Ohlson Re-Estimated

Coefficient old value new value p-value

Intercept -1.320 0.035 0.980
Size -0.407 -0.241 0.172
TL/TA 6.030 0.3270 0.260
WC/TA -1.430 -2.193 0.0360
CL/CA 0.0757 0.2165 0.386
NI/TA -2.370 -2.741 0.0298
CFO/TL -1.830 -8.900 1.73E-05
INTWO 0.285 1.276 1.68E-03
OENEG -1.720 0.903 0.0420
CHIN -0.521 -0.280 0.402

Cutoff 50.0 % 39.9 % -

Table 5.18: Illustrating the coefficient values (new and old) and the p-value.
Bold values are significant at 5 % level

Outcome
C. Event Non-C. Event

Prediction
C. Event 83 (TP) 23 (FP) P. Pred. = 78.3 %
Non-C. Event 27 (FN) 208 (TN) N. Pred. = 88.5 %

Sen. = 75.5 % Spec. = 90.0 %

Table 5.19: Out of Sample Classification table for Ohlson’s re-estimated
model

5.3 Model Evaluation

In this section the 5-Factor Model is compared to Altman’s and Ohlson’s
models by use of the Cumulative Accuracy Profile (CAP) and Receiver Op-
erating Characteristic (ROC) curves. All the model evaluation tools are
based on the validation data set, the evaluation is thus on unseen, and of
course non-winsorised, data. Due to the flexible data set, the curves are
based on non-identical subsets of the validation data set. Altman’s model
uses 58 credit event companies and 224 non-credit event companies, Ohlson’s
model uses 110 credit event companies and 231 non-credit event companies
and finally the 5-Factor Model uses 108 credit event companies and 201
non-credit event companies.

5.3.1 Cumulative Accuracy Profile & Area Under Curve

In Figure 5.8 the CAP is plotted for each model. Visually, the 5-Factor
Model appears to outperform both Ohlson’s and Altman’s models. But the
data set differences introduce a problem for visual comparison of the CAP
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curves, as the ideal shape for each curve is different. The AUC-statistic pre-
sented in Table 5.20 normalises performance across sample-differences, and
provide a fair comparison for the different models. All three models have
AUC-scores between 0.5 and 0.9 but the 5-Factor Model is performing sig-
nificantly better, as seen by the Jackknife confidence intervals in Table 5.20.
Note also the wide confidence interval for Altman’s model indicating high
sensitivity to the sample changes within the Jackknife framework. Based
on the confidence intervals the 5-Factor Model is likely to be superior to
Ohlson’s model which in turn is likely to be superior to Altman’s model.
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Figure 5.8: Cumulative Accuracy Profile for Ohlson’s & Altman’s models
and the 5-Factor Model

5-Factor Model Altman’s Model Ohlson’s Model

97.5 % 0.784 0.701 0.742
Estimate 0.780 0.546 0.737
2.5 % 0.775 0.390 0.733

Table 5.20: Jackknife Confidence Intervals of AUC for the three models

5.3.2 Receiver Operating Characteristic

The ROC curves for each of the models are depicted in Figure 5.9, among
which the 5-Factor Model ’s curve has the most ideal shape. Initially the
models have roughly equal discriminative power but the strength of the 5-
Factor Model is evident after the first 40 % of correctly classified credit
event companies (Y-axis ≈ 0.4). The superiority of the 5-Factor Model is
furthermore confirmed by the ROC. The ROC-statistic is for the 5-Factor
Model and Ohlson’s model close to 0.9 (0.890), which by Hosmer et al. (2013)
indicates excellent, and close to outstanding performance. The same value
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for Altman’s models have acceptable discriminative power according to the
same authors. The Jackknife confidence intervals for the ROCs, provided in
Table 5.21, show that the 5-Factor Model is likely to be better than Ohlson’s
model, which in turn is likely to be better than Altman’s model.
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Figure 5.9: Receiver Operating Characteristic for Ohlson’s & Altman’s mod-
els and the 5-Factor Model

5-Factor Model Altman’s Model Ohlson’s Model

97.5 % 0.892 0.766 0.871
Estimate 0.890 0.762 0.869
2.5 % 0.888 0.757 0.867

Table 5.21: Jackknife Confidence Intervals of ROC for the three models

5.3.3 Credit Rating Data Comparison

In the US rating data set 159 companies are missing at least one required
ratio for use of the 5-Factor Model, these companies were thus all excluded.
The final US rating data set contains 895 companies. In the Nordic data set
all 35 companies have all the ratios for the 5-Factor Model.

Figure 5.10 and Figure 5.11 displays all US and Nordic company’s rank-
ings based on the 5-Factor Model against the company’s corresponding S&P
rating. The default probabilities are ranked from low (left) to high (right)
on the X-axis. On the Y-axis the ratings are depicted in descending or-
der of quality. To put it more clearly, the lower left corner should have the
best ranked companies according to the 5-Factor Model and the best ratings
according to S&P.

For both the US and Nordic data sets a positive monotone relationship
is evident, which indicates that the the rankings can be used as a proxy
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for S&P’s ratings. The top right and bottom left boxed areas of Figure
5.10 show that the 5-Factor Model manages to capture the worst and best
rated companies respectively within the US data, with only few errors.g One
clearly notes that the 5-Factor Model has difficulties for the US companies
in the intermediate ratings, approximately from B to A, see Discussion 6.2.3
for a plausible explanation. In Figure 5.12 the median ranking for each
rating category is illustrated through the inclusion of a blue line.hDue to
the small sample size of the Nordic dataset extensive inferences based on
visual analysis in Figure 5.11 is difficult.
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Figure 5.10: Rankings from the 5-Factor Model displayed against S&P’s
corresponding rating for US companies

gNote the marked outlier at coordinates (611,AA+), in the bottom right of Figure
5.10. Curious about the obvious mismatch we decided to look further at this company,
which happened to be General Electric Company. The 5-Factor Model rank measures the
company’s relative health as of its EOY 2015. We present two facts in this footnote: (1) In
roughly the same period, December 7 2015, GE terminated an agreement with Electrolux
from which they received $175 m in a breakup fee from a sale of its Appliances business,
the sell of the Appliances business hastily went into agreement with Haier for $5.4 bn on
15th January 2016. (2) GE experienced a drop in Net Income from $15.2 bn in 2014 to
negative $6.2 bn in 2015, and EBITDA went from $15.5 bn in 2014 to $12.0 bn in 2015.
We leave it to the reader to draw conclusions whether these facts indicates a desperate
need or excess of capital within GE as of EOY 2015.
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Figure 5.11: Rankings from the 5-Factor Model displayed against S&P’s
corresponding rating for Nordic companies
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Figure 5.12: Rankings from the 5-Factor Model displayed against S&P’s
corresponding rating for US companies with median ranking marked for
each set of companies with distinct ratings

hAlthough the median is a relatively robust statistic, and thus insensitive to outliers,
the outlier located at coordinates (611,AA+) was excluded from the construction of the
median line. This is because it would greatly have distorted the appearance of the median
line, as there are only two AA+ rated companies.
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ρ US Nordic

97.5 % 0.516 0.626
Estimate 0.511 0.567
2.5 % 0.506 0.506

Table 5.22: Monte Carlo based Confidence Intervals for Spearman’s coeffi-
cient between rankings from the 5-Factor Model and S&P’s corresponding
rating for the US and Nordic markets

5.3.4 CDS Data Comparison

The comparison of the ranking based on the CDS spreads and the ranking
based on the 5-Factor Model, relies on visual analysis and Spearman’s rank
coefficient. For 97 out of the 115 US firms and 23 out of the 29 Nordic firms,
all required ratios are available.

In Figure 5.13 the CDS rank is displayed against the 5-Factor Model
rank. A low rank on the X and Y axis indicates a low spread and a low
probability of default respectively. For the US companies there appears to
be a positive correlation. Unfortunately it is not possible to reach the same
conclusion for the Nordic companies. The red and blue lines are drawn
for the reader’s convenience. The red lines are drawn to indicate that the
highest spreads and probabilities are grouped together. The blue lines are
drawn to indicate the monotonic correlation that is visible. For the highest
spreads the model assigns the highest probabilities and most observations
are almost rank-consistent! The Spearman’s rank correlation coefficients and
the corresponding p-values are shown in Table 5.23. Since the CDS spreads
are without ties it is possible to analytically compute p-values, which should
be interpreted as the probability of having at least the correlation presented
in Table 5.23.
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Figure 5.13: Rankings from the 5-Factor Model displayed against the cor-
responding CDS spreads’ rankings, for US and Nordic companies

ρ US Nordic

Estimate 0.501 -9.90E-03
p-value 2.64E-07 0.966

Table 5.23: Spearman’s ρ, with corresponding p-values, based on ranks of
the 5-Factor Model output and CDS spreads, for US and Nordic companies
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6

Discussion

Prediction is very difficult, especially about the future.
– Niels Bohr

In this chapter, (1) The resulting model from the model building stage, i.e.
the 5-Factor Model, is presented and discussed in detail; (2) All models’
performances are discussed and for the 5-Factor Model the performance is
related to CDS and Rating data; (3) Emerging issues from the model build-
ing stage are discussed, along with other important clarifications, concerning
for example Bias Correction; (4) Examples are presented concerning how to
apply the 5-Factor Model in practice.

6.1 The 5-Factor Model

The discussion below concerns the 5-Factor Model (restated below for con-
venience) along with intuitive interpretation, adequacy and reasonability of
its five ratios.

L = −1.355− 7.598X1 − 4.722X2 − 0.259X3 + 1.697X4 − 3.464X5 (6.1)

p =
1

1 + e−L
(6.2)

Where,

X1 = CFO/TL

X2 = Cash/TA

X3 = EBITDA/TL

X4 = STD/TD

X5 = TE/TL

cutoff = 3.87 %
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6.1.1 Discriminative Function

As a default option the proposed model is the 5-Factor Model calibrated
with τ = 2.5 % as population wide default rate. Changing τ mainly impacts
the intercept and the cutoff, the models are therefore expected to perform
similarly. However, the 2.5 % model is the only model with performance
verified in this report, especially with respect to rating and CDS rank con-
sistency. If a different population wide default rate is anticipated, then the
appropriate coefficients in Table 5.12 should be retrieved. For ranking pur-
poses however, as the rankings are expected to be unaffected by the choice
of τ , the default option should be to use τ = 2.5%. It is only when actual
probability estimates are of interest that one should resort to Table 5.12, a
more elaborate discussion follows in 6.4.

6.1.2 Intuitive Explanation of Ratios

Below the five ratios are considered in isolation. For the reader’s convenience
the ratios are individually conceptually captured by a short factor name. All
factors capture distinct parts of a company’s financial health. The factor
names are: Cash Generation, Cash Cushion, Interest Coverage, Maturity
Structure and (Reverse) Leverage Position.

Cash From Operations/Total Liabilities - Cash Generation

CFO/TL measures a company’s long term ability to generate capital for its
liabilities through its yearly cash from operations. A negative coefficient is
thus to be expected as an increase in the ratio indicates that a company gen-
erates more cash in relation to its liabilities, and should therefore have better
capability to eventually meet those liabilities. Note that this is the proxy
for a ratio originally considered in Ohlson (1980), namely Funds Provided
by Operations / Total Liabilities.

Cash/Total Assets - Cash Cushion

Cash/TA gives a normalised measure of the amount of cash the company has
available. The corresponding coefficient has a negative sign as a company
with higher cash reserves is more likely to be able to meet its contractual
obligations. That the corresponding coefficient is less significant than the
average coefficient within the 5-Factor Model is intuitive as the measure
fluctuates throughout the year, and it is furthermore not clear that a com-
pany desires high cash deposits as it can indicate inefficiency. An optimal
composition of Cash to Total Assets is also expected to be industry depen-
dent.
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EBITDA/Total Interest Expense - Interest Coverage

EBITDA/Total Interest Expense, also known as the EBITDA to Interest
Coverage Ratio, is a ratio measuring how many times a company could pay
of its interest expenses with its available earnings. If the ratio is high, then
a company is theoretically capable of repaying its interest expenses several
times; meanwhile, if it is low then the interest expenses heavily burden
the bottom line financial result. In effect this measure gives a normalised
Interest Rate cost in relation to the true earnings of the company, naturally
taken before interest expenses. Having a ratio greater than 1 is essential as
otherwise the company is forced to use cash to pay off its interest expenses.
The negative coefficient for EBITDA/TIntExp indicates that an increase of
the ratio decreases the probability of default.

Short-Term Debt/Total Debt - Maturity Structure

If this ratio is high, then the company has a large degree of debt to pay in
the near future. The positive coefficient is therefore intuitive, as an increase
in the ratio indicates a greater need for short-term capital, and in extension
bad health. However, the ratio does not take into account how much total
debt the company has. If the amount of total debt is very low, and the debt
is mostly short-term, then the impact on the probability could be unjustly
high, since the amount of total debt could be minuscule in relation to the
size of the company.

Total Equity/Total Liabilities - (Reverse) Leverage Position

Total Equity to Total Liabilities is the reciprocal of the commonly known
Debt/Equity ratio. The reciprocal is chosen in this report as shifting signs
are considered less intuitive for denominators than for nominators. As a rule
of thumb, the more a company relies on liabilities to finance its operations
the riskier it is. The negative coefficient for the ratio in the model indicates
that an increased leverage gives a higher probability of default. The ratio
is not perfect however, as companies within distinct industries often require
different amounts of leverage to stay competitive. A high equity/liability
ratio may be common practice in one industry, but for another industry the
same amount of leverage may be undesired. The 5-Factor Model makes no
such note of industry standards.

6.1.3 Variable Splitting

Some of the ratios are, after careful consideration, not straightforward to
interpret. The issue can occur when the numerator in the ratio changes
sign from positive to negative. This is the case for three of the ratios above,
namely; CFO/TL, EBITDA/TIntExp and TE/TL. For example, if EBITDA
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is positive, then an increase in the ratio is considered beneficial for the
company as more funds are available for the payment of interest expenses.
But if EBITDA is less than zero, complications arise. A negative EBITDA
is an indicator of bad health, but coupled with a large interest expense
the impact of the negative EBITDA is mitigated. The model interprets a
negative EBITDA coupled with high interest expenses as better than the
same EBITDA with low interest expenses, which naturally should not be
the case.a

The complications arising from the possibility of negative numerators
can be mitigated by splitting the ratios into two variables, one which is only
active when the numerator is positive and one which is only active when the
numerator is negative. This simple solution could improve the predictive
ability of not only credit event models but also in a more general GLM
framework whenever ratios with non-positive support are used as covariates.

6.2 The Performance of the Models

All in all, the performance of the models implemented and re-estimated is
seen as remarkable! Careful consideration was put into the search of a credit
event data set and a corresponding representative non-credit event data set.
Ideally though, an alternative approach would be preferable; construct a
population as Moody’s full corporate coverage and then consider the two
mutually exclusive and collectively exhaustive subsets, credit event compa-
nies and non-credit event companies. The method described in the Data
section does not guarantee that all the companies present in the non-credit
event data set would have appeared as credit event companies if a credit
event would have occurred for them. But this problem is not unique for this
report, and not feasible to resolve.

However, by testing the model with out-of-sample data confidence is
gained that the 5-Factor Model works well within the boundaries of the
gathered data-set. Only time will tell if the model continues to perform
well. The ratios in the 5-Factor Model, as discussed above, make intuitive
sense, which is believed to be very important.

6.2.1 Earlier Models

The uncalibrated Altman model correctly classifies 50.4 % (see Table 5.14)
of the companies while the re-estimated model correctly classifies 85.1 %

aTo further elaborate on the subject and possibly cause some confusion consider the
following conversation: A linguistics professor at MIT was lecturing his class the other day.
”In English,” he said, ”a double negative forms a positive. However, in some languages,
such as Russian, a double negative remains a negative. But there isn’t a single language,
not one, in which a double positive can express a negative.” A voice from the back of the
room piped up, ”Yeah, right.”
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(see Table 5.16). Ohlson’s original model correctly classifies 68.3 % (see
Table 5.17) of the companies in the validation set while the re-estimated
version classifies 85.3 % correctly (see Table 5.19). Re-estimation of the
older models yields better discriminative power in terms of overall correct
classifications. Ohlson’s original model is very good at identifying credit
event companies, but as it also classifies a lot of non-credit event companies
wrong, the positive predictive value is only 50.8 %. The low value displays
that 49.2 % of the predicted credit events are false positives, a significant
amount. The re-estimated version has a positive predictive value of 78.3 %
which indicates that the model is more certain of its identified credit event
companies.

The original calibration of Altman’s model is based on Manufacturing
companies and Ohlson’s original model is based on Industrial companies.
The data sample used in this report includes additional industries, which
is expected to be disadvantageous for Altman’s and Ohlson’s original, and
possibly re-estimated, models. That the models still show acceptable dis-
criminative power 30-50 years after their development is however a remark-
able feat! The difference between the original and re-estimated models are
likely due to the different industry compositions and also due to change in
business climate over time. Companies are likely structurally different today
compared to 30-50 years ago. Altman’s model is furthermore re-estimated
using logistic regression rather than MDA, which could also impact the per-
formance of the model adversely. There is also a difference in how credit
events are defined in Altman (1968) and Ohlson (1980) compared to this
thesis, which can have impacted the performances.

6.2.2 The 5-Factor Model

As seen from Result section 5.3 the CAP-curve, the AUC-score, the ROC-
curve and the ROC-score of the 5-Factor Model are all better than the older
models’ curves and scores. Considering the ROC-scores along with the fact
that the O-Score has 4 more degrees of freedom, in terms of additional
parameters to estimate, makes the 5-Factor Model superior.

6.2.3 Credit Rating Analysis

As can be seen by Table 5.22 the estimated Spearman-coefficients are sig-
nificantly non-zero, for both the US and Nordic markets. The estimates are
both even greater than 0.5 which by Cohen’s Standard indicates a strong
positive monotone relationship between the 5-Factor Model and the S&P
ratings. To fully appreciate this feature of the model, consider that all these
tests are performed on data drawn from new populations, and not different
samples from the same populations used in the model building and model
calibration steps. The high level of correlation, seen on both the US and
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Nordic markets, is also impressive and shows that the model can be used for
assessing the credit quality of both US and Nordic companies. Furthermore,
a perfect rank correlation to the S&P rating data is not necessarily the ideal
correlation, as it is not evident that the S&P ratings indicate the true credit
quality.

The 95 % confidence intervals are relatively tight for the US companies,
indicating that the information loss due to ties within the rating data can
be seen as having limited impact. For the Nordic data the same conclusion
is not as evident, which is likely due to the small sample size of Nordic
companies.

Updating Frequencies of Ratings

Another factor possibly reducing the rank correlation to the S&P rating data
is the lagged updating frequency inherent in the methodology utilised by the
rating agencies. There is no set time in which a credit rating update will be
given and the incentive structure of the rating agencies introduces a poten-
tial bias, as the rated companies can pay the agencies for an update when
preferable. Meanwhile the accounting data used for the 5-Factor Model is
usually available quarterly and it is standardised. The identified regions of
Figure 5.10 indicate that the 5-Factor Model ’s ranks agree especially well
for the highest ranked companies, where only few large rank differences are
present. This can potentially be explained by the lagged updating frequen-
cies, as companies that are performing well are more inclined to pay for an
updated rating. That the model agrees with the highest ranks can therefore
be interpreted as an indication that the 5-Factor Model is working. The
model also seems to agree well for the lowest rated companies. We believe
that this also could be due to more accurate ratings from the rating agencies
for these companies. But in this case the updated ratings are likely to be
initialised by the rating agencies, as they don’t want inaccurate ratings they
are likely to want to update the deteriorating companies’ ratings. Conclu-
sively, since the 5-Factor Model seems to have higher rank consistency for
the highest and the lowest rated companies, where one can argue that the
ratings are the most accurate, and less biased, this can be seen as an indica-
tion that the 5-Factor Model gives a more accurate credit quality assessment
of companies than the actual ratings.

6.2.4 CDS Analysis

From the CDS analysis the 5-Factor Model is somewhat able to rank the
companies to the CDS spreads for the US market. A Spearman’s ρ for the
US market of 0.501 indicates, by Cohen, that the degree of association is
large. The result can also be seen visually from Figure 5.13. As there is no
way telling if the CDS spreads indicate the true measure of credit quality
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the relatively high rank consistency is still a confirmation that the 5-Factor
Model measure the credit quality similarly to how the market values it. The
5-Factor Model can therefore be used to find approximate CDS spreads for
companies for which there aren’t any CDS contracts outstanding and also,
potentially, in order to identify mispriced CDS contracts.

Although the 5-Factor Model has similar ranking as the US CDS spreads
the same can unfortunately not be said for the Nordic CDS spreads. One
plausible explanation is that the US CDS market is more liquid. The lower
sample size for the Nordic market should also be mentioned as a limiting
factor for the model’s performance.

6.3 Model Building

6.3.1 Significance vs Intuition

As may have been noted by now the model building method prioritises
economical intuition over perfect data fit. The goal of the model building
section is to construct a model which makes sense for the practitioner and
which hopefully captures the true underlying nature of credit events.

Having non-intuitive measures will make the model prone to over-fitting
the sample. For example, significance of variables such as size or age could
be due to identification of potential sampling bias. Although, there is an
intuition behind larger companies having more optionality in situations of
distress. Age, on the other hand, is seen as quite arbitrary, as it is ill-defined
whether to take the starting year of the company as the year the company
was launched on the stock market or when the company was founded. M&A
activities further dilutes the exactness of this already fuzzy measure of dis-
tress.

6.3.2 Including Interaction Terms

When conducting the multivariate correlation analysis interaction terms are
considered to be included where high but not very high correlations are iden-
tified. Although such terms could improve the performance of the model,
all such terms are nevertheless disregarded for three main reasons. The first
being that the economic intuitiveness of the model could be compromised.
Secondly, the relationships are not clear, and in extension it is difficult to
concisely define them as new covariates. Thirdly, and most importantly,
from a practical point of view, complex covariates can be difficult for the
end user of the model to appreciate. Such complex covariates could make
the end user doubt the validity of the model.
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6.3.3 Market and Sentiment Based Variables

Ideally a model should function both for private and public companies. A
model which makes no note of whether the company is public or private is
applicable to a wider range of companies. MCAP is the only variable in the
data-gathering process which is forward looking. Market practitioners’ sen-
timent determines the level of the stock price for the company, along with
other fluctuating factors such as supply, demand and liquidity. A model
which does not include sentiment based variables is more apt to function as
an objective sanity check against possibly unsound market movements. It is
expected that the soundness of a non-sentiment based approach is especially
rewarding in times just before an emerging crisis. Often in situations of cri-
sis, the market sentiment diverges from what is suggested by the underlying
data.

6.3.4 Using Ratios with Different Updating Frequencies

A possible issue in ratio calculations concerns different updating frequencies
of numerators and denominators. Say for example that the ratio R = A/B
where A is updated daily and B is updated yearly. Furthermore, for nota-
tional convenience assume that A was updated at time T and that B was
updated at time T − 364.

Should one then for calculation of R(T ) use A(T ) and assume that
B(T ) = B(T − 364), or should one use A(T − 364) coupled with the most
recent known value of B, B(T − 364)? There is more information for A
available, but B is likely to have changed in the meantime. One faces the
choice between information neglect in A, by throwing away new information
known at T , and forced constant extrapolation of B. No good solution to
this intricacy is presented in this report.

6.3.5 Exclusion of Market Capitalization

There are three main issues concerning the use of MCAP. Firstly, it limits the
model usage to only be applicable for public companies. Secondly, MCAP
is the only variable in the data that has an updating frequency which differs
from the other variables, see discussion in Section 6.3.4 for an explanation of
this issue. Thirdly, if MCAP is included in a model then the volatility of a
company’s stock price can influence the probability of default substantially
from day-to-day and this feels unnatural.

As a final note we believe that the strength of MCAP to Total Liabilities,
seen in this report, and previously (Altman, 1968), is explained to a great
deal by the fact that it is often the only forward looking variable included. A
model which functions almost as well but without the use of MCAP, is seen
as a great indicator of the model’s ability to function as a risk evaluation
tool, see discussion in Section 6.3.3.
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6.3.6 Traditional Stepwise Inclusion/Exclusion

Initially a traditional stepwise inclusion/exclusion method based on De-
viance, AIC or BIC was considered. But these methods are based on asymp-
totic results, only true if the number of observations are much greater than
the number of parameters estimated in the model. Which is not obvious to
be true for all subsets of the 63 ratios in this report. Furthermore, fitting
of better and better models, according to the named criteria, is not obvious
to yield models of increasing discriminative power. The standard criteria
were not deemed appropriate for the type of optimisation that is consid-
ered in this report and therefore a custom stepwise algorithm is built. The
constructed algorithm is one of many possible choices. The resulting model
is of course expected to vary with the choice of optimisation criteria. The
chosen criterion is deemed appropriate, and more importantly the resulting
model (the 5-Factor Model) performs well out-of-sample, which justifies the
adequacy of the algorithm and the chosen selection criterion.

6.3.7 Bias Correction

By implementing finite sample bias correction techniques the resulting prob-
abilities are more realistic with respect to the true probabilities of experi-
encing credit events (seeing many companies close to 100 % probability, as
in Ohlson (1980), is not only unlikely but also unreasonable). This means
that the finished 5-Factor Model is not only viable for relative, but also
absolute credit quality assessment. From a practical point of view this is a
nice feature.

As seen from the results in Section 5.1.7 the impact from rare event bias
reduction is in many cases larger than 10 % of the MLE parameter values
(in one case even 15.3 %). This is a substantial effect, and reducing this rare
event bias is seen as a great addition from both a practical and theoretical
point of view.

Calculating the uncertainty in β is of more theoretical interest than it
is useful. But an interesting effect in Figure 5.4 is visible as, although the
credit event companies have larger average impacts, the largest effects are
seen in the non-credit event data. This is unexpected, but could simply be
due to the larger sample size, which makes larger deviance more likely to
occur, eventually.

6.3.8 Fraudulent Accounting

All credit event (or bankruptcy) prediction models considered in this thesis
are homogeneous in that they rely on accurate accounting data for them to
be usable. There are multiple sources of uncertainty in accounting data, to
name a few (1) The company or other providers of information can by mis-
take enter incorrect values, but if this error is large it is likely to be identified
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and adjusted for by the company itself, the practioner of the model or in
model building approaches possibly by winsorisation, (2) The corporation
may purposely enter faulty numbers into their accounting data to improve
its perceived financial healthb. The first, more innocent source of error, is
unbiased since a positive and negative impact on the probability of default
is equally likely. The second, more malicious source of error, is not only
tremendously difficult to identify but also biased, since such fraudulent be-
haviour is more likely to give rise to a lower, rather than higher, probability
of experiencing a credit event. Companies that have been registered for con-
ducting fraudulent accounting are excluded from the data set construction
in this thesis.

The second type of error is commonly referred to as Fraudulent Account-
ing. As an example consider the Enron case where three types of fraudulent
behaviour, or shenanigans, are recorded in Schilit and Perler (2010). The
three types, along with a non-exhaustive list of what each type includes,
follows, (1) Earnings: Recording Revenue Too Soon and Boosting Income
Using One-Time or Unsustainable Activities; (2) Cash Flow : Shifting Fi-
nancial Cash Inflows to the Operating Section, Shifting Normal Operating
Cash Outflows to the Investing Section and Inflating Operating Cash Flow
Using Acquisitions or Disposals; and (3) Key Metrics. (Schilit & Perler,
2010)

6.4 The Model in Practice

6.4.1 How to Use the Resulting Model

The 5-Factor Model is suggested to be used together with common sense
and complementary qualitative indicators of financial health. The model is
intended to be used for three main purposes, (1) For approximate relative
credit quality assessment of companies; (2) For approximate absolute credit
quality assessment; (3) For a classification of companies into groups with
high and low risks of experiencing credit events. Where (1) and (2) jointly
or in isolation can be used to sanity check credit rating and CDS data.

Relative Credit Quality Assessment

If an ordinal ranking of companies based on the risk of experiencing credit
events is desired then the discriminative function in Equation 6.1 alone fulfils
this purpose.cThe conversion to probabilities maintains the same ranking,
and is therefore unnecessary.

cThe model is in large expected to perform equally well for another population-wide
default rate τ but as the only model tested for rank consistency is the one using τ = 2.5
% this is the model suggested to be used for relative credit quality assessment.

74



Absolute Credit Quality Assessment

If the actual probabilities of default are desired then the inverse logit function
in Equation 6.2 needs to be used to converse the log-odds from Equation
6.1 to probability estimates. It is important to choose the model coefficients
corresponding to the anticipated population-wide default rate τ in Table
5.12.

Classification Assessment

If one needs a crude classification, for companies that are likely or unlikely
to experience credit events, then it is suggested to compare the probabilities
to the appropriate cutoff retrieved from Table 5.12.
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7

Suggestions for Further
Research

Science never solves a problem without creating ten more.
– George Bernard Shaw

For variables that have non-monotone ratio-to-default probability relation-
ship, it would be interesting to see if the effect of the Variable Splitting
technique presented in Section 6.1.3 will yield significance for both the pos-
itive and the negative part of the non-monotone ratios. This could be an
interesting alternative to the approach of Discontinuity Correction utilised
in Ohlson (1980).

It would also be of interest to study if a certain type companies are sys-
tematically misclassified by the 5-Factor Model, is there for example a black
spot for specific industries, sectors or other natural classifiers of companies.

An examination of the 5-Factor Model ’s rank consistency over time in re-
lation to CDS and Rating data would be interesting to investigate. One nat-
ural question concerns whether the ratio-coefficients for the 5-Factor Model
are relatively constant over time. Another emerging dilemma concerns
whether the model’s ranking has predictive power, for upcoming changes
in ratings, or is the rank differences mainly explained by noise in the ac-
counting data? For CDS contracts, one could instead consider a comparison
of the implied probabilities of default from CDS contracts to the model
output probabilities of experiencing credit events.

As a final remark it would be interesting to evaluate a trading strategy
based on the output of the model either in isolation or compared to CDS
and credit rating data. Such a strategy could be based on large ranking
differences.
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8

Conclusion

All models are wrong, but some are useful.
– George E.P. Box

Financial institutions have a direct need of accurate credit quality assess-
ment for risk management and for asserting long-term profitability. A rising
sense of urgency is furthermore driven by a steady inflow of new regulations.
Market practitioners try to make sense of the asymmetric information issue
by turning to the many available sources of credit quality information. Two
of the more well known sources are rating agencies and the CDS-market.
These sources do however both have their own inherent problems and sources
of bias and noise. An accurate and objective model can function as a sanity
check for when the bias or the noise takes the upper hand. If the same
model also functions where ratings and CDS-data are not updated or avail-
able, then assessments of credit qualities are obtainable for a larger amount
of companies.

Previous researchers have attempted to formulate quantitative, arguably
objective, models, and have come a long way in terms of dichotomous clas-
sification of bankruptcies. The performance of two of these models, namely
Altman’s Z-score and Ohlson’s O-score, are in this thesis evaluated, and
shown to have acceptable accuracy. A re-estimation of their models to a
more recent data set show that the predictive performance is increased com-
pared to the original models.

Due to changes in business climate and company fundamentals, the best
predictors of credit quality may be completely different today compared to
when the previous researches designed their models. This suggest a need of
consideration for alternative models that potentially use different predictors.
A model constructed in this thesis performs better than previous models,
and this is an indication that the best predictors indeed have changed over
recent years. Some of the previous models’ ratios are however still significant
and efficient predictors which indicates the quality of previous research and
that the characteristics of companies about to experience credit events are
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not altogether different.
Previous models are only able to provide a classification, or ordinal rank-

ing, of companies based on the likelihood of experiencing default. Techniques
that reduce sample and rare-event bias are successfully applied in the model
building stage and as a result the constructed model in this thesis has more
accurate and more realistic probability estimates than earlier models. The
constructed model can, therefore, in addition to relative, be used for absolute
credit quality assessment.

The constructed model is shown to be rank consistent with rating and
CDS data. This suggests that the model can be used for setting proxy
ratings or CDS-spreads, which can be used as sanity checks for CDS price
movements that seem out-of-control or for controlling ratings that seem
faulty.

The standardised, quantitative and objective model resulting from this
thesis is applicable to a wide range of companies; private, public, rated
and unrated alike. As providers of the first model with realistic and rank-
consistent probabilities, we believe to have come close to capturing the true
nature of rare credit events.
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Appendix A

Construction of Non-Credit
Event Sample

In order to find the companies for the non-credit event population, a sub-
set of all available companies in the Bloomberg terminal was considered,
through the “Equity Search (EQS)” tool. In the EQS tool it is possible to
apply filters and narrow down the number of companies. The filters that
were used (on 2016-04-06) are:

• Trading Status: Active

• Security Attribute: Show Primary Security of Company Only

• State of Domicile: United States

• Sector (GICS): -Financials

• Exchanges: United States

• $100 million ≤ CY2014 Total Assets ≤ $50,000 million

• Moody’s Ratng has data

• OR S&P Issuer Rating has data

• OR Fitch Rating has data

1,120 companies, active at the time of the search, are found after applying
the filters. Companies that by Bloomberg are considered Financials, REIT
or Real Estate companies were excluded. The reason to only choose com-
panies that had total assets between $100 million and $50 billion in 2014
is due to the asset size of the companies in the credit event sample. S&P
and Fitch, in addition to Moody’s, are included to increase the size of the
sample. In the next section, the number of companies is reduced by removal
of those that have experienced credit events.

In order to find out if any of the companies have experienced credit
event a “Fixed Income Search (SRCH)” was performed in Bloomberg. The
SRCH tool works similarly to the EQS tool in that you apply filters to

80



Bloomberg’s database, but now to fixed income securities. The screenshot
from the Bloomberg Terminal that show the filters that were applied are
found in Figure A.1. The “Is Defaulted” filter “indicates if the debt in-
strument is in default or the issuing entity is in bankruptcy, or both are
applicable.”. The search resulted in 3,395 instruments.

Figure A.1: Screenshot from SRCH tool in Bloomberg Terminal. (Retrieved
2016-04-06)

If the tickers of the defaulted debts’ issuer matched a company from the
EQS, that company was removed from the non-credit event set. The SRCH
screening resulted in removal of 56 companies from the non-credit event set
and thus 1,064 companies remained. Next, the tickers of the credit event
sample of 654 companies was matched to the non-credit event sample, and
28 companies were removed. Due to the fact that not all companies in the
credit-event sample had a ticker, a manual matching of the actual names
was conducted, and 30 companies were removed following this matching.
In the remaining sample of 1,006 non-credit events 16 lacked an industry
assignment, and four of those were financials and therefore removed. The
final non-credit event sample consists of 1,002 companies.
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Appendix B

Bloomberg Variables &
Definitions

Variable BLOOMBERG FIELD ID

Accounts Receivable Turnover ACCT RCV TURN
Accounts & Notes Receivable BS ACCT NOTE RCV
Accounts Payable BS ACCT PAYABLE
Accounts Payable Turnover ACCOUNTS PAYABLE TURNOVER
Capital Expenditure/Financial Expenditure CAPITAL EXPEND
Cash and Near Cash BS CASH NEAR CASH ITEM
Cash From Operating Activities CF CASH FROM OPER
Cash, Cash Eq. & STI C&CE AND STI DETAILED
Current Assets BS CUR ASSET REPORT
Current Liabilities BS CUR LIAB
EBIT EBIT
EBITDA EBITDA
Free Cash Flow CF FREE CASH FLOW
Goodwill BS GOODWILL
Inventory Turnover INVENT TURN
Long Term Debt BS LT BORROW
Market Capitalization CUR MKT CAP
Net Debt NET DEBT
Net Income NET INCOME
Quick Ratio QUICK RATIO
Retained Earnings BS RETAIN EARN
Revenue SALES REV TURN
Short Term Debt BS ST BORROW
Tangible Assets TANGIBLE ASSETS
Total Assets BS TOT ASSET
Total Debt SHORT AND LONG TERM DEBT
Total Equity TOTAL EQUITY
Total Interest Expense TOT INT EXP
Total Invested Capital TOTAL INVESTED CAPITAL
Total Liabilities BS TOT LIAB2
Working Capital WORKING CAPITAL

Table B.1: Bloomerg Formulae used to retrieve data
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Variable Definition

Cash Conversion Cycle Acc. Rec. T. + Inv. T. - Acc. Pay. T
CHIN (Change in Net Income) (NI(t) + NI(t-1))/(abs(NI(t))+abs(NI(t-1)))
Cur. Ass. Q. to Cur. Liab. Q. Accts Rec/Accts Pay · Cur Liab/Cur Assets
Intangibles Total Assets - Tangible Assets
INTWO 1 if NI negative past 2 years, 0 otherwise
Market Value Total Assets Total Liabilities + Market Cap
Quick Assets Accounts Rec + Cash and Near Cash
Size log(Total Assets/GDP Price Index)
Solvency without Goodwill (Total Equity - Goodwill)/(Total Assets - Goodwill)

Table B.2: Definition of Variables
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Appendix C

Credit Rating Data & CDS
Data

C.1 Credit Rating Data

C.1.1 United States

Companies that are listed on any of the exchanges in the United States are
considered. Yet again, Financials, REIT and real-estate companies were
excluded. There are several different types of ratings that S&P set and
we are considering the rating corresponding to Long-Term Issuer ratings
by S&P. The filters are listed below and 1,054 companies were found on
2016-04-20

• Trading Status: Active

• Security Attribute: Show Primary Security of Company Only

• Sector (BICS): -Financials

• Exchanges: United States

• S&P LT Local Currency Issuer Credit Rating has data

C.1.2 Nordic Region

The Nordic data set is retrieved in a similar fashion as the United States
data set, with the obvious difference that the companies need to be listed on
any of the exchanges in Sweden, Norway, Finland or Denmark. 35 Nordic
companies were found on 2016-04-20 with the filters below applied.

• Trading Status: Active

• Security Attribute: Show Primary Security of Company Only

• Sector (BICS): -Financials

• Exchanges: Sweden, Norway, Finland, Denmark
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• S&P LT Local Currency Issuer Credit Rating has data

C.2 CDS Data

C.2.1 United States

The “Global CDS” (GCDS) tool is used to search for different companies
that are reference entities for CDS contracts. In the GCDS tool the following
filters are applied:

• Sources: All Sources

• Regions: United States

• Ratings: All Ratings

• Sectors: All but Financials and Government

• Debt Type: Senior

• Currency: USD

• ISDA Definition: 2014

• Tenor: 5Y

• Pricing Source: CBIN

C.2.2 Nordic Region

The GCDS tool from Bloomberg will again be used to find CDS prices for
the Nordic companies. The filters that were applied to find the Nordic CDS:s
are the following:

• Sources: All Sources

• Regions: Denmark, Finland, Norway, Sweden

• Ratings: All Ratings

• Sectors: All but Financials and Government

• Debt Type: Senior

• Currency: All Currencies

• ISDA Definition: 2014

• Tenor: 5Y

• Pricing Source: CMAL
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Appendix D

Flexible Data Set - Pseudo
Code

load data (this code is ideally only run once)
v1, v2, ..., vn ← load all ratio-constituents, we call these variables vi
for each company c do

for each ratio r do
calculate ratio value c(r) = vi/vj
if something is wrong with the ratioa then

mark c(r) as a bad ratio
end if

end for
if all 63 ratios are marked as bad then

remove company c from the full sampleb

end if
end for

before each analysis
set R← user defined ratio subsets with ratios r1, ..., rn
set A← all companies
for each ratio in R do

set T ← all companies c for which c(r) is not marked as bad
set A← the intersection of A and T

end for
if applicable, perform winsorisation on ratios in R based on companies
in A
conduct analysis on companies in A

aIn MATLAB this corresponds to if(isnan(c(r)), isinf(c(r)) or isempty(c(r))
bAll companies not deleted contain some information and will thus be included in at

least one univariate or multivariate model.
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Appendix E

Stepwise Inclusion/Exclusion
- Pseudo Code

E.1 Stepwise Algorithm

modelSize← 0, the number of parameters in the model
maxSize← 7, a model shouldn’t be too large
minImprov ← 0.01, minimum required improvement of a new covariate
prevModel← 0, no covariates in the model to start with
modImprov ← 1, set to initialize algorithm
while modelSize < maxSize AND minImprov < modImprov do

for all covariates r not in the model, and not just added do
calculate the discriminative power of prevModel when adding r
Set rmax to the covariate with best additional disc. power

end for
add the covariate rmax to prevModel
modImprov ← the improvement from the best covariate
if any of the covariates in prevModel has a p-value above 0.1 then

remove the covariate with the largest p-value
mark removed covariate so it will be excluded in the next iteration

end if
modelSize← the number of covariates in prevModel

end while
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E.2 Algortihm Application to Successive Families

r1, r2, ..., rn are set to be all covariates in Covariate Family 1
model0 is set to be the resulting model from stepwise algorithm on Co-
variate Family 1
for i = 2 : 4 do

modeli is set to be the resulting model from stepwise algorithm con-
sidering inclusion of covariates from Covariate Family i to modeli−1

end for
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Appendix F

Descriptive Statistics

In Table F.1 the descriptive statistics, (mean, standard deviation, min, me-
dian and max) are presented. The last column indicates how many compa-
nies that are included in the analysis, i.e. how many companies that have
the corresponding ratio available.
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Mean Std.Dev. Min Median Max # Companies

# Ratio C NC C NC C NC C NC C NC C NC

1 CFO/TL 0.01 0.21 0.09 0.26 -0.47 -0.16 0.02 0.15 0.29 1.71 127 239
2 Cash Ratio 1 0.25 0.50 0.42 0.63 0.00 0.00 0.10 0.27 2.67 3.16 127 241
3 Cash Ratio 2 0.25 0.63 0.40 1.02 0.00 0.00 0.10 0.28 2.45 6.85 122 239
4 CASH/Revenue 0.08 0.13 0.12 0.23 0.00 0.00 0.04 0.05 0.67 1.56 127 240
5 CASH/Ta 0.07 0.11 0.07 0.11 0.00 0.00 0.04 0.07 0.30 0.43 127 241
6 FCF/TL -0.04 0.09 0.13 0.23 -0.61 -0.54 -0.02 0.07 0.26 1.05 127 239
7 Int. Serv. C. 0.59 -2.34 4.17 5.34 -10.99 -28.53 0.58 -1.05 18.68 13.34 125 243
8 EBIT margin -0.03 0.09 0.24 0.17 -1.28 -0.73 0.02 0.09 0.33 0.66 127 247
9 EBIT/TA 0.01 0.13 0.15 0.17 -0.76 -0.39 0.03 0.11 0.27 0.76 127 240

10 EBIT/TIntExp -0.02 12.43 1.79 44.24 -9.75 -91.00 0.37 3.71 5.08 335.94 119 225
11 EBITDA margin 0.08 0.16 0.20 0.19 -0.89 -0.60 0.09 0.14 0.61 0.78 127 244
12 EBITDA/ND 0.08 0.54 0.22 2.99 -1.09 -12.15 0.11 0.34 0.72 23.60 127 238
13 EBITDA/TD 0.10 1.93 0.19 9.36 -0.53 -2.51 0.11 0.40 1.46 77.68 127 230
14 EBITDA/TIntExp 0.95 20.26 1.73 68.76 -7.00 -33.18 1.06 6.15 7.20 595.61 119 222
15 NI/Revenue -0.38 -0.01 0.64 0.24 -3.34 -1.45 -0.13 0.04 0.08 0.43 127 247
16 NI/TA -0.30 0.02 0.43 0.16 -2.51 -0.67 -0.15 0.04 0.07 0.45 127 240
17 NI/TD -0.29 0.81 0.59 4.72 -5.82 -5.87 -0.13 0.11 0.13 36.57 127 231
18 NI/TE -0.32 0.05 4.28 0.57 -26.35 -1.88 0.14 0.09 7.65 3.06 127 240
19 NI/TL -0.18 0.04 0.20 0.25 -0.86 -0.98 -0.10 0.06 0.11 0.85 127 240
20 RE/TA -0.90 0.01 1.21 0.58 -7.05 -3.15 -0.47 0.10 0.35 0.95 127 239
21 INT/TE 0.67 0.84 5.10 2.34 -8.13 -1.60 0.00 0.38 33.74 21.79 116 232
22 LTD/TA 0.87 0.45 0.92 0.50 0.00 0.00 0.70 0.34 5.06 3.06 127 240
23 LTD/TD 0.70 0.87 0.42 0.22 0.00 0.00 0.97 0.96 1.00 1.00 127 232
24 LTD/TInvCap 0.90 0.41 0.80 0.42 0.00 0.00 0.80 0.36 3.44 3.46 127 240
25 OENEG 0.73 0.27 0.44 0.44 0.00 0.00 1.00 0.00 1.00 1.00 127 241
26 STD/TD 0.30 0.13 0.42 0.22 0.00 0.00 0.03 0.04 1.00 1.00 127 230
27 STD/TInvCap 0.40 0.05 0.74 0.09 -0.01 0.00 0.03 0.01 4.01 0.55 127 238
28 Solvency -0.25 0.60 0.74 0.52 -3.69 -0.62 -0.11 0.51 1.21 3.07 127 241
29 Solv. w/o G -0.39 0.25 0.61 0.36 -2.41 -1.33 -0.25 0.31 0.59 0.89 113 226
30 TE/LTD -31.19 14.06 192.31 64.54 -1308.55 -0.75 -0.12 1.50 384.95 506.08 111 228
31 TE/ND 0.11 0.62 1.06 12.71 -0.88 -95.81 -0.11 1.03 6.79 46.21 127 240
32 TE/STD -16.07 256.63 180.35 856.31 -991.20 -11.63 -0.23 28.72 652.88 6665.79 112 187
33 TE/TD -0.04 7.55 0.70 29.46 -4.68 -0.74 -0.11 1.31 3.09 208.17 127 232
34 TE/TL -0.04 1.04 0.34 1.47 -0.65 -0.35 -0.08 0.69 1.53 10.14 127 241
35 TL/TA 0.37 -0.28 0.52 0.57 -0.79 -2.15 0.29 -0.31 1.92 1.42 127 241
36 Size 6.51 6.82 1.09 0.89 4.44 3.95 6.37 6.85 8.99 8.71 127 241
37 CA/Revenue -1.16 -0.96 0.61 0.73 -2.66 -2.89 -1.17 -1.04 0.80 1.73 127 240
38 CA/TA -1.07 -0.85 0.71 0.75 -2.94 -2.96 -1.02 -0.53 -0.03 -0.03 127 241
39 CL/CA 0.10 -0.56 1.07 0.58 -1.62 -2.14 -0.24 -0.62 2.68 0.85 127 241
40 CL/TA -0.97 -1.41 1.01 0.69 -3.28 -3.48 -1.03 -1.39 1.55 -0.12 127 241
41 QR -0.81 -0.08 1.10 0.79 -3.51 -2.32 -0.49 0.00 1.13 2.07 127 241
42 WC/Revenue -0.30 0.23 1.03 0.41 -4.53 -0.34 0.06 0.16 1.36 2.71 127 240
43 WC/TA -0.21 0.22 0.80 0.22 -4.25 -0.29 0.06 0.20 0.65 0.69 127 241
44 APT 11.93 13.04 8.84 15.05 1.45 0.03 9.75 9.46 60.63 104.22 121 214
45 AR/AP 2.02 2.33 2.39 2.69 0.00 0.00 1.48 1.72 15.48 17.19 126 232
46 AR/Revenue 0.11 0.15 0.07 0.19 0.00 0.00 0.11 0.13 0.37 1.64 127 239
47 ACT 2.29 2.28 0.86 0.92 0.95 -0.33 2.06 2.09 5.95 5.24 118 232
48 Cash C. C. 35.05 27.38 86.80 65.71 -45.28 -47.66 8.14 7.38 557.56 450.59 92 182
49 IT 2.28 2.06 1.16 1.17 -0.16 -0.64 2.17 1.84 5.74 5.73 99 190
50 IT/WC -0.19 -0.05 2.13 1.69 -15.29 -9.17 0.02 0.02 5.61 8.68 99 190
51 QA/CL -0.85 -0.15 1.09 0.77 -3.51 -2.33 -0.54 -0.07 1.09 1.46 127 240
52 QA/Revenue -1.91 -1.68 0.84 0.95 -5.49 -4.32 -1.81 -1.62 -0.29 1.03 127 239
53 QA/TA -1.82 -1.56 0.83 0.84 -4.80 -3.77 -1.65 -1.39 -0.40 -0.25 127 240
54 Revenue/TA 1.41 1.49 0.89 1.05 0.17 0.12 1.31 1.29 4.65 6.00 127 240
55 Revenue/TD 0.09 1.23 0.96 1.34 -2.02 -1.54 0.13 1.08 3.31 5.66 127 231
56 MCAP/TL -3.05 0.23 1.55 1.07 -6.69 -2.60 -2.87 0.22 0.19 3.21 73 226
57 NI/MTA -0.21 -0.01 0.21 0.11 -0.83 -0.57 -0.13 0.03 0.02 0.14 73 225
58 TL/MTA 0.91 0.45 0.11 0.21 0.46 0.04 0.95 0.45 1.00 0.93 73 226
59 WC/MCAP -27.47 0.34 118.54 0.54 -890.93 -0.32 0.03 0.21 101.83 3.36 73 226
60 CHIN -0.36 -0.05 0.60 0.59 -1.00 -1.00 -0.43 0.01 1.00 1.00 125 243
61 CAQ/CLQ 4.37 1.43 11.08 1.87 0.00 0.00 1.32 0.90 77.16 10.80 126 232
62 INTWO 0.68 0.14 0.47 0.34 0.00 0.00 1.00 0.00 1.00 1.00 125 243
63 Net S. C. 0.04 0.17 0.29 0.36 -0.43 -0.53 -0.01 0.10 1.57 2.12 125 243

Table F.1: Descriptive Statistics for the ratios. Based on the Credit Event
Companies (C) and Non-Credit Event Companies (NC) in the estimation
set that have the ratios available
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Appendix G

Covariate Family Assignment

Subset # Ratio Short Name Welch K-S Univariate log

C
ov

ar
ia

te
F

am
il
y

1

1 CFO/TL R R R
2 Cash Ratio 1 R R R
3 Cash Ratio 2 R R R
5 Cash/TA R R R
6 FCF/TL R R R
8 EBIT margin R R R
9 EBIT/TA R R R

10 EBIT/TIntExp R R R
11 EBITDA margin R R R
12 EBITDA/Net Debt R R R
13 EBITDA/TD R R R
14 EBITDA/TIntExp R R R
15 NI margin R R R
16 NI/TA R R R
17 NI/TD R R R
19 NI/TL R R R
20 RE/TA R R R
28 Solvency R R R
29 SwG R R R
30 TE/LTD R R R
32 TE/STD R R R
33 TE/TD R R R
34 TE/TL R R R
37 log (CA/Rev) R R R
38 log (CA/TA) R R R
41 log (QR) R R R
42 WC/Rev R R R
43 WC/TA R R R
51 log (QA/CL) R R R
52 log (QA/Rev) R R R
53 log (QA/TA) R R R
55 log (Rev/TD) R R R
56 log (MCAP/TL) R R R
57 NI/MTA R R R
59 WC/MCAP R R R
60 CHIN R R R
63 Net Sales Change R R R

C
ov

ar
ia

te
F

am
il
y

2

4 Cash/Rev R - R
7 IntSerCR - R R

22 LTD/TA - R R
23 LTD/TD R - R
24 LTD/TotIntCap - R R
25 OENEG - R R
26 STD/TD - R R
27 STD/TotIntCap - R R
35 log (TL/TA) - R R
39 log (CL/CA) - R R
40 log (CL/TA) - R R
46 AR/Rev R - R
58 TL/MTA - R R
61 CAQ/CLQ - R R
62 INTWO - R R

C
ov

.
F

am
il
y

3 18 NI/TE - R -
21 INT/TE - R -
31 TE/ND - R -
36 Size - - R
49 log(IT) - - R
50 IT/WC - R -

C
.

F
am

.
4

44 APT - - -
45 AR/AP - - -
47 log (ART) - - -
48 Cash Conversion Cycle - - -
54 Rev/TA - - -

Table G.1: Initial Covariate Families, R means that the corresponding test’s
H0 is rejected for that ratio
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Appendix H

Correlation Matrix

In the following page the correlation matrix for the 63 ratios is presented.
Red markings indicates very high correlation and yellow markings indicate
high but not very high correlation.a

aSpecial thanks to Magnus Wiktorsson for the implementation in LATEX.
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Appendix I

Representative Visual
Examples

I.1 Orders of Magnitude

Figure I.1 is a representative example of where the visual analysis does not
yield any useful information. One possible explanation is that there is a
difference in order of magnitude within both ratios. This would suggest
taking the logarithm of the ratios but as EBIT and EBITDA both go neg-
ative frequently this is not possible. Of course one could consider other
transformations but this would likely yield something less intuitive and pos-
sibly more difficult to interpret. Most visualization plots have this order of
magnitude issue and the conclusion in all of them are that no intuitive and
interesting patterns are found. Furthermore, no ratios are removed due to
order of magnitude.
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Figure I.1: Plot of EBITDA/TD and EBIT/TIntExp, red indicate credit
event & blue indicate non-credit event
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I.2 Self-Explanatory Regions

Some situations look like Figure I.2. Both of the ratios appear to go negative
for the credit event companies, which could be formulated as an interaction
term. But at a closer look, in almost all cases, the appearance has a natural
explanation. The ratios share numerator but have distinct denominators,
as Net Income turns negative it does so for both the ratios, and as both
denominators are strictly positive but not identical there is some scattering
effect in the top right and the bottom left plots. An indicator function for
for these ratios would thus only capture the Net Income effect, therefore
the idea was disregarded. Furthermore, as no conclusion of which of the two
ratios to include is made, solely based on the correlation and visual analysis,
both ratios are kept for further analysis.
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Figure I.2: Illustrating self-explanatory region

I.3 Non-evident Patterns

Figure I.3 is an interesting plot, albeit not very informative. The two ratios
are clearly interlinked but the behaviour of credit event companies versus
non-credit event companies is quite noisy in the scatter plots. Cash to
Current Liabilities obviously stands in close relation to the Quick Ratio, as
it is one of its components. The non-linear appearance of the scatter-plots
is explained by the other components of the Quick Ratio, i.e. Short Term
Investments and Accounts Receivables. We are unable to formulate any
relation, but there is an apparent relationship between the two ratios. Nor
were we able to remove any of these ratios based on visual analysis. a
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Figure I.3: Illustrating non-evident patterns

aThis ratio-pair did however happen to have correlation above 0.8 in absolute value.
Therefore, since both ratios belong to Covariate Family 1, Cash to Current Liabilities
was removed based on economic intuition (the concept Quick Ratio belong to standard
financial vernacular).
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Appendix J

Histogram for Final Ratios

Figure J.1 contains a histogram of the ratios in the Final Ratio model. In
the EBITDA/TIntExp plot most credit events are centered around zero,
and thus barely visible. A green background indicates that the ratios have
significantly separate means according to Welch’s t-test.
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Figure J.1: Histograms of the ratios in the final ratio-model
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Appendix K

Re-Estimated Altman &
Ohlson
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Figure K.1: In- and out-of-sample frequency and distribution plots for the
probabilities obtained from the re-estimation of Altman’s model
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Figure K.2: In- and out-of-sample frequency and distribution plots for the
probabilities obtained from the re-estimation of Ohlson’s modell
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