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Abstract

This document describes the methods and results of our Master’s Thesis, car-
ried out at Axis Communications AB.

A central problem with deep neural networks is that they contain a large num-
ber of parameters and heavy computations. To cope with this, our idea was
to split the network into chunks large enough that they require their own core,
yet small enough to not violate our memory constraints.

The goal of the thesis is to investigate whether it is feasible to distribute and
run a deep neural network on a network of cameras with tight constraints such
as bandwidth and memory capacity. This is done by performing experiments
on existing cameras as well as Raspberry Pi’s as an assumption of how the
next generation of cameras might perform.

The first part of the thesis discusses how a neural network can be partitioned,
and describes the problems that may occur while doing so. The second part of
the thesis presents results and measurements when run on cameras and Rasp-
berry Pi’s. The results and measurements are then discussed.

Optimizations and bottlenecks are then described and discussed. In this
part, the thesis discusses how the application benefits from hardware acceler-
ation. Conclusively a few unsolved problems are identified and presented as
future work.

Keywords: Machine learning, computer vision, neural networks, deep learning, em-
bedded systems, distributed systems
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Chapter 1
Introduction

The field of Machine Learning and more specifically Neural Networks have exploded over
the last few years. While machine learning and neural networks is not a new concept,
the progress within neural networks which today all state of the art solutions depend on,
has exploded due to recent discoveries made possible by increased computational power.
This recent discovery kick-started a field which we now refer to as deep learning which
includes algorithms that learns a high-level abstraction of data using multiple non-linear
transformations. In 2012, the introduction of AlexNet hit a big milestone in the field of
visual recognition using a convolutional neural network, CNN.Winning the ILSVRC2012
by a large margin, it showcased a portion of the power of neural networks[1].

This chapter serves as an introduction to our Master Thesis Project and to present some
related research that touches on methods and results used by us.

1.1 Research question
Because of the composition and architecture of Neural Networks, the amount of parame-
ters and computational power needed turns out to be considerable. In the case of AlexNet,
the ~61 million parameters alone amounts up to roughly 285 MB. Add to that the mem-
ory footprint once AlexNet is run. Because of it’s theoretical and complex nature, most
applications running CNNs are developed in a high level language using frameworks ab-
stracting the details.

In an embedded environment, there might not be enough memory or processing power
to use neural networks without issue. However, if there are enough available computa-
tional units, so that their combined power and memory could sustain a neural network, it
might be possible to perform classifications. In a scenario where the hardware already ex-
ists, it could be possible to use neural networks without the addition of specific hardware.
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1. Introduction

At Axis Communications, such a scenario exists.

Say a building has a set of Axis Network Cameras. Some of the cameras might not see
much of significance on a typical day. However, when a camera does see something of
interest, it might want to determine what it is looking at. It can then start a classification
using a neural network, but because the neural network is so computation-heavy the cam-
era can not perform the classification on its own. The cameras that are being idle could
then help with the classification. Idle cameras are not utilizing their CPUs’ full potential,
so having them perform calculations is a way to tap into their unused computational power.

This is what we want to investigate. Could a neural network be distributed and run on
Axis Network Cameras without the addition of specific hardware?

Our main research question is as follows:

• Is it feasible to run a deep neural network by using distribution on embedded
systems?

Questions that are linked to this are:

• How can we partition a neural network so that each node will receive a reason-
able amount of data to process?

• How can we communicate data between the nodes in a satisfactory way?

• What kind of other bottlenecks exist when distributing neural networks?

1.2 Terminology
Throughout this thesis, we will use some terminology that needs brief explaining:

• CNN - Convolutional Neural Network.

• Pipeline Distribution - Refers to the pipeline-like distribution described in section
4.3.

• Iterative Reloading Distribution - Refers to the distribution described in section
4.4.

The term network sometimes refers to a CNN and other times an IP-network. It should be
apparent through context which meaning is intended.

1.3 Previous work
Most distributed and parallel neural network solutions as of today focus only on paralleliz-
ing the training phase. This is because when training a CNN, one needs to run through
millions of training examples, backpropagate gradients and update corresponding weights
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with respect to the backpropagated gradients. The training phase may thus take up to sev-
eral weeks of continuous computation. The parallellization is in most cases based around
parallelizing over an input batch and averaging the weights update[2].

AlexNet is the neural network architecture that we base our implementation on. This is our
baseline in which we compare correctness. AlexNet is describedmore detail in section 2.3.

The DarkNet framework (not to be confused with the underbelly of the searchable web)
was developed as a way to implement deep neural networks in C. DarkNet is described
in section 2.4. The framework has support for many different layers, which allows us to
create neural networks freely.

Furthermore, some research has been done on neural network deployments fit for em-
bedded systems. Some of these articles are summarized in 7.8.

1.3.1 Parallelizing Training
This section covers some work done by Krizhevsky[2]. The focus of this article is the par-
allelizing of the training phase. While training is not part of our thesis, it is still relevant
since the article also discusses the parallelizing of the forward pass.

Krizhevsky mentions how the fully connected and convolutional layers have to be paral-
lelized differently, because of the significant difference in number of parameters between
them. Two methods are described, one for each type of layer, and they are called data
parallelism andmodel parallelism. In data parallelism, the workers (nodes) train the same
layer with different input, while in model parallelism the workers train different parts of
the layer with the same input. The convolutional layers are trained using data parallelism
and the fully connected layers using model parallelism. These concepts are not used by
us, since we only care about the forward pass.

Most distributed machine learning pipelines are focused around scaling the training phase
to a cluster of nodes before deploying it in the cloud. As far as we know no public papers
present at this time discuss our topic.
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Chapter 2

Background

This chapter contains a number of summaries of material and concepts relevant to this
Master’s Thesis. We direct our focus towards the application of neural networks, more
specifically convolutional neural networks, in the field of computer vision. If you are
familiar with the basic concepts of machine learning, we suggest you jump to section 2.2,
otherwise continue reading.

2.1 Machine learning
Machine learning refers to the broad field of making a computer learn from data. In ma-
chine learning problems are differentiated into two subcategories, supervised learning and
unsupervised learning.

2.1.1 Supervised learning
Supervised learning is the subset of machine learning algorithms in where the goal is to
infer a function describing the relation between example input and its given ground truth
output.

There is a discrimination between two types of sub problems in supervised learning,
regression and classification. Problems where the goal is to predict a continuous value
fall into the first category and problems where the goal lies in predicting a discrete value
fall into the latter. Supervised learning is the most common category and includes pop-
ular algorithms such as neural networks, support vector machines as well as plain linear
regression.

13



2. Background

2.1.2 Unsupervised learning
In unsupervised learning the challenge at hand is the task of learning the underlying distri-
bution of data, the hidden structure. The main difference from supervised learning is that
no ground truth output exists to steer our solution by. In unsupervised learning the aim
is therefore to discover groupings of similar input examples which is called clustering, or
to learn more about the distribution of the data given input examples, called density esti-
mation. Typical algorithms in the field of unsupervised learning are k-means and mixture
models.

2.1.3 Training
With supervised learning there exists a need to make sure that the algorithm learns to
reproduce the correct output corresponding to the given input. This is done in a training-
phase where the input is fed through the algorithm, and then a cost-function is minimized
in order to learn a representation which maximizes the number of correct classifications.
Basically all machine learning algorithms boil down to an optimization problem.

In unsupervised learning, no notion of correctness exist so an algorithm cannot be trained
for predictions. However, it is common procedure to manually inspect the output clusters
or densities and tweak the hyperparameters associated with the used algorithm in order to
try to get meaningful information.

A basic but nonetheless vital insight is that the goal of training is not to achieve 100%
accuracy on the training data, but to maximize the precision when generalizing to previ-
ously unseen data. Tuning hyperparameters in order to achieve perfect scores on all of the
data would lead to what in machine learning terms is called overfitting. This would be the
result of trying to to fit a complex function on simple data. The converse of overfitting is
called underfitting and follows from when a simple function is fit on complex data. Bal-
ancing over- and underfitting in order to maximize the generalization of the algorithm is
tied to the bias-variance tradeoff.

When training a machine learning model it is therefore standard practice to divide the
data up into three different sets - training set, validation set, test set. The model is trained
on the training set, later on further optimized by tuning of hyperparameters on the val-
idation set and eventually the generalization error is measured on the so far unseen test
set.

Over- and underfitting will cause poor performance of an algorithm. There are sev-
eral methods in order to combat this. Regularization is a method in where a penalty is
introduced in the cost function in order to discourage an overly complex model. A typical
regularization scheme seen in machine learning is L2-regularization, which augments the
error function with the squared magnitude of all weights. This is preferably applied to
data that cannot be sparsely represented. If the data instead can be well represented by a
sparse solution, one would apply L1-regularization which augments the error function by
a constant times the magnitude of the weights. Selecting wrong regularization can prove
detrimental for the recovery of representation, L1 would select one signal as representation
while neglecting the other, where as L2 would keep both but jointly shrink the weights.

14



2.1 Machine learning

Further regularization schemes used in neural networks are introduced in section 2.2.6.

2.1.4 Feature engineering
Feature engineering is a fundamental principle to machine learning and is critical to how
well a model will perform. It is about designing the features, determining what the input
into the algorithm should be for a specific problem. This can easily be the most expensive
part of applying machine learning in practice, since it most likely requires expert domain
knowledge in order to maximize performance.

In the case of neural networks manual selection of features is not needed. Neural
networks itself learns to map features, this is called feature learning. The features learned
by a neural network can be visualized by projecting the neuron activations associated with
each layer back on to the pixel input space. Simply put, in the first few layers neuron
activations are based on features similar to a gabor-filter, edge detection, where as deeper
in the network more abstract visualizations and patterns surface since later activations is
a combination of the earlier ones[3].

Machine learning and deep learning is heavily dependent on large training sets in order
to get good enough performance. By performing data augmentation on the training data the
number of training samples can be increased which will lead to better precision. Typical
examples of data augmentation is to generate horizontal reflections and adding small image
translations to the training data.

2.1.5 Neural networks
A neural network, or artificial neural network, can be described as a network of non-
linear elements which are interconnected through adjustable weights. The neuron output
is the sum over the inputs multiplied by its weights. A bias, constant value, is also added
resulting in the equation y = WX + b. The non-linearity is then produced by feeding the
neuron output through a threshold-function also called an activation function. Neurons are
combined into layers, which themselves are combined to form a network-like structure.
The background behind the name artificial neural network is that it is a mathematical
construct designed to approximate a biological neural network. It is modeled after the
brain, a network of neurons interconnected by synapses[4].

Figure 2.1: A single neuron with N inputs.
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2. Background

2.2 Convolutional Neural Networks
Convolutional neural networks, CNNs, refers to a feedforward neural network that makes
use of convolutions forming a new buildingblock, the convolutional layer. This allows
the network to keep and learn from important spatial information by definition of how a
convolution works. Thus it makes intuitive sense that this kind of neural network would
do well in practice in where a spatial dependency exist, such as computer vision[5]. In
addition to the convolutional layer, most CNN architectures make use of more operations
such as the original connected neurons(fully connected layer) and other operations such
as pooling which is described in section 2.2.2.

2.2.1 Convolutional Layer
The convolutional layer is the core building block in CNNs and its output can be seen as
a three dimensional tensor of neuron activations. As the name entails the layer basically
applies the convolution operation over the input. Associated with the layer comes four
degrees of freedom: number of filters, spatial extent of filters, stride and padding. Filter
and kernel are two words that are used interchangeably and refers to a sliding window of
weights. Each filter also has one bias term which is shared spatially for the filter. The
filter is run over the input, calculating a dot product with its weights and what it covers in
the input image. The dot product is the neuron’s result before going through an activation
function. After calculating the dot product the window shifts by the rate of the stride
parameter, in terms of pixels. A layer consists of multiple filters, each with its own set of
weights and bias term. Each multiplication when convolving, maps to an output neuron
meaning that the resulting dimension when sliding a filter over the input will be:
Width = (W−Fw

Stride + 1) and height = ( H−Fh
Stride + 1) with a depth of one. The output of each filter

is referred to as an activation map. Each activation map is then stacked together meaning
that the third dimension of the tensor will total the number of filters in the layer. If padding
is used, a number of zeros is appended on all sides of the input. A pad of F−1

2 with stride
of one would keep the original width and height. This is useful for keeping a reasonable
dimension, otherwise depth grows while height and width decreases which could lead to
important spatial information being lost. A side note is that the statistics on the border
might be slightly different when padding.

Figure 2.2: A 3x3 kernel resulting in one activation. Picture taken
from [6].
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2.2 Convolutional Neural Networks

The reason why convolutions work so well with image classification as opposed to a
regular feedforward neural network is because of the weight sharing and receptive fields
associated with the convolutional layer. A receptive field is the region of a kernel and the
name originates from its biological counterpart in the retina. Each kernel has its own set of
weights, and is run over the whole image. Therefore it will react and detect the same thing
regardless of where in the image it is, local invariance, with some limitations concerning
kernel size. When convolutional layers are stacked after each other compositionality of
features is gained which means that lower level features from early layers will be com-
bined into more complex features resembling real objects. As comparison, consider a
network with only fully connected layers2.2.3. Where each neuron in the previous layer is
connected with its own weight to all the neurons in the next layer. This would mean that
detecting two of the exact same things in different parts of the input image would amount
to two sets of completely independent weights.

2.2.2 Pooling Layer
A pooling layer is often used as a compliment in-between successive convolutional lay-
ers. Pooling works by partitioning the input data into a set of sub-regions, and outputs
the maximum of each subregion. One could think of it as a sliding window, but instead of
doing a convolution with regular multiplications it applies a function such as max, average
or L2 norm over the receptive field. It is used as a dimension reduction by downsampling
the output of a convolutional layer, reducing the number of activations and helps prevent
overfitting.

Figure 2.3: Maxpool operation with 2x2 kernel using stride 2 over
a 4x4 input space. Picture retrieved from [7].
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2. Background

Pooling also provides a form of translation invariance to features. I.e a small trans-
lation of the input would have no noticeable effect on the pooled output. This is due to
that the pooling works by throwing away a tiny bit of spatial information. E.g by using
maxpooling the information thrown away would be the weaker neuron activations, by the
definition of the argmax function. The weaker neuron activations would map to insignifi-
cant information in the input data. Feature invariance is particularly useful when we want
to work with object recognition. The intuition behind it would be along the lines of that
we do not really care whether a car wheel is in the upper right corner of the picture or
in the bottom left. There still is a car wheel in the picture which should contribute to the
probability that maps to the class car.
Traditionally, pooling is appled with stride equalling the kernel size. If instead a pooling
layer with stride smaller than kernel size the kernel will overlap. This is called overlapping
pooling and helps with robustness. Some reports have shown reduced error rates by using
overlapping pooling[8].

2.2.3 Fully Connected Layer
The fully connected layer is the standard layer used in regular neural networks. Each output
neuron depends on all the activations from the previous layer. This is where the largest
amount of the weights are located. Recent studies show that as much as 95% of the weights
in typical CNN architectures are located in the fully connected layers [2]. Computing the
activations for a fully connected layer is done by a dot product with an added bias term. In
convolutional neural networks, fully connected layers are usually placed as the last layers
for when the input has already been transformed by stacked convolutions and pooling.
Fully connected layers can be seen as the decision making layers. This is because when a
tensor is fed through a fully connected layer the output is a one dimensional tensor, hence
the spatial arrangement in the featuremap is lost.

2.2.4 Activation function
All neurons in a layer pass their output through a nonlinear activation function before
passing the output to the next layer. The reason why a nonlinear function is almost always
used is because that it increases the expressiveness of the algorithm. If a linear activation
function were to be used in the intermediate layers the layers could be superposed via the
superposition principle to just one layer resulting in a shallow network with small expres-
siveness. In previous years either a sigmoid or a tanh function were used as activation
functions because of their nice derivatives, which reduced computational load. The main
problem with these is that they eventually saturate. This means that the gradients asso-
ciated with the signal would be small for either large or small values and we would not
be able to propagate a weight update through the network which ultimately would lead to
networks converging slow or not even not converging at all. in 2012, Krizhevsky et al.
proposed a new activation function called Rectified Linear Unit, ReLU for short[1]. This
function greatly increased the convergence rate of stochastic gradient descent as opposed
to using sigmoid or tanh functions. The function is implemented by just a threshold at
zero, f (x) = max(0, x). By this it follows that the gradient is always one for signals larger
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2.2 Convolutional Neural Networks

than zero and hence it does not suffer from saturation that can occur in other activation
functions.

2.2.5 Prediction
The end product of a CNN is its last layer’s output. For a K-classifier its a K-dimensional
vector which is fed through a logistic function which normalizes the values to be in the
interval [0,1] and sum up to 1. This is called the softmax, or normalized exponential, func-
tion and the output is interpreted as the probability distribution over the K output classes
given the input.

P(y = j |x) =
exT w j

K∑
k=1

exT wk

2.2.6 Training a neural network
Training of a neural network might at first seemmore complex than regular machine learn-
ing algorithms, however it uses the same standard practices. The main difference is that
the output error needs to be corrected by backpropagating gradients through the whole
network and update accordingly. This is done with an algorithm called backpropagation.
The most common choice for the error function is the sum of squared errors, sse for short,
defined as:

n∑
i=1

(yi − f (xi))2

An error that can occur when training deep neural networks is the vanishing gradient
problem. To put it short, when using a tanh or sigmoid activation function the gradient
decays exponentially with each layer when training, causing the gradient in the first layers
to be very small which might lead to slow convergence. Using a ReLU activation function
solves this problem since the function does not saturate[9].

As regularization in neural networks, dropout was a technique introduced in 2012 by
Hinton et al. [10] which was used to prevent overfitting and speed up training. It works
by randomly omitting neurons in the fully connected layers during training time, forcing
the network to learn a representation not based on just a few neurons. Thus it makes the
network more robust, since the output will not be based on a sparse internal representa-
tion. More recently batch normalization has conquered state of the art, reducing the need
for regularization through dropout[11]. Batch normalization is implemented by bundling
training data into small batches and then doing an averaged parameter update after each
batch.

When training neural networks it is common to train in epochs. An epoch refers to an
iteration over the complete training set. Training for several epochs increases the risk of
overfitting, since the model will see each training example more than once.
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2. Background

2.2.7 Transfer learning
As previously stated, training a neural network to be precise requires a large amount of
training data. However if only a smaller dataset for the task is available, a technique called
transfer learning can be used. The technique involves retraining a proportional amount
of an already pretrained network using the new training data. The new model is trained
down-up meaning that the last few layers are retrained. How many layers that should be
retrained is tied to how small the new dataset is, and the training is done as usual with the
addition of freezing the learning rate on the layers in the beginning. The reason why this
works is that the first layers have neuron activations responding to generic features, whilst
the layers deeper down respond to more domain-specific features.

2.3 AlexNet
An important breakthrough in deep learning was the AlexNet architecture[1].The paper,
first released 2012, showcased several new ideas and broke all previous records in the ima-
geNet large scale visual recognition challenge, ILSVRC, which is seen as the competition
to win when it comes to computer vision[12].

Figure 2.4: An illustration of AlexNet’s architecture[1]

Depicted in figure 3.1 it is clear how the original architecture is split into two streams.
This was a solution to GPU’s not having enough memory capacity during training. It was
not possible to fit the whole network on 3 GB of memory which was the limit at the time.
This was the first architecture which introduced the technique called dropout as well as the
ReLU activation function. We redirect the interested reader to the original paper[1].

Later on, in 2014, another paper was published by Alex Krizhevsky[2]. In this paper
AlexNet was remodeled to follow a single column model using only one GPU instead
of the original two. By utilizing the one-column model the goal was to experiment with
parallelizing the training phase on an eight GPU setup. It was found that parallelizing the
training works well for existing neural network models. The main architectural difference
between the models is that there now is unrestricted layer to layer connectivity which leads
to a needed small adjustment in layer parameters in order to fit dimensions. The final
softmax layer was also changed to 1000 independent logistic units, each corresponding
to one class and trained to minimize cross-entropy, instead of the original multinomial
logistic regression. This was mainly because utilizing a multinomial logistic regression
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enforces the need to normalize over the classes which can not be parallelized and hence
would make the cost of normalizing noticeable when scaling beyond 1000 classes.

2.4 DarkNet Framework
Darknet is an open-source neural network framework written in C and CUDA (for use
with GPU)[13]. It supports both CPU and GPU computation, but for our purposes, only
the CPU computations were used. Darknet comes with a pre-trained model of AlexNet,
based on the original AlexNet[1], but adapted to modern machines according to[2].

Darknet was developed by Joseph Redmon in 2015. It comes with many features, in-
cluding YOLO (You Only Look Once), Nightmare (simililar to Google’s Deep Dream)
and Imagenet Classification. Since AlexNet was developed to classify images using the
Imagenet dataset, this feature is of significant relevance to us.

We use this framework as the basis for our C-library. By that we mean that all features
not directly related to the forward pass have been removed, also some features have been
added. For example the possibility of running partial layers. Because it is written in C, it
can run onAxis Network Cameras. Since it also has a working implementation of AlexNet,
we save time by not having to implement that as well. The AlexNet model used in this the-
sis is however slightly different from the one described in section 2.3. The new model is
improved according to architectures developed in recent years, but still behaves the same.
For a full presentation of how the models differ, see [13].

2.5 Node.js and FFI
Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine[14]. It is event-
driven and asynchronous, and designed to build scalable network applications. With
Node.js, handling incoming connections can be done with little effort from the program-
mer. Node.js has many libraries which simplify the way connections are opened and used.
In this thesis, we use the built-in net-module to administrate connections between the dif-
ferent cameras.

Since communication can be implemented in a short time in JavaScript, we can get a
basic skeleton of a distributed application up and running much faster than we would have
in C. JavaScript does however come with limitations such as performance and it being
single-threaded, which makes it unfavourable when performing many heavy calculations
concurrently. This is why we use the FFI-module (Foreign Function Interface), which al-
lows us to call C-functions from Node.js. This way we can achieve the performance of C
for the most part, while communicating with the simplicity of JavaScript. Although, there
is some non-trivial overhead to FFI-calls[15], which will be addressed in section 3.1 and
also in chapter 5.
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2.6 Raspberry Pi 2 and 3 Model B
Raspberry Pi 2Model B is a second generation Raspberry Pi released in February 2015[?].
It has a 900MHz quad-core ARM Cortex-A7 CPU and 1 GB of RAM. Because its CPU is
an ARMv7 processor, we have access to the NEON hardware. NEON hardware allows for
some acceleration of certain operations. This can be done in many ways, the most notable
of which is the use of SIMD.With SIMD, multiplications can be vectorized and performed
in parallel.

Raspberry Pi 3 Model B is the next generation Raspberry Pi, released in February
2016. It has a stronger CPU, a 1.2GHz 64-bit ARMv8 processor, also with access to
NEON hardware acceleration. This processor also has a NEON accelerator, with a few
other optimizations to go with it. The Raspberry Pi 3 was added in the late stages of this
project. As a result, no optimizations unique to the Raspberry Pi 3 are used.

Due to the increased memory compared to the cameras, there is less constraints present
when working with these platforms. The Raspberry Pi is used in this thesis as an example
of how future camera hardware might perform.

2.7 Axis Q1615 Network Camera
The Q1615 is a network camera with an ARTPEC-5 System-on-chip, developed by Axis
Communications. ARTPEC-5 has limited on-board memory and no writable disk. A
portion of the RAM is instead dedicated as disk. To store larger amounts of data, an SD
card can be used. In our case, the weights (parameters) will be stored on the SD card, and
loaded into memory when needed. Of course, due to the limited memory, only a portion
of the weights can be kept in memory at any one particular time.

The camera’s CPU is a MIPS 1004kc that has a total of four cores. The processor has
no on-chip floating point unit, and therefore uses soft floats which means it has to emu-
late the floating point unit in software. This poses somewhat of a problem for us given
that our neural network implementation perform all of the computations in floating point
arithmetic.

Many other features come with the Q1615 network camera. For more information on
the camera, please have a look at the product specification: [16]
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Challenges

This section presents the most significant challenges associated with this thesis, in no par-
ticular order.

3.1 Reducing FFI-overhead
Because of the overhead associated with FFI-calls[15], we want to structure our code so
that it gets maximum utilization of our C-library with as few FFI-calls as possible. That
is why it is favorable to perform all the large scale multiplications within the C-code and
only letting the JavaScript-code handle the result.

A not so obvious downside to using the FFI this way is that while the FFI-call is execut-
ing, all other execution halts. This includes the processing of incoming events, meaning
that while the program is performing tasks in C, Node.js’ queue of events will grow in
size.

The FFI-overhead to each call on a Q1615 Camera is on average 5 ms (See chapter 6).
While that is not such a long time by itself (in the context of our application), it would
quickly add up if there were many FFI-calls in a row (in a loop for instance). Then the
accumulated overhead would amount to several seconds for the computation-heavy layers.

3.2 Partitioning Convolutional Layers
Convolutional layers are inherently computation-heavy, and are therefore prone to be bot-
tlenecks in the network. By splitting a convolutional layer over several nodes, the load on
each node can be smaller, while the throughput of the network increases.

Partitioning a convolutional layer can be in one of two ways; either the input to the layer is
partitioned, or the filters which are run over the image. Choosing one over the other has no
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significant impact on performance or throughput. However, partitioning the input means
that spatial information in the image (or tensor) will be lost. To maintain accuracy, the
network would need logic to compensate (See section 7.3 for more on this). If the filters
are instead partitioned, no such logic is required since all spatial information is kept. The
downside with this approach is that all the nodes need all of the input, which results in N
times more input data being sent over the network where N is the number of nodes the
layer is composed of. A positive effect of this is that the nodes only need a part of the
weights which are associated with their assigned filters. This also means that there is a
need to keep track of the filter order used when stitching together the output from each
node.

Figure 3.1: figure depicting how the input can be partitioned.
Split on filter is the approach used in this thesis.

3.3 Workload on Nodes
The lab setup we use contains 24 raspberry Pi 3’s, eight raspberry Pi 2’s and eight Q1615
network cameras. With 32 Raspberry Pi’s, there is no easy way to decide how the dif-
ferent nodes should be distributed. A straight-forward choice would be to have one layer
distributed over four PI’s and have the nodes never change their roles. Distributing this
way could lead to congestion in the pipeline, if one layer is computed slower than the
other. While this works when memory is not an issue, a more complex solution will be
required when running on cameras.

With 8 cameras, in order for us to be able to complete a forward pass of AlexNet without
too much hassle, at least 1/8 of the parameters for each layer must be present on each cam-
era. Layer 6 in the CNN, which is the first fully connected layer, is the largest of the layers.
During testing, we found that the cameras can, just barely, fit 1/8 of that layer in memory
during runtime. However, no other layer can be placed in memory at that time, so all the
cameras will need to be used to compute the forward pass for this particular layer.
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3.4 Synchronizing Communication
Aproblem that presents itself in distributed applications is stalls and waiting periods. With
no synchronization in place, the nodes would need to always have an equal workload, and
the same execution time, if we want no deadlocks or unnecessary stalls. This is of course
not likely to happen in a real-life situation.

In our application when run on cameras (see section 4.4), what would sometimes hap-
pen without synchronization is that many nodes have to wait for one node who is behind
the others. However, often the nodes have to wait for node who is actually ahead of the
rest. This might seem counter intuitive, but it has a perfectly logical explanation.

In section 3.1, we described how the execution can halt if a time consuming FFI-call is
being executed. Also, because of the asynchronous nature of Node.js, there is no way to
guarantee (without synchronization) that callbacks will be executed in the order presented
in the program. Sending data over a socket is an asynchronous operation and can therefore
execute immediately or in the future. What can happen is that one node can perform a
forward pass and have all it’s data sent to the next layer, but because of the asynchronous
call, the data might not be sent before the node receives new data and starts computing
the next layer. Because the forward pass is a time consuming FFI-call, the result of the
previous computations can not be sent until the FFI-call has been completed.

3.5 Size of Communicated Data
With the distributed solution when using only cameras, the amount of data that needs to be
communicated to the other nodes increases, because all of the nodes need all of the data.
In the pipeline-distribution the layers are not distributed over all nodes, just a few nodes,
so the data from each layer does not need to be broadcast.

Node.js has multiple ways of sending data over sockets, the easiest of which is to just
send a string containing all the data. Obviously, there is some overhead to this approach,
given that all floating point values have to be stringified.

In C, a number of type float is represented in the IEEE-754 format[17], which is
a 32 bit representation. With this representation, each number can have a maximum of
9 significant digits[18]. When a number like that is stringified by Node.js, it is instead
represented as a string of length 10 (9 numbers + 1 decimal point). This means that the
initial 32 bit number is now an 80 bit string.

It gets worse, however. Node.js uses double precision floating point instead of single
precision, whichmeans that every floating point returned by the C-library is converted, and
then stringified. In the double precision, a number can have up to 17 significant digits[18].
Now, the 32 bit number has turned into a string of length 18 (17 digits + 1 decimal point)
represented in 144 bits. In this scheme, every number that needs to be sent is 4.5 times
larger than its original representation. This implies that a lot of time will be spent com-
municating which will be a central problem for this thesis. This problem is tackled in
5.1.1.
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Chapter 4
Method

Neural networks in an embedded environment face several problems. Due to the nature of
Axis’ cameras we had to limit ourselves in respect to what programming languages wemay
use. For instance, we cannot run python programs without difficulty since even a slimmed
down interpreter would be large and limited. A working, cross-compiled, Node.js binary
already exists in the firmware for the cameras, which we can use to run our application.

We chose to implement a distributed version of AlexNet since it is a well studied archi-
tecture. Our approach does not have support for backpropagation and thus has no support
for training. This is simply a restriction we placed on our implementation since it is not
computationally feasible to train a deep neural network on weak nodes running only with a
CPU. Training is done offline with as powerful hardware as available. In order to run a neu-
ral network without training one needs to have access to a pre-trained set of weights corre-
sponding to the chosen architecture. As mentioned in section 2.4, the Darknet-framework
comes with pre-trained weights for AlexNet for us to use. Furthermore it is assumed that
during runtime, all the nodes have 100% capacity available for us, and therefore we do not
investigate how other running applications are affected.

In order to answer our research question, the investigation will be carried out according to
the following steps:

1. Split network into separate layers and run locally on desktop

2. Split individual layers and parameters and run locally on desktop

3. Run distributed neural network on 8 separate Raspberry Pi’s

4. Cross compile libraries and modules for Axis’ cameras

5. Run distributed neural network on separate Q1615 Network Cameras

6. Run distributed neural network on 32 separate Raspberry Pi’s
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4.1 Distributing the Neural Network
Each layer in a Neural Network can be viewed as an independent part of a larger construc-
tion. The independent parts only performs computations on their input, and sends their
output on before disregarding it.

This property can be used to split the network into smaller parts, that can fit on weaker
computational nodes. Simply put, each layer will function as its own neural network. The
individual nodes then carry a smaller number of parameters, but the output from each layer
has to be sent over the network, resulting in increased latency. See chapter 6 for results
and measurements.

However, splitting the neural network this way is not sufficient in order for us to make
it run on the Q1615 cameras. The parameters associated with each of the fully connected
layers are still much too large to fit within memory margin of the cameras. To further de-
crease the size of the parameters, the individual layers need to be split as well. While each
convolutional layer may be able to run in its entirety on a single camera, it is still desirable
to distribute them because of the computational complexity. Since the convolutional layers
have the majority of their execution time made up of performing multiplications, they can
benefit a lot from parallelism.

Given stronger computational nodes with less strict memory constraint and more compute,
a pipelined distribution can be built. This makes it possible to achieve larger throughput of
predictions, albeit still with an initial delay. A subproblem associated with this approach
is that we need to do analysis of intra-layer computations, to compare execution time per
layer, in order to find a distribution scheme which will even out the execution steps in
the pipeline. Since the maximum throughput cannot exceed the throughput of the slowest
stage in the pipeline[19].

When distributing, several problems can occur, such as synchronization and load bal-
ancing as well as lost data due to network issues. In this thesis we limit ourselves to just
handle synchronization, and not dynamic load balancing or self-healing. More of this can
be read in 9.

As for our model, we use a pretrained AlexNet network based on [2]. By model we
mean all the weights and biases associated with an architecture. The weights and biases
have been updated through backpropagation over 112640000 training samples from the
imagenet dataset used for the ILSVRC[20].

4.2 Partitioning the Layers
As discussed in section 3.2, convolutional layers can be partitioned in one of two ways.
We chose to partition the filters, because it was the most straight forward way and the other
way would still lead to similar results. The effects of partitioning the layer spatially are
discussed in section 7.3. Our method means that we let a set of nodes make up the convo-
lutional layer, and each of the nodes handles an equal share of the filters. More often than
not, an intermediate pooling layer is used after a convolutional layer. Since each activa-
tion map is independent we bundle our pooling-function with each node. This also means
that we get a dimension reduction of the output before sending it over network to the next
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computational nodes corresponding to the next layer, reducing inter-layer communication.
Considering AlexNet’s configuration each pooling layer applies maxpool with size 3 and
stride 2. This amounts to a factor 4 reduction of the output tensor. A nice attribute when
partitioning over the filters, is that each filter is independent and increases the depth of
the outgoing tensor. This makes it easy and fast to reconstruct the correct output from the
nodes, since we can just append values in the correct order as depicted in 4.1.

Figure 4.1: Visualization of the distributed implementation of a
convolutional layer paired with a succeeding pooling layer

Fully connected layers are partitioned by its output neurons. We simply let each node
handle uniform part of the output neurons. As described in 2.2.3, each single neuron in the
fully connected layer is dependent on all of the output activation from the previous layer.
Because the nodes all need the entire input, the communication overhead is somewhat
increased. This is however not something we can avoid, since the memory constraints
force us to distribute this way.

The final step in the algorithm is that a node, in our case we chose the node initiating the
predictin, receives the neuron activations of the last fully connected layer from all nodes, a
vector summing up to 1000 floats. Then it performs the softmax function to normalize the
values to a probability distribution and presents the results. In order to guarantee a one-to-
one mapping between the distributed model and the original model we compare the output
vectors of both implementations, correctness would imply the last softmax layer outputs
the exact same values.
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4.3 CNN on Raspberry Pi 2 Model B
ARaspberry Pi is somewhat representative of a camera. Thememory constraint is however
non-present. In fact, a single Raspberry Pi can run AlexNet in its entirety without problem,
other than the obvious increase in execution time.

With the Raspberry Pi’s we can implement the ideal case, which is when none of the
nodes need to change their role. To do this, we let each layer of AlexNet reside on its
own node (apart from crop layers and pooling layers). This distribution creates a pipeline,
where we can feed multiple images in a sequence through the network without having to
wait for the previous one to finish.

Further optimizations can be made with the Raspberry Pi’s. Since they all have their
own quad core ARM processor, each Pi can run multiple Node.JS instances because it is
single-treaded. This not only utilizies the CPU more efficiently, but it also reduces com-
munication overhead between the nodes residing on the same Pi. However this could lead
to congestion on the network bus since each Node.JS, run on the same PI, instance shares
the same physical interface.

The setup of Raspberry Pi’s serves as a testing ground for different distributions of the
CNN. This platform does not require us to cross-compile any modules, and it does not
require us to be as careful with memory management. This means that we can try to find a
good distribution before porting our solution to be run on the cameras and future embedded
platforms.

4.4 CNN on Q1615 Network Camera
Because the cameras have a MIPS-processor and no native compiler, everything needs to
be cross-compiled and uploaded. The firmware on the cameras already contains a cross-
compiled working Node.js runtime (version 0.12.7), so we only need to cross-compile the
C-library and the third-party node-module ffi, used to handle the FFI-calls.

Unlike the case with the Raspberry Pi’s, 8 Cameras is simply not enough to implement
the case where no node need to switch its role. In fact, in order for us to perform a single
forward pass, all 8 nodes will at some point need to switch roles (see section 3.3).

To complete a forward pass with just 8 cameras, we let each node handle 1/8 of each
layer at a time, and then proceed to flush out the parameters before loading the weights for
the next layer from the SD card. This is where problems with synchronization mentioned
in section 3.4 start to occur. Because loading large amounts of parameters is also done
using FFI-calls, there is even more risk of stalls than before. Henceforth this distribution
scheme will be referred to as iterative reloading.

4.5 CNN on Raspberry Pi 2 and Q1615
We can simulate the scenario where we have enough cameras to never let any of the nodes
switch roles, by using both the cameras and the Raspberry Pi’s. The cameras can then have
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a fixed role that requires less parameters and calculations than before, while the Raspberry
Pi’s handle the rest. This way, we let the 8 cameras be part of a much larger network.

In this larger network, the nodes have different amounts of computational power. If we
have a node that has twice the power of another, the logical thing to do would be to have
the stronger node handle twice the amount of work that the weaker one does, decreasing
total execution time by 33%. If we know how the different nodes perform in relation to
each other, we can find a distribution where each node is responsible for a part of the al-
gorithm proportional to its computational power. Load balancing is discussed in chapter
9. Impacts of using nodes with different computational power is discussed in section 7.5.1.

When distributing beyond eight nodes, the final fully connected layer will need to be dis-
tributed in a different way, since its 1000 neurons are not evenly divisible with any power
of two larger than eight. How this affects the solution is discussed in section 7.1.1.

4.6 CNN on Raspberry Pi 2 and 3
With 32 Raspberry Pi’s, we can get a better understanding of what happens when the
work of each node becomes small and the amount of communication becomes large. For
example, in the first convolutional layer there are 64 filters, so when distributing this layer
over 32 Raspberry Pi’s each Raspberry Pi will hold only two filters. The communication
still increases, which suggests that when distributing over increasing number of nodes,
there should exist some number of nodes where the cost of communication is too high and
no speedup is achieved by distributing further. This is discussed in section 7.1.
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Chapter 5
Software Architecture

This section provides a deeper look into the software architecture of this project.

5.1 JavaScript Application
As touched on in section 2.5, the communication part of the application is handled in
JavaScript by Node.js. Additionally, the Javascript portion of the application is responsible
for a number of things:

• The initialization of the FFI-module and the C-library

• The discovery of all available nodes that can participate in a classification.

• The initialization of a node’s part of the neural network.

• The reinitialization of a node’s part of the network when needed.

• The synchronization between nodes.

In order to discover how many computational nodes that are on the network we use an
MDNS-discovery wrapper that listens on a gateway port and broadcasts when it’s avail-
able. All available devices are recorded in a hashtable, and the devices present in the table
are considered as discovered. When enough devices have been discovered, all the nodes
connect to each other. This way we are able to connect to an arbitrary number of devices
running our JavaScript program.

Each node is responsible for computing a different part of the neural network, specif-
ically a layer, or part of a layer. When a node wants to classify an image, it starts by
cropping the image. The node then starts the forward pass on the cropped image, before
sending the result to the nodes that make up the next layer. When implementing this, we
assume the scenario where all nodes have already received the image, so they can crop the
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image locally. This heavily reduces traffic on the network, since the image represented in
floating points amounts to quite a few MB of data. In truth, pushing out large amounts of
data on the network is not an issue since we have quite a forgiving bandwidth of 100MB/s.

To perform the forward pass, the node uses the C-library via the FFI-module described
in section 2.5. After having sent the data, the parameters for the next layer are loaded into
memory. This again via an FFI-call. In summary, the JavaScript portion of the application
can be seen as the orchestrating part of the application, while the C-library is responsible
for all the heavy computations.

5.1.1 Representing the Data
Due to the structure of AlexNet, the output from the different layers can be quite large. And
because data is sent as strings, the amount of data to be sent can be even larger. Output
from the forward pass is a large vector of floating points, which have to be converted to a
strings to be sent. As discussed in section 3.5, this leads to unecessary amounts of data on
the network. To avoid this, we use the fact that the JavaScript code never has to be aware
of the type or internal representation of the output from the C-library. What this means
is that we never handle the output as floating point. Instead, we just wrap the output in
a Buffer-object, and send that. The Buffer-class does not care about the internal
representation of the data within it. It is a raw memory allocation outside the v8 heap. By
representing the data this way, the size of the sent data will be the same before and after
conversion. In addition to this, the data is also parsed faster on both ends.

5.2 C-library and predictor.c
Comprehensive functionality exists in the C-library, which we can easily use. However, it
would not be preferable to use the FFI-module to make every single function accessible to
the JavaScript code, because of the overhead associated with FFI-calls described in section
3.1. Instead, only a few functions are made available via predictor.c.

predictor.c is written by us, and it is a high-level abstraction of functions that make
up the forward pass. More precisely, it handles all the library calls resulting in the forward
pass. This way, the inner complexity can be hidden within the C-code rather than having
extensive subroutines in JavaScript with multiple calls through the FFI.

The library is loaded into memory upon starting the application. Functions intended
to be called in predictor.c have to be declared in the JavaScript code as well, in order
for the FFI-module to understand what functions to call and to know what return values
to expect. In order for the FFI-module to be able to execute functions in the library, the
library has to be compiled as a shared library, i.e. with dynamic linking.
As can be seen in figure 5.1, server.js is completely cut-off from the library in that it
simply calls a function using the FFI and awaits a response. The arrow pointing from the
FFI-module to the server.js simply means a result is returned. Actually, predic-
tor.c is not aware of the fact that the call is coming from a JavaScript program.
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Figure 5.1: A basic visualization of how an FFI-call is carried
out, when called from the JavaScript code.

This structure is not only easier on the programmer, but it also achieves better perfor-
mance because less calls has to go through the FFI, as discussed in section 3.1. However,
by having all of the resource consuming computations within the library, each FFI-call
completely locks the program while executing, forcing us to introduce synchronization to
avoid long stalls in the application (see section 3.4).

Another motivation for structuring the software this way is that all of the nodes are
performing the same sequence of library calls to execute their forward pass. By only
letting them call a few specific functions, we ensure that everything will be executed in the
desired order.

5.2.1 CNN implementation details in C
Our end implementation is a modification of the darknet framework[13]. We have cut out
unnecessary parts considering we only need to do a forward pass and we have built extra
support for partial layers.

We represent a network using a C-struct, which holds parameters associated with input
and output of the network as well as a pointer to a vector of layer-structs. Each layer-struct
has a type associated to it and its layerspecific parameter which defines how it should
perform its forward-pass. It also holds a pointer to its weights and biases. In order to
make sense of the final network output, the output vector of the last layer, a softmax-layer,
is sorted and mapped to a textfile containing indexed classnames.

Most of the math in a neural network can be described as a general scalar product be-
tween two arrays of floats. In order to implement a convolution as a scalar product, the
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data must first be transformed. This is done with an im2col operation, which rearranges
a block patch from a given matrix and transforms it to a column. After this operation, the
scalar product can be performed. A positive effect of this is that most system architectures
have optimized subroutines for scalar products. After the scalar product, a simple addition
of the bias is done on the output before finally being fed through a ReLU activation function
which is implemented as amax(0, output). This also holds for the fully connected neurons.

Unfortunately Node.js can not handle pointers the same way that C does. When a pointer
is returned to the JavaScript application, it can not be dereferenced. That is of some signif-
icance to us, since the library can not simply return a pointer to the first element in an array
that can then be sent over a socket. Instead, the array needs to be copied into a different
array, allocated in the JavaScript portion of the application. This operation takes very little
time compared to the multiplications in the forward pass, so overall performance is barely
affected.

5.3 Orchestration
Unsurprisingly, as the nodes in the network become greater in numbers, the amount of
coordination needed to perform the forward pass increases. To avoid the problems with
stalls mentioned in section 3.4, we introduce a simple and well known synchronization
technique: acknowledgements.

In the ideal case, all of the nodes would have something to execute all of the time. How-
ever, in the real world, this is difficult to achieve. Instead we try to synchronize so that
every node is executing something most of the time. Since we do not want any node to
lag behind or end up ahead of the rest, each node makes sure that all of the sent data is
acknowledged before proceeding with its own execution. This does not completely elimi-
nate stalls, as there is still some waiting. However, the execution runs more smoothly and
performs better overall. Interestingly, with the performance increase due to the Buffer-
representation of floats mentioned in section 5.1.1, combined with synchronization, the
overhead associated with sending and receiving data decreases with the number of nodes
(see chapter 6 for results and measurements). This suggests that while more coordination
is required, the now smaller amounts of data require less parsing.
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Chapter 6
Results

In order to determine how feasible our solution is, we wanted to measure the following
things:

• Execution time of a forward pass when run on 8 Q1615 Cameras.

• Execution time of a forward pass when run on 1, 2, 4, 8, 16 and 32 Raspberry Pi’s.

• The active and idle time of a camera’s CPU when forward pass is run on 8 cameras.

• The active and idle time of a Raspberry Pi’s CPU when forward pass is run on 8
Raspberry Pi’s.

• How much of the execution time is spent on loading weights, forwarding and com-
munication.

The Raspberry Pi’s have more memory than we could ever hope to consume with our
application, even when run on just one. Also, the application is not multithreaded at the
time of taking these measurements. We leave this as future work.

6.1 Execution Times per Layer
In figure 6.1 the average execution time per layer in the AlexNet architecture, when run on
8 Q1615 Cameras. As can be seen in the graph, the forward pass is what make up most
of the execution for the first five layers. This is perhaps not surprising, given that they are
all convolutional layers. They have less weights and more multiplications by definition
than the fully connected layers. The opposite is true for the fully connected layers, where
loading weights takes up most of the time. It appears that the time spent loading weights
per layer corresponds well with how many weights are associated with each layer. It is of
course a trivial result, however it shows that if the loading of weights could be avoided the
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gain in execution time would be quite large for the fully connected layers.

Notice also the FFI-overhead displayed in the graph. By constructing our FFI-calls as
described in this thesis, we have managed to minimize the overhead so much that it can be
omitted. In fact, in most of the layers it is barely even visible.
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Figure 6.1: Measured execution time per layer in AlexNet when
distributed over eight Axis Q1615 cameras. Load from SD is the
time cost when loading in the weight parameters, forward pass is
the total time of a complete pass over the layer and FFI is the added
cost of calling a C-function from Node.js. This diagram does not
include cost of inter-layer communication and orchestration.

In the pipeline distribution described in section 4.3, the goal is to eliminate the loading of
weights. When distributed this way, the nodes only have to load their weights from mem-
ory once, and then keep them there. This can be done prior to starting the forward pass, so
that the measured time does not include any reads from disk. Looking at figure 6.1, this
means that the load portion of the bars would be removed. In this scenario, the throughput
of the pipeline will be the execution time of the second convolutional layer, since it now is
the most time consuming, given the fact that we do not perform load balancing. Impacts
of how the CNN is distributed are discussed in section 7.2
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6.2 Varying Number of Nodes

6.2 Varying Number of Nodes
figure 6.2 shows the trend of decreasing execution time with an increasing number of
nodes. This trend can not be seen with the Q1615 cameras, since the application requires
all available cameras to run. Visible in the figure is the decrease in execution time for all
the different aspects of the program. Because the amount of weights and multiplications
halves with each step in the figure, it is logical that the execution times of those parts
roughly halves with each step.

Figure 6.2: Mean execution time over 10 runs of AlexNet on
8 Q1615 cameras and increasing numbers of Raspberry Pi 2s.
Shows relation between time spent in C environment (Weight
Loading and Calculations) and JavaScript.

Just barely noticeable is also the decrease in execution time of the JavaScript portion of the
application. This is somewhat counter intuitive, as it should be more difficult to schedule
many nodes rather than few. For a more thorough discussion on this, see section 7.6.2. In
figure 6.3, this trend seems to stop after 16 nodes, but this might be the result of using both
Raspberry Pi 2 and 3 together. This special case is discussed in section 7.5.1. The exact
execution times for the different amount of nodes can be found in appendix B.
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When comparing figures 6.2 and 6.3 (excluding the the column representing the Q1615
cameras), it is visible that the Raspberry Pi 3 is quite a bit faster than the previous model.

Figure 6.3: Mean execution time over 10 runs of AlexNet on in-
creasing numbers of Raspberry Pi 3s. Shows relation between
time spent in C environment (Weight Loading and Calculations)
and JavaScript.

6.3 Work Distribution on Cameras

Mean Execution Time (s) Standard Deviation
Forward Pass 102.57 1.46
Weight Loading 33.60 0.76
Orchestration (JS) 9.16 1.83
Total 145.34 1.04

Table 6.1: Execution times for the different parts of the applica-
tion when run on 8 Q1615 Cameras
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6.3 Work Distribution on Cameras

figure 6.4 shows what each camera is executing and how much of the time each part is re-
sponsible for. Measurements are taken over the entire course of the forward pass, meaning
all layers are at some point present on the camera. The forwarding cost is higher in the
convolutional layers than in the fully connected ones, however the graph shows the work
distribution on camera’s CPU over the entirety of AlexNet. With the improved orches-
tration, the CPU is only idle 4% of the time. This happens when the varying nodes have
differing execution times for the different layers. Each of the faster nodes will then have
to wait for the slower ones.

Figure 6.4: Pie chart showing what a camera is executing during
a forward pass of AlexNet. On a camera, the computations in C
are responsible for most of the execution time.

Note that the CPU utilization of 98% is only on one core. If the three other cores were
to be included in the calculations, the utilization would be a mere 24.5% (98% of 25% is
24.5%), due to the fact that our application can only utilize one core. Performance could
be improved by using all cores. See section 7.7.3 for discussion on this topic.
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6.4 Work Distribution on Raspberry Pis
When the forward pass is instead run on 8 Raspberry Pi’s, the work distribution appears
slightly different, except for the idle time. This is shown in figure 6.5. Multiplications can
be sped up quite a lot when performed on a CPU which supports SIMD. See section 7.6.1
for elaboration on this.

Forwarding is the the only aspect of the application that has been optimized in comparison
to the scenario depicted in figure 6.4. Notable is the fact that the majority of the execution
is now the JavaScript portion of the program. This is due to the decrease in execution
time for the forwarding, relative to the JavaScript portion. In figure 6.2 we can see that
the JavaScript portion scales the least when increasing the number of nodes. This sug-
gests that there is less performance to gain by splitting the network, the stronger CPU’s
available. This topic is examined deeper in section 7.5.2.

Figure 6.5: Pie chart showing what a Raspberry Pi 2 is executing
during a forward pass of AlexNet. Notice that on the Raspberry
Pi 2, the largest porting of the chart is made up of parsing and
execution in JavaScript. When using Raspberry Pis, we were able
to hardware accelerate most of the computations in C by using the
Neon Hardware available in the CPU of the Raspberry Pi.
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6.4 Work Distribution on Raspberry Pis

Mean Execution Time (s) Standard Deviation
Forward Pass 1.57 0.01
Weight Loading 1.78 0.02
Orchestration (JS) 2.01 0.06
Total 5.36 0.06

Table 6.2: Mean execution times for the different parts of the ap-
plication over 10 runs on 8 Raspberry Pi 2’s

Figure 6.6: Pie chart showing what a Raspberry Pi 3 is executing
during a forward pass of AlexNet. As with the Raspberry Pi 2, the
largest porting of the chart is made up of parsing and execution in
JavaScript.

In figure 6.6, the work distribution on a Raspberry Pi 3 is displayed. Not much is
different when compared to figure 6.5. This is most likely because there are no new op-
timizations when running on Raspberry Pi 3. However, note that the time spent waiting
is increased compared to before. It seems that the stronger CPU available, the more time
is spent waiting for other nodes to complete. What might cause this effect is discussed in
section 7.5.2.
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Chapter 7
Discussion

We were able to successfully run a forward pass of AlexNet in a distributed environment
of 8 Q1615 Network Cameras. However, using more cameras would have been ideal. Had
there been more available nodes, the need for a node to change its role would have been
significantly reduced or even removed. If the constant flushing and reloading of weights
can be avoided, execution time will only include the actual forward pass and the commu-
nication cost. For nodes handling the fully connected layers, this is especially desirable,
since they contain large amounts of parameters.

7.1 Desirable Number of Nodes
Of course, distributing the CNN is only desirable while there is still performance to be
gained by doing so. The decrease in execution time is visible in figure 6.2. Also visible
in the figure is the fact that not all aspects of the application speeds up as more nodes
are available. Specifically, the JavaScript portion seems to not decrease more when there
are more nodes than 16. Since we can not observe an actual trend of the scaling of the
Javascript portion of the application, this part is considered as not parallelizable and all
calculations below are performed according to this. However, the two parts which execute
in C (Forward pass and Loading weights) do still halve with each doubling of nodes.

Using the charts displayed in figures 6.4 and 6.5, we can estimate how much of the
application would benefit from increasing the number of nodes. In the case of using
only cameras, at least 92% of the execution can benefit from more distribution. When
using Raspberry Pi’s, at least 63% of the application would benefit from more distribu-
tion. This is the case for both the Raspberry Pi 2 and 3, since they have roughly the same
workload distribution. It is clear that in the case of using just cameras, there is more per-
formance to be gained by distributing more. Amdahl’s law states that we can achieve a
maximum speedup of 1

1−p where p is the portion of the application that can benefit from
parallelism[21]. Using this formula, we get a theoretical maximum speedup of 16 times
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compared to running on eight cameras. This does however not include the cost of sending
data over the network. With this speedup, we can expect the entire forward pass to be
executed in 9 seconds when using the iterative reloading distribution.

A speedup of 16 is of course the theoretical max, and can only be achieved with an in-
finite number of processors.

This estimation is valid when scaling with Raspberry Pi 2. In the late stages of the project
we have had access to several more Raspberry Pi 3. When evaluating the correctness of
this estimation we can see that it shows a realistic scaling. Looking at appendix B showing
execution times for Raspberry Pi’s, we have for 32 Pi’s a mean execution time of 2.69 sec-
onds which is in line with the estimation of 2.85 seconds. Since the 24 Raspberry Pi 3’s
are bottlenecked by the eight Raspberry Pi 2’s this equals the execution time of a system
containing only Raspberry Pi 2’s which is later elaborated in 7.5.1.

When comparing the real execution times to our expected ones, the real times seem to
be a bit faster than the expected ones. This is due to the fact that the communication also
scales somewhat with the number of nodes. This means that more of the application is
parallelized than we accounted for. To determine how the communication scales with the
number of nodes, in-depth analysis of how communication is carried out in Node.js would
be required.

Number of nodes Speedup compared to 8 Q1615 Expected execution time (s)
16 1.9 77.2
32 3.4 43.2
64 5.6 26.2
128 8.2 17.6
1000 14.2 10.2
∞ 16.0 9.1

Table 7.1: Estimated speedup and execution times for the iterative
reloading distribution when increasing the number of cameras

Since there is a relatively large part of the application that does not fully benefit from fur-
ther parallelism when running on Raspberry Pis, we gain quite little compared to when
using only cameras by adding more nodes. Should the communication part be fully paral-
lelizable as well, we could parallelize about 97% of the application, both on cameras and
Raspberry Pis. The other 3% is the average idle time during a forward pass. With 97%
of the application parallelizable, we can achieve an execution time of 22 seconds with 64
cameras and less than a second with 64 Raspberry Pis. The possibilities of parallelizing
the communication part of the application is discussed in section 7.7.2.
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7.2 Distribution Impacts

Number of nodes Speedup compared to 8 Pi 2s Expected execution time (s)
16 1.5 3.69
32 1.9 2.85
64 2.2 2.42
128 2.4 2.22
1000 2.6 2.03
∞ 2.7 2.01

Table 7.2: Estimated speedup and execution times for the iterative
reloading distribution when increasing the number of Raspberry
Pi 2s

Since the Raspberry Pi 3 has the same theoretical maximum speedup as the Raspberry Pi
2, we can expect an execution time of 1.16 seconds with a very large amount of Raspberry
Pi 3s.

7.1.1 Scaling beyond eight nodes
When scaling beyond eight nodes, another problem occurs. The last fully connected layer
consists of 1000 output neurons, each tied to one output class. Seeing as we want to
distribute these neurons and we want an even divisor, we face a problem when scaling to
16 and 32 nodes (1000 is not divisible by 16 or 32). Our solution to this was to treat this
layer as a special case, and simply use only eight nodes. The reason behind our choice
was that since the layer only contains 1000 neurons, dividing it up further into very small
parts would end up with an increased cost since the amount of work would be insignificant
when compared to the added communication cost.

7.2 Distribution Impacts
Constant reloading of parameters is of course not desirable, as it just stalls the entire ap-
plication. This is however only a problem when there are less nodes than what is needed
to represent all parts of a CNN simultaneously. Should there be a fixed number of nodes,
such that both distributions presented in this thesis can be implemented, the circumstances
dictate which method is preferred.

The two different distributions are optimized for different things. The iterative reload-
ing distribution is optimized for latency, while the pipeline distribution is optimized for
throughput.

If the situation requires a single classification to be done as quickly as possible, the
iterative reloading distribution performs slightly better. In this distribution, each of the
layers are distributed to the fullest extent, meaning each layer is distributed over all the
nodes. This way, there is more processing power since all the nodes are used for just one
classification.
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Should the situation instead require multiple classifications, but none of them are par-
ticularly time-critical, the pipeline-distribution should be considered. With it, all classi-
fications are delayed the amount of time it takes to perform a single classifications, but
they can be started independently of each other. After having completed the first, the next
classifications will be separated by the time it takes to compute the heaviest layer. In this
distribution there is less computational power per layer, because the nodes have fixed roles.
However, classifications can be performed within less time of each other than compared
to the iterative reloading distribution. In order to achieve optimal performance with this
pipelined distribution scheme, a load-balancing approach should be used as described in
4.3, where the goal is to even out the execution time for each layer to be as uniform as
possible.

Since the nodes never have to reload their weights, only the actual forward pass and
the orchestration remains in terms of execution. This can be seen in figure 6.1 where the
loading part would be removed after first setting up the neural network, since the weights
would already be in memory. In this case, the fully connected layers amount to very little
time, compared to the convolutional layers. Therefore, it is not so likely that each layer
will be handled by just one node. Rather, the convolutional layers would be distributed
since they are many times slower than the fully connected ones.

7.3 Splitting Layers Spatially
When considering the convolutional layers, we opted for a split in the convolutional layer’s
output depth, the filters. This implies that each machine needs all of the input in order
to finish its computations. However another partitioning scheme would be possible. By
letting eachmachine running the convolutional layer have all the weights, we could split the
input spatially and distribute on the input instead of the filters. This would lead to a small
increase in memory capacity needed, but would decrease the inter-layer communication.
Instead of sending the complete input to all nodes we would need to send a part of the input
plus a maximum of (kernelsize−1)

2 in pixels vertically and horizontally in order to be able to
perform the convolution operation. The total communication would instead of n ·output be
upper bounded by output+ kernelsize−1

2 · 4n = output+ 2n(kernelsize− 1). We give an upper
bound since theoretically there is no need to send extra pixels horizontally and vertically
for neurons along the edges.

7.4 Tradeoffs
A clear tradeoff is parallelism versus network overhead. High parallelism leads to more
communication needed which is inherently expensive. Given a fast computational node,
parallelizing would lead to increased overall execution time and therefore prove not to be
worth it. This insight can also be applied when reducing the amount of work per node dur-
ing distribution. Eventually the work per node will be disproportional to the orchestration
time.

By investigating 6.2 we estimate that we will reach a saturation point of nodes given
our current hardware and neural network model. In order to gain performance beyond the
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saturated number of nodes performance can be scaled further by pipelining.
The memory footprint when running the algorithm also comes with a tradeoff. The

weights can be preloaded and kept in memory in order to remove time taken for the ini-
tialization of layers. This however requires 285

number of nodes MB memory in RAM at
all times, which has proven not to be feasible for embedded systems with tight memory
constraints such as Artpec-5. Instead, each layer can be initialized independently when
needed and the memory be freed after use. This leads to a reduction in static memory to
max

i

Memory of layeri
number of nodes . In addition, memory for the input is also needed.

7.5 Bottlenecks
When analyzing our solution further we notice some bottlenecks occurring. Some of these
can be minimized further by implementing the optimizations as suggested in section 7.7
where we discuss further optimization. With respect to our current hardware, some no-
ticeable costs such as load from SD and multiplications using soft-floats cannot be solved
without changing platforms.

Node is single-threaded, however this can be solved by either threading the C-library
or clustering the Node.js instance. See section 7.7.3.

If the application were to be run on fast nodes using dedicated hardware or expensive
GPU’s the major bottleneck would lie in cost of communication.

7.5.1 Non-uniform computational nodes
As seen in figure 6.3 the result shows that when scaling to 32 nodes,eight Raspberry Pi
2’s and 24 Raspberry Pi 3’s, we get a slower total runtime when compared to using 16
Raspberry Pi 3’s because of increased Javascript time, mainly spent as being idle on the
Raspberry Pi 3’s. We suspect this is a result of using different computational nodes without
applying load-balancing. With our setup of 24 Raspberry Pi 3’s and eight Raspberry Pi
2’s it ultimately led to the newer generation Raspberry Pi 3’s to be stalled in between each
layer. However the time spent executing and loading is still linearly scaled with number of
nodes.

7.5.2 Implications of Using Faster CPUs
While it might generally be a good idea to use the strongest CPU available at all times,
it seems that the performance gain might not live up to what was expected. For instance,
stronger CPUs can in general optimize parts of code to a great deal. In the case of our
application, this means that our calculations can be optimized a lot more than the commu-
nication can. The result of this is that the parts of the program that normally benefit from
parallelism are affected a lot less by the parallelism.

When using stronger CPUs, the time spent waiting seems to increase. We believe this is
because while the computational power increases, the total communication cost remains
constant. Hence the synchronization penalty increases, resulting in more frequent stalls.
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7.6 Optimizations
Over the course of the thesis, some optimizations have been made in order to speed up
execution. Some of the sections contain optimizations that can only be performed on the
Raspberry Pi’s, because they have looser memory constraints and more modern CPU’s.
All optimizations that are possible on the cameras are possible on the Raspberry Pi’, but
not necessarily the other way around.

Optimization Exec time unoptimized Exec time optimized Decrease
Synchronization (Pi 2) 26.44 15.07 43%
SIMD (Pi 2) 26.44 17.98 32%
Buffers (Pi 2) 26.44 7.93 48%
Total (Pi 2) 26.44 5.36 80%
Synchronization (Q1615) 474.12 274.99 42%
Buffers (Q1615) 474.12 251.28 47%
Total (Q1615) 474.12 145.36 69%

Table 7.3: The impacts of different optimizations on the cameras
and Raspberry Pi 2.

7.6.1 Vectorization of multiplications
Because the Raspberry Pi’s all have an ARM Cortex A7 processor, we can use its built-
in NEON module to accelerate certain operations in the application. Specifically, we are
interested in accelerating the matrix multiplications, since they make up the majority of
the execution. The NEONmodule present in the A7, has support for VFP (Vector Floating
Point), which allows us to use SIMD to great extent.

When using SIMD the 32-bit floats are placed two by two in 64-bit registers, allowing
for parallel multiplications. Since there are no data dependencies between the multiplica-
tions, parallelizing the multiplications can be done without restrictions.

This optimization made all of the multiplication execute almost twice as fast, for a total
decrease in execution time by 32%. However, this can not be performed on the cameras.

7.6.2 Communication with Buffer
Instead of sending data as strings, the application now uses buffers to encapsulate the data
provided by the library. As mentioned in sections 3.5 and 5.1.1, this reduces the amount
of data sent by 4.5 times. When using this approach, the execution time for the JavaScript
part of the program also decreases with the number of nodes. We can not for certain say
that this was not the case before optimizing communication, since we at the time did not
have enough nodes to observe such a trend.

Parsing the data is now much faster, because the results provided by the library never
have to be parsed by the JavaScript code. This means that the parsing no longer scales
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with the size of the data packets. Of course it still takes longer to receive larger amounts
of data, but decoding the information does not.

7.7 Further possible optimizations
Here we suggest a few improvements to our final version of the application for running
a forward pass of AlexNet. This section differs from future work in that it only states
improvements for this particular problem. Some of the improvements suggested here are
again only possible on the ARMCortex-series CPU architecture, present on the Raspberry
Pi’s.

7.7.1 Half Precision Floating Point
SIMD is responsible for a large amount of the speedup in our application, due to the fact
that there are so many multiplications that can be executed in parallel. However, we are
limited by the fact that that the largest registers available to us are 64-bit registers. To get
maximum utilization out of those registers, we would want our data to be represented with
as few bits as possible.

Half precision floating point numbers are represented by just 16 bits, without a sig-
nificant loss in accuracy (in the context of deep neural networks). With just 16 bits per
number, we could fit four numbers in a 64-bit register, doubling the amount of parallel
multiplications. In addition to this, the size of the data and weights would halve, letting us
send more data and store more weights per node.

7.7.2 Complete C-application
While much of the calculations in the application can be parallelized, it is more diffi-
cult to parallelize the communication written in JavaScript. As mentioned in section 2.5,
JavaScript is single threaded. Because it is single threaded, it is only ever able to utilize
one core of the CPU. Should the application be implemented entirely in C, the application
could utilize more of the CPU, if written correctly.

While it is possible to spawn threads in the library (see section 7.7.3), the communi-
cation is still limited to its one thread. Should the communication also be threaded, there
is some room for optimizations. For example, loading weights could be done without de-
laying the parsing of incoming data, when a node needs to switch its role. This means that
the application will not lock, as it does today when an FFI-call is being executed.

Another option would be to use a module called cluster in Node.js which spawns work-
ers (child processes), by forking the node instance. This might have lead to issues when
calling the FFI-library from different thread contexts. There could exist a scenario where
duplicate copies of the parameters exists inmemory, or access to the correct C environment
might not be available to the correct layer.
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7.7.3 Threading in the Library
In order to achieve better resource utilization, a good choice would be to use threading to
handle the independent multiplications executed on each computational unit.

While it might not be possible to utilize all cores of the CPU with Node.js, it is still
possible to use threads within the C-portion of the program. Since the multiplications
performed are completely independant, they can be executed in parallel. To some extent
this is already implemented via the use of SIMD, however we could further utilize the
processor by distributing the multiplications to the individual cores and then utilize SIMD.

Furthermore, the multiple cores could contain different parameters, meaning different
parts of a layer could be executed at the same time. Essentially, since we only use one
core per CPU, we could reduce the number of nodes by a factor of four given that all the
parameters would fit in memory.

7.8 Neural network architecture improve-
ments for embedded systems

In this thesis we have based our research and results on the well studied AlexNet-model.
However this model was not initially designed to run on embedded platforms. Recently
a few studies have been made on how to optimize neural network models for embedded
systems.

Fully connected layers take up a notorious amount of weights in comparison to a con-
volutional layer. In a network architecture such as AlexNet, the weights associated with the
fully connected layers sum to roughly 95%of the total weights, while the convolutional lay-
ers have the remaining 5%. However, the converse holds for FLOPs during execution[2].
Recent research suggests different architectural approaches when applying deep learning
on embedded systems.

Network-in-network, a paper released in 2013 by Min lin et al.[22], suggests a structure
of nested networks. It also shows that fully connected layers can be removed in favor
of average pooling. This structure can be seen in the famous inception module, used in
GoogleNet. Recall that fully connected layers are associated with 95% of the weights, this
shows that one can choose networks without fully connected layers and hence decrease the
memory requirements of the model.

K. He and J. Sun investigated the accuracy of CNN’s under constrained time cost[23].
They reached the conclusion that late downsampling leads to higher classification accu-
racy. This result speaks for not using a stride parameter larger than 1 in the early layers
and instead opt for reducing the horizontal and vertical span of the activation maps later
on in the network.

C. Szegedy and V. Vanhoucke et al.[24], pioneers of the inception architecture, did some
rethinking in how similar receptive fields can be created by using asymmetric convolu-
tional kernels. They applied spatial factorizing of larger convolutional operations into
smaller asymmetric ones. Basically a NxN filter can be replaced by applying a Nx1 plus
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1xN in conjunction which will lead to a weight reduction of N
2 but still generate a similar

receptive field. The research in the article suggests using this method only for medium grid
sizes and not in the early layers where horizontal and vertical dependency still is important.

Given a complete network model, further optimizations can be done in order to compress
the model which is especially interesting for embedded systems due to its constrained na-
ture. The first approaches to model compression has been based around pruning of weights
under a certain threshold which showed promise in the 90’s[25].
Later on network pruning was combined with quantization of weights and huffman en-
coding which resulted in Deep compression as coined by Song han et al[26]. This method
of model compression showcased great results on existing CNN’s, reaching a compres-
sion of 35x on AlexNet. The original network with ~250MB of parameters could now be
pruned and compressed to ~7MB.Another nice effect of the compressionwas that since the
weights are quantizized together it leads to weight sharing, which means that one weight
represents several previous weights and a speedup is gained due to better cache utilization.

In a paper by researchers from Berkeley and Stanford [27], they provide a different neu-
ral net architecture that reaches the same accuracy as AlexNet. Their model is called
SqueezeNet, in where they introduce a new buildingblock called fire-module. The fire-
module is based on the network-in-network method introduced in [22], and makes use of
three convolutional layers. First a "squeezelayer" of 1x1 convolutional filters and eventu-
ally an "expansionlayer" based on 1x1 along with 3x3 convolutional filters. Some conclu-
sions from this paper is that smaller deep neural network architectures offer several key
advantages when deployed. Less communication required when distributing, faster model
update and better feasibility in FPGA or other hardware deployment. They finish the paper
by compressing the model using deep compression and saying that small network models
are also amenable to compression without losing accuracy. This shows promise for smaller
models being compressed, fit for embedded systems.
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Chapter 8
Conclusions

This chapter brings up our conclusions and insights that we have come across during our
thesis. All partitioning schemes for a neural network comes with a communication over-
head due to the nature of operations. Our partitioning scheme sees a linear increase w.r.t
number of nodes.

Calling FFI-functions comes with an additional overhead which we measured to be
around 5ms. While being small, this cost adds up when being heavily used. Functions
called via FFI should be few and provide comprehensive functionality.

Node.js is event-driven and single threaded. Calling FFI-functions inside node will block
the event-handling until completion. This calls for a synchronization between computa-
tional units for each layer, since we want the blocking execution to occur simultaneously.
Otherwise a node could start the blocking execution before sending its data to rest of the
nodes leading to a stall.

Benefits of our approach includes that anything being able to run Node.js and C, will
be able to run our application. However when mixing machines of different endianness
we suspect that unexpected results may occur.

The memory footprint will also be reduced by using a distribution scheme, which
proved to be of great significance when running on constrained devices such as the Axis
Q1615 camera. The reduction in memory requirements is a prerequisite to even be able
to run a neural network on this camera. Since the total available RAM was in the order of
~40MB.

When optimizing communication, especially with nodeJS and C combined we noticed
that sending data without explicitly specifying type in Javascript allows for faster commu-
nication since it is represented as a buffer-object. There is no overhead of transforming the
data to an intermediate representation in between the execution in C. This is doable since
we have made sure to have all of our neural network logic separated and kept in C.

The change that optimized our solution the most was using NEON SIMD (applicable
for raspberry PIs). When applying deep learning on embedded systems hardware acceler-
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ation is almost a prerequisite in order to keep the time for execution reasonable.
Another conclusion is the impact of uneven computational units. As can be seen in the

rightmost column of figure 6.3, scaling with different nodes amounts to a bottleneck effect
by the slower nodes. This leads to a final execution time similar to that of 32 Raspberry
Pi 2’s. Therefore when scaling with uneven nodes, the total execution time will amount to
a linear scaling of the slowest node because of synchronization.

Conclusively we would like to end by saying that it is possible to apply deep learning
on weaker devices using distribution. However an important fact that should not be ne-
glected is that communication overhead is expensive and reading from any memory source
slower than RAM is expensive. To reduce time spent communicating and loading weights
more neural network architectures need to be investigated as described in 7.8 and 9. All
in all, Optimal applications of deep learning, such as real time classification, in embedded
environments require dedicated hardware as well as a node need to single-handedly be able
to run the network as a whole in order to remove communication overhead completely.
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Chapter 9
Future work

As we have seen deploying deep neural networks on embedded systems requires a lot of
computation. The best possible way of dealing with this problem is to have dedicated
hardware, like the tensor processing unit google uses[28].

Currently, our solution does not handle dynamic load balancing. In the case of non-
uniform computational nodes, analysis and prepartitioning of the network is still needed.
It would be favorable to dynamically let nodes with greater computational capabilities
handle larger portions of the CNN. Our distributed solution does not handle self-healing
in case of node failure, this is also left as future work.

Another problem area that opens up when using nodes without enough memory is the
time taken to load data from disk. Currently the Q1615 camera as well as both generation
2 and 3 of the raspberry PI’s use microSD cards. A possible approach for investigation
would be to measure if there exists a speedup to be gained when sending weights directly
over network instead of loading them from the microSD cards.

In order for a distributed solution to be feasible the computational nodes available
would need to be weak, unfit for a prediction to be done standalone. A non-negligible com-
munication cost will always exist, therefore our solution cannot be used in time-critical
applications such as real-time identification. Future work would also investigate a dis-
tributed approach on models fit for embedded systems, such as pruned networks and more
ingenious network architectures as described 7.8.

More use cases involve the possibility of using specialized and/or parallel regressor heads.
By regressor head we simply mean the bundle of last fully connected layers that has the
responsibility of decision making. By retraining the last fully connected layers with trans-
fer learning, as explained in 2.2.7, one could therefore reuse the computations made in
the convolutional layers, since neuron-activations early on can be seen as more general
features. A use-case for this could be that cameras mounted in certain settings might need
different decision making in order to achieve high precision. Also one could experiment
whether it is beneficiary to run different regressor heads in parallel and merge the result
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9. Future work

later on in order to get higher precision, similar to how an ensemble of networks work.
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Appendix A
Division of work

In this thesis much of the work was done together. Below we list the individual responsi-
bilities for both students.

Axel’s main responsibilities were:

• Creating the library based on DarkNet

• Implementing the weight parser

• Implementing functions in predictor.c

• Implementing functionality to automatically split the network depending on the
number of nodes

• Initial communication using buffers

• Synchronization

Anton’s main responsibilities were:

• Splitting CNN into separate layers

• Splitting convolutional and fully connected layers

• Combining JavaScript and C via FFI

• Implementing initial connection scheme with MDNS

• Initial reloading of weights

• Optimizations using NEON
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Appendix B

Execution on Many Raspberry Pis

Belowwe have tables of execution times with varying number of nodes. All measurements
are averaged over 10 runs with given standard deviation.

Mean Execution Time (s) Standard Deviation
Forward Pass 10.90 0.03
Weight Loading 13.17 0.06
Orchestration (JS) 3.76 0.02
Total 27.82 0.09

Table B.1: Execution times for the different parts of the applica-
tion when run on 1 Raspberry Pi 2

Mean Execution Time (s) Standard Deviation
Forward Pass 7.91 0.03
Weight Loading 7.79 0.01
Orchestration (JS) 2.184 0.02
Total 17.88 0.04

Table B.2: Execution times for the different parts of the applica-
tion when run on 1 Raspberry Pi 3
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B. Execution on Many Raspberry Pis

Mean Execution Time (s) Standard Deviation
Forward Pass 5.60 0.01
Weight Loading 6.67 0.02
Orchestration (JS) 2.90 0.11
Total 15.17 0.10

Table B.3: Execution times for the different parts of the applica-
tion when run on 2 Raspberry Pi 2’s

Mean Execution Time (s) Standard Deviation
Forward Pass 4.02 0.02
Weight Loading 3.93 0.01
Orchestration (JS) 1.55 0.03
Total 9.51 0.03

Table B.4: Execution times for the different parts of the applica-
tion when run on 2 Raspberry Pi 3’s

Mean Execution Time (s) Standard Deviation
Forward Pass 2.92 0.01
Weight Loading 3.40 0.02
Orchestration (JS) 2.28 0.03
Total 8.60 0.02

Table B.5: Execution times for the different parts of the applica-
tion when run on 4 Raspberry Pi 2’s

Mean Execution Time (s) Standard Deviation
Forward Pass 2.08 0.02
Weight Loading 2.00 0.01
Orchestration (JS) 1.16 0.05
Total 5.24 0.05

Table B.6: Execution times for the different parts of the applica-
tion when run on 4 Raspberry Pi 3’s

Mean Execution Time (s) Standard Deviation
Forward Pass 1.57 0.01
Weight Loading 1.78 0.02
Orchestration (JS) 2.01 0.06
Total 5.36 0.06

Table B.7: Execution times for the different parts of the applica-
tion when run on 8 Raspberry Pi 2’s
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Mean Execution Time (s) Standard Deviation
Forward Pass 1.11 0.01
Weight Loading 1.06 0.02
Orchestration (JS) 1.00 0.04
Total 3.20 0.06

Table B.8: Execution times for the different parts of the applica-
tion when run on 8 Raspberry Pi 3’s

Mean Execution Time (s) Standard Deviation
Forward Pass 0.63 0.03
Weight Loading 0.59 0.02
Orchestration (JS) 1.01 0.06
Total 2.24 0.04

Table B.9: Execution times for the different parts of the applica-
tion when run on 16 Raspberry Pi 3’s

Mean Execution Time (s) Standard Deviation
Forward Pass 0.44 0.08
Weight Loading 0.40 0.11
Orchestration (JS) 1.85 0.21
Total 2.69 0.22

Table B.10: Execution times for the different parts of the applica-
tion when run on 32 Raspberry Pi’s, 24 3’s and eight 2’s

IDLE
8 Q1615 Cameras 2.54 %
1 Raspberry Pi 2 1.01 %
1 Raspberry Pi 3 0.78 %
2 Raspberry Pi 2’s 2.18 %
2 Raspberry Pi 3’s 0.95 %
4 Raspberry Pi 2’s 0.70 %
4 Raspberry Pi 3’s 3.24 %
8 Raspberry Pi 2’s 3.17 %
8 Raspberry Pi 3’s 5.00 %
16 Raspberry Pi 3’s 5.81 %
32 Raspberry Pi (24 3’s + 8 2’s) 19.67 %

Table B.11: Percentage of how much of the execution is spent
being idle
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Kameror som tänker tillsammans

POPULÄRVETENSKAPLIG SAMMANFATTNING Axel Ahlbeck, Anton Jakobsson

Datorseende blir allt bättre, men med dess precision tillkommer en beräkningskostnad.
Detta arbete undersöker hur man kan använda svagare men fler datorer, exempelvis
kameror, för att implementera dagens kraftfulla algoritmer.

Dagens teknik tillåter datorer att utföra alltmer
komplicerade uppgifter, som tidigare krävde en
människa. Detta kallas för maskininlärning, och
kortfattat så handlar det om att lära en dator att
känna igen mönster av olika slag. En algoritm
som ofta används är neurala nätverk, vilket är
produkten av ett försök att återskapa människans
tankesätt i en dator. Självklart så kommer inte
Terminator att knacka på imorgon, utan det är
fortfarande en relativt naiv algoritm. Använd-
ningsområdena hos neurala nätverk är stora, och
de kan lösa många problem - så länge det finns
rätt och fel att lära sig från.

Vi har utforskat möjligheterna för att få in stöd
för detta direkt i dagens och gårdagens kameror,
som är små datorer som i sin ensamhet är oka-
pabla att köra neurala nätverk.
En ensam kamera är såklart inte lika snabb som

en vanlig dator, och kan därför inte bestämma
vad en bild föreställer lika snabbt. Den kan då
istället be om hjälp från andra kameror som är
lediga och inte tittar på något speciellt. Om de
olika kamerorna tittar på olika mindre detaljer i
bilden kan de tillsammans snabbare komma fram
till vad bilden egentligen föreställer. Varje kam-
era behöver då tänka mindre och kan koncentera
sig på en enda sak. Till exempel kan en kam-
era leta efter däck, en annan efter dörrar och en
tredje efter fönster. Finns alla dessa i samma bild
kan bilden föreställa en bil, men den kan också

föreställa en hög med däck utanför ett hus.
Flera små datorer tänker i regel lika snabbt som

en lite större, om varje dator kan vara ansvarig
för en tillräckligt stor del av uppgiften. Om
varje kamera ansvarar för en väldigt liten del
av beräkningarna kommer kommunikationskost-
naden bli för stor.
Att få flera datorer att samarbeta på ett smidigt

sätt är en långt ifrån trivial uppgift, med många
potentiella svårigheter. Under vårt examensarbete
har vi utvecklat en modell för att applicera neurala
nätverk i ett system av många svagare datorer.
Våra resultat visar på att ju fler kameror man

har desto snabbare kan man de ta reda på vad
en bild föreställer, fram tills den punkt då det
blir en för stor kommunkations- och synkroniser-
ingskostnad.

Slutligen så innebär detta att en människa
inte längre kommer behöva titta genom kamerans
ögon, utan kameran ser själv vad som finns
i bilden. I den närmre framtiden så kommer
det manuella arbetet som nuförtiden görs av
människor, exempelvis att gå igenom över-
vakningsvideor, bli automatiserat och göras av
kamerorna själva.
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