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Abstract 

The corporate bankruptcy is a significant problem for economy since it is considered 

as a limiting factor for economic growth. The financial crisis that broke out in USA 

on 2007 as a result of miscalculated subprime mortgage strategies turn into a full 

international banking crisis affecting successively the European banks, especially 

those of South European countries. Given that the role and the impact of the banks in 

the national and international economies are significant , it is vital for all interested 

economy stakeholders to constantly assess and measure the financial health of banks 

by use of reliable bankruptcy prediction models. 

This work includes a literature review of known prediction models for firm 

bankruptcy which are based on multivariate discriminant analysis. Additionally, it 

presents the findings of the empirical study implemented by use of Altman’s Z-score 

model specialized for firms from emerging markets. The main tasks carried out were: 

 Financial data analysis for “failed” banks located mostly in South European 

countries (GIIPS group)  

 Application of  the above analysis outcome to benchmark the financial status 

of Central European banks that are still active 

The aim of this work was to examine the effectiveness and accuracy of Altman's Z-

score model for measuring the financial health of banking sector organizations and 

answer the research question whether Altman’s specialized formula, for firms from 

emerging markets, could be used for banking sector organizations too.   

The findings of the empirical study, allows someone to claim that the accuracy and 

predictability of the tested Altman Z-score model, specialized for firms from 

emerging markets, is questionable as regards predictions for private firms operating 

with high leverage. 

Keywords: European banks, financial health, prediction models, multivariate 

discriminant analysis, Z- score model , Altman 
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Introduction  

The financial crisis that broke out in USA on 2007 as a result of miscalculated 

subprime mortgage strategies turn into a full international banking crisis affecting 

successively the banks in Europe as well. Some European banks with high exposure 

on the American banking system were directly affected and brought to the brink of 

collapse. However, this was not the only reason for bank collapsing. A plethora of 

additional reasons contributed in this as well i.e. inefficient fiscal policies of European 

countries for consecutive years, overloaded public sector that did not correspond to 

the real country’s needs etc. In Greece, a sovereign national debt in conjunction to the 

impact of the international financial crisis put in troubles many banks.   

Several Greek banks were exposed to the threat of a "disorderly bankruptcy" as a bi-

effect of the policies of non-cautious lending activity and the over-investment in the 

past years. The lack of crucial funds for these banks imposed the need of an urgent 

recapitalization of them. The Greek government was surprised and reacted gradually 

to this by taking a series of measures (bail-out programme) in order to avoid a 

collapse of the Greek banking system that could lead to chaotic situation with 

tremendous economic and social consequences for the country.  

Undoubtedly, the role and the impact of banks in the social-economic life of any 

country are of great significance and this applies for Greece too. Therefore their 

financial health is matter of great concern for all involved to financial activities and 

finance researchers as well.  

This work aimed to check if it is possible to measure and predict the financial health 

of banks in an efficient and reliable way.  

Inspiration about choosing this research topic was the collapse threat that Greek banks 

faced when the Eurozone crisis broke out. According to my point of view, if there 

were effective predicting tools for corporate default which could also be used in the 

banking sector too, it would be a significant tool for European governments in their 

decision making. These would be able to immediately react and take appropriate 

mitigation measures for their economies which in combination with assistance from 

the European Central Bank and the International Monetary Fund could keep off 
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upcoming default of European banks and consequently avoid their catastrophic effects 

on the social-economic life of the European countries affected. 

Research objectives and tasks 

Based on the fact that the banking sector could be considered as a service sector 

organisation which plays a crucial role in development of the economy, both on 

national and international level, it is always challenging and valuable to measure the 

financial health of banks, especially on economic recession time. 

First objective of this work is to present known prediction models for the 

measurement of firm financial health. Special focus is given on those of multivariate 

discriminant analysis which are commonly used by many finance researchers and 

professionals. The second objective, the main one, was to test and evaluate the 

strength and accuracy of Altman’s Z- score model and its suitability to be used for 

predicting imminent threats of financial distress in banking sector. For that, a data 

sample of European banks was selected which was divided in two target groups.  

In the first group were included banks mainly from countries of South Europe, namely 

Greece, Italy, Ireland, Portugal, Spain plus Cyprus. Further on, this group will be 

referred to as GIIPS banks or “failed” group. The second was consisted of banks from 

countries of Central Europe, namely Germany, France, Belgium, Netherlands and 

Switzerland which will be called as CE banks or “active” group. 

The main tasks of the second objective were: 

 Analysis of financial data of failed banks of GIIPS group by use of the 

Altman’s Z-score specialized for firms from emerging markets 

 Application of the analysis outcome in benchmarking of the financial status of 

CE banks  

in order to examine the effectiveness and accuracy of Altman's Z-score in measuring 

the financial health of banking sector organizations and answer the research question 

whether Altman’s specialized formula for emerging markets could be used for 

banking sector organizations too.   
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Literature review 

Risks faced by financial institutions  

According to organisation theory, any organisation is confronted with many different 

risks during its whole life. Financial institutions are characterized as organizations of 

the service sector. Their role and impact in the social-economic life of countries is 

significant and multifarious. They are evolved in different financial activities like 

lending, asset management, deposit keeping etc. which means that these are exposed 

to different kind of risks explained below. The financial health of banks reflects to the 

economy of a country and in some cases of the whole world. The most crucial risks 

faced by banks are outlined in the below table: 

Risk type Event 

Systemic risk 

A default by one financial institution may possibly 

create a “ripple effect” that leads to defaults by other 

financial institutions and threatens the stability of the 

financial system. (Hull, 2015, p.326) 

Credit risk 

The possibility that a bank borrower or counterparty 

will fail to meet its payment obligations regarding 

the terms agreed with the bank (GARP, 2014, p. 14). 

Market risk 

The risk of losses in on and off-balance sheet 

positions arising from adverse movements in market 

prices (EBA, 2017). 

Operational risk 

The risk of loss resulting from inadequate or failed 

internal processes, people, and systems or from 

external events. This definition includes legal risk 

but excludes strategic and reputational risk (BIS, 

2011). 

Liquidity risk 

The possibility that over a specific horizon the bank 

will become unable to settle obligations. (Drehmann, 

M. and Nikolaou, 2010, p.1). 

Table 2: Crucial risks faced by banks  
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When a bank cannot repay and meet its economic obligations to its investors, lenders 

and generally to its stakeholders then reaches a default situation or in other words it 

becomes in a ‘failed condition”. If corrective measures are not taken or are incorrect 

then the bank's problematic situation can result to a disorderly bankruptcy with 

chaotic consequences in every aspect of the social-economic life of the country that 

the bank is operating.  

In order to predict and avoid bank failure situations and their subsequent economic 

disaster a regulatory framework for banking sector was necessary to be established. 

Hull (2015) pointed out the importance of regulations in order to avoid bank failing. 

He justified this need and explained that “…main purpose of bank regulation is to 

ensure that a bank keeps enough capital for the risks it takes. It is not possible to 

eliminate altogether the possibility of a bank failing, but governments want to make 

the probability of default for any given bank very small. By doing this, they want to 

create a stable economic environment where private individuals and businesses have 

confidence in the banking system” (Hull, 2015, p. 325).  

On 1974, G10 countries represented by their central bank Governors and the monetary 

authorities of Luxembourg, Switzerland and Spain formed the Committee of Banking 

Regulations and Supervisory Practices. The main goal of this Committee, which 

convened in Basel of Switzerland, was to strengthen financial stability worldwide by 

setting common principles that all financial institutions should follow and be 

supervised for. Nowadays, the Basel Committee has expanded its membership from 

the G10 to 45 institutions from 28 jurisdictions. (BIS, 2017; Culp, 2015).  

A document entitled “International Convergence of Capital Measurement and Capital 

Standards” was the main outcome of Basel Committee. This was referred to as “The 

1988 BIS Accord" and was the first attempt to set international risk-based standards 

for capital adequacy (Culp, 2015). Later on it became known as Basel I and paved the 

way for significant increases in the resources banks devote to measuring, 

understanding, and managing risks. The key innovation in the 1988 was a measure, 

for assessing the bank total credit exposure, named Cooke ratio. Hull (2015) clarifies 

the components of this measure by explaining that “The Cooke ratio considers credit 

risk exposures that are both on balance-sheet and off balance-sheet. It is based on 

what is known as the banks total risk-weighted assets.” (p. 327). 
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Since several issues remained still unsettled, i.e. there was not developed any model 

of default correlation, two more Accords were published Basel II and Basel III, 

establishing a series of international standards concerning mostly the capital 

adequacy. 

The Basel II capital requirements applied to “international active” banks. In Europe, 

all banks were regulated under Basel II but in the United decided States the regulatory 

authorities decided that Basel II would not apply to small regional banks (Hull, 2015, 

pp. 336-337). The Basel II is based on the following three “pillars”: 

1. Minimum Capital Requirements

2. Supervisory Review

3. Market Discipline

Following the 2007-2009 credit crisis, the Basel committee realized that 

improvements on Basel II were necessary. Capital requirements needed to sufficiently 

cover not only market risk but credit risk as well. Additionally, it was considered that 

the definition of capital had to be tightened and that regulations were needed to 

address liquidity risk (BIS, 2017; Hull 2015). The final version of the Basel III 

regulations was published in December 2010 and settled issues about: 

1. Capital Definition and Requirements

2. Capital Conservation Buffer

3. Countercyclical Buffer

4. Leverage Ratio

5. Counterparty Credit Risk

The establishment of a series of international standards for bank regulation 

contributed not only to enhancement of financial stability by improving the quality of 

banking supervision worldwide but facilitated also the availability of financial data for 

research. More specifically, all type of organizations are obliged to prepare and 

provide on an annual basis, specifically processed information about their operation, 

which are stored in various databases. This information is considered as credible and 
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is provided in standard formats which means that someone can easily access and 

process it. Subsequently, the testing of any model proposed for financial analysis 

purposes can be easily supplied with credible and homogenous data which was the 

case for the empirical study of this work too. 

Financial Distress and Corporate Bankruptcy 

The early prediction of financial distress is essential for investors or lending 

institutions who wish to protect their financial investments. As a consequence, 

modeling, prediction and classification of firms to determine whether these are 

potential candidates for financial distress have become key topics of debate and 

detailed research. Financial distress is defined as “… a condition where a company 

cannot meet, or has difficulty paying off its official obligations to its creditors. The 

chance of financial distress increases when a firm has high fixed costs, illiquid assets 

or revenues sensitive to economic downturns” (Sofat and Hiro, 2015, p. 406).  

One of the major concerns in the specific research area is the lack of consensus on the 

definition of the corporate failure and the financial distress. Several scientists are 

using the term bankruptcy instead of the previous two. Moreover Muller et al. (2012) 

denote that there are also researchers which define financial distress as mergers, 

absorptions, delisting or liquidations or major structural changes to the company.  

For this study purposes, financial distress is regarded as a prior step before bankruptcy 

therefore a timely prediction of financial status might actuate the assessed firm to 

react and take corrective measures and potentially avoid its oncoming bankruptcy. 

However, a financially unhealthy firm may not mandatory be bankrupt but to be 

merged with others, acquired by another etc. In these cases, the firm could be 

considered as a failed one. 

From 1930, several theories, models and techniques were proposed by researchers 

aiming to predict whether a firm is about to face bankruptcy (Bellovary et al. 2007). 

Each of them proposed his/her own formula but in several occasions these are using 

similar financial data and ratios in order to calculate indicators and results. Nowadays, 

there exist a plethora of methods and models available for measuring and assessing 

the financial distress or bankruptcy of firms. 
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Historically, corporate bankruptcy was first modeled, classified and predicted by 

Beaver in 1966. He defined financial distress as bankruptcy, insolvency, liquidation 

for the benefit of a creditor, firms which defaulted on loan obligations or firms that 

missed preferred dividend payments. In his research compared the mean values of 30 

ratios of 79 failed and 79 non-failed firms in 38 industries but also tested the 

individual ratios' predictive abilities in classifying bankrupt and non-bankrupt firms. 

Actually he tested separately ratios of a) Net Income to Total Debt b) Net Income to 

Sales c) Net Income to Net Worth d) Cash Flow to Total Debt and e) Cash Flow to 

Total Assets with high accuracy results for all ratios. He came to conclusion that cash 

flow to debt ratio was the single best indicator of bankruptcy (Beaver, 1966a; Muller 

et al., 2012) and suggested that if multiple ratios considered simultaneously, in future 

research, might have higher predictive ability than single ratios (Bellovary et al., 

2007).  

More specifically, Beaver (1966b) developed the first parametric model for corporate 

bankruptcy and his kind of analysis was characterized as univariate (Fitzpatrick, 1932; 

Horrigan, 1965). Prediction models that came up afterwards were categorized either 

as parametric or non-parametric. Accordingly, the evolution of the next generation of 

bankruptcy prediction models was based on the concept of firm classification in failed 

non-failed respectively. 

Recently Cybinski (2001) claimed that there is no clear distinction between "failed" 

and "non-failed" firms and all of them are rather laying on a common continuum of 

failed and non-failed. She argued that in reality there is not an obvious cut-off point 

between "failed" and "non-failed" firms but rather an overlap or grey area between 

these two classification groups. According Cybinski, it is quite difficult to accomplish 

predictions of financial distress for firms belonging to this grey area (Cybinski, 2001; 

Muller et al., 2012).  

Besides univariate models another kind of prediction models, the so called 

multivariate models, came in use a few years later. A multivariate model can be 

characterized as discriminant analysis or multi discriminant analysis (MDA) (Altman, 

1968; Altman 1993, Altman, 2000). The evolution of MDA models came with 

probability models like Probit and Logit or Ohlson’s model (1980).  
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An interesting overview of bankruptcy predictions from 1930 to 2002 is provided by 

Bellovary, Giacomino, and Akers (2007). 

MDA analysis  

Discriminant analysis is a statistical technique for distinguishing between two or 

more groups on the basis of their observed and measured characteristics. For example, 

an analyst might take multiple factors into account, such as different financial ratios, 

when choosing between stocks in order to design an efficient portfolio. 

Fischer (1936) used the term discriminant analysis in the article "The Use of Multiple 

Measurement in Taxonomic Problems". The method was applied for exploration of 

the relationship between a group of independent characters (discriminators) and one 

qualitative dependent variable-output. This output could be in simple cases 0 or 1 

allowing the classification of the analysed objects either to first or the second class. 

The classes are known to be clearly distinguishable and each object clearly belongs to 

one of them. The task can also be identification of features that contribute to the 

identification process. The purpose is to find a prediction model classifying new 

objects (for example firms, financial institutions, banks etc) into classes. New objects 

are classified into classes based on their high degree of similarity.  

According to the numbers of variations of qualitative variable one might distinguish:  

• discriminant analysis for two groups, 

• discriminant analysis for more groups. 

Discriminant analysis method is applied in classification problems of many research 

fields. For example in financing area, a bank can monitor in the sample used its 

client’s way of repaying their loans and some other indicators. Subsequently on this 

basis, the bank may evaluate potential clients (based on same characteristics with 

those of the sample) as more or less credible for a loan. 

The main task of discriminant analysis is to find the optimal attributing rules that will 

minimize the likelihood of erroneous classification of elements, i.e. it will minimize 

the median of erroneous decision (it may happen that an element actually comes from 

a particular group but it is classified into different group by obtained discriminant 

analysis). Each element is characterized by several features which reflect its 
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properties. This means that the examined elements (units) are realizations of the 

random vector X = (X1, X2,.., Xn). Random variables Xi, where i = 1, 2,.., m, 

corresponding to measured characteristics (Kočišová & Mišanková, 2014). 

Altman’s prediction models  

The corporate bankruptcy is considered as an especially important problem for 

economy since it is considered as a limiting factor for the economic growth. The first 

research work on multivariate analysis of corporate bankruptcy prediction began in 

1968 with the famous model of Altman and is going on until now with a variety of 

models both statistical and theoretical. The first attempt to build a model that predicts 

the likelihood of bankruptcy of a firm was made by Edward Altman. 

In 1968, Altman (1968) developed and presented the Z-score formula in order to 

provide a more effective financial assessment tool to assist risk analysts and lenders in 

their estimations. His work was based on the notion that univariate prediction models 

served in most cases as indicators and not as predictors of bankruptcy. For that reason, 

these models were not good enough for the actual needs of the financial analysts. He 

used instead, multi discriminant analysis since this allowed the use of a model which 

could treat binary variables as depended in order to explain the behaviour of two 

different groups.  

The method of multiple distinct analysis (MDA) was initially used to classify or to 

make predictions in problems where the dependent variable is displayed in high 

quality formats such as male or female, bankruptcy and non-bankruptcy etc. The main 

advantage of the method is the simultaneous analysis of financial indicators that have 

been chosen while as a downside is highlighted from the literature the violation of 

normality and independence of variables. 

By that time multi-discriminant analysis was used merely by behavioural and 

biological sciences (Altman, 1968). 

Altman introduced two types of errors for testing of final results which are presented 

in the below table. 
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Error Type Occurrence 

I. 
Error occurs when a bankrupt firm has a z-

score that classifies it as non-bankrupt. 

II. 
The exact opposite, namely when a non-

bankrupt firm’s Z-score is beneath 1.81.  

Table 3: Error types for Altman’s model  

The results of Altman’s model test indicated that bankruptcy could be predicted with 

an accuracy of 95% one year before it happened, 72% two years before, 48% three 

years before, 29% four years before and 36% five years before it happens (Altman, 

1993). 

Later Altman revised his model to incorporate a “four variable Z-Score” prediction 

model (Altman, 1993). The new one improved further the predictive ability of his 

original model. Altman (2000, 2002) came repeatedly forward with several revisions 

of this model seeking to make it available to different economic life conditions and to 

advance its prediction accuracy figures. 

The Altman’s model from its publication since now has been of great concern to the 

scientific community. Many variants of it have been proposed trying either 

improvements or adjustments/modifications for use in specailized cases. Variant 

models are considered the linear Probability Model and the Quadratic Discriminant 

Analysis. An outline of the most known variants comes on the following pages. 

Nevertheless the worldwide acceptance of Altman’s model, there exist researchers 

that have expressed their concern regarding the effectiveness of the discriminant 

analysis in financial predictions. Eisenbeis (1977), Ohlson (1980), Jones (1987) were 

critics of MDA and they argued that the results could be biased and did not have 

sufficient information value. The lack of qualitative variables and the inability for 

integration of modern analysis techniques were also pointed out as undermining 

elements of the method efficiency (Zopounidis, 1995). 

Despite of criticizing arguments, financial analysts and scientists are still considering 

Altman’s Z-Score as an effective and suitable indicator of a firm's ability to avoid 
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bankruptcy. All over the world, financial and credit professionals are constantly using 

Altman's models in order to mitigate risk in debt portfolios. It is quite popular because 

it uses multiple variables to measure the financial health and credit worthiness of 

anyone (person or firm). Since Z-score is an open system, the variables employed in 

the formula can easily be understood by its users.  

As aforementioned, the Z-score model was initially developed for publicly held 

manufacturing firms with assets of more than $1 million. Over the years, Altman 

revised its model in order to be applicable to privately held firms (the Altman Z'-

Score) and non-manufacturing firms (the Altman Z"-Score). Altman's Z-score 

formulas are used in a variety of contexts and countries.  

Z-score formula 

The formula uses a statistical technique known as multiple discriminant analysis 

(MDA), by which Altman attempted to predict defaults by use of the following five 

accounting ratios (Hayes et al., 2010; Hull, 2015, p. 400): 

X1: Working Capital/Total Assets  

X2: Retained Earnings/Total Assets 

X3: Earnings before interest and taxes/Total Assets 

X4: Market value of equity/Book Value of Total Liabilities 

X5: Sales/Total Assets 

Depending on the nature of the enterprises assessed the Z-score formula varies 

(Altman, 1968; Altman, 1977; Altman, 1993; Altman, 2000). In case of publicly 

traded manufacturing companies (general formula) the original Z-score is:  

 Z=1.2*X1+1.4*X2+3.3*X3+0.6*X4+0.999*X5 (1) 

While, in the predictions for non-manufacturing firms (not applicable for banks & 

finance companies), the calculation formula uses only four variables and becomes 

(Altman, 1977, p. 22; Chotalia, 2014): 

 Z=6.56*X1+3.26*X2+6.72*X3+1.05*X4 (2) 
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Respectively, for companies from emerging markets (banks) the calculation formula 

takes the following form: 

  Z=6.56*X1+3.26*X2+6.72*X3+1.05*X4+3.26 (3) 

Variable 

name 
Ratio of  Result to be achieved 

X1 

Working Capital / Total 

Assets (WC/TA)  

 

This ratio measures the net working capital 

relative to the size of the assets used in the 

business. It is used as a measure of liquidity 

standardized by the size of the firm. 

X2 

Retained Earnings / Total 

Assets (RE/TA)  

 

This variable relates the total retained 

earnings of the firm to the total assets 

employed. It is able to capture the 

cumulative profitability of the firm since 

inception. Also, since young firms tend to 

have low RE/TA ratios, this variable may 

capture the age of the firm as well.  

X3 

Earnings Before Interest 

and Taxes / Total Assets 

(EBIT/TA)  

 

The operating profitability in relation to 

total assets measures the productivity of the 

assets or the earning power.  

X4 

Market Value Equity / 

Book Value of Total 

Liabilities (MVE/TL) 

This ratio measures the extent to which 

total assets can decline in value before total 

liabilities exceed book value of equity. In 

other words, this indicates the asset cushion 

of the firm.1  

                                                            
1 X4*, Book Value Equity / Book Value of Total Liabilities (BE/TL)  

This alternative ratio for X4 variable is appropriate for a firm that is not publicly traded, and hence the 

Z-model with this variable definition is called the Z’-model or the private firm model.  
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X5 

Sales / Total Assets 

(S/TA)  

 

This asset turnover ratio is intended to 

capture the sales generating ability of the 

assets.  

Altman found this to be industry sensitive 

and least discriminating between the 

bankrupt and non-bankrupt companies. As 

a result, Altman proposed a variant of the 

Z’-model called the Z”-model which 

excludes S/TA. 

Table 4: Variables and ratios used in Altman's Z-score models 

In the table below is presented a classification of Z-score cutoffs proposed from 

Altman for his models. There exist three zones (or credit ratings) that a firm might be 

classified depending on the Z-score achieved after its assessment. These zones are 

safe, gray and distress and their low and upper limits vary depending on the model 

version used. 

Zone 

Model 
Safe Gray Distress 

Z (original model) >2.99 2.99-1.80 <1.80 

Z (emerging markets  model) >2.60 2.60-1.10 <1.10 

Table 5: A classification of Z-score cutoffs  

Grover’s model  

Grover model is a model that is generated by performing redesign and reassessment of 

the Altman Z-Score model. Grover Model does categorize bankruptcy with a G-score 

of less than or equal to -0.02 (G≤-0.02) while the state does not go bankrupt more 

than or equal to 0.01 (G≥0.01) (Grover, 2003).  
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Grover's	formula	  

 where: 

CAR = α + β1*X1 + β2 *X3 + β3*ROA + ɛ  

	

CAR: Capital Adequacy Ratio  

X1: working capital/ total assets  

X3: earnings before interest and 

taxes/ total assets  

ROA: net income/ total assets 

Springate’s model 

Springate model follows procedures developed by Altman. In 1978, Springate used 

step-wise multiple discriminant analysis to select four out of 19 popular financial 

ratios that best distinguished sound firms from those that failed (Vickers, 2006, p. 67).  

Actually, the applied formula classifies a firm with S-score> 0,862 as a company that 

is healthy and there is no potential to be bankrupt, and vice versa. In simple words, the 

lower score is the greater probability for default becomes. The specific model 

examines insufficient liquidity, excess debt, insufficient sales and lack of profit 

(Sands et al. 1983; Sadgrove, 2006, p. 178). 

Springate's	formula	  

 where: 

CAR= α + β1*A + β2*B + β3 *C + β4 *D+ ɛ  

CAR: Capital Adequacy Ratio  

A: Working Capital/ Total Assets  

B: Net profit before interest and 

Taxes/ Total Assets  

C: Net profit before taxes/ Current 

Liabilities  

D: Sales / Total Assets 
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Ohlson’s model  

Ohlson proposed the O-score as a more effective statistical bankruptcy indicator 

generated from a set of nine independent balance sheet ratios (Ohlson, 1980). He 

applied Logit model which was based on the same assumptions as MDA. Financial 

data of over 2000 companies were processed to feed the model scaling factors applied 

to its nine variables with the aim of increasing its accuracy. Its main 

difference/advantage from Altman’s model is the sample size since its assessment 

process is based on a much larger sample of corporate successes and failures in order 

to inform the model. 

Ohlson's	formula	  

 where: 

CAR = α + β1SIZE+ β2TLTA+ β3WCTA 

+ β4CLCA + β5OENEG+β6NITA + 

β7FUTL+β7INTWO+β7CHIN+ɛ  

 

CAR: Capital Adequacy Ratio  

SIZE: log (total assets)  

TLTA: total liabilities / total assets 

WCTA: working capital / total assets 

CLCA: current liabilities / current assets 

OENEG: is a dummy variable, 1 if total 

liabilities exceed total assets, and 0 if 

otherwise 

NITA: net income / total assets  

FUTL: funds provided by operations / 

total liabilities 

INTWO: is a dummy variable, it would 

be worth 1 if negative net income for at 

least two years in a row, and 0 if not  

CHIN: (NIt-(NIt-1))/(│NIt│+│NIt-1│), 

where NIt is the net income for all 

periods. 
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Zmijewski's Model  

Zmijewski model (1984) used ratio analysis that measures the performance, leverage 

and liquidity of a firm for the model predictions in order to predict a firm's bankruptcy 

in two years (X-score). The analysis applied by Zmijewski used 40 firms that have 

gone bankrupt and 800 firms that were still on business at that time. Zmijewski model 

assessment criteria is the greater the value of X (exceeding 0), the more likely the firm 

could be bankrupt. On the contrary, if a firm gets a score of less than zero then the 

firm will not potentially bankrupt (Zmijewski, 1984). 

Zmijewski’s	formula	  

 where: 

CAR = α + β1*X1 +β2* X2 + β3*X3 + ɛ  

  

	

CAR: Capital Adequacy Ratio  

X1: ROA (Return on Assets)  

X2: Leverage (Debt Ratio)  

X3: Liquidity (Current Ratio) 
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Empirical Study 

In this section, the sample, data, methodology and results of the empirical study are 

presented.  

As aforementioned, Altman’s Z-Score is considered by many scientists and finance 

professionals as an effective and suitable tool for predicting corporate failures. In 

2013, Altman, Danovi and Falini (2013) applied Z-score model to predict the 

corporate failure of Italian firms subject to extraordinary administration. The results 

of their Z-score application shown a high prediction failure rate (ca. 95%) for the 

firms measured.  

As every model, Altman’s Z-score has pros and cons.  The main advantages are 

(Altman et al., 1995; Altman et al., 2013): 

 High rate of prediction accuracy from its appearance time until now (82%-

94%) 

 User friendliness. Anyone with finance knowledge and statistical skills can 

easily use it. 

 Multi-dimensional use. It is proposed for bankruptcy predictions of every firm 

type (private, publicly listed, non-manufacturing) 

 Availability of strong credit scoring. The Altman Z-score offers a strong credit 

scoring based on the financial data analysis of a sample of firms which might 

be used as a benchmark basis.  

On the other side, its main setbacks are (Eisenbeis, 1977; Ohlson, 1980; Jones 1987; 

Zopounidis, 1995): 

 Inability for modern analysis techniques integration. The Altman Z-score 

initially developed for industrial firms. Its modified versions have to be 

cautiously used in prediction cases for other firm types. 

 Biased results due to data manipulation easiness. There exists possibility of 

manipulation of the accounting statements from the firms in order to show 

good figures. This may lead to wrong conclusions, something that cannot be 

substantiated by Altman Z-score model. 
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The use of Z-score model to predict bank failure has a relatively recent appearance. In 

previous research works, aiming to measure the financial status of banks by use of Z-

score, the specialized Altman’s formula for firms from emerging markets was 

preferred (Chieng, 2013; Chotalia, 2014; Samarakoon and Hasan; 2003). In some 

cases, in the formula used for emerging markets was also included a specific constant 

proposed by Altman et al. (1995), so that the scores equal or less than zero would be 

equivalent to the default situation. The latter is the case for this empirical study too. 

Sample and data 

The data sample consisted of 42 banks which were classified into two groups of 21 

unmatched and randomly categorized banks for each group. In the first one were 

included all “failed” banks and the second contained the “non-failed” or still active 

banks, according to Altman’s model specifications.  

In the so-called “failed” group are included of banks from Greece, Italy, Ireland 

Portugal, Spain and Cyprus. Further on, in this work, these countries will be called as 

GIIPS countries and respectively the banks as GIIPS banks. The “non-failed” group is 

consisted of still active banks from several Central European countries, namely 

Germany, France, Belgium, Netherlands and Switzerland. The last one is not a 

European Union member but it is an associated country to EU and their banks are 

following the rules of Basel (BIS, 2017). For this work purposes, these countries will 

be referred to as CE countries and their banks as CE banks. 

The selection of the banks examined, in this work, is based on specific characteristics 

for each target group. More specifically, for the group of GIIPS “failed” banks is their 

status after failure which might be:  

o merged 

o acquired from another bank  

o defaulted 

It is worthy to mention that in the European Union does not exist any authorized 

association to keep certified, valid and accessible records of the “failed” European 

banks (merged, defaulted, acquired). On the contrary, in United States there exists an 
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authority named Federal Deposit Insurance Corporation (FDIC) which is monitoring, 

collecting and providing such information. 

For the above reason, the selection and grouping of failed banks was a difficult and 

time-consuming task which was accomplished with personal search and processing of 

raw data from financial statements, documents etc. One of the set criteria was that the 

failure event had to been occurred during the years of the financial crisis (2006-2016). 

Another one was that these banks would have their headquarters to someone of the so-

called GIIPS countries. 

“Failed” group (GIIPS banks)  
Year of 
“failure” 

1. Proton Bank S.A. (Greece) 2011 

2. Marfin Egnatia Bank S.A. (Greece) 2011 

3. Geniki Bank S.A. (Greece) 2014 

4. Millenium Bank (Greece) 2013 

5. Banca di Credito Cooperativo di Sagna S.C.(Italy) 2010 

6. Valore Italia Holding di Partecipazioni S.p.A.(Italy) 2015 

7. Cassa Rurale ed Artigiana di Treviso Credito Cooperativo (Italy) 2015 

8. Banca Agricola di Mantovana S.p.A.(Italy) 2007 

9. Banca Antonoveta (Italy) 2007 

10. Bancaperta S.p.A. (Italy) 2008 

11. Banco di Sicilia S.p.A (Italy) 2006 

12. Credito Artigiano S.p.A (Italy) 2012 

13. Irish Bank Resolution Corporation Limited(Ireland) 2013 

14. Banco BIC Portugues S.A. (Portugal) 2010 

15. Cyprus Popular Bank Public Co Ltd 2012 

16. Caixa d Estalvis de Catalunya Tarragona I Manresa (Spain) 2012 

17. Banca Civica S.A. (Spain) 2012 

18. Banco de Andalucia S.A. (Spain) 2009 

19. Banco de Valencia S.A. (Spain) 2013 

20. Banco Espanol de Credito S.A. (Spain) 2013 
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21. Banco Pastor S.A. (Spain) 2011 

Table 6: “Failed” group members (GIIPS banks)  

Respectively, for the banks comprising the non-failed group of CE banks, the 

characteristics applied were the following: 

o still active 

o large in terms of assets (ranking list www.relbanks.com) 

o located in countries of Central Europe which were not severely affected by the 

recent economic crisis of Eurozone. 

On the basis of the above criteria, there were selected 3-6 large banks from each 
country of the CE group.  

“Non-failed” group (CE active banks) 

1. AXA Bank Belgium N.V. 

2. Belfius Banque S.A. (Belgium) 

3. ING Belgium S.A. 

4. BNP Paribas S.A. (ENXTPA:BNP) (France) 

5. BPCE S.A. (France) 

6. Credit Agricole S.A. (France) 

7. Bayerische Landesbank (Germany) 

8. Commerzbank AG (Germany) 

9. Deutsche Bank Aktiengesellschaft (DB:DBK) (Germany) 

10. Kfw (ASX:KFWHZ) (Germany) 

11. Landesbank Baden-Wurttemberg (Germany) 

12. de Volksbank N.V. (Netherlands) 

13. Achmea B.V. (Netherlands) 

14. ABN Amro Bank N.V. (Netherlands) 

15. NIBC bank N.V. (Netherlands) 

16. ING Bank N.V. (Netherlands) 

17. Credit Suisse AG (Switzerland) 

18. Banque Cantonale Vaudoise (SWX:BCVN) (Switzerland) 

19. UBS AG (Switzerland) 
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20. Raiffeisen Schweiz Genossenschaft (Switzerland) 

21. Zurcher Kantonalbank (Switzerland) 

Table 7: “Non-failed” group members (CE banks)  

Methodology  

The financial health assessment of the banks examined was performed by use of the 
statistical Altman’s specialized model for firms from emerging markets. More 
specifically, the following Z- score formula was applied to the data analysis 
performed (Altman et al., 1995):  

Z = 6.56X1 + 3.26X2 + 6.72X3 + 1.05X4 +3.26  

Where:  

Z = the score 

X = the independent variables (ratios of) 

X1: Working Capital/Total Assets  

X2: Retained Earnings/Total Assets  

X3: EBIT/Total Assets  

X4: Book Value Equity/Total liabilities  

All financial data to calculate the needed ratios for the formula application were 

extracted from balance sheets and income statements of the sample banks. These were 

accessed and retrieved via the S&P Capital IQ platform or directly from their 

websites. The date of all financial documents used in this process was the 31st 

December for each year of reference. 

For testing the accuracy and predictability of the model used, the Z-scores for the 

“failed” group members were estimated two years before the known “event” per each 

case. For example, if a bank was merged on 2012, the Z-score was calculated for 

years 2010 and 2011. Thus, the financial status of this bank was based on the average 

of the estimated Z-score for these two years. 

On the contrary, for the “non-failed” group members (still active CE banks) their Z-

score was explicitly estimated for years 2015 and 2016. Consequently, their financial 

soundness was characterized on the basis of the calculated average of Z-score. 
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Actually, the financial status of the banks examined was characterized depending on 

which of the following zones was laying their calculated Z-score average, namely if it 

was: 

o above 2.6 – The bank was sorted in the “Safe” zone  

o between 1.1 to 2.6 – The bank was sorted in the “Grey zone” 

o less than 1.1 or had a negative number – The bank was sorted in the “Distress 
zone” 

Financial data analysis and results 

The following table displays the outcome of the Z-score analysis implemented for the 

“failed” group (GIIPS banks). The final Z-score result (second column) is the average 

of the Z-scores of the last two years before the “failed” event (which varies depending 

on each bank case).  

 

“Failed” group 

Banks of GIIPS countries  

Z-score Result 

(Average of two 
years before the 
“failed” event) 

Estimated status  (zone) 

1. Proton Bank S.A. (Greece) -0.21 Distress 

2. Marfin Egnatia Bank S.A. 
(Greece) 

-1.06 Distress 

3. Geniki Bank S.A. (Greece) -2.01 Distress 

4. Millenium Bank (Greece) -3.92 Distress 

5. Banca di Credito Cooperativo di 
Sagna S.C.(Italy) 

2.34 Grey 

6. Valore Italia Holding di 
Partecipazioni S.p.A.(Italy) 

-2.36 Distress 

7. Cassa Rurale ed Artigiana di 
Treviso Credito Cooperativo (Italy) 

-0.18 Distress 

8. Banca Agricola di Mantovana  
S.p.A.(Italy) 

0.05 Distress 

9. Banca Antonoveta (Italy) 1.37 Grey 

10. Bancaperta S.p.A. (Italy) 4.51 Safe 
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11. Banco di Sicilia S.p.A (Italy) 0.16 Distress 

12. Credito Artigiano S.p.A (Italy) -0.63 Distress 

13. Irish Bank Resolution 
Corporation Limited (Ireland) 

-4.38 Distress 

14. Banco BIC Portugues S.A. 
(Portugal) 

0.73 Distress 

15. Cyprus Popular Bank Public Co 
Ltd 

-0.46 Distress 

16. Caixa d Estalvis de Catalunya 
Tarragona I Manresa (Spain) 

-0.80 Distress 

17. Banca Civica S.A. (Spain) -0.32 Distress 

18. Banco de Andalucia S.A. 
(Spain) 

-1.44 Distress 

19. Banco de Valencia S.A. (Spain) -1.29 Distress 

20. Banco Espanol de Credito S.A. 
(Spain) 

0.03 Distress 

21. Banco Pastor S.A. (Spain) -0.26 Distress 

Table 8: Characterization of failed banks after Z-score analysis 

In the first subgroup of GIIPS banks, the Z-score outcome of all Greek banks 

examined (Proton Bank, Marfin Bank, Egnatia Bank, Geniki Bank, Millenium Bank) 

was negative. This could be interpreted as that these specific banks were in difficult 

financial situation and their calculated Z-scores correctly predicted the upcoming 

“financial distress” that they were confronted with in the next years. 

More specifically, Proton Bank was liquidated and merged on 2001, Egnatia Bank 

was acquired on 2011, Geniki Bank acquired on 2014, and Millenium Bank with a 

significant negative Z-score (-3.92). 

A significant factor determining their final Z-score was the large negative liquidity 

ratio X1 (Working Capital /Total Assets) based on the fact that Current Lialibilities 

over-exceed the Current Assets for calculating Working Capital. For further details 

see appendixes I and II. 
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Italian banks composed the second subgroup. This was consisted of 8 banks which on 

the basis of their calculated Z-score were sorted as follows: five in the “Distress 

zone”, two in Grey zone and the last one in “Safe zone”. Again Z-score proved its 

high precision and effectiveness acting as distress indicator Banca di Credito 

Cooperativo (2.34) was acquired on 2010, Valore Italia Holding (-2.36) acquired on 

2015, Cassa Rurale ed Artigiana (-0.18) acquired on 2015, Banca Agricola (0.05) was 

acquired on 2007, Banka Antonoveta (1.37) was acquired on 2007, Banco di Sicilia 

(0.16) merged on 2006, and Credito Artigiano (-0.63) acquired on 2012. The 

Bancaperta Spa with 4.51 final Z-score (Safe Zone) was a positive exception that 

merged with another bank by acquiring it.  

The third subgroup of banks was from Spain. It was consisted from 6 small banks. 

The whole sample from Spain was classified to the “Distress zone” due to the 

negative Z-scores achieved. In this case too, the significant factor of a very high 

negative liquidity ratio due to over-exceeding current liabilities to current assets 

determined the final outcome. Caixa d Estalvis de Catalanya (-0.8) acquired on 2012, 

Banca Civica (-0.32) acquired on 2012, Banco de Andalucia (-1.44) acquired on 2009, 

Banco de Valencia (-1.29) acquired-merged on 2013, Banco Espanol de Credito 

(0.033) acquired on 2013, and Banco Pastor (-0.26) acquired-merged. 

The last subgroup is a multinational one since it incorporates three banks from three 

different European Countries, namely Ireland, Portugal and Cyprus. The Irish Bank 

Resolution had a negative Z-score (-4.38) which was also the highest of the whole 

sample. The result indicated that the bank was in a very bad financial situation which 

later was actually confirmed by the bank’s liquidation on 2013. In this specific case, 

Z-score was significantly affected from the negative Working Capital, the negative 

Retained Earnings and consequently by EBIT. The Portuguese Banco Bic had also a 

low Z-score by which it was classified to the distress zone. Finally, in the case of the 

Cyprus Popular bank, that was defaulted on 2012, the achieved Z-score was a strong 

indication for immerse financial danger.  
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 “Non-failed” group 

Active CE banks 

Z-score Result 

(Average of the Z-
score for 2015 and 

2016) 

Estimated status  
(zone) 

1. AXA Bank Belgium N.V. -0.68 Distress 

2. Belfius Banque S.A. (Belgium) 0.65 Distress 

3. ING Belgium S.A. -0.84 Distress 

4. BNP Paribas S.A. 
(ENXTPA:BNP) (France) 

1.60 Grey  

5. BPCE S.A. (France) 1.08 Distress 

6. Credit Agricole S.A. (France) 2.02 Grey  

7. Bayerische Landesbank 
(Germany) 

0.73 Distress 

8. Commerzbank AG (Germany) 0.91 Distress 

9. Deutsche Bank Aktienge 
sellschaft (DB:DBK) (Germany) 

2.23 Grey 

10. Kfw (ASX:KFWHZ) 
(Germany) 

3.42 Safe 

11. Landesbank Baden-
Wurttemberg (Germany) 

1.43 Grey 

12. de Volksbank N.V. 
(Netherlands) 

-1.38 Distress 

13. Achmea B.V. (Netherlands) 2.53 Grey  

14. ABN Amro Bank N.V. 
(Netherlands) 

-0.72 Distress 

15. NIBC bank N.V. (Netherlands) 2.50 Grey 

16. ING Bank N.V. (Netherlands) -0.91 Distress 

17. Credit Suisse AG (Switzerland) 2.88 Safe 

18. Banque Cantonale Vaudoise 
(SWX:BCVN) (Switzerland) 

0.12 Distress 
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Table 9: Financial status estimation of the non-failed banks  

The analysis of the final Z-scores for the “non-failed” or still active banks showed that 

57% of the active Central European banks were sorted in the “Distress’ zone, 33% of 

the rest testing sample was placed to the “Grey zone” and only 10% of banks 

examined could be classified to the “Safe zone”.  

By applying the specialized Z-score formula on the largest banks of Belgium, France, 

Germany, Netherlands and Switzerland and analyzing cautiously the findings, a 

significant limitation of this model was exposed. The specific formula has not a 

proper and accurate performance and respectively predictability in cases of firms 

(here banks) having high leverage (debt). As it was the case with the Z-scores of the 

“failed” banks, it was evidently confirmed here too that the highest was the liquidity 

ratio (with negative value at the same time) due to over-exceed of the current 

liabilities to current assets, the smallest became the estimate of the Z-score. 

 

Figure 1: Z-score estimations per group and zone 

19. UBS AG (Switzerland) 2.13 Grey 

20. Raiffeisen Schweiz 
Genossenschaft (Switzerland) 

-0.21 Distress 

21. Zurcher Kantonalbank 
(Switzerland) 

1.08 Distress 
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Limitations of the empirical study  

The biggest challenge of this work was the model itself and its applicability to 

banking sector organisations. The Z-Altman score was initially developed for 

predicting bankruptcy for industrial firms almost 50 years ago in USA. It is an old 

model which is generally accepted as appropriate for bankruptcy prediction by finance 

experts and researchers. Despite that during all these years, it has undergone a lot of 

improvements and modifications/adjustments in order to be expanded its application 

to all types of firms, it is still presenting some malfunctions.  

The problem lies on the fact that the banks/financial institutions are usually operating 

under conditions of high current liabilities. Consequence of that is the appearance of a 

great negative impact on the first variable X1 (Working Capital/Total Assets) which 

actually affects and reduces the calculated total Z-score of banks under examination.  

In most cases, the current liabilities of banks are exceeding their current assets. 

Therefore, the outcome of Working Capital (Current Assets minus Current Liabilities) 

is always negative for the banks/financial institutions. This liquidity ratio is very 

important for the calculation of Z-score because is helping to screening of serious 

financial problems that a firm could face in the future (Altman, 1995).  

However, a negative Working Capital might be an ambiguous indicator as well. In 

some case, this can be interpreted as a sign of a firm’s managerial efficiency for 

example a firm with low accounts receivable might also mean that it is operates 

effectively on a cash basis (Damodaran, 2012, p. 268; Stockopedia, 2017).  

Another significant limitation for prediction models like Altman’s Z-score is that their 

applicability is principally based on historical information. Eisenbeis (1977) pointed 

out the insufficient value information used in prediction models like Altman’s where 

the prediction of a firm’s future financial status is only based on analysis of past data. 

Economy as life is changing dynamically. According to Grice (2001) “the models’ 

accuracies may significantly decline when using samples from time periods, 

industries, and financial distress situations other than those used to originally develop 

the models” 

Finally, the access to LINC room, where the Bloomberg platform is installed, was not 

possible during the summer time. Therefore, the sole source to retrieve the necessary 
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financial data was S&P Capital Iq platform where balance sheets for a few “failed” 

banks were not available. In these cases, the necessary information was retrieved from 

financial statements and documents uploaded on the bank websites.  

Therefore, a cross-checking of the retrieved financial data for these banks was not 

possible.  
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Conclusions 

In this work was attempted a testing and evaluation of the strength and the 

effectiveness of Altman’s Z-score model in predicting financial distress in the 

European banking sector. Following the specifications of the Altman’s Z-score model, 

the testing sample was consisted of two groups. The first included “failed” banks from 

countries that faced huge economic problems in the period of financial crisis (2006-

2016). The second was comprised of large banks from Central Europe which are still 

active. 

The estimated results of the “failed” group were 100% confirmed which is indicating 

that Altman’s Z-score model might be an effective indicator of financial distress 2 

years prior to a known “failure” event. However, some drawbacks of the specialized 

model for firms from emerging markets were revealed too. Actually, the results 

achieved from the financial data processing of the “non-failed” group (still active CE 

banks) made discernible a significant limitation. More specifically, the calculated Z-

scores of this group were low and indicated that 12 banks might possibly be 

threatened by direct financial distress in the next years, 7 banks are placed in the grey 

zone signaling concerns about their financial situation and only two were in the “safe” 

zone. The problem is caused form the fact that liquidity ratio (X1 model’s variable), 

in most cases, was negative something that affected directly the final outcome of Z-

score and respectively the characterization of the financial health of the banks 

examined. It seems that the accuracy and predictability of the tested Altman model, 

specialized for emerging markets, is questionable as regards predictions for private 

firms with high leverage. 

Shumway (1999) proved that the Z-score model is dead and totally not trustworthy 

anymore about use on predicting corporate bankruptcy. He claimed that half of 

Altman variables have poor predictive strength. Therefore, he proposed a model with 

market-driven variables and two accounting ratios. According to Shumway (1999) 

this was considered as more accurate in out-of-sample tests than Altman’s Z-score 

model. Chava & Jarrow (2004) validated the superiority of Shumway’s model against 

Altman’s Z-score model by confirming the crucial element of introducing industry 

effects in the hazard rate models. 
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Based on the findings of this work, one may claim that Altman’s Z-score model, 

specialized for firms from emerging markets, is somehow outdated and has to be 

handled in a very cautious way, especially in predictions concerning banking sector 

organisations. Further improvement of the Altman’s Z-score model is needed in order 

to be a trustworthy prediction tool for private firms (banks) operating with high 

leverage. Perhaps, Altman will soon provide us with one more Z-score formula which 

will be more appropriate for use with banks/financial institutions. This will be a new 

research challenge for finance researchers.   
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