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Abstract

The focus of this master’s thesis is to evaluate the effect of reactive program-
ming on Playtech BGT Sports content server. The effect is evaluated mainly
from a performance aspect, but a development process aspect is also taken
into consideration. The content server is working in real-time and is required
to have low latency and high throughput of processing of data. These charac-
teristics are important to supply customers with the latest information.

A comprehensive theoretical research was conducted in order to be able to
implement reactive prototypes correctly and to avoid common pitfalls. Three
types of reactive prototypes of the content server were implemented with dif-
ferent execution contexts. The prototypes were tested and the results were
compared to the results of a fully synchronous solution. The results showed
that reactive programming can increase the performance during high loads.
The solutions performed similarly during low load. During high load one pro-
totype stood out with 100% of throughput and low latency. This prototype
had an execution context in the thread which subscribed to the result from the
executed callback methods.

Reactive programming did in this case increase performance during high
loads, but it is worth noting that the execution context is important for the per-
formance. The development process did not change significantly, but reactive
programming added complexity to the code and the need for a developer with
extensive knowledge in reactive programming.

Keywords: Reactive programming, declarative programming, asynchronous program-
ming, non-blocking execution
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Chapter 1
Introduction

Online sports betting has become an immense industry in the 21st century. The selection
of sports and number of events that can be bet on is growing rapidly. Having the latest
odds is essential for the customer in order to be able to decide whether it is worth betting or
not. This is the reason why the time from the moment an odd is updated until it reaches the
customers is critical. The expectations for fast odd-updates put great pressure on the under-
lying system, which should receive, process, persist and distribute odd-updates. Playtech
BGT Sports provides systems targeting online betting.

The architecture of the systems which Playtech BGT Sports is providing consists of a
client side and a server side. Operations executed on the client-side is done by the web
browser by executing JavaScript code. The server-side handles mapping, persisting and
distribution of events. The server-side is divided into three different domains: content
server, data server and frontend server. The frontend server handles transportation of data
to clients, by working with diffs and sending as little data as possible. The data server
handles persisting of data and data publish/subscribe. The content server maps data to
suitable data models for components residing on the client-side. The data mapped by the
content server can be events or updates for events. These are provided by a content API
residing at a content provider which can be a betting company for example. For a graphical
overview of the architecture see Figure 1.1.

1.1 The Problem
The number of customers and the number of events that can be bet on is rapidly increasing,
but everybody expects high performing applications. The correctness of odds displayed
is critical for the customers thereby it is also critical for the businesses providing online
betting platforms. Thus, the time between the point of receiving of an event or update
from the content provider and the point when the user sees the update should be minimal.

To be able to achieve low latency between receiving and distributing the data it is
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1. Introduction

Content Provider

Consumer Adapter Aggregator

Content Server

Data Server

Frontend Server

Client

Figure 1.1: Flowchart about the flow of data in the application,
from the point where the data is received from the content provider
until the point where it reaches the client.

important for each part of the application not to act as a bottleneck. A key part in the
application is the content server. The server can be divided into three parts: consumer,
adapter and aggregator, see Figure 1.1. After receiving raw data from the content provider,
the consumer handles the receiving of the data and the adapter maps the raw data into
suitable data models. The aggregator aggregates the data models to lists of data models
and more complex data models which are published to the data server. Communication
between the three parts of the content server is partially done by synchronous method
invocation.

With the growing amount of incoming data finding new ways to improve the appli-
cation is crucial. One possible solution would be to improve the specs for the machines
which the servers are running on, but this solution would not be sustainable in the future
because of limited machine power. Playtech BGT Sports is therefore requesting assistance
with investigating another possible solution, more specifically the use of reactive program-
ming and asynchronous data streams. This master’s thesis is intended give Playtech BGT
Sports knowledge to evaluate if the use of reactive programming is a viable solution for
the problem.

10



1.2 Reactive Programming

1.2 Reactive Programming
In the latest years the reactive programming paradigm has received increased attention
since more and more applications has become event-driven[10]. The paradigm revolves
around propagation of change for continuously time-varying variables. In other words
the paradigm revolves about asynchronous non-blocking data stream processing. Reactive
programming takes a declarative approach letting developers specify what to do but it is
leaving the time of execution to the language. Reactive programming will be covered more
in depth in Chapter 3.

1.3 Research Questions
In order to evaluate if the use of reactive programming is a viable solution the master’s
thesis will address two research questions. The solutions will be assessed from three dif-
ferent views and not only from a pure performance point of view. The research questions
are the following:

• How does the use of reactive programming affect the performance in terms of la-
tency, throughput, CPU usage and memory usage?

• How does the use of reactive programming affect the development process?

1.3.1 Scientific Contribution
By answering these questions the master’s thesis will hopefully contribute with knowl-
edge about performance of an application with reactive programming applied to the inter-
nal logic, but also about the impact on the development process when changing from an
imperative style of programming to a declarative style.

1.4 Related Work
Harel and Pnueli defined the term ”reactive system” in 1985 in their paper ”On the devel-
opment of reactive systems”[17]. In the paper it is determined that two types of systems
exist: transformational and reactive systems. Both systems process input and produce out-
put. The difference made between the systems are that a transformational system reacts
to inputs from time to time while a reactive system reacts to inputs continuously. The
authors’ paper defines the term ”reactive” which definition will be used as a background
to what reactive is in this master’s thesis.

Elliott and Hudak defined the term functional reactive programming in 1997 in their
paper ”Functional reactive animation”[14]. The paper proposes a collection of data types
and functions to create applications with rich interactive multimedia animations. The
proposition was created to make development of multimedia applications easier for de-
velopers.
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1. Introduction

One major criticism against the first proposal of FRP was the use of the pull-based
model[14]. In this model a value is needed to be pulled from its source. The criticisms
is based on the fact that all computations are needed to be done before the reaction takes
place[10]. Complications like time-leaks can occur, meaning that values not yet needed
are calculated which is leading to the need of catching up with computations later. Another
complication is space-leaks, which occur after a time-leak if space is taken up. These prob-
lems mainly arise in lazy typed languages such as Fran. In newer implementations of Fran,
such as New Functional Reactive Animation (NewFran), these problems are solved[15].

FRP was precisely defined in 1997. However, many languages and libraries claiming
to implement FRP today do not follow the original definition. Languages like Elm and
reactive libraries as Reactor are sometime wrongly described as FRP according to Conan
Elliott[13]. Most recent implementations lack continuous time and precise and simple
denotation. Hence, these should not be considered as FRP according to Elliott.

FRP is an important part of reactive programming and a considerable amount of re-
search has been conducted in this paradigm. However, this master’s thesis does not need
to discuss FRP further and will leave it as related work.

Data stream processing has wide applications and is not only restricted to reactive
programming and FRP. In this master’s thesis the source of the stream is coming from
inside the application, but this is not a requirement in data stream processing. Streams of
data can also come from web services, hardware, user input etc. The common denominator
is the processing of streams. The main focus of the master’s thesis is data stream processing
within an application and therefore a more general approach to data stream processing is
not further discussed, but a more exhaustive differentiation between reactive systems and
reactive programming is made in Chapter 3. This section focused mainly on FRP because
it has a close relation to reactive programming and simply because there is still on ongoing
discussion of what FRP is.

Kounev et al. [20] show in their paper ”Improving Data Access of J2EE Applica-
tions by Exploiting Asynchronous Messaging and Caching Services” how asynchronous
processing can be used to improve performance, scalability and reliability. They have
identified the bottleneck in e-business systems often is the link between the application
server and the database server. The synchronous solution keeps resources locked during
database transactions. The performance could be increased by making the transactions
asynchronous which means continuing the execution until the response is received instead
of waiting for the response. At lower transaction injection rates both solutions handle ap-
proximately the same number of transactions per minute, but at higher transaction rates
the asynchronous solution handles noticeably higher number of transactions. The usage
of CPU by the application server was lower for the asynchronous solution. Thus, reaching
hundred percent CPU usage only at higher transaction injection rates. The CPU usage by
the database server was approximately equal for both solutions and never reached hundred
percent. Since asynchronous processing is a key part of reactive programming there is
a potential for reactive programming to increase performance in the case studied in this
master’s thesis.

Syme et al. [24] describes the asynchronous programming model for F# in the paper
”The F# Asynchronous Programming Model”. In this paper it is concluded that applica-
tions reacting to events are becoming more and more important. Nowadays applications
need to handle user interactions, communication with web services, results from paral-
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1.5 Outline

lel computations and cloud computations. The paper also identifies two difficulties with
asynchronous programming. Firstly, the OS threads are proved to be costly in terms of
resources. Secondly, the difficulty of using callbacks creating ”callback hell”. These two
difficulties will be kept in mind during this master’s thesis.

Bainomugisha et al. [10] comes to the conclusion in their paper ”A survey on reac-
tive programming” that reactive programming is a programming paradigm suitable for
developing event-driven applications. During the latest years reactive programming has
received increased attention since more and more applications has become event-driven.
The current research on reactive programming has mostly been focusing on functional re-
active programming. The authors evaluate languages which implement reactive program-
ming along six axes: the basic abstractions for representing time-varying values, eval-
uation model, lifting operations, multi-directionality, support for distribution and glitch
avoidance. The languages are categorized and compared. They identify glitches to be
a problem with distributed reactive programming and concluded that further research is
needed in this area.

In recent years reactive programming has also received attention in the Java commu-
nity with the implementation of reactive libraries as Reactor[5] and the introduction of a
reactive standard in Java[2]. In 2015 it was suggested to include reactive streams in fu-
ture Java JDK release, because a standard for push-based asynchronous programming was
missing[2]. It was agreed upon that introducing a standard would make interoperability
between libraries easier. Reactive Streams is a reactive abstraction with minimal inter-
faces to implement a reactive library[6]. The interfaces defined in the Reactive Streams
specification is going to be a part of the Java JDK 9 release in the Flow API.

1.5 Outline
In this chapter the background for the master’s thesis was presented, as well as a intro-
duction to reactive programming and to related works. The purpose of this chapter was to
give a better understanding of the project in general.

In chapter two a method is proposed that will be used to answer the research questions.
Chapter three is a theoretical introduction to reactive programming which could help in
the understanding of the project’s solution. In chapter four the implementation of the
prototype and the design choices are presented. Chapter five is about the experimental
setup of the performed tests. The results are presented in chapter six and in chapter seven
the results and their impact is further explained. Finally in chapter eight the conclusions
of this master’s thesis project are drawn based on the research questions and the results.
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Chapter 2
Method

To find answers for the research questions in Section 1.3, a systematical investigation will
be carried out. Not only the understanding of reactive development and implementation
is important, but also a method of how to evaluate the development and code must be
established. The research questions are of a comparative nature and the method used to
find answers is of experimental nature. The two technical solutions to be compared are
synchronous programming and reactive programming. The experimental method requires
a well-defined method and well-defined metrics. In this chapter the necessary method and
metrics to draw conclusions are described.

The exact experimental setup is described in Chapter 5 because some technologies
used in the experiments are dependent on the implementation.

2.1 Synchronous Solution
The synchronous solution is implemented according to the existing content server in Playtech
BGT Sports. The existing content server is built with an architecture which facilitates
scalability and reactiveness. This architecture is removed and the current solution will be
fully synchronous with a blocking nature. This solution not only creates useful results for
Playtech BGT Sports, but it will possibly also be of more general interest. A comparison
between Playtech BGT Sports’ solution and reactive programming would not be useful for
others without knowledge about Playtech BGT Sports’ architecture and implementation.

2.2 Reactive Prototypes
Reactive prototypes are implemented to be able to make a comparison between synchronous
programming and reactive programming. To implement prototypes is only possible after
conducting a literature survey in reactive programming. The theoretical research in the
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2. Method

subject is also important to avoid common pitfalls and is most definitely essential to imple-
ment a truly reactive and non-blocking prototypes. The correctness of the implementation
is crucial for the future use of the results.

2.3 Performance Metrics
The experimental method requires quantitative data to be collected for drawing conclu-
sions. To draw reliable conclusions from the results it is important to choose metrics
which accurately show how the current application and the prototypes is performing. For
example, the disk space usage is not a suitable metric in this case because firstly the appli-
cation itself is not space consuming and secondly but more importantly nothing is written
to disk at this point. By excluding the non-suitable metrics four performance metrics can
be identified as applicable for the study. They are CPU usage, memory usage, latency and
throughput. These metrics are measured for the synchronous solution and for the reac-
tive prototypes. The results of measurements are then compared, which together gives a
complex picture on how the prototypes is performing compared to the current application.

2.3.1 CPU Usage
CPU power is a resource with limited expansion possibilities. If the CPU power supplied
cannot process data fast enough the utilization of the CPU needs to be changed to process
data faster. Hence, the CPU metric is a good metric not only from an economic view but
also from a view of available CPU power.

2.3.2 Memory Usage
Memory, like the CPU, is a resource which has limited expansion possibilities. Therefore,
the amount of memory used by the content server is of great interest. The metric gives
a good indication if either the synchronous solution or the reactive prototypes have best
memory utilization.

2.3.3 Latency
Latency is essentially relevant for the purpose of this master’s thesis since odds and match
information should reach the users as quickly as possible. From a business perspective
low latency provides important information to customers instantly[21] and they are able
to make better and quicker decisions about betting. Since the application is working in
real-time it is highly important to process the data in the shortest time possible.

Two measurements are of interest in this case. Firstly the measurement of the time
period from the moment the raw data reaches the content server until the aggregated more
complex data models are published to the data server. Secondly the measurement of the
time period from the moment the raw data reaches the content server until the moment the
data reaches the users. The first measurement gives an indication of how time-efficiently
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the reactive prototype is working and the second measurement indicates where possible
bottlenecks are located in the application.

2.3.4 Throughput
The fourth metric is throughput which has an impact on the time until odds and match in-
formation reaches the customers. The more data processed during a certain time the better
because more information will flow through the content server and reach the customers
faster. This metric is not only relevant for the benefits of the business[21] but also for the
user experience.

2.4 Performance Tests
Performance tests are the core of this master’s thesis since it is building on an experimental
method. The tests must be run in an environment where it is possible to measure metrics
and get reliable measurements. There are four possibilities to run the tests on: production
servers, staging servers, the cloud or a local machine.

Running the performance tests on production server could be argued to be the most
suitable solution because the results would reflect performance on a production server
where applications are actually running. However, there are two problems with using
production servers. Firstly, production servers are always in use and therefore it is difficult
to get time to run tests on one. Secondly, production server’s hardware can differ therefor
no coherent setup exists and this can mean that the same server would need to be available
for all the tests. To summarize, It is not only hard to find available production servers
for tests but also there is no coherent setup which determines that it is better to run the
performance tests elsewhere.

Staging servers can also be suitable to run performance tests on but as with the produc-
tion servers the availability is a problem. The hardware for staging server is in some cases
also weaker than the development computer’s hardware. Consistency is needed when run-
ning tests and no outside variable, such as running tests on different machines, should
affect the results. Therefore, staging servers will not be used for performance testing.

The third option is to run tests in the cloud. Two possible clouds are Google Cloud and
Amazon Web Services. Both provide measurements of CPU usage and memory usage so
there is no need to use another tool for these metrics. The use of these cloud computing
services introduces the complexity of setting up the system for test. The system is depen-
dent on a test content provider, a content server and MongoDB. There are also limits for
computing time for both clouds. The master’s thesis is under time restraints and therefore
running the performance tests on the cloud is not the best option.

Running the performance test on a local computer is the best option in this case. This
will give consistency for the tests because the hardware will be the same. There is also
no computing limit when using a local computer. The computer which will be used is a
development computer and already has the technologies needed to run the content server
and MongoDB. The hardware used for running the performance test on is desribed in more
detail in the Section 5.1.
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2. Method

2.4.1 Type of Test
Two types of tests are considered in this master’s thesis: load test and stress test. Load
testing is used to asses how a system performs under a given load where the number of
requests is called load[11]. Stress testing is trying to break the system with a big load[11].
How the content server behaves under varying load, which happens naturally on produc-
tion servers, could also be of interest, but the master’s thesis does not consider this aspect
because its main interest is on how the synchronous solution and reactive prototypes be-
haves under different loads.

The master’s thesis chooses load testing as a method for performance testing because
the content server’s performance is compared in different loads and this excludes stress
testing.

2.4.2 CPU & Memory Measuring Tools
The tool used to measure CPU usage and memory usage is JVisualVM. The tool is pro-
vided by Oracle and is included in every JDK release[3]. The tool provides profiling and
also tracing of CPU usage and memory usage. The master’s thesis requires measurements
of CPU and memory. JVisualVM provides these possibilities and the possibility of tracing
the usage over time which makes it possible to export the results for further processing.
There are several other profiling tools, but it is not necessary for this master’s thesis to
deeply analyze thread use nor memory leaks and therefore JVisualVM is considered to be
a sufficient tool.

2.4.3 Data Models
The data model used for testing needs to be decided to be able to implement the content
server. It does not only affect the implementation but also the processing time of the data.
The processing time is longer if the data takes longer time to parse and publish to the
data server. After the examination data models of suitable size can be chosen to provide a
production like processing time.

2.5 Evaluation of Development Process
Evaluation of the development process can partially be based on quantitative data. The
quantitative data measured will be the number of lines of code written. The number of
lines of code for the implementation can affect the development process both positively
and negatively. By writing less lines of code the development can be faster but it can also
add complexity and thereby slowing down development. Therefore not only the lines of
code but also the qualitative aspects of complexity is assessed. Added complexity requires
more knowledge from developers and is definitely an influencing factor in the decision of
using reactive programming.
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Chapter 3
Concepts of Reactive Programming

In this chapter the theoretical background of reactive programming is presented to help
deeper understanding of reactive programming and the implementation of the prototypes.
First the term ”reactive systems” is introduced to give a background to the definition of
the term ”reactive” and this is followed by the description of what reactive systems are
today. Then reactive programming is thoroughly described and the chapter ends with a
short comparison between reactive programming and reactive systems.

3.1 Reactive Systems
In 1985 two categories of systems were proposed by Harel and Puneli[17]. They made
a distinction between transformational and reactive systems. A transformational system
is defined as a system which responds to input by transforming it and then producing
outputs. The nature is that these systems process input and produce output from time to
time. However, reactive systems are defined as systems which continuously respond to
inputs. Harel and Puneli also points out that reactive systems are present everywhere from
cars to phones. The reactiveness can be included by software or chips for example. Both
the transformational and reactive systems can be either synchronous or asynchronous.

Later on, these two categories were complemented with a category for interactive sys-
tems by Berry in 1989[12]. Berry defines interactive systems as systems which interact
with the environment at their own pace. Hence, the distinction between a reactive system
and interactive system is the pace in which the input is handled. Reactive systems inter-
act with the environment at a pace dictated by the environment, while interactive systems
interact with the environment at their own pace.

The center of increased attention for reactive programming has been especially fo-
cused on combining reactive programming and distribution. Reactive programming is
further explained in Section 3.3. Good examples for the combination of reactive program-
ming and distribution are web applications and distributed mobile applications. A known
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downside of the combination of reactive programming and distribution is that it can lead
to glitches[10]. The avoidance of glitches is a factor to be considered when using reactive
programming. The definition of glitches is inconsistency of data during propagation of
change which leads to unnecessary re-computations. It is harder to avoid glitches in dis-
tributed systems because of the network problems such as latency and network failures.
The combination of reactive programming and distribution is often called distributed re-
active programming or reactive microservices. The Reactive Manifesto defines the char-
acteristics of a reactive system. The Reactive Manifesto is further explained in Section 3.2
to differentiate reactive systems from reactive programming.

3.2 Reactive Manifesto
In 2014 version 2.0 of the Reactive Manifesto was published. A system is defined as
components cooperating to provide services for users. The authors of the manifesto be-
lieve that ”a coherent approach to system architecture is needed” and continue to define
what reactive systems are. Reactive systems are responsive, resilient, elastic and message
driven. The expectations from systems have become considerably higher since a few years
ago where long response times and several hours of maintenance with servers offline were
considered acceptable. In contrast users nowadays treat fast response times and no down-
time of servers as a must. The authors of the manifesto believe in order to keep up with
the current expectations a coherent approach is needed. [8]

By choosing a reactive system approach these systems will be easier to develop. The
systems will be easily modifiable and resistant to failure because they will be flexible,
loosely-coupled and scalable. At the same time the systems will give users fast interactive
feedback.

Responsive

Elastic Resilient

Message Driven

Figure 3.1: Image illustrating how the four characteristics of re-
active systems are connected.

The characteristics of a reactive system according to the authors of the manifesto[8] is
defined below and Figure 3.1 illustrates how the characteristics are connected.
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3.3 Reactive Programming

• Responsiveness: For a system to be usable it should provide fast and consistent
response times. It makes error detection simple and errors easier to handle. In return
this will create a better user experience and thereby the consumers will continue to
use the service.

• Resilience: For a system to always be available it is important that failure does not
affect availability. There are four characteristics for a resilient system. They are
replication, containment, isolation and delegation. By replication a component can
be executed simultaneously in for example different threads or network nodes. Iso-
lation can be achieved by decoupling. The decoupling can be in time or space. De-
coupling in time means that a sender and a receiver communicates asynchronously.
Decoupling in space means that the sender and the receiver are running in different
nodes in the network. By delegating tasks to other components the original compo-
nent can oversee the progress and handle failures or perform other tasks during the
time.

• Elasticity: For a system to always stay responsive elasticity is an important char-
acteristic. This is achieved by increasing or decreasing resources as CPU time and
memory in response to change the amount of input. Elasticity facilitates dynamic
resource allocation thereby effectively removing bottlenecks.

• Message Driven: Asynchronous communication is used by the components to send
messages to each other. From this loose decoupling, isolation and location trans-
parency is achieved. Location Transparency is defined as not making any difference
between running the system on one or several nodes. In terms of scaling this means
no difference is made between scaling vertically and horizontally. Asynchronous
message passing helps with delegation of failures and provides the possibility of
elasticity and responsiveness by overseeing the message queues and control of back-
pressure. If the pace of incoming messages for a component is too high to process
it needs to be communicated in a suitable way to the publisher. It is not acceptable
for a component to start dropping messages or to stop working. The component
should instead communicate this upstream to decrease the pace of messages. This
mechanism of handling pressure is called back-pressure.

3.3 Reactive Programming
In the Java community the reactive programming paradigm has achieved more and more
attention during the last years. Reactive libraries like Project Reactor and RxJava and
the introduction of a reactive standard in the Java 9 API has contributed to the increased
interest in reactive programming in Java.

Reactive programming is about data streams and propagation of change. For event-
driven application this paradigm is well-suited. A comprehensive research has been car-
ried out on reactive programming. However, mostly focusing on the Functional Reactive
Programming paradigm. [10]

Reactive programming resides inside the declarative programming paradigm. In con-
trast to imperative programming, where the developer uses statements to change a pro-
gram’s state, in declarative programming the developer defines what to do but the time
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Listing 3.1: Simple calculation in Java.
1 i n t nbrOne = 7 ;
2 i n t nbrTwo = 7 ;
3 i n t r e s u l t = nbrOne ∗ nbrTwo ;

of execution is handled by the program itself[10]. In Listing 3.1 a simple calculation is
shown. Java is an imperative language which means that the code for the calculation would
be executed sequentially assigning the value 7 to variable nbrOne and then to nbrTwo.
The variable result will be assigned the value 49. If either of the variables nbrOne or
nbrTwo is changed during the execution of the program the value of the variable result
will not be updated. If reactive programming would be used the variable result would
be updated every time either of the variables nbrOne or nbrTwo is changed.

3.3.1 Evaluation Models
In reactive programming there are two types of evaluation models: pull and push[10]. In
most cases which model to use is decided on the language or framework level and the
developer has little or no say in the matter.

The pull based model requires the results from computations to be pulled. As the
results are pulled it is possible for the puller to decide the pace of which results are received
removing the possibility of being overwhelmed with data. The possibility of only pulling
the newest value also arises and old values which will never be used can be dropped.
One considerable downside of this model is possible latency between the occurrence of
an event until the reaction happens. This model is driven by demand and is similar to a
iterator pattern.

The push based model instead of demand is driven by the amount of data. As new data
is received data can be pushed equally fast making it possible for instant reactions. This
is similar to a publish-subscribe pattern. Efficient solutions for resource utilization and to
avoid unnecessary re-computations is needed to be able to react instantly. The model fits
well for systems where instant reactions are needed and the pace of which data is received
is not known, while a pull based model is suitable for systems where data will be available
continuously.

3.4 A Reactive Standard in Java
In the last few years extensive work has been concluded in order to provide a reactive stan-
dard for Java. The work has resulted in the Reactive Streams initiative which provides a
standard for asynchronous stream processing and non-blocking back-pressure[6]. In con-
trast to the reactive manifesto, where concepts and characteristics of a reactive system were
defined, the Reactive Streams initiative’s intention is to allow many implementations take
part of the benefits of reactive programming.

The initiative defines the most important problem as handling resource consumption
when a component is overwhelmed with messages. When a component is overwhelmed
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Publisher

Subscription

Subscriber
subscribe

onSubscribe

request/cancel

onNext/onError/onComplete

Figure 3.2: Illustration of the flow in an implementation of reac-
tive streams.

message dropping or total failure is not a viable solution. Instead overwhelming pressure
should be communicated upstreams by the subscriber to the publisher. The communication
of back-pressure should be done asynchronously and not synchronous to benefit from the
asynchronous processing. To achieve asynchronous stream processing with non-blocking
back-pressure the initiative has set out to find the smallest amount of interfaces, methods
and protocols for the implementation.

The Reactive Streams specifications contain four interfaces: Publisher, Processor,
Subscriber and Subscription. Reactive Streams implement a publish-subscribe
pattern. The four interfaces are listed in Listing 3.2 and the flow in an implementation of
reactive streams are illustrated in Figure 3.2. Each of the interfaces are described below.

• Publisher: A publisher is the provider of data, it can publish an unlimited amount
of data to its subscribers. The speed of the publication of data is determined by the
subscriber. The interface contains one method called subscribe which is used to
register a new subscription for a subscriber. The method can be called several times
at any point in time. The publisher can stream data to several subscribers.

• Subscriber: A subscriber is the receiving end of the data stream from the pub-
lisher. The interface has four methods: onSubscribe, onNext, onError and
onComplete. The method onSubscribe is invoked by the publisher when
subscribe is invoked registering a subscription. No data is streamed to the sub-
scriber until the method request is invoked in the subscription. When data is
streamed and received by the subscriber the method onNext is invoked to process
the data. If an error occurs the method onError is invoked to handle the error to
partially fulfill resilience in the reactive manifesto. At error no further events are
streamed until the error is handled. When the stream ends and no further data is
streamed the method onComplete is invoked.

• Subscription: A subscription represents a one-to-one relation between a publisher
and a subscriber. The subscription can only be used by one subscriber and when the
subscription is canceled it is destroyed allowing resource cleanup. The subscription
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Listing 3.2: The four interfaces in Reactive Streams.
1 pub l i c i n t e r f a c e P u b l i s h e r <T> {
2 pub l i c vo id s u b s c r i b e ( S u b s c r i b e r <? super T> s ) ;
3 }
4
5 pub l i c i n t e r f a c e S u b s c r i b e r <T> {
6 pub l i c vo id onSub s c r i b e ( S u b s c r i p t i o n s ) ;
7 pub l i c vo id onNext (T t ) ;
8 pub l i c vo id onE r r o r ( Throwable t ) ;
9 pub l i c vo id onComplete ( ) ;

10 }
11
12 pub l i c i n t e r f a c e S u b s c r i p t i o n {
13 pub l i c vo id r e q u e s t ( long n ) ;
14 pub l i c vo id c a n c e l ( ) ;
15 }
16
17 pub l i c i n t e r f a c e P ro c e s s o r <T , R>
18 ex tends S u b s c r i b e r <T> , P u b l i s h e r <R> {}

interface contains two methods: request and cancel. The publisher does not
stream data to the subscriber before the method request is called. The method is
invoked by the subscriber communicating the number of data to be streamed. The
method can be invoked unlimited times. The argument to the method needs to be
strictly positive. Using the argument Long.MAX_VALUE lets the publisher stream
data at any pace. While using an argument as the integer 1 lets the publisher stream
one piece of data and lets the subscriber process the data and then the request method
can be called again. This design makes it possible for the subscriber to decide the
pace of the stream thereby providing back-pressure defined in the reactive manifesto.

• Processor: A processor acts as both a publisher and a subscriber. This means that
it can both subscribe to a publisher and stream data to a subscriber. The processor
is used only between a publisher and a subscriber processing streams of data and
streaming the result to a subscriber.

Since the release of Reactive Streams several reactive libraries has started to follow
the standard including RxJava, Project Reactor, MongoDB etc.

3.5 Pitfalls of Reactive Programming
Asynchronous programming is defined by non-blocking execution[24]. Reactive program-
ming is about asynchronous processing of data and thereby have to follow the non-blocking
execution of asynchronous programming. An asynchronous application is non-blocking
in the sense of threads not being blocked during execution to wait for results from other
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Listing 3.3: Callbacks easily stacks up creating code which is hard
to understand.

1 u s e r . l o g i n ( new Ca l l b a ck ( ) {
2 void onSucces s ( new Ca l l b a ck ( ) {
3 void onSucces s ( new Ca l l b a ck ( ) {
4 / / . . .
5 } )
6 } )
7 } ) ;

threads. While waiting for a result the thread can continue with its own execution and can
handle the result when it is received. This behavior is advantageous when the thread has
more to execute. Inversion of control is an important principle for asynchronous program-
ming and also for reactive programming. The principle can be summarized as ”don’t call
us, we call you”.

Two problems with asynchronous programming have been the use of OS threads and
the difficulty of callbacks[24]. These problems are also important for reactive program-
ming since the execution is asynchronous.

3.5.1 ”Callback Hell”
”Callback hell”, or callback spaghetti, is an expression used to describe the difficulty of
using callbacks in larger applications. In asynchronous programming callbacks are used to
handle results from asynchronous computations. In large applications with a wast amount
of asynchronous computations this can lead to a ”spaghetti” of callbacks making the flow
of the application complex[18].

For the programmer the use of callback methods is necessary because it gives the pos-
sibility to execute code which is dependent on results from a asynchronous computation.
The time when these callback methods are executed is unknown for the programmer which
makes it harder to debug. In large applications deeply nested asynchronous computations
contribute even more to the the difficulty of not only debugging but also the writing of the
code. Computations which are dependent on each other force the programmer to write a
lot of boilerplate code[18]. This is resulting in longer development time.

Listing 3.3 shows how easily code becomes hard to understand when callbacks are
used. In large applications several callbacks might be used after each other because of
depending computations. For example, first the user needs to be authenticated to be able
to order. Only after the authentication can information be fetched about the user. After the
user information has been fetched can the order be placed because the delivery address is
needed from the user information.

3.5.2 Processes and Threads
OS threads are expensive because of allocating system resources and allocating large
stacks[24]. Applications implementing asynchronous computations are thread intensive.
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Listing 3.4: Example of asynchronous execution where the main
thread is blocked.

1 E x e c u t o r S e r v i c e e x e c u t o r = Exe c u t o r s . F i xedTh readPoo l ( 1 ) ;
2 Fu tu re < I n t e g e r > f u t u r e = e x e c u t o r . submi t ( ( ) −> { . . . } ) ;
3 I n t e g e r r e s u l t = f u t u r e . g e t ( ) ;
4 /∗ Do some th ing e l s e ∗ /

Thus, a programming language with a thread model of one-to-one with OS threads would
be CPU and memory intensive. For applications using asynchronous communication a
threading model which is not one-to-one with OS threads is important to run smoothly.

When speaking of concurrent programming in Java there are two types of units, pro-
cesses and threads[4].

Processes provide an execution environment and they are usually synonymous to an
application, even though an application can be a collection of processes. Processes are
synonymous to OS threads and are expensive to create because each process has its own
set of resources, for example memory.

In Java, when talking about concurrent programming, the focus is mostly on threads.
Because threads do not take as many resources to create as a process they are sometimes
called lightweight processes. Threads cannot exist by their own but instead reside within
a process, sharing the process’ system resources. Each process has at least one thread.

3.5.3 Non-Blocking
Asynchronous programming is often synonymous with non-blocking[24], in this master’s
thesis they are also considered to be synonymous. Synchronous means that during execu-
tion the application waits for each task to finish before continuing to the next, but during
asynchronous execution tasks can be executed on different threads while the main thread
continues its execution.

In Listing 3.4 even though the block of code executes a task asynchronously the exe-
cution of the block of code is still blocked. The method Future::get is blocking and
hinders the execution of the current thread from continuation. These cases are needed to
be taken into consideration while executing tasks asynchronously. In the example, rather
than improving the performance of the application it is decreasing it. This is because the
task could be executed in the same thread instead of taking the time and resources to create
a new thread. Hence, asynchronous execution is not suitable in all cases.

3.6 Reactive Programming vs. Reactive Sys-
tems

The difference between reactive programming and reactive systems is their applications.
Reactive programming is applied to the internal logic of components, while reactive sys-
tems are applied on an architectural level for systems. Applications implementing reactive
programming are highly event-driven which means that events drive the execution forward
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instead of a thread-of-execution. Reactive programming facilitates decoupling in time and
thereby concurrency. Reactive systems are highly message-driven. The systems facilitate
decoupling in space and thereby distribution.

The difference between event-driven and message-driven is defined in the Reactive
Manifesto[8]. In the manifesto event-driven is defined as addressable event sources and
message-driven is defined as addressable recipients. This means that the subscribers in
an event-driven system are attached to the publishers, while in a message-driven system
subscribers wait for messages to arrive without the need of attachment to the publisher.
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Chapter 4
Implementation

In this chapter the implementation of the reactive prototypes is described. The chapter
gives the reader a deeper understanding of design choices which were made and a more
detailed description of the problems which were encountered during the implementation
process.

4.1 Synchronous Solution
Playtech BGT Sports’ current solution is a monolith which has three responsibilities: to
consume the content providers API, to map raw data to suitable data models and to ag-
gregate data models to more complex data models. Currently a publish-subscribe system
is used between the adapter and the aggregator and between the content server and the
data server. For the purpose of this master’s thesis and in order to make a comparison
between a synchronous and a reactive system, publish-subscribe is removed. This more
general approach of the synchronous solution could result in more interesting and more
useful findings especially for a more general audience. The change makes the content
server fully synchronous and each request will be processed by the same thread.

The current content server is written in Java and makes use of the Spring framework.
The content server implemented for this master’s thesis is compiled with the Java 8 and
uses features from the Stream API and lambda expressions. Features used from the Java
Stream API are of synchronous nature and parallel streams are not used.

4.1.1 Push or Pull
The content provider’s API can be consumed with either a push solution or a pull solution.
Either the API pushes new data to content server or the content server makes pull requests
continuously to the content providers API checking for new data.
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4. Implementation

I made the decision to use a push solution for this master’s thesis because of the im-
plementation of both the consumer in the content server and the test content provider be-
comes simpler. This means that the implementation of the consumer is a REST API which
is providing handler methods for processing of requests. The test content provider is an
application making requests to the consumer’s API. In a push solution it is the test content
provider which determines the pace of requests. This makes it easier to control the pace of
requests during tests because the content provider performs requests independent of how
far the content server has come in processing the requests. In a pull solution the content
server pulls data from the content providers API when possible, in other words only when
the content server is not overwhelmed.

A push solution is not only advantageous for controlling the pace of data but it also
requires less development time since the logic in a pull solution is more complex. The
complexity in a pull based solution is mostly in the content provider’s API.

4.1.2 Data Models

The impact of the data models is described in Section 2.4.3. Two options exist for pro-
cessing the data. In the first option the data is first mapped to a simple data model and
then published to the data server. In the second option the data is mapped to a simple data
model, then published to the data server, then aggregated to a more complex data model
and after this the complex data model is published to the data server. I consider the second
option as the best choice for this master’s thesis because it puts more pressure on the con-
tent server and this is necessary to be able to answer the research questions. However, with
option two more pressure is put on the content server because the additional composition
of the complex data model requires more resource time.

In this case the creation of a complex data model requires two simple data models.
Two simple data models are chosen: event and market. The data model event contains
information about sport events while the market contains information about odds. The
two simple data models are aggregated to a detailed event which contains information
about a sport event and several markets for betting on the event.

After examination of production data a conclusion for the number of attributes for
each data model was made. The event contains 18 attributes and the market contains 21
attributes. The complex data model’s detailed event contains seven attributes from the
event and a list of markets with all the market’s attributes.

In a production ready content server there are often many more simple data models
and these are aggregated to multiple complex data models. For this master’s thesis using
two simple data models was deemed suitable because the load of data is important for the
tests. It does not matter if the load of data is only of two types or several more types since
the content server will have to process the same load of data.

The data models impact the implementation of the content server and the implemen-
tation of the test content provider. The content server needs two handler methods, one for
processing event data and one for processing market data. The test content provider needs
to push both event data and market data.
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Listing 4.1: The implementation of the controller in the syn-
chronous solution.

1 Event e v en t = p a r s e ( r e q u e s t ) ;
2 p u b l i s h ( e v en t ) ;
3 D e t a i l e d E v e n t d e t a i l e d E v e n t = g e t D e t a i l e d E v e n t ( e v en t ) ;
4 r e f r e s h M a r k e t s ( d e t a i l e d E v e n t ) ;
5 p u b l i s h ( d e t a i l e d E v e n t ) ;

4.1.3 Processing of Data
The content server consumes the test content provider’s API by the content provider mak-
ing POST requests with raw data in the form of XML. The requests are received by the
content server and the raw data is processed inside a handler method. In Listing 4.1 the
implementation of the method, which is handling event requests can be seen. The method
handling market requests has the same stages as the processing of event requests, but some
of the methods in the stages are implemented differently.

Below are each of stages of processing data in Listing 4.1 explained.

1. Parsing request: This method parses the request to an event by using the parsing
library ngen-xml-parser. The method takes a HttpServletRequest as argu-
ment and gets the InputStream which the parser parses. The method returns an
object of type Event that contains all the attributes which for example a football
match has.

2. Publish event: The event is published to the data server which in this case is a Mon-
goDB database. The event needs to be published even if it is used in an aggregator
to create a more complex data model. The event can for example be used as a sum-
marization in a list of events. This method only publishes the event and does not
manipulate the event and thereby has the return type void. Spring framework’s
MongoTemplate is used to save the event.

3. Get detailed event: After an event has been published a more complex data model
of a detailed event should be composed. This is done by first fetching an existing
event from the database and then updating its attributes if one exists, otherwise cre-
ating a new detailed event. MongoTemplate is used to try to find a detailed event.

4. Refresh detailed event: The detailed events’ markets need to be refreshed. This
is done by finding all markets connected to this detailed event and replacing the
existing markets for the detailed event with them. The method has the return type
void because Java passes the argument by value. This means updating attributes
of the detailed event parameter will update the attributes of the detailed event used
as argument.

5. Publish detailed event: The newly composed detailed event then needs to be pub-
lished to the database to be available for clients.

The implementation has a one-directional flow of data which means that the handler
method does not need to return any data to the content provider.
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4.2 Applying Reactive Programming
The master’s thesis is focusing on reactive programming. This means that reactive pro-
totypes are implemented to compare performance and development process with the syn-
chronous solution. I see three possibilities of implementing the content server with reactive
programming. They are: an implementation using the Java class CompletableFuture,
an implementation using the Java 9 Flow API or an implementation using a reactive library.

4.2.1 The choices of the application of reactive pro-
gramming

The purpose of this master’s thesis is to investigate the effect of reactive programming.
Therefore one reactive implementation is chosen even if comparing the different reactive
implementations could also be interesting.

The use of Java 9 Flow API for reactive programming can be discarded. The API
provides interfaces rather than complete implementations. Even if a fully implemented
publisher is provided the API lacks implementations of the other interfaces. This means
that the classes implementing the interfaces are needed to be implemented. However, this
can be difficult and time-consuming and it would basically be like implementing a new
reative library. The Java 9 Flow API is therefore discarded.

The CompletableFuture has many of the features and is a part of the Java API.
The class supports chaining and thereby avoids ”callback hell”. Compared to a reactive
library the class does not have so many possible execution contexts. By looking at methods
provided by the class it is clear that reactive libraries generally have more methods for
chaining and processing. More methods are not necessarily better but in this case I would
argue that in fact it is especially good because the methods facilitate easier development.
The class CompletableFuture lacks methods such as map, filter etc. These methods
make development easier by not having to implement them separately.

Reactive libraries are chosen for the implementation of reactive prototypes. This is
mainly because of their possible customizations and already implemented methods for
chaining.

4.3 Reactive Library
There are many reactive libraries for Java such as Akka Streams, RxJava, Reactor etc. It
can be hard and almost impossible to determine which reactive library is best, but two
reactive libraries are considered to be used for the reactive prototypes in this master’s
thesis. They are: RxJava and Reactor. These libraries are chosen because Spring 5 has
built in support for both libraries.

The two libraries are described in detail below and one of them is chosen for the im-
plementations of the reactive prototypes. The implementation details of the libraries will
not be explained as they would prove to be too extensive.

In reactive libraries methods performing operations on data are often called operators
so this term will be used in this master’s thesis as well.
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4.3.1 RxJava
RxJava is part of a group of reactive libraries called Reactive Extensions. The group is
all based on the same reactive library first implemented in C#. There are several ports
to other programming languages of the library which are part of the group of reactive
extensions. The library has been ported to Java, C++, Python etc. RxJava is the name of
the implementation in Java. RxJava implements the reactive streams specification since
the release of version 2.0 of the library.

The library is influenced by the observer pattern, the iterator pattern and functional
programming[7]. In the observer pattern a subject exists with a list of observers which are
notified by the subject when a state changes[16]. The iterator pattern makes it possible to
iterate over objects in a list without exposing its underlaying structure[16]. The main idea
behind using these patterns is to observe a stream of events and to notify when the stream
ends. The functional programming provides operators such as map and filter. The library
is a fluent API which means that it supports chaining of operators and therefore avoids
”callback hell”. Control over the execution context is provided by the library.

Five main classes are provided by the library. They are: Flowable, Observable,
Single, Completable and Maybe. Two classes are interesting for this master’s thesis
and they are the classes Flowable and Maybe. The class Flowable emits 0 toN items
while the class Maybe emits 0 to 1 item. The other classes can be discarded because the
content server is usually working with one or more data.

4.3.2 Project Reactor
Reactor is a reactive library implemented for Java even though there are implementations
for other languages as JavaScript. The library implements the Reactive Streams specifica-
tion. The name Reactor comes from the design pattern reactor which the library is influ-
enced by. The reactor pattern simplifies the development of event-driven applications[23].
The library is a fluent API and therefore avoids ”callback hell”. Reactor is influenced by
functional programming and has operators such as map, filter etc. Control over the execu-
tion context is provided by the library.

The library has two main classes named Flux and Mono. The class Flux has 0 to N
elements while the class Mono has 0 to 1 element.

4.3.3 Choosing Reactive Library
The libraries RxJava and Reactor are both very similar. Both of the libraries implement
the Reactive Streams specification, avoid ”callback hell” by allowing chaining of operators
and both support several different execution contexts. The features important for the im-
plementation of reactive prototypes are: avoidance of ”callback hell”, support for different
execution contexts and support for back-pressure. Both libraries support these features. I
have not found any comparison in performance between the two libraries. It is therefore not
possible to make any well-based decision about which library is the most suitable for the
implementation of the reactive prototypes. I chose to implement the reactive prototypes
with Reactor because it is the default reactive library used by Spring 5.
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4.4 Design Choices for the Reactive Proto-
types

Java is an imperative programming language and reactive libraries provide a declarative
approach. A shift in the approach to the processing of data requires reconsideration of
the implementation. This means that the handler methods in the content server need to be
rewritten. Below the design of the reactive prototypes is explained.

4.4.1 Identify Sequential Parts
Sequential parts of the synchronous solution are identified before implementing the reac-
tive prototype. Each of the identified parts will be chained with operators making sure
they are executed sequentially for all data. The implementation of the synchronous pro-
cessing is listed in Listing 4.1. There will be five stages of the implementation: parsing
request, publish event, get detailed event, refresh markets and publish detailed event. Both
the handler method for events and the handler method for markets are consisting of the
same parts.

The synchronous parts are independent of each other in the sense of that it is not nec-
essary to know what has been executed before or will be executed after. This fact is im-
portant for the reactive implementation where operators process data but does not have
any knowledge about what has been processed before or will be processed after. The op-
erators processing data are further explained in Section 4.4.3, but they can generally be
described as having one type of data as input and one type of data as output. Each of the
synchronous parts has one argument and are therefore good to use with operators to write
readable code. Otherwise lambda expressions are necessary to use which can make the
code less readable.

4.4.2 Reactor Class
The reactive library Reactor has two main classes: Flux and Mono. The class Flux
handles streams of data with 0 to N elements while the class Mono handles streams of
data with 0 to 1 elements. The classes handle streams with data of possible different sizes
and this is reflected in the operators available for the classes. For example, the operator
collectToList is only available in the class Flux because it does not make sense to
collect a stream of 0 to 1 elements into a list.

The decision of which class to use is based on the design of the synchronous solution.
The solution uses a push model which means that events and markets are pushed to the
content server. Markets and events are usually pushed from the content provider instantly
when ready. This means that markets and events are pushed one by one because when a
push is ready it is not dependent on other pushes. The class Mono is therefore suitable to
use.

In a pull model data is pulled by the content server from the content provider. This
means that the communication of data between the content server and content provider is
dependent on the content server and not on the content provider. There can be a delay from
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the moment data is ready at the content provider until the data is pulled. If several data is
ready during this delay then they will be pulled in a list from the content provider. In this
case the class Flux would have been a suitable choice because multiple data would need
to be handled at once.

I have not found anything pointing to any performance differences between the classes
and therefore the class Mono is chosen based on its suitability with the push model.

4.4.3 Operators
The class Mono has operators which operates on single items.

The class has multiple different operators which should be used in different cases.
Operators suitable for the reactive prototypes are identified and used in the implementation.
Two operators are identified to be suitable by studying the documentation for the class
Mono. The operators are map and doOnNext and they are described below.

• Mono::map: The operator is triggered when the previous mono emits an element.
The operator takes an argument of type Function. The interface Function is
supplied by the Java API and has the type parameters T and R. The type parameters
specify the argument type and the return type of the function. The operator returns
a new mono with the type parameter R. The method supplied as an argument to the
operator has an argument of type T and returns an object of type R. This means that
the method can take one type of object as argument and return a different type.

• Mono::doOnNext: The operator is triggered when the previous mono emits an
item. The operator takes an argument of type Consumer. The interface Consumer
is supplied by the Java API and has the type parameter T. The operator returns a
mono with the type parameter T. The method supplied as an argument to the opera-
tor takes an object of type T as argument and has the return type void. The object
which the mono emits is of type T.

The operators used were identified by placing the sequential parts of the synchronous
solution into categories. The first category of methods takes an object as an argument
and returns an object of a different type. The second category of methods takes an ob-
ject as argument and manipulates the object. The third category of methods takes an
object as argument and does not manipulate it in any way. The methods parse and
getDetailedEvent is placed in the first category. The method refreshMarkets
is placed in the second category. The method publish is placed in the third category.

The operator map is suitable for use with the first category of methods because operator
can handle methods which return an object of different type than the type of the argument.
The operator doOnNext is suitable for use with both the second and third category of
methods. This is because the methods has the return type void and the same object
emitted from the previous mono should be passed on to the next mono.

Data does not start to flow with just using these operators but requires the operator
subscribe to be chained before the data starts flowing. Operators can also be used to
change the execution context. These types of operators are described in Section 4.4.4 and
Section 4.5.
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4.4.4 Scheduling
The execution context of the asynchronous tasks can be changed in Reactor. By default
the execution is in the same thread as subscribe is invoked. The execution context can be
changed to suit different needs. The reactive library Reactor is called concurrency agnostic
which means that it is up to the developer to decide which execution context to use. Reactor
helps with concurrency by supplying alternative execution context to the default. There
are five additional types of scheduling of the execution context to the default. These can
be accessed with static methods in the class Schedulers. The class gives access to the
following contexts: immediate, single, elastic, parallel and timer. The execution context
can be the following options:

• immediate: The execution is done in the current thread. This is the default execu-
tion context.

• single: The execution is done in a single thread which is the same for all tasks. The
single execution context can also be used to create a dedicated thread for each task
by calling the static method newSingle in the class Schedulers.

• elastic: The execution is done in an elastic thread pool which increases or decreases
the amount of worker threads after demand. Worker threads are reused when a task
has finished its execution.

• parallel: The execution is done in a fixed size thread pool. The name parallel refers
to the possibility to execute tasks in parallel and therefore creates as many worker
threads as there are CPU cores. Note that by choosing this execution context does
not make tasks execute in parallel by itself. To have a real parallel execution context
the operator parallel must be chained before the execution context is changed.

• timer: This context can be used to schedule tasks in the future.

Except from the default execution context the execution in an elastic thread pool and
in a fixed thread pool is relevant for this master’s thesis. Comparing the default execution
context with the thread pools is interesting because changing or creating new threads is
not always advantageous for performance. The results can give a good indication which
execution context is advantageous for these types of tasks. The elastic execution context
will resize the thread pool after demand and this can affect the performance negatively. The
creation of new worker threads and the obligation to handle more worker threads might
consume resources. A fixed thread pool does not have to resize the thread pool but the
limited threads might instead block tasks from instantly starting their execution.

Execution context can be provided by two different operators:

• publishOn: the operator defines the execution context to the subsequent opera-
tors. This operator can be chained defining the execution context for operators until
another publishOn is chained.

• subscribeOn: the operator defines the execution context of the previous oper-
ators. This operator cannot be chained and the first subscribe operator determines
the execution context.
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Listing 4.2: The reactive implementation.
1 r e q u e s t . getBody ( ) . c o l l e c t L i s t ( )
2 . map ( t h i s : : p a r s e )
3 . doOnNext ( t h i s : : p u b l i s h )
4 . map ( t h i s : : g e t D e t a i l e d E v e n t )
5 . doOnNext ( t h i s : : r e f r e s h M a r k e t s )
6 . doOnNext ( t h i s : : p u b l i s h )
7 . s u b s c r i b e ( ) ;

The operator subscribeOn is used in the reactive prototypes to determine the exe-
cution context because multiple different execution context are needed.

4.5 Implementation of the Reactive Proto-
types

Spring 5 will be used for the implementation of the reactive prototypes of the content
server. At the moment of the implementation Spring 5 is only available in snapshots re-
leases and milestones releases. This is probably not suitable for use in production but can
be used for this master’s thesis. This because the functionality used in the implementation
of reactive prototypes is implemented. Non-blocking I/O is supported in Spring 5 and can
be utilized with application servers as Netty and Tomcat. Both of the application servers
support servlet 3.1 which introduces non-blocking I/O. The performance of an application
is affected of both the framework which is used and the application server[25]. The impact
will be discussed in Chapter 7.

To serve the best interests of this master’s thesis’s purpose Tomcat will be used. The
goal is to make a comparison between synchronous programming and reactive program-
ming and not to make a comparison between application servers. Variables in the experi-
ment, which are not intended to be investigated, should be static between the synchronous
solution and the reactive prototypes.

Two REST controllers are implemented with Spring. Each of the controllers has han-
dler methods for processing of POST requests. The processing of data should be done
asynchronously and therefore the operators discussed map and doOnNext is used. The
implementation of the handler method is different from the synchronous solution, but the
implementation of the methods in each controller remains the same since the processing of
data is the same. The implementation of the reactive prototype with the default execution
context is listed in Listing 4.2.

Three different execution context for the asynchronous tasks will be tested. Chang-
ing the execution context from the default is done with the operator subscribeOn. In
Listing 4.2 the operator subscribe will be exchanged for the following two operators:

• .subscribeOn(Schedulers.elastic()) for the elastic thread pool and

• .subscribeOn(Schedulers.parallel()) for the fixed thread pool.
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The first row of code in Listing 4.2 prepares the request into a a mono. The vari-
able request is an object of type ServerHttpRequest and is provided by the Spring
API. The class contains information about the HTTP request. The body is extracted from
the HTTP request with the method getBody which returns a flux with the type param-
eter DataBuffer. All the DataBuffers emitted from the flux are collected into a list
with the method collectList. The method returns a mono with the type parameter
List<DataBuffer>. A mono has been extracted from the HTTP request and is now
ready to be processed.

The content server has a non-blocking I/O and this is why the body of the request is a
Flux<DataBuffer>. All data sent with the request might not be contained in one buffer.
The parsing requires all of the data and therefore it is a necessity to collect the buffers into
a list. The invocation of the method collectList is blocking. However, this does not
play a significant role for the master’s thesis since it is the processing of the data and not
the receiving of request which is investigated.
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Chapter 5
Experimental Setup

This chapter is about the experimental setup and the execution of the tests. A content
provider was implemented to execute the tests, this is also described in detail in this chapter.
How the latency and throughput was measured is dependent on the solution and therefor
it is discussed in this chapter as well.

5.1 Hardware
The tests are run on a local computer. It is a MacBook Pro running OS X El Capitan. The
processor is a 2.2 GHz Intel Core i7 processor and the RAM is 16 GB 1600MHz DDR3.
As the processor has hyper-threading there are four physical cores but eight logical cores.
The hardware of the computer could in some extent have an impact on the test results.
The hardware needs to have enough power to load test the content server. However, the
results from the comparison between the synchronous solution and the reactive prototypes
is relative. If the solutions perform differently they should do so on other machines too.

5.2 Content Provider
A test content provider is implemented to carry out tests. The content provider will push
data in a certain fixed rate. The test content provider is implemented with Spring and uses
the class WebClient to perform POST requests.

Spring has an annotation called schedule which schedules tasks. The tasks can be
scheduled to run at certain intervals independent of the fact that the last task has finished
or not. The scheduling can be done in intervals of milliseconds which is perfect for the
performance tests carried out in this master’s thesis.

Instead of implementing a content provider a tool like JMeter can also be used. JMeter
is a tool for load testing servers. The tool has intuitive interface and good load generation
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capabilities according to Bhoomit P. et al in the paper ”A Review Paper on Comparison
of SQL Performance Analyzer Tools: Apache JMeter and HP LoadRunner”[22]. JMeter
was considered to use but was discarded because of the lack of ability to create an even
load for performance tests in this master’s thesis.

5.3 Measurement of Metrics
The metrics CPU usage and memory usage are measured with the tool JVisualVM. A
plug-in called Trace-Monitor Probes is used to log the metrics during the execution. The
tool measures the CPU and heap size every second. The CPU is measured in percentage
and the heap is measured in bytes.

The latency is fairly difficult to measure with any tool. JVisualVM has profiling tools
which can measure execution time for specific methods but this is harder to do for the re-
active prototypes because several methods are to be measured. The tasks are also executed
asynchronously which makes it more difficult with JVisualVM. The latency and through-
put measurements are therefore done by logging time. Several points of logging will be
done, specifically when: an event or a market has been received, an event or a market has
been published and a detailed event has been published.

The static method System.currentTimeMillis will be used to log the time
in milliseconds. The resolution of the time returned by the method is dependent on the
system[19]. Since Java 5 there is also a method for returning the time in nanoseconds. The
method is called System.nanoTime. It might be able to measure the time in nanosec-
onds but it is only as accurate as the underlaying system clock[19]. As mentioned before,
greater resolution than milliseconds is not necessary in this master’s thesis. Therefore the
method System.currentTimeMillis will be used.

5.4 Execution of Tests
Two types of tests are run separately. The first for measuring CPU usage and memory
usage. The second for measuring the latency and throughput. Each type of test is run
multiple times with the content server pushing data in intervals of 200, 100, 75, 50, 25,
10, 5 milliseconds. This means that requests are pushed with the rates of 5, 10, 13.33, 20,
40, 100, 200 requests per second.

The intervals were chosen to cover vast varieties of pressure put on the content server.
Around 200 live events with belonging markets are not unusual during high season. There-
fore 200 events with 10 markets belonging to each of them will be used. Every other push
from the content server will be an event and every other a market. With an interval of 5
ms each detailed event will have two updates a second. How the events and markets are
pushed does not play a significant role since the same processing of data is needed.

The test for measuring the CPU usage and memory usage was setup by starting the
content server and then starting the tracing of metrics in JVisualVM. Then the content
provider was started. The tests were ran for 15 minutes. The tracer in JVisualVM is then
stopped and the applications are shutdown.
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The test for measuring latency and throughput was setup by first updating the code
with logging of time. These tests were started by first starting the content server and then
starting the content provider. The applications were shut down after 5 minutes.
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Chapter 6
Results

The results of the research conducted in this master’s thesis are presented is this chapter.
This chapter specifically focuses on the results of the performance tests, on the develop-
ment process of the implementation of the reactive solution.

For easier understanding I used specific names for the solutions which are the follow-
ing:

• Mono: for the reactive prototype with the execution context in the thread that in-
vokes the operator subscribe.

• Mono Elastic: for the reactive prototype with the execution context in an elastic
thread pool.

• Mono Fixed: for the reactive prototype with the execution context in a fixed thread
pool.

• Synchronous: for the synchronous solution.
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6.1 CPU Usage
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Figure 6.1: Graph displaying the results from measurements of
CPU usage. The x-axis is the interval between pushes in millisec-
onds. The y-axis is percent of the CPU usage.

The mean CPU usage given in percent for each solution is presented in Figure 6.1.
The CPU usage is fairly similar for all solutions independent of the interval of pushes. A
small difference in the measurements can be noticed when the interval is 5 ms, then the
mono prototype has approximately half a percentage less CPU usage than the mono elastic
prototype.
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6.2 Memory Usage
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Figure 6.2: Graph displaying the results from measurements of
memory usage. The x-axis is the interval between pushes in mil-
liseconds. The y-axis is heap use in 108 bytes.

The mean heap usage is presented in Figure 6.2. The reactive prototypes have less heap
usage in all intervals than the synchronous solution. The mean heap size varied much from
test to test for the same solution.

What cannot be seen in the figure is that when the content provider is started the heap
size grows quickly, but decreases and stabilizes after a few minutes. The stabilization is
happening much slower for the synchronous solution for all intervals between 200 and 10
milliseconds. The heap size is still decreasing after 15 minutes for the synchronous solu-
tion. When the content provider is pushing data every 5 milliseconds the heap size for the
synchronous solution decreases and stabilizes quicker. The heap size for the synchronous
solution and each prototype has a saw-tooth pattern.
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6.3 Event
6.3.1 Latency
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Figure 6.3: Graph presenting the mean latency for each solution
until an event is published. The x-axis is the interval between
pushes in milliseconds. The y-axis is time in milliseconds.

The mean latency until an event is published is presented in Figure 6.3. The latency
for the solutions increases from the interval 200 ms until the interval 50 ms. With less
of an interval than 50 ms the latency decreases. Between interval of 10 ms and 5 ms the
latency increases for all solutions except for the mono prototype.
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6.3.2 Latency of Detailed Event
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Figure 6.4: Graph presenting the mean latency until a detailed
event was published. The x-axis is the interval between pushes in
milliseconds. The y-axis is time until detailed event is published
in milliseconds.

The mean time until a detailed event is published after processing an event is presented
in Figure 6.4. The latency for the different solutions is similar until 5 ms. Between intervals
of 10 ms and 5 ms the solutions increase in latency except for the mono prototype which
decreases in latency.
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6.3.3 Throughput
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Figure 6.5: Graph presenting the mean throughput for each so-
lution. The x-axis is the interval between pushes in milliseconds.
The y-axis is number of events processed per second.

The mean throughput for events for the different solutions are presented in Figure 6.5.
All solutions has 100% throughput until intervals of 5 ms. At intervals of 5 ms only the
mono prototype has 100% throughput. The other solutions process less events than are
pushed to them.
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6.4 Market
6.4.1 Latency
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Figure 6.6: Graph presenting the mean latency until a market is
published. The x-axis is the interval between pushes in millisec-
onds. The y-axis is mean latency in milliseconds.

The mean latency for each solution is presented in Figure 6.6. The latency increases
slightly after the interval 200 ms until the interval 50 ms. After the interval the latency
decreases for all solutions. From interval 10 ms to interval 5ms increases the latency for
all solutions except the mono prototype.
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6.4.2 Latency of Detailed Event
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Figure 6.7: Graph presenting the mean latency until a detailed
event is published after processing a market. The x-axis is the
interval between pushes in milliseconds. The y-axis is time until
a detailed event is published.

The latency until a detailed event is published after processing a market is presented in
Figure 6.7. The latency for all solutions increases from 200 ms untill 75 ms and thereafter
decreases. After intervals of 10 ms the latency increases for all solutions except the mono
prototype.
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6.4.3 Throughput
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Figure 6.8: Graph presenting the mean throughput for all solu-
tions. The x-axis is the interval between pushes in milliseconds.
The y-axis is the number of markets processed per second.

The mean throughput for processing markets is presented in Figure 6.8. All solutions
has 100% throughput until intervals of 5 ms. When pushes are made with 5 ms interval
only the mono prototype has 100% throughput. The other solutions process less markets
than the content server has pushed.
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Table 6.1: The table presents the number of lines of code written
for each solution.

Total Handler method
Synchronous 402 5
Reactive 407 1

6.5 Development
In this case reactive programming did not have a big effect on the development pro-
cess. Developing the content server using reactive programming did not change the code
much from the synchronous solution. The methods used by the controller are still im-
plemented the same way except for the parsing method which has a parameter of type
List<DataBuffer> instead of ServletHttpRequest. By changing the type of
the parameter for the parse method the implementation had to change to extract the input
stream from the DataBuffers. It was not necessary to change the other methods used for
processing.

The implementation of the controller method did change but not the ordering of invo-
cation of methods. By changing the execution context from synchronous to asynchronous
the invocation of the methods rather became callbacks. No ”callback hell” was experi-
enced instead callback methods were chained with operators.

The implementation of the prototype would have been impossible without a compre-
hensive knowledge about reactive programming and the reactive library. The acquired
knowledge also played a significant role in finding and fixing bugs.

It was more difficult to perform debugging due to asynchronous execution especially in
the case of bugs which only occurred when a vast amount of pushes were made. One of the
difficulties lies in the fact that the results from previous callback methods are not stored.
This means that only variables in the current callback method are visible and accessible.
It is possible to put breakpoints in all callback methods to trace the processing of data.

There were also some problems with the first reactive prototypes which used Reac-
tor Netty. Specifically, notifications about errors and warnings for memory leaks were
received. Most of the problems arose from Netty methods which I had no control over.
After several failed tries to fix the problems that could have been caused by the implemen-
tation solutions I made the decision to use Tomcat instead. Netty uses reference counting
and, if memory is not released before the garbage collector removes the object, a memory
leak occurs. Tomcat does not use reference counting and therefore no problem can arise
considering this kind of memory leaks. The memory leak only occurred with reactive
programming and I was unable to debug.

The number of lines of code written during the development is presented in Table 6.1.
The synchronous solution has approximately the same total number of lines of code written
as the reactive prototypes. The reactive solution has less lines written in handler method
than the synchronous solution.
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Chapter 7
Discussion

This chapter discusses the results presented in the previous chapter. A connection between
the results and theory is made and the effect of the design choices is also discussed.

7.1 Performance
The application server Tomcat has a maximum of 200 threads dedicated to request pro-
cessing and has 10000 of maximum non-blocking connections[1]. In the case of a push
model, where data is pushed one-by-one to the content server, a new thread is created
for each processing of data. Hence, processing of requests is done asynchronously in-
dependent of reactive programming. In this case reactive programming contributes to
the fully non-blocking processing. Tomcat 8.5 implements Servlet 3.1 which supports
non-blocking I/O. The prototypes were implemented with reactive programming and can
thereby make use of this feature.

The results showed that the reactive prototype with the execution context in the thread
which invoked the operator subscribe performed best. The prototype did not differ
itself from the other prototypes in CPU usage and memory usage, but it performed better
by having lower latency and higher throughput during high loads. The prototype increased
the performance of the content server compared to the synchronous solution.

A possible explanation for the limited performance of the reactive prototypes with
execution context in an elastic thread pool or in a fixed thread pool could be the different
execution context. Changing threads are resource consuming and if tasks have very low
latency this might decrease performance. In the case of the content server the processing
of data is done asynchronously in one thread per request which makes it unnecessary to
change execution context. It would be different if lists of data were to be processed. Then
the changing of the execution context might have been suitable because a thread could be
assigned of processing for a single data. In that case it is worth to consider to create a new
thread for each single data or to use one or several thread pools.
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Unfortunately the time was not enough to measure the latency impact for the whole
back-end. This is something which can extend the research conducted in this master’s
thesis.

The conclusion drawn from the results is that reactive programming has a positive im-
pact on the performance of the content server, but the impact is dependent on the execution
context.

7.1.1 Importance of execution context
The execution context played a big role in the performance of the reactive prototypes. In
each case where reactive programming is applied the decision of execution context needs
to be evaluated because the impact of performance might not be the same as for the cases
where reactive programming was applied in this master’s thesis.

Research into execution context in a pull base solution would also be noteworthy be-
cause of the processing of lists. Due to the time restraint of this master’s thesis this research
was not pursued.

7.1.2 Memory
The memory measurements are difficult to draw any conclusions from even though in
Figure 6.2 some differences can be seen. The figure shows that less memory is used by
the reactive prototypes but this is the mean memory use from several tests. In reality the
diversity in the measurements were vast. The memory usage for the synchronous solution
could sometimes be less than for a reactive prototype, but the measurement proved that in
general it was actually higher. Hence, it is hard to draw any conclusions from the results
of the memory usage. What can be seen is that the stabilization of memory usage is faster
for the reactive solutions while the memory usage takes longer time for the synchronous
solution to stabilize. A possible conclusion could be that if the pressure from the content
provider increases the memory usage will also increase but it takes longer time to decrease
for the synchronous solution. Plotting the memory usage for each test shows that the usage
follows a saw-tooth pattern because of the garbage collector. Because of the saw-tooth
pattern it could also be argued that the mean memory usage is not important but rather the
mean maximum memory usage is significant.

7.1.3 CPU
The results points to an equal CPU usage for all solutions even though they still performed
differently. The results lead to the conclusion that reactive programming does not affect
the CPU usage but rather the utilization of the CPU and this is based on the fact that the
latency and throughput differed despite equal CPU usage.

The CPU measurements were constant between execution of tests and are therefore
reliable to draw conclusions from. CPU spikes of few percents from time to time during the
tests. The spikes were discarded as normal background work for the application because
these spikes repeatedly happened during each test for every solution. These spikes and the
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magnitude of them possibly contributed to the small differences in CPU usage between
the solutions.

During the tests the CPU usage never rose above 7 percent. This can have impacted
the results by not bringing out the performance differences to its full extent. The perfor-
mance differences would probably have been clearer if the system was not mostly IDLE
but instead performing work. The reason for not pushing the system further was how the
tests were performed. A more efficient content provider would have been needed. The
content provider used in the test could not push more data than this. Alternatively more
instances of the content provider could have been run.

7.1.4 Latency
In Figures 6.3, 6.4, 6.6 and 6.7 the measurements for the latency is presented. All the
prototypes performed unexpectedly regarding latency. One would expect that the latency
increases or stays at the same level. However, the prototypes surprisingly showed lower
latency during high load than during low load. One possible reason for this decrease in
latency could be that the application was not pushed to use more CPU. While the other
three prototypes showed an increase in latency under the highest load the mono prototype
decreased in latency. The decrease of latency is also connected with the fact that this
prototype had a hundred percent throughput.

Other reasons for these latency results regarding all the prototypes could also be the
threading model of Tomcat and Spring, but the results could also be impacted by the JVM
and the garbage collector.

7.1.5 When to apply Reactive Programming
From the results it can be concluded that reactive programming only affects the content
server’s performance during high load. In lower loads the content server solutions perform
equally with differences in memory usage. Reactive programming could be a good choice
because of the content server often working during high loads. For applications working
with lower loads the performance gain compared to other aspects of reactive programming
needs to be assessed.

In this master’s thesis reactive programming has been applied to Java, which is a lan-
guage built for imperative programming. Moving the paradigm from imperative to declar-
ative the library Reactor was used. By using a programming language which was actually
designed for declarative programming the results might have differed. The impact of re-
active programming seen in this master’s thesis should be considered with this in mind.

7.1.6 Impact of design choices
The design choices made for the implementation of reactive prototypes could have most
definitely affected the results. Several other reactive libraries could have been used or even
other methods of implementing reactive programming could have been chosen. These
choices are worth keeping in mind for the future in order to find a suitable solution. For
this project I found these design choices to be suitable.
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7. Discussion

Spring and Tomcat were used in all prototypes because it was also used in the syn-
chronous solution, but these variables are not investigated. However, the choice of frame-
work and application server can have an impact on the performance[25].

The choice of using a push model impacted the design choices. The choice of using the
Reactor class Mono was solely based on the push model. The model locked the content
server to handle pushes of single data. It would also be interesting to see how reactive
programming would affect a content server using a pull model and probably the Reactor
class Flux would be a better choice in that case. Parallel execution can be used when using
a flux. This would be interesting to research because of Amdahl’s law which predicts the
theoretical speed up of a parallel system[9].

A possible improvement could be to execute the publishing of the data in different
threads because the next callback method is not dependent on the publishing. The two
tasks can even be processed in parallel.

7.1.7 Measurements
The CPU usage and memory usage was measured with the tool JVisualVM. Other tools
exist to measure these metrics and these could have been used as well. Measuring the CPU
usage gave consistent results but the measurements of the memory usage were inconsistent.
To get more consistent measurements of memory usage the running time or in fact the
execution of the test might have had to be changed. An alternative way to measure the
memory is to keep track of the garbage collector[25].

Logging was only used during the tests measuring time to ensure as little impact on
results from logging as possible. The logging was also done asynchronously to limit the
time effects on the measurements. The results could still have been affected but the effect
should be minimal.

7.2 Development Process
Implementing the content server using reactive programming did not change the develop-
ment process significantly. The number of lines of code written did not differ substantially
between the solutions which means that the complexity is rather the main factor to take
into consideration.

The only part which could add complexity is the implementation of the handler meth-
ods because all other code was practically the same. Reactive programming did not add
much complexity in this case since the processing stages are still the same as in the syn-
chronous solution. The readability of the code possibly decreased since the kind of data
that is emitted to next operator cannot be seen in the code. To find the type one must check
the return type of the previous method invoked by an operator.
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Chapter 8
Conclusion

During the course of this master’s thesis a study was carried out about reactive program-
ming. A synchronous solution of the content server was implemented and compared to
reactive prototypes. The solutions were compared in performance and development pro-
cess. The research questions presented in Section 1.3 have been researched and answered.

The results showed that the CPU usage did not differ between the solutions. The mea-
surements of the memory usage were inconsistent and therefore it was difficult to draw
a conclusion. The memory usage stabilized quicker than for the reactive prototypes for
the synchronous solution. One solution stood out when comparing the latency and the
throughput. That solution was the reactive prototype which executed the asynchronous
task in the thread that invoked the operator subscribe. The difference could be seen
when the content provider pushed data with 5 milliseconds intervals. At this interval the
prototype had less latency and 100% throughput. Reactive programming can definitely
have an effect on the performance of a content server application. However, the execu-
tion context of the asynchronous tasks, which would need to be further investigated, could
highly influence the effect.

The development process itself was not significantly impacted by reactive program-
ming. It was basically a reimplementation of the necessary handler methods. However,
reactive programming added complexity to the code and it also required comprehensive
knowledge on the execution context and on the reactive library.

To decide if reactive programming would be suitable to use in a project both the pos-
sible performance impact and the developer process needs to be taken into consideration.
The performance was increased for the content server but reactive programming might
have other effects on different applications and programming languages. That is also good
to note that the programming language Java, which is designed as an imperative language,
was used in this master’s thesis and therefor the results could differ from solutions using
declarative languages.
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8. Conclusion

8.1 Future Work
In this master’s thesis reactive programming was applied to the logic inside an application.
The research raised many questions about areas which could not be covered in this master’s
thesis. These areas would need further research to provide better understanding of reactive
programming.

Research into how reactive microservices would affect the performance of a content
server application is of great interest. Splitting up a monolith into microservices can pos-
sibly affect the performance and facilitate horizontal scaling. Not only the performance
but also the development process and research on scaling would be of interest.

It was shown that the execution context plays a big part in the performance when re-
active programming is used. A comprehensive research on the most suitable execution
context could also prove to be noteworthy. The choice of execution context might affect
parts of an application differently.

During the development process several design choices were made. Changing any
of these might have changed the performance of the application. The application can
for example be developed with other reactive libraries or other solutions for example
CompletableFuture.

The research in this master’s thesis was carried out based on the use of a push model.
Because of the push model the data was needed to be processed one-by-one and thereby a
mono was used. Last but not least, it would also be interesting to research how reactive pro-
gramming would affect a pull model or more generally how the processing of lists of data
affects a content server. If a list is processed by using the Reactor class Flux than parallel
execution can be achieved by using the operators parallel and subscribeOn.
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Idag förväntar sig alla ha den senaste informationen och att uppdateringar sker omedel-
bart. För att möta dessa krav testades reaktiv programmering. Detta medför att
genomströmmningen av information ökar, trots att lika mycket datorkraft används.

Digitalisering har idag nått nya höjder och det
finns en strävan att digitalisera mer och mer i
samhället. Kraven på dessa digitaliserade tjänster
är höga och kräver ett bra sätt att presentera
information samt en välfungerande bearbetning
av data. Mängden information som ska bearbetas
har ökat och samtidigt finns förväntningarna att
det är den senaste informationen som presenteras.
Exempelvis så förväntar sig användarna av en
”betting-sida” att det är de senaste oddsen som
presenteras. Detta för att användarna ska kunna
ta ett beslut om att lägga ett ”bet”.

För att uppfylla användarnas förväntningar
på tjänsterna behöver bearbetningen av data
vara effektiv. Detta kan betyda att andra pro-
grammeringstekniker behöver användas. Reaktiv
programmering är en teknik som kan liknas
vid dagens hemleveranser av matkassar. Tiden
det tar att åka till mataffären och handla kan
istället användas för andra uppgifter genom att
mataffären packar och levererar varorna till dig.
Reaktiv programmering handlar om att inte låta
tid och kraft gå åt till att vänta, utan använda
denna tid och kraft till att göra andra uppgifter.
När varorna är leverarad ”reagerar” du genom
att laga mat medan de digitala tjänsterna istället
reagerar på att data är tillgänglig genom att t.ex.
uppdatera odds.

Detta arbete visar hur en ”betting-applikation”
påverkadas av att applicera reaktiv program-
mering på bearbetningen av data. Genom att
göra detta kan man se en ökning av genom-
strömmning när mycket data ska bearbetas.
Genomströmmning är ett mått på hur mycket
data som applikationen hinner bearbeta under
en viss tid. Den reaktiva tekniken har vid
bearbetning av mycket data en genomströmmn-
ing av 100%, vilket betyder att applikationen
hinner bearbeta all data den ska. Resultatet kan
jämföras med en genomströmmning av 80% när
den reaktiva tekniken inte används. Intressant
är att båda teknikerna använder lika mycket
processorkraft, vilket betyder att reaktiv pro-
grammering bearbetar datan på ett mer effektivt
sätt.
Datorkraften kan vara begränsande både av

ekonomiska och fysiska skäl. För att uppfylla an-
vändarens förväntningar på att ha den senaste in-
formationen kan istället en mer effektiv använd-
ning av den existerande datorkraften krävas.
Resultaten är inte enbart intressant för

”betting-applikationer”. De är även intressanta
för applikationer som behöver förbättra prestan-
dan när begränsad hårdvara finns tillgänglig.
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