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Abstract

Anti-aliasing is a key component of modern 3D computer-generated imagery.
For Real-Time image generation in applications such as games, it is important
to increase the sampling rate per pixel to improve overall image quality. But
increasing sampling can be expensive, especially for current Deferred Render-
ing architectures. An innovative solution to this issue is the Temporal Anti-
Aliasing (TAA) technique which combines samples from previous frames with
the current frame’s samples to effectively increase the sampling rate. In this
thesis, we will explore methods to improve the quality of TAA by using edge
detection, of both color and depth, and triangle indexing to ensure only sam-
ples belonging to the current frame pixels are blending together. Our objective
is to reduce ghosting and other TAA artifacts created with current implemen-
tations. Quality improvement will be evaluated by comparing TAA generated
images to ground truth images generated by using much higher sample counts
that would not be practical in real-time. The improved TAA was tested us-
ing image metrics, in particular, MSE, PSNR, and SSIM, against the origi-
nal implementation and other current Anti-Aliasing techniques. The results
obtained showed that the improvements applied to TAA enhanced the image
quality above existing techniques with PSNR values around 39 and SSIM val-
ues above 0.99.
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Chapter 1
Introduction

Modern Computer Graphics are based on rendering scenes that are made of objects rep-
resented as models composed of primitive polygons, the triangle being the most common
one used. This is to take advantage of their simplicity and all their geometric properties
to create optimal algorithms to handle their rendering. Triangles are composed of three
vertices, each of them which consists of a position and other parameters associated with
them, i.e. the color or normals of the triangle, for interpolation.

When we want to render the objects in a scene, we take the vertices and send them to
the Rendering Pipeline. There, they are processed and mapped to the pixels of the screen
with their respective color.

We have two main uses for this process: Offline Applications, such as movies; and
Real-time Applications, like video games. Each of them have their requirements and con-
straints, but for this project, we will only give attention to Real-time Applications.

The focus of this project is to improve the Temporal Anti-Aliasing algorithm, which is
a technique that increases the quality of the images after the process of mapping triangles
to pixels by mixing frames previously rendered with current ones.

The main requirement would be to render the highest quality possible representation
of the scene, with two main constraints: we must render at least thirty frames per second,
with no high frame rate loss; and we must work with a limited amount of memory and
bandwidth, because we need to be able to run on an average computer or mobile device.
[13, 3]

1.1 Problem Definition
Temporal Anti-Aliasing (TAA) is a relatively new real-time technique that provides good
results without incurring heavy memory or processing power costs of other techniques.
Edge detection and triangle indexing techniques appear as good candidates to improve the
quality of the technique by reducing the ghosting and blurring unwanted effects created by
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1. Introduction

current implementations of TAA.
The aim of this thesis is to improve the Temporal Anti-Aliasing technique by using

edge detection, of both color and depth, and triangle indexing techniques to reduce blurring
and ghosting without decreasing the quality of the rendered image or incurring in heavy
memory or processing power costs.

1.2 Related Work
As the simplest Anti-Aliasing technique, we have Super Sampling Anti-Aliasing (SSAA),
it consists on rendering at a higher resolution and then downsampling it to the required
resolution. Another technique is the Multi Sample Anti-Aliasing (MSAA), which calcu-
lates the color for the final pixel just once [13]. We can learn what would become the base
of Temporal Reprojection Anti-Aliasing (TAA or TRAA) in the papers Accelerating Real-
time Shading with Reverse Reprojection Caching by Nehab D., Sander P. V., Lawrence J.,
Tatarchuk N., Isidoro J. R. [16], in which they describe how pixel shaders could be used
to save pixel information from the previous frame and reproject it in the next frame; and
Amortized Supersampling by Yang L., Nehab D., Sander P. V., Sitthiamorn P., Lawrence
J., Hoppe H. [20] in which they describe how to use the reprojection of old frames in the
current one as a method of real time Anti-Aliasing.

Next, we start to see Post Processing techniques like Fast Approximate Anti-Aliasing
(FXAA) by Timothy Lottes [11] which uses a form of edge detection to correct aliasing
while being compatible with the deferred shading architecture. We also found the Crytek
implementation of Temporal Anti-Aliasing (TAA or TXAA) explained by Tiago Sousa on
his presentation Anti-Aliasing Methods in CryENGINE 3 [10].

Enhanced Subpixel Morphological Antialiasing (SMAA) by Jorge Jimenez, Jose I.
Echeverria, Tiago Sousa and Diego Gutierrez [9] which uses a more complex edge re-
construction technique while being able to work with SSAA, MSAA and a basic form of
TAA.

Finally, we have the TRAA implementations of Ke Xu for Uncharted 4 and Lasse
Fuglsang for Inside, which implement new advances like the Color Clipping Box and
Sharpen Filter. These two last implementations are used as the base of this master thesis.
[6, 19]

1.3 Contribution
This thesis improves upon the last two advances from Ke Xu and Lasse Fuglsang [6, 19].
We propose the use of the Sobel Operator to perform edge detections and triangle indexing
techniques to detect pixels that are considered aliased. Once we have these pixels detected,
we use this information to change how colors are rejected from the past frames in order to
reduce the ghosting and blurring artifacts that Temporal Anti-Aliasing has.

8



Chapter 2
Technological Background

In this chapter, we will explain which tools were used in this master thesis and why.

2.1 C++ and Bonobo Framework
We use C++ and the Bonobo Framework to implement all of the improvements done in
this Master Thesis. C++ is a compiled general-purpose programming language with im-
perative, object-oriented programming and low-level memory management features. We
used it for its performance, especially for real-time Computer Graphics applications, and
its wide knowledge base.

The Bonobo Framework is the base of the laboratories of Computer Graphics (EDAF80)
and High-Performance Computer Graphics (EDAN35) courses from Lund University. It
was developed in C++ and provides a rendering engine that we found easy to modify and
use, especially, as the base in which we developed our improvements.

2.2 OpenGL and GLSL
We used this Application Programming Interface (API) as it is the base of the Bonobo
Framework rendering system, which we modified to develop our improvement, and be-
cause of its cross-platform compatibility. The Open Graphics Library (OpenGL) is a 2D
and 3D computer cross-platform open-source graphics API that abstracts the programmer
from directly interacting with the Graphics Processing Unit (GPU) to achieve hardware
accelerated rendering. It provides the programmer with a graphics pipeline to use, which
is normally implemented through hardware.

We used the OpenGL Shading Language (GLSL) to implement TAA and our improve-
ments as it is part of the OpenGL standard. GLSL is a high-level shading language that

9



2. Technological Background

allows programmers greater control of the graphics pipeline without requiring the use of
the OpenGL assembly language or hardware-specific languages.

2.3 MATLAB
We selected MATLAB to be where we developed our testing framework because of the
high quality of their tools, its wide knowledge base and for its fast prototyping abilities.
MATLAB is a proprietary multi-paradigm numerical computing environment. Commonly
used for science, engineering, and economics. It is popular for image processing applica-
tions because of its wide library of algorithms for this purpose, including image metrics.

10



Chapter 3
Theoretical Background

In this chapter, we will explain all the theoretical information that is the base of this master
thesis, from the Computer Graphics Theory to the Image Metrics used.

3.1 Rendering Pipeline
Today’s graphics pipeline can be simplified into three steps: Vertex Shader, which pro-
cesses the geometry associated with the vertices and prepares them for the next step; Ras-
terizer, which maps the triangles to pixels in the screen, calculates their visibility and
interpolates the parameters of the vertices for each pixel covered by the triangle; and the
Pixel (or Fragment) Shader which takes the visual pixels from the Rasterizer and colors
them.

Figure 3.1: Rendering Pipeline, based on EDAF80 5th Lec-
ture. [12]

It is important to note that Vertex and Pixel Shaders are controllable by a programmer
using special programs called Shaders. They provide a way for the programmer to control
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3. Theoretical Background

the rendering hardware. In contrast, the Rasterizer is not controlled by the programmer
and it is handled entirely by a hardware fixed function. [12]

This Rasterization Process is important for us because it is there where some of the
errors corrected by Temporal Anti-Aliasing come from.

3.2 Rasterization Process
During the Rasterization Process, each triangle is tested to establish which pixels are cov-
ered by it. While this is being done, each pixel is being tested to find out if another triangle
is covering it.

In Figure 3.2 we have an example of the Rasterization Process. In the left image, we
have the triangles as continuous surfaces before being sent to the Rasterizer and, in the
right image, we have triangles mapped to the pixels on the screen after going through the
Rasterizer.

Figure 3.2: Example of the results of the Rasterization Process.
Note: colors were added to differentiate the triangles, but they
would only be added at the Pixel Shader stage.

Because we are mapping a continuous triangle to a finite number of pixels, we face
the problem of pixels partially covered and how to determine what is enough to qualify
it as covered, Figure 3.3 show examples of this problem. This is solved by calculating if
the center of the pixel is covered by the triangle geometry. This process is susceptible to
errors due to the precision of the representation used for the vertices.

Figure 3.3: Example of the Partial Cover problem, based on
EDAN35 second Lecture. [13]
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3.3 Aliasing Problem

This process shows us that what is rendered to the screen approximates what is being
represented in the scene because pixels can only be covered by one triangle at a time.
[1, 13]

3.3 Aliasing Problem
When we map a continuous representation to a finite one, it is going to generate errors.
As explained by Edward Angel and Dave Shreiner in their book (page 413) [3], we can
interpret the rendering process as the sampling of a continuous function f(x, y), which
represents the color of the scene at that point, to an n × m grid of pixels in which we
assume that the point fij is the value of f over a small area; and to reconstruct the f
function to display the image to the screen using only what we know from the samples.
The mathematical tool used to evaluate the issues of this process is the Fourier Analysis,
which states that a function can be decomposed into a set of sinusoids, at possibly an
infinite number of frequencies. For two-dimensional image analysis, we can think of the
f function as a set of sinusoids at two spatial frequencies.

For this thesis, we will use the First part of the Nyquist sampling theorem as a tool to
illustrate why aliasing problems appear and relate to sampling problems.

”Nyquist Sampling Theorem (Part 1): The ideal samples of a continuous function
contain all the information in the original function if and only if the continuous function
is sampled at a frequency greater than twice the highest frequency in the function.

The Nyquist frequency is defined as one half of the sampling frequency, which is the
lowest frequency that cannot be in the data to avoid aliasing.”

Taken from Edward Angel and Dave Shreiner book page 415. [3]

As Edward Angel and Dave Shreiner explain, this idealized sampling assumes that
we can take an infinite number of samples per sample frequency which we cannot do in
practice. The Aliasing problem that computer graphics experience comes from not being
able to sample as required by the Nyquist Sampling Theorem, creating ragged edges that
appear in the rasterization process (Spatial Aliasing), Figure 3.4 shows an example of this
type of aliasing, and jumps between moving objects (Temporal Aliasing), according to
Doggett and Wronski [13, 18]. Many solutions have been proposed and used to solve it,
e. g. the Super Sampling Anti-Aliasing (SSAA) family of solutions that work on higher
frequencies than the required at the cost of more space requirements.

Figure 3.4: Ground Truth image of a Line versus its Aliased Ap-
proximation.
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3. Theoretical Background

3.4 Shadow Mapping and
Deferred Shading Architecture

As humans, we have come to expect that objects react to the lights in a scene, considering
their geometry because lights and shadows contribute with spatial information to an image,
especially, shadows give us a sense of size and distance.

As explained by Doggett [13], under the Rendering Pipeline based on the Rasterizer,
the process of shadow calculation is challenging to perform. The Rasterizer does not know
if objects are covered or not from a light, so we must figure out a method to calculate if an
object is in shadows. This process is called Shadow Mapping, it consists of rendering the
scene through each light perspective and then perform tests against the camera perspective
to establish if the object is affected by the light or if it is in shadows.

But, as we might expect, rendering the scene several times is expensive, so we need a
way to reduce the cost as much as we can. The Deferred Shading Architecture provides that
solution to only shade, possibly using an operation that could be expensive, only visible
pixels to avoid wasting resources shading pixels from geometry that is not visible. It works
by first rendering the scene, without shading calculations, to a buffer called the Geometry
Buffer. There, information regarding colors, normals, depths, specific object information
to interact with lights, etc. is saved for future use.

After we have filled the Geometry Buffer, we perform the Shadow Mapping technique,
which takes advantage of the Deferred Shading Architecture to calculate the way lights
affects only visible pixels; we calculate the Shadow Map of every light only performing
depth calculations. Afterward, we compute and save the effect of each light using the
Shadow Maps.

In the end, we take all the information of the lights, shadows, and the Geometry Buffer
to render the light scene.

3.5 Anti-Aliasing
As we have explained, there are two main types of Aliasing, Spatial Aliasing, and Temporal
Aliasing; Anti-Aliasing solutions provide improvements against the artifacts created by
either of those types at the cost of increased rendering time. For real-time applications
this increase of rendering time limits which Anti-Aliasing solutions are feasible to apply.

Another important factor that decides which Anti-Aliasing technique to use is how it
behaves with current architectures. For example, old Anti-Aliasing solutions do not work
with Deferred Shading.

3.5.1 Super Sampling Anti-Aliasing (SSAA)
This technique consists in rendering the scene at 4 times the size of the screen and then
averaging pixels 4x4 to calculate the result [13]. It provides good results but requires more
rendering time and heavy memory usage.

14



3.6 Temporal Anti-Aliasing

3.5.2 Multi Sample Anti-Aliasing (MSAA)
MSAA consist in taking several samples per pixel; on each sample, the depth values are
calculated but only one color is calculated for the rasterized triangle. This solution pro-
vides good results at the cost of increased memory usage for depth calculations.

The biggest problem this technique has is that it does not work properly with Deferred
Shading [13]. This makes it complicated to use with current pipelines, normally requiring
other corrections to reduce the artifacts created when applied with Deferred Shading.

3.5.3 Fast Approximate Anti-Aliasing (FXAA)
FXAA is a post-processing anti-aliasing technique that works by detecting edges on the
rendered images and then smoothing them. [11]

It is relatively cheap compared to MSAA and provides relatively good results, its
smoothing capabilities are limited by the amount of information the edge detection can
get on a single pass, and it provides relatively good results for temporal aliasing.

3.5.4 Enhanced Subpixel Morphological Antialias-
ing (SMAA)

SMAA is a post-processing technique based on Morphological Anti-Aliasing. It works by
reconstructing edges and their surroundings to regenerate the subpixel information lost by
aliasing. [9]

3.6 Temporal Anti-Aliasing
As explained by Ke Xu and Lasse Fuglsang in their respective presentations [19, 6], the
basic principle of Temporal Anti-Aliasing is to mix the current frame being rendered with
frames from the past. This is done to increase the number of samples through time rather
than only using samples from the same frame.

One such technique is Temporal Reprojection Anti-Aliasing (TRAA), it works by sav-
ing the past frames as a History Buffer which it is then reprojected to the present scene and
blended to the current frame being rendered. To achieve this, we take the current frame
and look for the color it should have in the History Buffer; this step is called Reprojection.

For TRAA to work we need to implement other common Computer Graphics tech-
niques to serve as the base. We need Camera Jittering to be able to reconstruct pixel
information around edges; a Velocity Buffer to determine the positions of the pixels on the
last frame if they were moving; a Frame History Buffer to collect past frames to perform
the reprojections in the next frame; a Clipping Color Box to constrain the History Buffer
and avoid noise or wrong colors to appear; a Sharpen Filter to reduce part of the blur cre-
ated; and Motion Blur to correct the effects of objects moving too fast for the Clipping
Color Box.

15



3. Theoretical Background

3.6.1 Camera Jitter
Camera Jitter consists in moving the camera vertically and horizontally with a sub-pixel
translation, Figure 3.5 is an example of the horizontal translation. It is applied every frame
to preserve information from local regions of surface fragments. If the current frame is
static relative to the past ones then the system is losing information that could be used to
refine it. [6, 19]

Figure 3.5: Jittering the Projection Process. Image taken from
Fuglsand presentation. [6]

The jittering is applied as a translation to the projection matrix using theHaltonSequence(2, 3)
as translation vectors. This sequence is used because it generates an irregular pattern for
the translations that help preserve more information than a regular pattern and the Halton
Sequence provides a cheap pseudorandom pattern generator. [6, 19]

Figure 3.6: Values from the HaltonSequence(2, 3) used.

The Figure 3.6 shows the representation of the 16 points used to jitter the projection in
the current implementation, as proposed by Fuglsand [6]. The points were generated using
MATLAB then scrambled to improve their randomness using reverse-radix scrambling.

3.6.2 Velocity Buffer
The Velocity Buffer algorithm used in this implementation is the one proposed by Chap-
man [5] which is calculated by subtracting the current pixel position by its last frame
position. This is possible by saving the matrix that represents each object in the scene.
Also, we cancel the jittering from the Camera Jittering before the calculating the veloci-
ties, to avoid the noise it creates, as suggested by Xu. [19]
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3.6 Temporal Anti-Aliasing

3.6.3 Frame History Buffer

For each fragment in the current frame, we look for the 3x3 neighborhood and plus (+)
pattern neighborhood (See Figure 3.7). We look at both patterns for the minimum and
maximum of colors of the current frame, next we average them and use them to build part
of the Clipping to constrain the pixels of the History Buffer. [6]

Figure 3.7: Sampling Pattern used. Image taken from Fuglsand
presentation. [6]

On the 3× 3 neighborhood we look for the velocity of the pixel with the closest depth,
this is to get better edges in motion for pixels that are occluded [6]. We use this velocity
to reproject the position of the current frame in the History Buffer. [6, 19]

After we have the pixels in the History Buffer, we constrain it (See next subsection)
and linearly interpolate it with the current frame (See Figure 3.8 for the visual represen-
tation of the complete process). We linearly interpolate both using a feedback value that
is calculated by the difference of luminance between the colors of the constrained History
Buffer and the current frame. This feedback value is made to bias in favor of keeping the
pixel’s history over the current frame, this is done to add some information of the cur-
rent frame while keeping most of the pixel’s history. This linear interpolation stabilizes
the image, removing the jittering and smoothing the edges [6, 19]. Because each pixel’s
history is accumulated in the History Buffer, we get the effect that pixel history from pre-
vious frames weighs less the more time the pixel’s history is not rejected from the History
Buffer. [6]
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3. Theoretical Background

Figure 3.8: Temporal Reprojection Anti-Aliasing process. Image
taken from Fuglsand presentation [6]

3.6.4 Clipping Color Box
A Clipping Color Box a is 3D box built using the current pixel color as the center and the
minimum and maximum color calculated in the last subsection as the limits. It is used to
handle color rejection when the pixel’s history in the History Buffer is too distant from
current color. We take the color’s history as a vector and then project it against the limits
of the box; if it lies outside the projection against the border of the box is then we keep the
projection, else, history’s color is left untouched. The usage of the Clipping Color Box
prevents the color clustering that would happen if Clamp is applied (See Figure 3.9). [6].

Figure 3.9: Color Clamping versus Color Clipping. Image taken
from Fuglsand paper. [6]

3.6.5 Sharpen Filter
Because the Reprojection process and Color Clipping create blurriness, a Sharpen Filter
is required. We used the one proposed by Xu. [19]

 0 −1 0
−1 5 −1
0 −1 0

 (3.1)

Equation 3.1 being the Sharpen Filter Convolution Matrix used in Xu paper. [19]
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3.7 Accumulation Buffer

3.6.6 Motion Blur
Because of the nature of the History Buffer, some ghosting is created by fragments from
objects that are moving faster than the time it takes for the Color Clipping Box to reject
the color from old pixels, this is especially noticeable under special light and background
conditions. Fuglsand and Xu [6, 19] proposed to use Motion Blur solutions to hide these
artifacts.

The Motion Blur used is the one proposed by Chapman [5]. It tries to behave like
a real camera by scaling the velocity of each pixel by the division of the current Frames
Per Second (FPS) to the one wanted, thus, simulating the shutter speed. Then it mixes the
colors of the pixels that are sampled while following the direction of the velocity buffer
vector.

3.6.7 Problems
Temporal Anti-Aliasing has two main drawbacks, ghosting from moving objects and blur-
ring from the way the Color Clipping Box works. This master thesis aims to help reduce
the effects of these two drawbacks using new approaches but, for completeness, we present
some of the current solutions available.

3.6.7.1 Blurriness
Current implementations of TAA generate a very aggressive blur because of the way they
mix the colors of the current frame and the history; the use of areas larger than the pixel
increases the errors generated, therefore a Sharpen Filter is required. The filter applied in
the implementation is the one used by Xu [19], it solves blurriness reasonably well but it
cannot eliminate some artifacts.

3.6.7.2 Ghosting
Some Ghosting is created when objects move, especially under particular light and back-
ground conditions that make the foreground and background look alike. This is partially
corrected with motion blur, nevertheless, some of it remains near objects that move fast
enough to create some Ghosting but slow enough to avoid Motion Blur. Xu proposes the
use of Motion Blur and to increase the size of everything using a Stencil technique and
manual tagging of objects [19], but we aim to avoid requiring artists to manually tag and
test objects for their ghosting behaviors. Pederson’s implementation allows the jitter in
the Velocity Buffer calculations to avoid ghosting but it creates some unwanted blurriness
[6].

3.7 Accumulation Buffer
The Accumulation Buffer is an anti-aliasing technique that consists, according to Paul
Haeberli and Kurt Akeley [8], on rendering the scene several times with camera jittering
and then performing a scaled weighted sum of the renderings to generate the current frame.
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3. Theoretical Background

This is process increases the sampling per pixel and reduces the aliasing effects pro-
ducing a high-quality image at the cost of rendering everything several times per frame.

3.8 Sobel Operator
The Sobel Operator is an efficiently computable 3 × 3 isotropic gradient operator, as ex-
plained by Irwin Sobel [17]. We use this operator to detect edges in the rendered images
to mark the as possibly aliased, because they are a common place for aliasing artifacts to
appear.

It works by taking the four-possible simple central gradient estimates in a 3× 3 neigh-
borhood and adding them together. The image function is taken as a density/intensity
function and the four-possible estimates as orthogonal vectors which are directional deriva-
tives multiplied by a unit vector specifying the derivative’s direction. The sum of the
four-possible simple central gradient estimates is equivalent to the vector sum of the eight
directional derivative vectors. a b c

d e f
g h i

 (3.2)

Let the Matrix 3.2 be the 3× 3 neighborhood and |G| the magnitude of the directional
derivative estimate of the neighborhood.

The direction of G will be given by the unit vector to the appropriate neighbor. Vector
summing causes all the e (center of the 3× 3 neighborhood) values to be canceled leaving
only the next expression 3.3:

G =
c− g

4
∗
[
1 1

]
+

a− i

4
∗
[
−1 1

]
+

b− h

2
∗
[
0 1

]
+

f − d

2
∗
[
1 0

]
=

[
c−g−a+i

4
+ f−d

2
c−g+a−i

4
+ b−h

2

] (3.3)

Then we multiply by 4 to approximate the value and ensure that we do not lose precision
if we perform this with small fixed-point integers. The newly calculated magnitude is
sixteen times larger than the original average gradient.

G′ = 4 ∗G =
[
(c− g − a+ i) + (f − d) ∗ 2 (c− g + a− i) ∗ 4 + (b− h) ∗ 2

]
(3.4)

Equation 3.4 can be expressed in two weighting matrices. We use Matrix 3.5 for the x
component and Matrix3.6 for the y component.−1 0 +1

−2 0 +2
−1 0 +1

 (3.5)

+1 +2 +1
0 0 0

−1 −2 −1

 (3.6)

For edge-point detection, what is commonly done is compare the magnitude of G
against a numeric threshold to mark points as edges.
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3.9 Image Metrics

3.9 Image Metrics
The process of measuring the quality of an image is a complicated one. As explained
by Al-Najjar and Soong [2], we can follow two main methods: subjective or objective.
The subjective methods are based on opinions collected from humans and, as one would
expect, are considered expensive, difficult to implement and time-consuming to perform.
The second kind of methods, the objective ones, are based on mathematical formulas and
algorithms to measure the quality of the image without human intervention. For this thesis,
we are using objective methods.

Objectives methods can be categorized into three groups, as described by Al-Najjar
and Soong [2]:

• No-Reference: In which we have no reference image to compare with.

• Reduced-Reference: Where we have part of a reference image.

• Full-Reference: We have the complete reference image.

For computer graphics, the preferred methods are the Full-Reference ones because
reference images can be generated using higher quality but bad performing algorithms to
render them. The most common metrics used, and the ones used in this thesis, are: Mean
Square Error (MSE); Peak Signal-to-Noise Ratio (PSNR); and the Structural Similarity
Index (SSIM).

3.9.1 Mean Square Error (MSE)
Based on the average of the squared error between the pixels of the image and the reference.

MSE =
1

N ∗M

N−1∑
i=0

M−1∑
j=0

(Im(i, j)−Ref(i, j))2 (3.7)

Where N,M are the width and height of the images and Im,Ref are the pixel of the
Image and Reference.

3.9.2 Root Mean Square Deviation (RMSD)
It is the standard deviation of MSE. Also called Root Mean Square Error (RMSE).

RMSE =
√
MSE (3.8)

3.9.3 Peak Signal-to-Noise Ratio (PSNR)
It is based on the mathematical concept of Signal-To-Noise Ratio (SNR) which measures
the signal of the image, which is stored as the colors of the pixels for our purposes, against
its error compared to the reference. [2]
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3. Theoretical Background

PSNR = 10 ∗ log
(

S2

MSE

)
(3.9)

Where S is the maximum value the signal can achieve.In our case it is 255 because we
use 8-bit color channels.

3.9.4 Structural Similarity Index (SSIM)
SSIM is a widely used image metric that matches human subjectivity and is highly sensitive
to degradations in the spatial structure of image luminance, as explained by Malpica and
Bovik. [14]

It requires two images to compare, X and Y , and three similarity functions are per-
formed in a sliding N ×N (typically 11× 11) gaussian weighted window.

l(x, y) =
2 ∗ µX(x, y) ∗ µY (x, y) + C1

µ2
X(x, y) + µ2

Y (x, y) + C1

c(x, y) =
2 ∗ σX(x, y) ∗ σY (x, y) + C2

σ2
X(x, y) + σ2

Y (x, y) + C2

s(x, y) =
σXY (x, y) + C3

σX(x, y) + σY (x, y) + C3

(3.10)

Where

µX(x, y) =
P∑

p=−P

Q∑
q=−Q

w(p, q) ∗X(x+ p, y + q)

σ2
X(x, y) =

P∑
p=−P

Q∑
q=−Q

w(p, q) ∗ [X(x+ p, y + q)− µX(x, y)]
2

σXY (x, y) =

P∑
p=−P

Q∑
q=−Q

w(p, q) ∗ [X(x+ p, y + q)− µX(x, y)]

∗ [Y (x+ p, y + q)− µY (x, y)]

Where w(p, q) is a Gaussian weighing function such that
P∑

p=−P

Q∑
q=−Q

w(p, q) = 1 and

C1, C2, C3 are small constants that provide stability when the denominator approaches
zero. Typically, they are set as follows:

C1 = (K1 ∗ L)2, C2 = (K1 ∗ L)2, C3 =
C2

2

Where L is the dynamic range of the image and K1, K2 ≪ 1 are small constants. At
the end, the three similarity functions are combined in the general form:

SSIM(x, y) = l(x, y) ∗ c(x, y) ∗ s(x, y) (3.11)
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Chapter 4
Development

In this chapter, the main work performed in this master thesis is presented.

4.1 EDAN35 Project Improvements
For this master thesis, we decided to use our project from High Performance Computer
Graphics (EDAN35) as the base. During the course, we implemented a Temporal Repro-
jection Anti-Aliasing technique based on the presentations of Ke Xu and Lasse Fuglsang
[19, 6], from the games Inside and Uncharted 4. It proved to be reliable and well doc-
umented; and allowed us to put into practice the fundamentals of the technique in an
academic environment, providing the base for improvements performed for this master
thesis.

The EDAN35 project implementation had errors in the jittering process that were cor-
rected by properly expanding what both implementations meant by camera jittering , see
Appendix B for a full explanation. The management of the Halton points was redone to ac-
complish the improved camera jittering with the inclusion of support of up to 128 points
to work as the jittering of the Accumulation Buffer (See Figure 4.1). Note, though, for
Temporal Anti-Aliasing only the first 16 points are used as suggested by Xu and Fuglsang.
[19, 6]

Specular Lighting Anti-Aliasing is a complex problem by itself, which requires spe-
cialized solutions that work directly with light reflections. Anti-Aliasing techniques do
not correct it by themselves, they usually work with suitable already made solutions. To
avoid problems with Specular Lighting, it was decided to be turned off.

Also, there were added models for a sphere, wall, pipe, hairball, a window with blinds
and an arched window to test the improvements done to the Temporal Anti-Aliasing. All
models, except the wall, were added with one color-solid texture to avoid introducing light-
ing errors in the calculations of the image metrics for the comparisons between the Un-
charted 4 implementation and the one developed in this master thesis. The wall model
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4. Development

Figure 4.1: The 128 HaltonSequence(2, 3) points available to
use.

uses a white texture with black letters on it because letters use hard edges to define their
shape and must stay that way after applying any Anti-Aliasing technique.

4.1.1 Fast Approximate Anti-Aliasing (FXAA)
For this master thesis, the white paper version of Fast Approximate Anti-Aliasing (FXAA)
by Lottes [11] was used to compare it against Temporal Anti-Aliasing, on the ground that
both techniques are Post-Processing Anti-Aliasing and that FXAA is a popular technique
used in the industry. It was implemented under the highest quality preset according to the
white paper without taking into consideration the performance impact because we wanted
to compare the raw improvement that both techniques can provide.

4.1.2 Enhanced Subpixel Morphological Antialias-
ing (SMAA)

In order to test a more complex and newer post-processing technique, SMAA was imple-
mented following the instructions provided by Jimenez et al. [9]. It was implemented
using the highest preset that works with the deferred shading pipeline.

4.1.3 Accumulation Buffer
We use an Accumulation Buffer to provide a reference image of what the scene is. It
was implemented following Haeberli and Akeley [8]. The points used to jitter the camera
are Halton Sequence Points as for Temporal Anti-Aliasing, although the Accumulation
Buffer can use up to 128. The reasons for using Halton Sequence are that: it fulfils the
requirements established by Haeberli and Akeley; it is easy to extend the current camera
system to support more Halton Points; and for Temporal Anti-Aliasing, it provides pseudo-
random points that do not follow a pattern to help gather as much information of the scene
as possible.
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4.2 Testing Framework Implementation

4.1.3.1 Sample Number Selection
The number of samples selected for the Accumulation Buffer is 128. This is because it
provides the best representation possible of the scene even though it causes a substantial
loss of performance.

In order to show the difference between using 16 and 128 samples, we performed four
tests, named from A to D, to observe how the metrics behave under different arrangements
of scene objects and lighting. In the Table 4.1 we see the results of one such test:

Table 4.1: Metrics behavior comparison between using 16 sam-
ples versus 128 for Accumulation Buffer.

Test D

Tests
Samples 16 128 Difference Relative Difference (%)

MSE of Temporal 40.647863 38.947297 −1.700566 4.183654132%
RMSD of Temporal 6.375568 6.240777 −0.134791 2.114180258%
MSE of No AA 24.872104 24.524992 −0.347112 1.395587603%
RMSD of No AA 4.987194 4.952271 −0.034923 0.700253489%
Peak-SNR of Temporal 32.040426 32.22603 0.185604 0.575944353%
SNR of Temporal 30.30596 30.492374 0.186414 0.611346299%
Peak-SNR of No AA 34.173678 34.234715 0.061037 0.178289786%
SNR of No AA 32.439212 32.501058 0.061846 0.190289190%
SSIM of Temporal 0.993302 0.993451 0.000149 0.014998223%
SSIM of No AA 0.996826 0.996891 6.5E − 05 0.006520272%

The changes are large enough on some metrics to be noticeable, especially on MSE and
SSIM of Temporal Anti-Aliasing, for our comparisons between Anti-Aliasing techniques.
We are going to notice the effects of the use of 128 samples when we reach the comparisons
between Anti-Aliasing techniques.

4.2 Testing Framework Implementation
To measure any improvement achieved, we developed a testing framework that allows
us to save the important information when the test is performed. The framework allows
us to select which technique to use as the main renderer: the Master Thesis Temporal
Anti-Aliasing implementation; Uncharted 4 Temporal Anti-aliasing implementation; En-
hanced Subpixel Morphological Antialiasing (SMAA); or Fast Approximate Anti-Aliasing
(FXAA). It also allows us to zoom any part of the screen and then perform all the image
metrics calculations using MATLAB.

When a test is performed, selected rendered images are saved as PNGs with 4 color
channels and no compression. Also, basic information regarding the date when the test
was performed; the camera information and data regarding the values used for Temporal
Anti-Aliasing are saved in a plain text file. To quantify if improvements were achieved
on the main objectives of this thesis, ghosting, and blurriness, two different types of tests
were developed: Static Test and Ghosting Test.
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4.2.1 Static Test
This type of test consists of letting the History Buffer fill for 16 frames by rendering the
scene without any moving object with the Temporal Anti-Aliasing technique selected and
then saving the last frame rendered. Immediately after saving the last TAA frame rendered,
we render the last frame again but now using the Accumulation Buffer, to generate the
ground truth image of the scene, and SMAA, FXAA and No Anti-Aliasing (No AA), for
comparison purposes.

4.2.2 Ghosting Test
This type of test is performed only with the sphere and hairball models; the first is moving
through the alley of the scene simulating a moving object in an application and the sec-
ond one is rotating in a static position simulating many edges moving. The test consists
of rendering the scene for a selected number of frames, with the Master Thesis Temporal
Anti-Aliasing implementation and the Uncharted 4 Temporal Anti-Aliasing implementa-
tion at the same time. After each frame is rendered, each image, the position of the sphere
and the rotation of the hairball are saved.

Once the selected number of frames has run through, the sphere is returned to its origi-
nal position and the movement is repeated using the positions saved before; and the hairball
is returned to its original rotation and the movement is also repeated. The difference this
time is that every frame is rendered using the Accumulation Buffer and then saved, it is
done to avoid the heavy performance loss caused by the Accumulation Buffer impacting
the Temporal Anti-Aliasing techniques.

After all the images rendered are saved, we compare the ones produced by the Mas-
ter Thesis Temporal Anti-Aliasing and the Uncharted Temporal Anti-Aliasing against the
ground truth to calculate the image metrics of them. The image metrics we calculate show
how much error was generated by ghosting in both implementations, allowing us to com-
pare how both techniques behave.

4.2.3 MATLAB Image Metrics
The images metrics for each test represent, numerically, the quality of each image. We
calculate them to compare how each technique behaved on each test in order to identify if
the Master Thesis Temporal Anti-Aliasing generates higher quality images than the other
techniques tested.

Once all the test results are saved, one script takes all the images and organizes them
into folders by name and type of test. Afterward, all the test results are processed using
MATLAB to get the images metrics results. With the image metrics results, we compare
how the Mater Thesis Temporal Anti-Aliasing behaved against the Uncharted 4 Tempo-
ral Anti-Aliasing and the other Anti-Aliasing techniques, to detect if the improvements
worked and to observe how our improved implementation behaved against other common
Anti-Aliasing techniques.

For Static Tests, we perform MSE, RMSD, PSNR, SNR and SSIM measurements to
the TAA, FXAA, SMAA and No AA rendered images, using the Accumulation Buffer
rendered images as the reference to compare with. Also, we generate a local SSIM map for
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4.3 Temporal Reprojection Anti-Aliasing Modifications

each rendered image, apart from the one rendered with the Accumulation Buffer, which
are saved as PNGs and MATLAB FIGs. All the measurements results are stored in the
folder with the test results as plain text.

For Ghosting Tests, we perform MSE, RMSD, PSNR, SNR and SSIM measurements
to each frame rendered with the Temporal Anti-Aliasing of Uncharted 4 technique and
the Temporal Anti-Aliasing of the Master Thesis using the corresponding Accumulation
Buffer rendered frame. A local SSIM map is generated for each rendered image, except
the Accumulation Buffer ones, and saved as PNGs and MATLAB FIGs. All the results of
all images are stored in a plain text file. In the SSIM maps, dissimilarity is represented as
colors and white as similarity.

4.3 Temporal Reprojection
Anti-Aliasing Modifications

For this thesis, the Color Clipping Box technique was modified to be affected by the values
calculated from the new techniques applied in this thesis. These changes follow the ratio-
nale that we want to apply the full force of the Temporal Anti-Aliasing technique when
needed, and not elsewhere, to minimize the effects of ghosting and blurring.

The first change consists in that the Colors that were calculated from the average be-
tween the 3×3 and Cross neighborhoods by the sampling patterns (See Figure 4.2) are now
mixed in a variable amount. This follows the idea that we prefer the Cross neighborhood
if the pixel we are currently calculating is not considered to be aliased because the Cross
neighborhood is less likely to introduce noise in the Color Clipping Box calculations. But,
if the pixel is considered to be aliased, we prefer the 3×3 neighborhood because it provides
more information about the surroundings of the pixel to create the unaliased image.

Figure 4.2: Sampling Pattern used. Image taken from Fuglsand
presentation. [6]

The second change is that the size of the Color Clipping Box depends on how much the
pixel is considered to be aliased. By using smaller Color Clipping boxes (See Figure 4.3)
than the original technique on unaliased pixels, we increase the elimination of unwanted
colors from the history, reducing the effects of ghosting since we are rejecting colors faster
on pixels that we know are not considered to be aliased. This is implemented by linearly
interpolating the current pixel color and the minimum and maximum colors calculated for
the Color Clipping Box.

On the next subsections, we explain how all the values are calculated that contribute to
decide if a pixel is considered aliased or not. All of these values are calculated at the same
time as TAA is being applied, with the exception of the Sobel Operator which happens
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Figure 4.3: Color Clipping Box size reduction

before the main TAA technique. Afterward, we show how we use that value to reduce the
size of the Color Clipping Box and the preference of the Sampling Pattern.

4.3.1 Triangle Indexing Improvements Implementa-
tion

The main idea behind the application of this technique is to detect pixels that we considered
aliasing by using the number of different models the pixel is surrounded with. We want to
detect the edges between different models because aliasing normally occurs there. Once
we have this information, we proceed to alter the Color Clipping Box that controls the
application of TAA.

To implement this technique, all models in the scene receive a unique integer index.
Then, in the renderization geometry pass, all triangles belonging to the same model receive
the model index as its ID. Subsequently, it is used in the pixel shader to generate a texture
in which every pixel contains the ID of the model it belongs to.

On the Temporal Reprojection pass, the average on the number of pixels belonging
to different models in the 3 × 3 neighborhood of the current pixel is calculated. With
this average, we proceed to skew the color linear interpolation between the minimum,
maximum and average between the Cross and 3 × 3 neighborhoods of the pixel and we
proceed to change the size of the Color Clipping Box.

If the average is close to zero, meaning that the pixel is surrounded by pixels of its
same model, we interpolate towards colors from the Cross neighborhood and reduce the
size of the Color Clipping Box. But, if the average is close to one, meaning that the pixel is
surrounded by many pixels of other models, we interpolate towards colors from the 3× 3
neighborhood and let the Color Clipping Box stay on its original size.

modelAveragei =

9∑
j=1

ModelDiff(i, j)

9
(4.1)

Where

ModelDiff(i, j) =

{
1 if ModelIDi ̸= ModelIDj

0 else

Next we are going to show some examples of how this technique works. For each
matrix, the numbers represent the triangles ID’s with the center position being the current

28



4.3 Temporal Reprojection Anti-Aliasing Modifications

pixel being calculated and the rest being its neighborhood. Matrix 4.2 shows an example
of a pixel not considered aliased because most of the neighborhood have the same ID. On
the other hand, Matrix 4.3 shows a pixel considered aliased because of the high amount of
different ID’s around. 3 3 3

3 3 3
5 23 82

 (4.2)

3 3 3
3 5 3
5 23 82

 (4.3)

4.3.2 Depth Pseudo-Variance and Depth Temporal
Pseudo-Variance

The key point behind this technique is that we want to detect pixels that we consider aliased
because they are in a neighborhood of pixels separated by relatively long depth distances
or that their depth in the last frame changed relatively a long distance in contrast to its
current neighborhood.

First, we calculate the minimum, maximum and average linear depth from the 3 × 3
neighborhood. Then we proceed to use the next formula to calculate the value we are going
to use to normalize results:

maxDepthDistance = min ( |depthMin− depthAvg| ,
|depthMax− depthAvg|)

(4.4)

We calculate the normalizing value using the minimum to avoid the interference of
outliers. If maxDepthDistance is below 0.002 everything that follows is set to zero
because pixels are so close that it is probably not aliased. This threshold was defined
by experimenting which values would not get noise inside the calculations but would let
the interesting pixels in.

Then we calculate the depth pseudo variance as:

depthPseudoV ariance =

(
|currentDepth− depthAvg|

maxDepthDistance

)2

(4.5)

This provides us with a pseudo-variance that measures the distance between the aver-
age depth and the current pixel depth. Note that normally the value is going to be between
0 and 1 and but, if the pixel depth is an outlier, this value is going to be over 1.

Finally, we calculate how the depth of the pixel in the last frame relates to the current
neighborhood, using the depth temporal pseudo variance. Note that we use the fourth
power to reduce the noise in the calculations because the normalized value is between 0
and 1, therefore, making it converge to 0 if the value was near 0.

depthTemporalPseudoV ariance =

(
|pastDepth− depthAvg|
maxDepthDistance

)4

(4.6)
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Next, we are going to show examples of how this technique decides if a pixel is consid-
ered aliased or not. For each matrix, the numbers represent the triangles depths with the
center position being the current pixel being analyzed and the rest being its neighborhood.
Matrix 4.7 shows us an example of a pixel not considered aliased because it is relatively
close to most of its neighborhoods. In contrast, Matrix 4.8 shows an example of a pixel
that would be considered aliased because it has a relatively big distance in comparison
to its neighborhood. An example of a pixel considered aliased by the Depth Temporal
Pseudo-Variance would be if the depth of the pixel of Matrix 4.7 in the last frame was 4.0.9.0 9.3 8.7

9.2 9.0 9.3
8.8 8.9 8.7

 (4.7)

9.0 9.3 8.7
9.2 4.0 9.3
8.8 8.9 8.7

 (4.8)

4.3.3 Sobel Improvements Implementation
The main idea behind applying Sobel edge detection technique is to concentrate the TAA
effects on pixels on edges to correct aliasing, if necessary. It is important to note that this
is the only technique from the improvements of the master thesis that runs before the main
TAA algorithm.

We apply the Sobel Operator to the luminance of the colors of the lit scene produced
by the Deferred Shading Pipeline, the luminance of the colors of the unlit scene from the
Geometric Buffer, and the current linear depth. We use luminance because the human eye
is better at recognizing sudden changes on it and we use the lit and unlit scene to avoid
problems detecting edges because of lights or shadows.

Each Sobel Operator is performed separately, and their magnitudes mixed at the end
as follows:

g = (u ∗ 0.3 + l ∗ 0.7) + d (4.9)

Where u is the magnitude of the sobel operator of the luminance of the unlight scene,
l is the magnitude of the sobel operator of the luminance of the lighted scene and d is the
magnitude of the sobel operator of the current linear depth.

Then, we clamp g between 0.0 and 1.0 to finally apply the smoothstep polynomial as
follows:

sobel =
√

g2 ∗ (3.0− 2.0 ∗ g) (4.10)

After all the Sobel Operators are applied, we save the results to a texture and perform a
simplified version of TRAA to keep the results stable through time. This simplified version
is almost the same as the one we use as a base of this master thesis, the differences come
from the use of Clamping rather than a Clipping Box because the texture values are one
dimensional; and we do not apply a sharpen filter.

The output of this TRAA is used to calculate the Sobel value of the current pixel, the
average Sobel value in the Cross Neighborhood and the average Sobel value in the 3 × 3
Neighborhood.
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4.3.4 Final Mixing
Finally, we modify how the Clipping Box is calculated using the values we previously
calculated. We call this final mixed value aliasedV alue, it represents how much a pixel
is considered to be aliased. After it is calculated, we use it to change the Sampling Pattern
from which colors the Color Clipping Box is built upon and its size.

First , we define the mix function as follows:

Mix(x, y, t) = x ∗ (1− t) + y ∗ t with 0 ≤ t ≤ 1 (4.11)

Then, the final mixing is applied as follows:

sobelAvgMixV al = Clamp01(modelAveragei + sobel) (4.12)

Where sobel is the Sobel value of the current pixel, Equation 4.10, modelAveragei
comes from the Equation 4.1 and Clamp01 is the clamping function between 0 and 1.

sobelAvg = Mix(sobelAvgCross, sobelAvg3x3, sobelAvgMixV al) (4.13)

Where sobelAvgCross is the average Sobel value of the Cross Neighborhood and
sobelAvg3x3 is the average Sobel value of the 3 × 3 Neighborhood around the current
pixel.

And, we use Equations 4.13, 4.5, 4.6 and 4.1 to calculate how much this pixel is con-
sidered to be aliased:

aliasedV alue = Clamp01(sobelAvg + depthPseudoV ariance

+ depthTemporalPseudoV ariance

+modelAveragei)

(4.14)

With this aliasedV aluewe proceed to modify the Color Clipping Box. First, we select
how much of each Sampling Pattern we want to be part of the Color Clipping Box:

colorMin =Mix(colorMinCross, colorMin3x3, aliasedV alue)

colorMax =Mix(colorMaxCross, colorMax3x3, aliasedV alue)

colorAvg =Mix(colorAvgCross, colorAvg3x3, aliasedV alue)

(4.15)

Then we modify the size of the Color Clipping Box by interpolating towards the normal
size if the aliasedV alue is close to one, else, we use the current color, which is the center
of the box.

clipColorMin =Mix(colorCurrent, colorMin, aliasedV alue)

clipColorMax =Mix(colorCurrent, colorMax, aliasedV alue)
(4.16)

The Figures 4.4, 4.5 and 4.6 are examples of the aliased values calculated, each pixel
is the current aliasedV alue of that picture. The white color represents an aliasedV alue
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4. Development

of 1 and the black color of 0. As we expect, most the edges are marked as probably aliased
by the techniques we used.

Figure 4.4: Image made of the Aliased Values of each pixel.

Figure 4.5: Image made of the Aliased Values of each pixel.

Figure 4.6: Image made of the Aliased Values of each pixel.
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4.3 Temporal Reprojection Anti-Aliasing Modifications

4.3.5 Sharpen Filter Modifications
With the current The Sharpen Filter, a color peak is created when the center pixel is bright
and the neighboring pixels are dark, this is because dark colors are close to zero but the
center pixel is still multiplied by 5. An example of the worst possible case is having the
center pixel as a bright color and the neighborhood’s pixels as pure black, which are repre-
sented as zero. Therefore, we normalized Sharpen Filter to avoid creating that color peak
and to work better with bright pixels with dark neighborhoods. The Filter was changed
from 3.1 to:  0 −0.25 0

−0.25 2 −0.25
0 −0.25 0

 (4.17)

Equation 4.17 shows the new Sharpen Filter Convolution Matrix used.
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Chapter 5
Results

In this chapter, we explain how we evaluated the improvements done to the Temporal
Anti-Aliasing. We show the numerical and visual results obtained. Finally, we explain
the results and their meaning compared to the previous implementation of TAA and other
Anti-Aliasing solutions.

5.1 Evaluation Methodology
To evaluate the improvements achieved to the Temporal Anti-Aliasing technique we se-
lected models and camera angles that place the technique under stress. Then, using the
Testing Framework we developed, we proceed to render and save images of each of those
models to compare how the technique behaves in comparison to the original TAA imple-
mentation and other Anti-Aliasing techniques to determine if the proposed techniques in
this thesis provided images with better quality without incurring heavy memory usage or
time consumption. Also, a special test was taken to measure if changing the Sharpen Filter
was the sole mechanism providing an improvement.

The models used on the tests were:

• Pipe: A brown pipe with hard edges.

• Window with Blinds: A blue window with closed blinds.

• Arched Window: A blue window with an arch at the top.

• Wall: A white wall with black text.

• Sponza Atrium: exemplifies a general scene.

• Sponza Atrium Flowers: exemplifies a cutout model.

• Hairball: contains many fine details for its numerous fibers.
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It is important to note that in Computer Graphics there are only common models used
to test techniques, there is no standard per se. On this Master Thesis, we used two common
models: the Sponza Atrium, which has many variations and it is commonly used to test
many Computer Graphics techniques; and Hairball, which is sometimes used to test Ray
and Path Tracing techniques. As well, an explanation why each model was selected is
available under each test subsection.

Note that Sponza Atrium and Hairball models were downloaded from Morgan McGuire’s
Computer Graphics Archive [15]; the Pipe model is from Spencer Arts [4]; the Arched
Window model is from Isabela H. [7]; and the Window with Blinds is from Channa Yim
[21].

The tests were performed on the computer provided by Lund University which has the
following specification:

• CPU: Intel(R) Core(TM) i7-3820 CPU @ 3.60GHz, 3601 Mhz, 4 Cores, 8 Logical
Processors

• RAM: 64.0 GB

• GPU: NVIDIA GeForce GTX 1080 with 8 GB of VRAM

• Rendering Resolution when not zooming: 1600 x 900

5.2 Results and Comparisons
First, we need to know that the best possible value for MSE and RMSD is zero, meaning
that there is no error; that having a high PSNR and SNR value means it is better because the
noise, which is the denominator in the equation of this metric, is close to zero; and, finally,
that having an SSIM of 1 means that the image is structurally the same as the ground truth,
while having a value of 0 means that it is structurally different. For the SSIM maps, each
pixel represents its SSIM value; having a white color means that is structurally the same
while having a darker color means that there are structural differences.

5.2.1 Sharpen Filter
For this test, we rendered the Sponza Atrium Model and a Static Sphere Model to evaluate
the effects of the Normalized Sharpen Filter to the general quality of the rendered image,
especially, regarding the blurring normally caused by TAA. Everything was rendered using
both implementations of TAA with and without the Normalized Sharpen Filter to see if this
change was the only improvement that was increasing the quality of the rendered image.
The scene was selected for the test because it provided an example of a general scene that
should not generate any blur. As we see from the Table 5.1, even if the Master Thesis
TAA and the Uncharted TAA used the new Sharpen Filter, our other improvements still
rendered a higher quality image. If we zoom on Figure 5.1 From Figure 5.2 we can see that
the Normalized Sharpen Filter contributes reducing the artifacts in the rendered image, as
there are almost no dark areas on the SSIM maps of the TAA’s using it.
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Table 5.1: Sharpen Filter Test numerical results

Sharpen Filter Test

Tests
AA

Uncharted
TAA
Not

Normalized

Uncharted
TAA

Normalized

Master
TAA
Not

Normalized

Master
TAA

Normalized
Best

MSE 149.271 8.835 148.036 8.224
Master
TAA

Normalized

RMSD 12.218 2.972 12.167 2.868
Master
TAA

Normalized

Peak-
SNR 26.391 38.669 26.427 38.980

Master
TAA

Normalized

SNR 16.245 28.522 16.281 28.833
Master
TAA

Normalized

SSIM 0.932 0.992 0.933 0.992
Master
TAA

Normalized

Figure 5.1: Rendered Images comparison.
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Figure 5.2: SSIM Maps comparison.

5.2.2 Pipe

For this test, we rendered the Pipe Model in order to test how the improvements behaved
when rendering a model with hard edges. We wanted to test if our improvements reduced
the amount of blur around those hard edges while still fixing the aliasing problem. We
rendered the Pipe twice, the first time using a regular camera angle, for normal aliasing
around the edges, and a skewed camera angle, for increased aliasing effects. As we see
from the results, TAA with our improvements is at the same quality level as SMAA.

5.2.2.1 Regular

When we zoom and compare Figure 5.4 with the rendered images in Figure 5.3, especially
around the edges, we observe that there is a reduction of blurring in the Master Thesis TAA
in comparison with the Uncharted TAA. As well, we observe that the Uncharted TAA gen-
erates bright colors around the edges which should not be there; this is easier to observe as
the dark edges on the SSIM map of the Uncharted TAA on Figure 5.3. Furthermore, Table
5.2 confirm us that the Master Thesis TAA reaches almost the same quality as SMAA.
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Table 5.2: Numerical results of the Pipe Test with regular camera
inclination.

Pipe Regular Test

Tests
AA No AA FXAA SMAA Uncharted

TAA
Master
TAA Best

Master
TAA

Against
Best

MSE 8.608 3.573 1.278 14.602 1.574 SMAA -0.296
RMSD 2.934 1.890 1.130 3.821 1.254 SMAA -0.124
Peak-SNR 38.782 42.601 47.066 36.487 46.162 SMAA 0.904
SNR 36.451 40.270 44.735 34.156 43.831 SMAA 0.904
SSIM 0.999 0.999 1.000 0.996 1.000 SMAA 0.000

Figure 5.3: Pipe Regular comparison between Master Thesis
TAA, Uncharted TAA, and SMAA.

Figure 5.4: Pipe Regular Test ground truth.
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5.2.2.2 With Camera Inclination

Zooming and comparing the Figures 5.5 and 5.6, we can observe that the Master TAA is
the most similar to the Ground Truth. From the SSIM map of the Uncharted TAA, we
notice that blurring is being generated around the edges.

Finally, from Figure 5.5 and Table 5.6 we note that SMAA is not properly detecting
the upper edge of the pipe, when zoomed we observe a small staircase forming around the
edge. This is due to the fact that the camera was set up with a skewed inclination which
pushed to the limit the edge detection techniques used in SMAA.

Table 5.3: Numerical results of the Pipe Test with a skewed cam-
era inclination.

Pipe with Camera Inclination Test

Tests
AA No AA FXAA SMAA Uncharted

TAA
Master
TAA Best

Master
TAA

Against
Best

MSE 16.112 6.470 2.810 14.349 2.664 Master TAA 0.000
RMSD 4.014 2.544 1.676 3.788 1.632 Master TAA 0.000
Peak-SNR 36.059 40.022 43.644 36.563 43.876 Master TAA 0.000
SNR 32.474 36.437 40.059 32.978 40.291 Master TAA 0.000
SSIM 0.998 0.999 1.000 0.996 0.999 SMAA 0.000

Figure 5.5: Pipe with Camera Inclination comparison between
Master Thesis TAA, Uncharted TAA, and SMAA.
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Figure 5.6: Pipe with Camera Inclination Test ground truth.

5.2.3 Window with Blinds

On this test, we used the Window with Blinds model for its small details at the blinds. We
tested how our improvements behaved with this kind of details and discovered that it did
not react in a proper way even if the numerical results showed otherwise.

From Figures 5.8 and 5.7 we can observe it is complicated for the techniques to handle
the small gaps between the blinds. From Figure 5.8 and Table 5.4, we notice that the
Master Thesis TAA and SMAA are able to reconstruct more details than the Uncharted
TAA but, aesthetically and visually, we believe it is better the Uncharted TAA than the
other techniques because those small gaps between the blinds flicker less when moving.

Table 5.4: Numerical results of the Window with Blinds Test.

Window with Blinds Test

Tests
AA No AA FXAA SMAA Uncharted

TAA
Master
TAA Best

Master
TAA

Against
Best

MSE 96.044 70.486 35.134 170.229 32.115 Master TAA 0.000
RMSD 9.800 8.396 5.927 13.047 5.667 Master TAA 0.000
Peak-SNR 28.306 29.650 32.674 25.820 33.064 Master TAA 0.000
SNR 25.467 26.810 29.834 22.981 30.224 Master TAA 0.000
SSIM 0.986 0.990 0.995 0.976 0.995 Master TAA 0.000

Figure 5.7: Window with Blinds ground truth.
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Figure 5.8: Window with Blinds comparison between Master
Thesis TAA, Uncharted TAA, and SMAA.

5.2.4 Arched Window

We used the Arched Window Model to test how our improved implementation with the
small details of the window’s door and the aliasing from the arch. We can observe from
Figures 5.9 and 5.10 that for all the techniques, the small gaps around the window’s door
are hard to render. On some parts small gaps, we see that the techniques could not render
it completely. Even though on Table 5.5 SMAA appears to be the best, but we believe that
the Uncharted TAA has the best visual quality because those incomplete gaps generate
flickering when there is movement.

Table 5.5: Numerical results of the Arched Window Test.

Arched Window Test

Tests
AA No AA FXAA SMAA Uncharted

TAA
Master
TAA Best

Master
TAA

Against
Best

MSE 56.313 39.103 19.849 76.483 21.983 SMAA -2.134
RMSD 7.504 6.253 4.455 8.745 4.689 SMAA -0.233
Peak-SNR 30.625 32.209 35.153 29.295 34.710 SMAA 0.443
SNR 27.325 28.909 31.854 25.996 31.410 SMAA 0.443
SSIM 0.992 0.994 0.997 0.989 0.996 SMAA 0.001
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Figure 5.9: Arched Window comparison between Master Thesis
TAA, Uncharted TAA, and SMAA.

Figure 5.10: Arched Window ground truth.

5.2.5 Sponza Atrium

For this test, we wanted to analyze how the Master TAA implementation behaved with a
general scene with lights and shadows, we used the Sponza Atrium Model with the Sphere
Model being static in the center.

If we compare Figures 5.11 and 5.12, we can observe that the Uncharted TAA had
blurring problems around all the edges, which is visible on its SSIM map; SMAA had
problems with all the flowers, we can observe the flower shape on its SSIM map; and that
the Master Thesis TAA only had minor problems with the flowers, as seen on the gray areas
on its SSIM map. Furthermore, Table 5.6 confirm what we are observing on the visual
results, as the Master Thesis TAA got the best scores on most of the test; the Uncharted
TAA got the worst scores due to the edges problems; and SMAA got worse than normally
scores due to the flowers problem.
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Table 5.6: Numerical results of the Sponza Atrium Test.

Sponza Atrium Test

Tests
AA No AA FXAA SMAA Uncharted

TAA
Master
TAA Best

Master
TAA

Against
Best

MSE 13.458 8.290 8.610 42.728 3.972 Master TAA 0.000
RMSD 3.669 2.879 2.934 6.537 1.993 Master TAA 0.000
Peak-SNR 36.841 38.945 38.781 31.824 42.141 Master TAA 0.000
SNR 20.056 22.160 21.996 15.038 25.356 Master TAA 0.000
SSIM 0.988 0.991 0.991 0.938 0.991 Master TAA 0.000

Figure 5.11: Sponza Atrium comparison between Master Thesis
TAA, Uncharted TAA, and SMAA.

Figure 5.12: Sponza Atrium ground truth.

5.2.6 Sponza Atrium Flowers
On this test, we looked at how do our improvements handle the details of a model with
transparent parts, as in the Flowers from the Sponza Atrium Model, because the aliasing
they present is considered hard to properly detect and correct.

From Figures 5.13 and 5.14, we observe the Uncharted TAA has many problems han-
dling this type of model, especially if we look at its SSIM map; we notice that SMAA
could not correct all the aliasing artifacts from the edges of the flowers, we see the edges

44



5.2 Results and Comparisons

of the flowers appear on its SSIM map; and, finally, we observe that the Master Thesis
TAA corrected the most aliasing artifacts, some are still left as seen on its SSIM map on
the gray areas. Furthermore, Table 5.7 confirm what we observe visually, as the Master
TAA got the best scores and SMAA scored worse than average.

Table 5.7: Numerical results of the Sponza Atrium Flowers Test.

Sponza Atrium Flowers Test

Tests
AA No AA FXAA SMAA Uncharted

TAA
Master
TAA Best

Master
TAA

Against
Best

MSE 122.795 66.062 72.279 490.281 36.162 Master TAA 0.000
RMSD 11.081 8.128 8.502 22.142 6.013 Master TAA 0.000
Peak-SNR 27.239 29.931 29.541 21.226 32.548 Master TAA 0.000
SNR 19.590 22.282 21.891 13.577 24.899 Master TAA 0.000
SSIM 0.959 0.975 0.972 0.863 0.985 Master TAA 0.000

Figure 5.13: Sponza Atrium Flowers comparison between Master
Thesis TAA, Uncharted TAA, and SMAA.

Figure 5.14: Sponza Atrium Flowers ground truth.
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5.2.7 Hard Edges
For this test, we explored how the Master Thesis Implementation with many small details
at a far distance and how it behaved with hard edges. We used both Windows Models for
the small details and the Pipe and Wall Models for the hard edges.

From Figures 5.15 and 5.16, we observe that the Master TAA is the best technique for
handling all the edges from all the models, its SSIM map barely has any dark area and on
Table 5.8 it surpasses any other technique; the Uncharted TAA creates blurring around all
the edges, this appears on its SSIM maps as all the edges are visible; and SMAA fail to
correct some aliasing artifacts which we can observe on its SSIM map.

Table 5.8: Numerical results of the Hard Edges Test.

Hard Edges Test

Tests
AA No AA FXAA SMAA Uncharted

TAA
Master
TAA Best

Master
TAA

Against
Best

MSE 12.463 9.342 8.019 31.385 5.012 Master TAA 0.000
RMSD 3.530 3.057 2.832 5.602 2.239 Master TAA 0.000
Peak-SNR 37.174 38.426 39.090 33.164 41.131 Master TAA 0.000
SNR 30.327 31.579 32.242 26.316 34.283 Master TAA 0.000
SSIM 0.997 0.997 0.998 0.989 0.998 Master TAA 0.000

Figure 5.15: Hard Edges comparison between Master Thesis
TAA, Uncharted TAA, and SMAA.

Figure 5.16: Hard Edges ground truth.
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5.2.8 Sphere Ghosting

For this test, we wanted to measure how the improvements we performed decreased the
effects of ghosting that were present in the Uncharted Implementation. For this reason, we
selected the Sphere Model to move in the hall of the Sponza Atrium and rendered it under
a camera angle that showed us ghosting trails.

As we see from the visual results on Figure 5.17, ghosting effects were diminished in
our implementation as the stripes visible on the Uncharted TAA are almost invisible on
the Master Thesis TAA. Furthermore, in Table 5.9 the average results on the Master TAA
image metrics are better than the average from the Uncharted TAA.

It is important to note that some metrics got an infinite result as they were exactly the
same as the ground truth. This happens on some images in which the spheres cover the
whole frame with a dark blue color. As well, the Test Index marks which test the associated
result belongs to; on the averages we use Not Applicable (N
A) because those results come from the average of all the tests.

Table 5.9: Numerical results summary of the 100 tests performed
for the Sphere Ghosting Test.

Sphere Ghosting Test Summary

Tests
AA Uncharted TAA Test Index Master TAA Test Index

Best MSE 0.000 63 0.000 63
Worst MSE 100.871 19 91.766 29
Average MSE 28.634 N/A 19.501 N/A
Best Peak-SNR Inf 63 Inf 63
Worst Peak-SNR 28.093 19 28.504 29
Average Peak-SNR Inf N/A Inf N/A
Best SNR Inf 63 Inf 63
Worst SNR 16.818 11 18.524 29
Average SNR Inf N/A Inf N/A
Best SSIM 1.000 63 1.000 63
Worst SSIM 0.964 99 0.972 29
Average SSIM 0.965 N/A 0.990 N/A
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Figure 5.17: Example of Ghosting. Comparison between Master
Thesis TAA, Uncharted TAA and Ground Truth on Test Number
19.

5.2.9 Hairball

These tests were the hardest for all the techniques we tried. The Hairball Model contains
many fibers with many details that provide a complex test for any Anti-Aliasing solution.
We performed all the tests without light, to see the silhouette, and with light, to see how
its reaction to the fibers affected all the Anti-Aliasing solutions. We did two sets of tests,
the first one was static, to show us the behavior of blurring and aliasing correction; and the
second set was rotating, to show us how ghosting behaved on the fibers. The results from
the static tests were surprising, as we did not expect the Master Thesis Implementation to
be the best handling the fibers because of the results in both windows tests.

5.2.9.1 Static Shadow

From Figures 5.18 and 5.19, we can observe that the Uncharted TAA has problems on
most of the fibers, on its SSIM map this is visible as the big dark edge around Hairball;
SMAA fails to correct aliasing on the smaller fibers, we observe this as the gray areas
around the Hairball model on the SSIM map; and, finally, we notice that the Master TAA
is the best at handling the fibers, they look smooth as in the original model, and its SSIM
map has the least amount of dark areas. Also, from Table 5.10 we can confirm that the
Master TAA is the best at rendering the static shadow Hairball by a relatively big margin
compared to the other techniques.
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Table 5.10: Numerical results of the Hairball Static Shadow Test.

Hairball Static Shadow Test

Tests
AA No AA FXAA SMAA Uncharted

TAA
Master
TAA Best

Master
TAA

Against
Best

MSE 44.367 21.101 25.379 88.976 10.293 Master TAA 0.000
RMSD 6.661 4.594 5.038 9.433 3.208 Master TAA 0.000
Peak-SNR 31.660 34.888 34.086 28.638 38.005 Master TAA 0.000
SNR 18.808 22.036 21.234 15.786 25.154 Master TAA 0.000
SSIM 0.962 0.978 0.974 0.934 0.985 Master TAA 0.000

Figure 5.18: Hairball Static Shadow comparison between Master
Thesis TAA, Uncharted TAA, and SMAA.
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Figure 5.19: Hairball Static Shadow ground truth.

5.2.9.2 Static Light

From Figures 5.11 and 5.20, we observe that the Uncharted TAA generated wrong bright
colors around all the fibers, on its SSIM this appears as the complete model is dark; SMAA
fails to correct a high amount of fibers, they appear aliased on the rendered image and its
SSIM map contains many dark zones; and, finally, we can observe that the Master TAA
has the smoothest edges of all the rendered images, on its SSIM map and on Table 5.11 we
notice that there still errors but they are smaller by a large margin compared to any other
technique.

Table 5.11: Numerical results of the Hairball Static Light Test.

Hairball Static Light Test

Tests
AA No AA FXAA SMAA Uncharted

TAA
Master
TAA Best

Master
TAA

Against
Best

MSE 1294.649 649.940 847.702 1444.095 226.567 Master TAA 0.000
RMSD 35.981 25.494 29.115 38.001 15.052 Master TAA 0.000
Peak-SNR 17.009 20.002 18.848 16.535 24.579 Master TAA 0.000
SNR 8.446 11.439 10.285 7.971 16.015 Master TAA 0.000
SSIM 0.801 0.865 0.841 0.785 0.937 Master TAA 0.000

Figure 5.20: Hairball Static Lighted ground truth.
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Figure 5.21: Hairball Static Lighted comparison between Master
Thesis TAA, Uncharted TAA, and SMAA.

5.2.9.3 Ghosting Shadow

From Figure 5.22, we can observe that both implementations generate blurriness around
the fibers edges, this is visible on both SSIM maps as the dark ring around the model. On
Table 5.12 we observe that the Master Thesis TAA is numerically better than the Uncharted
TAA. As well, the Test Index on Table 5.12 marks which test the associated result belongs
to; on the averages we use Not Applicable (N
A) because those results come from the average of all the tests.
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Table 5.12: Numerical results summary of the 100 tests per-
formed for the Hairball Ghosting Shadow Test.

Hairball Ghosting Shadow Test Summary

Tests
AA Uncharted TAA Test Index Master TAA Test Index

Best MSE 70.261 17 32.692 0
Worst MSE 93.024 90 42.962 90
Average MSE 81.887 N/A 38.534 N/A
Best Peak-SNR 29.664 17 32.986 0
Worst Peak-SNR 28.445 90 31.800 90
Average Peak-SNR 29.009 N/A 32.278 N/A
Best SNR 16.940 17 20.278 0
Worst SNR 15.846 90 19.201 90
Average SNR 16.333 N/A 19.602 N/A
Best SSIM 0.925 17 0.947 17
Worst SSIM 0.911 99 0.934 68
Average SSIM 0.913 N/A 0.940 N/A

Figure 5.22: Ghosting comparison between Master Thesis TAA,
Uncharted TAA and Ground Truth on Test Number 90.

5.2.9.4 Ghosting Light

From Figure 5.23 and Table 5.13, we observe that both techniques generate a high amount
of blurring around the fibers. On both SSIM maps the blurring is visible as Hairball is seen
as a big dark area. As well, the Test Index on Table 5.13 marks which test the associated
result belongs to; on the averages we use Not Applicable (N
A) because those results come from the average of all the tests.
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Table 5.13: Numerical results summary of the 100 tests per-
formed for the Hairball Ghosting Light Test.

Hairball Light Shadow Test Summary

Tests
AA Uncharted TAA Test Index Master TAA Test Index

Best MSE 714.811 62 603.190 1
Worst MSE 980.701 83 749.516 99
Average MSE 875.687 N/A 671.202 N/A
Best Peak-SNR 19.589 62 20.326 1
Worst Peak-SNR 18.215 83 19.383 99
Average Peak-SNR 18.737 N/A 19.867 N/A
Best SNR 10.037 62 10.913 1
Worst SNR 8.666 83 9.902 99
Average SNR 9.261 N/A 10.390 N/A
Best SSIM 0.738 62 0.766 1
Worst SSIM 0.662 99 0.694 83
Average SSIM 0.691 N/A 0.722 N/A

Figure 5.23: Ghosting comparison between Master Thesis TAA,
Uncharted TAA and Ground Truth on Test Number 83.

5.2.10 Timing
It is important to note that all the tested techniques are of Post-Processing nature, that
means that they receive the output image from the Deferred Shading Architecture as input,
making them not dependent on the complexity of the scene.

The measured time the Master Thesis TAA technique took to run was between 0.5 and
0.6ms on average. The Sobel pass took between 0.2ms and 0.3ms, and the reprojection
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was around 0.3 ms. The measured time the Uncharted TAA technique took was between
0.2ms and 0.3ms; FXAA took between 0.1ms and 0.2ms; and SMAA took 0.2ms and
0.3ms.

5.3 Discussion
As we appreciate the results of the Sharpen Filter Test, see Table 5.1, the improvements
achieved in this master thesis go beyond modifying the filter from the Uncharted imple-
mentation, because changing this filter only avoids generating those wrong bright pixels
around edges. We believe that their use of that specific filter is of artistic nature. It tends to
pronounce the edges at the cost of creating bright pixels around the edges that flicker, es-
pecially, when the camera moves while the foreground is illuminated but the background
is on shadows or vice versa.

From both Pipe Tests we can observe that the results from the Master Thesis TAA
are close to SMAA results when drawing hard edges. We can quantify the reduction of
blurring when comparing to the Uncharted TAA implementation in the numerical results
from the Tables 5.2 and 5.3. When we compare the SSIM maps results (Figures 5.3 and
5.5), we observe that the thick error line around the edges in the Uncharted implementation
is not present our Master Thesis implementation. But, the blurring reduction is not perfect,
as we see on the tests scores, the blurring that remains around the edges lets SMAA the
high score on some tests.

From the Window with Blinds and Arched Window Tests we can appreciate how the
techniques react to small, almost pixel sized, features like the blinds and the doors from the
Arched Window. Although the Master Thesis TAA and SMAA appear numerically (See
Tables 5.4 and 5.5) better than the Uncharted TAA, they are not able to reconstruct all the
small details leaving pixel thin stripes that flicker when the camera moves. We believe
that in this case, admitting the blurring of the Uncharted TAA benefits its final application
because losing some small details is better than having many pixels flickering each time
the camera moves.

The Sponza Atrium Test shows us that the Master Thesis TAA is more than capable
of handling a general scene with lighting and shadows. As seen in the Table 5.6, our
implementation proved to be better than the other Anti-Aliasing techniques by a fair margin
in almost all the tests.

We consider the Sponza Atrium Flowers Test a distinctive experiment because the
flowers are a 2D flat surface with many complex transparent holes and they are rotated
around the column. As we observe from the numerical results in the Table 5.7 and SSIM
maps on Figure 5.13, all the techniques struggle with those transparent holes but our Mas-
ter Thesis TAA proves to be the best at handling them. We see from this test that our
implementation is good at handling this type of small details, compared to the Windows
Tests, because they are larger than just a pixel.

From the Hard Edges Test we continue to observe that the Master Thesis technique
handles better the blur compared to the Uncharted TAA (See Table 5.8), especially on
the letters, the pipe, and the square; and that the Master Thesis technique still has a hard
time handling the super fine details from the windows, at this distance we still believe the
blurring of the Uncharted TAA helps to hide the unwanted pixel stripes that flicker (See
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Figure 5.15).
In the Sphere Ghosting Test we see a clear example of the improvements accomplished

in this Thesis. Figure 5.17 shows one example of the ghosting that is created by the Un-
charted TAA implementation, we can clearly perceive the stripes that are left by the sphere
while it moves, whereas on our Master Thesis TAA implementation they are barely visible.

Finally, we have the four Hairball Tests, the most complex tests performed. The Hair-
ball model has many gaps and small details that react to lighting and shadows. We an-
ticipated a high amount of errors due to them because all Anti-Aliasing techniques have
difficulties reconstructing this high density of fine details.

On the Shadow and Light Static Test (See Tables 5.10 and 5.11) we can observe that
the Master Thesis Implementation is the best at handling the hair fibers. It is able to
reconstruct smoother edges than the Uncharted TAA and reconstructs more details than
SMAA technique. Especially on the light version (See Figure 5.21), we can appreciate
how smooth the result is; it looks almost like the ground truth. This test far exceeded the
expectation of our improvements, the visual and numerical (See Table 5.11) results shows
a big increase in quality compared to the other Anti-Aliasing solutions.

On the Shadow and Light Ghosting Test we observe that both techniques results are
blurred excessively (See Figures 5.22 and 5.23), especially the Master Thesis TAA imple-
mentation on the light version. We believe this to be caused by the History Buffer and the
Sobel Temporal Pass, for the Master Thesis TAA, not being able to stabilize as fast as the
colors change when the fibers move thanks to the color rejection being slower than needed.
The numerical values from Tables 5.12 and 5.13 confirm the effects of blurring thanks to
the MSE being higher than normal.

From our timing results (See 5.2.10), we can see that our improvements fit the time
requirements to run on real-time applications as it is below the 1ms common limit.
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5. Results
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Chapter 6
Conclusions and Recommendations

As we have shown numerically and visually with the tests performed, the Master Thesis
implementation accomplished its objective of reducing the effects of blurring and ghosting
of the Temporal Anti-Aliasing technique with the use of edge detection of both color and
depth, and triangle indexing. Our results show that this technique can provide the same or
better quality than other standard Anti-Aliasing solutions.

As possible improvements, we are confident that our implementation could be opti-
mized to run faster than our current timing. Our current implementation was made with
flexibility in mind to help us test different approaches. This could be simplified to reduce
the number of passes required.

As for recommendations for further research, we suggest improving the technique’s
behavior under high detail density moving objects, like on the Hairball Tests. Another
improvement subject is the stability for pixel size details that cause flickering, like on
the Windows Tests. Furthermore, a Specular Lighting Anti-Aliasing solution compatible
with Temporal Anti-Aliasing is still required to provide a full range solution to Aliasing
in real-time applications. Also, we suggest searching for more specific Image Metrics for
Computer Graphics, especially, finding tuning values for SSIM to provide more numerical
resolution when comparing different rendered images.
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Appendix A
GitHub Repository

The main link to the repository is https://github.com/maniatic0/Christian-TRAA . From
there, the next links can be accessed for the printed version of this report.

• Full Repository.

• Complete Computer Specification.

• All Tests.

• Accumulation Buffer Tests.

• Most of the Master Thesis Tests.

• Sharpening Tests.

• Ghosting Tests.

• HairBall Tests.

• Code.

• LATEXReport.

63

https://github.com/maniatic0/Christian-TRAA
https://github.com/maniatic0/Christian-TRAA
https://github.com/maniatic0/Christian-TRAA/tree/master/PC%20Specification
https://github.com/maniatic0/Christian-TRAA/tree/master/Important%20Tests
https://github.com/maniatic0/Christian-TRAA/tree/master/Important%20Tests/Accumulation%20Buffer%20Tests
https://github.com/maniatic0/Christian-TRAA/tree/master/Important%20Tests/Master%20Thesis%20Tests
https://github.com/maniatic0/Christian-TRAA/tree/master/Important%20Tests/Sharpening%20Tests
https://github.com/maniatic0/Christian-TRAA/tree/master/Important%20Tests/Ghosting
https://github.com/maniatic0/Christian-TRAA/tree/master/Important%20Tests/HairBall
https://github.com/maniatic0/Christian-TRAA/tree/master/CG_Labs
https://github.com/maniatic0/Christian-TRAA/tree/master/LaTeX/Master_Thesis


A. GitHub Repository

64



Appendix B

Camera Jittering Explanation

The HaltonSequence(2, 3) generates points in the [0, 1]× [0, 1] space. First, we need to
transform it to the [−1, 1]× [−1, 1] space because we consider the pixel to be at the center,
i.e. in OpenGL the first pixel is at (0.5, 0.5), so we apply the transformation T1(x, y) =
2 ∗ (x, y)(1, 1).

Now, we only want to jitter inside the pixel because we should only be sampling inside
of it. We want to control this but for explanation purposes, we can assume that we only
want it inside the pixel. So, we apply the transformation T2(x, y) =

(x,y)
2

.

From now on, we need to change how we interpret the process we are performing; we
are calculating the distance we are going to move the pixel center, so we need to see it
as a vector rather than a point. We need to transform the vector to a vector normalized
by the screen size. Consequently, we apply the transformation T3(x, y) = (x, y)/(w, h)
with (w, h) being the Width and Height of the screen and “/” operator as component-wise
division.

Now we need to transform our vector normalized by the screen size [0, 1] to the Nor-
malized Device Coordinates which go in the range [−1, 1] × [−1, 1]. This is done by
using T4(x, y) = 2 ∗ (x, y) (to transform points we would use 2 ∗ (x, y)(1, 1)). At the
end, our transformation would look like this T (x, y) = T4(T3(T2(T1(x, y)))) = (2 ∗
(x, y)(1, 1))/(w, h) with (x, y) being a Halton Sequence point.

We now need to modify our Projection Matrix, which takes points from the View Space
into the Clip Space. The resulting matrix is taken from the Ke Xu presentation page 14
[19]. Let (hx, hy) be jitter we have previously calculated.
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B. Camera Jittering Explanation

JitteredProjection =


a 0 hx 0
0 b hy 0
0 0 c d
0 0 −1 0

 = JitterMatrix× Projection

=


1 0 0 −hx

0 1 0 −hy

0 0 1 0
0 0 0 1

×


a 0 0 0
0 b 0 0
0 0 c d
0 0 −1 0


(B.1)

Let’s see its effect to a point in View Space, let pview = (x, y, z, 1).

JitteredProjection× pview =


a ∗ x+ hx ∗ z
b ∗ y + hy ∗ z
c ∗ z + d

−z

 (B.2)

We proceed to do the Perspective Divide to transform the point to NDC Coordinates,
this is accomplished by dividing the vector by the w component.

−a ∗ x
z
− hx

−b ∗ y
z
− hy

−c+ d
z
d

1

 = pNDC +


−hx

−hy

0
0

 (B.3)

Accordingly, we only need to be sure we can apply the Jitter Matrix alone to use it
inside Pixel Shaders with points in NDC space.

JitterMatrix× pNDC =


xNDC − hx

yNDC − hy

zNDC

1

 = pNDC +


−hx

−hy

0
0

 (B.4)
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Real-time Graphic applications, like video games, require solutions for jaggies and
pixel flickering in movement problems, aliasing, to render high-quality images. In this
thesis, we improved the Temporal Anti-Aliasing technique to provide higher quality
images.

Current computer graphics real-time applications
strive to provide the highest image quality avail-
able at the lowest computational cost possible,
they normally need to run at 30 images (frames)
per second or more. One of the obstacles to over-
come is that normally there is not enough resolu-
tion to render everything the best way possible,
thus, creating what is commonly referred as jag-
gies or the blocky look that some rendered images
get (formally named Spatial Aliasing); and pixel
flickering or jumps in moving objects (Temporal
Aliasing).

Figure 1: Example of Jaggies versus how it should
look.

This thesis presents a new approach to Tem-
poral Anti-Aliasing (TAA) that improves on cur-
rent techniques. TAA works by mitigating the ef-

fects of Spatial and Temporal Aliasing using pre-
viously rendered frames in the process of render-
ing the current one. The key benefits that this
technique provide are that it solves two types of
aliasing problems at the same time; that it is
compatible with current rendering pipelines and
it provides good results while being lightweight in
computational cost. But, applying TAA has two
main drawbacks, it generates unnecessary blurri-
ness; and the appearance of trails of objects from
previous frames that were moving (ghosting).

The work of this thesis achieved a reduction
in both drawbacks by the use of edge detection,
applying the Sobel Operator, by numbering (in-
dexing) models in the scene to differentiate them,
and by the use of a new image filter that helps
to reduce blurriness without creating more er-
rors. Also, the improvements managed to be at
the same level or surpass other Anti-Aliasing so-
lutions, which are common in Real-time Graphic
applications. As well, we maintain the low usage
of memory and processing time.

The improvement of this Master Thesis were
tested using image metrics that represent numer-
ically the quality of an image. This was done in
order to corroborate that the improvements were
working as intended.
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