
MASTER’S THESIS 2020

Rendering Resolution
Independent Fonts in Games
and 3D Applications
Olle Alvin

ISSN 1650-2884
LU-CS-EX: 2020-14

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-14

Rendering Resolution Independent Fonts
in Games and 3D Applications

Olle Alvin

Rendering Resolution Independent Fonts
in Games and 3D Applications

Olle Alvin
tpi14oal@student.lu.se

April 7, 2020

Master’s thesis work carried out at EA DICE, Stockholm.

Supervisors: Michael Doggett, michael.doggett@cs.lth.se
Göran Syberg Falguera, goeran.syberg@dice.se

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:tpi14oal@student.lu.se
mailto:michael.doggett@cs.lth.se
mailto:goeran.syberg@dice.se
mailto:flavius.gruian@cs.lth.se

Abstract

This thesis describes how fonts can be rendered in 3D-applications. It provides
a description of how to render glyphs using signed distance fields as well as the
Slug-algorithm. The thesis provides an analysis of these methods and investi-
gates how they can be combined. The combined method overcomes some of the
artefacts produced by signed distance fields, while being faster than the Slug-
algorithm in most cases. However it is not suited for complex glyphs or small
font sizes.

Keywords: Graphics, Fonts, SDF, Slug

2

Acknowledgements

I would like to thank my supervisor at Lund University, Professor Michael Doggett for guid-
ance and support during this project. I also want to thank Göran Syberg Falguera, my super-
visor at EA DICE, for great feedback and discussions. I wish to thank Jason Chan for great
discussions and advice on implementation and code. Finally I want to thank my family and
friends for their support throughout the project.

3

4

Contents

1 Introduction 7
1.1 Graphics Hardware . 7
1.2 Definition of a Font . 8
1.3 Rasterizing a Glyph Outline . 9
1.4 Previous Work . 10

1.4.1 Pre-rasterized Glyphs . 10
1.4.2 Signed Distance Fields . 10
1.4.3 Loop Blinn Curve Rendering . 10
1.4.4 Glyphy . 11
1.4.5 Dobbie’s Method . 11
1.4.6 Slug Algorithm . 11

1.5 Scope and Approach of the Thesis . 11

2 Bézier Curves 13

3 SDF 15
3.1 Generating Signed Distance Fields . 16
3.2 Multiple Channels . 16
3.3 Implementation . 17

4 Slug Algorithm 21
4.1 Computing the Winding Number . 22
4.2 Implementation . 24

4.2.1 Anti-Aliasing . 26

5 Combining Methods 29
5.1 Identifying Corners . 29
5.2 Stencil Bu�er . 30
5.3 Tiling . 31
5.4 Combined Shading . 32

5

CONTENTS

6 Benchmarks 35
6.1 Experimental Setup . 35
6.2 Test Fonts . 35
6.3 Performance . 36
6.4 Image Quality . 37

7 Results 39
7.1 Performance Benchmark . 39
7.2 Quality Benchmark . 40
7.3 Slug Anti-Aliasing . 42

8 Discussion 45
8.1 Rendering Performance . 45

8.1.1 SDF/MSDF . 46
8.1.2 Slug . 47
8.1.3 Combination of Slug and SDF . 47

8.2 Image Quality . 48
8.2.1 SDF/MSDF . 48
8.2.2 Slug . 48
8.2.3 Combination of Slug and SDF . 49
8.2.4 Caveats . 49

8.3 Rendering at Small Font Sizes . 49
8.4 Rendering in World Space . 50

9 Conclusion 53
9.1 Summary . 53
9.2 Future Work . 54

6

Chapter 1

Introduction

Drawing text is a vital part of most computer software that needs to interact with the user. A
video game is a very interactive application that constantly feeds the user new information
to act on. As games and other similar 3D applications usually have a specific graphical style,
there is a need to use custom fonts that fit the aesthetic of the application. It is common
to use intricate user interfaces, where pieces of text are animated, scaled and changed fre-
quently. The fonts need to look crisp on a variety of displays and resolutions and must be
drawn within a fewmilliseconds. Usually games utilize powerful graphics hardware for draw-
ing resolution independent text, as this is present in most gaming consoles and PCs. Some
popular solutions are to cache pre-generated glyphs in a texture, or use signed distance fields
but in the last couple of years other alternatives have surfaced. In this thesis we explore some
of the techniques for drawing resolution independent text, as well as investigate di�erent
ways of combining the methods. We aim to create a combined solution that has not yet been
tried, and determine its usefulness.

1.1 Graphics Hardware
The applications we are targeting in this thesis relies heavily on graphics hardware such as
GPUs for drawing to the screen. A GPU (Graphics Processing Unit) is a processor which
excels at converting graphical primitives to a pixel representations. A pixel contains a color,
typically as an RGB value. TheGPUwrites the color values into a data bu�er (or framebu�er)
that contains every pixel on screen. This conversion is referred to as rasterization. In a high
end graphics systems, GPUs are usually located on a graphics card. Modern graphics cards
contain thousands of processors, which can be programmed to run small programs called
shaders. There are a few di�erent shader types, but most graphics application run at least
a vertex shader and a pixel shader. The vertex shader, processes the individual vertices that
make the primitives. Its main function is to apply coordinate transformations as well as
manipulate any vertex attributes. The pixel shader determines the color for each pixel in the

7

1. Introduction

framebu�er. It can be altered in a lot of ways, usually by applying textures or di�erent light
models.

1.2 Definition of a Font
A font usually refers to a collection of glyphs that share certain design features. Today, most
digital fonts store a mathematical representation of the glyph outlines. Commonly used for-
mats such as TrueType and OpenType represent glyph outlines as a set of Bézier curve seg-
ments and straight lines. TrueType uses quadratic Béziers [2], sometimes referred to as conics.
We will use the term "font" more loosely, and refer to a font as a set of glyphs in the same font
file. In TrueType and OpenType font formats the the outline is defined in a design space.
The glyph outline is positioned relative to a grid known as the em-square, see Figure 1.1. The
square has a side of 1 em.

0 16

0

16

0 16

0

16

Figure 1.1: The outline of "A" and "a". The em-square is drawn in
blue. In this example, an em is 16 pixels wide. This would correspond
to a 12pt font on a 96 DPI screen.

An em is the size of the font. In a 12pt font an em is 12pt. In design units, an em is usually a
fixed size. For TrueType fonts this is normally 2048 units or 1024 units. Note that the design
of a glyph may extend outside the em-square. An example of a glyph outline with the Bézier
control points drawn can be seen in Figure 1.2.

8

1.3 Rasterizing a Glyph Outline

Figure 1.2: The outline of the letter G.

TrueType files hold a lot more information that help make text more readable such as hint-
ing, kerning and ligatures. These are not considered in this thesis, as we will focus on the
rasterization process.

1.3 Rasterizing a Glyph Outline
Any font rasterizer must convert outline of a font into a pixel representation. We can sample
the outline at the pixel center to determine if the pixel is within the outline. How the pixel
coordinates are mapped to the design space is determined by the size of the font and the DPI
on the screen. A 23.6" 1920 × 1080 screen has a DPI at about 96. A 12pt font at a 96 DPI
would make the em-square 16 pixels wide or 16px, see Figure 1.1. We will denote font sizes by
pixels/em or px in this thesis. A size of 16px means that most glyphs will only be sampled 16
or less times in the x- and y-direction. This usually means the glyph is largely under-sampled,
causing aliasing artefacts. This is why many professional printers can print with over 1000
DPI. On a computer screen the problem needs to be handled in another way. To make the
text less jagged usually the pixels are sampled at several locations and the alpha value of the
pixel adjusted based on coverage. This produces a smoothing e�ect (anti-aliasing), which
makes text more readable. An example of this can be seen in Figure 1.3.

Figure 1.3: A glyph rasterized at 24px with di�erent subpixel sam-
pling rate. From left to right 1, (2 × 2), (4 × 4), (8 × 8), (16 ×
16), (32 × 32), (64 × 64) samples per pixel.

9

1. Introduction

1.4 Previous Work

1.4.1 Pre-rasterized Glyphs
The most straight forward way to render text inside of a 3D game engine is to pre-rasterize
the glyphs into a single image containing all the glyphs. This image is called a texture atlas.
Each individual glyph is typically mapped onto two triangles making a quadrilateral (quad).
This is very e�cient and produces great quality when rendering static text. However, if the
text is scaled to a larger size the magnification on modern GPUs often produces a blurry
image. To maintain good text quality, all sizes used would need to be stored in the texture
atlas or rasterized at runtime on the CPU, which is often too slow for computer games.

1.4.2 Signed Distance Fields
In 2007 Chris Green at Valve [3] introduced the technique of rendering glyphs using signed
distance fields (SDF). An SDF is a grid that contains samples of the distance to the closest
edge of a glyph. The sign of the distance is used to indicate if the point was sampled on the
inside or the outside of a glyph. The samples are stored in a texture, which can be mapped to
a quad. Using the bilinear interpolation on the GPU we can access an interpolated distance
value in the pixel shader. This makes the method resolution independent, which eliminates
the problem of having to store a texture for every size of a glyph. The interpolation produces
some artefacts where sharp corners appear rounded at higher resolutions. It also requires
higher resolution SDFs to represent more complicated shapes. A solution to the rounding
problem suggested by Green was to use more several distance fields to represent di�erent
edges that make up the corner. This concept was further developed by Victor Chlumský [5]
who showed that problem could be solved for an additional cost in performance. Both single-
channel SDFs and multi-channel SDFs su�er from quality issues at small sizes since a single
distance value cannot represent several curves intersecting a pixel. Due to the structure of an
SDF some special e�ects can be implemented ”for free”. It allows for fast simple antialiasing,
outlining, dropshadows and glow e�ects.

1.4.3 Loop Blinn Curve Rendering
A method for rendering vector graphics on the GPU including fonts appears in Loop and
Blinn [8]. This method can render fonts exactly from the outline data by creating a triangle
mesh from the outline control points. Each Bézier curve segment of a glyph outline is rep-
resented as a triangle. A simple calculation in the pixel shader can be used to determine if
a point is on the inside of a glyph outline. The triangulation step is quite complicated and
for complicated glyphs the triangle count could reach large numbers for each glyph. Also
at small sizes when several of the outline curve segments intersect a pixel, the pixel shader
will only use one of them to determine the color. This causes an incorrect representation.
Anti-aliasing also requires additional triangles to be added to the outside of the glyph mesh
or the use of super sampling.

10

1.5 Scope and Approach of the Thesis

1.4.4 Glyphy
Glyphy [10] is an SDF renderer that instead of sampling the SDF into a texture, computes
the signed distance field on the GPU. The Bézier curves of a font outline are approximated
using circular arcs. Then the pixel shader computes the distance to the closest arc. A Bézier
segment could require several arcs to be approximated with a low error. This means that a
lot of arcs need to be checked at each pixel.

1.4.5 Dobbie’s Method
Will Dobbie [9] solved the issue of Loop Blinn’s high triangle count by only using a quad
for each glyph. His method stores the outlines of a font in a data texture. The pixel shader
then determines coverage by casting rays in several directions and find intersections with
the outline curves. In order to optimize performance, the outline representation is chopped
up into a grid so that each pixel only consider the curves in the same grid cell. This causes
problems at smaller sizes where a single pixel covers several grid cells. Entire cells get skipped
over and the text starts to produce shimmering artefacts. Dobbie solves the problem by
switching to pre-rasterised glyphs when text gets too small. The method also su�ers some
incorrectly drawn pixels due to numerical precision issues at larger font sizes.

1.4.6 Slug Algorithm
Eric Lengyel [4] introduced another method of rendering vector fonts onto quads. He uses
an e�cient way of computing the winding number of the glyph outline at any point in the
pixel shader. By introducing a binary classification strategy for the Bézier curve segments
numerical robustness is guarantied. Thismethod produces a very good result at any resolution
but good anti-aliasing is very costly. The method is similar to Dobbie’s method in many ways
but is not as prone to artefacts. Performance-wise it is many times slower than the texture
based methods. This method has since Lengyel’s paper been developed into a library called
Slug, hence the name [7].

1.5 Scope and Approach of the Thesis
These methods described in section 1.4 are only some of the di�erent ways fonts can be ren-
dered. These were chosen as they were the most commonly referenced in published works
and by game developers consulted in the project. The amount of di�erent approaches is to
many to evaluate thoroughly in the time span of the project. Therefore it was narrowed down
to three. The standard method of using pre-rasterized glyphs is the fastest and simplest solu-
tion. Therefore, it was considered the default method, which all other should be compared to.
Then the obvious choice was to further analyze Signed Distance Fields as it seem to be widely
used in the game industry and is both fast, simple to implement and works well. The newest
research we encountered was done by Eric Lengyel, who provided the Slug algorithm. This
is very di�erent from any texture based method and also seemed much more flexible than
both Loop Blinn curve rendering and Dobbie’s method. Also, there is little work apart from
Lengyel’s documenting this method. To be able to understand the strength and weaknesses

11

1. Introduction

of the di�erent algorithms we needed to find ways of comparing them both in terms of per-
formance and quality. Then finally, when understanding some parts of the field of GPU font
rendering, the task was to see if there are any other unexplored approaches or optimizations
that could be done. After trying various ideas the most promising was to attempt combine
the two previously mentioned methods. This summarizes the thesis down to a few points:

• Implement three di�erent font rendering techniques for comparison. These are:

– Using pre-rasterized glyphs in a texture atlas.

– Using signed distance field representations in a texture atlas.

– Using the Slug algorithm.

• Create benchmarks that can be used to compare the fonts in both rendering perfor-
mance and image quality. A few limitations have been made to enable this:

– Text is rendered onto a 2-dimensional plane, parallel to the screen as opposed to
being view from an angle.

– Text is rendered in only one color, which represents the alpha value. (In the thesis,
the color of the text is black as it is shown on a white background, meaning that
black represents an alpha value of 1).

– The alphabet used is the symbols of the ascii-table. There are plenty of di�erent
alphabets and languages, and testing them all is not feasible.

– Three di�erent fonts are used to test how di�erent designs a�ect the quality and
performance. They all use the TrueType font format.

• Explore various ways to combine the SDFs and Slug and compare using the same bench-
marks.

The task was accomplished with a C++ implementation using OpenGL. OpenGL is a graphics
API which provides much of the needed functionality for this project, such as loading primi-
tives and texture data to the GPU. It also provides the shader language GLSL for shader code.
OpenGL was mainly chosen as the author is familiar with it.

12

Chapter 2

Bézier Curves

As fonts are defined from Bézier curves we need to understand the definition of such a curve
as well as some fundamental properties. Gerald Farins book [1] provides an excellent overview
of Bézier curves and its properties. A Bézier curve is a parametric curve defined from a set of
control points p0, p1, . . . , pn. The curve is given by

Cn(t) =
n∑

i=0

piBi,n(t), (2.1)

where Bi,n(t) is the Bernstein polynomial

Bi,n(t) =
(
n
i

)
ti(1 − t)n−i (2.2)

and t ∈ [0, 1]. The first 3 orders of Bézier curves are

C1(t) = p0(1 − t) + p1t,
C2(t) = p0(1 − t)2 + p12t(1 − t) + p2t

2,

C3(t) = p0(1 − t)3 + p13t2(1 − t) + p23t(1 − t)2 + p3t
3.

There are some useful properties of Bézier curves which we will list as two theorems.

Theorem 1. Bézier curves are invariant under a�ne transformation.

Theorem 2. Consider a Bézier curve Cn(t) as defined in (2.1). At the first and last control points p0
and pn the direction of the tangent is given by the vectors p1 − p0 and pn − pn−1.

Wewill make use of these properties when working with TrueType outlines in section 3.1 and
5.1.

13

2. Bézier Curves

14

Chapter 3

SDF

A signed distance field is essentially a texture that, instead of storing an image, holds distances
as the pixel color values. Specifically it holds the distance to the edge of a shape. The sign of
the distance is used to tell if the pixel is outside or inside the shape. We use a positive value
for distances inside and a negative values for outside the shape. This is applicable to glyphs,
since they are 2-dimensional shapes. For a specific point in font design space, we can sample
the distance to the glyph outline. We choose a sample rate of, i.e. 64 samples / em. After
collecting the samples, they can be stored in a texture format to be accessible on the GPU.
Although OpenGL supports floating point textures, usually SDFs are represented by 8 bit
integer textures to minimize memory usage (more on this conversion in section 3.3). Figure
3.1 contains an example of an SDF texture and a glyph rendered from it.

Figure 3.1: (Left) A 64 × 64 signed distance field of the letter g.
(Right) A render of the letter g using the SDF on the left.

15

3. SDF

3.1 Generating Signed Distance Fields
There are di�erent algorithms for computing an SDF from a glyph shape. Green [3] uses a
brute force approach where the glyph is sampled at a very high resolution. Each sample is
either ”inside” or ”outside” the glyph outline. When computing the distance for a point we
can check the neighboring samples to find the closest one of the opposite type. This requires
a lot of computations which makes it quite slow and using too low resolution can produce
unwanted artefacts. Another way is to use the mathematical representation of the outline to
compute the distance. The distance to the glyph could be obtained by computing the dis-
tance to the nearest outline segment. Chlumský presented an algorithm like this, in his thesis
[5]. We will use a similar approach.

Consider the Bézier curve of 2nd order C(t). From theorem 1 we can conclude that a Bézier
curve can be translated by simply translating the control points. Therefore we simplify by
transforming the curve so that the sample point is at origin. The smallest distance to origin
can be obtained by computing

dmin = min
t
‖C(t)‖, t ∈ [0 1].

This is equvalent to minimizing C(t)2 which is done by finding roots of

d
dt

C(t)2 = 0

⇒ 2a2t3 + 3abt2 + (b2
+ 2ac)t + bc = 0.

where

a = p0 − 2p1 + p2

b = 2(p1 − p0)
c = p0.

To solve this we need to find the roots of a 3rd degree polynomial. This can be done numeri-
cally or analytically by using Cardanos rule. The smallest distance is either one of the roots or
the end points. We need to repeat this computation for every Beziér curve at every point. The
sign on the distance is determined by whether the sample point is inside or outside the glyph.
If the curves follow a winding order we can simply check if the point is on the right or left
side of the curve. However, this would not work if a glyph has overlapping parts. Therefore
we can determine if the point inside or outside with a winding number calculation. We will
explain how this is done in section 4.1. With this method each sample point can be processed
independently, and it can therefore be done with great e�ciency on a GPU.

3.2 Multiple Channels
At larger sizes, low resolution SDFs make corners appear rounded. This e�ect comes from
the bilinear texture interpolation, which is not really intended for distance values. A solution

16

3.3 Implementation

for this is to use multiple color channels and store more SDFs. Such a solution was given by
Victor Chlumský [5]. The plane around a corner is divided into 4 quadrants. The di�erent
quadrants are assigned to 3 color channels depending on the shape of the corner (convex
or concave). The distance value is then computed from the median of the 3 color channels.
Otherwise it is used the same way as a single channel SDF. We will use Victor Chlumskýs’
msdfgen library [6] to generate msdf textures for comparison in the benchmarks.

3.3 Implementation
The SDF is stored as a texture in GPU memory. Typically it uses an 8 bit integer for each
texel (a pixel in a texture). To ensure a good conversion to 8 bit, the user must choose the
maximum distance to represent in the distance field. We refer to this as the ”spread”. Then
the distance is mapped from [−spread, spread] to [0, 255]. Let dt be the distance value in
texels. To convert to the color value dc, dt is first clamped between −spread and spread.
Then we compute

dc =
dt + spread
2 · spread

· 255,

and round to the nearest integer.

In the pixel shader we fetch the distance value from the texture. Texel values are given as
a floating point value between 0 and 1. The value 0.5 represents a distance of 0 and means
the pixel is on the outline exactly. To get smooth anti-aliasing on the edges we can choose
a distance interval [0.5 − δ, 0.5 + δ] and interpolate the alpha value of the final pixel color
according to this interval. We can use the smoothstep-function provided by OpenGL but for
this thesis we will instead use a linear step function as we found that it gives a slightly better
approximation of the pixel coverage, see Figure 3.2. Figure 3.3 shows the edge of a glyph with
the this function applied.

0 0.5 - 0.5 0.5 + 1

0

0.5

1

0 1

Figure 3.2: Plot of the step function used for setting the alpha value
and the gradient. Here black is an alpha value of 1 (inside the glyph
shape) and white is 0 (outside the glyph shape).

17

3. SDF

0.5 − 𝛿 0.5 + 𝛿

Figure 3.3: Image shows the alpha gradient on the edge of a glyph
using a a linear step function.

The pixel shader processes pixels in groups of four. This allows us to access some values from
neighboring pixels in the shader. GLSL gives us the functionality to get the derivatives of
the texture coordinates in screen space, computed from the texture coordinates of the neigh-
boring pixels. We can use the derivatives of the texture coordinates to keep the anti-aliasing
border one pixel wide. In GLSL this would be provided by the fwidth() function.

The SDF images are combined into a single texture, referred to as a texture atlas. For testing
purposes, a 1024 × 1024 atlas is used. For each glyph we create a quad (a rectangle made
from two triangles), as in Figure 3.4. The quads are then positioned according to the glyph
metrics specified in the font file and stored in a single vertex bu�er on the GPU.

Figure 3.4: (Left) A set of quads with SDF textures. (Right) The
quads on the left rendered with an SDF shader.

To be able to render more complex shapes such as decorative fonts we need to use a higher
SDF resolution. In Figure 3.5 a glyph is rendered with five di�erent SDFs. We use three fonts
of varying complexity.

18

3.3 Implementation

Figure 3.5: Renders using SDFs of di�erent resolution. From left to
right (256 × 256), (128 × 128), (64 × 64), (32 × 32), (16 × 16).

This shows some of the issues using SDFs. Glyphs with sharp corners appear rounded and
thin features will su�er from visible artefacts. In Figure 3.5 we can see that the thinnest
features of the "R" in row three are not preserved except with a 256 × 256 SDF resolution.
For all three fonts the corners loose their sharpness for the lower SDF resolutions. This is
more visible when the font is scaled up. With the SDF method of rendering fonts we make
some sacrifices in quality for resolution independence.

19

3. SDF

20

Chapter 4

Slug Algorithm

The Slug algorithm does not use any pre-renderers or samples. Instead the glyphs are sampled
directly from the actual outline in the pixel shader. The segments thatmake up the outline are
stored in a texture for access in the shader. A glyph is rendered onto a quad sized as the glyphs
bounding box. The texture coordinates at the four vertices are set to the coordinates of the
corners of the glyphs bounding box, see Figure 4.1. That way the coordinates are interpolated
at every pixel in the pixel shader.

(125,-20) (1341,-20)

(1341,1483)(125,1483)

Figure 4.1: Quad with texture coordinates set to the glyphs bound-
ing box.

Using a quad sized after the bounding box, it is possible to miss partially covered pixels that
are just outside the edge of the box. Therefore the box must be slightly larger. We solve
this by dynamically dilating the box by half a pixel width in the vertex shader. The texture
coordinates are adjusted as well.

21

4. Slug Algorithm

4.1 Computing the Winding Number
In general, a glyph shape can be sampled at any point by determining the winding number.

Definition: For a closed curve in a 2-dimensional plane, the winding number for a point p = (x, y)
is the number of times the curve loops clockwise around the point.

A glyph outline is a set of closed contours. If it loops around a specific point, that point
is inside the shape. One way to compute the winding number of a point p is to shoot a ray
in any direction, originating from p. Usually a TrueType outline follows a clockwise winding
convention, meaning that the inside of a glyph is always to the "right" of the curve. Therefore
whenever we intersect a curve from the right we add one to the winding number, and from
the left, we subtract one from the winding number, see the example in Figure 4.2.

-200 0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

+1-1+1p

Figure 4.2: A ray is fired in positive x-direction. For every intersec-
tion the winding number is adjusted.

Then a non-zero winding number indicates that the point is inside the glyph shape, other-
wise it is outside. Some fonts follow the opposite winding order, in that case the outline is
simply reversed.

The procedure has two parts, compute the intersections between the ray and the outline
and determine from what direction the ray hit. Lengyel[4] introduced a solution for this in
his paper. Assume we shoot a ray in the positive x-direction. To find the intersections with
the glyph outline, every curve needs to be evaluated. The curve is translated so that the pixel
center is a origin, meaning that the intersections with the ray are the intersections with the
x-axis. For a quadratic Bézier C(t) = (Cx, Cy) the intersection points are given by the roots
of Cy. We can write Cy as

Cy(t) = y0(1 − t)2 + y12t(1 − t) + y2t2

⇒ Cy(t) = (y0 − 2y1 + y2)t2 − 2(y0 − y1)t + y0.

22

4.1 Computing the Winding Number

By introducing

ay = y0 − 2y1 + y2

by = (y0 − y1)
cy = y0,

we get this simpler form

Cy(t) = ayt2 − 2byt + cy.

We can write the solution to the equation as:

t1,2 =
by ±

√
by − aycy

ay
(4.1)

In the case that ay = 0 the Bézier curve is a straight line. Then the intersection is instead
given by

t1 =
c
2b
.

The roots, t1 and t2 do not always contribute to the winding number. There is a way to
classify them based solely on the y-coordinate of the control points of the curve segments.
More specifically, we check if they are above or below the x-axis. This gives the eight possi-
ble combinations, which are listed in Table 4.1. These are referred to as equivalence classes.
For each class we can determine which of the two roots t1 and t2 contribute to the winding
number. In the table this is marked with a "1" for contribution. For a more detailed de-
scription of the classes, we refer to Lengyels paper [4]. The eight combinations for t1 and
t2 listed in the two rightmost columns of Table 4.1 can be stored in a 16 bit look up table
T = 0010111001110100. Given y0, y1 and y2 we can look up which roots contribute by
computing

((y0 > 0) ? 2 : 0) + ((y1 > 0) ? 4 : 0) + ((y2 > 0) ? 8 : 0),

and right shifting T by that value. The two least significant bits give the corresponding bits
in the table. This way we know what roots we need to consider. If they do not contribute to
the winding number they are simply ignored.

Class y2 > 0 y1 > 0 y0 > 0 t2 t1
A 0 0 0 0 0
B 0 0 1 0 1
C 0 1 0 1 1
D 0 1 1 0 1
E 1 0 0 1 0
F 1 0 1 1 1
G 1 1 0 1 0
H 1 1 1 0 0

Table 4.1

23

4. Slug Algorithm

If Cx(t1) > 0 and the segment belongs to either B, C, D or F 1 is added to the winding num-
ber. If Cx(t2) > 0 and the segment belongs to C, E, F, or G 1 is subtracted from the winding
number.

There is a special case in class C and F where both roots are marked with 1, but none of
them are real. This is avoided by clamping by − aycy to [0, ∞). In case of unreal roots, we
then get t1 = t2 and their winding number contributions cancel each other out.

To get anti-aliasing with this algorithm, pixel coverage is approximated using the intersec-
tion points of the rays. The intersection of a horizontal ray is given by (Cx(t), 0). We can
approximate the coverage with distance from the pixel center to the intersection point along
the ray direction. If the intersection point is to the left or the right side of the pixelbox, the
coverage is either 0 or 1. Otherwise it is given as

0.5 + f (Cx(t)),

where f is a function that converts design units to pixels, visualized in Figure 4.3. These
coverage values are accumulated for every Bézier curve that intersects the ray.

Figure 4.3: Image showing how coverage is approximated from ray-
casting.

Rays are fired in both positive x- and positive y- direction to acquire two coverage values.

4.2 Implementation
Data Textures and Banding
To make the structure of the outline data simpler, every line segment is converted to a Bézier
segment by inserting a third point in between the two points defining the line. The control
points of the Bézier curves are stored in a 16 bit floating point RGBA texture. The first
control points xy-coordinates are stored in the R- and G- channel, the second in the B- and
A-channel. The last point is stored in the next texels R- and G- channels, see Figure 4.4. For
most segments the last point of a curve is the first point of the next. Therefore the data can be
shared between the two segments. The texture’s width is set to 4096, and the number of rows
chosen so that all curve segments can be stored. If a row is not entirely filled, the remaining
values are set to 0. There is also a special case when a there is only one or two available texels
at the end of a row, not enough to fit the three control points. In this case the color values
are set to 0 and the next segment is stored at the beginning of the next row.

24

4.2 Implementation

Figure 4.4: Structure of data texture. Each Bézier control point is
stored as in 2 color channels. If the last control point of a segment
is the same as the first point in the next segment, the data is shared.

To increase performance the bounding box of a glyph is divided into bands of equal width.
Lengyel uses a varying amount of bands depending on the glyph with amaximum of 16. Using
more bands increase performance but usesmorememory. To keep things simplewe use a fixed
amount of 16 horizontal and 16 vertical bands. A list of all segments with control points
within the band is stored in a texture. In the pixel shader we access a list of Bézier curves
within the current band. This reduces the number of segments that need to be evaluated at
each pixel. As an example, in Figure 4.5, for a pixel located in the bottom band, only four
Bézier segments need to be evaluated.

Figure 4.5: Image showing an example of horizontal banding.

The vertical and horizontal bands are stored in a 16 bit unsigned integer RG texture, see
Figure 4.6. This texture contain a number of headers, one for each band. The headers store
the number of bands in the texture as well as the o�set to the list of curves intersecting the
band. This information is contained in a single texel. The list contain the texel-coordinates
for the curve segments in the data texture. For the horizontal bands the curves are sorted
on the x-coordinate of the left most control point in ascending order. The vertical bands are
stored in the same way except the lists are sorted on the y-coordinate of the lowest control
point in the Bézier segments.

25

4. Slug Algorithm

Figure 4.6: Structure of band texture. First comes a set of band head-
ers, each consisting of one texel. Then follows the list of Bézier seg-
ments within each band.

The curve- and band-data for every glyph in a text are stored in the same textures. The o�set
in the band data texture is stored in the vertex bu�er as a vertex attribute. The sorted lists of
curves in each band allows for an early out condition in the pixel shader. If a curve is more
than 0.5 pixels to the right of the pixel center, there are no other curves that will contribute
to the coverage value an we can stop the loop. No more curves need evaluation. To identify
which curve list to fetch the band must be determined. This is done by multiplying the
texture coordinates with a scale-factor. This scale-factor is di�erent for each glyph and is
therefore stored as a vertex attribute. The basic shader is summarized in Listing 4.1:

1 procedure:
2 Determine which band contains the pixel.
3 Fetch the horizontal and vertical curve lists from the
4 band texture .
5 for each curve in horizontal list do
6 Compute intersections with horizontal ray and
7 accumulate coverages .
8 for each curve in vertical list do
9 Compute intersections with vertical ray and
10 accumulate coverages .
11 Average the 2 coverage values.

Listing 4.1: The basic Slug pixel shader.

4.2.1 Anti-Aliasing
For our implementation of anti-aliasing with the Slug algorithm we will try three di�erent
approaches. Averaging the the two coverages and the use of super sampling are the imple-
mentations suggested in Lengyel’s paper. In addition we also try to weight the averages based
on the derivatives of the Bézier curves.

26

4.2 Implementation

Average Coverages
The pixel coverage is approximated in both the x- and y- direction. For 2D anti-aliasing we
can average the coverages.

cov =
1
2
· (covx + covy) (4.2)

Super Sampling
For better anti-aliasing we can cast more rays. We cast three rays in each direction. One ray
is fired from the pixel center, the other two are o�set with a quarter pixel. For the horizontal
rays we o�set the rays in the y-direction, and compute the intersections for each one. Then
we average the coverage over the samples. The same strategy is used for the vertical rays. This
produces smoother edges. It does not require any additional texture look ups but the extra
computations still come with cost in performance. Since the band is computed from the pixel
center, the top or bottom part of the pixel can be in another band. This can make the curve
list invalid for one of the o�set rays. Therefore, the bands must be expanded in order for the
curve lists to remain valid. This increases the number of curves evaluated at each pixel and
causes more overlap of the bands. The expansion must be half a pixel width of the smallest
font size we wish to draw.

Weighted Average
To simply average the coverages give decent anti-aliasing, but edges that are close to vertical
or horizontal will still be slightly jagged. Away to improve upon this is to weigh the coverages
di�erently. We can use the actual slope of the closest edge to find suitable weights. The
derivate of a quadratic Bézier is

d
dt

C(t) = (2t − 2)p0 + (1 − 2t)p1 + 2tp2. (4.3)

When casting the rays in the pixel shader we simply use the closest one an compute the
derivative at the intersection with the ray. The weights and coverage can then be computed
as

(w1, w2) =

∣∣∣∣∣∣∣

d
dtCy(t0)

d
dtCx(t0) + d

dtCy(t0)

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

d
dtCx(t0)

d
dtCx(t0) + d

dtCy(t0)

∣∣∣∣∣∣∣
 (4.4)

cov = covx · w1 + covy · w2 (4.5)

This requires us to keep track of the closest curve as well as an extra texture look up and
computation of the derivative. This will add a bit of computation time as we shall see in the
results.

For the Slug algorithm, how we do anti-aliasing has a large impact on both performance and
quality. Therefore, we will analyze these three strategies to determine how large the impact
is and which one to use.

27

4. Slug Algorithm

28

Chapter 5

Combining Methods

Signed distance fields and the Slug algorithm are very di�erent in how they are used to render
text. Slug o�ers great quality and is truly resolution independent. It requires more computa-
tion than texture based methods and is therefore much slower. Signed distance fields o�ers
fast scalable text with great anti-aliasing but struggles to recreate corners in a satisfying way.
To utilize the performance of SDF, we can render only the areas around the corners with Slug.
Specifically we use a 64 samples per em SDF, and Slug with weighted average anti-aliasing,
(denoted Slug+WA in result tables in chapter 7). We developed three di�erent solutions for
this.

1. Stencil bu�er

2. Tiling

3. Combined shading

In our first approach (see section 5.2) we try separate the di�erent part of the glyphs into sep-
arate primitives, so that they can rendered separately. To avoid overlap we utilize the stencil
bu�er, an integer data bu�er present on most graphics hardware. In the second approach
(see section 5.3) we do the same except that we omit the stencil bu�er and divide the glyphs
into tiles instead. We contruct two sets of tiles that are rendered with separate shader. In
the third and final approach (see section 5.4) we separate di�erent parts of the glyphs using
a second SDF, and determine what algorithm to use within the pixel shader.

5.1 Identifying Corners
We define a corner as a point where two Bézier segments meet and the angle between the
tangents is smaller than some threshold θmax . Fortunately, finding the tangent of a Bézier
curve of degree 2 at p0 or p2 is simple. As theorem 2 states, it is the lines defined by (p0, p1)

29

5. Combining Methods

and (p1, p2) respectively. So given two 2nd order Bézier curves C and and C′ that share a
control point p2 = p′0, the shared point is a corner if

p2 − p1∥∥∥p2 − p1

∥∥∥ · p′0 − p
′
1∥∥∥p′0 − p′1∥∥∥ > cos(θmax). (5.1)

The choice of θmax depends on what we wish to classify as a corner. This parameter must be
chosen by the user. It is not necessary to handle obtuse angles that are close to 180° as the
artefacts from the SDF are hardly noticeable in this case. This parameter is very much up to
the user. For our tests we assume that corners with and angle larger than 170° don’t need any
special handling. Therefore we choose θmax to be 170° for our tests.

5.2 Stencil Buffer

A simple way to combine thesemethods is to utilize the stencil bu�er. As described in section
3.3, a signed distance field for each glyph is mapped onto a quad which is placed according
to the text layout. These are pushed to a vertex bu�er on the GPU, V1. This set of primitives
is rendered using the SDF method described in section 3.3. To be able to render the corner
parts of the glyphs with Slug, we generate a second set of primitives. The outline is searched
for corners using equation 5.1. For each corner we create a isosceles triangle primitive with
the same angle and orientation as the corner. This second set of primitives is pushed to a
second vertex bu�er V2. If the corners are close, some triangles will overlap. We do not want
to draw the same thing twice so we combine any overlapping polygons into a polygon that
covers them both. We compute the convex hull for the points of the 2 triangles. The convex
hull makes a new polygon that we simply triangulate before pushing it to the vertex bu�er.
The convex hull of a set of points in a plane is computed using Jarvis algorithm [15].

V2 is rendered first using the slug algorithm. Each pixel covered is marked with a 1 in the
stencil bu�er. For V1 we perform a stencil test. All pixels marked with a 1 in the stencil
bu�er are discarded. This way, we avoid overdraw in these areas. We wish to keep the areas
rendered with slug as small as possible, since the pixel shader is much slower than the SDF
pixel shader due to all the computations needed. The bilinear sampling of the SDF texture
is what is causing the rounding e�ect, see the 32 × 32 SDF renders in Figure 3.5. The GPU
does the interpolation from the four texels closest to the sampling point. To avoid this, the
triangle we create for the corner must have a side corresponding to at least 1 texel in the SDF.
However, sharp angled corners make for very thin features of the glyph. If the resolution of
the SDF is too low, this area is under-sampled, causing more artefacts, it is therefore a good
idea to extend the slug area a bit more to improve the sharper corners. We let the triangles
have the side of 2 texels. Also, each triangle is uniformly scaled slightly so that the edges
extend a little bit beyond the glyph outline to allow for anti-aliasing. An example of vertex
bu�ers generated this way is shown in Figure 5.1.

30

5.3 Tiling

Figure 5.1: A rendering of glyphs using the algorithm above. The
primitives are drawn in red and blue. Blue: rendered with the slug-
shader, Red: rendered with the SDF shader.

5.3 Tiling
Using the stencil bu�er is an easy and e�cient solution, but we assume that glyphs do not
overlap each other. Since all glyphs in a text use the same stencil bu�er, it is possible they
can draw over one another. A solution that avoids this problem can be implemented by
dividing the glyph into tiles. Each individual tile can be rendered with either Slug or SDF
and since they do not overlap, there is no need to use the stencil bu�er. This requires more
primitives than the stencil solution since each tile will be rendered as a quad. To minimize
the triangle count, adjacent tiles that are rendered with the same shader can be merged into
larger tiles. We use the largest rectangle search algorithm from Sanjiv Kumar’s web article[13].
We represent the grid with a binary matrix M. Each element is marked with 1 for SDF, or 0
for Slug or vice versa. Then we merge the tiles by first finding the largest rectangle in the tile
grid, create a new tile to replace these, then flip the corresponding bits in M, repeat. We list
the steps in Listing 5.1.

1 procedure:
2 while M contains ones
3 Find the largest rectangle consisting of ones ,
4 R, in M.
5 Create tile from R.
6 In M, set all elements in R to 0.

Listing 5.1: Algorithm for merching tiles.

Unlike the stencil solution we can not align the tiles with the corners, so we choose a shader
for the tile based on distance to the closest corner. We can choose to render a tile with Slug
if the distance to the closest corner is less than two texels. However, this will result in a lot of
small tiles around the corners. Preferably we want the tiles to make up rectangles so they can
be merged into larger tiles. So we instead classify a tile as a corner tile if it intersects a four
texel wide square centered around a corner point. With a solution like this we run the risk
of producing very large vertex bu�er for the tiles. Also if tiles are to small they might not
contribute at all to the final output. We therefore limit the minimum tile size to two pixels
in width (according to the intended font size). This means that small fonts will have fewer
tiles per glyph. An example of tiles produced by this algorithm is shown in Figure 5.2.

31

5. Combining Methods

Figure 5.2: A rendering of glyphs using the algorithm above. The
primitives are drawn in red and blue. Blue: rendered with the slug-
shader, Red: rendered with the SDF shader.

5.4 Combined Shading
Using more polygons to separate the glyph into di�erent areas will create large vertex bu�ers
which will slow down the vertex shader. Both Slug and SDF only require one single quad per
glyph. We can accomplish this for this hybrid approach as well by putting some extra work
in the pixel shader. We utilize a second signed distance field, which stored distance to the
corners of the glyph outline, see Figure 5.3.

Figure 5.3: A signed distance field with distances to the corners of
the letter A.

By sampling the distance field in the pixel shader we can determine what algorithm to use
based on the distance. We use a 2-channel texture to store both the corner distance field and
the outline distance field in the R- and G-channel respectively. Then the shader follows the
format in listing 5.2.

1 t = sampleTexture ()
2 if (t.r < 0.5)
3 renderWithSDF ()
4 return
5 renderWithSlug ()

Listing 5.2: The combined shader.

32

5.4 Combined Shading

In Figure 5.4 we show how the di�erent areas are separated.

Figure 5.4: A rendering of glyphs using the algorithm above. The
primitives are drawn in red. The area rendered with slug is marked
in blue.

33

5. Combining Methods

34

Chapter 6

Benchmarks

We use two benchmarks to compare the methods. We have a performance benchmark, which
we use to compare rendering times. We also have a image quality benchmark that we use to
compare quality of the renders produced by each method.

6.1 Experimental Setup
To test these font rendering methods we use a small OpenGL application written in C++. All
tests run on a Windows PC with a xeon e5-1650 processor and a GTX 1070 graphics card.
The benchmarks are designed to compare the font rendering techniques to each other in a
couple of di�erent scenarios. The quality benchmark requires a reference render for compar-
ison. For this we have written a simple glyph rasterizer which samples the glyph 4096 times
at each pixel in a 64 × 64 grid. This provides a very high quality render.

We will test three di�erent fonts of varying complexity, see section 6.2. For the SDFs/MSDFs
we will use two resolutions, 32 samples/em and 64 samples/em. For the last test font we will
instead use 64 samples/em and 128 samples/em, as this font is more complex and requires
higher resolutions.

6.2 Test Fonts
To investigate these methods we will render text using three di�erent fonts of varying com-
plexity, see Figure 6.1. The purpose of this is to evaluate how well Slug and SDF preserves
small details. Also, we wish to test how the methods compare in rendering time for fonts
with di�erent complexity. More complex font designs need more curves to define the glyph
outlines which directly a�ects the performance of the Slug algorithm and therefore also the
combined methods.

35

6. Benchmarks

Open Sans

Canterbury

Elzevier Caps

Figure 6.1: The three fonts used in the benchmarks.

6.3 Performance
To compare performance of the renderingmethods wemeasure average render times for large
amounts of text. Using our application we create a window with a resolution of 2000×1000.
The same string of text is used for every benchmark. We pick a substring large enough to fill
the entire window. Note that due to the design di�erences of the fonts, a fixed space of text
might contain a di�erent amount of glyphs. We will state the amount of glyphs rendered in
the result tables. We render five di�erent sizes of text: 12px, 24px, 48px, 96px and 192px.
For the all methods but the combined methods in section 5.2 and 5.3(stencil and tiling), all
triangles needed to display the entire text is pushed to a single vertex bu�er and drawn using
a single draw call to OpenGL. The other two methods use two separate vertex bu�ers and
is therefore drawn with 2 draw calls. The transform of the text is updated every frame and
the textures needed for each type of text bound. We render several frames of the same text
and measure the GPU rendering time of each frame. The rendering times is measured with
OpenGL by using Querys [11]. This way we can isolate the measurements to the GPU and
provide an approximation of the added rendering time if these methods were to be used
in a game engine. The di�erence in computation time on the CPU between the methods
we consider is negligible. The benchmark measures the average rendering time over 10000
frames. To reduce the impact of other processes running on the same machine, we run each
benchmark three times and average the result.

36

6.4 Image Quality

6.4 Image Quality
We consider a finished render good if it accurately depicts the pixel coverage of the glyph
outline. Therefore we compare our renders to a reference and compute the RootMean Square
Error of the pixels. We only consider one color channel. Each pixel has a gray-level between
0 and 255. Let xi = (x0, x1, . . . , xN) be the pixel values of the render we wish to test and x′i =
(x′0, x

′
1, . . . , x

′
N) be pixel values in the reference render. The RMSE is computed according to:

RMSE =

√√
1
N

N∑
i=0

(xi − x′i)2. (6.1)

We compute these for the letters and symbols in the ascii table and then average the result
over all the glyphs. For the Elzevier caps font, we use only the capital letters as our test set, as
there are no lower case letters in the font. The grid of pixels used in equation (6.1) is chosen
so that it covers all glyphs in the set. We test five di�erent sizes of text: 12px, 24px, 48px,
96px, 192px. We do this to compare how well fonts scale using the di�erent methods. This is
important since using SDFs result in round corners at large sizes (see Figure 3.5), so we would
expect it to perform worse than the Slug algorithm for large fonts.

37

6. Benchmarks

38

Chapter 7

Results

7.1 Performance Benchmark
The result of the performance benchmark, described in section 6.3 can be seen in Table 7.1,
7.2, and 7.3. SDF, MSDF, Slug and the combinations are represented. For slug we include the
di�erent anti-aliasing strategies, as the di�er in performance, see section 4.2.1. We denote
these Slug for simply averaging the horizontal and vertical rays, (Slug + SS) for using super
sampling and Slug +WA for using weights based on Bézier derivatives, to combine coverages.
For comparison, a benchmark of text rendered with a pre-rasterized bu�er is also included.
The combined approach always uses an SDF sampled a 64/em and slug with weighted average
anti-aliasing (Slug+WA).

Table 7.1: Average GPU-time in milliseconds using the Open Sans
font.

Method
192px (92
glyphs)

96px (379
glyphs)

48px (1508
glyphs)

24px (6243
glyphs)

12px (25046
glyphs)

Pre-
rasterized
glyphs

0.0131 0.0121 0.0162 0.0251 0.0436

SDF 0.0168 0.0189 0.0205 0.0272 0.0438
MSDF 0.0184 0.0181 0.0205 0.0406 0.0980
Slug 0.156 0.193 0.256 0.370 0.583
Slug + SS 0.231 0.294 0.392 0.589 0.962
Slug + WA 0.170 0.213 0.286 0.414 0.652
Stencil 0.127 0.100 0.0829 0.132 0.191
Tiling 0.121 0.0755 0.124 0.218 0.426
Combined
shading

0.123 0.148 0.188 0.273 0.362

39

7. Results

Table 7.2: Average GPU-time in milliseconds using the Canterbury
font.

Method
192px (111
glyphs)

96px (451
glyphs)

48px (1804
glyphs)

24px (7450
glyphs)

12px (29857
glyphs)

Pre-
rasterized
glyphs

0.0126 0.0130 0.0173 0.0260 0.0468

SDF 0.0184 0.0194 0.0216 0.0293 0.0479
MSDF 0.0188 0.0187 0.0224 0.0410 0.0972
Slug 0.202 0.267 0.365 0.527 0.814
Slug + SS 0.334 0.451 0.631 0.943 1.50
Slug + WA 0.220 0.292 0.401 0.582 0.896
Stencil 0.133 0.140 0.178 0.329 0.431
Tiling 0.142 0.233 0.381 0.659 0.920
Combined
shading

0.209 0.277 0.375 0.552 0.708

Table 7.3: AverageGPU-time inmilliseconds using the ElzevierCaps
font.

Method
192px (57
glyphs)

96px (235
glyphs)

48px (946
glyphs)

24px (3934
glyphs)

12px (15733
glyphs)

Pre-
rasterized
glyphs

0.0187 0.0197 0.0232 0.0299 0.0428

SDF 0.0234 0.0237 0.0266 0.0325 0.0464
MSDF 0.0248 0.0231 0.0279 0.0405 0.110
Slug 1.35 1.71 2.22 3.21 5.14
Slug + SS 2.84 3.68 4.95 7.18 11.3
Slug + WA 1.45 1.84 2.46 3.61 5.67
Stencil 1.71 2.27 3.04 4.61 6.93
Tiling 1.52 2.25 3.167 4.19 5.65
Combined
shading

1.38 1.84 2.47 3.48 5.18

7.2 Quality Benchmark
The result of the Quality benchmark in section 6.4 can be seen in Table 7.4, 7.5 and 7.6. The
result is represented with the mean of the RMSE error of the glyph set as well as the variance
in parenthesis.

40

7.2 Quality Benchmark

Table 7.4: RMSE error of a set of glyphs from the Open Sans font.
Result format is mean (variance). Lower is better.

Method 12px 24px 48px 96px 192px
SDF (64 × 64) 8.04 (5.32) 2.29 (0.806) 1.37 (0.276) 1.95 (0.47) 2.92 (0.94)
SDF (32 × 32) 5.86 (4.20) 3.13 (1.40) 3.73 (2.04) 5.60 (3.71) 7.25 (5.32)
MSDF (64× 64) 13.1 (12.6) 2.81 (1.45) 1.71 (0.354) 1.15 (0.142) 1.10 (0.273)
MSDF (32× 32) 6.47 (6.05) 3.26 (1.85) 2.15 (0.617) 2.05 (0.990) 2.48 (1.99)
Slug 12.0 (14.3) 9.19 (9.04) 6.71 (4.06) 5.08 (2.92) 3.36 (1.02)
Slug + SS 5.48 (5.85) 4.49 (2.61) 2.58 (1.51) 2.16 (1.02) 1.55 (0.56)
Slug + WA 6.26 (4.08) 3.72 (1.90) 2.53 (0.874) 1.72 (0.437) 1.15 (0.289)
Stencil 7.57 (4.44) 2.35 (0.801) 1.51 (0.250) 1.10 (0.145) 0.885 (0.169)
Tiling 7.02 (4.12) 2.63 (0.985) 1.67 (0.320) 1.12 (0.154) 0.864 (0.143)
Combined shad-
ing

7.74 (4.33) 2.36 (0.739) 1.56 (0.278) 1.11 (0.168) 0.894 (0.224)

Table 7.5: RMSE error of a set of glyphs from the Canterbury font.
Result format is mean (variance). Lower is better.

Method 12px 24px 48px 96px 192px
SDF (64 × 64) 9.62 (13.54) 3.81 (2.65) 2.87 (2.50) 3.53 (2.91) 4.56 (3.47)
SDF (32 × 32) 7.13 (9.14) 5.65 (8.09) 8.61 (23.4) 12.4 (49.7) 15.4 (72.6)
MSDF (64× 64) 14.6 (29.2) 6.06 (20.5) 4.41 (23.8) 3.71 (28.3) 3.50 (29.8)
MSDF (32× 32) 9.35 (22.3) 7.08 (27.1) 7.55 (35.5) 9.33 (58.2) 11.2 (75.8)
Slug 13.5 (24.1) 10.0 (13.8) 6.86 (8.14) 4.95 (3.38) 3.67 (1.58)
Slug + SS 5.51 (7.94) 4.46 (5.05) 3.01 (2.28) 2.21 (1.26) 1.57 (0.653)
Slug + WA 7.85 (9.76) 5.32 (3.89) 3.34 (1.83) 2.34 (0.779) 1.64 (0.411)
Stencil 8.92 (12.8) 4.17 (2.74) 2.86 (2.31) 2.32 (1.82) 1.72 (0.811)
Tiling 8.14 (7.98) 4.84 (3.37) 2.20 (1.80) 2.21 (1.28) 1.61 (0.691)
Combined shad-
ing

9.04 (12.9) 4.11 (2.48) 2.84 (1.93) 2.21 (1.59) 1.69 (0.95)

41

7. Results

Table 7.6: RMSE error of a set of glyphs from the Elzevier Caps font.
Result format is mean (variance). Lower is better.

Method 12px 24px 48px 96px 192px
SDF (128×128) 36.7 (24.0) 20.6 (6.22) 12.5 (3.03) 9.32 (1.48) 9.87 (1.42)
SDF (64 × 64) 25.8 (12.8) 17.8 (3.91) 15.96 (3.97) 23.6 (9.30) 32.3 (20.1)
MSDF (128 ×
128) 42.4 (76.2) 41.3 (179) 44.5 (423) 46.0 (521) 47.5 (553)

MSDF (64× 64) 40.6 (173) 44.5 (367) 48.7 (528) 53.4 (516) 58.2 (487)
Slug 25.5 (16.9) 21.6 (7.74) 16.76 (3.70) 11.4 (1.31) 8.23 (0.507)
Slug + SS 12.3 (4.31) 10.8 (2.84) 8.24 (1.31) 5.66 (0.555) 4.19 (0.446)
Slug + WA 17.1 (7.94) 12.93 (2.80) 9.23 (0.852) 5.84 (0.259) 4.13 (0.268)
Stencil 18.4 (11.7) 13.1 (2.86) 9.54 (1.24) 6.75 (2.27) 5.88 (6.59)
Tiling 17.2 (7.82) 13.1 (2.92) 9.67 (1.13) 10.2 (3.31) 14.2 (8.69)
Combined shad-
ing

22.0 (12.5) 14.7 (3.60) 11.3 (1.73) 13.6 (5.09) 17.8 (12.0)

7.3 Slug Anti-Aliasing

We test the di�erent anti-aliasing strategies for Slug, as described in section 4.2.1. A text
rendered using the di�erent strategies can be seen in figure 7.1. The top text is rendered by
averaging coverages. This is the fastest according to our performance benchmark in section
7.1. Themiddle text uses super sampling to achieve better anti-aliasing. The bottom text, uses
a weighted average of the coverage values which is also better than just taking the average.
From the image it is clear that the two latter ones achieve smoother edges. This is especially
visible on the horizontal and vertical parts of the glyphs. On the leftmost part of the "C", "a",
"c" and "d" the top text is noticeably more jagged. Between the two lower texts it is hard to
tell which is better with the naked eye.

42

7.3 Slug Anti-Aliasing

Figure 7.1: Text rendered using the Slug algorithm. (Top) Slug, (Mid-
dle) Slug+SS, (Bottom) Slug+WA

43

7. Results

44

Chapter 8

Discussion

From our tests we can get a clear idea of what we must sacrifice in performance and quality
to have a resolution independent solution based around these methods.

8.1 Rendering Performance
To compare the rendering performance we will discuss the relative performance to using
pre-rasterized glyphs. This is shown in Table 8.1, 8.2 and 8.3.

Table 8.1: Relative rendering performance using theOpen Sans font.

Method
192px (92
glyphs)

96px (379
glyphs)

48px (1508
glyphs)

24px (6243
glyphs)

12px (25046
glyphs)

Pre-
rasterized
glyphs

1 1 1 1 1

SDF 1.28 1.57 1.27 1.09 1.00
MSDF 1.40 1.50 1.26 1.62 2.25
Slug 11.9 16.0 15.8 14.7 13.4
Slug + SS 17.6 24.3 24.3 23.5 22.1
Slug + WA 13.0 17.6 17.7 16.5 15.0
Stencil 9.70 8.26 5.12 5.25 4.38
Tiling 9.20 6.26 7.65 8.68 9.78
Combined
shading

9.40 12.2 11.6 10.9 8.31

45

8. Discussion

Table 8.2: Relative rendering performance using the Canterbury
font.

Method
192px (92
glyphs)

96px (379
glyphs)

48px (1508
glyphs)

24px (6243
glyphs)

12px (25046
glyphs)

Pre-
rasterized
glyphs

1 1 1 1 1

SDF 1.46 1.49 1.25 1.13 1.02
MSDF 1.49 1.44 1.30 1.58 2.08
Slug 16.0 20.5 21.2 20.3 17.4
Slug + SS 26.4 34.7 36.6 36.3 32.1
Slug + WA 17.4 22.5 23.3 22.4 19.1
Stencil 10.5 10.8 10.3 12.7 9.21
Tiling 11.2 18.0 22.1 25.4 19.7
Combined
shading

16.5 21.3 21.7 21.3 15.1

Table 8.3: Relative rendering performance using the Elzevier Caps
font.

Method
192px (92
glyphs)

96px (379
glyphs)

48px (1508
glyphs)

24px (6243
glyphs)

12px (25046
glyphs)

Pre-
rasterized
glyphs

1 1 1 1 1

SDF 1.25 1.20 1.15 1.09 1.09
MSDF 1.32 1.17 1.20 1.35 2.58
Slug 72.0 86.9 95.6 107 120
Slug + SS 152 186 213 240 264
Slug + WA 77.3 93.4 106 121 132
Stencil 91.1 115 131 154 162
Tiling 80.9 114 137 140 132
Combined
shading

73.5 93.2 107 116 121

8.1.1 SDF/MSDF
SDF is almost as fast as a pre-rasterized glyph cache, see Figure 8.1, 8.2 and 8.3, row one
and two. This is not very surprising as the only di�erence is a few small computations for
anti-aliasing in the pixel shader. This does not di�er much between the fonts. The slight
di�erences are most probably due to the di�erent amount of glyphs rendered, and the glyph
size relative the em square. For MSDFs, we can see that for the worst case with all three

46

8.1 Rendering Performance

fonts, the rendering performance is about twice as slow as SDF. When there are less than
2000 glyphs on screen there is basically no di�erence in performance.

8.1.2 Slug
As expected, the slug algorithm requires a lot more computations and therefore makes for
longer rendering times. For the Open Sans font, see Table 8.1, row four, it is about 12-16
times slower than pre-rasterized glyphs. With super sampling anti-aliasing, it is about 17-24
times slower. Using a weighted average is cheaper but is still around 13-18 times as slow.
For both the Canterbury and Elzevier fonts, we can see that the Slug algorithm slows down
considerably. Particularly rendering a full window of text with 12px Elzevier font, takes 5.14
milliseconds, see Table 7.3. This is 120 times slower than keeping a glyph cache, see table
8.3, and even worse with super sampling. This is the largest problem with the Slug algo-
rithm. Performance is very dependant on glyph complexity. This makes the method unfit
for rendering complex fonts or vector art in real time graphics applications. My implemen-
tation of the algorithm is probably not as fast as in the slug-library. Lengyel reported in a
presentation [12], rendering a 4k display filled with text in 0.7ms. We also did not imple-
ment all optimizations Lengyel used in his paper. These were, splitting the bands in two and
ray casting in both positive and negative x/y-direction and using more complex polygons to
minimize empty area in the glyph bounding box. These improve performance for large fonts,
see Lengyel[4], but hurts performance for smaller fonts, which is why these should be used
in those circumstances.

8.1.3 Combination of Slug and SDF
The two di�erent techniques are very di�erent in both how they work and what kind of re-
sult they deliver. In general it is clear that not all fonts can benefit from a combined method
like this. First we look at the Open sans font, see table 8.1. The fastest method was the utiliz-
ing the stencil bu�er (row seven), as described in section 5.2. It is around 4-10 times slower
then using glyph cache, depending on the size and amount of glyphs. The tile-based version
(row eight) performs worse, when there is a lot of small text. This is not very surprising as we
put a limit to tile size. When the minimum tile size is two pixels, a 12px font will use only a
few tiles per glyph. If there is a corner in all the tiles, the whole glyph is rendered with Slug.

We expected the combined shader approach to be similar in performance to the stencil ap-
proach but it is about 90% slower than the stencil version, Table 8.1, row seven and nine,
column five. This is most likely due to the extra branching in the pixel shader as well as
slighly larger areas rendered with Slug.

Looking at the Canterbury font, Table 7.2, it is a similar result. The di�erence is that the
tile-based method is slower than just using Slug, at least in the worst case (compare row six
and eight). This font has so many corners that the whole glyph is simply rendered with Slug.
Since it requires more primitives than Slug it makes sense that it is slightly slower.

For the last font, Elzevier, in table 7.3, both stencil and tiling perform worse than just us-
ing Slug. These glyphs have so many corners that trying to separate them in this manor is

47

8. Discussion

very ine�ective, at least for small font sizes. For the stencil approach the algorithm usually
result in a large polygon covering the entire glyph, as an e�ect of the merging. This creates
many small triangles when this polygon is tessellated. This is not optimal for the pixel shader.
Most Graphics hardware use a 2 × 2 grouping for the pixel shader. The four pixels are pro-
cessed simultaneously using SIMD. This means that if only one pixel in the group belong to a
triangle, the rest is simply discarded. Also using more primitives per glyphs slows down the
vertex shader. Therefore it is important to keep the triangle count to aminimum. FromTable
7.3 row six to nine we can see that the combined shader is the only approach that provide a
significant performance increase. This is probably because it more flexible in the separation
of the di�erent areas. Also this approach does not put any extra load on the vertex shader, as
each glyph is drawn onto a single quad.

8.2 Image Quality
8.2.1 SDF/MSDF
For the Open Sans font SDF achieves a high quality render, see table 7.4. The error is higher
for the largest and smallest size. This is about what we expected since for large fonts, we loose
a lot of detail around corners. For small fonts the loss of quality is due to the problem with
GPU textureminification. Sampling a texture when the a pixel coversmultiple texels is an old
problem for Graphics. This is usually resolved by using mipmaps. As can be seen from table
7.4, a lower resolution SDF makes for better results at small sizes. Using di�erent resolution
SDFs as mipmap levels could make the method slightly more scalable at the cost of memory.
It is evident by this test that MSDFs fare much better at larger sizes. This is consistent
with the expectation. The corners are preserved much better. For the Canterbury font the
error is larger for SDF. The font has many thin features and corners that are not accurately
reproduced. This is evident by looking at the example renders in figure 3.5. Even worse still
is the Elzevier font, see table 7.6 which requires a lot higher SDF sample rate to produce good
quality. For these fonts, we got quite severe artefacts using the msdfgen library. It might be
that these fonts are not fully compatible with the library. Due to this, we don’t want to draw
conclusions about the quality performance of MSDFs based on my tests alone. The method
has some issues where to thin features can produce holes in the glyph shape. Neither method
is particularly good when fonts are to thin. We found that if a glyph is thinner than two
texels, we will most of the time not be able to compute an accurate distance value from the
samples.

8.2.2 Slug
The Slug algorithm can generally reproduce the shape of any glyph. Themain downside is the
anti-aliasing. Just using an average of two rays gives a slightly jagged appearance, see Figure
7.1. Using super sampling or weighting the averages both improve the quality. This is the
case with all the fonts, see Table 7.4, 7.5, 7.6. I did notice however that weighting the averages
can sometimes result in missed pixels. This is due to the weights being either (0, 1) or (1, 0)
as a result of the algorithm. This is visible in Figure 7.1 on the top of the "b" in the bottom
text. Since this artefact usually only a�ect single pixels, this is mostly a problem at very small

48

8.3 Rendering at Small Font Sizes

font sizes. For the Elzevier font, the Slug algorithm produced the best quality. If we use a
high sampling rate on the SDF we might be able to get similar results but at that point it just
becomes unpractical. We would need to store a 256 × 256 SDF to draw i.e. a 96px glyph.

8.2.3 Combination of Slug and SDF
As expected the RMSE the three versions are similar. For the Open Sans and Canterbury
fonts, the di�erence is very small. For Open Sans the quality is better than both slug and
SDF separately, for some sizes. This was a bit unexpected but easily explained. We can see in
table 7.4 that the 64×64 SDF produces the highest quality at sizes 24 and 48. This is exactly
the case where SDFs work very well, a simple font and a font size that is not to far from the
SDF size. The distance values approximate coverages very well, better than all versions of
Slug. At the larger sizes the errors are mostly caused by the rounding of the corners. As we
eliminate the errors using Slug for the corners we get great quality for all glyphs. The same
e�ect is present in the Canterbury font, table 7.5. When rendering very detailed font like
Elzevier the the corners are so dense that the whole glyph is rendered with the slug method.
The tile-based, and combined shader solution both allow for a very fine separation of the two
shaders at large font sizes. The resolution of the SDF has a larger impact for these methods.
This is the biggest problem with this combination. An SDF still struggles with thin features.
For a complicated font, we get many of the artefacts that come with an low resolution SDF,
like in Figure 3.5, bottom row, and the performance cost of Slug.

8.2.4 Caveats
There are some flaws to this way of testing quality. The main problem is that the RMSE does
not necessarily measure how we perceive the fonts. Some artefacts are more prominent than
others, even if they do not a�ect the RMSE as much. It is hard to design tests that measure
this. Also it is not very exact when comparing di�erent sizes to each other. This needs to be
taken into consideration when reviewing these results.

8.3 Rendering at Small Font Sizes
Wehave tested to render sizes as small as 12px. Rendering small text is a fundamental problem
in text rendering. Even if we use a perfect algorithm for the rasterization of the glyphs,
the text can still appear blurry or di�cult to read. Usually font rasterizers use di�erent
techniques to improve the result. The collective term for this is hinting. Certain features of
the fonts may be scaled or modified to improve sampling at low resolution. Also the glyphs
are aligned with the pixel grid so that features are less likely to be missed. It would of course
be possible to use slug or SDF with hinted outlines but the font would then have an incorrect
design when scaled up to higher resolution. An example of hinting using Freetype [14], can
be seen in Figure 8.1.

49

8. Discussion

Figure 8.1: An example of hinted text from using Freetype. (Top)
Unhinted text, (Bottom) Hinted text.

Some font rasterizers also utilize sub-pixel anti-aliasing. By using the sub-pixels in an LCD
display, fonts can be rendered at higher resolution along one axis. This can make fonts more
smooth but could also produce color artefacts. This technique requires knowledge of the
sub-pixel layout, which can vary between di�erent screens. Game applications may run in
many di�erent platforms and screens, like TVs, PCmonitors or mobile displays which makes
sub-pixel rendering unpractical.

To achieve the best results at small sizes is impossible without making some alterations to
the outlines and layout. For this case it makes sense to use a pre-rasterized glyph cache since
small glyphs do not require a lot of memory and it is so much faster than the other methods.

8.4 Rendering in World Space

This thesis mainly covers texts in a 2D-plane parallel to the screen. This is the most common
for text rendering applications. Most games have some sort of user interface where text is
rendered in thismanner but it is not uncommon to render text in a 3D-world. In that scenario
text can be view at an angle, with di�erent pixel density at di�erent areas of the glyphs. Using
a pre-rendered glyph cache can result in blurry text and insu�cient anti-aliasing at some
angles. Both SDFs and Slug can use screen space derivatives for anti-aliasing which makes
them more resolution independent. An example of text rendered at an angle is shown in
Figure 8.2.

50

8.4 Rendering in World Space

Figure 8.2: Example rendering with a text in viewed from an angle.
(Top) SDF, (Middle) Slug + WA, (Bottom) pre-rasterized glyphs

51

8. Discussion

52

Chapter 9

Conclusion

9.1 Summary
In this thesis, we have implemented and analyzed several methods for rendering fonts. We
have shown that fonts rendered using signed distance fields will result in low quality for sharp
corners or thin features. Through our tests it is also clear that the Slug algorithm is more flex-
ible, and preserves the font better when scaled. This method of rendering fonts also proved
to require a lot more shader computations, and as a result is many times slower than SDF.We
have demonstrated three di�erent solutions for combining these methods to improve upon
some of the drawbacks of each. In most cases the best method was to use a separate set of
primitives for the corners and utilize the stencil bu�er for separation of the glyph. All three
solutions managed to provide high quality fonts with faster rendering times than Slug and
better scaling than SDF for the Open Sans font. However when font complexity increase, the
separation of the glyphs makes these methods slower than the Slug algorithm. In this case
there no benefit to use a combination.

The corner rounding problem, as we mentioned earlier, can also be countered by using more
SDFs. The rendering time for this method is much faster then our combined approach. If the
corners are not too close together (more than 2 texels), this method provides better quality
over SDF, and due to the better render time, is a better solution than ours. If corners are very
close together or the angle of a corner is very small, the limited resolution of the SDFs can be
insu�cient to recreate the corner, while Slug will work for these cases as well. This brings us
to believe that this method might be very good for a serif font, something we unfortunately
did not have time to test.

We have successfully managed to analyze some methods of font rendering. We have also
succeeded in creating a new way to use them in combination for rendering high quality text.
Our combined method is an interesting concept and managed to reduce some of the prob-

53

9. Conclusion

lems we encounter with SDFs and Slug. In its current state however, it will not replace the
current state of the art methods of rendering fonts.

9.2 Future Work
As this thesis shows, it is possible to combine SDF and Slug to render high quality text. This is
a working solution for improving the image quality of SDF font rendering or for optimizing
the Slug algorithm. However it still su�ers from the inability to render thin glyph features.
We opted for using Slug for the corner parts of the glyphs, as these were the most problematic
areas for SDF. The method can be made more general, and thin stems or small details that
do not have corners can also be rendered with the Slug shader. The challenge lies in finding
these areas, and separating them. Using a second SDF, as in our combined shading approach,
removes the need for extra primitives, and allows for more complex shapes. Therefore this
method should be the most suitable for such a generalization.

54

Bibliography

[1] Farin, G. Curves and Surfaces for CAGD a Practical Guide, 5th ed, Morgan Kaufmann, 2001,
Accessed on: Mar. 30, 2020 [Online]. Available at: https://www-dawsonera-com.
ludwig.lub.lu.se/abstract/9780080503547

[2] TrueType Reference Manual. Apple Inc. Accessed on: Mar. 30 2020. [Online]. Avail-
able: https://developer.apple.com/fonts/TrueType-Reference-Manual/
RM01/Chap1.html

[3] C. Green, "Improved Alpha-Tested Magnfication for Vector Textures and Special Ef-
fects", ACM SIGGRAPH 2007 courses, pp. 9-19, ACM, New York, USA, 2007. Accessed
on: Feb. 19 2020. [Online]. Available: https://steamcdn-a.akamaihd.net/apps/
valve/2007/SIGGRAPH2007_AlphaTestedMagnification.pdf

[4] E. Lengyel, "GPU-Centered Font Rendering Directly from Glyph Outlines", Journal of
Computer Graphics Techniques(JCGT), vol. 6, no. 2, pp. 31-47, 2017. Accessed on: Feb. 19
2020. [Online]. Available: http://jcgt.org/published/0006/02/02/

[5] V. Chlumský, "Shape Decomposition for Multi-channel Distance Fields" M.S. thesis,
Czech Technical University in Prague, Faculty of Information Technology, Prague,
2015. [Online]. Available: https://dspace.cvut.cz/bitstream/handle/10467/
62770/F8-DP-2015-Chlumsky-Viktor-thesis.pdf.

[6] V. Chlumský, "Multi-channel signed distance field generator", Accessed on: Oct. 10 2019.
[Online]. Available: https://github.com/Chlumsky/msdfgen

[7] "Slug Dynamic GPU Font Rendering and Advanced Text Layout", Accessed on: Jan. 31,
2020. [Online]. Available: https://sluglibrary.com/

[8] C. Loop, J. Blinn, "Resolution Independent Curve Rendering using Programmable
Graphics Hardware", ACM Transactions in Graphics, vol. 24, pp. 1000-1009, ACM, July
2005. Accessed on: Feb. 19, 2020. [Online]. Available: https://www.microsoft.com/
en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf

55

https://www-dawsonera-com.ludwig.lub.lu.se/abstract/9780080503547
https://www-dawsonera-com.ludwig.lub.lu.se/abstract/9780080503547
https://developer.apple.com/fonts/TrueType-Reference-Manual/RM01/Chap1.html
https://developer.apple.com/fonts/TrueType-Reference-Manual/RM01/Chap1.html
https://steamcdn-a.akamaihd.net/apps/valve/2007/SIGGRAPH2007_AlphaTestedMagnification.pdf
https://steamcdn-a.akamaihd.net/apps/valve/2007/SIGGRAPH2007_AlphaTestedMagnification.pdf
http://jcgt.org/published/0006/02/02/
https://dspace.cvut.cz/bitstream/handle/10467/62770/F8-DP-2015-Chlumsky-Viktor-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/62770/F8-DP-2015-Chlumsky-Viktor-thesis.pdf
https://github.com/Chlumsky/msdfgen
https://sluglibrary.com/
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf

BIBLIOGRAPHY

[9] W. Dobbie, "GPU text rendering with vector textures" Jan 2, 2016. Ac-
cessed on: Feb. 19, 2020. [Online]. Available: https://wdobbie.com/post/
gpu-text-rendering-with-vector-textures/

[10] B. Esfahbod, "GLyphy is a signed-distance-field (SDF) text renderer using OpenGL ES2
shading language", Accessed on: Oct. 14, 2019. [Online]. Available: https://github.
com/behdad/glyphy

[11] KhronosGroup, "QueryObject", Accessed on: Jan. 28, 2020. [Online]. Available: https:
//www.khronos.org/opengl/wiki/Query_Object

[12] E. Lengyel, "GPU-Centered Font Rendering Directly from Glyph Outlines", Presen-
tation slides, I3D, Montréal, 2018. Accessed on: Feb. 19, 2020. [Online]. Available:
http://terathon.com/i3d2018_lengyel.pdf

[13] S. Kumar, "Maximum size rectangle binary sub-matrix with all 1s" Accessed
on: Feb. 6 2020. [Online] Available: https://www.geeksforgeeks.org/
maximum-size-rectangle-binary-sub-matrix-1s/

[14] "The Freetype Project" Accessed on: Feb. 3, 2020. [Online]. Available: https://www.
freetype.org/

[15] R. A. Jarvis, "On the identification of the convex hull of a finite set of points in the plane",
Information Processing Letters, vol. 2, no. 1, pp. 18 - 21, March 1973. [Online]. Available doi:
10.1016/0020-0190(73)90020-3

56

https://wdobbie.com/post/gpu-text-rendering-with-vector-textures/
https://wdobbie.com/post/gpu-text-rendering-with-vector-textures/
https://github.com/behdad/glyphy
https://github.com/behdad/glyphy
https://www.khronos.org/opengl/wiki/Query_Object
https://www.khronos.org/opengl/wiki/Query_Object
http://terathon.com/i3d2018_lengyel.pdf
https://www.geeksforgeeks.org/maximum-size-rectangle-binary-sub-matrix-1s/
https://www.geeksforgeeks.org/maximum-size-rectangle-binary-sub-matrix-1s/
https://www.freetype.org/
https://www.freetype.org/

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-03-12

EXAMENSARBETE Rendering Resolution Independent Fonts in Games and 3D Applications
STUDENT Olle Alvin
HANDLEDARE Michael Doggett (LTH), Göran Syberg Falguera (EA DICE)
EXAMINATOR Flavius Gruian (LTH)

Sharpening The Corners of Video Game
Fonts

POPULAR SCIENTIFIC SUMMARY Olle Alvin

Player names, ammunition count and high scores are all common pieces of information
displayed as text to a player in a video game. To draw text on a screen is something
most of us take for granted. For a high performance application such as a AAA game,
it becomes a difficult task. In my thesis I explore a few solutions for this and attempt
to combine them to create something better.

A pretty common solution for rendering text, that
works for any display is to use a Signed Distance
Field (SDF). This method utilizes distance infor-
mation to draw vector art using graphics hard-
ware. It works very well in that regard but it
comes with a problem. When trying to draw
large characters or draw text on a high resolution
screen, the font looses some of its defining traits.
The sharp corners you would see on an "A" or a
an "N" will be rounded of causing the text to look
soft.

In my thesis I explain another method of render-
ing fonts (The Slug Algorithm), which can pro-
duce images much more true to the wanted result.
It uses the mathematical definition of the charac-
ter and draws it exactly as the designer intended
it. However, this is at least 10 times slower than
drawing from signed distance fields. This is not an
option for a high performance game application.
The extra quality over SDF is not always worth
the performance cost. Then again, looking at the
SDF rendering in the above figure, not all parts of
the "A" look distorted. It is only the sharp corners

that do not look the way we want them too. So
we can use the more expensive method only in the
small areas where the SDF fails. Thereby we can
keep performance cost to a minimum but still get
a good rendering.

+ =
This is good in theory, but in practice separating
the corner areas in a good way is challenging.
The separation itself comes with a performance
cost. Therefore the actual benefit is not as high
as one could imagine. In the best case I found
that it we gain about 70% in performance over
the expensive Slug algorithm but it is still 3 times
slower than using the SDF only.

The worst case is when we deal with more
decorative fonts with very intricate designs. The
letters might be decorated with tiny flowers, or
made to look like hand drawn scribbles. To draw
fonts like this is extremely slow with this method.
In conclusion, the combination of these methods
can be used to render high quality fonts fairly
fast but it is not efficient for very intricate fonts.

	Introduction
	Graphics Hardware
	Definition of a Font
	Rasterizing a Glyph Outline
	Previous Work
	Pre-rasterized Glyphs
	Signed Distance Fields
	Loop Blinn Curve Rendering
	Glyphy
	Dobbie's Method
	Slug Algorithm

	Scope and Approach of the Thesis

	Bézier Curves
	SDF
	Generating Signed Distance Fields
	Multiple Channels
	Implementation

	Slug Algorithm
	Computing the Winding Number
	Implementation
	Anti-Aliasing

	Combining Methods
	Identifying Corners
	Stencil Buffer
	Tiling
	Combined Shading

	Benchmarks
	Experimental Setup
	Test Fonts
	Performance
	Image Quality

	Results
	Performance Benchmark
	Quality Benchmark
	Slug Anti-Aliasing

	Discussion
	Rendering Performance
	SDF/MSDF
	Slug
	Combination of Slug and SDF

	Image Quality
	SDF/MSDF
	Slug
	Combination of Slug and SDF
	Caveats

	Rendering at Small Font Sizes
	Rendering in World Space

	Conclusion
	Summary
	Future Work

