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Abstract 

In modern anti-money laundering operations, data analysis plays a vital role. One 

method of detecting fraudulent data is Benford’s law, which predicts the distribution 

of the first significant digits in logarithmically distributed data. Deviation from 

Benford’s law in data where it should be present might indicate manipulated data. 

We investigate the Chi2 and Kolmogorov-Smirnov tests’ properties to see how their 

empirical sizes and test powers are affected by different sample and variance sizes. 

With this knowledge, we set out to evaluate the reliability in common methods of 

testing data for conformity to Benford law. The included methods are graphical 

analysis, comparison of statistical moments and employment of the mentioned 

statistical tests on transactional data sets; one with legitimate data and another 

including fraudulent activity. 

Based on our statistical tests results, we conclude that the variance size does not 

play a significant role when testing data for Benford conformity. Out of the two, 

the most reliable statistical test is the Chi2 test since its test power is comparably 

much greater than the Kolmogorov-Smirnov test. 

We conclude that Benford’s law has a place in anti-money laundering processes for 

transactional data since the law was proven to be reliable when examining the data 

sets as it was able to correctly discern between the legitimate and fraudulent data 

sets. However, one has to be careful of trade patterns within data sets to avoid 

misleading results. 
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 “Money laundering is giving oxygen to organised crime.” – Enrique Peña Nieto 

 

 

1. Purpose 

As long as there is money to be made by conducting illegal business activities, there 

will be a cat-and-mouse game between perpetrators and law enforcement in a battle 

of who can outwit the other. As auditing procedures and investigations for detecting 

money laundering are in constant development and refinement, so are the structures 

and methods enabling the conduction of white-collar crime. 

There is a constant flow of newsfeeds on the matter, whether it pertains to high-

profile decision-makers with hidden assets abroad, to a local restaurant reported for 

having undeclared workers. Money laundering activity spans all levels of wealth. Its 

differing methods are carried via everything from luxurious international casino 

gambling to siphoning money from decadent drug den operations. Due to its 

polymorphic and elusive nature, no universal way of detecting fraudulent activity is 

established. However, since money laundering includes generation of illegal income 

and requires bank transactions at some point, the task of detection has grown into a 

collaborative effort between auditors, financial institutions, and law enforcement 

white-collar crime units. In the case of banks and auditors, data analysis has become 

an integral part of the anti-money laundering (AML) process. However, the available 

detection models are incomplete, and the science around it is young and limited. 

With this in mind, this paper serves to scrutinise an elegant mathematical model that 

has been around since the 1800s but only recently applied to economic fraud detection 

- with successful results. The model in question is Benford’s law. We will try to 

determine under which statistical conditions it could be applied with beneficial 

effects, and when the model might fail to provide applicable information (or even 

mislead). 
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2. Theoretical Framework 

2.1 Explaining Benford’s Law 

Benford’s law had its origins in 1881 when astronomer Simon Newcomb observed 

that pages with logarithmic tables between 1 and 3 were more worn than higher 

numbers in publicly available library books. Newcomb then theorised that smaller 

digits are more frequently occurring than larger digits, as the first significant digits in 

logarithmic numbers. He then applied this theory to two formulas which displays the 

probability of a digit’s frequency as the first (d1) and second (d2) significant digit: 

𝑝(𝑑1) = 𝑙𝑜𝑔10 (1 +
1

𝑑1
)    𝑑1 = 1, 2, … , 9    (1) 

𝑝(𝑑2) = ∑ 𝑙𝑜𝑔10
9
𝑘=1 (1 +

1

10𝑘+𝑑2
)  𝑑2 = 0, 1, 2, … , 9    (2)

It is principal to recognise that the integer 0 is invalid as a leading digit. 0 is only 

allowed when testing digits beyond the first (Newcomb, 1881). If one applies each 

digit to formula 1 and 2, one can create a distribution table (see table 1) along with a 

bar-chart (see diagram 1), displaying the distribution. 

Digit 0 1 2 3 4 5 6 7 8 9 

1st 0.0% 30.1% 17.6% 12.5% 9.7% 7.9% 6.7% 5.8% 5.1% 4.6% 

2nd 12.0% 11.4% 10.9% 10.4% 10.0% 9.7% 9.3% 9.0% 8.8% 8.5% 

Table 1. According to Benford’s law, the distribution of the first and second significant digit (Newcomb, 1881). 

 

 

Diagram 1. The distribution of Benford's law for the first and second significant digit (Newcomb, 1881).
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Later, in 1937 a physicist named Frank Benford rebirthed the law that Newcomb had 

recognised. Benford (1938) applied the law’s expectations of first significant digits in 

naturally generated data series with more than 20 000 data points. These data series included 

countries’ population sizes and random statistics in newspapers. Benford then published his 

findings in his paper the Law of Anomalous Numbers. 

Over the years many elaborations have been added to the original formulas established by 

Newcomb. Perhaps one of the more useful developments was Ted Hill’s common general 

significant-digit law, published in 1995, in which one can read the distribution of the first and 

higher-order significant digits. Hill (1995) defines this general significant-digit law neatly in a 

formula:

    𝑝(𝐷1 = 𝑑1, … , 𝐷𝑘 = 𝑑𝑘) = 𝑙𝑜𝑔10 (1 + (∑ 𝑑𝑖
𝑘
𝑖=1 10𝑘−𝑗)

−1
)              (3) 

∀𝑘 𝜖 𝑍,    𝑑1 𝜖 {1, 2, … , 9} 𝑎𝑛𝑑 𝑑𝑗  𝜖 {0, 1, … , 9}, 𝑗 = 2, … , 𝑘 

The probability for digit 2 to be the second significant digit of a number is around 10.9 % 

according to formula 2. However, assuming that the first significant digit is 1, formula 3 

shows that the second significant digit’s probability of being 2, is 11.5 %. The reason why is 

because the significant digits are dependent (Hill, 1995). Dependence between digits 

decreases as the distance between digits increases. If one applies Hill’s formula to the first 

two significant digits, one can obtain the probability for integers of two leading significant 

digits (see table 2). 

d1\d2 0 1 2 3 4 5 6 7 8 9 p(d1) 

1 4.1% 3.8% 3.5% 3.2% 3.0% 2.8% 2.6% 2.5% 2.3% 2.2% 30.1% 

2 2.1% 2.0% 1.9% 1.8% 1.8% 1.7% 1.6% 1.6% 1.5% 1.5% 17.6% 

3 1.4% 1.4% 1.3% 1.3% 1.3% 1.2% 1.2% 1.2% 1.1% 1.1% 12.5% 

4 1.1% 1.0% 1.0% 1.0% 1.0% 1.0% 0.9% 0.9% 0.9% 0.9% 9.7% 

5 0.9% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.7% 0.7% 7.9% 

6 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.6% 0.6% 0.6% 6.7% 

7 0.6% 0.6% 0.6% 0.6% 0.6% 0.6% 0.6% 0.6% 0.6% 0.5% 5.8% 

8 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 5.1% 

9 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.4% 0.4% 0.4% 4.6% 

p(d2) 12.0% 11.4% 10.9% 10.4% 10.0% 9.7% 9.3% 9.0% 8.8% 8.5% 100.0% 

  Table 2. The distributions of the first two significant digits, according to Benford’s law (Hill, 1995). 
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2.2 Utilising Benford’s Law 

For one to understand how Benford’s law applies to economics, it is helpful to understand the 

context in which it is used: 

Based on data from 161 countries over a period ranging from the years 1950 to 2009, 

economists Ceyhun Elgin and Oguz Oztunali made calculations on the size of shadow 

economies in the global market, suggesting that the black market makes up over 20% of 

world GDP (Elgin & Oztunali, 2012). This income not only goes untaxed but enables 

organised criminal activity and the funding of terrorism, leading to the creation of the 

intergovernmental organisation Financial Action Task Force (FATF) by an initiative of G7 

(Chohan, 2019). 

FATF is the leading intergovernmental Anti-Money Laundering/Combating the Financing of 

Terrorism (AML/CFT) organisation. With 39 membership countries and affiliations with 

several regional intergovernmental AML/CFT organisations and collaboration with affiliated 

governmental institutions, FATF sets international standards and principles for the conduction 

of AML/CFT operations. FATF also leaves flexibility on its practical implementations to the 

respective country-specific institutions (Chohan, 2019). 

The central framework is based around the “FATF International Standards on Combating 

Money Laundering and the Financing of Terrorism & Proliferation” on anti-money 

laundering, and the “FATF IX Special Recommendations” on CFT (however, this paper will 

be focused on AML methods). A large part of the recommendations pertains to what measures 

should be taken by financial institutions and non-financial businesses and professions to work 

in an AML/CFT-compliant manner (FATF, 2012-2020). Among these are: 

 

➢ “Customer due diligence and record-keeping”. 

- Centred around keeping and reviewing customer-specific information to identify potential red 

flags and enabling accountability should fraudulent activity occur. 

➢ “Additional measures for specific customers and activities”. 

- A per this recommendation section, particular scrutiny is required for modern technology, 

wire transfers and other services for transferring money or value that can be more susceptible 

to money laundering
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➢ “Reporting of suspicious transactions”. 

- Including responsibilities to monitor and analyse such data to identify potential money 

laundering. 

➢ “Internal controls and foreign branches and subsidiaries”. 

- Requiring financial institutions to implement corporation-wide policies and information 

exchange regarding AML/CFT, keeping the main branch accountable, should fraud be 

prevalent in its subsidiaries. 

➢ “Higher-risk countries”. 

- Enhanced due diligence is demanded for specific countries with a high-risk profile, as 

determined by FATF. 

 

Failure on the part of a financial institution to comply with FATF regulations (along with 

national country-specific regulations) can, and has, resulted in hefty sanctions. In Sweden 

alone, all four of the leading systemically critical financial banks (Swedbank, Handelsbanken, 

Nordea and SEB) have in the past five years been sanctioned by the Swedish financial 

supervisory authority, Finansinspektionen (FI), with fines ranging from tens of millions to 

billions SEK (Finansinspektionen, 2015-2020). 

Due to its prevalence, a higher responsibility has been placed on the financial institutions 

carrying out these transfers, as reflected in the FATF recommendations. The stricter 

obligations have been set up due to that transfer of funds is integral to the three stages of 

money laundering: 

Stage 1, Placement: In this first stage, the criminal’s goal is to deposit the illegally acquired 

profits into the financial system. In theory, criminals can achieve this by securing monetary 

instruments, which are then deposited into accounts located elsewhere, or by dividing large 

amounts of cash into more inconspicuous portions that can then be deposited directly into 

bank accounts. Other methods include exchanging currency and currency smuggling, 

dispersing the funds to reduce suspicion, or casino gambling (providing receipts for 

winnings). 
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Stage 2, Layering: When the money is in the system, the perpetrator’s goal is to move the 

funds around through a series of transactions to disassociate the ill-gotten gains from its 

source. By buying and selling investment instruments, purchasing and trading assets, moving 

the money across the globe through various institutions such as off-shore banks or complicit 

businesses, often passing through jurisdictions that are non-compliant in AML (thus the need 

for extra scrutiny of transactions to/from higher-risk countries). 

Finally, the money re-enters the legitimate economy via ostensibly legitimate sources, e.g., 

payments from foreign shell corporations as payments for goods or services. At this point, the 

money is not tied to its origin, enabling the last stage. 

Stage 3, Integration: Now the money is available to be integrated into the legitimate economy, 

often by investing in businesses, luxury goods or fictitious loans that can generate legitimate-

looking income (FATF, 2020; Schneider & Niederländer 2008). 

Traditionally, auditors are tasked to go through company financials and via traditional 

auditing procedures detect and report any anomalies that could indicate fraudulent activity. 

These auditing procedures are typically not very substantial as auditors usually observe the 

distributions of data sets graphically as opposed to statistical analysis (Carlton Collins, 2017). 

However, as international regulations vary, and the global market has become more and more 

integrated, so has the potential for masking illegally generated wealth by transferring money 

around, forging ledgers and running money laundering fronts in international networks. 

The growth in complexity has led to new approaches to detecting criminal activity. In the past 

couple of decades, the AML/CFT sector has grown more focused on data analysis. Todays’ 

machine learning models and statistical tests are commonly used to flag suspicious behaviour 

(that would otherwise have been hard or impossible to detect by traditional methods due to the 

sheer quantity of transactions). However, less unintuitive, although useful, analytical data 

methods are also utilised, such as Benford’s law. 

Hal Varian first suggested this use of Benford’s law in 1972 as he assumed that money 

launderers who forge information distribute their digits relatively evenly. One can also expect 

that accountancy data should be naturally generated as tampering with such data is an 

economic crime. Hence, the first significant digit of financial statements, e.g., balance sheet 

items, conform to the distribution specified by Benford’s law (Henselmann et al., 2013). 
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2.3 Previous research 

One of the most influential researchers on the application of Benford’s law has been Mark 

Nigrini. He presented methods and research on the applicability of distribution testing in 

economics and auditing procedures (Nigrini & Mittermaier, 1997; Nigrini, 2019). In his 

study, he shows how common traits in fraudulent economy data such as a higher frequency of 

rounded numbers, duplications of authentic transactions or high frequencies of numbers close 

to internal thresholds contribute to the deviation from a Benford distribution. 

There have also been studies where Benford’s law has been used in the detection of falsified 

scientific data when measuring the distribution of reported coefficients (some studies also use 

standard deviations): 

When measuring the coefficients and standard error from Empirica and Applied Economics 

Letters, i.e., scientific publications on economics, Günnel and Tödter (2008) could show that 

the data conformed to Benford’s law. 

Hüllemann et al. (2017) compared data from 25 scientific articles from a specific field of 

medicine, of which 12 were proven to be fabricated, and the remaining 13 were not. Their test 

showed a 100% sensitivity in failing the falsified papers. The specificity, however, was only 

46.15% as 6 of the articles followed the law. 

Hein et al. (2012) tested 20 redacted anaesthesiology publications. They could show that 17 of 

them showed significant deviations from Benford’s law of first digits, and 18 showed 

substantial divergences when tested against Benford’s law of second digits. The control was 

based on a meta-analysis that showed that other articles in the field were consistent with 

Benford’s first digit’s law. 

There have been numerous studies showing Benford’s law’s prevalence in naturally occurring 

distributions. In processes where the distribution can be described by power laws and the 

variable spans several orders of magnitude in a logarithmic structure, Benford’s law is often 

found. Benford’s paper shows that these are more or fewer requirements for data to be 

Benford distributed. Examples of such distributions are stock prices, areas and lengths of 

rivers, stock prices (Kvam & Vidakovic, 2007) and gene sets in digital gene expressions 

(Karthik et al., 2016). 
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2.4 The Law’s Limitations 

There are, however, some limitations to the law. For Benford’s law to be a valuable method 

when testing data sets, one would typically have to examine a large data set. Data sets with 

50-100 numbers have been proven to be in harmony with the law, but some expert opinions 

state that testing 500 or more data entries in sample size is more appropriate (Carlton Collins, 

2017). As usual, the reliability of the test usually increases with larger data sets. 

Suppose the leading digits in the data sets have unequal chances of occurring. In that case, 

Benford’s law will have little relevance statistically (i.e., the possibility must exist for a 

significant digit to be a digit between 1-9) (Carlton Collins, 2017). If one were to examine the 

heights of students at Lund University, one would likely find that a large majority are between 

150 and 210 centimetres tall. In this case, applying Benford’s law would result in an over-

representation of the first significant digits of 1 and distort one’s conclusion. 

As data sets must be naturally generated, one cannot use Benford’s law in rounded data since 

it would damage the test’s reliability. Any rounding could change the first significant digit 

and change the outcome of observed frequencies (Carlton Collins, 2017). 

When it comes to economic data, it is often crucial that the measured data is generated from 

more than one distribution, to avoid human bias. A product’s price tends to be adjusted for 

psychological effect (e.g., 199€, $2995, 100kr), and thus not Benford distributed. However, a 

receipt sum, income over a certain period, or the production cost of a product is generally a 

function of different prices, quantities, deductions et cetera generally making them Benford 

distributed (Janvresse & de la Rue, 2004). 

Another weakness of Benford’s law is that there is never any definite proof when employing 

it (Carlton Collins, 2017). Suppose one applies Benford’s law to a relevant data set in AML 

analysis and concludes that its distribution is unlike Benford’s distribution. In that case, one 

cannot establish that someone has laundered money. Although, this would raise suspicion of 

money laundering, which in hand would justify further research.



13 
 

3. Testing Benford Conformity 

Applying statistical tests to Benford’s law is possible and often recommended when analysing 

a data set’s conformability to Benford’s law. In this paper, we are testing Benford law’s 

strengths and weaknesses by applying statistical tests on our data sets. Hypothesis testing 

gives us a basis for conclusions when examining the data sets. The hypothesis test is defined 

as: 

H0: The observed frequencies conform to Benford’s law. 

H1: The observed frequencies do not conform to Benford’s law. 

In this segment, below are moments and statistical tests that we use in this paper to analyse 

data sets’ conformability to Benford’s law. 

 

3.1 Moments – Mean, Variance, Kurtosis & Skewness 

As stated previously, Benford’s law explains the characteristics of significant digits in 

logarithmic numbers. Consequently, one can observe a specific distribution of significant 

digits. Due to this expectation, one can examine a data set to see whether it, for example, 

matches a typical Benford distribution’s mean. Peter Dale Scott and Maria Fasli managed to 

gather the values for these measures by looking at well over half a million data entries and 

then extracted the data sets that met Benford’s law conditions. They listed their findings in 

their report from 2001. 

According to Scott’s and Fasli’s paper (2001), if a data set conforms to Benford’s law, then 

the first significant digit’s mean should be around 3.440. The mean for the first two 

significant digits should be about 38.590. One can also analyse whether a data set’s variance 

conforms to Benford’s law. The variance for the first significant digit in a Benford distributed 

data set should be around 6.057, and for the first two significant digits, the variance should be 

621.832. Further, the kurtosis should be around –0.548 and the skewness around 0.796 for the 

first digit. Lastly, for the first two digits, the kurtosis should be around −0.547 and the 

skewness around 0.772. 

This method could give oneself a better basis for comparison between the actual frequencies 

and those predicted. If a data set deviates from the statistical moments it could indicate that 

the data is fraudulent. At the very least, it may well support further research of a data set. 
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Moments First Significant Digit First Two Significant Digits 

Mean 3.440 38.590 

Variance 6.057 621.832 

Skewness 0.796 0.772 

Kurtosis -0.538 -0.547 

Table 3. Moments with values conforming precisely to Benford’s law (Scott & Fasli, 2001). 

 

3.2 R-package BenfordTests 

In order to statistically test data sets for Benford conformity, we first need a method. We 

chose to use the software R, which is suitable when running statistical tests. 

In this paper, we use an R package named BenfordTests created by Dieter William Joenssen 

(2015), a professor in mechanical engineering and materials science at Aalen University in 

Germany. This package can be used in Benford’s law studies and includes several test scripts 

of statistical tests used to examine data sets’ distributions. We chose to use two statistical 

tests, the chi2 test and the Kolmogorov-Smirnov test, as they are commonly used when 

assessing data for Benford conformity. 
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3.2.1 Chi2 Test 

The first test we apply is the chi2 test. The chi2 test is a commonly used test and applicable for 

testing categorical variables and their relationship, which we want to do when comparing a set 

of numbers and their distribution to a set distribution (i.e., Benford’s law). It is strongly 

recommended to only use the chi2 when the data set is large as its statistical power will 

otherwise be small (Stephens, 1970). There are many variations of chi2 tests. In this paper, we 

will be using Pearson’s chi2 Goodness-of-Fit Test for Benford’s law which has been plucked 

from the R package by Joenssen (2015). Joenssen defines the chi2 test statistic as: 

𝜒2 = 𝑛 · ∑
(ƒ𝑖

𝑜−ƒ𝑖
𝑒)

2

ƒ𝑖
𝑒

10𝑘−1
𝑖=10𝑘−1     (4)  

 

ƒi
o represents observed frequencies of significant digits i and fi

e is the expected Benford 

frequency of i.

3.2.2 Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov test compares the cumulative percentage frequencies between the 

observed and expected data, allowing oneself to assess a data set’s agreement with Benford’s 

law. Stephens (1970) claims that the Kolmogorov-Smirnov test is a more reliable test when 

checking smaller data sets. The disadvantage with the Kolmogorov-Smirnov test is that it is 

more sensitive to deviations near the centre of the distribution than at the tails, which may 

distort conclusions (Stephens, 1970). Joenssen (2015) defines the statistical test in his R 

package as: 

𝐷 = sup
10𝑘−1,…,10𝑘−1

|∑  (ƒ𝑗
𝑜 − ƒ𝑗

𝑒)𝑖
𝑗=1 | ·  √𝑛   (5) 

ƒj
o signifies the observed frequencies of significant digits i and fj

e is the expected Benford 

frequency of i.
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4. Data sets 

This paper investigates how two different data sets perform when one applies Benford’s law 

to them. The first of these data sets we strongly believe not to have any fraudulent activity 

whilst the other we believe does. 

The first data set examined are government expenditures of Oklahoma in 2019. This data set 

consists of their collective agency expenditures and serves as an informational and 

educational data source for Oklahomans to gather insights in governmental activities. This 

data set consists of 110 696 entries of expenditure data. We suspect that this data set does not 

consist of fraudulent activity. At the very least, no report of such behaviour has been made, 

and those responsible for the accounts know that the spending is under heavy scrutiny. 

The other data set that we are investigating is the Azerbaijani Laundromat, a money 

laundering enterprise between 2012 and 2014 in which influential residents of Azerbaijan 

funnelled money through four shell-corporations based in the United Kingdom. Thanks to this 

operation, elite members of Azerbaijan were, for instance, able to money-launder and sway 

political decisions in Europe. According to The Organized Crime and Corruption Reporting 

Project (OCCRP), suspicious transactional data of 2.5 billion euro was leaked to the Danish 

newspaper Berlingske. The data set consisted of 17 000 payments from and to the shell-

corporations whose bank accounts were held at Danske Bank’s Estonian branch. The 

newspaper then shared this knowledge with the OCCRP who instigated an investigation of the 

transactional data. The ploy was examined with the help of a collaborative effort from several 

financial institutions. In 2017 the OCCRP published the transactional data from the shell-

corporations on their website so that readers can do their research. The data gives a good 

picture of who the involved parties were and how the money was spent. 

We know that this data set contains transactions from fraudulent activity. Hence, the data set 

should include data that is not representative of naturally generated business expenses. 
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4.1 Potential causes for non-conformity in transactional data 

Some common examples of fraudulent behaviour indicators that we look for in transactional 

business-to-business data are presented below. 

➢ Duplicated values of authentic transactions: 

To appear legitimate, duplicates of authentic transactional numbers are injected so that the 

amounts do not stick out in an auditing procedure (Nigrini, 2019). However, duplicates are 

often not picked uniformly from the authentic data so as to retain a Benford distribution. That 

way, they will contribute to a deviation from Benford’s law, as the leading digits of the 

chosen numbers will be overrepresented (Nigrini, 2019). 

➢ Bias towards rounded numbers: 

Fraudulent transactions tend to be rounded more than their counterparts. The cause of this can 

be the human bias towards rounding numbers, or (as in the famous case of Enron) be a direct 

or indirect result of fraudulent earnings management (Nigrini, 2005). In this case, Benford’s 

law of second (or further) digits tend to show greater efficacy, as rounded numbers tend to 

output a higher frequency of zeroes. 

➢ Numbers close to certain thresholds: 

Banks and institutions often run specific protocols and procedures that trigger when a 

particular transaction requires further investigation. It can be an unusually sizeable transfer 

from a client, several transfers at a limit value (such as mobile payment limit) or large 

transfers to high-risk countries/clients. In order to avoid getting detected, a number above or 

below the threshold is picked. However, since these numbers are not generated by a natural 

process and are not spread over multiple orders of magnitude, they tend to deviate from the 

Benford distribution as well. 

➢ General deviation from the Benford distribution: 

The measured transactions might include payments that are not based on naturally generated 

income or expense amounts. This can often be the case in the layering stage of money 

laundering when the perpetrator splits the money up in seemingly arbitrary quantities and 

move them around. These quantities tend to not to follow a Benford distribution.
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5. Testing the credibility of the statistical tests 

Before applying the statistical tests (chi2 and Kolmogorov-Smirnov) to the two different data 

sets, we must test their credibility and reliability given specific settings. A concerning issue is 

how the tests perform in varying sample and variance sizes. By adjusting these conditions, we 

will better understand if there are circumstances wherein the tests are well-performing and if 

there are any in which they are not. Firstly, we will review how the statistical tests perform 

when the null hypothesis is true. By doing this, we can tell how well the practical rejection 

rates fit our set significance levels which could tell us if the tests are impaired by over or 

under rejections depending on sample and variance sizes. Secondly, we will investigate the 

tests’ power to determine if they are susceptible to a type II statistical error (false negative). 

 

5.1 Empirical size test 

By testing the statistical tests’ rejection rates when the null hypothesis is true, we can amass 

information whether the tests overreact or underreact, depending on sample sizes, significance 

level and variance. Thanks to our R package published by Joenssen (2015), we can test this in 

R. As for test conditions, we generate samples at sizes presented in table 4 and 5. We use 

samples generated (by the R script) from a Benford distribution with the density function: 

𝑓(𝑥) =
1

𝑥 · ln(10)
∀𝑥𝜖[1, 10]    (6)

We modify the data by using variance multipliers, as presented in tables 4 and 5, to 

see if it affects the tests’ reliability, and to what extent. The p-values are evaluated 

asymptotically from the χ2 statistic in the chi2 test, and by simulating the p-values 

with 100 replicates in the Kolmogorov-Smirnov test. For each combination of the 

size, variance and α parameters, the sampling and testing are reiterated 2000 times to 

get results that can identify test consistency with relatively high reliability. 

A useful indication of the tests’ performance is the rejection rates conformity to 

significance level. Suppose the rejection rates deviate from a specified significance 

level (α). In that case, it could be a problem since the practical significance levels 

differ from our set significance level. In tables 4 and 5, we run simulations for 

different sample sizes, variances, and significance levels for the rejection rates in the 

two tests: 
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  α: 0.01 α: 0.05 α: 0.10 

  Variance Multiplier Variance Multiplier Variance Multiplier 

di: 2 1 30 50 70 1 30 50 70 1 30 50 70 

Sample Size Chi2 test 

500 0.010 0.013 0.010 0.008 0.041 0.055 0.036 0.054 0.101 0.099 0.077 0.102 

1000 0.011 0.008 0.007 0.014 0.036 0.052 0.055 0.054 0.084 0.089 0.108 0.111 

1500 0.007 0.013 0.014 0.012 0.051 0.060 0.044 0.055 0.099 0.110 0.116 0.103 

2000 0.013 0.012 0.015 0.016 0.056 0.053 0.056 0.064 0.097 0.104 0.113 0.117 

2500 0.007 0.008 0.013 0.010 0.053 0.058 0.054 0.059 0.103 0.102 0.105 0.100 

3000 0.003 0.008 0.006 0.007 0.044 0.052 0.045 0.043 0.107 0.100 0.088 0.091 

3500 0.014 0.012 0.011 0.008 0.056 0.049 0.044 0.050 0.094 0.101 0.085 0.102 

4000 0.011 0.008 0.004 0.009 0.050 0.051 0.048 0.047 0.096 0.102 0.109 0.091 

4500 0.011 0.010 0.013 0.009 0.053 0.053 0.047 0.052 0.118 0.093 0.099 0.102 

5000 0.008 0.009 0.010 0.010 0.052 0.050 0.043 0.050 0.096 0.096 0.093 0.088 

Sample Size Kolmogorov-Smirnov test 

500 0.014 0.012 0.013 0.015 0.057 0.048 0.048 0.060 0.126 0.111 0.101 0.124 

1000 0.011 0.010 0.011 0.009 0.051 0.045 0.043 0.050 0.112 0.109 0.104 0.114 

1500 0.007 0.011 0.008 0.006 0.053 0.050 0.053 0.048 0.111 0.119 0.115 0.107 

2000 0.010 0.015 0.008 0.012 0.060 0.058 0.061 0.049 0.122 0.127 0.107 0.116 

2500 0.017 0.013 0.011 0.014 0.056 0.047 0.047 0.045 0.116 0.116 0.098 0.122 

3000 0.010 0.012 0.011 0.009 0.049 0.054 0.058 0.053 0.095 0.115 0.116 0.114 

3500 0.007 0.011 0.005 0.007 0.039 0.039 0.043 0.035 0.098 0.088 0.098 0.094 

4000 0.007 0.011 0.011 0.006 0.044 0.038 0.042 0.043 0.098 0.093 0.096 0.097 

4500 0.015 0.011 0.015 0.016 0.057 0.056 0.055 0.049 0.110 0.110 0.097 0.109 

5000 0.007 0.006 0.012 0.009 0.036 0.046 0.048 0.035 0.100 0.113 0.100 0.092 

Table 4. Rejection rates for the first two significant digits (di) when testing the empirical size of the chi2 test and 

Kolmogorov-Smirnov test. Sample sizes range between 500-5000, variance multipliers vary between 1-70, and 

the three significance levels are 0.01, 0.05 and 0.10. The further a rejection rate strays from the significance 

level, the darker the colour formatting. The simulation has been reiterated 1000 times for the sake of 

consistency. 

Observing table 4’s rejection rates, one can infer that the tests seem to perform reasonably 

well when the null hypothesis is true. In both tests, the rejection rates do not seem to be 

affected by the significance level in any discerning way, i.e., no significance level performs 

better or worse than the other. There are, however, some noteworthy takeaways worth 

considering when using these tests to test data sets for Benford conformity. 
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The first takeaway is the implication of the variance size. By looking at table 4, one can see a 

slight change in the tests’ rejection rates based on the size of variance. Multiplying the 

variance by 30 shows that the rejection rates are changed in both statistical tests. Though, as 

the variance is multiplied by 30, the rejection rates do not always under-reject or over-reject. 

By multiplying the variance by 50 and then 70, it is comprehensible that the tests’ rejection 

rates are not severely affected based on the size of variance. Our interpretation based on this 

result is that Benford’s law is relatively invariant to differences in variance when the null 

hypothesis is true. This conclusion indicates that the risk of committing a type I error when 

testing data sets conformity to a Benford distribution does not depend on the variance size. 

The second takeaway is the importance of the sample size. By glancing at the colour 

formatting of the chi2 test in table 4 when the significance level is 0.05, one may ascertain that 

the rejection rates conform closer and closer to the significance level as the sample sizes 

increase. This is not as apparent when looking at the corresponding rejection rates in the 

Kolmogorov-Smirnov test. Nevertheless, the rejection rates’ conformity to significance levels 

as the sample sizes increase is not apparent when reviewing table 4. The Kolmogorov- 

Smirnov test is often used as a substitute for the chi2 test when the sample is small. Based on 

both tests’ rejection rates in table 4, the sample size does not seem to affect the rejection rates. 

In case there are any discerning differences in rejection rates for smaller sample sizes, another 

simulation is run (see table 5). 
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  α: 0.01 α: 0.05 α: 0.10 

  Variance Multiplier Variance Multiplier Variance Multiplier 

di: 2 1 30 50 70 1 30 50 70 1 30 50 70 

Sample Size Chi2 test 

100 0.019 0.021 0.023 0.018 0.065 0.060 0.074 0.059 0.123 0.115 0.122 0.113 

200 0.023 0.015 0.012 0.015 0.055 0.059 0.060 0.060 0.110 0.104 0.115 0.101 

300 0.010 0.011 0.014 0.008 0.038 0.059 0.044 0.054 0.101 0.114 0.096 0.098 

400 0.021 0.014 0.016 0.021 0.072 0.062 0.059 0.068 0.128 0.114 0.108 0.118 

500 0.018 0.015 0.015 0.011 0.063 0.058 0.060 0.065 0.105 0.107 0.102 0.110 

600 0.011 0.010 0.015 0.014 0.049 0.055 0.057 0.061 0.099 0.113 0.110 0.105 

700 0.012 0.009 0.009 0.006 0.051 0.034 0.037 0.051 0.097 0.087 0.093 0.097 

800 0.016 0.007 0.012 0.012 0.053 0.056 0.059 0.068 0.119 0.108 0.101 0.118 

900 0.010 0.010 0.007 0.007 0.040 0.045 0.040 0.046 0.093 0.101 0.096 0.088 

1000 0.013 0.016 0.014 0.012 0.045 0.058 0.050 0.053 0.083 0.108 0.106 0.095 

Sample Size Kolmogorov-Smirnov test 

100 0.013 0.009 0.013 0.010 0.048 0.040 0.050 0.038 0.116 0.118 0.108 0.106 

200 0.009 0.007 0.005 0.013 0.050 0.052 0.046 0.052 0.097 0.108 0.104 0.110 

300 0.007 0.007 0.008 0.013 0.049 0.049 0.053 0.057 0.104 0.104 0.112 0.108 

400 0.010 0.016 0.010 0.009 0.043 0.053 0.055 0.042 0.106 0.121 0.114 0.095 

500 0.009 0.013 0.009 0.010 0.053 0.043 0.051 0.049 0.112 0.108 0.103 0.120 

600 0.009 0.009 0.009 0.006 0.048 0.042 0.050 0.042 0.103 0.110 0.107 0.105 

700 0.006 0.007 0.006 0.012 0.053 0.050 0.055 0.056 0.119 0.102 0.124 0.117 

800 0.010 0.010 0.014 0.008 0.050 0.050 0.056 0.053 0.103 0.115 0.117 0.108 

900 0.004 0.011 0.006 0.006 0.049 0.056 0.050 0.045 0.092 0.120 0.112 0.109 

1000 0.010 0.009 0.011 0.011 0.053 0.039 0.038 0.054 0.118 0.104 0.102 0.122 

Table 5. Rejection rates for the first two significant digits (di) when testing the empirical size of the chi2 test and 

Kolmogorov-Smirnov test. The rejection rates differ depending on sample size, variance size and significance 

level (α). Sample sizes range between 100-1000, variance multipliers vary between 1-70, and the three 

significance levels are 0.01, 0.05 and 0.10. The further a rejection rate strays from the significance level, the 

darker the colour formatting. The simulation has been reiterated 2000 times for the sake of consistency. 

Table 5 shows that the rejection rates for the chi2 test stray away slightly from the specified 

significance levels when the sample is small. This is visible for sample sizes of 100 as the 

rejection rates are around 0.02 when the significance level is 0.01. When the sample size is 

200, the same holds for the chi2 test. However, the Kolmogorov-Smirnov’s rejection rates 

seem to conform nicely to the significance level when the sample size is at its smallest (100 

and 200). 
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Given this result, it looks like the Kolmogorov-Smirnov test outperforms the chi2 test when 

the sample size is equal to 100. At the very least, the difference between rejection rate and 

significance level for the Kolmogorov-Smirnov test is smaller for all significance levels when 

the sample size is 100. The same seems to hold when the sample size is 200. This simulation 

appears to support the importance of one’s attention to sample sizes and one’s application of 

appropriate statistical tests. As the probability of a type I error increases with small sample 

sizes for the chi2 test (around 100 to 200 sample size), the opportunity to use the Kolmogorov-

Smirnov test seems more appealing. Still, as the sample sizes increase, the difference between 

the two statistical tests diminishes and eventually, the disparity is tough to distinguish. 

Although the differences between rejection rates in the two tests are not large, the case still 

stands that the Kolmogorov-Smirnov test seems more suitable when the null is true. 

 

5.2 Power test 

In this simulation, we test the power of the two statistical tests depending on variance size and 

sample size. By performing this simulation, we can tell if the variance or sample size impacts 

the tests’ susceptibility to a type II statistical error (false negative; β). 

We generate samples based on the Azerbaijani data set, which is confirmed fraudulent 

(OCCRP, 2017), to see to what degree the chi2 and Kolmogorov-Smirnov tests are able to 

detect non-Benford distributed data sets. Random samples are picked from our data, at sizes 

ranging from 50 to 10 000. The variance is scaled to four different levels to determine to what 

extent these parameters affect the reliability of the tests.  

When estimating β, for the chi2 testing, the p-values are determined by the asymptotic χ2 

distribution. For Kolmogorov-Smirnov, the p-values were simulated and estimated with 50 

replicates. 

For each combination of size and variance parameters, this whole simulation was repeated 

2000 times to achieve high reliability in our results. We set the significance level to α = 0.05. 
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di:1 Chi2 test Kolmogorov-Smirnov test 

α: 0.05 Variance Multiplier Variance Multiplier 

Sample Size 1 30 50 70 1 30 50 70 

50 0.162 0.129 0.108 0.168 0.072 0.085 0.065 0.075 

100 0.331 0.244 0.217 0.313 0.078 0.084 0.081 0.096 

250 0.711 0.614 0.603 0.660 0.107 0.104 0.141 0.156 

500 0.961 0.931 0.933 0.950 0.175 0.174 0.236 0.266 

1000 1.000 1.000 0.998 0.999 0.317 0.269 0.480 0.482 

2000 1.000 1.000 1.000 1.000 0.722 0.523 0.842 0.815 

3000 1.000 1.000 1.000 1.000 0.948 0.707 0.972 0.961 

5000 1.000 1.000 1.000 1.000 1.000 0.948 1.000 1.000 

10000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Table 6. The power of the different tests (1- β) at the given sizes and variance multipliers. Each cell 

contains the power of the test at the given parameters. 

 

Table 6 shows that the test power for both chi2 and Kolmogorov-Smirnov is relatively low for 

the smaller sample sizes, with both tests having marginal increases as the sample sizes 

increase. Chi2 reaches a power level of 0.93 for samples sizes of 500, regardless of variance, 

and approximating a power close to 1 at sample sizes of 1000 and higher. Kolmogorov- 

Smirnov first achieves an average test power close to ~0.9 at samples of 3000, and power 

close to one for sample sizes of 5000. 

While both tests have low power at our smaller sample sizes, the chi2 significantly 

outperforms the Kolmogorov-Smirnov test at all sample sizes up to 10 000. The chi2 test 

shows a test power tolerable by some standards at sample sizes of 500, whilst the 

Kolmogorov-Smirnov test needs sample sizes of 3000 to reach a similar test power. The chi2 

test reaches a power of approximately one at sample sizes of 2000, while the Kolmogorov- 

Smirnov test requires sample sizes of 10000 to reach that golden standard. 

We can see an apparent discrepancy between the two tests, as the Kolmogorov-Smirnov test 

may under-reject samples deviating from Benford’s law, making it more prone to type II 

errors. 

Studying table 6, we can see that the power changes as the variance increases. However, the 

increase in variance does seem to affect the tests’ power in a way that can be deemed 

significant. We were able to gather a similar conclusion when we tested rejection rates for the 

true hypothesis. This seems to support the argument that Benford’s law is relatively invariant 

to variances. 
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5.3 Variance analysis 

After increasing the variance of our data at different increments and running our tests, we 

could not discern any significant deviation from the base values (i.e., non-modified variance) 

for any of the variance levels. 

We suspect that this could be due to the supposed scale invariance for Benford distributed 

numbers. Since Benford’s law holds at vastly different levels of magnitude, with the law 

present in everything from measured sizes of galaxies, down to microbial processes, there is 

an argument that there is a scale invariance in Benford distributed variables. This claim has 

been challenged by some, though. 

Since Benford’s law works when there is a broad logarithmic probability distribution present, 

the data to which it is applicable should be logarithmically distributed, ranging over several 

magnitudes. With that in mind, the relative distribution in the data set should be of greater 

importance than the numbers’ absolute sizes. This has been shown to hold in many cases, as 

the unit in which the data is expressed, such as USD versus euro, does not break Benford’s 

law (which is supported by the fact that Benford’s law is used in AML and auditing across 

different countries and currencies). 

Working under the assumption that Benford’s law is scale-invariant, we can say that a 

numeric vector X consisting of Benford distributed data generates a certain probability vector 

Y of the first significant digits in X: 

𝑋  → 𝑌 

Assuming scale invariance: 

𝑋 · 𝑐  → 𝑌 

𝑐  ∈ 𝑄 

If 

𝑐 \ {0, 1} 

We know that 

𝑉𝑎𝑟(𝑋 · 𝑐) = 𝑉𝑎𝑟(𝑋) · 𝑐2 

𝑉𝑎𝑟(𝑋) ≠ 𝑉𝑎𝑟(𝑋) · 𝑐2 
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By that logic, the scaled vector (X·c) should have a different variance than X, but if scale 

invariance holds, then both the vectors should generate the same percentages in Y when 

extracting the first digits. Hence, the data set variance should not necessarily affect the results 

- which is reflected in ours. 

 

6. Testing data sets for conformity 

6.1 Observed distributions of the first significant digits 

A common practice when examining data sets for fraudulent activity is investigating the 

distributions of the first significant digit. By doing this, we might be able to tell whether a 

data set is fraudulent. This test is performed for the Oklahoma government expenditure data 

and the transactional data of the Azerbaijani Laundromat. Displayed below, in diagram 1 and 

2 are the distributions for the two different data sets: 

Diagram 2. Comparing the percentages of the observed frequencies of the first significant digit in the data set 

of Oklahoma’s government expenditures with the expected first significant digit percentages of Benford’s law. 

 

Diagram 2 tells us that the Oklahoma data set is closely conformed to a Benford distribution. 

This result implies that the data set does not reject the null hypothesis. If we merely were to 

base a conclusion on this result, we would assume that there is no fraudulent activity within 

the data set of Oklahoma government expenditures (which is our expectation of the data set).

1 2 3 4 5 6 7 8 9

Observed

Percentage
30,0% 17,8% 12,5% 9,6% 8,3% 6,6% 5,5% 5,0% 4,6%

Expected

Percentage
30,1% 17,6% 12,5% 9,7% 7,9% 6,7% 5,8% 5,1% 4,6%

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

Oklahoma data set
Observed Percentage of First Significant Digit
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Diagram 3. Comparing the percentages of the observed frequencies of the first significant digit in the 

Azerbaijani Laundromat data set with the expected first significant digit percentages of Benford’s law. 

 

Diagram 3 shows that the Azerbaijani Laundromat scheme’s transactional data is quite 

Benford distributed. For the significant digits 1 and 2, the distribution is tightly knitted to a 

Benford distribution. However, the percentage difference is conspicuous for the remaining 

digits. This might be especially true for the significant digit 7, where the observed percentage 

is 10.4 % whilst the expected percentage, according to Benford’s law is 5.8 %. 

The distribution depicted in diagram 3 is most likely a result of the data set being fraudulent. 

Despite that, it is essential to recognise that if a data set is entirely fraudulent, it would, in 

theory, be more apparent in the distribution of the data set. 

There could be some other reasons why the Azerbaijani data set distribution is not as closely 

conformed to a Benford’s distribution. For example, it could have to do with specific trading 

patterns in services between companies. One of the most extensive associates could only trade 

in one good or service and, therefore, skew the data set’s distribution. As mentioned by the 

OCCRP (2017), some legitimate business transactions likely took place with these shell- 

companies, which would be reflected in the data set. If we look at the graphics in diagram 3 

impartially, it would be tough to discern whether the Azerbaijani data set is Benford 

distributed or is not. Nonetheless, the Azerbaijani data set is not as closely conformed to a 

Benford distribution as the Oklahoma data set. 

1 2 3 4 5 6 7 8 9

Observed

Percentage
29,3% 17,1% 15,3% 8,6% 7,0% 4,9% 10,4% 3,9% 3,6%

Expected

Percentage
30,1% 17,6% 12,5% 9,7% 7,9% 6,7% 5,8% 5,1% 4,6%

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

Azerbaijani Laundromat data set

Observed Percentage of First Significant Digit
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As we have mentioned, auditors often apply this method of visual analysis when analysing 

data sets for fraudulent activity. It could be a useful method to gain some initial information 

about data sets’ distributions. However, we know that “looks” can be deceiving, and sure 

enough, when applying statistical tests on the data set, we obtain contradicting results. 

 

6.2 Data sets’ statistical moments 

Looking at the statistical moments of the first significant digits and the first two significant 

digits of the two data sets, we can see that both present moments that relatively closely 

approximate the reference values presented in table 7 and 8. 

 

Oklahoma data set First digit First two digits 

Mean 3.044 37.694 

Variance 6.541 619.116 

Skewness 0.797 0.791 

Kurtosis -0.450 -0.466 
          Table 7. Sample moments of the Oklahoma data set. 

Azerbaijani data set First digit First two digits 

Mean 3.441 38.552 

Variance 5.880 606.696 

Skewness 0.761 0.736 

Kurtosis -0.644 -0.633 
          Table 8. Sample moments of the Azerbaijani data set. 

 

The Oklahoma data set has a mean that is ~0.4 lower than the reference value for its first 

digits, and a ~0.9 lower mean for its first two significant digits. The sample variance is ~0.5 

higher for single digits and ~2.7 lower for two digits. Skewness closely approximates the 

reference value, having a skewness of ~0.001 over reference for first digits and ~0.019 over 

for the first two digits. The kurtosis is ~0.11 higher than reference for both first digits and first 

two digits. 

For the Azerbaijani data set, the first digit mean is ~0.001 higher and first two digits mean 

~0.38 lower than the reference values. The variance is ~0.18 lower for first digits and ~15.1 

lower for two digits. Skewness is ~0.035 lower for first digits and ~0.036 lower for first two 

digits. The kurtosis is ~0.11 lower for first significant digits and ~0.86 lower for first two 

significant digits. 
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When comparing the data sets’ moments, we can see that even though the Azerbaijani data set 

has been shown to deviate more from Benford’s law than the Oklahoma data set, it is not 

necessarily reflected in the statistical moments. One could speculate that the mean does not 

play a significant role in determining Benford’s law conformity, that two-digit testing is more 

relevant than one-digit testing when it comes to individual values, that skewness is a strong 

indicator of Benford’s law conformity and that a higher and lower kurtosis respectively could 

imply a particular inclination to tampered data. In practice though, the only conclusion we can 

make from reviewing the statistical moments is that both data sets’ moments show high 

proximity to the reference values and that our results do not seem to indicate statistical 

significance one way or another. Further testing is required to confirm or refute the idea of 

comparing statistical moments for this purpose. 

 

6.3 Running the tests on the complete data sets 

Now that we have gathered some crucial information about the statistical tests, we can apply 

the tests to the two data sets and conclude the law’s functionality in fraud detection. 

The first tests we are going to perform is applying the chi2 and Kolmogorov-Smirnov tests on 

the complete data sets. By running these tests, we might be able to tell if a data set is Benford 

distributed or not. Given our statistical tests’ performance results, we can assume that they 

should perform properly since the data sets’ sample sizes are large. Table 9 presents the test 

statistics and p-values for the data set with Oklahoma’s government expenditures. Table 10 

displays statistics and p-values for the Azerbaijani Laundromat transactional data. 

Statistical tests on the Oklahoma data set Statistic p-value 

Chi2 test  44.82 < 3.98E-07 

Kolmogorov-Smirnov test  1.68 < 2.00E-02 
   Table 9. Critical statistical values and p-values of the Oklahoma data set. The data set includes 

    110 697 data entries of expenditure data from the Oklahoma government in 2019. 

When applying the statistical tests on the Oklahoma data set’s complete expenditure data, the 

statistical tests show small p-values for the data set, which indicates a rejection of the null 

hypothesis. By solely relying on this result, we would assume that the data set is not Benford 

distributed. We expect the data set to be Benford distributed, though, which seems to be 

supported by the distribution in diagram 2. Hence, we must ask ourselves if the contradicting 

results could be explained some other way.
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The first question is if the data set has any unique characteristics in terms of, formerly 

mentioned, trading patterns. Since the data set is vast, 110 697 data entries, it is likely that 

agencies with particular expenses contribute to a disproportion which could imbalance the 

distribution. Additionally, when examining the Oklahoma data set, many agencies have 

payments that do not differ monthly. For example, some agencies’ fixed costs such as rent of 

office buildings or subscription services. Furthermore, some expenses, such as salaries, are 

rounded, which also could have implications on the data set. 

Statistical Tests for the Azerbaijani data set Statistic p-value 

Chi2 test  925.93 < 2,2e-16 

Kolmogorov-Smirnov test  3.0807 < 2,2e-16 
Table 10. Critical statistical values and p-values of the Azerbaijani Laundromat data set.     

The data set includes 16 940 transactions from companies registered in the UK during 2012-2014. 

According to the statistical tests, the Azerbaijani Laundromat data set does not conform to a 

Benford distribution indicated by the small p-values that they output (see table 10). Both 

statistical tests suggest that the data set is not Benford distributed. This could indicate that the 

data set is fraudulent and therefore, further testing is endorsed. As we expect the data set to be 

fraudulent, since money was funnelled to politicians in Europe, this result strengthens our 

assumptions. 

Comparing the two data sets, we can see that the statistical tests outputted lower p-values than 

the Oklahoma data set. However, both tests reject the null. As we know that our statistical 

tests perform correctly when sample sizes are large, the result of the Oklahoma data set likely 

has to do with characteristics within the data set. Nevertheless, since the statistical tests of the 

Oklahoma data set showed unexpected results, we need to do more testing to gather insights 

into the reliability of statistical testing of transactional data in association with Benford’s law. 
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6.4 Specific subsampling 

Since we suspect that the data sets might contain characteristics that impede Benford’s law’s 

efficiency, we feel obligated to test specific subsamples within the data sets. Hence, we test 

specific transaction partners to see if any agents (companies, agencies) show particularly 

incongruent patterns with Benford’s law. This could tell us a bit about the law’s practical 

sensitivities to idiosyncrasies in data sets. It could also highlight agents with a suspicious 

activity that might be a cause for the skewed distributions of the Azerbaijani data set. 

Tests are conducted on the transactional data for 31 beneficiaries with the highest number of 

transactions (to maximise test-reliability) in the Azerbaijani data set. The sample size of 

transactions is simply too low to include after the first 31 beneficiaries. Agents with similar 

amounts of transactions were hand-picked from the Oklahoma data set (to get a fair 

comparison). 

Specific subsampling tests performed for the Azerbaijani Laundromat data set are available in 

table 11. For subsample tests of specific agencies in the Oklahoma data set, see table 12. 
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Azerbaijani data set - specific 

subsample α: 0.05 Chi2 Kolmogorov-Smirnov 

Beneficiary  Sample Size Crit. Value p-value Crit. Value p-value 

LCM ALLIANCE LLP 1758 117.470 2.20E-16 2.043 2.20E-16 

METASTAR INVEST LLP 1237 178.100 2.20E-16 1.537 9.00E-03 

HILUX SERVICES LP 905 339.100 2.20E-16 1.986 2.20E-16 

FABERLEX LP 334 14.772 6.37E-02 1.418 6.00E-03 

POLUX MANAGEMENT LP 312 187.850 2.20E-16 1.386 9.00E-03 

KG COMMERCE LLP 273 5.349 7.20E-01 0.505 5.83E-01 

LOTA SALES LLP 246 23.166 3.16E-03 0.671 3.61E-01 

BONINVEST LLP 234 4.269 8.32E-01 0.344 9.16E-01 

INFOCREST LLP 201 13.381 9.94E-02 0.743 3.11E-01 

GFG EXPORT LLP 178 17.515 2.52E-02 0.866 1.59E-01 

RIVERLANE LLP 147 35.749 1.95E-05 0.758 2.87E-01 

DATEMILE ALLIANCE LLP 117 2.322 9.70E-01 0.699 2.15E-01 

MOLONEY TRADE LLP 115 28.802 3.44E-04 0.729 3.17E-01 

BONDWEST LLP 113 3.533 8.97E-01 0.352 8.89E-01 

AVROMED COMPANY LLP 102 10.317 2.44E-01 0.673 4.44E-01 

RICHFIELD TRADING L.P. 101 7.004 5.36E-01 0.477 8.75E-01 

AVROMED COMPANY 79 3.663 8.86E-01 0.563 5.64E-01 

RICHFIELD TRADING L.P. 101 7.004 5.36E-01 0.477 8.88E-01 

OVERMOND LLP 83 2.322 9.70E-01 0.699 2.30E-01 

RASMUS LP 82 2.322 9.70E-01 0.699 2.23E-01 

AVROMED COMPANY 79 3.663 8.86E-01 0.563 5.83E-01 

WILLROCK UNITED LLP 71 8.554 3.81E-01 0.569 5.64E-01 

REDPARK SALES CORP 70 41.793 1.48E-06 1.559 3.00E-03 

LINSTAR SYSTEMS CORP. 61 23.001 3.36E-03 1.123 5.70E-02 

SABA CARS GERMANY GMBH 54 2.500 9.62E-01 0.739 2.41E-01 

JETFIELD NETWORKS LIMITED 53 15.563 4.91E-02 0.504 6.69E-01 

CROSSPARK LINES LLP 53 27.839 5.06E-04 0.995 1.03E-01 

MOYA ENGINEERING LLP 52 4.624 7.97E-01 0.441 7.55E-01 

MUROVA SYSTEMS LLP 49 4.624 7.97E-01 0.441 7.64E-01 

BENTCARD IMPORT LLP 49 3.507 8.99E-01 0.554 6.00E-01 

GREENOUGH TRADE LLP 46 20.104 9.95E-03 0.864 1.91E-01 

Table 11. Chi2 and Kolmogorov-Smirnov critical values with p-values of specific subsamples based on the 

Azerbaijani Laundromat data set’s largest beneficiaries. Red p-values are lower than the significance level (α: 

0.05). 
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Upon viewing the results from the specific subsample simulations, one can see that the 

different beneficiaries have different results regarding Benford conformity. 

According to the chi2 test, 13 out of 31 beneficiaries have p-values lower than the significance 

level of 0.05. Among these 13 beneficiaries are the three largest recipients, in terms of count 

of transactions. The chi2 test expresses that the majority of the beneficiaries have p-values 

lower than the significance level. 

The Kolmogorov-Smirnov test displays that six beneficiaries have distributions that do not 

conform to a Benford distribution. Among these six beneficiaries are the five largest 

beneficiaries. According to the Kolmogorov-Smirnov test, a large majority of the p-values are 

larger than the significance level. As we have stated previously, the Kolmogorov-Smirnov 

test’s power can be meagre depending on the sample size. Since our most significant 

subsample size is 1758 (after that drastically decreasing), we assume that the output in many 

of the Kolmogorov-Smirnov tests are (since the Azerbaijani data set is deemed fraudulent). 

In sample sizes under 1000, it is likely that some of the chi2 tests generate false negatives 

since the test power decreases under this size (see table 6). Therefore, it is feasible that there 

are more beneficiaries in table 11 that are not Benford distributed. 
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Oklahoma data set - specific subsample α: 0.05 Chi2 

Kolmogorov-

Smirnov 

Agency  

Sample 

Size 

Crit. 

Value p-value 

Crit. 

Value p-value 

MENTAL HEALTH AND SUBSTANCE 

ABUSE SERV. 1759 45.331 3.19E-07 2.736 2.20E-16 

OKLA. CITY COMMUNITY COLLEGE 1263 11.827 1.59E-01 0.855 2.08E-01 

SEMINOLE STATE COLLEGE 957 26.459 8.76E-04 1.285 2.90E-02 

UNIV.OF SCIENCE & ARTS OF OK 891 9.270 3.20E-01 0.882 2.00E-01 

OKLAHOMA TAX COMMISSION 846 17.269 2.74E-02 1.054 1.20E-01 

J.D. MCCARTY CENTER 835 35.614 2.07E-05 1.440 2.20E-16 

OKLA. BUREAU OF NARCOTICS AND 

DANGEROUS 832 14.619 6.70E-02 0.848 1.80E-01 

DISTRICT ATTORNEYS COUNCIL 820 13.795 8.73E-02 1.763 2.20E-16 

DEPARTMENT OF COMMERCE 805 22.213 4.54E-03 1.363 2.00E-02 

OSU-EXPERIMENT STATION 773 16.647 3.40E-02 1.014 6.00E-02 

BOLL WEEVIL ERADICATION ORG. 378 44.025 5.63E-07 2.451 2.20E-16 

INTERSTATE OIL COMPACT COMM. 364 11.144 1.94E-01 1.450 5.00E-03 

PARDON AND PAROLE BOARD 342 21.013 7.11E-03 1.342 2.70E-02 

COURT OF CRIMINAL APPEALS 294 20.125 9.88E-03 1.691 2.20E-16 

ST.WIDE VIRTUAL CHARTER SCHOOL 

BOARD 285 29.795 2.30E-04 1.601 2.00E-03 

BD. OF EXAM. FOR LT CARE ADMIN. 273 13.040 1.11E-01 0.832 2.12E-01 

DISTRICT COURTS 251 14.531 6.89E-02 0.912 1.52E-01 

BD. OF PSYCHOLOGISTS EXAMINERS 240 46.292 2.09E-07 1.501 4.00E-03 

COUNCIL ON JUDICIAL COMPLAINTS 237 64.105 7.25E-11 0.777 2.97E-01 

LEGISLATIVE SERVICE BUREAU 232 54.144 6.47E-09 1.738 1.00E-03 

ST. BD. OF CHIROPRACTIC EXAM. 232 20.186 9.65E-03 1.071 8.60E-02 

BOARD OF EXAMINERS IN 

OPTOMETRY 227 16.781 3.25E-02 0.642 4.34E-01 

BD. OF PRIV. VOCATIONAL SCHOOLS 211 83.601 9.22E-15 2.580 2.20E-16 

ENERGY RESOURCES BOARD 193 5.339 7.21E-01 0.353 8.90E-01 

OK. INDUSTRIAL FINANCE AUTH. 192 192.050 2.20E-16 3.594 2.20E-16 

OFFICE OF LIEUTENANT GOVERNOR 173 39.726 3.60E-06 1.778 2.20E-16 

BD OF LIC ALCOHOL & DRUG COUNS 153 39.932 3.30E-06 0.994 1.28E-01 

OKLAHOMA TURNPIKE AUTHORITY 153 40.396 4.04E+01 1.512 5.00E-03 

NATIVE AMER.CULTURAL & EDUC. 

AUTH-OK. 148 48.651 7.42E-08 1.366 6.00E-03 

UNIV. HOSPITALS AUTHORITY 58 19.842 1.10E-02 0.596 4.67E-01 

OUHSC PROF. PRAC. PLAN. 47 22.906 3.49E-03 2.021 2.20E-16 

Table 12. Chi2 and Kolmogorov-Smirnov critical values with p-values of specific subsamples based on the 

Oklahoma data set agencies. Red p-values are lower than the significance level (α: 0.05). 
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Viewing table 12, one can see that the majority of the agencies have p-values lower than the 

significance level of 0.05. This is true for the chi2 test and the Kolmogorov-Smirnov test. In 

the chi2 test, 22 out of 31 subsamples have p-values lower than the significance level. In the 

Kolmogorov-Smirnov tests, p-values are lower than the significance level in 18 out of 31 

subsamples. Since both tests perform relatively well when the null hypothesis is true (see 

table 12), we conclude that the high amount of rejection rates likely has to do with the data 

set’s composition. As we have mentioned before, the Oklahoma data set agencies have unique 

and repeating trading patterns. 

The specific subsample tests show exceedingly low specificity for fraud detection in both data 

sets. Several agents deemed reliable in the Oklahoma data set were rejected, and other agents 

that the OCCRP has stated partook in the Azerbaijani money laundering scheme (2017) were 

accepted. We conclude that this type of testing is highly unreliable if one wants to investigate 

specific agents within a data set. This type of subset structure violates one of the law’s 

concepts which has to do with the magnitude over which the data spans. One does not 

generally expect a company, as a whole, to buy its pencils, computer software and company 

vehicles from the same vendor, as each company often is specialised in making a particular 

product. Since specific trading patterns within subsamples disrupt the logarithmic structure 

that is present in Benford distributed data, we can conclude that company-specific transaction 

testing such as ours is in most cases unsuitable for singling out fraudulent operators. 

 

6.5 Random subsampling of the data sets 

Given our results when applying statistical testing to the complete Oklahoma data 

set, we must examine the data sets under different circumstances. By reviewing 

random subsamples of the data sets, we hope to eliminate some factors present in the 

data sets’ dispositions. 

To test random subsamples of the data sets, we run 100 tests on each data set in 

which we let R decide, based on a random seed, which data points to include. The 

tests have a sample size of 1000, which has been established to be sufficient when 

testing for Benford conformity (Carlton Collins, 2017). However, a sample size of 

1000 should also allow us to practically evaluate our results from the power 

simulation wherein the Kolmogorov-Smirnov test underperformed at this level. The 

test results are available as tables (tables 13 & 14) in the appendix. 
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Running a random subsample test on the Oklahoma data set, we find that most of the p- 

values in the chi2 test are higher than the significant level (0.05). Out of the 100 simulations, 

eight instances show p-values lower than the significance level. 92 out of 100 chi2 subsample 

tests do not reject the null hypothesis. Due to the simulation results in which we test for type I 

errors, we can expect a rejection rate of around five percent (which is the defined significance 

level). A discrepancy of three rejections is a good result, and we can conclude that the Chi2 

test performs well in this circumstance. Nearly all the tests do not reject the null. Based on 

this result, we conclude with statistical significance that the data set is Benford distributed. 

The Kolmogorov-Smirnov test also shows, with statistical significance, that the Oklahoma 

data set is Benford distributed as the p-values are relatively high in most of the subsample 

tests. However, five tests show the opposite, but with a significance level of 0.05, we predict 

an expected value of 5 instances in which the null hypothesis is rejected. 

When we apply this method to the Azerbaijani data set, we see that all the chi2 subsample tests 

reject the null. This would indicate that the data set is not Benford distributed, which confers 

with our expectation of the data set. Therefore, according to the chi2 test, there is an argument 

to suspect fraudulent activity in the data set. However, the p-values of the Kolmogorov-

Smirnov test only exceed the significance level in 22 simulations of 100 meaning; the two 

tests contradict each other. As we know from the power simulation, the chi2 test performs well 

at a sample size of 1000 whilst the Kolmogorov-Smirnov test does not (see table 6). In fact, 

the Kolmogorov-Smirnov test has a low statistical power at this sample size based on our tests 

(around 30-50 percent depending on the variance size). Hence, it is not unexpected that the 

test rarely rejects the alternative hypothesis. In reality, it is instead telling of which of these 

statistical tests one should rely on when testing for Benford conformities.
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7. Conclusion 

7.1 Conclusion of statistical tests 

With the help of the power test and the test of rejection rates when the null hypothesis is true, 

we can conclude what statistical test is appropriate when testing a data set’s conformity to 

Benford’s law. Our testing on the effect of variance at different levels showed that the 

variance does not seem to have much of an impact on Benford testing, which we theorise is in 

accordance with the law’s scale invariance. 

When the null is true, and the sample size is between 100-200, we can say with assurance that 

the chi2 test performs slightly worse comparably to the Kolmogorov-Smirnov test (in terms of 

the rejection rates conformity to the set significance level). However, by testing the power of 

the test, we see that the Kolmogorov-Smirnov test is profoundly less powerful than the chi2 

test, even in small sample sizes of 100-200. This tells us that the chi2 test is better at detecting 

data sets that do not conform to Benford’s law which is unexpected considering that previous 

researchers recommend the Kolmogorov-Smirnov test for small sample testing. 

Judging by our results in these simulations, a decision of which test to use could be based on 

which error type (I or II) one needs to minimise for the purpose at hand. In an AML setting, 

we realise that a type II error, where one may fail to detect fraudulent activity, is seemingly 

worse than making a type I error. 

Our conclusion of the tests is that they perform well given that the sample size is large. In 

terms of power, the chi2 test requires a sample size around 1000 to output a β of ~0% whilst 

the Kolmogorov-Smirnov test requires a size of 5000 to get the same reliability. This is later 

affirmed when applying random subsampling tests, in which we use sample sizes of 1000. At 

that level, the chi2 test has a power of approximately 1, while the power of the Kolmogorov- 

Smirnov test is ~0.317. Visible in table 14 in the appendix, the Kolmogorov-Smirnov test 

strongly under-rejects in comparison to the chi2 test when the sample contains fraudulent data. 

We expected that the Kolmogorov-Smirnov test would outperform the chi2 test in small 

sample sizes. Although this might be true for when comparing the tests, empirical sizes, the 

advantages of applying the chi2 test for small sample testing are far greater than the 
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Kolmogorov-Smirnov test. We deem that the gain of test power far outweighs the cost of 

over-rejections, when the sample is small, in the chi2 test’s empirical size. 

 

7.2 Conclusion of Benford’s Law 

The bar-chart (diagram 2) tells us that the Oklahoma data set is closely conformed to a 

Benford distribution. Diagram 3 shows that the Azerbaijani data set deviates more than the 

Oklahoma data set. However, there are only slight indications that hints at the data set’s 

fraudulence. If we did not have previous knowledge about fraudulent activity in the 

Azerbaijani data set, it would be tough to make assumptions by merely visually inspecting the 

distribution. It is however logical to assume that a completely fraudulent data set would be a 

more clear-cut case. 

The data sets’ moments do not produce any dependable results as they both conform to 

Benford moments. Generally, it is hard to distinguish when a data set can be interpreted as 

non-conforming by reviewing the moments. Though, this needs further investigation as we 

only explore two, albeit large, data sets. 

We find that these examinations are not trustworthy. The appliance of statistical testing is, 

according to us, a more reliable source of information. A data set might only contain partial 

fraudulence, and therefore it might not be reflected clearly in diagrams and moments. 

When testing the complete data sets, we can rely on the chi2 test and the Kolmogorov- 

Smirnov test as the sample sizes are large enough for the test power and empirical size not to 

be impeded. We find that analysing the distribution of the entire data sets could lead to 

misleading conclusions. Whilst the statistical tests give us expected outcomes for the 

Azerbaijani data set, they give us unexpected results for the Oklahoma data set. As we know 

that the conditions of sample sizes are met, we believe that the outcome has to do with some 

specific subsets’ idiosyncratic compositions, which is an issue that should not be ignored 

when testing this type of data. Our conclusions also support this as running tests on the 

specific subsamples the test chi2 test rejects the null hypothesis for a majority of the measured 

subsets in the Oklahoma data. Furthermore, by reviewing the agents within the data sets, we 

can see that some indeed have specific trading patterns that will distort the data set. Therefore, 

we suggest that this type of testing is not ideal to single out specific benefactors for fraudulent 

behaviour. 
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To mitigate the idiosyncratic data, we run random subsample tests generated from the data 

sets. As the random subsample size is 1000, we rely on the results of the chi2 since it has been 

proven to be reliable for this sample size. Our test results for the Oklahoma data set now align 

with the expected rejection rates of a Benford distribution. Additionally, the rejection rates 

indicate that the Azerbaijani Laundromat data set is not Benford distributed, signifying fraud. 

 

7.3 Closing remarks 

We conclude that using the chi2 Benford test on large random subsamples from suspicious 

data sets might have a place in AML procedures. The Kolmogorov-Smirnov test is not as 

reliable due to its low test power in subsamples less than 5000. When applying Benford’s law, 

one needs to be wary of potential trading patterns in transactional data as it could lead to 

misleading results.
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9. Appendix 

 Oklahoma Random Sample Test 

 n: 1000 di: 1 N: 1000 di: 1 

 α: 0.05  α: 0.05  

Simulation 

Chi2 

Statistic K-S p-value 

K-S 

Statistic K-S p-value 

1 10.518 2.31E-01 0.632 0.454 

2 1.688 9.89E-01 0.344 0.920 

3 4.277 8.31E-01 0.475 0.666 

4 6.701 5.69E-01 0.754 0.342 

5 54.115 6.56E-09 0.884 0.177 

6 8.010 4.33E-01 0.596 0.525 

7 3.022 9.33E-01 0.442 0.765 

8 8.787 3.61E-01 0.473 0.719 

9 11.094 1.96E-01 0.786 0.262 

10 4.145 8.44E-01 0.345 0.913 

11 6.873 5.50E-01 0.700 0.361 

12 9.401 3.10E-01 0.508 0.670 

13 9.365 3.13E-01 0.472 0.743 

14 7.909 4.42E-01 0.790 0.274 

15 7.814 4.52E-01 0.604 0.507 

16 7.244 5.11E-01 0.790 0.267 

17 10.056 2.61E-01 1.045 0.075 

18 4.017 8.56E-01 0.505 0.628 

19 10.113 2.57E-01 0.694 0.401 

20 17.278 2.73E-02 0.855 0.201 

21 8.009 4.33E-01 0.501 0.681 

22 45.135 3.47E-07 0.914 0.145 

23 891.950 2.20E-16 3.405 0.000 

24 11.325 1.84E-01 0.792 0.273 

25 5.629 6.89E-01 0.478 0.695 

26 7.599 4.74E-01 0.596 0.565 

27 2.631 9.55E-01 0.347 0.888 

28 5.032 7.54E-01 0.541 0.613 

29 7.125 5.23E-01 1.269 0.027 

30 20.089 1.00E-02 0.662 0.445 

31 14.039 8.08E-02 0.887 0.167 

32 18.159 2.01E-02 1.134 0.070 

33 6.313 6.12E-01 0.633 0.469 

34 8.282 4.07E-01 0.698 0.352 

35 5.609 6.91E-01 0.700 0.342 

36 10.337 2.42E-01 0.604 0.493 

37 2.509 9.61E-01 0.351 0.893 

38 8.913 3.50E-01 0.573 0.545 

39 4.270 8.32E-01 0.533 0.633 
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40 5.003 7.57E-01 0.887 0.187 

41 5.756 6.75E-01 0.344 0.898 

42 10.065 2.61E-01 0.603 0.510 

43 11.315 1.85E-01 0.631 0.477 

44 0.631 4.77E-01 1.043 0.088 

45 7.173 5.18E-01 0.313 0.947 

46 2.268 9.72E-01 0.284 0.961 

47 6.369 6.06E-01 0.600 0.498 

48 18.451 1.81E-02 1.071 0.077 

49 12.078 1.48E-01 0.600 0.525 

50 8.962 3.46E-01 1.109 0.047 

51 10.800 2.13E-01 0.790 0.244 

52 10.274 2.46E-01 0.948 0.153 

53 7.362 4.98E-01 0.950 0.134 

54 2.792 9.47E-01 0.666 0.381 

55 1.175 9.97E-01 0.381 0.831 

56 6.367 6.06E-01 0.697 0.373 

57 5.763 6.74E-01 0.636 0.433 

58 6.075 6.39E-01 0.604 0.507 

59 6.013 6.46E-01 0.665 0.389 

60 3.518 8.98E-01 0.438 0.818 

61 12.353 1.36E-01 0.855 0.197 

62 5.125 7.44E-01 0.282 0.967 

63 8.061 4.28E-01 0.508 0.666 

64 12.002 1.51E-01 1.359 0.015 

65 9.208 3.25E-01 1.137 0.061 

66 14.850 6.21E-02 0.886 0.176 

67 14.003 8.10E-02 0.631 0.473 

68 7.009 5.36E-01 0.572 0.550 

69 10.679 2.21E-01 0.881 0.194 

70 13.694 9.01E-02 1.042 0.097 

71 3.639 8.88E-01 0.632 0.468 

72 5.685 6.83E-01 0.605 0.487 

73 10.410 2.37E-01 1.174 0.038 

74 5.606 6.91E-01 0.852 0.221 

75 6.180 6.27E-01 0.505 0.658 

76 5.614 6.90E-01 0.823 0.235 

77 5.902 6.58E-01 0.473 0.742 

78 9.898 2.72E-01 0.786 0.305 

79 4.745 7.84E-01 0.440 0.797 

80 12.539 1.29E-01 0.889 0.179 

81 6.433 5.99E-01 0.318 0.937 

82 4.921 7.66E-01 0.725 0.368 

83 8.363 3.99E-01 0.382 0.836 

84 10.613 2.25E-01 0.605 0.487 

85 4.930 7.65E-01 0.446 0.764 



46 
 

86 1.550 9.92E-01 0.288 0.936 

87 10.749 2.16E-01 0.726 0.338 

88 8.634 3.74E-01 1.111 0.057 

89 17.337 2.68E-02 0.692 0.394 

90 12.833 1.18E-01 0.761 0.297 

91 5.796 6.70E-01 0.504 0.691 

92 7.981 4.35E-01 0.855 0.208 

93 4.959 7.62E-01 0.763 0.291 

94 6.279 6.16E-01 0.605 0.504 

95 7.171 5.18E-01 0.732 0.333 

96 5.657 6.86E-01 0.380 0.862 

97 7.753 4.58E-01 0.794 0.265 

98 4.069 8.51E-01 0.477 0.715 

99 9.704 2.86E-01 0.853 0.213 

100 8.325 4.02E-01 0.284 0.952 
Table 1. Critical values and p-values of the Chi2 and        

Kolmogorov-Smirnov test for random subsamples (n=1000)          

in the Oklahoma government expenditure data set. Red colour              

formatting indicates p-values lower than the significance level (α: 0.05). 

 

 Azerbaijani Laundromat - Random Subsample test 

 N:1000 di: 1 N:1000 di: 1 

 α: 0.05  α:  0.05  

Simulation 

Chi2 

Statistic Chi2 p-value 

K-S 

Statistic K-S p-value 

1 74.475 6.28E-13 0.947 0.139 

2 47.772 1.09E-07 1.009 0.108 

3 74.899 5.17E-13 1.453 0.007 

4 82.951 1.24E-14 1.078 0.064 

5 65.852 3.27E-11 1.231 0.025 

6 58.038 1.13E-09 1.047 0.077 

7 58.832 7.90E-10 0.889 0.166 

8 72.151 1.83E-12 1.009 0.104 

9 67.597 1.48E-11 1.332 0.015 

10 78.534 9.64E-14 1.236 0.037 

11 78.149 1.15E-13 1.427 0.008 

12 63.066 1.16E-10 1.262 0.024 

13 72.811 1.35E-12 0.983 0.124 

14 101.490 2.20E-16 1.616 0.005 

15 72.211 1.78E-12 0.947 0.144 

16 54.145 6.47E-09 0.889 0.174 

17 44.305 4.98E-07 0.851 0.217 

18 49.560 4.97E-08 1.390 0.014 

19 90.104 4.44E-16 1.010 0.088 

20 93.031 2.20E-16 1.078 0.057 

21 40.951 2.13E-06 0.728 0.342 
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22 63.171 1.11E-10 0.983 0.087 

23 74.528 6.13E-13 1.015 0.097 

24 34.024 4.02E-05 0.882 0.177 

25 66.126 2.89E-11 1.009 0.108 

26 101.940 2.20E-16 2.091 0.000 

27 82.887 1.28E-14 1.104 0.059 

28 58.643 8.60E-10 1.042 0.103 

29 31.427 1.18E-04 0.915 0.146 

30 50.802 2.87E-08 0.667 0.413 

31 55.288 3.88E-09 0.819 0.225 

32 65.256 4.30E-11 0.946 0.153 

33 53.939 7.10E-09 0.883 0.188 

34 63.826 8.23E-11 0.977 0.123 

35 58.430 9.46E-10 0.946 0.128 

36 126.740 2.20E-16 1.553 0.004 

37 56.625 2.13E-09 1.173 0.051 

38 58.579 8.85E-10 1.072 0.073 

39 47.952 1.01E-07 0.662 0.391 

40 85.905 3.11E-15 1.363 0.010 

41 30.655 1.62E-04 0.952 0.113 

42 46.384 2.01E-07 0.947 0.163 

43 78.838 8.37E-14 2.091 0.000 

44 58.040 1.13E-09 1.167 0.051 

45 46.570 1.85E-07 0.762 0.313 

46 67.856 1.31E-11 0.983 0.121 

47 62.553 1.47E-10 0.857 0.214 

48 40.488 2.60E-06 0.794 0.236 

49 76.347 2.65E-13 0.820 0.228 

50 75.456 4.00E-13 0.946 0.146 

51 57.069 1.75E-09 0.983 0.109 

52 49.590 4.90E-08 1.108 0.061 

53 91.479 2.22E-16 1.142 0.051 

54 52.652 1.26E-08 1.200 0.044 

55 56.632 2.12E-09 0.952 0.151 

56 54.495 5.53E-09 1.896 0.000 

57 67.516 1.53E-11 0.920 0.124 

58 74.702 5.66E-13 1.136 0.062 

59 49.180 5.87E-08 1.010 0.117 

60 49.041 6.24E-08 0.857 0.216 

61 28.539 3.82E-04 0.757 0.307 

62 47.834 1.06E-07 0.947 0.144 

63 82.337 1.65E-14 1.015 0.117 

64 31.042 1.38E-04 0.851 0.216 

65 35.024 2.65E-05 0.794 0.270 

66 49.961 4.16E-08 1.236 0.032 

67 63.867 8.08E-11 1.079 0.061 
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68 78.825 8.43E-14 0.851 0.220 

69 45.415 3.07E-07 1.045 0.089 

70 60.475 3.76E-10 1.079 0.077 

71 84.273 6.77E-15 1.009 0.130 

72 34.043 3.99E-05 0.636 0.463 

73 74.070 7.57E-13 0.921 0.145 

74 46.171 2.21E-07 1.231 0.036 

75 73.148 1.16E-12 0.921 0.133 

76 38.840 5.26E-06 0.851 0.235 

77 78.584 9.43E-14 0.915 0.150 

78 72.347 1.67E-12 0.952 0.113 

79 50.605 3.13E-08 0.978 0.125 

80 78.147 1.15E-13 1.079 0.069 

81 57.847 1.23E-09 1.548 0.003 

82 46.006 2.37E-07 0.724 0.333 

83 43.257 7.86E-07 0.630 0.460 

84 36.270 1.57E-05 0.667 0.402 

85 44.611 4.36E-07 0.788 0.287 

86 99.537 2.20E-16 1.009 0.099 

87 52.703 1.23E-08 1.205 0.039 

88 44.488 4.60E-07 0.700 0.371 

89 59.376 6.18E-10 0.983 0.118 

90 41.856 1.44E-06 1.392 0.017 

91 43.496 7.08E-07 0.730 0.328 

92 57.719 1.30E-09 1.295 0.022 

93 42.192 1.25E-06 0.794 0.234 

94 55.663 3.28E-09 0.946 0.145 

95 50.642 3.08E-08 0.820 0.249 

96 52.989 1.08E-08 0.947 0.129 

97 70.307 4.27E-12 1.237 0.026 

98 49.180 5.87E-08 1.010 0.117 

99 126.740 2.20E-16 1.553 0.004 

100 30.655 1.62E-04 0.952 0.113 
Table 2. Critical values and p-values of the Chi2 and Kolmogorov-Smirnov test                                  

for random subsamples (n=1000) in the Azerbaijani Laundromat data set.                                     

Red colour formatting indicates p-values lower than the significance level (α: 0.05). 

 


