LuND

UNIVERSITY

LUND UNIVERSITY

FACULTY OF SCIENCES

Division of Mathematical Physics
Bachelor thesis (15 hp)

Solving the Schrodinger equation
with artificial neural networks

Author Supervisor
Ibrohim HAMOUD Andrea IDINI

June 29, 2021

Abstract

Recent implementations of artificial neural networks in solving the Schrodinger equation
have realized significant advances regarding single-particle and many-body problems. En-
couraged by the achievements in this subject, we train feed-forward neural network and
RBF-network to find solutions to the one-dimensional Schrodinger equation. In this work,
we consider a single-particle wavefunction in spatial coordinates. Firstly, The training of
neural networks is implemented on various potentials in a supervised fashion. Afterward,
this project introduces a variational representation of quantum states based on an artifi-
cial neural network with a variable number of hidden units. Thereby, we demonstrate that
the Monte-Carlo method for a single-particle problem can be translated into a straightfor-
ward computational form aided by artificial neural networks. Throughout this document,
the solutions of the Schrodinger equation obtained using neural networks are compared
to the exact solutions. We begin this work with a full review of the relevant parts of
quantum mechanics and artificial neural networks, followed by a quantitative discussion
regarding results, consideration, and challenges.

Acronyms

SE Schrodinger Equation

ANN Artificial Neural Network
RBF Radial Basis Function

VMC Variational Monte-Carlo

SC Stochastic Reconfiguration
FFNN Feed-Forward Neural Network
ReLu Rectifier Linear Unit

FFT Fast Fourier Transform

Contents

1 Introduction

2 Methods
2.1 The Schréodinger equation Lo
2.2 Variational Monte-Carlo (VMC),
2.3 Artificial neural network (ANN)o
2.3.1 Initialization of neural network

3 Results and discussion
3.1 Results for potential-density mapping using FENN
3.2 Results for potential-density mapping using RBF-netwrok
3.3 Results from the variational method

4 Conclusion
4.1 Outlook s,

A Optimization of the neural network

10
13

15
15
20
21

25
25

29

Chapter 1

Introduction

The Schrodinger equation is one of the fundamental equations in modern physics. Con-
ceptually, the Schrodinger equation is the quantum counterpart of Newton’s second law
in classical mechanics. The equation can be time-independent or time-dependent. The
first case describes the stationary state of a quantum system, while the second case gives
the evolution over time of a wavefunction. The Schrédinger equation relates to a many-
particle quantum system, for example, it is used to predict the chemical and physical
properties of a molecule.

Artificial neural networks present a new emerging powerful tool to solve the many-body
problem. They form algorithmic function approximators capable of transforming a highly
complex multivariate function into an approximate combination of simple univariate func-
tions. They perform this approximation through optimization. What is unique about
neural networks is that they can give a rough estimate to an unknown function simply by
establishing a relation between input and output data without explicitly expressing the
process that governs this relation between the data [1].

Although there is extensive research related to this field spanning several decades (cf. [2]
with the first general application of neural networks as wavefunctions), most approaches
were developed in recent years. This shows that interest in the topic has been increasing,
due to recent results bridging the gap between neural networks and quantum mechan-
ics. These novel approaches deliver highly accurate solutions to long-standing genuinely
difficult single-particle and many-body problems [3][4]. In 2018 Teng showed how a ra-
dial basis function (RBF) network corresponds to a variational method in coordinate
space and can find solutions to the one-body Schrodinger equation [5]. Regarding the
quantum many-body problem, one of the first works relating artificial neural networks
to Variational Monte-Carlo (VMC) was published by Carleo et al. in 2016 [6]. VMC
is an optimization method used to find the ground state of a quantum system based on
minimizing the energy expectation value (refer to [7]). This work was followed by exten-
sive research regarding deploying neural networks through VMC [8][9]. Additional work
focused on analyzing the potentials and limitations of the neural networks in the context
of VMC [10][11]. These works focused on the Restricted Boltzmann Machine (RBM) as
a method to represent the variational wavefunction with a neural network.

Feed-forward neural networks (FFNN), similarly to the RBM, were proven to be universal
approximators [12]. However, it might occur that only certain neural network designs can

represent a specific wavefunction because the neural network’s size and shape put practical
limits on the capacity of the network to achieve a good approximation. Therefore, whether
a neural network with a simple architecture can define a function as the wavefunction is
of particular interest. In general, a deep neural network can represent functions with
polynomials of many parameters, while a shallow neural network needs to be expanded
exponentially in terms of the number of hidden units to be able to approximate a certain
function [13]. FFNNs are investigated intensively and adopted to solve the single-particles
and many-body problems. In [14], the ground state is approximated through the VMC
with an FFNN based trial wavefunction in continuous space. Similar work is done in the
momentum space [15]. These works deal with the many-body problem and account for
the exchange symmetry condition.

In summary, a variety of approaches were made regarding the application of neural net-
works in VMC that consider different quantum systems. However, an overall similarity
holds between these approaches even though they differ conceptually. Instead of designing
a problem-specific trial wavefunction for the VMC method, a novel class of very general
trial wavefunctions based on neural networks are considered with relatively little physical
insights required.

This thesis is organized as follows: In chapter 2, we review the theoretical background
about solving the Schrodinger equation with the artificial neural network. Section 2.1
introduces the Schrodinger equation and demonstrates how to solve it as an eigenvalue
problem using the finite difference method. In section 2.2, the VMC method is reviewed
and associated with neural networks. A review of the basic principles of the neural network
is given in section 2.3. Subsection 2.3.1 covers the technical details of constructing a
neural network, mainly initialization. The results are presented with an amply discussion
in chapter 3. Sections 3.1 and 3.2 provide the outcomes of training the neural networks on
producing wavefunctions from input potentials and include a discussion about problem
setup and the technical-related questions. The results for finding the ground state with
VMC follow in section 3.3.

Chapter 2

Methods

2.1 The Schrodinger equation

The Schrodinger equation (SE) is a linear partial differential equation that describes a
quantum system. Using the Schrodinger equation it is possible to obtain the eigenstates
and energy levels of a quantum particle in a given potential. The equation’s predicament
is that it can be solved exactly only for the simplest of systems - such as the so-called
toy models (e.g. particle in a box) and the Hydrogen atoms; and not for relatively
complex systems. Therefore, the equation in general can only be solved numerically with
an approximate solution. This is particularly true for many-particle systems, such as the
Helium atom. An artificial neural network can be used as a numerical tool to reach such
an approximate solution.

The general form for one dimensional time-independent Shrodinger equation for an arbi-
trary potential V' (x), reads

n? 020 (x)
2m Ox?
The wavefunction ¢ (z) is a purely spatial function and it is a mathematical descriptor of

the quantum state. Inserting the classical Hamiltonian function into equation (2.1) gives
the following form,

+ V(2)¥(z) = E¥Y(x). (2.1)

() = Bb(a). (2:2)
The wavefunction has a probability interpretation, where |¥(z)|?dz represents the prob-
ability of finding the particle in the interval dx, therefore the wave function should be
normalized as follows,
/ 0 ()2 = 1. (2.3)
For the normalization of the wavefunction we require for our case that the wavefunction
should satisfy zero boundary condition, thus ¥(—o0) = 0 and ¥(c0) = 0.

Equation (2.2) has the form of an eigenvalue problem. The solutions to the equation are
those functions that, when acted upon by the Hamiltonian operator, are left unchanged
except for multiplication by a constant F which constitutes the energy of the state as an
eigenvalue.

The equation can be numerically solved on a grid =1, xs, . . . , x,, for a finite length scale
using matrix representation. The zero boundary condition is prescribed at the end points
of the grid. Introducing the discretization of the second derivative

d*v Ui =2V + W, 4

Wx.: A2 ’ 2.:2,3,...,71—1’

the wave equation can be written as

—h?

s (Wi = 20+ W) + Vil = BW;, i=2.3,..n— L

Introducing the column vector
W= (W, Wy, W,)T

and the matrices

-2 1 0 0 0O 0 O
1 -2 1 0 . 0O 0 O
. —h? 0% —h? 0 1 -2 10 .0 0 0
T= 2m 0x2 2mAx? :
0O 0 000 1 -2 1
0O 0 000 0 1 -2
n—2xn—2
and
Vo 0 0 0 0 0 0 0
0O V3 00 0 0 0 0
N 0O 0 Vy 00 0 0 0
V = .)
0O 0 000 ... 0V, 0
0O 0 000 ...0 0 Vo4
n—2xn—2

in this case V represents a one-body local potential V(z).

The discretized Schrodinger equation can be written in matrix form,
(T + V)V = EV, (2.4)

which is a symmetric eigenvalue problem, and it is formulated for a finite, orthonormal
basis. The eigenvalues in equation (2.4) give the possible discrete energies of the particle,
and the corresponding normalized eigenvectors {t,(z)} define the wavefunction on the
entire grid with zero boundary condition imposed on the edges of the grid [16].

However, it is a frequent occurrence in practical calculations to adopt a non-orthonormal
basis set instead. A paradigmatic example is the calculation of the electronic structure of
molecules using atom-centered localized functions. In that case, equation (2.2) is refor-
mulated to a generalized eigenvalue problem as follows,

HV = ESV, (2.5)

6

where S is the overlap matrix whose elements are given by S, = [fooo U () Y (x)dr and
it is an identity matrix for orthonormal basis. The Hamiltonian in (2.5) is constructed by
evaluating the elements of the kinetic and potential energy matrices through

Ton = [wie) P00 (o) (2.6)
Vinn = /_ h W (@) Vb, () da. (2.7)

As a result, the Hamiltonian does not give a sparse matrix and needs to be diagonalized.
In theory, it is always possible to derive an orthogonal basis set from a non-orthogonal
one and reduce the problem to a symmetric eigenvalue problem [17]. In practice, Or-
thogonalization methods and converting the overlap matrix into an identity matrix are
computationally expensive and not very stable numerically for large-scale eigenvalue prob-
lems.

In order to numerically solve a two- or three-dimensional Schrodinger equation, it is pos-
sible to use some generally applicable grid-based techniques for boundary value partial
differential equations [18]. However, the accuracy of solutions is reduced for a low number
of grid points, while matrices’ size involved grows quadratically with the number of the
grid points. On the other hand, the number of grid points grows exponentially with the
dimensions. Thus, the large number of grid points required often makes such approaches
too time-consuming and intractable. This is called the curse of dimensionality. There-
fore, approximate variational methods are a frequent alternative in large-scale atomic,
molecular, and solid-state physics calculations.

2.2 Variational Monte-Carlo (VMC)

The chief principle that validates VMC is the realization that many of the physical prop-
erties of a system can be determined mainly from the lowest energy eigenvalue and its
corresponding ground state. The ground state contains information about most thermo-
dynamic and equilibrium properties of the system at zero temperature, and additionally,
many physical systems never depart far from their ground state. Thus, it often suffices
to find the wavefunction that accommodates the lowest expected value of the energy to
describe the system. On the other hand, VMC methods overcome the cost of explicitly
solving the eigenvalue problem by translating it into an optimization problem. The out-
come is an approximate solution with a sufficient representation of the ground state.

The variational principle states that given a system with a Hamiltonian H , then if 9 is
a well behaved, normalized wavefunction that satisfies the boundary conditions of the
Hamiltonian, then

(W H) > Ey, (2.8)

where Ej is the true value of the lowest energy eigenvalue of H. The principle allows
the calculation of an upper bound for the ground state energy by modifying a trial wave-
function 7 such that the expression of the functional (¢p| H |17) is minimized. Hence,
the trial wavefunction is varied until the expectation value converges into an optimal
solution.

For wavefunctions that are not normalized, the variation integral for one dimension be-

comes
(r| H) _ [03 ff¢T(>

Wrlor) — Jur@er(e)de =7

For a high number of dimensions, the hlgh—dlmenswnal integrals can be evaluated us-

ing Monte-Carlo-based techniques; hence, the method is called Variational Monte-Carlo
(VMCQC).

E[yr] =

(2.9)

To proceed with minimizing the expression of E, the wave function is proposed to be
dependent on a set of free parameters {a}, dubbed the variational parameters, such that
the wavefunction is varied with respect to these parameters for the objective of minimizing
the energy expectation value. With the inclusion of the variational parameters, the energy
expectation value is

[i (x; a)HwT(x a)dx

. 2.1

B = b = (210
The variational ansatz in equation (2.10) can be rewritten as follows,

Ef] — vrleed s (o 0) Hr (s a)de [|r(0;0) P g Hbr (2 a)da oy

U Jdi@wayr(eayde T wT @or (o |

1 N
= [P(x;)EL(z;a)dr =~ NiZZ Ep(z;;), (2.12)
samples

with N being the number of Monte-Carlo samples. P(z) = % is defined as the

probability distribution function and E(x) = mlfl Yr(z; a) is the local energy. Given
the probability distribution function, it is clear that the expectation energy can be evalu-
ated statistically by a random walk in the configuration space {z;}. This can be achieved
with a variety of importance sampling methods such as a Markov chain Monte-Carlo
(MCMC) that defines the probability of selecting and accepting the next configuration in

order to generate a sequence of configurations {x;}i=1. n

sample ®

In order to minimize the expectation energy, the variational parameters in the variational
wavefunction can be adjusted using the stochastic reconfiguration method (SC). The trial
wavefunction is not orthogonal to the ground state, and by applying an operator (A—ﬁ) <
0 with A being a sufficiently large number, the projected wavefunction (A — H Yt is
obtained. Thus, the SC method aims to adjust the variational parameters such that
the new trial wavefunction is close to the projected one [19][20]. An ansatz of the new
wavefunction is set equal to the Taylor expansion of the 7 as follows,

or(z; «
7 (1) = daghp(x;) + Zgzoéajd}g(aj). (2.13)
Applying the log derivative trick [21], equation (2.13) can be rewritten to be
(s o) = Zj 100;0;(z), (2.14)

where O;(z) is the logarithmic derivative, and it reads

1 oy (z;)
Yr(r;a) Oay

0;(z) = . (2.15)

For the variational parameters to be updated in SC, the covariance matrix S needs to be
introduced. The elements of this matrix can be stochastically computed as follows,

83 (1) = 550 (1) ~ 07)(0p () ~ O], (2.16)

J
samples

where Oy, denotes the expectation value of the logarithmic derivative and it reads

— 1

Op — S Neamstes 0 (). (2.17)

Nsamples

Finally, the gradient descent is applied to update the variational parameters according to

L O0EL(z;) < OE[Yr]
AT ki) _ 5Bl

where \ and \ are the update rate, j denotes the update time and S~! is the inverse ma-
trix of S. if S is not invertible, the inverse matrix is usually replaced with a pseudo-inverse
matrix which is a generalization of the matrix inverse [22] . The matrix S represents the
correlation between the different logarithmic derivatives O;(x), namely, the linear rela-
tion between them. The need to introduce the matrix S arises from that the variational
wavefunction might end very differently when an update d« is applied on the parameter
a; than parameter a. This differentiation can lead to discriminating between identi-
cal wavefunctions that differ only in phase factor. In summary, the VMC involves the
following steps,

Qi1 = O (218)

1- Generating a sequence of spacial configurations {z;};—;. n according to a probability
distribution P(z).

2- Computing the local energy Ey(z;) and the logarithmic derivatives O;(z;) for all sam-
ples z; and all the variational parameters a;.

3- Computing the gradient descent % matrix elements s;; for all the variational pa-
rameters «;. ’

4- Updating the trial wavefunction 17 (z; @) and continue to converge into the exact wave-

function.

In neural network language, the variational parameters are represented by the connection
strength between the neurons (weights). These weights are adjusted with classical ma-
chine learning optimization algorithms like Adam (Details regarding this algorithm are
presented in appendix A). With neural network’s optimization method, equation (2.18)
takes the form,
OE[¢r]
ow;
with w being the set of weights in the neural network, and the energy derivative is propa-
gated using a machine learning backpropagation algorithm (A full description of backprop-
agation algorithm is provided in section 2.3). The backpropagation can exploit the covari-
ance matrix and adjust the learning rate accordingly. This applies to other minimization

(2.19)

Wip1 = Wi — A

algorithms in machine learning as well. Therefore, weights update with backpropagation
algorithm implicitly involves the above-mentioned VMC-steps (1 — 4).

Critical to the outcome of a VMC calculation is a wise choice of the proposed trial wave-
function. To have definite and reliable results, the wavefunction should be a well-behaved
function obeying the conditions of being normalizable, a continuous function of space
with a continuous first-order spatial derivative, and it should abide by suitable symme-
try requirements for the case of many-particle systems. These conditions stem from the
requirement that the energy functional of the trial wavefunction is capable of approx-
imating the actual underlying ground state when adjusting the variational parameters.
However, an artificial neural network can be employed as a general-purpose trial wave
function.

2.3 Artificial neural network (ANN)

Artificial neural networks based models are being used widely as an alternative method
for solving ordinary and partial differential equations. Artificial neural networks utilize a
processing strategy in which large numbers of computing units perform their calculations
simultaneously. These units are called neurons. The enormous number of connections
between these neurons can store various types of information. The solution to the dif-
ferential equation in neural networks can be introduced as a superposition of piecewise
linear functions that are represented by the neurons.

The advantages of using neural networks to solve differential equations are; (i) artifi-
cial neural networks are universal function approximators, (ii) the approximate neural
networks-solutions of the differential equations are continuous over the domain of integra-
tion, (iii) a low number of model parameters are required [23]. The Schrodinger equation
is a linear partial differential equation that had got attention as a problem where neural
networks can be deployed.

There are many different types and topologies of neural networks. Feed-forward neural
network (FFNN) is the earliest and most elementary type. In this network, the input
data move forward from the input nodes throughout the hidden nodes to the output
nodes. These nodes are arranged into different layers, with only inter-layer connections
are considered. We examine only FFNN as a neural network for solving the Schrodinger
equation in this work. Many other types such as recurrent neural networks are used
extensively in the literature to solve the Schrodinger equation [24].

10

(x,
X,
Inputs < gD(O) —»y
Output
\ X Activation
Function

Weights

Figure 2.1: The basic element of the Artificial neural network, the neuron (from [25]).

The computation executed by the neuron is a weighted summation of its incoming signals
and outputs a new signal that is a function of the input. The output of the neuron in
figure 2.1 is calculated as,

y = (X wimi +b), (2.20)

where {z;} is the input of the neuron, b is the bias, w; is the weight of the input z;
and the function ¢(e) is the activation function. There are several kinds of activation
functions. The ones used in this work are Rectifier Liner Unit (ReLu), Softplus and
Gaussian activation functions (cf. figure 2.2).

0 ifz<O
x ifz>0

o ReLU(x) :{

 Softplus(z) = In(1 + €%).

—

« Gaussian(z) = ——e2? , for variance o and mean = 0.

Activation functions

100 Softplus activation function
—— RelU activation function
2 8] —— Gaussian activation fucntion
s
2 6
=
C
2 4
©
=
o
< 2
0

-10.0 -7.5 =50 -25 0.0 25 50 7.5 10.0
X

Figure 2.2: Plots of Softplus, ReLU and Gaussian activation functions.

An example of FFNN with two hidden layers is depicted in figure (2.3). In this type of
network, the signals are entering from the left then passing on to the right. The number

11

of hidden nodes for each layer can be arbitrarily assigned with a non-linear activation
function alike to the ones mentioned above.

Given an input signal x, and assuming one hidden layer, the output y;(x,) is calculated
through a forward pass y;(x,) = ¢, (ijijhnj + bi), where h,; = ¢y, (de)jkxnk + bj). In
one expression, the output is

yi(an) = 0o Syesion(Eupans +) +bi): (221)

This process can be iterated for an arbitrarily large number of layers. Thus, constructing
a multi-layer neural network.

The learning algorithm relies on the backpropagation method based on computing the gra-
dient of an error function and minimizing it. Assuming a training data set {z,, d, }n=1.n
where d,; denotes the target value for output ¢ for signal n, the error function can be
calculated from the mean square deviation

L(w) = JbEflEi(dm — yi(zn))?. (2.22)

The error L is a function of the weights w and is often minimized using the gradient
descent method. For a multi-layer neural network, there are multiple sets of weights to
compute weight update for using gradient descent. The weights update takes the form,

Awr — 2L (2.23)

ij _U@,
where 7 is a hyper-parameter that defines the learning rate and m refers to the layer
number.

Backpropagation is summarized in the following algorithm, assuming multiple layers and
an input pattern to be A?, where 0 stands for the input layer and i for the data input in
the pattern. The signal flows forward in the network where the output of any nodes is
given by,

J
When the signal reaches the output layer, the following function is defined and calcu-
lated,

AP = o7 (S AT 4 b,

M ‘M M AM—-1 | } M M
0, =, (ijij A7+ b)(dz -4)7
where d; is the target output from the node i and AM is the actual output from the output
layer M, and ¢;™ is the derivative of the activation function in the output layer. This 57

is calculated for each layer m propagating the error backward as follows,

J%ig I3

o7 = " (S AT b ST,
Thus, the weights are updated with accordance to

Wi (t+1) = W (t) + Aw]?, where Aw]? = o AT (2.24)
The presented algorithm uses on-stream updating, meaning that the weights are updated
after each input pattern. In contrast, most networks use batch updating, meaning that
the input pattern is accumulated to a specific size, and then the updating occurs at once
for a batch of input patterns.

12

Hidden layers

R -
O N

.\\ Output layer
\W = X ‘4 AR Y :
WA OGAEOSN
TR '}‘ \'v"‘\
LURNANAER
NN

v

A

Error backpropagation

Figure 2.3: An illustration of an artificial neural network with the dots representing the
network’s nodes and the connections between the nodes depict the weights (from [26]).

2.3.1 Initialization of neural network

Initializing neural networks is an essential part of the training. Wrong initialization of a
neural network can cause slow convergence to the target output or hamper weight updat-
ing. A good initialization is particularly significant for VMC. A well-initialized network
can constitute a well-fitted trial ansatz and facilitate weights update during optimization.
The importance of initialization is specific to the exploding and vanishing gradient prob-
lems. In a neural network of n layers, n derivatives will be multiplied together as the
partial derivatives are found by chain rule traversing the neural network from the final
layer to the initial layer. Therefore, if the derivatives are large, the gradients will risk
increasing exponentially until they eventually explode. In contrast, if the derivatives are
too small, the gradients will risk decreasing exponentially until they vanish. Additionally,
the vanishing gradient might cause the initial layers to receive a minor gradient update.
These first layers are updated slowly compared to other layers, which hampers the overall
network’s training. When the gradients vanish, it becomes challenging to know which
direction the parameters should move to improve the loss function, and the training will
slow down and even stops. On the other hand, exploding gradients make the learning
unstable, and the loss changes drastically from update to update.

The exploding and vanishing gradient problem makes training deep neural networks a
challenge despite all the known good practices used for initialization. Both cases can raise
a problem dependent on the choice of the activation function. For example, an activation
function that tends to be flat for large values gives the same output for an input of large
variance. Finding the learning’s theoretical optimum of the model relies heavily on the
choice of the activation function as the derivative of the activation function is used during
the optimization and affects the gradient. Low and large variance causes the gradient to
move into a very narrow or broad range depending on the activation function, and both
cases cause the neural network to learn very slowly. Therefore, The vanishing gradient is

13

usually mitigated when using a ReL.U-like activation function (Softplus activation function
as an example) due to the shape of its derivative, which improves the gradient flow and
does not cause small derivatives. In summary, Training neural networks can be challenging
for several reasons: initialization, the activation function, and the architecture. These
categories should be considered each to optimize the performance of the network.

Training neural networks can be particularly tricky when it is performed on mapping
a highly complicated non-linear function, as is the case with solving the Schrodinger
equation. Difficult problems might demand a very complex architecture that grants the
network enough capacity to achieve learning. On the other hand, a very deep architecture
has its drawbacks. The gradient diminishes fast, and the backpropagated errors become
very small after a few layers making learning ineffective. Therefore, it is crucial to launch
the network with proper weight initialization such that the learning is effective. On the
other hand, dealing with many hidden layers puts the network constantly at the risk
of over-fitting, where the neural network memorizes the patterns with the noise in the
training data set. Thus, the neural network performs well on the training data set but
fails to generalize to unseen data. In that case, the effect of over-fitting can be mitigated
using proper regularization techniques such as L1, L2, and Dropout [27]. These techniques
work on limiting the neural network capacity and constraining the model to reduce the
risk of over-fitting .

Because selecting one initialization scheme over the other is based on the choice of an
activation function, the He-initialization scheme is used and prioritized in this work over
the Xavier-initialization scheme for its compatibility with the Softplus activation func-
tion. In [28], a rigorous mathematical proof is offered that for the ReL.U-like activation
function, the best weight initialization strategy is to initialize the weights randomly with
the He-initialization scheme. However, no mathematical proof is available to match each
specific activation function with a particular initialization scheme. Therefore, a good ini-
tialization scheme for complex and deep architecture is usually obtained using different
algorithmic approaches supplemented with experimentation. An example of a simple al-
gorithm for weight initialization can be demonstrated by Layer-sequential unit-variance
(LSUV) initialization method [29]. Different initialization strategies were deployed in this
work, and the He-initialization scheme showed to be the most compatible and gave the
optimal model convergence.

14

Chapter 3

Results and discussion

3.1 Results for potential-density mapping using FFNN

This section presents the results of training different neural network architectures and
assessing their performance in solving the Schrodinger equation. The plots of the neural
network’s performance are presented, as well the analysis of the parameters that are
required to evaluate the performance of the said networks.

For the first part of the work, the neural networks are trained using supervised learning.
The task of learning is to fit the neural network’s weights such that the desired outputs are
generated from the input data set. The training data set consists of potential-probability
density function pairs with the density functions found by solving equation (2.4) numer-
ically as an eigenvalue problem. Here, The Schrodinger equation is solved for a large
set of harmonic oscillator potentials, simple inverted Gaussian potentials, and random
potentials generated from a linear combination of inverse-Gaussian potentials. Only the
probability density of the ground state wavefunction is considered and set as a target
output for the neural networks. Thus, the neural network will be performing the task
of potential-to-density mapping. In machine learning language, this process is treated as
a class of sequence-to-sequence mapping as both potential and density have profiles of
sequential data. In figures 3.1, the lowest six bound wave functions and the probability
densities for an example-potential are presented.

15

(b)

(a)
1.00 1.00
0.75 0.75
0.50 0.50

& &

2 025 2 025

o b5

% 0.00 % 0.00

3 3

G —0.25 © —0.25

[9) 9]

[%] - 12} .
~0.50 —) ~0.50 —)
-0.75 — [@x)? | —0.75 — |g))?
~1.00 Ve) -1.00 Ve

-1.00 —-0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00 —1.00 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00
X X
(c) (d)
1.00 1.00
0.75 0.75
0.50 0.50

3 >

2 025 2 025

] b5

% 0.00 % 0.00

3 3

© —0.25 © —0.25

O o

wn " 2] ..
-0.50 — %) ~0.50 — %)
~0.75 — §x0P | —0.75 — 1P
~1.00 Voo ~1.00 V(x)

-1.00 -0.75 -0.50 —-0.25 0.00 0.25 050 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
X X
(e) (f)
1.00 1.00
0.75 0.75
0.50 0.50

& =

2 025 2 025

] b5

% 0.00 % 0.00

3 3

G —0.25 © —0.25

[9) O

wn " %2 .
—-0.50 \/— P(x) —-0.50 — @(x)
~0.75 — §xP | -0.75 — 1§02
-1.00 Ve -1.00 Vo

-1.00 -0.75 -0.50 —-0.25 0.00 0.25 050 0.75 1.00 —-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
X X

Figure 3.1: Plots of the six lowest bound wavefunctions and probability functions, for

an example-potential generated from a linear combination of inverse-Gaussian potentials.

For a better representation and to fit the plots in the same figure, the potential, the

wavefunction, and the probability function of each bound state are scaled to have 1 as
ls |

: - 2, o s 0|2 —]
maximum value as follows, V; = 1+ ¢—=— ¢); = ;—*— and |44 = TPl

where the subscript ¢ denotes the value of the function on the grid point, 1; is the rescaled
wavefunction and]1@|2 is the rescaled probability. It is important to note that as a result

of the rescaling |;|?> # |¢s|> . The x-axis represents the spatial coordinates in nm unit,
and the y-axis is a dimensionless scale.

16

(a) (@)

0 — w(x)
0.4
-100
——200 03
>
2 x
x_ S
< 300 0.2
—400 0.1
-500
— V(x) 0.0
-1.00 —-0.75 —-0.50 —0.25 0.00 0.25 050 0.75 1.00 —-1.00 —-0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 1.00
x[nm] X

Figure 3.2: Plots of an example-potential generated from a linear combination of inverse-
Gaussian potentials and its corresponding ground state wavefunction that are used in the
data set to train the neural networks.

In order to approximate function |¥(xy,xs,...,2,)[* from V(zy),V(xzs),....,V(z,) as n
independent input variable, a three-layer neural network is selected. To match the num-
ber of the input variables, the network is designed with n input neurons, h' hidden
neurons by Softplus activation function and n output neurons by Softplus activation
function. The input layer is made of source nodes and works as an information re-
cipient, while the hidden layers perform a nonlinear transformation from input space
to high dimensional hidden space. Thus, equation (2.21) can be written as follows,
|V (z,)* ~ fz(Z?;w]?kfl(Eﬁzlw}j‘/(:)ji) + bj) + b7), where b} refers to the bias in the
neuron ¢ in the layer k.

To keep things simple, the neural network is trained for input data set made of a combi-
nation of simple inverted Gaussian potentials and harmonic oscillators of different depth,
width, and position on the grid line. For this task, the network is trained on data set of
200000 examples of potential-density pairs, and the performance is checked on a different
data set of 40000 examples. The network performed well on both training and validation
data sets with > 99% accuracy. Figure 3.3(a). High accuracy was reached even for a
shallow network of two hidden layers with 20 nodes for each layer.

Accuracy is one of the metrics to measure the performance of the model, and it is defined
as

Number of output nodes that satisfy the condition ‘|¢§arget|2 — |y “t|2‘ <1078

Total number of output nodes

, (3.1)

where [¢;]? is the value of the density function on the output node i. For a batch size N,
the number of output nodes that satisfy the condition mentioned above is summed over the
samples and divided by N. It is important to emphasize that accuracy is used primarily to
measure the efficacy and the performance of the neural, and it is not an indication of how
accurate the network’s prediction is. The accuracy is given in the form of a percentage
on a scale from 0 to 1. For a single pattern example, an accuracy of 0.9 means that the
model achieved correct predictions on 90% of the output nodes with disregard for the

17

errors made on the remaining nodes; every error has the same weight. In comparison,
the loss metric measures the distance between the target output and the actual output,
thus how well the model’s predictions averaged on all the output nodes. The distinction
can be illustrated by the following case where the model gives high accuracy and a large
loss, which means a very bad prediction on few output nodes. The loss metric is defined
in this project as the logarithm of the loss function in equation (2.22), where a perfect
prediction is equivalent to a loss function of zero value.

(a)) (b)
Lo) —— Training loss
-4 Validation loss
0.8 |
-6
[
0.6 | -8
£ 4
§ S-10
<0.4
“ -12
0.2] | - -14
‘ —— Training accuracy
.‘ Validation accuracy -16
0.0
0 200 400 600 800 1000 0 200 400 600 800 1000
Epochs Epochs

Figure 3.3: Accuracy and loss are plots for both training and validation data sets over a
thousand epochs. The epoch number is the number of times the entire data set is passed
through the neural network for training and validation. These results are given for a data
set made of a combination of simple inverted-Gaussian potentials and harmonic oscillator
potentials. Accuracy is defined in equation (3.1), and the loss is defined by the logarithm
of the loss function in equation (2.22). The loss relates to how much the predicted value
is close to the actual value.

On the other side, training the neural network proved to be more difficult for more complex
potential-to-density mapping, such as a random potential built from a linear combina-
tion of different inverse-Gaussian potentials. The neural network performance showed a
constant under-fitting on this problem, which requires increasing the network’s capacity.
Therefore, the neural network is expanded to 3 hidden layers with as many as 500 neu-
rons. While adding a large number of layers is unproductive as the extra layers perform
identity transformation, which renders these layers redundant. The problem of vanishing
gradient appears with the inclusion of more layers. Therefore, the weights were initialized
in the range —1/N to 1/N. This is to keep the variance of the weight values the same
between every two layers. Herewith, the performance could reach an accuracy of 80%.
However, after implementing the He-uniform initialization scheme, the network perfor-
mance improved to 96% on the training set and 97.5% on the validation set. Over-fitting
occurred when training for a very large epoch number (The number of times the learning
algorithm works through the data set) and could be mitigated with the L2-regularization
technique [27]. Overall, an epoch number larger than 1000 did not enhance the network’s
performance. A smaller batch size of around 300 to 500 showed to be crucial for a good
performance because the model makes more frequent updates to the parameters. The
neural network performance scored better on the validation data set than the training
data set, which is attributed to using the Dropout technique during training. Dropout

18

is applied to assist in reducing over-fitting . As a result, the neural network operates
at a full capacity during the validation and uses all the features from the input data as
opposed to the training.

1.0 (a) (b)
—— Training loss
-4 Validation loss
0.8
-6
>0.6 ‘
8 w _g
5 3
S0.4 =
< -10
0.2 -12
—— Training accuracy
Validation accurac
0.0 4 -14
0 200 400 600 800 1000 0 200 400 600 800 1000
Epochs Epochs

Figure 3.4: Accuracy and loss plots for both training and validation data sets with He-
initialization scheme, solved for a linear combination of inverse-gaussian potentials.

It is worth noting that the first few trials for training the previous neural network did
not score an accuracy above 90%. An accuracy close to one presented in the figure 3.4(a)
was possible only after deploying several standard pre-processing techniques that made
the input potential more comprehensive to the neural network. Mainly, standardisation
and Fast Fourier Transform (FFT) of the input potential were used here. Standardization
refers to re-scaling the input data since a large spread of input values can lead to large
error gradient values, thus a dramatic weight change. Additionally, large input values can
result in a model that learns large weight values, which renders the learning unstable.
The standardization technique that is followed in this work is given by,

o V; - Vmean

Vi V)

(3.2)
where o(V') denotes the standard deviation of the potential’s values on the grid in respect
to the mean value. On the other hand, pre-processing via FFT of the input potential aids
the neural network with feature extraction and the detection of abnormal input patterns.
For maximum utility, The neural network is fed with both standardized potential and its
FFT as an input, which turns the input layer double in size. This method proved to be
more efficient for training the neural network than feeding the neural network with either
standardized potential or the FFT of the potential alone and yielded better accuracy on
both the training and validation data sets.

The primary purpose of data pre-processing is to modify the input variables for a better
match with the predicted output. Pre-processing can be thought of as a data transfor-
mation such that the most prominent features of the input data are highlighted and thus
facilitating the learning process. There are other pre-processing strategies than standard-
ization and FF'T that are available but were not investigated as the one used here proved
to be sufficient [30][31].

19

3.2 Results for potential-density mapping using RBF'-
netwrok

It is vital to have a good representation of the Gaussian tails of the wave function, which
are usually located in the classically forbidden region. These tails are of particular in-
terest because it is there where many of the physical processes occur. Good accuracy in
representing the tails is essential for studying barrier penetration, nucleon’s interaction
with the nuclear shell, and radioactive decay.

The tails of the wavefunction have an exponential decay with near-zero value on the edge
of the tails. Thus, a high overall accuracy scored by the network does not validate a good
accuracy for the tails. To grant the network a better grasp of the wavefunction’s tails,
the loss function in equation (2.22) is modified accordingly,

1
L(w) = 55, Zi(log (|57 *) — Log (197 *))*. (3.3)

To have better accuracy on the tails, the previous architectures are trained using radial
basis activation function (RBF) for the hidden layer (the one used here is the Gaussian
activation function defined in section 2.3). The net input to the RBF activation function
is the vector distance between the weight and input vectors, multiplied by the bias. The
RBF function has an output < 1, and it increases as the distance between the weight and
the input decreases. Therefore, the RBF function acts as a detector that produces one
whenever the input vector and weight vector are identical. At the same time, the bias al-
lows the sensitivity of neurons to be adjusted [5]. This architecture makes use of the radial
basis method properties for solving partial differential equations [32]. These properties
offer a more smooth approximation and accurate representation of the function than the
polynomial spline fitting, which is accomplished by the previous architecture.

(a)) (b)
10 | —— Training loss
‘ -4 | Validation loss
08| | 6
20.6 | -8
£ \ 2_10
g 3 \
<04} | 12| |
-14
0.2
—— Training accuracy ~16
Validation accuracy
0.0 -18

0 200 400 600 800 1000 0 200 400 600 800 1000
Epochs Epochs

Figure 3.5: Accuracy and loss plots for both training and validation data sets using RBF-
network. The results are given for harmonic oscillator potentials. Accuracy is defined
from equation (3.1), and The loss is defined by the logarithm of the loss function in (3.3)

20

(a) (b)

10
S diai s St L | Mekd g —— Training loss
08 -61 | Validation loss
| |
> 06 81
§ 5 \
3 \
5 _
g 04 10 \
-12 S
0.2 gl | .
— Taining accuracy IR L T
| Validation accuracy _14 LR A .| I
0.0
0 200 400 600 800 1000 0 200 400 600 800 1000
Epochs Epochs

Figure 3.6: Accuracy and loss plots for both training and validation data sets using RBF-
network. The results are given for a linear combination of inverse-Gaussian potentials.
The fluctuation in the accuracy and loss plots is due to a large learning rate. Also, A
possible cause can be that the regularization is insufficient for the size of the network.

3.3 Results from the variational method

Inspired by the universal approximation theorem, artificial neural networks are adopted
to find the ground state energy through the variational method. RBF-network can be
utilized as a general-purpose trial wavefunction of a continuous one-body and many-body
system. Generally, the variational approach involves the postulation of a trial wavefunc-
tion, which demands physical insights into the quantum system in the question. The
drawback of choosing a trial wavefunction is that it can be a difficult task and very
problem-specific. This problem appears, for example, in determining a trial wavefunc-
tion to investigate energy metal-insulator transition in solid hydrogen using VMC [33].
Therefore, using the neural networks as a general-purpose trial wavefunction reduces the
demand on the physical intuition and the inflexibility of the conventional VMC. The
physical comprehension for designing the trial wavefunction is replaced with the question
about the proper design of the neural network.

The neural network of choice is the RBF-netwrok with one hidden layer and six hidden
units. The Gaussian activation function is selected for the hidden units and the Softplus
activation function for the output layer. Given smooth activation functions, the network
provides a smooth output function, which is expected from a physical wavefunction. The
network is fed with input potential array V,, = V' (z,,), which represents particle location,
and the weights of the network constitute the variational parameters. From equation
(2.21) the trial wavefunction is given by,

Wy (s {w}) & folEwiy) fu(Biw V() +65) +). (3.4)
The expression of the energy functional in equation (2.10) is the cost function that is to be
minimized. For one body problem, the Hamiltonian is given to be H = [—%86—;2 + V(:B)} .

The variational parameters are adjusted incrementally over many iterations. The energy
expectation value of each optimization step is compared to the exact energy to analyze
the convergence and efficiency of the neural network. The neural network contains up

21

to a thousand parameters that need to be adjusted to approximate the ground state
wavefunction. The VMC optimization used is Adam-based, that is, a gradient-based
optimization algorithm. This implies that some statistical errors are present in computing
the gradient as well as discretization error in computing the cost function.

The weights are initialized with the He-initialization scheme, while the biases are initial-
ized with random uniform distribution from -1 to 1. The choice of bias initialization is
arbitrary and follows the standard practices for bias initialization. The learning rate is
chosen to be in the soft point 0.001 for an optimum minimization of the cost function.
A small learning rate prolongs the optimization of the weight parameters unwarrantedly.
Conversely, a large learning rate leads to a bad convergence and an oscillating final value
of the energy functional.

(a) (b)
350 — |(E) = Eexact| 102 — 109([(E) = Eexact|)

300 10!

—250 T 100

g .ﬁ 10

u$ 200 | 1071
| —~
—~ W

E‘l 150 5 1072
- oD

100 S 10-3

50 10—4

0 10-°

0 10000 20000 30000 40000 5000C 0 10000 20000 30000 40000 50000
Number of iterations Number of iterations

Figure 3.7: Plots (a) and (b) depict an example of the energy expectation value’s con-
vergence to the exact energy. The example is given for a linear combination of inverse-
gaussian potentials. After 50 thousands of iterations, the expectation value shows a good
agreement with the exact value with an accuracy of up to 6 decimal digits.

The convergence of the expectation value toward the exact value was observed to halt
after a certain number of iterations. Part of the explanation for this halt is the truncation
error of the numerical integration used to compute the energy functional. Computing the
integral with a high precision showed to be critical for error minimization, which is defined
here as the difference between the expectation value and the exact value. The task of
numerical integration was achieved with composite closed Newton-Cotes quadrature rules
[34][35]. This method is based on evaluating the integrand of equally spaced grid points,
and therefore it is adequate for the task in question. For a grid of n 4+ 1 points, The
formula is given by,

| e =T gt @) = So([e} s, (3.5)

where w; are called weights and can be computed as the integral of Lagrange basis poly-
nomials [;(z) of an arbitrary degree n.

In this work, the Newton-Cotes rule was applied for different degrees from degree 2 and
as high as 20 degrees. While the precision of the expectation values increases for higher

22

degrees, a plummet in the accuracy occurs for Newton-Cotes of degree 8 and higher, which
can be attributed to Runge’s phenomenon [36]. This problem was mitigated using the
composite version of the lower degree Newton-Cotes rule, which gave the best results with
the expectation value approaching the exact value up to 6 decimal digits of precision.

Another numerical integration that was investigated is Romberg’s algorithm that gave
better results for high extrapolation number [37]. However, computing the integrals using
this algorithm over thousands of iterations proved to be more time-consuming and com-
putationally costly. Therefore, the method is omitted in this work. For better precision,
the prime choice of numerical integration method would be the Gauss-Legendre quadra-
ture [38][39]. Nevertheless, the employment of this method appears to be unfeasible in our
work as the method is based on calculating the integral of Legendre polynomials on a non-
equidistant grid. Although, the deployment of the Gauss-Legendre rule can be workable
if the roots of the Legendre polynomial integral are assigned to be the spatial coordinates
or the grid points of the potential and the wavefunction. In this way, the potential and
the wavefunction represented by the network’s output are redefined to be functions of the
Legendre polynomial integral’s roots. Such a workaround warrants further investigation
if better precision is required.

It should be noted that in the first training trials, the neural network was fed with
the potential as an input. However, it was realized that feeding input to the neural
network was not necessary in the first place, and the neural network functions well as a
representation of the trial wavefunction with no input layer at all. Lifting the constraint of
an input potential showed no adverse impact on optimizing the parameters and minimizing
the energy functional.

With the success of obtaining an approximate ground wavefunction on a single potential,
an attempt was made to train the neural network on different potentials and minimize
different energy functionals. This exercise intends to model the network such that it can
be a reliable representation of multiple ground state wavefunctions simultaneously. Such
a multi-representative network can replicate the learning characteristics of the networks in
section 3.2 but in an unsupervised manner. In essence, if the optimization of the weights
proceeds on a large number of energy functionals simultaneously, the network’s weights
would converge to universal values capable of achieving potential-wavefunction mapping
with no training data set. However, constructing a multi-representative network appears
to be inaccessible. The neural network shows to approximate only one ground state at
one time due to the weights readjusting themselves to meet the request of minimizing
specific energy functional, and the information from any previous operation is lost. An
alternative would be to steer different operational graphs simultaneously, meaning that
the Adam optimization algorithm is run on different energy functionals and minimizing
all of them at once. This procedure proved to be insufficient when using only a few
energy functionals. On the other hand, training the neural network to minimize a large
number of energy functionals involves defining a large number of operations. This process
is strenuous on a technical level and computationally costly, and therefore it was not
considered.

Additionally, it is postulated that achieving a multi-representative network requires ex-
panding the network in terms of the number of hidden units. As was shown in sec-
tions 3.13.2, achieving potential-wavefunction mapping demands a large number of hidden
units. The ramification of such an expansion is a large number of variational parameters.

23

Thus, the neural network would be sanctioned by insufficient optimization as it is chal-
lenging to keep track of all the parameters when performing VMC. This issue appears to
be common in the literature regarding VMC-networks [40]. Therefore, an essential feature
of these networks is their expressibility, meaning a capacity to represent a wavefunction
with high accuracy using a moderate number of weight parameters. So far, notable work
has been done to secure this property, for instance, developing VMC-specific optimization
algorithms to tackle the problem of a large number of parameters and increase the net-
work’s expressibility. An example of such algorithms is the importance sampling gradient
optimization algorithm (ISGO) [41].

24

Chapter 4

Conclusion

Many documents and research papers are emerging each year with novel and new im-
plementations of artificial neural networks in quantum mechanics. The advances in this
subject constitute the prime motivation for our work. Currently, artificial neural net-
works show performance comparable to previous state-of-the-art variational ansatzes for
single-particle and many-body problems, which makes this subject an excellent topic for
investigation.

This thesis provides solutions to the Schrodinger equation based on supervised learning
and VMC. We demonstrate how neural networks can successfully find the relationship
between the potential and the wave function. Our contribution manifests in optimizing
a simple feed-forward neural network to obtain the best results. We implement pre-
processing techniques and feed the neural network with the pre-processed potential and
the actual potential jointly. Furthermore, we emphasize an educated choice of weight
initialization scheme that is problem-relevant and fits the network architecture. This is
followed by an amply discussion on how the network’s parameters impact our results.

This work proceeds into incorporating a simple feed-forward neural in VMC for a single-
particle problem. This approach relies on representing the variation wavefunction with the
neural network using the standard machine learning optimization algorithm to find the
ground state wavefunction. The method provides a positive outcome, and the convergence
to the exact solution is satisfactory. We demonstrate the validity of our results by extend-
ing the discussion upon improving the accuracy. Our results show that neural networks
are worth investigating to find solutions and implement many-body methods.

4.1 Outlook

On top of the many areas included in this work, there is much room for further research.
We want to emphasize that investigating VMC for many-body problems using neural
networks is the most compelling area to continue this work. Our approach might suffer
from limitations regarding systems of many fermions due to the difficulty of imposing anti-
symmetrization in continuous space. Thereby, we hypothesize that our approach is still
valid if the row coordinates are replaced with Slater determinants to enforce antisymmetry.
In addition, We limited our work to FFNN. However, investigating other neural network
types might yield similar or better results, and it is worth exploring.

25

Bibliography

[1]

2]

[11]

[12]

[13]

S. Liang and R. Srikant, “Why deep neural networks for function approximation?,”
arXiv preprint arXiv:1610.04161, 2016.

I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural network methods in
quantum mechanics,” Computer Physics Communications, vol. 104, no. 1-3, pp. 1—
14, 1997.

J. Hermann, 7. Schatzle, and F. Noé, “Deep-neural-network solution of the electronic
schrodinger equation,” Nature Chemistry, vol. 12, no. 10, pp. 891-897, 2020.

D. Pfau, J. S. Spencer, A. G. Matthews, and W. M. C. Foulkes, “Ab initio solution of
the many-electron schrodinger equation with deep neural networks,” Physical Review
Research, vol. 2, no. 3, p. 033429, 2020.

P. Teng, “Machine-learning quantum mechanics: Solving quantum mechanics prob-
lems using radial basis function networks,” Physical Review FE, vol. 98, no. 3,
p. 033305, 2018.

G. Carleo and M. Troyer, “Solving the quantum many-body problem with artificial
neural networks,” Science, vol. 355, no. 6325, pp. 602-606, 2017.

W. Foulkes, L. Mitas, R. Needs, and G. Rajagopal, “Quantum monte carlo simula-
tions of solids,” Reviews of Modern Physics, vol. 73, no. 1, p. 33, 2001.

J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang, “Equivalence of restricted
boltzmann machines and tensor network states,” Physical Review B, vol. 97, no. 8,
p. 085104, 2018.

Y. Huang and J. E. Moore, “Neural network representation of tensor network and
chiral states,” arXiv preprint arXiv:1701.06246, 2017.

X. Gao and L.-M. Duan, “Efficient representation of quantum many-body states with
deep neural networks,” Nature communications, vol. 8, no. 1, pp. 1-6, 2017.

7. Cai and J. Liu, “Approximating quantum many-body wave-functions using artifi-
cial neural networks,” Physical Review B, vol. 97, p. 035116, 2018.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural networks, vol. 2, no. 5, pp. 359-366, 1989.

G. F. Montufar, “Universal approximation depth and errors of narrow belief networks
with discrete units,” Neural computation, vol. 26, no. 7, pp. 1386-1407, 2014.

26

[14]

[15]

[16]

[29]

[30]

J. Kessler, F. Calcavecchia, and T. D. Kiihne, “Artificial neural networks as trial
wave functions for quantum monte carlo,” Advanced Theory and Simulations, vol. 4,
no. 4, p. 2000269, 2021.

J. Keeble and A. Rios, “Machine learning the deuteron,” Physics Letters B, vol. 809,
p. 135743, 2020.

R. Becerril, F. Guzman, A. Rendén-Romero, and S. Valdez-Alvarado, “Solving the
time-dependent schrodinger equation using finite difference methods,” Revista mex-
icana de fisica F, vol. 54, no. 2, pp. 120-132, 2008.

B. N. Parlett, The symmetric eigenvalue problem. STAM, 1998.
J. Thijssen, Computational physics. Cambridge university press, 2007.

S. Sorella, “Generalized lanczos algorithm for variational quantum monte carlo,”
Physical Review B, vol. 64, no. 2, p. 024512, 2001.

S. Sorella, “Green function monte carlo with stochastic reconfiguration,” Physical
review letters, vol. 80, no. 20, p. 4558, 1998.

C. J. Walder, P. Roussel, R. Nock, C. S. Ong, and M. Sugiyama, “New tricks for
estimating gradients of expectations,” arXiv preprint arXiv:1901.11311, 2019.

J. C. A. Barata and M. S. Hussein, “The moore—penrose pseudoinverse: A tutorial
review of the theory,” Brazilian Journal of Physics, vol. 42, no. 1-2, pp. 146-165,
2012.

I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving
ordinary and partial differential equations,” IEEFE transactions on neural networks,
vol. 9, no. 5, pp. 987-1000, 1998.

C. Wang, H. Zhai, and Y.-Z. You, “Emergent schrodinger equation in an introspective
machine learning architecture,” Science Bulletin, vol. 64, no. 17, pp. 1228-1233, 2019.

J. B. Ahire, “The artificial neural networks handbook: Part 4,” Medium.
https://medium. com/@ jayeshbahire/the-artificial-neural-networks-handbook-part-4-
d2087d1f583e, 2018.

B. M. P. Pedro L. Fernandez-Caban, Forrest Masters, “Predicting roof pressures
on a low-rise structure from freestream turbulence using artificial neural networks,”
Frontiers in Built Environment, vol. 4, no. 68, 2018.

M. A. Nabian and H. Meidani, “Physics-driven regularization of deep neural networks
for enhanced engineering design and analysis,” Journal of Computing and Informa-
tion Science in Engineering, vol. 20, no. 1, 2020.

S. K. Kumar, “On weight initialization in deep neural networks,” arXiv preprint
arXi:1704.08863, 2017.

D. Mishkin and J. Matas, “All you need is a good init,” arXiv preprint
arXiw:1511.06422, 2015.

N. M. Nawi, W. H. Atomi, and M. Z. Rehman, “The effect of data pre-processing
on optimized training of artificial neural networks,” Procedia Technology, vol. 11,
pp- 32-39, 2013.

27

[31]

[32]

[33]

[42]

[43]

S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas, “Data preprocessing for super-
vised leaning,” International Journal of Computer Science, vol. 1, no. 2, pp. 111-117,
2006.

Y. Shirvany, M. Hayati, and R. Moradian, “Multilayer perceptron neural networks
with novel unsupervised training method for numerical solution of the partial differ-
ential equations,” Applied Soft Computing, vol. 9, no. 1, pp. 20-29, 2009.

F. Calcavecchia and T. D. Kiihne, “Metal-insulator transition of solid hydrogen by
the antisymmetric shadow wave function,” Zeitschrift fiir Naturforschung A, vol. 73,
no. 9, pp. 845-858, 2018.

P. A. A. M. Junior and C. A. Magalhaes, “Higher-order newton-cotes formulas,”
Journal of Mathematics and Statistics, vol. 6, no. 2, pp. 193-204, 2010.

M. M. Gracca, “A simple derivation of newton-cotes formulas with realistic errors,”
arXiv preprint arXiw:1202.0237, 2012.

K. Adecalon, G. Nobeen, L. Nithoo, J. Girish, R. Jheengut, N. Ramburuth, S. Nav-
inam, and P. Krisen, “Presented by,”

T. Ergeng, I. Altas, et al., “Romberg integration: A symbolic approach with
mathematica,” in International Conference on Computational Science, pp. 691-700,
Springer, 2003.

R. McClarren, Computational nuclear engineering and radiological science using
python. Academic Press, 2017.

J. A. Trangenstein, Scientific Computing, Vol. III — Approximation and Integration.
Springer International Publishing AG, 2018.

E. Neuscamman, C. Umrigar, and G. K.-L. Chan, “Optimizing large parameter sets
in variational quantum monte carlo,” Physical Review B, vol. 85, no. 4, p. 045103,
2012.

L. Yang, Z. Leng, G. Yu, A. Patel, W.-J. Hu, and H. Pu, “Deep learning-enhanced
variational monte carlo method for quantum many-body physics,” Physical Review
Research, vol. 2, no. 1, p. 012039, 2020.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

Y. Wang, P. Zhou, and W. Zhong, “An optimization strategy based on hybrid algo-
rithm of adam and sgd,” in MATEC Web of Conferences, vol. 232, p. 03007, EDP
Sciences, 2018.

28

Appendix A

Optimization of the neural
network

The optimization algorithm used in this work is Adam (short for Adaptive moment es-
timation). The algorithm is based on an adaptive estimate of lower-order moments for
first-order gradient-based optimization of a stochastic function. Here, the moment refers
to the momentum term, which adds a part of the previous weight update to the current
update.

This algorithm uses the running average of the gradient, momentum, and the derivatives’
square. For Adam, there are three learning parameters, n, #; and (5. During training,
two moving averages are computed, the first moment m (mean) and the second moment
v (uncentered variance). The moving averages are retained as:

ma(t+ 1) = Bima(t) + (1 — B1)Gr(?), (A.1)
ve(t+1) = Bavi(t) + (1 = B2)[Gi(1))%, (A.2)

where Gy (t) stands for the gradient at moment ¢ for a specific weight wy,.

Defining a bias-corrected version my(t 4+ 1) = ml’f;ﬁl), and Dg(t+1) = V’;(_tgzl) weights are
t t

updated by, a4+ 1)
mp(t +

De(t+1)+ ¢

wr, = w(t) — (A.3)

"y and 7, are by definition the weighted average of the G} and G3, respectively. Adam
is presented with default parameters 5; = 0.9,3, = 0.999 and ¢ = 10% [42].

Adam’s optimization method improves the commonly used stochastic gradient descent
algorithm (SGD) using the squared gradients to scale the learning rate. It also takes
advantage of using the moving average of the gradient instead of the gradient itself, like
SGD with momentum. The choice of Adam is justified in our work as it outperforms
SGD in both training and validation matrices in the initial portion of the training. Still,
its performance stagnates later, where SGD is better at convergence. However, a hybrid
algorithm is proposed by switching from Adam to SGD at an optimal moment of the
training. Such a procedure can guarantee the convergence of Adam [43].

29

	Introduction
	Methods
	The Schrödinger equation
	Variational Monte-Carlo (VMC)
	Artificial neural network (ANN)
	Initialization of neural network

	Results and discussion
	Results for potential-density mapping using FFNN
	Results for potential-density mapping using RBF-netwrok
	Results from the variational method

	Conclusion
	Outlook

	Optimization of the neural network

