
Aerial View Image-Goal
Localization with
Reinforcement Learning

John Backsund, Anton Samuelsson

Master’s thesis
2022:E30

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N
T
R
U
M

S
C
IE

N
T
IA

R
U
M

M
A
T
H
E
M
A
T
IC

A
R
U
M



Aerial View Image-Goal Localization

with Reinforcement Learning

John Backsund and Anton Samuelsson

Supervisor Supervisor
Aleksis Pirinen (RISE) Kalle Åström (LTH)
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Abstract

With an increased amount and availability of unmanned aerial vehicles (UAVs) and
other remote sensing devices (e.g. satellites), we have recently seen an explosion in
computer vision methodologies, tailored towards processing and understanding aerial
view data. One application for such technologies is in the area of search-and-rescue
(SAR), where the task is to localize and assist one or several people who are missing,
for example after a natural disaster. In many cases the rough location may be known
and a UAV can be deployed to explore a given, confined area to precisely localize the
missing people. In such a time- and resource-constrained setting, controlling the UAV
in an informed and intelligent manner – as opposed to exhaustively scanning the whole
area along a pre-defined trajectory – could significantly improve the likelihood of suc-
ceeding with the mission. In this master’s thesis we approach this type of problem by
abstracting it as an aerial view image-goal localization task within a framework that
emulates a SAR-like setup without requiring access to actual UAVs. In this frame-
work, an agent operates on top of a given satellite image and is tasked with localizing
a specific goal, specified as a rectangular region within the satellite image, from a given
location in the image. The agent is never allowed to observe the underlying satellite
image in its entirety, not even at low resolution, and thus it has to operate solely based
on sequentially observed partial glimpses when navigating towards the goal location.
To tackle our suggested aerial view image-goal localization task, we propose AiRLoc,
a fully trainable reinforcement learning (RL)-based model. AiRLoc can be trained
with no annotations of any kind and is hence able to learn the localization task in an
entirely self-supervised manner. Extensive experimental results suggest that AiRLoc
outperforms heuristic search methods as well as non-RL-based machine learning meth-
ods. The results also indicate that providing AiRLoc with mid-level vision capabilities
(specifically, a pre-trained semantic segmentation network) can lead to even better per-
formance. We also conduct a proof-of-concept study which suggests that AiRLoc – with
or without semantic segmentation as input – outperforms humans on average.
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1 Introduction

Recent technological developments of unmanned aerial vehicles (UAVs) and satellites has
seen an enormous increase in the amount of aerial view landscape and urban data that is
available to the public [41, 6, 18, 33, 15]. Many businesses use UAVs as a core element in
their operation, and it is generally an efficient way of gathering accurate aerial data. The
main benefit of using UAVs instead of satellites is that UAVs are able to capture higher-
quality images of a more local area, while satellites are better at capturing a more general
understanding of large domains. While the lower-quality satellite data may be enough for
some applications, it comes with the disadvantage that the images may not be captured
with a sufficiently high frequency, which means that the image data might not be up-to-date
on the occasion that one might need it.

UAVs can also be used in search-and-rescue (SAR) operations, where the task is to localize
and assist one or several people who are missing, for example after a natural disaster. In
many cases the rough location may be known and a UAV can be deployed to explore a
given, confined area to precisely localize the missing people. The navigation of UAVs is
often based on an pre-specified search approach, where the UAV moves in a fixed pattern
which guarantees that the entirety of a given area is inspected in detail given sufficient
time. In addition to always finding the target location, this approach has the benefit of
being autonomous. The obvious downside is that it is a very time-consuming process to
exhaustively scan every location in the area. Another common option is to let a human
operator pilot the UAV, as it can yield a more intelligent behavior and thus quicker local-
ization. The downside, however, is that this approach requires the operator to be trained in
the navigation system, and it may be costly or inconvenient to hire the operator. The ideal
solution would essentially be a merge between the two types of approaches, i.e., a system
that can be used for autonomous localization in a more efficient way than a pre-specified
search approach.

Motivated by the above, the main objective of this master’s thesis is to investigate whether
it is possible to train a machine learning (ML)-based system that is able to perform UAV-
based localization more efficiently than heuristic alternatives. We will study this within a
setup that is reminiscent of a SAR operation within a confined area.1 More specifically, we
abstract the problem into a framework that emulates a SAR-like setup without requiring
access to actual UAVs – see Figure 5. In this framework, an agent operates on top of a
given satellite image and is tasked with localizing a specific goal, specified as a rectangular
region within the satellite image, from a given location in the image.

In many time-constrained settings, e.g. as in the SAR operations described above, global
information (from satellite imagery or previous drone flights) might not be immediately
available. To mimic this situation, in this thesis we limit the perception of the models to
only partial glimpses of the underlying image, with no global information available at all.

1Our proposed task formulation may also be relevant for many types of environmental monitoring appli-
cations, such as in forestry management, or for UAV-based infrastructure surveillance and maintenance.
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In particular, the models are not assumed to have access to GPS coordinates of the goal
location (note that there are real-world scenarios where reliable access to GPS coordinates
cannot be guaranteed, e.g. because global satellite navigation systems are susceptible to
radio frequency interruptions and fake signals). We denote this task, which to the best
of our knowledge has not been studied in the existing literature, aerial view image-goal
localization. As the task is naturally abstracted as a sequential decision-making problem,
the main focus will be on exploring and implementing reinforcement learning (RL)-based
models, but we will also compare with other ML-models. In addition to this, we will conduct
an early proof-of-concept human performance evaluation to get a rough assessment of how
humans fare on this novel task.

While the specific formulation we consider in this thesis makes sense as an initial investiga-
tion – not the least because it allows for reproducible and controllable experimentation – it
is not to be seen as a full solution. However, we believe our contributions can be part of a
procedure that may eventually be used in, for example, environmental monitoring and SAR
operation systems. To make our methodology more useful in practice, an obvious direction
would be to extend it to accept as input a general scene description (e.g. one or several
ground-level images), instead of it having to be an aerial view image. This could be done,
for example, by having a separate module that is trained to translate more generic scene
descriptions into aerial view images (these types of predictions are considered within the
framework of geo-localization, see e.g. [30, 11]), followed by navigating to the target using
our proposed aerial view image-goal localization system.

To conclude this subsection, we here list the main contributions of this master’s thesis:

• To the best of our knowledge, we are the first to investigate the aerial view image-goal
localization task.

• We develop and evaluate several ML-based methods, and we compare these with a
heuristic search approach. In particular, a wide range of various RL-based methods
are implemented and evaluated, most of which are trained without annotated data of
any kind.

• We find that ML-based methods outperform heuristic approaches, and that RL-based
methods outperform non-RL-based ML methods.

• We also perform a proof-of-concept human performance evaluation, which indicates
that our RL-based methods outperform humans on average.

1.1 Limitations

An ideal evaluation of our proposed methods would be to deploy the systems on real UAVs
and see how well they perform in real world settings. However, this comes with three main
issues: i) lack of reproducibility, ii) performance limitations, and iii) implementation over-
head. In short, such experiments would not be reproducible and thus verifiable, the size of
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our models would likely exceed the computational resources on the edge2, and implementing
this requires time that falls outside the scope of a thesis.

To simulate the UAV data, satellite imagery is used, the UAV locations are defined by crops
of the full satellite image, which simulate a top-view of what the UAV currently sees. In
a realistic application, wind, weather and obstacles could potentially affect the navigation
possibilities of the UAV; in this project these effects have been neglected, and the UAV
is always able to move in any direction and with a deterministic outcome associated with
each movement. The search area has also been restricted and any move outside this area by
the drone yields an entirely black visual input. This restriction, while perhaps appearing
artificial at first glance, can be realistic in such SAR missions where the rescue targets are
known to be within a certain area – in such cases, any movement outside could simply be
considered erroneous. Furthermore, the issue of independently determining if the correct
location has been found is not considered here, and if the simulated UAV finds the goal the
algorithm stops automatically without agent intervention. Finally, the image representation
of the target is not altered in any way, whereas in a real use case the target is not likely to
look exactly the same at the time of searching as it does in the latest observation of that
location (note that this would further motivate a principled methodology for automatically
determining whether the target has been found, which again is not considered here). This
is a very interesting future research area which is out of scope for this project.

1.2 Ethical Considerations

Naturally, as in most projects there are possible applications that may be unethical. In this
case these mostly revolve around UAV navigation for military and surveillance purposes,
and it is not impossible for somebody to utilize our research for such a purpose. However,
thus far the research is missing many of the required components. We therefore decided to
proceed with this research with caution in how we chose the intended application and in
the direction that we took the investigations.

1.3 Related Work

Several prior works have investigated and proposed methods for autonomous control a UAVs
[32, 16, 8, 3, 28, 45, 23]. Many of these works (e.g. [32, 28, 45]) revolve around methodologies
for efficient scanning of large areas (e.g. agricultural landscapes) such that certain types of
global-level downstream inferences – for example, determining the general health status of
a field of crops – can be accurately performed based on a limited number of high-resolution
observations. Hence, the goal in these works is to obtain a high downstream accuracy
without having to exhaustively observe each part of a scene in detail, which reduces the
UAV flight time and energy consumption. Aside from differing in task formulation (ours
requiring precise localization of a particular observation, while the aforementioned works

2A first step to alleviate this could be to have the UAV communicate with a remote computing device;
future work could include improving the efficiency of various algorithms to allow for on-device computations.
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often revolve around global-level inference), these prior works assume access to a global
lower-resolution observation of the whole area of interest, while we do not. Moreover, in
contrast to our end-to-end trainable methodology, these existing approaches are often hand-
crafted, rely on ad-hoc decision criteria, and/or optimize local rather than global objectives.

There are also works that are closer to us in terms of task setup, such as [3, 16, 8]. For
example, in [3] a hierarchical planning approach for a goal reaching task is proposed, where
a rough plan is first proposed using A*. The rough plan is subsequently used as an initial
guess by a finer-grained planner which parametrizes the initial trajectory as continuous
B-splines and performs trajectory optimization. The system assumes access to ground
truth detections of moving objects and ground classifications. Overall, while promising,
methodologies such as those of [3, 16, 8] are often more convoluted than our RL-based
approach, which also has the advantage of not relying on annotations in training nor testing.

Our work is also related but orthogonal to the increasingly studied problem of geo-localization
[40, 35, 47, 44, 24, 38, 30, 5, 4, 48, 11]. Such works revolve around predicting relationships
between two or more images of different modalities, e.g. predicting the satellite or drone
view corresponding to a ground-level image. Most such methods perform the task by an
exhaustive comparison within a large image set, and are thus very different to our setup
which is rather about minimizing the amount of images (local patches) inspected when
performing localization. However, our proposed methodology could further benefit from, or
be generalized by, incorporating geo-localization methods. For example, if the goal location
is specified from a ground-level perspective (which may be more realistic in practice), geo-
localization methods can be used to match the top-view images observed by our proposed
method during goal localization.

From a pure task formulation perspective, and setting aside the application area, our setup
may be most closely related to embodied image-goal navigation [1, 49, 17]. In this frame-
work, an agent (model) is tasked to navigate in a first-person perspective within a 3d
environment towards a goal location which is specified as an image within the environment.
In [17], the agent is tasked with the navigation to an image of the goal location, which
is related to what we are trying to do. The difference being the contents of the images,
where ours portray 2d aerial images while they use panoramic images of indoor scenes. In
[46], an agent is tasked with semantically mapping the entire environment in which it is
moving. Using this information, the agent should estimate the remaining effective distance
to the goal. This task as well is conducted using indoor scenes as data. To the best of our
knowledge, prior to us, no image-goal localization tasks have been conducted using aerial
data as input, and RL as the navigation system.

In addition to us, relatively few prior works have considered inference based solely on partial
glimpses of an underlying image [25, 26]. In contrast, most earlier RL-based methods that
have been proposed for computer vision tasks – e.g. for object detection [7, 12, 22] and
aerial view processing [34, 2] – assume access to at least a low-resolution version of the
entire scene or image being processed. Even the seminal work [19] uses lower-resolution full
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image input in addition to high-resolution glimpses during its sequential processing, even
though in principle it may be possible to re-design it to operate based on high-resolution
glimpses alone.

Finally, [9] is related to our work in terms of task formulation, even if the application
area differs. They propose a self-supervised task for training an embedding function that
can be used in downstream tasks, such as image classification. This self-supervised task is
similar to our setup, as it revolves around learning a spatial mapping function that relates
a given image patch (corresponds to the start location in our framework) to a particular
one of its eight neighboring patches (corresponds to the goal location in our framework).
Hence, our task can be seen as a strict generalization of that in [9], as in our setup the
goal may be further away from the start location. Also, different from us, [9] employs
patch jittering to prevent the model from learning to recognize patterns in the image (since
during downstream inference they do not want to rely on pairwise inputs to the model).
As we have an entirely different end objective, we have decided not to perform jittering so
that the model may learn to pick up on relevant spatial relationships when performing goal
localization.
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2 Background

In this section we provide background of machine learning, with a focus on neural networks
and reinforcement learning, which is needed for understanding the methods we develop and
evaluate in this master’s thesis.

2.1 Machine Learning

The proposed solutions to the task presented in Section 1 are all based on machine learning
(ML). ML is the concept of using data to optimize algorithms such that they can perform a
specific task. On a high level, ML splits into supervised and unsupervised, where in super-
vised learning there is a correct answer for the machine to find. While in the unsupervised
setting, the task is usually to find patterns in the data without the use of annotations. For
example, common supervised tasks include the classification and localization of objects in
images. Common unsupervised tasks include clustering of data into categories and anomaly
detection.

In the supervised setting, the task is to create an algorithm that learns the relation between
a predefined set of inputs and labels. That is, given the input, the goal is that the algorithm
should predict the correct labels. To train such an algorithm, a loss function which measures
how well the algorithm predicts the correct labels is introduced – the better the prediction,
the smaller the loss. Calculating the gradient of the loss function and using this information
with an optimizer, the parameters of the algorithm are changed in many steps until the loss
is minimal. This is further discussed in Section 2.2.4. One severe drawback of this setup is
that obtaining quality labels for most types of data is very expensive and time consuming.
Since the performance of the model is highly dependent on the available training data and
corresponding labels, this is a major issue.

To verify that the model is learning something generalizable, there typically is a validation
and test set, in addition to the training set (data) which is used to optimize the model pa-
rameters. Testing the model on previously unseen data gives a more accurate representation
of the performance of the model. The purpose of the validation set is to use it to monitor
the performance and perhaps alter the hyperparameters of the algorithm. As the process
of tuning the parameters uses the validation data, a test set allows testing the model on
entirely unseen data, generating a more valid result.

Constructing labels for the proposed goal patch localization task is not trivial, as creating
those labels will inevitably induce a bias to the behavior of the agent. It would also be
a time-consuming endeavour to manually allocate a desired action for each input to the
model. Another, more natural way of creating labels for our task would be to assign a label
to the input corresponding to the action that moves the agent closer to the goal patch. This
could later be trained using imitation learning where the task is to replicate a behavior,
defined by an “oracle” which has the “correct” strategy. While this could create an optimal
behavior in theory, it would more likely induce plenty of bias to the system and render the
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problem unsolvable. Even though, it is the shortest path, the agent might not be given
enough information to find the optimal behavior. It is more reasonable to allow the agent
to move more freely, allowing it to explore and learn from the environment and experience
before learning to move the target.

2.2 Neural Networks

ML is a large topic which covers many models. Having narrowed it down to supervised
learning, there are still many models remaining, such as logistic regression and support
vector machines. The arguably most popular and flexible method currently in use is neural
networks (NNs) which are constructed from a series of layers with linear matrix multipli-
cations followed by non-linear elementwise functions. These will be discussed further in
Section 2.2.1. A related concept is that of deep neural networks (DNNs). This term gener-
ally refers to any neural network that is sufficiently “deep”, i.e, consists of sufficiently many
layers. The two terms are almost interchangeable, and all applications of neural networks
in this project are considered deep neural networks. The benefit of depth is the complexity
of functions that the network may learn.

2.2.1 Fully Connected Layers

There are many types of layers that one can use to create NNs. These types of layers are
suited for different types of data and are as such used for different tasks. The most basic
block of a neural network is the fully connected (FC) layer which directly connects each
input node to each output node with a matrix multiplication. Nodes are defined as the
elements in a vector, illustrating that output y from a fully connected layer,

y = ψ(Wx+ b), (1)

is the result of a matrix multiplication of the weights W and the input x summed with the
bias b and then all passed to the activation function ψ. If the input x contains n nodes and
the output y contains m nodes, the weight matrix will be of the shape (m×n). The weight
matrix thus describes the strength of the connections between individual input and output
nodes. Together with the bias, b, W are the trainable parameters of a neural network. The
activation function allows several of these layers to be placed after each other. Consider the
two layers, layer 1 and layer 2, if there is no activation function the output would be

y = W 1(W 2x+ b2) + b1 = W 1W 2x+W 1b2 + b1

which is just one set of matrix multiplications that can only learn linear functions. Including
a non-linear activation function prevents this and allows for stacking of the layers to learn
more complex (non-linear) functions between the input and output.
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Figure 1: A basic illustration of the
workings of a convolutional layer. A
kernel, i.e a square matrix, is moved
and applied over the entirety of the
input to produce an output.

2.2.2 Convolutional Layers

Due to the high dimensional nature of images, they
are generally difficult to interpret with only FC lay-
ers. Even small images would require very large fully
connected layers to be handled, which prolongs and
complicates the training process. Additionally, treat-
ing each individual pixel in an image as a separate
input means that the spatial information on where
in the image they are located is lost. To remedy
this issue, we use the well established architecture
of Convolutional Neural Networks (CNN) to process
the visual state input to the agent. CNNs use a ker-
nel with fixed dimensions to map a local part of the
image to the output. An illustration of a convolutional layer can be seen in Figure 1. In
contrast to the FC layers where both input and output are one dimensional, the inputs and
outputs of CNNs are high dimensional, commonly of rank 3 (height, width, color). This
means that each node in the output layer only utilize a small region in the input image. This
method is better at extracting local features in the image and at the same time reduces the
number of parameters needed. Another benefit with this structure is that it allows for the
possibility of using multiple kernels in the same layer, which are trained to extract different
local features. Commonly, the kernels learn to enhance certain edges or colors. Stacking
convolutional layers after each other allows the network to build up an understanding of
increasingly complex features extracted by the previous layers, for example corners as a
combination of horizontal and vertical lines.

2.2.3 Sequential Neural Networks

Fully connected layers map one set of inputs to a set of outputs with no regard for previous
sets of inputs. For some problems that consist of sequences of inputs, such as sentences, this
is not ideal. Recurrent Neural Networks (RNN) address this problem by retaining a hidden
state of combined information about the previous inputs. This hidden state in conjunction
with the current input produce the output, the hidden state is then updated and reserved for
the next input. This allows the network to have a memory and usually improves performance
for sequential problems. A variant of the classic RNN that is widely used in many sequential
machine learning tasks is the Long Short Term Memory (LSTM) network. It sacrifices
some simplicity of the basic recurrent structure for significantly increased performance and
robustness. The LSTM network uses two types of hidden states, the cell state, ct and the
hidden state, ht and their updates are governed by a set of different gates. These update
rules limit the networks susceptibility to exploding and vanishing gradients by clipping how
much of the previous states’ information passes to the next state [13].
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A different architecture which is even better at learning long term dependencies of sequences
are the transformers. They were originally introduced in natural language processing (NLP)
as an alternative to LSTM for learning long range dependencies between words. What makes
the transformer good at this task is that it does not process the sequence as a sequence
with an order, rather it processes it as a set and uses positional encoding to attend to
the order. This allows the transformer to relate each element in the sequence to all other
elements in the sequence, with no bias towards elements that are closer together. Although
the transformer was originally developed for NLP it has been used successfully with images,
and with a fitting positional encoding of the different states in the trajectory, it might be
successful in our problem setting. See [36] for a detailed explanation of the transformer
architecture.

2.2.4 Optimization of Neural Networks

In essence, NNs are complex functions with many coefficients, and to solve the problem we
need to tune these parameters, this is done during the training phase. Training involves
formulating an objective loss function, for which a low value indicates an effective network.
Then the network weights are optimized to minimize the value of the objective function
and to increase the desired performance of the network.

There are several optimization schemes, but most rely on the principle of taking a small
step in the descent direction determined by the estimated gradient of the objective function
with respect to the model weights, these are known as gradient descent methods. Due
to the sheer scale of the datasets typically used in ML, this direct approach is generally
unfeasible. Typically, the training dataset is instead divided into smaller batches and the
objective function is calculated and optimized sequentially for these smaller units of data.
This method is referred to as the Stochastic Gradient Descent(SGD) algorithm and it is
widely used in machine learning. It allows for the use of massive dataset even with relatively
limited memory capacities but, it also introduces noise in the gradient estimation. This noise
may result in the algorithm being unable to estimate the gradient well enough to reach the
global minima. However, it could also be beneficial since the introduction of a stochastic
step may allow algorithm to escape local, shallow minima.

The volatile optimization landscape of loss functions for deep neural networks contains
many local minima and many low slope surfaces which leads to problems in the training
of the networks. To overcome such problems and reduce the risk of being stuck in a local
optimum many variations of the SGD algorithm have been proposed. One such popular
algorithm, Adam, is used in this project. The main benefit of Adam is that it is usually
quick to converge and decent at avoiding local minima. It keeps running averages of the
gradient and the squared gradient, and uses these averages over time to calculate the update
step,
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m(t)
w = β1m

(t−1)
w + (1− β1)∇L

v(t)w = β2v
(t−1)
w + (1− β2)(∇L)2

m̂w =
m

(t)
w

1− βt1

v̂w =
v
(t)
w

1− βt2

w(t) = w(t−1) − η
m̂w

v̂w + ϵ

where mw and vw are the running means of the gradient and the gradient squared and
β1 and β2 are hyperparameters describing how fast the running means decay towards the
current value. In the last step the weights, wt are updated using the previously computed
bias corrected running means, where η is the learning rate controlling the overall step size
of the algorithm. ϵ is a small fixed value used to reduce numerical risks of division. The
advantage with this implementation is that even in situations where the gradient is very
small, i.e, in local minima, the update need not be small. This allows the algorithm to
avoid becoming trapped in local minima. In addition, it typically accelerates the rate of
convergence[14].

2.3 Reinforcement Learning

Reinforcement learning (RL) is a machine learning framework for teaching an agent a
sequential behavior within a given environment. RL is typically described as a Markov
Decision Process (MDP), this is a normal Markov process with the ability to insert actions.
A Markov process is used to describe a system in which each state is only dependent on
the directly previous and none of the others. Additionally, a transition distribution governs
the probability of moving from one state to the next. Our RL setup make use of this MDP
setting.

Reinforcement learning utilizes three important concepts to define the agent’s interactions
with its environment:

• The state st is the input from the environment to the agent, it encompasses everything
that the agent can percept about its surroundings. In this project, the state consists
of the current patch, the goal patch and the location of the current patch.

• The action at is the desired action of the agent determined by the inputs from the
environment, i.e, the state, st.

• The reward rt is the response from the environment to the action taken. It is a real
number and is a measure of how well the agent is performing. The reward supplied
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by the environment is controlled by the designer of the reinforcement learning system
and is a crucial part of the successful development of such a system.

Note that these three objects all depend on the time, t. Given an initial state, s0, the agent
will advance to the next by supplying the first action, a0, and in return receiving the first
reward, r1. The environment will then provide the next state, s1. This cycle continues until
a stop criterion has been met.

There are two main components deciding the evolution of the trajectory; firstly, the agent’s
policy, π, which determines the action of the agent given the input. It can either be
stochastic in that the policy generates a distribution from which the action is sampled
or it can be deterministic. Secondly, the transition distribution, p, determines how the
environment reacts to the action taken by the agent. The process of generating a trajectory
in the MDP setting can bee seen as,

s0
π(∗|s0)−−−−→ a0

p(∗,∗|s0,a0)−−−−−−−→ r1, s1
π(∗|s1)−−−−→ a1

p(∗,∗|s1,a1)−−−−−−−→ . . .
p(∗,∗|sT−1,aT−1)−−−−−−−−−−−→ rT , sT (2)

where each arrow indicates a sample from the corresponding distribution. Hence, one step
in the trajectory consists of taking two different samples. Note that the initial state s0 is
drawn from a third initial distribution, p0 which is an environment dependent distribution.
Possible interpretations of the transition probability in the setting of this project could
be the influence of wind or energy requirements of a specific action. However, for all
experiments in this thesis the effect of the transition distribution has been omitted and the
UAV will always move in accordance with its intended action. Hence, p = 1 for all states
and actions. This turns Equation (2) to

s0
π(∗|s0)−−−−→ a0, r1, s1

π(∗|s1)−−−−→ a1, r2, s2
π(∗|s2)−−−−→ . . .

π(∗|sT−1)−−−−−−→ aT−1, rT , sT (3)

where there is one more state than action and reward. The last step in any trajectory does
not have a corresponding action. Now the trajectory extracted from Equation 3 is defined
as

τ = (s0, a0, r1, s1, a1, r2, s2, . . . , aT−1, rT , sT , ) (4)

and contains the information that describe the trajectory. The term ”episode” is used
interchangeably to describe a trajectory. The details of the environment for this thesis is
outlined in Section 3, but in short, the MDP is described by: a set of states S, a set of
actions A, a set of rewards R, an initial state distribution p0, and a discount factor γ. The
discount factor determines how much of the future reward should be propagated back to
the previous states.

A key problem in reinforcement learning is the inability to immediately determine whether
an action by the agent was beneficial or not. In many problem setups the reward signal from
the environment is very sparse and often concentrated to key events during the trajectory.
In navigation tasks the only reward that might be provided by the environment could be
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whether the agent successfully located the target or not. This reward would only present
itself at the final time step of the trajectory and all rewards until then would be zero. This
leads to the problem of how to determine the effectiveness of all actions but the last. The
discount factor is one attempt to solve this problem. In this case the reward from a specific
action is a discounted sum of all future rewards received in the trajectory. This allows
the algorithm to understand that early actions in the trajectory influences and benefits the
future states and rewards of the trajectory.

In addition to the basic environment structure outlined in the previous paragraph, there are
further concepts which relate the optimization of the agent to the optimal behavior. First,
the most central part in any RL system is the agent policy πθ(st) which makes the decision
of which action to take in respect to the current state, using the parameters θ. In our case,
the policy is a NN and thus θ are the weights of the connections. The optimization objective
in RL is to maximize the value function vπ(s) for all states. The function represents the
expected return for the current state, meaning the current reward and all the discounted
future rewards. Hence, the value function is defined as

vπ(s) = Eπ

[
T−t∑
k=1

γk−1rt+k

∣∣∣∣∣St = s

]
(5)

where γ ∈ (0, 1] is the discount factor, which makes sure that the value function is finite
even if the trajectory length approaches infinity. The optimal value function is denoted
v∗(s) and is the expected return under an optimal policy. There are two main ways of
tuning a policy to the environment; on policy and off policy. In off-policy, the environment
is explored by a behavior not dictated by the current policy. In contrast, on-policy always
moves according to the current policy. This project will use a method from the on-policy
family, which generally are more sample inefficient and slower to train but can learn more
complex systems, due to being able to explore longer trajectories. More specifically, we will
use the REINFORCE algorithm, which is one of the fundamental methods in the set of
policy gradient methods.

2.4 Policy Gradient

In reinforcement learning, one of the central concepts is the trade-off between exploration
and exploitation, the agent needs to both learn from its past trajectories, and it needs to
explore new ones. In REINFORCE, this is achieved by implementing a stochastic policy,
meaning that instead of at = πθ(st) where the action is returned from a function, the
action is drawn from a distribution at ∼ πθ(at|st). This gives the agent the ability to
simultaneously explore and exploit, as the action preferred by the agent is the most likely,
but there is a probability that other actions are chosen as well. Note that this is different
from a stochastic environment where a chosen action does not generate a deterministic
state, in our problem set up the environment is deterministic. This is a simplification of
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the end goal, as the UAV would rarely be moving deterministically, due to wind and other
control problems.

The following derivation of the REINFORCE method is based on [21], note that this is
in respect to the objective function, which is maximized. The negation of the objective
function is referred to the loss function throughout the report. Maximizing the objective
function is equal to minimizing the loss function. The value function shown in Equation
(5) is similar to the objective function, however the loss needs to be expressed as dependent
upon the parameters, θ. Hence, the objective function is

J(θ) = Epθ

{
T∑

k=1

γk−1rk

}
(6)

where the parameter dependent on θ is the underlying distribution pθ generating the tra-
jectories. The parameters update according to the gradient update rule

θn+1 = θn + α∇θJ|θ=θn

where n is the update index, and α is the learning rate factor. The index n is relevant
as it allows the parameters to be updated with an arbitrary frequency, not in relation
to a number of episodes. The purpose of α is to control the magnitude with which the
parameters are updated and is standard practice in optimization problems. The above
equations are the basic outline as to how the parameters of a policy gradient RL-agent
should be updated. Within this system there are several ways of approximating the gradient
to perform the update. As previously mentioned the approach that we will use is the
REINFORCE algorithm[39].

REINFORCE solves the problem of approximating the gradient by using that

∇θ log pθ(τ) = ∇θpθ(τ)
1

pθ(τ)
⇐⇒ ∇θpθ(τ) = pθ(τ)∇θ log pθ(τ), (7)

which is a property used in the derivation. Now, for the derivation of the gradient, the
previous step based variables transforms into trajectory based variables. One collection of
states from start to end of a game is referred to as a trajectory τ and collect all the state,
action, reward tuples. Now this collection of states will occur with a certain probability
dependent on the current policy, hence τ ∼ pθn(τ) and the cumulative reward to go is
written as, r(τ) =

∑T
k=0 γ

krk which simplifies the notation. The objective function in these
new terms now becomes simply J(θ) = Epθ {r(τ)}. From basic statistics we know that the
expectation is simply

J(θ) =

∫
τ
pθ(τ)r(τ)dτ (8)

which is exactly the same as in Equation (6). To update the weights in the policy π and
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optimize the solution we need to find the gradient of Equation (8) by

∇θJ(θ) = ∇θ

∫
pθ(τ)r(τ)dτ

=

∫
∇θpθ(τ)r(τ)dτ

=

∫
pθ(τ)∇θ log pθ(τ)r(τ)dτ

= E{∇θ log pθ(τ)r(τ)}

(9)

where we have utilized the log-derivative trick from Equation (7) to get to an expression
which is simple to calculate. The expectation can be replaced by the sample mean of
several trajectories using the law of large numbers, further, including more trajectories in
this expression will lower the variance of the gradient estimate. Calculating the probability
of the trajectory as

pθ(τ) = p(s0)Π
T
k=0p(sk+1|sk, ak)πθ(ak|sk)

=⇒ ∇θ log pθ(τ) =
T∑

k=0

∇θ log πθ(ak|sk)

allows us to replace the probability term in Equation (9). This means the gradient is
written as an expectation independent of the environment dynamics, this is not an issue in
our case, but for the generalizability of the derivation it is included here. The final gradient
expression is

∇θJ(θ) = Epθ

{(
T∑

k=0

∇θ log πθ(ak|sk)

)(
T∑
l=0

γlrl

)}
(10)

and the expectation allows the gradient to be estimated using the sample mean of trajec-
tories. Given M different trajectories, the gradient is estimated as

∇θJ(θ) ≈
1

M

M∑
m=0

((
T∑

k=0

∇θ log πθ(a
m
k |smk )

)(
T∑
l=0

γlrml

))
(11)

which is the core of the REINFORCE algorithm. In practical implementation, the gradient
is computed in an auto-differentiating framework, such as PyTorch, eliminating the need to
explicitly differentiate∇θ log πθ(a

m
k |smk ). In these frameworks calculating the mean estimate

of J is enough as the backend takes care of the gradient calculations. Also due to how
gradient optimization is implemented in these frameworks, the loss function is the actual
function being minimized instead of the objective function. The loss function,

L(θ) = −J(θ)

is simply the negative objective function.
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A common issue in the REINFORCE algorithm is that it is notoriously sample inefficient,
and may require massive amounts of training to reach an optimal policy. While reaching
the optimal policy is guaranteed in theory given the correct gradient estimates, the high
variance of these estimates introduce issues that require a very large batch size or very
long training times. One common solution to this problem is to introduce a baseline that
estimates the value function in a given state. The estimate can then be subtracted from
the expected reward, giving a positive result if the trajectory was better than expected
and a negative result otherwise. Denoting the baseline as b(st) the new gradient estimate
becomes,

∇θJ(θ) ≈
1

M

M∑
m=0

((
T∑

k=0

∇θ log πθ(a
m
k |smk )

)(
T∑
l=0

γlrml − b(sml )

))
(12)

which is essentially Equation (11) with a subtracted value from the value function. Esti-
mates of the gradient using this equation will have a lower variance than estimates using
Equation (11) due to the fact that variance scales quadratically with the difference from
the expectation. An accurate baseline will closely follow this expectation which will make
the absolute values of the second factor smaller. This will in turn lower the variance of
estimates which leads to a faster convergence.

The use of baselines however, requires some extra implementation and increased compu-
tational power. Another option is to normalize the rewards which works as a simplified
estimate of the value function, and thus a baseline. This normalization can be done in sev-
eral ways. Either globally, where the mean is subtracted from all rewards or more precise
normalization groups can be used. For example rewards from states that are equally far
away from the goal patch or that are of equal difficulty can be normalized separately.
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3 Problem Formulation and Task Setup

Imagine a UAV is given the task of examining a predefined area in search of a location
defined by a given aerial image of said location3. Such a task can be relevant in several
contexts, e.g. in search-and-rescue (SAR) operations, critical infrastructure inspection, or
for various types of environmental monitoring. In this thesis, we consider a simulated proxy
for this setup by using a top view image of a landscape as an analogy of the predefined area
and only letting the agent (UAV) observe partial crops, or patches, of this underlying image.
The initial state of this image is defined by a start crop and a goal crop, and the agent
then chooses which action to take which results in a newly observed crop. At this stage the
agent is tasked with predicting which action to take based on the first two visited crops and
the goal crop. This process is repeated until either the goal crop has been reached or until
a maximum number of steps T have been taken. If the agent reaches the goal, it is defined
as a success, otherwise it is defined as a failure. An overview can be seen in Figure 5.

The choice of the size and scale parameters are selected to mimic the task described above
as closely as possible. The full images are scaled such that the image size of Him ×Wim

in pixels represents a desired real world scale of Hworld × Wworld meters. The patches
are of dimensions Hpatch ×Wpatch pixels; the size is selected such that a full image fits 5
patches with 4 pixels padding in between (cf. Figure 2). This is a relatively small number
of patches that makes the game solvable, yet requires the agent to behave intelligently –
despite a 5× 5-sized setup potentially sounding simple, it turns out to be a challenge even
for humans to solve tasks of this size (see Section 7). The various mentioned parameters
should be chosen such that the agent is able to see both local and global structure, and we
found that choosing the parameters such that each patch covers about 100× 100 meters is
appropriate. This is of the scale of a few city blocks, but not entire neighborhoods, hence
there should be some learnable structures here.

There are two sets of action spaces the agent could operate in, either within a continuous
or a discrete setup. In the discrete action space, the agent is only allowed to choose from
locations in a grid, either only the eight neighboring patches or from any of the locations in
the grid. When the agent can only choose from the adjacent patches, it is forced to move
towards the goal in several steps. In contrast, when the whole grid is available as an action
space, it is possible to reach the target with a single action. Finally, a continuous setup has
been tested where the agent outputs a move in pixel values (dx, dy) and is therefore not
constrained to move within a pre-defined grid.

The purpose of distinguishing between and considering these two setups (discrete and con-

3If GPS coordinates of the goal location are provided the task becomes much simpler, if not trivial.
However, there are many circumstances where reliable access to GPS coordinates can not be guaranteed, as
global satellite navigation systems are susceptible to radio frequency interruptions (malicious or accidental)
and fake signals. It can also be that the goal image was captured without an active GPS system (for example,
one may have access to images captured by a drone pilot who at the time of flying did not know that the
captured images were going to be critical, e.g. for a SAR operation in the same area).

16



Figure 2: The eight possible actions for the discrete 8-dimensional movement setup (num-
ber 0-7 around the agent’s current location). A possible goal location is also indicated.

tinuous) is that the continuous agent, which is more directly connected to the proposed real
world use case, may be much more difficult to optimize. This is where the discrete agent
helps by reducing the search space for the optimization algorithm, as it performs predictions
in a much sparser action space. Moreover, the step size in the discrete setup implicitly helps
the agent to cover more area in the image than the continuous setup, by eliminating the
risk of partial overlap. An example of the different action space is shown in Figure 2 where
the figure shows the 8-dimensional action space (agent-centric). The continuous agent is
allowed to take any step (dx,dy). Sample trajectories of the discrete agent are shown in
Figure 3a and Figure 3b; these show how the agent could move in the 8-dimensional discrete
setup for a success case and a failure case, respectively. The 80-dimensional setup is similar,
except that the agent is able to take arbitrarily long steps in each action.

An important design choice to make is if the agent should be allowed to operate outside the
full image or not. This is a trade-off, where on one hand the agent should not be able to go
outside the image as the search area is predefined to the area presented in the full image.
On the other hand, restricting the agent to staying inside the image requires restricting the
action space of the agent, and it would not be strictly self controlled. By this reasoning,
we decided to investigate the problem mainly with the agent having the ability to take any
action in any state. In the case that the agent moves outside the image it will receive an all
black image, showing the agent that it has exceeded its bounds. Some investigated models
will restrict the agent behavior to avoid the area outside the image (cf. Section 7.2) and in
these cases this will be clearly stated. The ideal setup would have a larger underlying image
with only a smaller part of the central image defined as the search area, that way the agent
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(a) An example game where the 8 dimensional
agent is successful.

(b) An example game where the 8 dimensional
agent is unsuccessful.

Figure 3: Examples of a successful and an unsuccessful trajectory for an agent with an
8-dimensional action space.

could move outside the search area while still receiving landscape images. However, this
setup results in computational and programming issues that make it much more difficult to
implement, and hence it was omitted from the scope of the thesis.

In ML, a larger dataset helps prevent overfitting, forcing the model to learn rather than
just memorize. One of the ways we introduce this is during the training phase, where the
start and goal patches are sampled from a discrete uniform random distribution in a 5× 5
grid setting. First, the start patch is sampled freely in the image grid, after which the goal
patch is sampled, also in the grid, such that there is no overlap between the start and goal
patches. This ensures that we get random games each time, which effectively increases the
dataset size, as one image may be used for several different setups (25 · 24 = 600 setups in
fact). To further enlarge the training dataset, we include data augmentations of horizontal
and vertical flipping, which increases the effective dataset size even further.

The sampling could also be done in a continuous fashion; however, sampling the patches
in this discrete grid setting has two main benefits. First, when subjecting the agent in
the discrete action space, we ensure that it always perfectly overlaps the goal patch when
reaching the goal. This provides a consistent reward signal to the agent during training,
where there is always one and only one solution to each setup. Otherwise, it will raise
the issue of choosing the intersection-over-union (IoU) threshold in such a way that there
would either be multiple solutions to each game or that there would be no solutions to some
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Figure 4: A more detailed example game, where the state, reward and action is presented
for each time step. This presents a successful trajectory .

games. Second, sampling the games in this discrete manner allows us to categorize them
in groups of difficulty, which is useful when examining the behavior of the various models
and baselines. Games with 1 discrete step away are of difficulty 1, games with 2 discrete
steps away are of difficulty 2, and so on. This provides in total four well-defined difficulties
(numbered 1-4).
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Figure 5: Overview schematic of AiRLoc, our RL-based agent for aerial view image-goal
localization. The input state st consists of the agent’s current position pt, its currently
observed patch ot, the goal patch g and the hidden state ht of the LSTM-based policy. First,
ot and g are fed through an embedder to generate a common representation ct. Then the
positional encoding pt is added onto that embedding. The result ct + pt is subsequently
processed by an LSTM in the Temporal Unit. This output is then feed to the Decision
Unit which yields an action probability distribution, π(·|st). This is either a 2d Gaussian
(continuous setup) or a softmax vector (discrete setup). The current movement action at
is then sampled from π(·|st), which generates the next state st+1 and reward rt+1 (reward
only provided during training). The process is repeated, either until the agent reaches the
goal patch, or after a maximum number of steps T have been taken. Note that AiRLoc is
never given an observation of the full underlying environment (even at a low resolution),
i.e., it has to operate solely based on its partial observations o0, . . .ot and the goal g.

4 Description of the AiRLoc Agent

In this section we describe AiRLoc, the reinforcement learning (RL)-based model that we
propose for tackling the aerial view image-goal localization task. The other methods and
baselines that we compare with are described in Section 5. We first outline the details
of the environment, such as formally defining rewards, actions, and state. Thereafter, the
architecture of the policy, which is implemented as a neural network (NN), is described. This
includes an overview of the purpose of each component in the NN and which approaches
that were attempted for each component.
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4.1 Rewards, Action Space and State Space

In Figure 5 we show the inner workings of how the agent interacts with the environment.
Note in particular that the environment is of a recurrent nature, where output information
feeds back into the policy and generates the next state. We next describe the details of the
state space, thereward action space and the reward design. The state space consists of
the parts of the environment that are observed by the agent. In our setup, the state st at
timestep t contains the currently observed RGB patch ot ∈ R48×48×3, the goal RGB patch
g ∈ R48×48×3, the current positional encoding pt ∈ R256 of the agent (see Section 4.2.2), as
well as the hidden state ht ∈ R256 of the LSTM which is a part of the policy network (see
Section 4.2.3).

The action space consists of the possible actions that the agent may take in any given
state. In this thesis, we have considered two different forms of action spaces, a discrete and
a continuous one (cf. Section 3). The discrete agent has 8 possible actions at at time step t,
reaching its entire 8-neighborhood, hence at ∈ {1, . . . , 8}. The continuous agent is allowed
to take an arbitrary step in both x- and y-directions, meaning that at ∈ R2×1.

The reward structure is subdivided into two main types, as follows.

• Terminal rewards are awarded at the end of a trajectory, either when the goal patch
is found or when the maximum number of steps T is reached.

– Success - A positive reward awarded to the agent when it successfully reaches
the goal patch. Otherwise zero.

– Difficulty - A positive reward awarded when the agent successfully reaches the
goal patch. However, it scales with the difficulty of the just solved game, i.e., the
actual reward awarded to the agent is the distance from start to goal multiplied
by a constant.

– Failure - A negative reward awarded when the agent fails to reach the goal patch
within the maximum number of steps. If the agent succeeds in finding the goal
patch, the failure reward is zero.

• Incremental rewards are awarded at each time step of the agent, including the step
that leads to the terminal state.

– Step - A negative reward awarded at each time step constantly.

– Closer - A positive reward awarded when the agent performs an action that
results in it moving closer to the goal patch. If the action has moved the agent
further away from the goal, the closer reward is set to zero.

– IoU-scale - A positive reward awarded when the agent has reached a sufficiently
high IoU overlap with the goal patch. Note that the overlap is smaller than
the needed threshold for achieving a success. The actual reward given to the
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agent is the IoU multiplied with the IoU-scale reward when the IoU is above the
threshold. Only enabled for the continuous agent.

– Outside - A negative reward awarded when the agent moves outside the image.
If the agent remains within the image the outside reward is set to zero.

The effects of different reward settings in this structure was investigated during the project.
However, it was found during early development that the incremental rewards only compli-
cated the reward signal for the agent and did not yield any performance improvement in
the measured metrics. Therefore, these metrics are not used during training of the models
that are evaluated in Section 7. These simplifications of the available rewards leads to the
following expression for the reward rt:

rt =


rsuccess + d · rdifficulty, if current state is terminal and successful

rfailure, if current state is terminal and failed

0, otherwise

(13)

where rsuccess > 0, d > 0 is the distance from the start to goal patch, rdifficulty ∈ {0, 1}, and
rfailure ≤ 0. In the discrete case this distance is the minimum number of required steps from
the start to the goal patch. In Section 7 we will specify the parameters rsuccess, d, rdifficulty

and rfailure of the reward structure (13) that we have used during model training.

4.2 AiRLoc Model Structure

Given that the problem setup described in Section 3 is quite general, there exists many
different ways to devise an RL method for tackling the task. Our main AiRLoc model
structure, however, consists of the following four parts: i) the raw visual inputs from the
current patch ot and the goal patch g are passed through the patch embedder which yields a
low dimensional embedding ct of what the agent currently sees and looks for; ii) the current
positional encoding pt is then added to ct; iii) ct + pt is then passed to a temporal unit
which combines the information of what the agent currently observes with previous inputs;
and iv) the output from the temporal unit is finally passed to a decision unit which maps
the information to a probability distribution π of the agent’s next action. In Section 7 we
will also evaluate and compare different variants of AiRLoc that lack one or several of these
components. We next go over the four main parts of AiRLoc in more detail.

4.2.1 Patch Embedder

The RGB visual inputs ot and g are first handled by the patch embedder. We performed
early experimentation with different types of patch embedders, which have in common that
they generally consist of a series of convolutional layers followed by rectified linear unit
(ReLU) activations and max pooling operations. Non-RL-based pretraining of backbone
vision components is very common when tackling RL problems, since it typically yields
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significantly better end performance [29, 20, 37, 42, 43]. Inspired by these earlier works,
different non-RL-based pretraining tasks (depending on which patch embedder is used) have
been tried for pre-optimizing the patch embedder network weights, before further refining
these weights within the full model structure (cf. Figure 5) during RL training.

Some of the datasets we have used contain segmentation masks for buildings in the aerial
view images (see Section 6 for more details). The effect of including this semantic infor-
mation as an additional input to the RL agent has also been investigated (see Section 7),
and in these experiments the patch embedder has been altered to accept inputs with four
channels – three for the RGB image, and one for the segmentation mask. Note that in these
cases, only the very first layer of the patch embedders have been altered.

DoerchNet. Inspired by the spatial context self-supervised learning approach by Doerch
et al. [9], a similar network structure was implemented as a patch embedder. This network
will from here on be referred to as DoerchNet. The purpose of the original DoerchNet
approach is to learn context from images and to gain a conceptual understanding of the
images it processes. More precisely, the task presented in [9] is about predicting the location
of a goal patch relative to a start patch, where the goal patch is always adjacent to the
start patch. Hence, the start patch is first selected randomly in an image and then the
goal patch is set to any of the eight adjacent patches of equal size. To limit the network’s
ability to overfit to patterns in the raw image values, which is shown to severely degrade
performance on downstream tasks such as image classification, the patches are separated
by a few pixels. This prevents the learning of boundary regions and promotes more global
patterns. As can be seen in Figure 6, the setup is very similar to the problem setup of this
project. In fact, when the initial distance between start and goal patch is a single step in
the discrete 8-dimensional version of our setup, it is identical to this pretraining task of
DoerchNet. Naturally, when this initial distance increases, the problem diverges from the
pretraining setup. However, we concluded that the more limited task in [9] would likely
serve as a valuable pretraining task for the patch embedder – our results also clearly show
this in Section 7.

The actual DoerchNet have implemented in this project is a slightly different variant com-
pared to the one proposed in [9]. The authors of the original paper developed an architecture
that after pretraining can be used as an individual patch embedder for various downstream
tasks, such as image classification. This means their model includes a late fusion architec-
ture that only shares information in the last layers between the two input branches. In
stark contrast, the main goal of the patch embedder in the setup of this project is to create
an efficient embedding of the relation between two patches, not of each patch individually.

Our DoerchNet implementation consists of two parallel branches with four convolutional
layers, each with ReLU activation functions and max pooling operations. The start and
goal patch are first fed separately into one branch each. To enable early information sharing
between the two patches, after two convolutional layers, the outputs of the two branches are
concatenated and sent through the rest of their respective branches (i.e. an additional two
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Figure 6: The setup of the DoerchNet pretraining task. Note the similarities with Figure 2,
where the only difference is that the goal patch is guaranteed to be one of the neighboring
patches.

convolutional layers for each). The two resulting 128-dimensional embeddings are then con-
catenated. These are subsequently passed through two FC layers (with ReLUs in between),
where the last FC results in an the eight dimensional output that is fed through a softmax
function. These eight outputs correspond to the eight possible relative locations of the
goal patch. A visualization of the implemented architecture can be seen in Figure 7. The
network is pretrained using the categorical cross-entropy loss, calculated using the network
prediction and a one hot encoding of the true relative goal patch direction.

For pretraining our DoerchNet patch embedder, we resort to the previously discussed Adam
optimizer, with batches of 256 pairs of image patches and a learning rate of 10−3. When
utilizing the network within the AiRLoc agent, the final fully connected layer were discarded
and the 256-dimensional concatenated embedding from the two branches was used as input
to the next block of the full AiRLoc model.

Segmentation Network. The satellite datasets used sometimes include labeled segmenta-
tion masks for buildings in the images. Therefore, we have tried a patch embedder based on
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Figure 7: The model structure for the patch embedder, inspired by the overall structure
proposed in [9]. The input images are located to the left and the final embedding to the
right (the two different beige colors represent the current and goal patches, respectively).
The orange block symbolizes a 3-by-3 convolution followed by a 2-by-2 max pooling which
reduces the height and width of the image by a factor of 2. The dotted lines symbolize fully
connected layers, and the rightmost rectangle is the classification output. When used as a
patch embedder in AiRLoc, the last linear layer is discarded and the embedding size is 256.

pretraining a fully convolutional network (FCN) to predict this segmentation mask and use
an intermediate stage of the network as an embedding for AiRLoc. The main inspiration for
this embedder is the U-Net model for biomedical segmentation applications [27]. A publicly
available implementation of the U-Net4 was used as a starting point for this patch embed-
der. However, the inputs to the network in this project has significantly smaller dimensions
than the inputs in the original task. Therefore, the network structure was altered. The
final network consist of four downsampling convolutional blocks, which reduce the spatial
dimensions of the input image. Leading to a three dimensional embedding space with 64
channels. Then, four upsampling convolutional blocks recreate the input image dimensions.
The loss used during pretraining of this patch embedder was binary or regular (depending
on the number of classes) cross-entropy loss calculated with the predicted segmentation
masks and the labeled masks from the dataset.

4https://github.com/milesial/Pytorch-UNet
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Worth noting is that this network type was pretrained on a single patch at a time and
the learned representation contains no information about the surrounding image or any
relation to any other part of the image. In particular there is no relationship prediction
between the current patch and the goal patch. The idea in this setup is that learning
the segmentation forces the embedder to attend to structure in the image, and learning
relevant relationships between the patches is left for later stages in this variant of AiRLoc.
In contrast, the DoerchNet embedder learns the spatial relation between two patches directly
in the embedder. During training of the the full AiRLoc model, the upscaling blocks of the
segmentation embedder are discarded and the latent space representation of the input patch
is flattened and sent to the next step of the model. The start and goal patch are therefore
handled completely separately by the segmentation embedder.

Training of this network also utilizes the Adam optimizer with batches of 128 patches and
a learning rate of 10−4. We have also used the segmentation network during evaluation
as an alternative to the ground truth semantic segmentation masks for a specific variant
of AiRLoc which obtains semantic segmentation as input (see Section 7). In these cases
the pretrained segmentation network predicts the building masks of the patch inputs and
appends them to the RGB input. This special variant of AiRLoc then uses this predicted
mask instead of the ground truth information.

Autoencoder. Similar to the latent space approach in the segmentation embedder, an au-
toencoder architecture was developed to capture the vital visual information in the patches.
The network structure is very similar to the segmentation embedder implementation with
four downsampling convolutional layers followed four upsampling convolutional layers. As
previously, the network was pretrained using the same training data as the AiRLoc models,
and the patches were sampled in the same way as the start patches during RL training.
Using mean squared regression loss, the network was trained to recreate the input patches
as accurately as possible. During RL-training the upsampling layers are discarded and the
bottleneck after the four downsampling layers is used as the latent space representation of
the visual input.

4.2.2 Positional Encoding

Besides the visual inputs of the current and goal patches, another type of input we have
experimented with during the project is different encodings of the position of the agent
within the environment. Solving the task proved difficult without any context about the
agents location (we also show this in Section 7). Therefore, the positional encoding was
introduced, but note that none of the methods receive global positional information (e.g.
GPS coordinates), i.e., the positional information is always relative to the search area
that constitutes the agents local environment. Such information may be available in many
practical use-cases, e.g. during search-and-rescue within a confined area, where a UAV
could easily keep track of its location relative to the borders of this area. For all models,
this encoding was introduced after the patch embedder step and before the temporal unit,
as indicated in Figure 5. Two main types have been experimented with: a basic positional
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encoding and a version of the Transformer positional encoding [36].

The basic encoding simply keeps track of a 5×5 array (the size is set to match the number of
horizontal and vertical grid cells in the task setup), initialized with all zeros, and where the
element corresponding to the agent’s current position is set to one. This vector is flattened
and concatenated to the patch embedding before entering the temporal unit. The strength
of this approach is its simplicity. However, early experimentation showed that this approach
did not improve results relative to not having any positional information. A possible reason
is that the appended values dilute the information of the visual embedding vector.

For this reason, another approach – inspired by the positional encoding of the Transformer
model – was developed. In this approach a pre-calculated embedding vector

PEpos,i =

{
sin (pos/1002i/(d/2)), i is even

cos (pos/1002(i−1)/(d/2)), i is odd
(14)

is used, where the position pos corresponds to the position within the environment in one
dimension (in other words, (14) is computed for the x- and y-directions independently), in
our case ranging from 0 to 4. Here d is the size of the embedding from the patch embedder.
To create a full positional embedding pt to add to the patch embedding ct, a vector of
size d is created. The first half of the vector is filled with the contents of PEx−pos and
the second half with the contents of PEy−pos. This vector pt is then added to the output
ct from the patch embedder. This method generates encodings with high cosine similarity
between close positions and decreasing further away, as can be seen in Figures 8a and 8b.
This property is then used by the agent to discern where in the search area it is located.

(a) Cosine similarity of the embedding for po-
sition (0,0) with the embeddings of all other po-
sitions.

(b) Cosine similarity of the embedding for po-
sition (1,2) with the embeddings of all other po-
sitions.

Figure 8: Two examples of cosine similarites between different postional encodings.
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4.2.3 Temporal Unit

The patch embedder creates a low dimensional representation of what the agent sees in the
current time step, but with no information about what the agent has seen previously. The
hypothesis is that to successfully navigate during longer episodes there is a need for drawing
conclusions based on previous as well as current inputs. The temporal unit addresses this
problem. Two main options for the temporal unit have been explored, an LSTM module
[13] and a Transformer block [36].

LSTM. The maximum sequence of inputs to the temporal module is limited to the number
of steps in an episode. For the types of scenarios investigated in this project the number of
steps very rarely exceeded 10. This relatively short sequence of inputs – as well as its lower
requirement on compute – motivates the usage of the LSTM architecture instead of the
more advanced Transformer (described in the next paragraph). Hence the LSTM version
of the temporal unit is considered the default setup. It takes as input the 256-dimensional
flattened embedding from the patch embedder, along with its positional encoding, and
outputs an equally sized vector which is passed to the decision unit (see Section 4.2.4). The
hidden and cell states are 256-dimensional vectors that are zero initialized at the start of
each episode.

Transformer. Inspired by the impressive performance of the Transformer architecture for
image classification proposed by Dosovitskiy et al. [10], an alternative to the LSTM-based
temporal module is the Transformer [36]. Instead of the sequential methods in the LSTM
where each patch embedding successively is passed to the LSTM module, the Transformer
module receives all previously seen patches as input simultaneously. The main motive for
implementing this architecture is the Transformer’s superior ability to make connections
between relevant patches using the learnable attention mechanism. This ability should
allow the module to draw conclusions based on early visual inputs in conjunction with late
inputs more efficiently than an LSTM. This was implemented using a Transformer encoder
based on the version proposed in [36]. The input to this encoder is a variable length sequence
with the embeddings of all previously seen patches, including the patch at the current time
step. As described previously, the embeddings already contain a positional encoding. All
outputs from the Transformer are discarded except the final head corresponding to the
input of the current patch embedding. This output is passed to the final linear layers.

4.2.4 Decision Unit

As indicated in Figure 5, the output from the temporal unit is passed to the decision unit,
which maps the condensed low dimensional information of the agent to a decision on where
to move. The structure of the decision unit is a single linear layer followed by either a
softmax activation function or no activation function at all. The purpose of this module is
to map the low dimensional embedding to a policy distribution π. This allows for testing
the different action spaces without modifying the basic structure of AiRLoc.
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4.3 Early Design Choices

Due to the task setup being novel, at least to the best of our knowledge, early parts of
the project explored very different approaches to both the task and general model struc-
ture. These investigations gave some initial insights which were utilized during the rest
of the project. We here mention some key aspects that were settled during early model
development.

Action space. Initially, we proposed the idea of using a continuous action space, as we
imagine this being most similar to the real world application. However, it proved difficult to
tackle the task with the continuous agent. There may be several reasons why the continuous
agent did not prove as effective as the discrete one. The main reason may simply be that we
spent significantly more time on developing and evaluating discrete agents, and perhaps with
more time and effort we could have made the continuous agent work equally well. Another
reason could be that the continuous action space was implemented as a 2d gaussian, which
is unimodal. A unimodal distribution may be poorly fit for our task setup, where the
goal location may often have multiple high-probability modes as to where it is relative
to the current location. In other words, given the input patches there might be several
locations with a high estimated probability of moving there. This cannot be reflected using
a single 2d-Gaussian action distribution. Therefore, the effort was refocused to the discrete
8-dimensional action space setup, and unless explicitly stated otherwise, this is the setup
referred to.

Patch embedder. Comparing the effects of different patch embedder architectures, it
became evident that the Doerch-style embedder far surpassed all other approaches. There-
fore, the Doerch-style embedder was selected as the default patch embedder for all ML-based
models. Pretraining and development of the segmentation network was however continued,
as it is used as a predictor of the segmentation masks of a particular variant of AiRLoc.

Temporal unit. While the Transformer is a novel and exciting model architecture that has
proven to work well for a wide range of sequential problems, we were unable to see any of
these performance gains translate to our task. Likely due to limited time and hyperparam-
eter optimization, we were unable to tune the Transformer to match or exceed the LSTM
in task accuracy. Additionally, the Transformer architecture proved very computationally
heavy and requires longer training time compared with the LSTM-based AiRLoc model.
Therefore, the decision was made to abandon the Transformer completely and solely use
the LSTM-version of the temporal unit.
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5 Baselines

To assess the efficiency and accuracy of our proposed reinforcement learning-based AiRLoc
model, it will be compared to several learnable and non-learnable baselines in Section 7.
These baselines are evaluated in the same setting as AiRLoc.5 We now proceed with ex-
plaining these baseline methods.

Privileged Random. This is a non-learnable baseline. At each time step, the next move
is sampled at uniform random from the eight adjacent patches, with the following two
exceptions (privileges, as they are to its advantage). First, any move that would take the
agent outside the image is prohibited. Second, whenever possible, the agent is prevented
from moving onto a patch it has already visited before. If the agent has to choose between
revisiting locations and going outside the image, it always chooses to revisit patches. To be
clear, the actions are selected at uniform random with respect to the current set of available
actions, based on the mentioned movement restrictions. Note that with these movement
limitations, Privileged Random is in fact close to an upper bound (in expectation) in terms
of results that are obtainable without visual inputs.

Local. This is a learnable baseline. Recall that the DoerchNet embedder architecture is
trained to predict the move that brings the agent from its current patch to an adjacent
goal patch (cf. Section 4.2.1). However, by simply repeating this process in the landing
patch it becomes possible to assess how well this baseline fares even for setups where the
goal is further away. Therefore, during evaluation of this baseline, the process is performed
repeatedly until the model either finds the goal patch or the maximum number of steps T
is reached.

Privileged Local. Same as Local, but with the same privileged movement restrictions as
Privileged Random.

Global. This is a learnable baseline that is quite similar to Local. More precisely, it is
a self-supervised model that given the start and goal patches predicts the location of the
goal patch relative to the start patch. In this case, the goal may be arbitrarily far away
from the start patch, as shown in Figure 9. For this baseline, the search process is always
terminated after the first step. The range of model means that it is always, in theory, able
to reach the goal patch in a single step. The purpose of this baseline is to assess whether
it is possible to solve the aerial view image-goal localization simply by abstracting it as a
simple self-supervised classification problem.

Human. We developed a framework for assessing human performance on the aerial view
image-goal localization task. Se details in Section 5.1.

5Except for the human baseline which is only evaluated on a subset of the validation set of Massachusetts
Buildings (see more about datasets in Section 6).
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Figure 9: The agent-centric action space of the Global baselines. The model is able to
move four steps relative to its current position in any direction, resulting in a 80-dimensional
action space. Hence, the baseline is theoretically always able to reach the goal patch in a
single step. In this example the correct move is action 68 which results in moving three
steps down and two to the right.
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5.1 Human Baseline

To compare the performance of AiRLoc with a human operator in a similar setting, a game
version of the task was developed. This game was designed to resemble how AiRLoc per-
ceives the environment, for fair comparisons. Therefore, in addition to receiving the current
and goal patches, the human operator is also aware of the borders of the environment, and
knows the current position as well as the history of all previously visited positions within the
confined environment – see Figure 10. Based on this input, the human operator is tasked
with moving to any of the eight adjacent patches (the movement is selected by clicking with
a mouse cursor on one of the eight dark squares surrounding the current location). In fact,
the human operator can even see all the previously visited patches, while this information
is not provided to AiRLoc. We decided to provide humans with this additional information
as they have not been trained for the task at hand.

The age span of the 19 people who participated is between 14 and 42 years, with an average
of 26.4 years and a median of 25 years. Of the 19 people, 13 were men and 6 were women
(i.e., 68% and 32%, respectively). For each human operator, 12 unique images from the
Massachusetts Buildings validation set were used (see Section 6), as well as a few sample
images for the player to get acquainted with the controls of the game – the participants are
able to practice as long as they desire, and no statistics are tracked during this warm up
phase. The exact games provided span a subset of the games that AiRLoc and the other
baselines are evaluated on, to ensure the most fair comparison. However, each human is
not tested on the entire validation set, which results in a higher variance for the human
performance evaluation. The difficulty settings were split equally over these twelve games,
with three games per difficulty (recall that difficulty refers to the distance between the start
and goal patches, ranging from 1 to 4 steps away). Statistics similar to those recorded for
AiRLoc and the other baselines were collected by the game (see Section 7.1).

Even though the human setup is very similar to that of AiRLoc, there are key differences
and concepts that do not translate well to a human controlled setup. First, the positional
encoding used for AiRLoc is difficult to translate to human visual processing, and instead a
plain map of the position was implemented (this is arguably in favor for the human baseline,
as the participants receive explicit information from past locations, different to AiRLoc).
Second, the human participants have not extensively trained on the task like AiRLoc, and
their visual systems are likely not as tailored towards handling the low resolution of the
patches. On the other hand, humans have a lifetime worth of generic visual pretraining
which AiRLoc lacks. Third, the human participants have a limited time to complete each
game (60 seconds). Such a time limit was used for the convenience of the participants
– we wanted to avoid that the participants feel like they had to spend several minutes
per individual action in order to squeeze out the maximum possible performance. The 60
second time limit was assessed to be more than sufficient for completing each game, and
the participants that we asked fully agreed with this. These discrepancies, in conjunction
with the limited number of human controlled trajectories, somewhat limit the reliability of
this baseline. Nonetheless, it is still a useful indication of the human performance for this
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novel task.

Figure 10: An example of the performance evaluation setup for the human baseline. Each
participant is given a set of 12 different such games, and there is no overlap in the games
played by different participants. The system tracks the number of steps taken, success rate
and time spent per game.
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Figure 11: Two examples of images from the Massachusetts dataset.

6 Datasets

When selecting datasets, a mix of different environments was sought after with depictions
of areas with both urban and rural features. The Massachusetts Buildings dataset [18]
contains images of Boston as well as the surrounding suburban and forested areas. It shows
houses, roads and other clearly identifiable man-made structures as seen in the example
in Figure 11, but also woods and less developed regions. This dataset also contains a
segmentation mask indicating where buildings are located – this was used for certain models
that receive semantic segmentation as input (see Section 7).

We use Massachusetts Buildings as the main dataset for model development and evalua-
tion, and thus we split it randomly into training, validation and test sets (these consist of
70%, 15% and 15% of the data, respectively). The images are initially cropped to fit the
desired real world scale, after which they are split according to the training, validation and
test ratios. This generates 832 training, 178 validation, and 178 test images. The fixed
evaluations consist of 4 · 178 = 712 validation and test images, respectively, i.e. one setup
per difficulty and image.

The Dubai dataset [33] also contains depictions of man-made structures, as evident in
Figure 12. However, the surrounding areas are not temperate, suburban neighbourhoods
and woods, but dry deserts. This out-of-domain dataset is used to assess the generalizability
of the developed methods.
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Figure 12: Two examples of images from the Dubai dataset.

7 Experimental Results

Our proposed AiRLoc agent, its variants, and the learning-based baselines are implemented
in and trained using PyTorch on the training partition of Massachusetts Buildings. During
all training and evaluation we have used GPU-equipped computers (Titan V100). Training
an AiRLoc agent, which contains about one million parameters, takes about 80 hours.
The machine learning based baselines, segmentation network and the patch embedder all
require circa eight hours of training. Due to the relatively small size of all models utilized in
this project(AiRLoc and AiRLoc sem. seg, has 827 698 and 948 008 trainable parameters
respectively), parallel training of multiple networks on a single GPU is possible and was
used extensively. Thus a total evaluation of an agent using the test or validation split of
any of the datasets takes about one minute. For AiRLoc and its variants, we train the
policy networks using REINFORCE (cf. Section 2.4) with a batch size of 64, a maximum
trajectory length T of 10, a learning rate of 10−4, and a discount factor γ of 0.9. Employing
data augmentation for the training set and using random initial setups (i.e random start
and goal locations) for the training split generates more than 60,000 unique batches. We
also employ within-batch reward normalization based on distance left to the goal. Hence,
all rewards from states with distance one from the goal in the current batch are normalized
to mean zero and standard deviation one, and this is repeated for rewards associated with
distances two, three and four as well.

Each model was trained until convergence on the validation set in the sense that the success
rate remains approximately constant for several thousand batches, or until the model has
trained for a maximum of 50,000 batches. To verify the performance of AiRLoc is not overly
dependent on the random initialization of its model parameters, five different random seeds
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were used during model training. Four out of five models reached a very similar result6 on
the validation set (see Appendix B), and the median performing AiRLoc agent is evaluated
in the following results and comparisons. Unless specified otherwise, all models are evaluated
in deterministic mode meaning that the most probable action is selected in each step. There
is also the possibility of running the models in stochastic mode meaning that the actions
are sampled from the policy distribution, but in general this was not used.

When evaluating and comparing models and baselines, it is critical that they have the
exact same environmental conditions, such that the task is not more difficult for one model
than for another. Therefore, we create a list containing one initial setup (start and goal
coordinates) for each difficulty (initial distance between start and goal) for each image in
the evaluation sets (validation and test). All models and baselines are evaluated following
the list corresponding to each dataset. This allows for consistent evaluation of the models,
giving a reproducible indication of which model performs best.

The main evaluation (see Section 7.2) consist of four different setups, all except one on
Massachusetts Buildings:

• an evaluation on the test set with trajectory length T = 10;

• an evaluation on the validation set with T = 10;

• an evaluation on a different dataset (Dubai) with T = 10.

• an evaluation on the test set with longer trajectories (T = 100)

Two main reward structures were investigated, cf. Equation (13). The only difference
between the two reward structures is that one of them has one more component and is thus
referred to as the complex reward. Similarly, the simpler reward is referred to as the simple
reward. The simple reward

rsimple
t =


3 if current state is terminal and successful

−1 if current state is terminal and failing

0 otherwise

(15)

treats each trajectory equally, meaning that the agent is equally rewarded independently of
the difficulty of the setup. In contrast, the complex reward

rcomplex
t =


3 + d if current state is terminal and successful

−1 if current state is terminal and failing

0 otherwise

(16)

takes the difficulty d ∈ {1, 2, 3, 4} into account where the more difficult setups get a larger
reward. Note that the penalty for not converging stays the same for both types of rewards.

6One of the five seeds resulted in a somewhat lower success rate, but it is still higher than the best
comparable non-RL-based method.
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Unless otherwise specified, all AiRLoc models that are evaluated have been
trained with the simple reward shown in Equation (15).

7.1 Evaluation Metrics

To evaluate the performance of the various models, we introduce five metrics. These metrics
are designed to capture both the overall performance and details regarding model behaviors.

• Success measures the percentage of setups where a model reaches the goal patch
(higher is better). See examples of a successful trajectory in Figure 3a and an unsuc-
cessful one in Figure 3b for further clarification.

• Steps is the average number of actions taken by a model (lower is better). For all
failure trajectories this metric will reach the maximum value (mostly T = 10), while
for successful trajectories it is simply the number of actions required to reach the goal
patch. Hence, the steps metric lies in the range [1, T ].

• Step ratio measures the average ratio between the minimum required number of steps
and the taken number of steps (higher is better). Hence it is a value in the range
(0, 1], where 1 corresponds to always taking the minimum number of steps to reach
the goal. This metric is ill-defined for the trajectories that do not reach the goal
patch; hence it is only computed for successful trajectories. This metric is also ill-
defined for the Global baselines, as it can reach the goal patch in a single step from
any location, which is not a fair comparison – hence we omit reporting this metric for
these baselines.

• Residual distance is a metric tailored to the unsuccessful trajectories (lower is better).
This metric measures the average distance (in steps) between the final location of the
agent in relation to the goal location.

• Time is the mean time per action in milliseconds.

7.2 General Performance

In Table 1 we compare our principal AiRLoc agent, presented in Figure 5, to the random,
local and global baselines. The results presented in this table are from the test set of
Massachusetts Buildings. Note especially that in regard to success rate, AiRLoc surpasses
the baselines.
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Table 1: Results on the test set of Massachusetts Buildings, where models are allowed to
take at most 10 actions per trajectory. Note that AiRLoc surpasses all baselines in terms of
success ratio. While the step ratio is slightly better for the local restart models, the success
rate of these models is too low to be comparable to AiRLoc. Further, the random baseline
is the only approach with better residual distance results, which is likely due to the fact that
the random agent is unable to go outside the image borders. As expected the non-learnable
random baseline is the fastest while AiRLoc with the additional segmentation network is the
slowest.

Agent type Success (%) Step ratio Steps Residual dist. Time (ms)

AiRLoc 59.2 0.61 7.0 2.5 14

AiRLoc (sem. seg.) 61.0 0.56 7.1 2.5 20

Privileged Random 41.0 0.39 8.0 1.6 6.1

Local 12.6 0.79 9.0 6.4 11

Privileged Local 51.5 0.57 7.5 2.5 13

Privileged Local (sem. seg.) 59.7 0.58 7.3 2.5 18

Global 7.0 - 1.0 2.9 17

Table 2 shows a more comprehensive study of AiRLoc. This table includes both ablations
and expansions of AiRLoc. To avoid over-exploiting (and hence potentially overfitting to)
the test set, this table presents results obtained through evaluations on the validation set
of Massachusetts Buildings. The default model in this table is the same AiRLoc as the one
presented in Table 1 and the contents in the parenthesis describe what components have
been added or removed. The focus of the abltion study has been to asses the effect of the
various submodules on the success rate. Hence, the time statistic was deemed non-relevant
and therefore omitted from Table 2. We next describe these various AiRLoc variants.

• Complex is the complex reward structure Equation (16) that provides a bonus for
more difficult setups – all other models are trained using the simple reward structure
Equation (15)7.

• Priv. has the same heuristic privileges as the random agent (i.e. never moves outside
and always avoids visiting past locations), but the actions are taken according to the
predicted policy subject to these movement constraints.

• Sem. seg. GT has an additional ground truth semantic segmentation channel as input
to the model. This segmentation mask indicates the location of buildings within
the patches. Note that this model uses ground truth segmentation masks during
evaluation.

• Sem. seg. is semantic segmentation with prediction, identical to the other sem.
seg. except that the segmentation mask is predicted by a pretrained U-Net from the

7Additional results from this setup are presented in Appendix B, but in general the simpler reward proved
superior.
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visual patch inputs. This model does not use any ground truth information during
evaluation.

• Frozen emb. uses a frozen patch embedder, meaning that the weights of the patch
embedder are not further refined during RL training.

• From scratch is a setup where the entire AiRLoc agent, including the patch embedder,
is trained solely using RL (no pretraining of patch embedder).

• No LSTM is an AiRLoc agent where the temporal unit is removed and the patch
embedder is directly connected to the decision unit.

• No RGB is an AiRLoc agent where the input patches have been replaced by all zeros,
meaning that the only information passed to the agent is the positional encoding of
the current location.

• No pos. enc. is an AiRLoc agent without any positional encoding.

Table 2: Results on the validation set of Massachusetts Buildings, where models are al-
lowed to take at most 10 actions per trajectory. First, note that AiRLoc outperforms humans
on average. Second, most ablations result in a distinct performance decrease, noting espe-
cially the severe performance drop when omitting pretraining (from scratch) and positional
encoding – these modifications even result in AiRLoc variants that perform worse than the
random baseline. One also sees that visual (RGB) input and temporal processing are crit-
ical to performance. Moreover, the simpler reward yields better results than the complex
one, and adding the movement constraint privileges of the random baseline does not yield
any significant improvements for AiRLoc. This indicates that AiRLoc has learnt relevant
’movement restrictions’ during RL training. The least impact on performance seems to be
the freezing of the embedder as this shows no clear effect on the results.

Agent type Success (%) Step ratio Steps Residual dist.

AiRLoc 58.6 0.60 7.1 2.5

AiRLoc (complex) 53.5 0.60 7.5 2.3

AiRLoc (priv.) 60.7 0.59 7.0 2.6

AiRLoc (sem. seg. GT) 64.6 0.61 6.8 2.3

AiRLoc (sem. seg.) 63.5 0.59 7.0 2.3

AiRLoc (frozen emb.) 60.7 0.60 6.9 2.5

AiRLoc (from scratch) 38.9 0.59 8.2 2.3

AiRLoc (no LSTM) 42.0 0.58 8.0 2.3

AiRLoc (no RGB) 40.7 0.61 8.2 2.6

AiRLoc (no pos. enc.) 33.0 0.49 8.7 2.5

Privileged Random 39.0 0.51 8.2 2.6

Local 14.4 0.83 8.9 6.4

Privileged Local 51.2 0.59 7.5 2.6

Privileged Local (sem. seg.) 59.8 0.57 7.7 2.6

Global 8.0 - 1.0 2.9

Human 55.7 0.54 7.6 2.3
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As previously mentioned, the main training and validation datasets depict urban regions in
Boston, Massachusetts. To investigate the generalizability of the models, we also evaluate
them on the secondary Dubai dataset, see Table 3. The AiRLoc model in this table is
the same as in Table 1 and Table 2. It is important to emphasize that the agent is not
trained on any data in the Dubai dataset – it is only evaluated on this data. Still, the
model performance remains in the same region as before, indicating that AiRLoc is robust
to environment changes. In particular, as before, AiRLoc outperforms the other learning-
based methods and the heuristic random baseline.

Table 3: The AiRLoc model and baselines evaluated on the previously unseen Dubai data
(i.e., all learnable models were only trained on Massachusetts Buildings). AiRLoc gener-
alizes well to the unseen data from Dubai, noting only a slight decrease in performance in
comparison to Massachusetts Buildings – for example, the success rate for AiRLoc drops
less than 2 percentage points. The baselines also remain fairly constant in terms of their
performance relative to Massachusetts Buildings.

Agent type Success (%) Step ratio Steps Residual dist.

AiRLoc 56.9 0.60 7.2 2.8

Privileged Random 41.0 0.51 8.0 2.5

Local 15.0 0.87 8.9 6.4

Privileged Local 55.9 0.63 6.9 2.6

Global 5.6 - 1.0 3.0

Another important aspect to analyze is how the models perform when increasing their
maximum number of allowed steps, T . We present such results in Table 4, where the
models are allowed to run for up to 100 steps in comparison to the previous 10. As this
is an out-of-domain setup for AiRLoc – which is always trained assuming at most 10 steps
per trajectory – there is also the case for using a privileged AiRLoc variant which has the
movement priviliges of the random baseline (i.e. it avoids moving outside and on previously
visited locations). As can be seen, adding such privileges in this longer trajectory setup
improves the performance of AiRLoc, which it did not for the 10-step evaluation in Table 2.
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Table 4: Results when allowing a virtually unlimited number of steps (100) on the test set
of Massachusetts Buildings. This is reported as (stochastic | deterministic) in each cell,
where the stochastic models sample from the policy distribution while the deterministic select
the most likely action. These results suggest that the best self-contained model is AiRLoc.
When adding the movement privileges of the random agent to other models it seems that the
local baseline with segmentation ground truth slightly outperforms our RL model under the
same conditions – however, it does not guarantee convergence in the deterministic case. An
important note to make here is that like the out-of-domain data of Dubai, this evaluation
also represents a severe out-of-domain setup for AiRLoc, which is always trained assuming
at most 10 steps per trajectory.

Agent type Success (%) Step ratio Steps

AiRLoc 91.8 | 78.2 0.42 | 0.49 21.0 | 28.3

AiRLoc (priv.) 100 | 100 0.37 | 0.38 11.7 | 11.3

AiRLoc (sem. seg.) 92.9 | 82.5 0.42 | 0.46 19.3 | 24.4

AiRLoc (sem. seg. priv.) 100 | 99.9 0.40 | 0.41 10.8 | 10.5

Privileged Random 99.9 | - 0.30 | - 14.5 | -

Local 20.8 | 12.4 0.53 | 0.81 80.9 | 87.9

Privileged Local 99.0 | 89.6 0.34 | 0.41 13.8 | 19.8

Privileged Local (sem. seg.) 100 | 97.1 0.47 | 0.52 9.3 | 10.5

7.3 Agent Behavior

In this section we provide some insights for how AiRLoc behaves in various situations. As
before, unless otherwise specified, we investigate the AiRLoc agent described in Figure 5
which does not have semantic segmentations as input, and is trained with the simpler reward
structure Equation (15). Example trajectories of this AiRLoc agent are shown in Figure 13
(on the validation set of Massachusetts Buildings), and more can be found in Appendix C.

During evaluation (and training), the agent encounters setups with different difficulties, in
that the start to goal distance varies between episodes. The probability of success in solving
the task for different difficulties may naturally vary, e.g. since it is likely more difficult to
reach the goal when it is far away. To assess this quantitatively, we show in Figure 14
the success rates of AiRLoc and baselines versus episode difficulty. This data is gathered
from the evaluation of AiRLoc and baselines used for Table 1 (i.e. the validation set of
Massachusetts Buildings). For the respective models, dashed lines correspond to the global
averages over all difficulties.
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Figure 13: Four example trajectories of the AiRLoc agent, where ”S” indicates the start
patch, ”G” indicates the goal patch, and the small numbered circles correspond to the patches
visited before reaching the goal. Note that the underlying search area is never observed in its
entirety (not even at low resolution), i.e., AiRLoc operates solely based on the sequentially
observed partial glimpses and the goal patch. AiRLoc is successful in all but the lower right
case. Note in particular the exploration behavior which often resorts to diagonal movements.
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Figure 14: The success rate of AiRLoc and various baseline methods during evaluation
on the validation set of Massachusetts Buildings versus episode difficulties. Dashed lines
(in matching colors) correspond to global averages over all difficulties. Unsurprisingly, all
approaches are generally more successful at episodes where the agent starts closer to the goal.
Our AiRLoc agent is consistently better than the non-human baselines, and also surpasses
or matches the human baseline independently of episode difficulty.

Additionally, to examine the behavior of the agent in specific situations, the policy distribu-
tion in a particular initial start state is inspected. More specifically, a new setup is devised
where the trained AiRLoc agent has a fixed starting location in the lower left corner of
the search area. Then, for each image in the validation set of Massachusetts Buildings, the
initial policy distribution for each goal location along either the left or the bottom border
of the search area is examined. The probabilities of taking each action during the first step
of the trajectory are presented in Figure 15, where values are separated by the distance
from the starting position (in the lower left corner) to the goal. Note that the y-axis in the
respective subfigures are differently scaled. In both scenarios, when the goal is adjacent to
the starting location, the agent is most likely to take the action that results in immediate
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success. Similarly, in both cases the same type actions (’Up Right’ or ’Right’) are most
likely to be selected when the goal is further away, which indicates a generic exploratory
behavior when AiRLoc is less confident of the goal location.
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Figure 15: To the left we show the probability of the 8 different actions of AiRLoc ver-
sus initial goal distance, in the cases where AiRLoc starts in the bottom-left corner of the
environment and the goal is straight above the agent (1 to 4 steps away). In each case, a
shortest trajectory is obtained by taking the ’Up’ action until reaching the goal. When the
goal is one step above the start location, we see that the most probable first action is indeed
’Up’, resulting in immediate task completion. As the initial distance to the goal increases,
other first actions (’Up Right’ and ’Right’) become more probable than ’Up’, which indicates
that when AiRLoc is not confident of the goal location it may resort to a more generic ex-
ploratory behavior. Note that, due to the positional encoding, AiRLoc assigns virtually zero
probability to actions that takes it outside the search area. Similar results can be seen on
the right, where the the goal location is instead to the right of the agent.
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8 Discussion of Results

To reiterate, the principal objective of this master’s thesis is to assess whether reinforcement
learning (RL) provides a suitable framework for tackling our newly proposed aerial view
image-goal localization task. In the following subsections we investigate – based on the
experimental evaluations in Section 7 – this objective, and discuss the general properties
of the proposed AiRLoc agent. This includes comparisons to the baselines, as well as
investigations of the action space and of the overall behavior of AiRLoc. We will also draw
conclusions regarding the generalization and limits of AiRLoc with respect to out-of-domain
data and longer trajectories.

8.1 Comparisons with Baselines

Table 1 shows that AiRLoc is able to solve the proposed goal localization task more effi-
ciently than all baselines, be them learnable or heuristic. This result confirms the validity
of our RL-based approach to the aerial view-goal localization task, which is the main objec-
tive of this master’s thesis. Analyzing Table 1 further, it is evident that the one-shot global
approach to the proposed task performs abysmally and that sequential solutions are needed.
The global approach to the problem – which is trained to always move to the goal in a single
step – yields a very low success rate. Hence, the ability of the global model to move to any
position in the search area does not seem to compensate for the fact that the very large
action space renders most available moves useless (most actions of this approach result in
moving the agent outside the search area, as shown in Figure 9). This indicates that our
proposed task is simply too difficult to be solved as a one-shot classification problem, which
is what the global method abstracts it into.

The local ML baseline performs better than the global one. This is most likely related to
the fact that the local pretraining task, in which the start and goal locations are always
adjacent, is inherently more learnable as a one-step prediction task, compared to the case
when the start and goal can be arbitrarily far apart. Still, AiRLoc is far superior to
the local baseline(59.2 % and 12.6 % success rate respectively), which indicates that any
ML-based solution to the aerial view image-goal localization task requires consideration of
the temporal dimension. One way to force any model to incorporate information about the
temporal aspect of the problem is to simply add the privileged heuristic used by the random
baseline. By doing this the algorithm is ”aware” of the previously visited locations which is
a form of temporal information. Using this heuristic the performance of the local baseline
drastically improves, surpassing that of the random agent, while still remaining inferior to
AiRLoc. AiRLoc only benefits slightly from this heuristic, confirming that its temporal
unit is capable of learning a similar behavior.

Although typically beneficial, using the priviliged movement heuristic does not always lead
to the optimal action being taken. By removing the option of moving to a previously visited
locataion, the agent is denied the possibility of taking shortcuts to new regions of the search
area by crossing a previous path. Under unfavorable circumstances this could lead to areas of
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the environment being closed of. This is likely to become especially problematic if one wants
to generalize our setup to multi-goal localization, wherein not a single but multiple image-
goals are provided. In such a setup, it is obvious that an optimal search trajectory may
involve visiting the same locations multiple times. This points to the general undesirability
of strictly enforcing such a behavior. Additionally, using the local baseline with privilege is
reasonably efficient in the current 5x5 grid environment, as shown in Table 2. However, it is
unlikely to generalize to larger grids since this would probably require a more sophisticated
search strategy, similar to the one we believe AiRLoc employs. This leads to the conclusion
that utilizing RL methods to learn effective strategies in conjunction with a temporal unit
is the preferred way to tackle the aerial view image-goal localization problem. This is also
confirmed by Tables 1, 2 and 3.

The execution time of AiRLoc is comparable to the simpler ML-based baselines, as also
seen in Table 1. This is important for the potential application in a UAV setting as this
would constitute a time critical execution environment. Also noticeable is the considerable
increase in time per action when utilizing the privileged heuristic. Although no effort was
spent to optimize this operation for speed and its implementation can probably be improved,
the effect should be noted.

8.2 AiRLoc Dataset Generalization

Comparing the results presented in Table 1 and Table 2 it is evident that AiRLoc performs
well on different splits of previously unseen data from the same dataset. Additionally, model
generalization is confirmed by the results presented in Table 3. AiRLoc, even as it is only
trained on Massachusetts Buildings, performs similarly on the Dubai dataset. This shows
that AiRLoc is robust to domain shifts in the visual environment, which bodes well for the
applicability of the model in new settings.

8.3 Benefits from Mid-level Vision Capabilities

Also evident from Tables 1, 2 and 4 is that the addition of ground truth building segmen-
tation mask further improves the performance of AiRLoc. This could be an indicator that
the patch embedder does not quite capture all relevant information from plain RGB input.
Furthermore, using a separate U-Net to predict this semantic segmentation also improves
performance relative to the RGB-only AiRLoc variant, but slightly less so than the ground
truth variant. The fact that this performance drop (predicted versus ground truth segmen-
tation) is only marginal indicates that AiRLoc is robust with respect to the segmentation
input – recall that this AiRLoc variant is trained using ground truth segmentation, and
that we switch to the U-Net predicted segmentations during evaluation. However, the in-
creased performance from mid-level vision capabilities – which has also been observed in
earlier work, e.g. [29] – comes with the caveats that an additional network needs to be pre-
trained and the increased complexity of the model. Additionally, as can be seen in Table 1,
the inclusion of the semantic segmentation module significantly increases time per action.
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Also note that the pretraining of a semantic segmentation network requires an annotated
dataset which renders the AiRLoc training cycle no longer entirely self-supervised. Hence,
the addition of this submodule should be considered optional.

8.4 Ablations

The ablation studies in Table 2 show that the various components and design choices for
AiRLoc are critical to performance – removing any component causes a large performance
decrease. Note especially the result of omitting the pretraining phase of the patch embedder
and instead training the full AiRLoc agent from scratch with RL. This approach results in
a large drop in performance; it even becomes worse than not receiving any visual input at
all (no RGB). This confirms that the pretraining of vision systems in RL is critical, as has
also been observed in earlier works [29, 20, 37, 42, 43]. A possible reason for this is that the
RL loss function is not sufficiently dense, or informative, to train the patch embedder from
scratch. The policy gradient loss function only gives a notion if an action was beneficial or
not, compared to all other actions taken during the batch. In contrast, the cross entropy loss
function, which is used during vision pretraining, compares the prediction of the network
with the absolute correct answer. This results in a much more stable gradient to the network
during training. This ambiguity in the policy gradient loss provides one explanation for the
general need for vision pretraining in RL.

The importance of pretraining the patch embedder is further confirmed by the fact that
freezing a pretrained embedder during RL training shows no significant impact on the
results. This indicates that the visual representation from the pretraining is sufficient to
build a reliable downstream RL policy. In general, fine-tuning the embedder weights may
have both positive and negative effects. On one hand, fine-tuning the embedder could
improve performance due to it becoming tailored for particular RL task at hand. On the
other hand, there is a risk of corrupting the embedder during the initial stages of RL training,
where the rest of the system is untrained. During the initial RL training phase, when the
temporal and decision unit have randomly initialized weights, the resulting trajectories
collected would be of very low quality, i.e. contain mostly unsuccessful trajectories. While
these unsuccessful trajectories are most likely due to the untrained parts of the network, all
weights – including those of the embedder – will be updated according to the gradient of the
loss, and this could potentially corrupt the pretrained embedder. However, Table 2 shows
that AiRLoc is not affected positively nor negatively, as the frozen and unfrozen embedder
perform similarly.

The component with the largest impact upon the success metric is the positional encoding.
Table 2 shows that without the positional encoding, the performance of AiRLoc does not
surpass the random baseline. The most obvious reason for this performance drop is simply
that AiRLoc has a much harder time learning to avoid moving into previously visited
locations, as well as outside the search area. The LSTM-based temporal unit is also proven
by the results in Table 2 to be a critical part of the AiRLoc model. Thus, unsurprisingly,
the ability to integrate evidence over time, and being aware of the current position within
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the search area, are vital for the performance of AiRLoc.

8.5 Longer Trajectories

Training in a setup that allows for at most 10 steps, and subsequently evaluating in a setup
that allows for at most 100 steps, the original AiRLoc variant performs worse than the
random baseline, as shown in Table 4. While AiRLoc outperforms its supervised learning
counterpart Local (restart), it is not directly comparable to the privileged random search
baseline. Note that AiRLoc is not guaranteed to find the goal in a 5× 5 grid containing 25
locations when taking 100 steps, which is obviously undesirable. However, for the successful
trajectories the step ratio is significantly better than for the random baseline. This suggests
that AiRLoc’s strategy is focused on exploring and finding goal patches efficiently, rather
than guaranteeing full exploration. This is not surprising, since AiRLoc is inherently not
trained to fully explore the search areas, as during training it is allowed to take at most
10 steps. In particular, this means that AiRLoc is only trained to temporally process
trajectories of at most 10 steps, and beyond this its memory may be unreliable, resulting
in re-visiting past locations with a higher probability.

Much of the reason for the success of the random agent stems from its privilege that ensures
that it never moves outside and avoids locations it has already visited. Granting such a
privilege to AiRLoc also results in a performance gain which is reasonable due to the above
described problem with repeating movement patterns. The same heuristic applied to the
Local sem. seg. model seems to generate the best performance overall for this task. While
this model fails to guarantee convergence in the deterministic case, the mean number of
steps and the stochastic results show great promise. However, there are two main issues
with this model. Firstly, not being able to guarantee deterministic convergence even in this
privileged setting proves that the model is incapable of forming longer term strategies on
how to cover the entire image. Secondly, even if the stochastic performance of the model is
very promising, in a real world drone application one would not want to rely on stochastic
evaluation.

8.6 Agent Behavior

Our investigations indicate that there may be two stages of AiRLoc’s behaviour. The first
phase could be mainly an exploration process where the agent moves in a semi-fixed pattern,
potentially mostly using positional encoding, to gather more information about the contents
of the image. This learned initial strategy seems to involve selecting a few actions and using
these to move in straight lines across the image. The exact actions chosen differ in each
training session, but often involves two diagonal actions and one orthogonal. When the
agent has collected enough information and deems it is close to the goal patch, it deviates
from the initial strategy and starts searching in the local area for the target.

In Figure 15, a small glimpse into the decision making of AiRLoc can be seen, and these
results align with the general behavior description in the previous paragraph. The data for
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this figure is collected from trajectories where the agent starts in the bottom left corner and
the goal location is either along the bottom or the left border of the image, at increasing
distance. The probabilities for taking any action shows that the agent is generally better at
determining the correct action when the start and goal patches are adjacent. As this data
is from the very first step of trajectories, AiRLoc has not been able to gather information
about the search area. The predictions by the agent, to move in the various directions, is
therefore based only on the analysis of the initial input. These results suggests that AiRLoc
is able to deviate from a exploratory behavior when the goal patch is near, even at the first
step of the trajectory.

Analyzing Figure 15 further, it is clear that when the distance from start to goal increases to
more than one step away, AiRLoc is unable to determine the direction of the goal patch. This
is also reasonable, since as soon as patches are not adjacent it is very hard to determine their
relative location, even for humans. Thus, AiRLoc seems to instead fall back to a learned
exploration behavior which usually dictates that it moves diagonally or orthogonally in the
search area. Also note that the probabilities in Figure 15 are not symmetric with respect
to moving up and moving right. As discussed earlier, this is likely due a coincidence during
training where AiRLoc adapted an exploration strategy which favored the moves ’Up Right’
and ’Right’, and is therefore generally more likely to move in these directions when it is
uncertain of where to go. In other training runs with different random seeds, other actions
may be favored. The main takeaway from Figure 15 is that when the goal patch is adjacent,
AiRLoc’s perception abilities can more often determine the correct action, but when the
goal patch is further away it seems to rely more on a default exploration behavior.

8.7 Human Baseline Comparison

The result of the proof-of-concept investigation into the human performance at the aerial
view image-goal localization task presented in Table 2 shows that the proposed task is
in general difficult. The fact that only slightly more than half of all human controlled
trajectories are successful supports this assessment. In this context, it is interesting to note
that AiRLoc achieves a higher success rate compared to the human operators. However,
it should be noted that this investigation is limited and the results are not necessarily
statistically significant. As seen in Figure 14, the performances of the human operators
and AiRLoc are very similar in how they vary with increasing difficulty. As expected, the
task becomes harder to solve when the distance between start and goal increases which is
reflected in the performance of both humans and AiRLoc. The fact that AiRLoc is able to
closely follow and mostly surpass the human performance is a further indication that the
learnt behavior is intelligent.
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9 Future Work

The findings of this thesis present an optimistic outlook for the application of reinforcement
learning to the aerial view image-goal localization and similar task. However, we are con-
fident that even better results are achievable in this setting, and in Section 9.1 we propose
some possible improvements to our model. Moreover, for this system to be utilized in a real
world setting, additional expansions of the proposed framework is needed to better reflect
the non-ideal environments experienced by an actual UAV. Section 9.2 below expands upon
this topic.

9.1 Improvements

The architecture and pretraining of the patch embedder has been crucial for the performance
of all RL-based agents investigated during this project and we conclude that even more effort
could be put into this area. New pretraining tasks such as predicting solely the distance
between two input patches could potentially yield even more relevant patch embeddings for
the RL agent. Furthermore, since the addition of semantic segmentation improves agent
performance, a pretraining task including both prediction of the segmentation mask as well
as the Doerch task might additionally improve the created embeddings.

9.2 Expansions

The proof-of-concept study performed in this master’s thesis confirms the feasibility of using
RL to solve the proposed aerial view image-goal localization task. However, to be useful
in real world applications, AiRLoc would have to be trained and tested on a larger scale,
with longer trajectories spanning larger areas. Future studies should examine the methods
ability to solve this challenge in much larger setups. Additionally, in a real world scenario
the model would also need the ability to determine when it has reached the goal patch.

The ability of AiRLoc to generalize well to new datasets and circumstances is promising.
This indicates robustness towards potential real world applications, as the system can be
expected to operated in previously unseen and variable environments. However, misalign-
ment’s (e.g. seasonal changes) between the provided goal image and the actual goal may
become problematic, as it has the potential to adversely affect AiRLoc’s perception. Studies
into these kinds of outcomes and on the general effects of domain shifted data could lead
to a more robust and useful system.

There are also real world scenarios where top view image data of the goal location might
not be available. In these cases ground level images captured using cellphones could still
provide important information of the target. Investigations into how this type of input data
could be utilized within the system could potentially drastically improve agent performance
and robustness.
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10 Conclusions

In this master’s thesis we have presented the novel aerial view image-goal localization task.
This framework allows for controllable and reproducible development and evaluation of
methodologies that can eventually be useful for several relevant real-world scenarios, e.g.
within search-and-rescue operations. A fully trainable reinforcement learning based ap-
proach, AiRLoc, has also been proposed for tackling this task, in addition to several non-
RL-based learnable and heuristic methods. AiRLoc can be trained without any annotations
and can thus learn the localization task in an entirely self-supervised manner. Extensive
experimental evaluations have been conducted and these clearly show the benefits of the
proposed AiRLoc model, which surpasses the various presented baselines, both heuristic
and ML-based ones. In particular, these results demonstrate the viability of using RL for
training an agent that, based solely on partial observations, can effectively navigate in aerial
view images.

Furthermore, AiRLoc has been shown to generalize well to a separate domain-shifted
dataset, noting only a slight performance decrease despite evaluating on unseen data. The
generalization of AiRLoc to significantly longer trajectories was also verified, even if some
other methods performed equally well in this setting. Moreover, providing AiRLoc with the
capacity to predict building segmentation masks improved performance further, although
at the expense of increasing computational cost and requiring training annotations. A
proof-of-concept study of human performance at our aerial view image-goal localization
task has also been conducted. The results of this study indicate a higher performance for
AiRLoc compared to humans, but this may not be a statistically significant difference. To
summarize, while AiRLoc is not yet ready for real-world application, we have undeniably
demonstrated that there is promise in using RL to find goal locations in aerial imagery
based solely on partial glimpses.
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Popović. Adaptive path planning for uavs for multi-resolution semantic segmentation.
arXiv preprint arXiv:2203.01642, 2022.

[33] Humans In the Loop. Semantic segmentation of aerial imagery.

[34] Burak Uzkent and Stefano Ermon. Learning when and where to zoom with deep
reinforcement learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 12345–12354, 2020.

[35] Andrea Vallone, Frederik Warburg, Hans Hansen, Søren Hauberg, and Javier Civera.
Danish airs and grounds: A dataset for aerial-to-street-level place recognition and
localization. CoRR, abs/2202.01821, 2022.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[37] Che Wang, Xufang Luo, Keith Ross, and Dongsheng Li. Vrl3: A data-driven framework
for visual deep reinforcement learning. arXiv preprint arXiv:2202.10324, 2022.

[38] Tingyu Wang, Zhedong Zheng, Yaoqi Sun, Tat-Seng Chua, Yi Yang, and Chenggang
Yan. Multiple-environment self-adaptive network for aerial-view geo-localization. arXiv
preprint arXiv:2204.08381, 2022.

[39] R. J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 8:229–256, 1992.

54



[40] Daniel Wilson, Xiaohan Zhang, Waqas Sultani, and Safwan Wshah. Visual and object
geo-localization: A comprehensive survey. arXiv preprint arXiv:2112.15202, 2021.

[41] Gui-Song Xia, Jian Ding, Ming Qian, Nan Xue, Jiaming Han, Xiang Bai, Michael Ying
Yang, Shengyang Li, Serge Belongie, Jiebo Luo, Mihai Datcu, Marcello Pelillo, Liangpei
Zhang, Qiang Zhou, Chao-Hui Yu, Kaixuan Hu, Yingjia Bu, Wenming Tan, Zhe Yang,
Wei Li, Shang Liu, Jiaxuan Zhao, Tianzhi Ma, Zi-Han Gao, Lingqi Wang, Yi Zuo,
Licheng Jiao, Chang Meng, Hao Wang, Jiahao Wang, Yiming Hui, Zhuojun Dong, Jie
Zhang, Qianyue Bao, Zixiao Zhang, and Fang Liu. Luai challenge 2021 on learning to
understand aerial images. In 2021 IEEE/CVF International Conference on Computer
Vision Workshops (ICCVW), pages 762–768, 2021.

[42] Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-
training for motor control. arXiv preprint arXiv:2203.06173, 2022.

[43] Karmesh Yadav, Ram Ramrakhya, Arjun Majumdar, Vincent-Pierre Berges, Sachit
Kuhar, Dhruv Batra, Alexei Baevski, and Oleksandr Maksymets. Offline visual repre-
sentation learning for embodied navigation. arXiv preprint arXiv:2204.13226, 2022.

[44] Zelong Zeng, Zheng Wang, Fan Yang, and Shin’ichi Satoh. Geo-localization via ground-
to-satellite cross-view image retrieval. IEEE Transactions on Multimedia, pages 1–1,
2022.

[45] Leyang Zhao, Li Yan, Xiao Hu, Jinbiao Yuan, and Zhenbao Liu. Efficient and high
path quality autonomous exploration and trajectory planning of uav in an unknown
environment. ISPRS International Journal of Geo-Information, 10(10):631, 2021.

[46] Minzhao Zhu, Binglei Zhao, and Tao Kong. Navigating to objects in unseen environ-
ments by distance prediction. CoRR, abs/2202.03735, 2022.

[47] Runzhe Zhu. Sues-200: A multi-height multi-scene cross-view image benchmark across
drone and satellite, 2022.

[48] Sijie Zhu, Mubarak Shah, and Chen Chen. Transgeo: Transformer is all you need for
cross-view image geo-localization. arXiv preprint arXiv:2204.00097, 2022.

[49] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei,
and Ali Farhadi. Target-driven visual navigation in indoor scenes using deep rein-
forcement learning. In 2017 IEEE international conference on robotics and automation
(ICRA), pages 3357–3364. IEEE, 2017.

55



A Initial Results and Interpolation Errors

Initially, the image processing pipeline consisted of the following stages,

Large Image
Cropping−−−−−−→ Cropped Image (500x500)

Resize−−−−→ Final Image (256x256)

each image cropped to the correct real world scale and then resized to directly fit the NN
architecture. This is standard practice in ML and tend to work well for most tasks. A
general problem with resizing is that it requires some form of interpolation, downsizing
removes some information, which need to be preserved best as possible and upsizing images
adds information which need to be filled somehow. We used bilinear interpolation for the
downsampling step, which is the default interpolation method in the PyTorch framework.
Using this pre-processing pipeline we trained and evaluated several models, Table 5 show
the results from the best models as well as the baselines on this data.

Table 5: Results for the discrete setup on the test set of Massachusetts Buildings with the
initial image processing pipeline. Note the incredible results achieved with the initial setup
and the comparably much lower success rate for the corrected image pipeline.

Agent type Success (%) Step ratio Steps Distance

AiRLoc (edge corruption) 87.0 0.72 5.0 2.3

AiRLoc 58.6 0.60 7.1 2.5

Privileged Random 41.0 0.39 8.0 1.6

Local (edge corruption) 21.1 0.85 8.4 4.3

The results presented in Table 5 seems very promising, but comparing these results with the
human baseline, that reached slightly above 50 % success rate, gave a first indication that
something could be wrong. Attempting to understand the problem, a through investigation
into the agents actions was performed. The start location of the agent was fixed to the
bottom left corner and the goal location was varied along either the bottom or left border
of the image. The produced probabilities of moving in the different directions were then
collected for the first step of the agent. A reasonable expectation is that the agent would be
quite certain of where to move when the goal location is adjacentt to the bottom left corner.
But as the distance is increasing it should be increasingly more difficult to determine the
direction in which to move. However, as can be seen in Figure 16 this was not the case.
Instead, the agent is almost equally certain of where to move no matter how far away the
goal is and it is somehow capable of determining in which direction the goal location is. This
should not be possible as the visual resemblance of patches in different corners is likely very
low. This indicates that the model is able to correctly identify which patches are located
on the border of the image. As this also includes the goal patch it would entail significant

56



information leakage about the environment to the agent which could increase the success
rate drastically.

Figure 16: The mean probabilities of taking any of the eight available actions during the
first step of the trajectory. For every image in the validation set trajectories were created
with the start location fixed to the lower left corner. The goal location is placed along
the bottom(seen in the left image) or left (seen in the right image) border with increasing
distance. As can be seen, the agent seems aware of the exact location of the goal patch despite
it being very far from the agents location. Increasing distance between agent location and
goal does not seem to affect the models certainty of where to move. Note, that the agent has
the highest probability of moving in the correct direction.

Careful analysis of the images, before and after resizing, reveals no edge artifacts present in
the patches. Variance and absolute values of the pixel values on the edges were compared
with pixels in the center of the image, with no obvious differences. Sobel’s kernels[31]
were used to calculate the gradients on the edge of the image, with no clear patterns
differentiating the edge pixels from the center pixels. To definitively determine whether
there were any identifiable edge artifacts present in the image, a new evaluation for a
trained model was completed. This time the images were resized to a slightly larger pixel
size than the desired final size, two pixels were added to each edge. Then the edges of the
image were removed by cropping the center of the image, removing the two edge pixels
which were the suspected source of corruption. This means that some information in the
image are lost due to the cropping but not enough that this should have a significant impact
on the performance of the model.

With this new setup the performance of the model plummeted, achieving only 41 % success
which resembles the result of a random agent. After retraining the agent with this new
pre-processing the performance never reached near the previously reported results. This
confirms the presence of some artifact in the initial images which the network was able to
identify and thereby received privileged information it was not supposed to be given by the
environment.
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While the above experiments confirmed the presence of image border artifacts in the pre-
vious setup, they do not specify the nature of these artifacts or why they arise. Evaluating
the models with the original image pipeline using different types of interpolation (instead
of bilinear) also showed similar, but varying, performance changes which lead to the suspi-
cion that interpolation was the cause of the problems. Research into the issue confirmed
that interpolation can easily cause artifacts in images but we found no evidence of border
artifacts and their relation to artificial performance increase in ML models.

Bilinear interpolation uses a neighborhood of the four closest pixels to calculate the ap-
proximate value of the pixels in the resized image. Hence, it should only affect at most
one of the edge pixels, other pixels are too far from the edge to possibly be affected by the
padding. To make sure that this problem does not continue to interfere with the training
of the models a new image resizing pipeline was introduced. Replicating the experimental
setup of cropping the edge pixels by adding an intermediate step where the image is resized
slightly larger than the final image size and then cropped to the correct dimensions. The
new pipeline,

Large Image
Cropping−−−−−−→ Cropped Image(500x500)

Resize−−−−→ Border Image(260x260)
Center Crop−−−−−−−−→ Final Image(256x256),

seem to have removed the edge artifacts and allowed us to refocus on the task of creating
a well functioning RL model.
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B Additional Results

In this appendix we present a seed sensitivity analysis of our AiRLoc agent (Table 6),
success rate versus episode difficulty for models equipped with a separately trained semantic
segmentation network (Figure 17), as well as additional results when training AiRLoc with
the complex reward structure (Table 7), cf. (16).

Table 6: Seed sensitivity analysis of the main AiRLoc agent on the validation set of Mas-
sachusetts Buildings, where models are allowed to take at most 10 actions per trajectory.
The result on the first line in the table corresponds to the AiRLoc agent we have evaluated in
the main part of this thesis, and as can be seen its results corresponds to the median in terms
of performance. We also include the non-AiRLoc results from Table 2 for easier compari-
son. All seeds except one yield a very similar performance, but even the worst-performing
AiRLoc agent is better than the best non-RL-based ML baseline (Privileged Local).

Agent type Success (%) Step ratio Steps Residual dist.

AiRLoc 58.6 0.60 7.1 2.5

AiRLoc (other seed #1) 59.0 0.60 7.2 2.5

AiRLoc (other seed #2) 59.3 0.62 7.0 2.4

AiRLoc (other seed #3) 58.6 0.62 7.1 2.4

AiRLoc (other seed #4) 53.8 0.58 7.4 2.5

Privileged Random 39.0 0.51 8.2 2.6

Local 14.4 0.83 8.9 6.4

Privileged Local 51.2 0.59 7.5 2.6

Global 8.0 - 1.0 2.9

Human 55.7 0.54 7.6 2.3
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Figure 17: The success rate of the segmentation network-equipped AiRLoc and various
baseline methods during evaluation on the validation set of Massachusetts Buildings versus
episode difficulties (see the corresponding results without semantic segmentation in Fig-
ure 14). Dashed lines (in matching colors) correspond to global averages over all difficul-
ties. When AiRLoc is equipped with mid-level vision capabilities, its performance gap over
the heuristic random and human baselines increases on average. The non-RL-based ML ap-
proach Privileged Local also becomes superior to humans when it is equipped with a semantic
segmentation network (AiRLoc is however even better on average). Interestingly, AiRLoc
with semantic segmentation is the model which is the least sensitive to episode difficulty,
as its performance curve is the flattest one. While AiRLoc with semantic segmentation is
not the best at the simplest episodes – note that Local is trained exclusively in the setup
corresponding to the simplest difficulty – it is best by a large margin on the more difficult
episodes.
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Table 7: Results for the discrete setup on the validation set of Massachusetts Buildings
trained with the complex reward. The below presented data represents a full ablation study
of the proposed model trained with this additional reward. However, due to its lower perfor-
mance compared with the AiRLoc model trained with the simpler reward (which is re-reported
below for easier comparison), it is omitted from Section 7. We also include the non-AiRLoc
results from Table 2 below for easier comparison.

Agent type Success (%) Step ratio Steps Residual dist.

AiRLoc 53.5 0.60 7.5 2.3

AiRLoc (sem. seg. GT) 61.0 0.61 7.1 2.3

AiRLoc (sem. seg. pred.) 59.8 0.62 7.2 2.4

AiRLoc (frozen emb.) 50.7 0.63 7.5 2.5

AiRLoc (from scratch) 45.1 0.69 6.9 2.5

AiRLoc (no LSTM) 44.2 0.59 7.8 2.4

AiRLoc (no RGB) 40.7 0.61 8.2 2.7

AiRLoc (no pos. enc.) 25.8 0.58 8.7 3.0

AiRLoc (simpler reward) 58.6 0.60 7.1 2.5

Privileged Random 39.0 0.51 8.2 2.6

Local 14.4 0.83 8.9 6.4

Privileged Local 51.2 0.59 7.5 2.6

Global 8.0 - 1.0 2.9

Human 55.7 0.54 7.6 2.3

In addition to the ablation studies of AiRLoc trained with the complex reward, two hand-
picked trajectories from the evaluation of the model on the validation set of Massachusetts
Buildings are shown in Figure 18.
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Figure 18: Two example trajectories of AiRLoc trained with the complex reward. Note in
particular the pattern of navigating diagonal and straight in an alternating fashion.
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C Trajectory Visualizations

In this appendix (Figure 19 - 23), trajectory visualizations of AiRLoc are displayed. Recall
that AiRLoc never obtains the underlying search area in its entirety – all action selection
is performed based on the sequentially observed partial glimpses and the goal patch. The
model is trained on the training set of Massachusetts Buildings, and the trajectories shown
are generated by evaluating the model on the validation partition of the same dataset.
During evaluation, AiRLoc is run in deterministic mode.

Figure 19: Two examples of successful AiRLoc trajectories. Note that the two setups are
identical except that the start position is shifted one position between the two. The initial
behavior is the same in both cases, where a diagonal exploration towards the bottom-right is
pursued.
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Figure 20: Two examples of AiRLoc trajectories. Note the diagonal exploration strategy
utilized successfully to the left and unsuccessfully to the right.

Figure 21: Two examples of successful AiRLoc trajectories.
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Figure 22: Two examples of AiRLoc trajectories. In the left trajectory, it seems like
the agent uses the exploration strategy with only diagonal moves until reaching the patch
numbered ”5”, after which it focuses on straight moves until finding the goal. The right
trajectory is an unsuccessful example.

Figure 23: Two examples of successful AiRLoc trajectories.
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