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Abstract

Forecasting wind has always been an interesting subject, and as large parts
of the world are relying more on wind for power production it is becoming
even more important to have reliable forecasts. Probabilistic forecasts, where
distributions are predicted in contrast to deterministic forecasts, are impor-
tant for informed decision making. We apply two methods based on conformal
prediction for processing ensemble forecasts to well calibrated probability dis-
tributions. Conformal prediction is a relatively modern method for quantified
uncertainty analysis within machine learning. These methods are compared to
the quantile regression forest algorithm, which has been well tested in literature
for probabilistic ensemble post processing. Ensemble forecasting is a method
based on running several numerical weather prediction models simultaneously,
creating an array of forecasts. The conformal methods rely on an additional
point forecast, supplied by another model, for producing the distributions while
the quantile regression forest works directly on the ensemble. The methods
were tested using a teaching schedule which determines the best configuration
of parameters, from a predefined set, based on the continuous ranked proba-
bility score metric before making each prediction. This is a way of simulating
how the methods perform over time. For the conformal methods we employ
a normalized version of conformal predictive distribution systems and a non-
exchangeable conformal prediction method. For the non-exchangeable case we
suggest a method of stacking confidence intervals to produce distributions. We
also suggest a normalized version of this algorithm. Both methods show promis-
ing results, both able to produce significantly better distributions than the raw
ensemble and as good or better calibrated distributions compared to the quantile
regression forest. Though the conformal methods are supplied external forecasts
and the quantile regression forest is not using an optimal configuration. The
conformal methods also produce well calibrated predictions consistently over
different setups of the algorithms.
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Chapter 1

Introduction

Wind is a phenomenon with significant impact on our societies. No matter if it
is an enabling or disabling factor, we always wish to predict it as well as possible.
With the rise of initiatives and policies pushing for the transition to fossil-free
energy, wind forecasting has become a very hot topic. As wind energy represents
a larger portion of energy production, reliable wind forecasting is paramount
for planning other types of energy production [24]. It is also highly important
for energy trading markets. While deterministic forecasting still has an impor-
tant role to play, probabilistic forecasting has risen in popularity. These types
of forecasts allow for more flexibility in decision making, enabling one to make
optimal choices according to certain probabilities. A lot of research investi-
gating probabilistic forecasting techniques for wind power production has been
published in recent years [5]. Several of these are ensemble methods, where
one processes ensemble forecasts to produce prediction intervals or probability
distributions. Ensemble forecasting is a method of running several numerical
models in parallel with slightly different input data, effectively producing as
many forecasts as the number of models. The ensembles themselves can nat-
urally act as probabilistic forecasts, by producing empirical distributions from
them, though these types of forecasts a typically overly confident [22]. This
is where post-processing plays an important role. The post processing can be
performed through parametric methods, such as ensemble model output statis-
tics (EMOS), or non-parametric methods, such as the quantile regression forest
(QRF). Many machine learning methods can also extend beyond the ensemble,
relying on more variables to create reliable forecasts. The use of different kinds
of neural networks has become more common in the past couple of years. Many
of these kinds of methods require a lot of computational power and may thus
be difficult to employ on a wider scale. Uncertainty analysis and probabilistic
and set predictions is also an emerging field within machine learning. Conformal
prediction [23], which is a somewhat new technique, produces set predictions for
both classification and regression problems with guarantees to validity. Confor-
mal predictions can also be extended to produce distribution predictions, they
are called conformal predictive distribution systems (CPDS). These methods are
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typically employed as a supplement to an underlying deterministic forecasting
model. It is a straight forward technique that, for some versions, will add very
little additional complexity on top of the underlying model, to produce proba-
bilistic forecasts [23]. This is then potentially a way of getting both the benefits
of the accuracy of a deterministic forecast and the flexibility of a probabilistic
forecast, with very little extra computational complexity. Further, this could
perhaps allow for effective employment of probabilistic forecasting on a wider
scale, by supplementing it with already existing deterministic models.

1.1 Purpose

The application of conformal prediction and corresponding extensions to wind
forecasting seems to be a relatively unexplored subject. It has been used in
predicting electricity price in power markets with some success [13]. The pur-
pose of this report is to do an initial analysis of the effectiveness of conformal
prediction methods to day ahead probabilistic wind speed forecasting as an
ensemble post processing technique. It will be compared to the quantile regres-
sion forest method, which is well tested for this application [22]. The conformal
methods will be supplied external deterministic forecasts while the QRF will
work directly on the ensemble, as it has been used historically. This study is a
continuation of the work done in [2].

1.2 Structure

In chapter 2 we will introduce conformal prediction, CPDS and a relevant exten-
sion to these as well as the theory behind them. We will also briefly introduce
the QRF as well as evaluation metrics. Chapter 3 will contain descriptions of
how we implement the methods presented above and how we evaluate their per-
formance. Finally, in chapter 4 we will present the results and in chapter 5 we
will discuss these as well as draw conclusions.

2



Chapter 2

Preliminaries

In this chapter we will introduce main concepts of this study, conformal pre-
diction, and the theory behind it. We will also introduce conformal predictive
distribution systems and non-exchangeable conformal prediction. These are the
two versions of this concept that are used in the rest of the study. We will
also present the baseline method, the quantile regression forest, before finally
introducing the two main metrics used for evaluation.

2.1 Conformal prediction and extensions

Conformal prediction, the main point of focus of this report, is a method that
quantifies uncertainties in connection to predictions. When encountering new
concepts it is always useful to have a mental picture of what is going on. In the
case of conformal prediction this is especially suitable since it is a mathematical
representation of what one might do in real life. Assume a situation we might
encounter regularly where we would predict something. An example could be to
predict the temperature outside by how the weather looks like from the inside.
Each time we make such a prediction, we could also note how strange the exam-
ple in question is, based on the outcome of the actual temperature. An example
where it is sunny outside and it turns out to be warm might be considered not-
so-strange. While an example of sunny weather and cold temperature might be
considered the opposite. With sufficient number of examples we could create a
picture of what types of situations are easy to predict, which are difficult, how
likely certain outcomes are and generally how good our predictive method is.

2.1.1 Exchangeability

A fundamental concept to understand regarding conformal prediction is ex-
changeability, since this is assumed of the data to ensure validity of the predic-
tions. Exchangeability can be seen as a slightly relaxed version of the standard
independent and identically distributed assumption. For exchangeability to hold
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all permutations of the ordering of the data needs to have the same joint prob-
ability distribution [1]. Formally assume a data set {z1, z2, . . . , zm} drawn from
some distribution over the space Zm. If for any permutation of the order π(i)
we have that

P (z1, . . . , zm) = P (zπ(1), . . . , zπ(m))

then the data is exchangeable. Distribution drifts and time series which have
temporal dependencies are examples of non-exchangeable data. We will later
introduce a version of conformal prediction that reduces the problems caused
by non-exchangeable data.

2.1.2 Conformal Prediction

The base version of conformal prediction produces set predictions. It can be
applied to both classification and regression type problems. In the classification
case it will produce a set of classes in which the actual label of an example
lies with some probability. In regression, which we will stick to in this report,
the output is an interval on the real line. Formally we would, for some object
xn ∈ X, like to produce a prediction range Γϵ ⊆ R where we can expect the label
yn ∈ Y to lie in with probability 1− ϵ. The examples zi = (xi, yi) are assumed
to be drawn from the example space Z = X × Y through some probability
distribution Q [23]. The value ϵ marks a significance level of the ratio of errors
to tolerate. The prediction range for a test object zn will be based on a set of
training examples zi = (xi, yi), i = 1, . . . , n − 1. For this we must first define
what is called a (non-)conformity function, A, which is a measurable and order
invariant (in terms of the training examples) function on Z(∗) × Z → R (Z(∗)

having arbitrary dimension size) that maps an example zi together with the
other examples and a potential test object (xn, y), to a nonconformity score

αi = A({z1, . . . , zn−1, (xn, y)} \ zi, zi) ∈ R.

Here we can choose A as increasing with strange examples, nonconformity, or
increasing with non-strange examples, conformity. In the sections below we will
use the nonconformity version. The results are the same for the conformity case,
though some inequalities have to be flipped. As we will see in a later result, the
validity of the prediction range, meaning the amount of actual errors compared
to what we can tolerate, is not dependent on how we define A. The efficiency
however, meaning the size of the range, may be affected and could thus improve
if A is chosen well. After defining nonconformity scores for all training examples
we can predict the range for a test object by quantifying how it conforms to the
training examples. We produce p-values for this test object through a conformal
transducer f , where

pyn := f(z1, . . . , zn,1, xn, y) =
|{i = 1, . . . n : αi ≥ αn}|

n
.

We can then subsequently use this conformal transducer to produce the range
prediction

Γϵ = {y ∈ Y : pyn > ϵ}.
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We can see that a natural way of using this system is with an underlying pre-
dictive machine learning model. The nonconformity scores could then be con-
structed as

αi = |ŷi − yi|
where ŷi is the prediction of yi from the underlying model, which is trained on all
the other examples. This version of the algorithm is however computationally
costly since it requires the recomputing of all nonconformity scores for new
values of y, as well as retraining of the underlying algorithm for each example
in the data set. It is therefore common to use an inductive version, sometimes
called split-conformal, instead [19]. In that case we train the underlying model
on a set of data separate from the ones we use to calculate the nonconformity
scores. These two sets are commonly called the proper training set and the
calibration set. For the inductive conformal method we present the following
property.

Theorem 2.1. Suppose zi = (xi, yi), i = 1, . . . , n − 1 and zn are exchange-
able with corresponding nonconformity scores αi from nonconformity function
A(zpast, zi), zpast being a proper training set. We define the p-value for (xn, y)
as

pyn =
|{i = 1, . . . , n : αi ≥ αn}|

n
,

where αn = A(zpast, (xn, y)), and the prediction range as

Γϵ = {y ∈ Y : pyn > ϵ}.

Then,
P (yn ∈ Γϵ) ≥ 1− ϵ.

Proof. Here we consider the case where αi are distinct with probability 1. We
also assume that the nonconformity scores are ordered α1 < · · · < αn−1, without
loss of generality. We require that ϵ ≥ 1

n , otherwise we put Γϵ = Y which
satisfies the theorem. Firstly we observe the following statement

yn ∈ Γϵ ⇐⇒ pyn
n > ϵ ⇐⇒ |{i = 1, . . . , n : αi ≥ αn}|

n
> ϵ

where, in this case, αn = A(zpast, (xn, yn)). Those conditions are true if and
only if

αn ≤ α⌈n(1−ϵ)⌉.

Given the exchangeability of z1, . . . , zn we can state that

P (αn ≤ αk) =
k

n

for any integer k ≤ n− 1, i.e. αn falls between any of the calibration examples
α1, . . . , αn−1 with equal likelihood. This gives us the final statement that

P (αn ≤ α⌈n(1−ϵ)⌉) =
⌈n(1− ϵ)⌉

n
≥ 1− ϵ.
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The above proof is a modified version of the proof for Theorem D.1 in [3]. We
also have a result regarding the upper limit of validity, in this case we require
the joint distribution of the (non-)conformity scores to be continuous. This will
avoid ties, just as we assumed in the above proof, the difference is that there
exists a general proof for theorem 2.1 where this condition is not required. The
general version is however seldom needed in practice since we could simply add
a small amount of noise to the scores.

Theorem 2.2. Assume all conditions from theorem 2.1 are met as well as
that the joint distribution of the nonconfirmity scores αi is continuous. If the
prediction range Γϵ is also constructed as in theorem 2.1 then

P (yn ∈ Γϵ) ≤ 1− ϵ+
1

n
.

Proof. Here we observe as in the above case that

yn /∈ Γϵ ⇐⇒ αn > α⌈n(1−ϵ)⌉.

Since all the conditions of the above proof applies we know that

P (αn > α⌈n(1−ϵ)⌉) = 1− P (αn ≤ α⌈n(1−ϵ)⌉) =

= 1− ⌈n(1− ϵ)⌉
n

> 1− n(1− ϵ) + 1

n
= ϵ− 1

n

which means that

P (αn > α⌈n(1−ϵ)⌉) > ϵ− 1

n
⇐⇒ P (αn ≤ α⌈n(1−ϵ)⌉) ≤ 1− ϵ+

1

n
.

This proof is a modified version of the proof of Theorem 2.2 in [14]. There are
similar results for the transductive or full-conformal case, but we will only use
the inductive version in this report.

2.1.3 Conformal Predictive Distribution Systems

Conformal prediction creates a framework for producing valid set and range
predictions for given significance levels. However, it can be extended to do
more, such as producing whole probability distributions as predictions. For this
we again use the conformal transducer to produce p-values. However, instead of
using the conformity function to measure how an example conforms to the data
set, we will measure how it conforms to the property of being large, perhaps
larger than the underlying prediction. We could thus potentially define a score
according to

αi = ŷi − yi

6



to achieve this. Formally we use the transducer as a function Π to arrange
p-values such that they mimic a distribution, thus the following criteria must
be met:

1. Π((z1, . . . , zn−1), (xn, y)) is a monotonically increasing function of y ∈ R

2. limy→−∞ Π((z1, . . . , zn−1), (xn, y)) = 0

3. limy→∞ Π((z1, . . . , zn−1), (xn, y)) = 1

In short it needs to fulfill the criteria of a cumulative distribution function in y.
To ensure that these criteria are met, as well as to get better validity (exact to
be precise, see [23] for details), we add a uniform randomization term τ ∈ [0, 1]
to our transducer

Π((z1, . . . , zn−1), (xn, y), τ) =
|{i = 1, . . . n : αi > αn}|

n
+

+
τ |{i = 1, . . . n : αi = αn}|

n
.

The p-values will by definition be monotonically increasing in τ . If we fix τ = 0
as y → −∞ or τ = 1 as y → ∞ both criteria 2 and 3 are met, given that
criteria 1 holds for all calibration sets. These distributions are valid, assuming
the data is independent and identically distributed (IID), under the notion that
the produced p-values are uniformly distributed on [0, 1], i.e. they are calibrated
in probability. An important fact in this case is the following Lemma from [23].

Lemma 2.3. Let Y be a random variable distributed as a continuous distri-
bution function F on R. If Π : R → R is monotonically increasing and the
distribution Π(Y ) is uniformly distributed on [0, 1], then Π = F .

Given that the previously mentioned criteria are met then it is natural that
the CPDS method produces valid distributions. We refer to [23] for theoretical
details. For the inductive version of this algorithm an additional randomization
term has to be added to the transducer according to

Π(zpast, (z1, . . . , zn−1), (xn, y), τ) =
|{i = 1, . . . n : αi > αn}|

n
+

+
τ |{i = 1, . . . n : αi = αn}|+ τ

n
.

to attain theoretical validity [23]. However, in practice we can often get good
enough results without randomization, especially for large data sets. Though
for certain choices of underlying model, randomization is required.

2.1.4 Non-exchangeable conformal prediction

Few real world process can be claimed to be truly exchangeable, however a
process might be exchangeable enough to allow for valid predictions. In the
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case where the underlying data is not exchangeable enough, we might look
to reduce the dependency on this property through some mechanism. Recently
there has been an surge of ideas published to tackle this problem. One such idea
is, quite naturally, to assign weights to the examples. These weight wi ∈ [0, 1]
are assigned such that more important or more trusted examples are given a
higher weight than other examples [4]. We will call this the non-exchangeable
conformal prediction method, or NECP for short. How the weights are assigned
is dependent on the specific problem, however in a time-series setting it might be
natural to use exponential decay over time. These weights need to be normalized
according to

ω̃i =
ωi

ω1 + · · ·+ ωn−1 + 1
, i = 1, . . . , n− 1

ω̃n =
1

ω1 + · · ·+ ωn−1 + 1

before we make a prediction. We can then produce an interval Γϵ as

Γϵ = ŷn ±Q1−ϵ

(
n−1∑
i=1

ω̃i · δRi
+ ω̃n · δ+∞

)
(2.1)

given an underlying deterministic prediction ŷn of yn. The term Q1−ϵ means
the 1− ϵ quantile of the argument, keeping in line with notation from [4]. The
expression δRi

in (2.1) represents the Dirac delta function in residual Ri =
|ŷi − yi|. Thus, we pick a size of residual such that the sum of the weights of
the corresponding previous residuals that are smaller than the new residual, is
at least 1 − ϵ. Since this method assumes a pre-trained underlying predictive
model, this is an inductive version of the non-exchaneangle algorithm called the
non-exchangeable split conformal method in [4]. The residuals of the predictions
act as nonconformity scores in this occasion. Much like in the exchangeable case
there are validity guarantees, however now according to

P{yn ∈ Γϵ} ≥ 1− ϵ−
n−1∑
i=1

ω̃i · dTV (RsplitCP (Z), RsplitCP (Z
i)) (2.2)

P{yn ∈ Γϵ} < 1− ϵ+ ω̃n +

n−1∑
i=1

ω̃i · dTV (RsplitCP (Z), RsplitCP (Z
i)) (2.3)

where dTV is the total variation distance between distributions. Meaning that
we can limit validity issues caused by non-exchangeability, by assigning low
weights to the examples where dTV is high. Here, RsplitCP (Z) is a vector
function with entries RsplitCP (Z)i = |yi − ŷi| and RsplitCP (Z

i) is the same but
with the ith entry exchanged for the nth one. For clarification, Z is the sequence
of random variables for the calibration and test set {Z1, . . . , Zn} and Zi is the
same sequence but with the ith and nth points exchanged

{Z1, . . . , Zi−1, Zn, Zi+1, . . . , Zi}.
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The total variation distance is defined by the largest difference in probability
on any subset of the sample space, more formally

dTV (µ, β) := sup
A∈Ω

|µ(A)− β(A)|

where µ and β are two probability measures defined on the same sample space.
If the data Z is exchangeable then the total variation distance is 0, since the
conditional distribution, no matter the ordering, is the same in that case. The
property (2.3) holds only, like in the standard case, when the residuals are
distinct with probability 1. Another interesting result gained from (2.2) and
(2.3) is that if we set ωi = 1 for all i, then we get a picture for what happens
to the validity of the intervals of the standard inductive conformal prediction
algorithm, if the data is non-exchangeable. The conditions also hold for general
(non-)conformity scores, not only the absolute residuals stated here [4].

2.2 Quantile Regression Forest

The quantile regression forest (QRF) algorithm [16] generalizes the random
forest [10] algorithm from predicting conditional expectations to conditional
quantiles. It is, similar to conformal prediction, a non-parametric method. To
understand the QRF algorithm it is useful to first know how the standard ran-
dom forest works. It is based on a number of decision trees, each of which sort
some of the examples zi = (xi, yi), i = 1, . . . , n− 1 in the data set into different
classes based on a random selection θ of features of xi. The selection of exam-
ples to use for each tree comes from bagging the data set. The classes for each
tree t takes the form of leafs ltj which corresponds to some subset Xltj ⊆ X.
The leaf in which an example i is put into is a function of the object xi and
the random selection of features θt. Passing a new object xn ∈ X, the label of
which we wish to predict, we get a corresponding leaf lt(xn, θt) for each tree in
the forest. Weights ω̄i(xn) are then assigned to each training example through

ωti(xn) =
1{xi∈Xlt(xn,θt)

}

|{k : xk ∈ Xlt(xn,θt)}|

ω̄i(xn) =
1

T

T∑
t=1

ωti(xn)

where T is the number of trees in the forest. The prediction of conditional
expectation of yn is then

ŷn =

n−1∑
i=1

ω̄i(xn)yi. (2.4)

To extend this to produce quantiles we only need a small change to (2.4) ac-
cording to

F̂ (y|X = xn) =

n−1∑
i=1

ω̄i(xn)1{yi≤y}.
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The QRF is a tried and tested non-parametric method to post-process ensem-
ble forecasts into probabilistic predictions. It has been shown to improve raw
ensemble forecasts as well as outperform another baseline method, ensemble
model output statistics, which is a parametric method [22].

2.3 Probabilistic Evaluation

We will in this section present two ways of evaluating probabilistic forecasts
which will be used later in the report. These are far from the only ways of
evaluating these types of predictions and each has their respective drawbacks.

2.3.1 Continuous Ranked Probability Score

A common technique for evaluating probabilistic predictions is the continuous
ranked probability score (CRPS) [15]. It is defined through the formula

CRPS(Fn, yn) =

∫ yn

−∞
Fn(u)

2du+

∫ ∞

yn

(1− Fn(u))
2du (2.5)

with Fn being the estimated CDF and yn the label of the prediction. The best
possible value is 0, only attained when F is the Heaviside step-function in yn,
i.e. we are 100 % confident in our point prediction and that prediction turns out
to be correct. This method gives a score for each example, so to extend it to a
set of predictions one typically calculates the mean CRPS of these [6]. Further
in this report CRPS is used interchangeably with the mean CRPS. The reason
why CRPS is used is that it gives a general picture of performance while being
quick to estimate.

2.3.2 Probability Integral Transform

The CRPS score is a quantitative evaluation, meaning it can tell us the perfor-
mance between predictions but not the quality of them. The probability integral
transform (PIT) evaluation is qualitative, meaning it tells us about the quality
of the predictions [6]. From a label yn and forecast density fn we attain the
PIT sn as

sn =

∫ yn

−∞
fn(u)du = Fn(yn).

We know from Lemma 2.3 that if the random variable S, from which we sample
sn, is uniformly distributed on [0, 1], then fn is correctly calibrated. Thus to
determine the quality of predictions we produce a histogram of PIT scores for
a set of predictions which then should, given that the predictions are good,
resemble a uniform distribution density function.
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Chapter 3

Method

We begin this chapter with explaining the data we use for the study and how it
was gathered. We continue on by describing how each method was implemented
as well as describing the two naive methods that serve as baseline beyond just
the QRF. After that we describe the teaching schedule, which is the algorithm
used for testing the methods, and we present two versions of parameter selection
used in this algorithm. Finally, we present a description of how we evaluate the
results.

3.1 Data

The data we use in this study can be split into three categories, measurements,
ensemble forecasts and deterministic forecasts. They span the time January 2,
2022 to January 23, 2023, each measurement made at noon of the given day with
forecasts made 24-hours in advance. All data samples were gathered around a
small island outside the west coast of Sweden, Måseskär, the coordinates of each
type are presented in Table 3.1. The data was subject to some cleaning based on
each data type, these procedures are described in the following sections together
with information about the data. The final size of the data set after cleaning
was 367 points.

Table 3.1: Location coordinates for the different data-types

Data type Longitude Latitude
Measurement 58.0937 11.3312
Ensemble 58.101800 11.309300

Deterministic Forecast 58.099915 11.327288
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3.1.1 Measurements

This data was gathered from the Swedish Meteorological and Hydrological Insti-
tute (SMHI) and their weather station on Måseskär.1 The choice of station was
based on the hope that the local topography would affect the wind minimally,
though this could be an interesting topic for further research. Here we gathered
the average wind speed (10 meters above ground over 10 minutes) in meters per
second for the time-points in question. In the case where a measurement was
missing, that time-point was considered useless and was thus discarded.

3.1.2 Ensemble Forecasts

The ensemble forecasts used in the study come from the MetCoOp Ensemble
Prediction System [17] (MEPS). It is a collaboration between the meteorological
institutes of some of the countries within the coverage region which is a rectangle
over the Scandinavian Countries, Finland, the Baltic States and parts of the
North Sea and Atlantic Ocean. It is based on the AROME model developed
by météo-France and runs 30 numerical weather prediction (NWP) models in
parallel, each simulating the atmosphere with slightly different initial conditions.
The system thus produces 30 different forecasts and does so every 6 hours. Each
forecast contains predictions for every hour up to 61 hours ahead. The system
produces predictions for a large amount of atmospheric variables from which we
used the following:

1. x_wind_10m: average (over 10 min) zonal wind speed in m/s at 10 m

2. y_wind_10m: average (over 10 min) meridional wind speed in m/s at 10
m

3. surface_air_pressure: Pa

4. air_temperature_0m: surface air temperature in K

5. wind_speed_of_gust: wind speed of gust in m/s at 10 m

These variables will be referenced as x_wind, y_wind, pressure, temperature
and gust respectively for the remainder of this report. The grid, over which
predictions are produced, has a horizontal resolution of 2.5 km where we used
one of the closest grid points to the weather station on Måseskär (again see table
3.1 for exact location). We fetched this data from the Norwegian Meteorological
institute (MET Norway) and their open data thredds server.2 At certain points
there were missing values in the forecasts. If a variable had missing values
corresponding to more than 25 % of the total, i.e. more than 8 points were
missing, then that time-point was deemed unusable. If a variable had missing
values but less than 25 %, then the missing values were sampled from the non-
missing ones.

1https://www.smhi.se/data/meteorologi/vind gathered under CC BY 4.0 SE license
2https://thredds.met.no/thredds/metno.html gathered under CC BY 4.0 license

12

https://www.smhi.se/data/meteorologi/vind
https://thredds.met.no/thredds/metno.html


3.1.3 Deterministic Forecasts

The conformal prediction methods are most often used as an application on
top of a deterministic machine learning algorithm. In this case we used the
deterministic forecasts from MET Norway, which are post processed from the
ensemble forecasts, as the underlying model. This is a global model, meaning
they produce forecasts over the entire region, so we could perhaps create local
models that are more accurate. However, they are likely good enough for our use,
and are potentially better than what we could produce with very limited data.
This means that we must assume inductive versions of the conformal algorithms
without explicitly knowing what data the underlying model is trained on. If the
model is updated on the data we use to form conformity scores, this could hurt
the validity of the results from the conformal methods. However, if this is the
case, we can suspect that the potential changes might be small enough to still
allow for valid results, since the underlying model is global. The post processed
forecasts have a finer grid than the ensemble, 1 km in resolution to be precise,
we thus chose a point closer to the weather station (see Table 3.1). From this
forecast we only gathered the wind speed variable, again averaged over 10 min
at 10 m height. Time-points that had missing deterministic forecasts were, just
as in the measurement case, determined to be useless so if that was the case the
time-point in question was discarded.

3.2 Models

Below we will describe how each model was implemented, as well as our con-
tributions. There were some things that were done universally for the models.
The models all produced a set of evenly distributed quantiles of the cumulative
distribution function (CDF). To gain consistency we introduced a lower limit
of 0 and an upper limit of 100 to these quantiles, since we know wind speed is
non-negative and we do not expect it to be above 100 m/s. If a method pro-
duced quantiles below zero, these were all set to zero which produced a CDF
that started above 0, see Figures 3.1 to 3.3 for visual representations. This
naturally produces incorrect distributions, however this method was chosen as
to not skew the median or give incorrect central confidence intervals of the dis-
tributions. If necessary, 0 and 100 were added to the ends of the distributions.
Finally, they were up or down sampled to 200 points, through linear interpo-
lation, for consistency between methods. This is because the software used for
the QRF always supplies a specified number of quantiles. All the visualized pre-
dictions in this section were performed with only x_wind and y_wind as input
from the ensemble.

3.2.1 CPDS

Here we used the library Crepes [8] available for python to implement the model.
The library implements several versions of both conformal prediction and CPDS.
We used the normalized version which scales (non-)conformity scores according
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to some difficulty measurement of the prediction. In this case we used a supplied
k-nearest neighbors technique to scale the scores [18]. The assumption here is
that difficult predictions will have similar predictors xi and analogously, easy
predictions should also have similar predictors. This need not be the case, and
as such we might see a decrease in sharpness of the forecasts due to this. The
conformity scores were constructed as

αi =
yi − ŷi
κi + γ

where κi is the mean of the absolute residuals of the k-nearest neighbors of xi

and γ = 0.01. The distribution was then constructed through

Πn = ŷn + (κn + γ)α⃗

where α⃗ is the array of (non-)conformity scores sorted in ascending order. The
number k nearest neighbors to include we set as a hyperparameter to the system.
The length of data window, i.e. the amount of past examples to include in the
calibration before a prediction, was also set as a hyperparameter. This choice
comes from the assumption that there might be a distribution drift in time,
meaning that we might benefit from excluding past examples beyond a certain
point. The predicted distribution of the 56th example in the data set after
calibrating on all the previous examples, using k = 5, is shown in Figure 3.1.

Figure 3.1: Visualization of the CDF for point 56, produced by the CPDS
system using k = 5 and calibrating on all previous examples.

3.2.2 NECP

The NECP method, in its current form, only produces range predictions so to
get distributions we need to stack prediction intervals of increasing confidence

14



levels. We producedm = min[⌊(n− 1)/2⌋ , 100] intervals from 1/m in confidence
to 1 − 1/m. Apart from the conditions (2.2) and (2.3) for the intervals, we do
not have any theoretical guarantees for this kind of distribution though they
might prove to be useful in practice. Since we are dealing with a phenomenon
which might have a seasonal component we employed exponential decay for the
weights, meaning that the weights were defined through

ωi = λn−i, λ ∈ [0, 1]

where λ is a forgetting factor and i = 1, . . . , n− 1. We thus assume that there
is a distribution drift in the wind and that more recent observations represent
the underlying distribution better. There might be better options available,
such as a sinusoidal scheme which also gives high weights to observations of the
same season from previous years. However, that is beyond the scope of this
report, especially since we have limited data. If there is no or very little drift
in distribution, the employed scheme might instead worsen predictions since
we put higher trust in fewer observations. Above only using the residuals as
nonconformity score, we also developed our own score which takes inspiration
from the normalized (non-)conformity scores from [20] and [18]. These are
defined through

αi = |yi − ŷi|(1 + βT σ̂[xi])

with β being an array of scaling factors and σ̂[xi] being a function X → Rv with
v being the number of variables in the ensemble. The function σ̂[xi] should pro-
duce a value for each variable signifying the difficulty of a certain prediction. A
natural choice (and the reason for the notation) would be the standard deviation
of the given ensemble variable. We assume here that a larger deviation to the
variables signifies instability in the weather, meaning the prediction should be
more difficult to make. If this is not the case, we will likely see a decrease in the
sharpness of the forecasts, though theoretically validity should still hold. The
array β is an additional hyperparameter to λ. Technically σ̂[xi] would also be a
hyperparameter but we kept it consistent over all tests, producing the standard
deviations of the ensemble variables using the maximum likelihood estimate.
We call this version of the algorithm the non-exchangeable conformal predic-
tion normalized (NECP-N). To attain an interval for a given confidence level we
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Figure 3.2: Visualization of the CDF for point 56, produced by NECP and
NECP-N respectively with λ = 0.99 and in the case of NECP-N β = [0.1, 0.1]
with σ̂[xi] being the standard deviation of the two wind components in the
ensemble.

need the following expression

Γϵ = {y ∈ Y : A({z1, . . . , zn−1}, zn) ≤ Q1−ϵ

(
n−1∑
i=1

ω̃i · δαi
+ ω̃n · δ+∞

)
} =⇒

|yi − ŷi|(1 + βT σ̂[xi]) ≤ Q1−ϵ

(
n−1∑
i=1

ω̃i · δαi
+ ω̃n · δ+∞

)
=⇒

|yi − ŷi| ≤
1

(1 + βT σ̂[xi])

(
Q1−ϵ

(
n−1∑
i=1

ω̃i · δαi
+ ω̃n · δ+∞

))
=⇒

Γϵ = ŷi ±
1

(1 + βT σ̂[xi])

(
Q1−ϵ

(
n−1∑
i=1

ω̃i · δαi + ω̃n · δ+∞

))
.

Produced distributions for point 56 in the data set from both NECP and NECP-
N are shown in Figure 3.2. Here λ = 0.99 for both and in the case of NECP-N,
β = [0.1, 0.1] and σ̂[xi] is the estimated standard deviations of x_wind and
y_wind, respectively.

3.2.3 QRF

Implementation of the QRF algorithm was handled by the quantile-forest library
by Zillow.3 The QRF allows for a very large amount of hyperparameters but
for simplicity we kept most at default, only modifying the number of trees
in the forest. Above the QRF’s own hyperparameter we also implemented a
data window length parameter, like for the CPDS. The library does it’s own
interpolation, thus we only requested 198 evenly spaced quantiles from 1/200 to

3https://github.com/zillow/quantile-forest
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Figure 3.3: QRF with 100 trees trained on first 55 examples predicting the CDF
of the 56th example.

1− 1/200 and added on the endpoints ourselves. With 100 trees trained on the
first 55 examples, the predicted CDF of point 56 is presented in Figure 3.3.

3.2.4 Naive methods

To attain a frame of reference for the studied methods we additionally employed
two naive methods which serve as baseline above the QRF. The first is based on
constructing distributions from the raw ensemble. This was done by first cal-
culation the resultants from the ensemble variables x_wind and y_wind, which
then were sorted in ascending order. The resultants then formed a distribution,
and to match the other methods, the endpoints were added on and linear inter-
polation was performed. This method thus serves as a post-processing baseline,
showing performance with no post-processing and is subsequently called the raw
method. The other method is a completely naive method which forms predic-
tions with none of the input. Constructing such methods can be done in many
different ways, in this case we chose to use the current wind speed as our pre-
diction for the next day. This creates a point forecast, so we needed to extend
it to produce a distribution. We did so by doing linear interpolation between 0
and our point prediction, creating 100 evenly distributed quantiles. Since the
final distribution has 200 quantiles, this means that we predict that there is
a 50 % chance the actual wind will be below the point forecast. Similarly we
interpolated the second half of the distribution. However, since speeds close the
maximum value are very rare, we interpolated 95 points to the speed 20 m/s and
the remaining 5 points were evenly interpolated between 20 and 100. If however,
the point forecast was above 20, the entire second half was simply interpolated
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evenly to 100. We call this method the Naive method for the remainder of the
report.

3.3 Teaching schedule

To mimic a real world scenario we tested different models through a teaching
schedule [23]. It works by, before each new prediction, determining which combi-
nation of hyperparameters, from some set, performs best on the already known
data. Then it uses that combination to make the prediction and the process
is repeated. To determine which combination is the best some metric is used
which in this case was CRPS. The algorithm can be summarized according to
the following structure:

1. Split the data into an initial training set and a test set.

2. Use a parameter selection algorithm to determine which combination of
hyperparameters performs best on the data in the training set.

3. Train the best model on the training data, predict the first point in the
test set and save the prediction.

4. Move the first point in the test set to the end of the training set.

5. Repeat steps 2 to 4 until the test set is empty.

We implemented two versions of parameter selection algorithms, based on the
fact that some of the models required retraining when encountering new data.
The NECP and NECP-M methods used what we call sequential parameter se-
lection, which mimics what is done in the teaching schedule. The CPDS and
QRF methods instead used a block parameter selection, which predicts blocks
of data instead of single data points. These procedures are explained in detail
below.

3.3.1 Sequential parameter selection

This version mimics what is done in the over arching teaching schedule, by
predicting one example at a time in chronological order. This was used for the
NECP and NECP-N models, since we had control over that implementation we
could add on new training examples without having to retrain the system from
scratch. This algorithm trains the model on some initial data which we call
the training subset (to make a distinction from the training set in the teaching
schedule). It then makes a prediction, and then adds the predicted example to
the training subset. This procedure is performed until all points in the current
training set, from the teaching schedule, lies in the training subset. The CRPS
is calculated for the predictions and the algorithm is run again for the next
combination of hyperparameters. The combination with the lowest CRPS is
the one selected as the best. The algorithm can be summarized through:
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1. Split the available data into some initial training subset and test subset.

2. Train the model on the training subset.

3. Predict the first point in the test subset and save the prediction.

4. Move the predicted point from the test subset to the end of the training
subset.

5. Repeat steps 2 to 4 until the test subset is empty.

6. Calculate the CRPS of the predictions.

7. Repeat steps 1 to 6 for all combinations of hyperparameters.

8. Select the combination which gave the lowest CRPS.

The initial training subset was always chosen to be small, in this case 5 mod n−
1, which has a parallel to what we do in the block parameter selection. This
might give very poor predictions in the beginning, however since it was only
used for parameter selection it was deemed acceptable.

3.3.2 Block parameter selection

We used this version of the parameter selection algorithm for the CPDS and
QRF cases. These algorithms were retrained each time they encountered new
training data, which would make the sequential parameter selection very com-
putationally costly and would thus limit testing. This algorithm works similarly
to the first, the difference being that the available data is split into k blocks. It
then trains on the all other data and predicts the entire block in one go. This
algorithm can be summarized through:

1. Split the available data into k equal size blocks.

2. Concatenate the data before the first block to the end of the data after
the block to form a training subset.

3. Train the model on the training subset, then predict the examples in the
block and save those predictions.

4. Repeat steps 2 to 3 for all blocks.

5. Calculate the CRPS of the predictions.

6. Repeat steps 1 to 5 for all combinations of hyperparameters.

7. Select the combination which gave the lowest CRPS.

The rest of the initial split i.e. k mod n − 1 was always used for training. In
testing k was always set to 5.
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3.4 Evaluation

3.4.1 CRPS

We used the CRPS score for both parameter selection and model evaluation. It
requires the estimated CDF which is attained from

F̂ (x) =

m−1∑
i=0

1

m
· 1{Qi/m≤x} (3.1)

since the models produced estimated quantiles of the distribution. Here m is
the number of produced quantiles i.e. 200 and Qi/m is the i/mth quantile of the
distribution. The CRPS was then calculated by inserting (3.1) into (2.5) and
numerically integrating through the use of the trapezoidal rule.

3.4.2 Validity and width of intervals

While the CRPS score is a quantified measure for the performance of the distri-
butions, it does not give any details about how these distributions look. Thus,
we supplement the score by looking at the validity and width of two symmetric
prediction intervals around the median of the distributions. This gives a sample
picture of how well the predicted quantiles match the observations. In this study
we chose to observe the 50 % and 90 % prediction intervals. The intervals were
constructed by selecting the area between the corresponding quantiles. So, in
the case of the 50 % interval, we selected the area between Q0.25 and Q0.75, i.e.
between the points below which we can expect 25 % and 75 % of observations
to fall, respectively. Since the estimated distributions had a limited number of
quantiles, the closest available quantiles to the desired ones were chosen. The
90 % prediction intervals were chosen in a similar manner with Q0.05 and Q0.95.
To test the validity of these intervals we observe the ratio of observations that
fall within them. If a distribution is well calibrated, we expect this ratio to be
close to the corresponding confidence level. Further, to gain a picture of the
sharpness of the distributions, meaning how narrow they are, we calculate the
average width of these intervals over the predictions.

3.4.3 PIT histogram

For each teaching schedule we produced a PIT histogram over the corresponding
set of predictions. This was done by simply inserting the label of an example
yi into it’s estimated CDF (3.1). The produced values were then put into a
histogram of 20 equal size bins. Each bin, under the assumption that the PIT
distribution is uniform, can be viewed as coming from a binomial distribution
B(m, 1/20), with m being the number of predictions. The collection of bins
could thus be tested for uniformity through a χ2 test, with degrees of freedom
m− 1 [7], since we did not estimate any parameters of the distribution.
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Chapter 4

Results

This chapter presents the results of the study. It begins by introducing the
configurations used for the different methods as well as the statistics from the
best performing of these. We also supply a more comprehensive description of
the results for each of the main methods. Then we present a visualization of the
predictions from each of the methods. Lastly, we present the results regarding
calibration in probability with plots of some of the PIT histograms as well as
the χ2 test statistics.

4.1 Method configurations and statistics

Below follows the results of the analysis of the different methods. Certain meth-
ods were analyzed more extensively than others due to the stark difference in
computation complexity between certain methods, and that some of the meth-
ods gave promising results when adjusting the input and parameters. The initial
data split for the teaching schedule was January 2, 2022 to March 1, 2022 for the
training set and the rest for the testing set. That gave the initial training set 55
examples and the test set 312 examples. The complete results for each method
is presented in Appendix A. There, for each method we supply two tables, one
presenting the configurations tested and one presenting the result statistics of
each of these. The configurations are defined through input variables from the
ensemble as well as the combinations of hyperparameters used in parameter
selection. Each configuration is stated with a Ratio and Time parameter. The
Ratio represents the ratio of predictions performed by the corresponding hy-
perparameter combination in the teaching schedule, i.e. the ratio of times that
combination was chosen in the parameter selection. This metric thus shows
what hyperparameters, given the input, performs best in the CRPS metric for
that set. The Time parameter is the execution time for the teaching schedule
for that configuration.1 Note here that the NECP(-N) case uses a different pa-
rameter selection method than the CPDS and QRF cases as explained in 3.3.

1Performed on a Macbook Air M1 2020 on a single core.
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The statistics presented are what we call Val 0.9 and 0.5, which is the coverage
of the corresponding prediction intervals, Width 0.9 and 0.5 which is the av-
erage width of those intervals and lastly the CRPS score over the predictions.
They are all presented with respective 95 % confidence intervals. An important
note regarding the validity statistics is that, due to how the distributions are
constructed, the target coverages are actually 0.8995 and 0.4975 instead of 0.9
and 0.5 respectively. The results of the best configuration of each method for
each of the statistics Val 0.9, Val 0.5 and CRPS are presented in Table 4.1 while
their configurations are presented in Table 4.2. The validity metrics were chosen
over width since width is only interesting in the case where the predictions are
valid. The results of the baseline methods, Raw and Naive, are also presented
in Table 4.1.

Table 4.1: Statistics with 95 % confidence intervals from the naive methods and
the best performing configuration of each method for each of the metrics Val
0.9, Val 0.5 and CRPS. The metric in which each configuration performs best
is written in bold. For the full description of each configuration as well as all
results, see Appendix A.

Method Val 0.9 Width 0.9 Val 0.5 Width 0.5 CRPS
Raw 0.827± 0.042 4.091± 0.190 0.378± 0.054 1.513± 0.082 0.753± 0.054
Naive 1± 0 18.603± 0.018 0.837± 0.041 10.242± 0.010 2.349± 0.093

CPDS 6 0.910± 0.032 6.541± 0.291 0.500± 0.055 2.060± 0.096 0.881± 0.071
CPDS 8 0.926± 0.029 6.198± 0.148 0.513± 0.055 2.023± 0.052 0.863± 0.070

NECP(-N) 1 0.929± 0.028 6.094± 0.038 0.503± 0.055 2.042± 0.010 0.864± 0.070
NECP(-N) 3 0.923± 0.030 6.080± 0.039 0.516± 0.055 2.053± 0.015 0.873± 0.072
NECP(-N) 5 0.936± 0.027 6.255± 0.057 0.500± 0.055 2.033± 0.016 0.870± 0.070

QRF 1 0.891± 0.034 5.924± 0.221 0.526± 0.055 2.467± 0.135 0.906± 0.075
QRF 4 0.869± 0.037 4.814± 0.141 0.506± 0.055 1.943± 0.083 0.785± 0.062
QRF 5 0.869± 0.037 4.622± 0.141 0.510± 0.055 1.902± 0.082 0.776± 0.061

The methods were all tested with the following combinations of ensemble vari-
ables as input:

1. x_wind, y_wind

2. x_wind, y_wind, pressure

3. x_wind, y_wind, pressure, temperature

4. x_wind, y_wind, pressure, temperature, gust

5. x_wind, y_wind, gust

For the CPDS and QRF methods, combination 5 was also tested in a reduced
version. In this case only the quantiles Q0.1, Q0.5 and Q0.9 of each variable was
supplied as input, a method inspired by [22].

4.1.1 CPDS

The CPDS method was first tested with fixed k = 5 for the k-nearest neighbors
difficulty estimate but with varying data window length (WL). The tested data
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Table 4.2: Input and hyperparameter configurations of the best performing
method configurations according to metrics in Table 4.1, together with execution
time of each teaching schedule. The ratio of each parameter combination used
for prediction in the teaching schedule are presented in the Ratio column. The
input in red() means reduced to the first, fifth and ninth deciles.

Method Input Sets of Parameters Ratio Time

CPDS 6

red(x_wind) {WL = all, k = 5} 0.647

05:20
red(y_wind) {WL = 200, k = 5} 0.096
red(gust) {WL = 100, k = 5} 0.240

{WL = 50, k = 5} 0.016

CPDS 8

red(x_wind) {WL = all, k = 15} 0.330

05:26
red(y_wind) {WL = 200, k = 15} 0.179
red(gust) {WL = 100, k = 15} 0.385

{WL = 50, k = 15} 0.106

NECP(-N)
1

x_wind {λ = 1, β = 0} 1

07:43
y_wind {λ = 0.995, β = 0} 0

{λ = 0.99, β = 0} 0
{λ = 0.98, β = 0} 0
{λ = 0.97, β = 0} 0

NECP(-N)
3

x_wind {λ = 0.99, β = [0, 0]} 1
05:01y_wind {λ = 0.99, β = [0.05, 0.05]} 0

{λ = 0.99, β = [0.1, 0.1]} 0

NECP(-N)
5

x_wind {λ = 0.99, β = [0.05, 0.05]} 0.115

06:36
y_wind {λ = 0.99, β = [0.1, 0.1]} 0

{λ = 0.999, β = [0.05, 0.05]} 0.885
{λ = 0.999, β = [0.1, 0.1]} 0

QRF 1
x_wind {WL = 100, T = 200} 0.237

43:39y_wind {WL = all, T = 100} 0.006
{WL = all, T = 200} 0.756

QRF 4

x_wind {WL = 100, T = 200} 0.391

1:07:39
y_wind {WL = all, T = 100} 0.038

temperature {WL = all, T = 200} 0.571
pressure

gust

QRF 5
x_wind {WL = 100, T = 200} 0.417

49:01y_wind {WL = all, T = 100} 0.048
gust {WL = all, T = 200} 0.535
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windows were 200, 100, 50 as well as an all option which had no limit on the
window length. The all option was generally most favored by the parameter
selection followed by 100, 200 and last 50. For the reduced data case the same
window lengths were tested but with different values to k which were 5, 10, 15, 20
and 30. The method responded well to the reduced data and performed the best
in that case according to the Validity and CRPS statistics. The configuration
with k = 5 was best in both Val 0.9 and 0.5 while k = 15 gave the best results
in CRPS. These results are presented in Table 4.1 as CPDS 6 and 8 respectively
with the configurations in Table 4.2. The longest execution time was 05:27
(min:s) for four combinations in the parameter selection giving a time of about
01:22 per combination.

4.1.2 NECP(-N)

Firstly the pure NECP method, which is independent of input variables, was
tested with the forget-factors 1, 0.995, 0.99, 0.98 and 0.97. The configuration
with forget-factor 1 i.e. the standard conformal method, was exclusively favored
in the parameter selection. This was the case for the NECP-N version as well,
exclusively picking the configurations with λ = 1 and β = 0 anytime it was
included in the set of possible configurations. It did so since this performed best
in CRPS, the results of which is thus presented in Table 4.1 as NECP(-N) 1.
Configurations with forced forget factors 0.99 and 0.999 were also tested. These
were tested with three different values to β namely 0, 0.05 and 0.1, meaning β
could take the form of [0, 0], [0.05, 0.05] or [0.1, 0.01] but with varying lengths
according to input. Also in this case the parameter selection exclusively favored
β = 0. However, with forget factor 0.99 the NECP model performed the best in
Val 0.9 which is represented as NECP(-N) 3 in Table 4.1. A forced normalized
configuration was also tested with β values 0.05 and 0.1 paired with forget
factors 0.99 and 0.999, meaning four possible combinations. The favoring of the
parameter selection was mixed between the forget factors though it exclusively
picked 0.05 for beta. This version, with only the wind components as input,
performed best in Val 0.5 which is represented as NECP(-N) 5 in Table 4.1.
Additionally a forced version with β values 0.5 and 1 was tested for the case
with wind components and gust as input, though it did not perform better in
the used statistics. The specifications of the referenced configurations can be
found in Table 4.2. The slowest execution for this teaching schedule was 1:44
per combination.

4.1.3 QRF

The QRF was tested across the board with three different hyperparameter com-
binations. Two combinations with 200 trees (T ) and data window lengths of
100 and all respectively. The third combination had 100 trees and all in win-
dow length. The combination with 200 trees and no limit to data was generally
favored in the parameter selection, with the other 200 tree combination coming
in second. With only wind components as input it performed best in Val 0.9,
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and when all the variables were included it performed best in Val 0.5. These are
QRF 1 and 4 in Table 4.1 respectively. Only wind and gust as input gave the
best performance in CRPS, presented as QRF 5. The setups of these configura-
tions can also be found in Table 4.2. The QRF was also tested with the reduced
version of this input, but it performed significantly worse. The execution time
for the QRF was highly dependent on the number of input variables, with the
slowest being the full input with 22:33 per combination and the quickest the
reduced version with 7:39 per combination.

4.2 Visualization

For a visual reference we present plots of the observed wind together with pre-
dictions from the three main methods of the study CPDS, NECP and QRF. The
used configurations are the first of each, using only the wind components (see
Appendix A for details). The displayed points are test point 250 and beyond,
since these predictions are based on the most amount of data. The plots are all
displayed in Figure 4.1. The plotted distributions are sequentially larger central
predictions intervals, constructed as the ones described in 3.4.2.

4.3 Calibration in probability

Calibration in probability is measured in PIT histograms in this report. It
supplements the statistics in the previous presented with a visualization of how
well the produced distributions represent the actual measurements. The PIT
histograms were constructed with 20 bins. The expected value should then be
312/20 = 15.6. We can also construct a 95% confidence interval by calculating x
such that P (X ≤ x) = 0.025 and P (X ≤ x) = 0.975 if X ∼ B(312, 1/20), which
is 9 and 24 respectively. These levels are represented by red dashed lines in the
plots. Here we have selected a handful of PIT histograms of the methods from
the previous section based on interesting characteristics, see Appendix B for all
histograms. The χ2 statistics and p-values for all configurations are presented
in Table 4.3. The p-values represent the hypothesis test with H0 that the bins
of each histogram comes from a uniform distribution, based on the χ2 test.
We start with the resultants of the naive methods which are presented in Figure
4.2.
From the CPDS method we present PIT histograms for configurations 6 and 8
which were the best performers in Table 4.1. We have also chosen to include the
histograms for 4 and 5 as well, since these performed the worst and best in χ2

respectively. Configuration 4 is the one that uses all input variables and 5 only
uses wind and gust. These are presented in Figure 4.3. Note that none of the
configurations of the CPDS histograms can be discarded with 95% confidence
in the hypothesis test.
For NECP(-N) we present configurations 1, 3 and 5, again the best performers
in Table 4.1. No other configuration gave a significantly worse χ2 score, though
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(a) CPDS (b) NECP

(c) QRF

Figure 4.1: Visualizations of the predictions made by CPDS, NECP and QRF
all using corresponding configuration 1.

configuration 22 with significantly increased β, gave a much lower score and is
thus also included. These histograms are presented in Figure 4.4. Again note
that none of the configurations in this case can be discarded.
Finally for the QRF we once again present the best performers from Table 4.1
which are 2, 4 and 5. Here we note that it is only configuration 6, with the
reduced input, that can be discarded as non-uniform with 95 % confidence.
However, we can also note that configurations 1 and 3 are relatively close to
that threshold. The relevant histograms are presented in Figure 4.5.
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Table 4.3: χ2 statistic with p-values of all configurations from the PIT his-
tograms. NECP configurations 1,3 and 4 share results with the configurations
not represented. Note that the Raw configuration on the QRF line represents
the Raw ensemble i.e. not a QRF model. See appendix A for details about each
configuration.

CPDS 1 2 3 4 5 6 7
χ2 23.128 18.256 27.744 28.641 13.769 15.179 24.667
p 0.232 0.505 0.088 0.072 0.797 0.711 0.172

CPDS 8 9 10
χ2 15.308 16.462 28.513
p 0.703 0.626 0.074

NECP(-N) 1 3 4 5 9 13 17
χ2 18.128 17.359 16.718 18.000 15.308 15.436 18.256
p 0.514 0.566 0.609 0.522 0.703 0.695 0.505

NECP(-N) 21 22
χ2 19.667 11.718
p 0.415 0.897

QRF 1 2 3 4 5 6
χ2 28.897 23.128 29.154 21.718 25.949 53.513
p 0.068 0.232 0.064 0.299 0.132 4 · 10−5

Other Raw Naive
χ2 87.744 128.000
p 8 · 10−11 3 · 10−18

(a) Raw (b) Naive

Figure 4.2: PIT histograms of the distributions created from the raw ensemble
and the Naive predictor.
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(a) CPDS 6 (b) CPDS 8

(c) CPDS 4 (d) CPDS 5

Figure 4.3: PIT histograms from CPDS configurations 6, 8, 4 and 5 details of
which can be found in Table A.1.
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(a) NECP(-N) 1 (b) NECP(-N) 3

(c) NECP(-N) 5 (d) NECP(-N) 22

Figure 4.4: PIT histograms of NECP(-N) configurations 1, 3, 5 and 22 details
of which can be found in Table A.3.
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(a) QRF 2 (b) QRF 4

(c) QRF 5

Figure 4.5: PIT histograms from QRF configurations 3, 4 and 5 details of which
can be found in Table A.5.
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Chapter 5

Discussion

This final chapter presents the analysis of the results as well as concluding re-
marks. We begin by discussing the CPDS and NECP(-N) methods, their results
and how they compare to the other methods. Then we take a quick review of
how the QRF could be improved for further testing. We also conduct a discus-
sion of the potential pitfalls of using CRPS as a metric in this study. Finally,
we give suggestions for further research before drawing the overall conclusions
of the study.

5.1 CPDS

The CPDS method is an interesting alternative to current methods since it offers
theoretical guarantees of correct distributions. These guarantees of course only
hold under the assumption of IID (implicitly exchangeable) data, something
we cannot ensure in this case. Further, since we use an inductive approach,
we assume that the underlying model is not trained on the calibration data
and that it handles the data symmetrically. These are yet mire assumptions
we cannot guarantee, which again might hurt the validity of the results. The
best configuration in validity, CPDS 6, seems to give very good intervals for
both 0.9 and 0.5, though the intervals are somewhat wider than other methods.
Looking at the results in Table A.2 we see that the method generally has good
coverage for these intervals. The method is somewhat conservative in the 0.9
case, sometimes the confidence interval does not cover the target value, while the
results are mixed for 0.5, though in this case the target is always covered by the
intervals. In general we can expect conformal based systems to be conservative
in validity according to Theorems 2.1 and 2.2. However, with randomization
we can expect exact validity theoretically [23], although Crepes [8] does not
implement this. Looking at the PIT histograms in Figure 4.3 we can conclude
that 6 and 8 look good. Configuration 4 seems to perform significantly worse in
calibration, in line with the χ2 score in Table 4.3. While CPDS 5 does not seem
to improve calibration noticeably when looking at the plots in Figure 4.3. The
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choice of (non-)conformity score should in theory not affect the validity of the
algorithm, and although there is a clear difference in the histograms, all versions
still hold under the hypothesis test. We might in this case see less difference in
calibration asymptotically, while for a limited data set as this is, might notice
larger differences between scores. At least we can see that reducing the data to
quantiles seems to improve performance, at least in the CRPS and validity cases.
This could suggest that nearest neighbors algorithm can become over saturated
with predictors. The case where temperature and pressure is added seems to
reduce performance in both CRPS and calibration (see Tables A.1 and A.2).
This might also suggest that these variables do not add significant information
about the difficulty of the forecast. There are of course other ways of defining
scores that might be beneficial here. Crepes for instance includes a function
that normalizes scores according to the variance of the input, much like in our
NECP-N method. Another way is through Mondrian conformal prediction [9],
which sorts examples into categories from which predictions are drawn.
In comparison to other methods we can first say that it definitely improves
predictions from the naive methods across the board, except for CRPS against
the raw ensemble, a fact we will return to. Compared to the QRF we might
say it performs slightly better in Calibration in Probability when looking at the
χ2 scores alone, even though the results are mixed. However, looking at the
histograms it is difficult to make any clear conclusions about which is better, if
we discard the reduced configuration for the QRF. One thing to note it due to
the inherent randomness of the QRF, results could vary significantly between
tests. The QRF also has a lot of potential for improvement, like increasing
the amount of trees in the forest. The computational complexity between the
methods is stark however, with the QRF taking more than 10 times longer to
complete a teaching schedule in the worst case. The CPDS method does however
have an advantage in this case since it relies on an underlying predictive model
to produce point forecasts, which are already supplied. If we had to train an
underlying model as well, the systems would be more equal in complexity and
the outcome would depend heavily on the choice of this model.
Coming back to the results, the point still stands that even with an external
underlying model, over which we have no control, we still see promising results.
This might be connected to the fact that the underlying model is global and
that we employ the CPDS method locally. One possible implication here is that
CPDS might be a viable and very efficient tool to supplement forecasts from a
global model, with probabilistic forecasts locally. This might require measuring
stations nearby, but if we consider a wind turbine park for instance, then there
probably are measurements available.

5.2 NECP(-N)

Again much like in the CPDS case, we assume that the underlying model is
not trained on the data we use, an assumption we cannot guarantee. However,
the validity does still seem to be decent, though the 0.9 intervals are generally
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more conservative than the CPDS. Since the distributions in this case are just
stacked prediction intervals, the intervals should be close to valid. Interestingly,
it performs very well in calibration in probability, at least according to the χ2

scores. A natural question to ask then is if the non-exchangeable version of
the algorithm improves the prediction, i.e. is the data non-exchangeable? Or
a better question is perhaps if there is a distribution drift in time, since we
employ exponential decay for the weights. According to CRPS we do not gain
anything from this weight scheme, since the parameter selection consistently
favors λ = 1. Comparing configurations 1 and 3 in Table 4.1 we can conclude
that validity and width gets slightly better, in 0.9 confidence, with λ = 0.99,
while it gets slightly worse in 0.5. In calibration in probability all configurations
perform well, so it is difficult to state anything about the forgetting factor here.
Next question is if normalizing the conformity scores proportional to the stan-
dard deviation of the input variables improves our predictions? Again according
to CRPS they give no improvement however, NECP(-N) 5 which is normalized,
gives the best validity in 0.5. Looking at the validity and width of the configu-
rations with forced β > 0 in Table A.4 the results are mixed. Part of this might
be due to the forced forgetting factor below 1 though. However, in configuration
22, with much larger β, the χ2 statistic drops significantly which could indicate
that calibration in probability improves with this normalization. The drop in
χ2 is paired with an increase in CRPS though, which indicates that the CRPS
metric does not improve with better calibration. This will be discussed further
below. It would be a good idea to keep testing with larger β to determine if this
result came by chance or if it improves calibration in probability consistently.
One certainty is that it performs significantly better than the naive methods,
especially in calibration in probability and in validity (again we can note that
CRPS for the raw ensemble is better). Compared to CPDS it performs similarly
in case of validity, though it is a little more conservative across the board, at
least in the 0.9 case. In calibration in probability it seems to outperform CPDS
in general, according to the χ2 statistic, at least the forced non-exchangeable
configurations. The CPDS should in theory give better p-values here (the ones
used to form the distribution) which might indicate some non-exchangeability
of the data. However, since none of the configurations for either method could
be discarded under the hypothesis test, we cannot say with confidence that
NECP is better in this regard. Against the QRF it similarly performs better
in calibration in probability looking at the χ2 scores. The QRF in this case
also seems to be less consistent in validity and width statistics. This might
be due to the fact the NECP methods has an underlying predictive model to
rely on. Computationally it is not as easy to compare NECP and QRF due to
different parameter selection. But since the sequential selection should be more
computationally heavy than the block selection we can say with confidence
that, given a pre-trained underlying model, the NECP method is significantly
less computationally complex than the QRF.
It is clear that the NECP(-N) method has similar potentials as CPDS. To gain
a better picture of how the non-exchangeability and normalization affects per-
formance, more research with more data should be conducted. It is possible
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that with shorter forecasting lead times, temporal dependencies might increase
and the non-exchangeable algorithm will exceed more in performance.

5.3 Improving the baseline

In this report we have focused on making an initial comparison between con-
formal based methods and the established QRF method for ensemble post-
processing. Hence very little time was spent on optimizing the QRF as a base-
line. For further research it would be beneficial to compare the conformal meth-
ods to an improved version. For instance, increasing the number of trees in the
QRF to 400 might improve results [22]. This would increase computational
complexity significantly, which is partly why we kept it low in this study. The
major difference between the conformal based methods and the QRF in this
case is the supplying of point forecasts for the former. Effectively the conformal
methods thus creates distributions on the residuals of the predictions while the
QRF is used to simply process the ensemble. This is typically how the QRF has
been used and why we kept it this way in this study. The advantage the con-
formal methods then have, apart from computational complexity, is that they
are built on top of an already existing and likely well trained model. However,
that model is global and will likely not take local variations into account, which
might be an advantage for the QRF in this case. It is difficult to say which is
more advantageous without more testing. The QRF could be further improved
by supplying more or better information as input, see [22] for examples. Nat-
urally, this could similarly be done for the conformal methods by integrating
other variables in the (non-)conformity scores. Though in that case one would
have to know, or guess, how each variable affects the difficulty (or property) of
a forecast unless one finds a system that does so automatically.
A further thing to note is due to the randomness of the QRF algorithm, the
results might vary somewhat between instances of the algorithm, though it is
likely reduced thanks to the teaching schedule. Running the algorithm several
times and looking at the distribution of the results might give a better picture
of the general performance. However, this is out of scope for this study.

5.4 CRPS as metric

Using CRPS as a metric for evaluation is certainly an important discussion. It
seems to be a common metric within the field of weather forecasting. Comparing
results in Table 4.1 it seems the CRPS favors narrow distributions even though
they are lacking in validity. Though the distribution should likely be somewhat
centered around the measurement to receive a good score. However, the point
stands that CRPS as used in this study, might not give a proper picture of the
desired performance. It would thus be beneficial to instead use the fair version of
this score [11]. Given that the score might favor overly confident forecasts, this
might have a detrimental effect on parameter selection in the teaching schedule.
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Thus we should not trust blindly that the teaching schedule has consistently
chosen the best models, at least from a validity point of view. There are of
course other scores up for consideration such as the log-score or variogram score
[6]. These generally perform better than CRPS in the multivariate case, but at
least the log-score can definitely be useful in the univariate case as well. For
further testing, it might be beneficial to employ several scoring rules.

5.5 Further research

We have already mentioned several points of possible further research such as
improving the QRF, adding more variables to the (non-)conformity scores and
investigating the non-exchangeability further. Looking at other metrics than
the CRPS is another potential subject for further research, which has been dis-
cussed slightly already. Here the fair version of the CRPS [11], which punishes
under dispersed forecasts more, could be a first option. Additionally one could
introduce the log-score in evaluation, though to do that the CDFs would have
to be transformed into probability density functions first. This score would be
beneficial if we wanted to extend to multivariate forecasting [6], for instance
predicting both speed and direction, which is yet another potential continua-
tion of this study. Potentially, we could also look at metrics connected to real
world use cases, such as the return when using the predictions on power market
trading. Further, there are other topics within the field of conformal prediction
which might be of interest in the application of ensemble post processing and
weather forecasting in general. For instance extending to time-series forecast-
ing one might consider the work done in [21] where the inductive conformal
technique is used with recurrent neural networks. Or it might be effective to
combine the techniques of conformal prediction and quantile regression like the
work in [12], also for the time-series setting. Perhaps a more interesting topic
for further testing is the non-exchangeable case, to understand what aspects im-
prove predictions of this algorithm. Here it would further be interesting to look
at different lead times in forecasting. Another extension for further research
would be to see if it is possible to add a weighting scheme to CPDS, to handle
non-exchangeability in that case.

5.6 Conclusions

We have tested two conformal based methods, conformal predictive distribu-
tion systems and non-exchangeable conformal prediction (with normalization),
for post-processing ensemble forecasts to wind speed distributions and com-
pared them to the QRF method, the raw ensemble as well as a completely
naive method. We have seen that the conformal methods can create well cal-
ibrated distributions, significantly better than the raw ensemble and perhaps
better than QRF, for 24-hour lead time forecasts. They do so consistently for
different combinations of hyperparameters and with much less computational
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complexity, given that the methods are supplied an external deterministic fore-
cast. More testing is required, especially against better configurations of the
QRF, to determine the long term usefulness of these methods within the field.
Using more fair metrics for evaluation would be an essential part of continued
research. However, the results show a lot of promise for using conformal based
methods for probabilistic wind-speed forecasting. Especially for supplementing
global deterministic models with local probabilistic predictions and doing this
at low computational cost.
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Appendix A

Method configurations and
results

Below follows the all testing setups and corresponding results. They are sorted
under corresponding method sections.

A.1 CPDS

Table A.1: Input and hyperparameter configurations of the CPDS method and
execution time of each teaching schedule. The ratio of each parameter combi-
nation used for prediction in the teaching schedule are presented in the Ratio
column.

Number Input Set of Hyperparameters Ratio Time

1

{WL = all, k = 5} 0.468

02:55
x_wind {WL = 200, k = 5} 0.135
y_wind {WL = 100, k = 5} 0.282

{WL = 50, k = 5} 0.115

2

{WL = all, k = 5} 0.510

03:00
x_wind {WL = 200, k = 5} 0.224
y_wind {WL = 100, k = 5} 0.196

pressure {WL = 50, k = 5} 0.071

3

x_wind {WL = all, k = 5} 0.465

02:56
y_wind {WL = 200, k = 5} 0.103

pressure {WL = 100, k = 5} 0.330
temperature {WL = 50, k = 5} 0.103

40



4

x_wind {WL = all, k = 5} 0.401

03:05
y_wind {WL = 200, k = 5} 0.247

pressure {WL = 100, k = 5} 0.263
temperature {WL = 50, k = 5} 0.090

gust

5

x_wind {WL = all, k = 5} 0.628

02:56
y_wind {WL = 200, k = 5} 0.112
gust {WL = 100, k = 5} 0.202

{WL = 50, k = 5} 0.058

6

red(x_wind) {WL = all, k = 5} 0.647

05:20
red(y_wind) {WL = 200, k = 5} 0.096
red(gust) {WL = 100, k = 5} 0.240

{WL = 50, k = 5} 0.016

7

red(x_wind) {WL = all, k = 10} 0.497

05:21
red(y_wind) {WL = 200, k = 10} 0.199
red(gust) {WL = 100, k = 10} 0.247

{WL = 50, k = 10} 0.058

8

red(x_wind) {WL = all, k = 15} 0.330

05:26
red(y_wind) {WL = 200, k = 15} 0.179
red(gust) {WL = 100, k = 15} 0.385

{WL = 50, k = 15} 0.106

9

red(x_wind) {WL = all, k = 20} 0.471

05:27
red(y_wind) {WL = 200, k = 20} 0.167
red(gust) {WL = 100, k = 20} 0.327

{WL = 50, k = 20} 0.035

10

red(x_wind) {WL = all, k = 30} 0.436

04:53
red(y_wind) {WL = 200, k = 30} 0.192
red(gust) {WL = 100, k = 30} 0.346

{WL = 50, k = 30} 0.026

Table A.2: Statistics with 95 % confidence intervals of the CPDS model config-
urations presented in Table A.1.

Number Val 0.9 Width 0.9 Val 0.5 Width 0.5 CRPS
1 0.933± 0.028 7.528± 0.329 0.532± 0.055 2.102± 0.097 0.887± 0.069
2 0.936± 0.027 7.457± 0.336 0.484± 0.055 2.046± 0.091 0.879± 0.070
3 0.933± 0.028 7.572± 0.328 0.494± 0.055 2.111± 0.096 0.906± 0.071
4 0.936± 0.027 7.254± 0.296 0.487± 0.055 2.065± 0.093 0.890± 0.069
5 0.920± 0.030 7.182± 0.312 0.510± 0.055 2.087± 0.100 0.884± 0.071
6 0.910± 0.032 6.541± 0.291 0.500± 0.055 2.060± 0.096 0.881± 0.071
7 0.917± 0.031 6.164± 0.202 0.480± 0.055 1.981± 0.066 0.871± 0.071
8 0.926± 0.029 6.198± 0.148 0.513± 0.055 2.023± 0.052 0.863± 0.070
9 0.920± 0.030 6.059± 0.132 0.515± 0.055 2.003± 0.044 0.867± 0.072
10 0.917± 0.031 6.057± 0.108 0.484± 0.055 2.012± 0.035 0.865± 0.072
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A.2 NECP(-N)

Table A.3: Input and hyperparameter configurations of the NECP and NECP-N
methods and execution time of each teaching schedule. The ratio of each pa-
rameter combination used for prediction in the teaching schedule are presented
in the Ratio column.

Number Input Set of Hyperparameters Ratio Time

1

{λ = 1, β = 0} 1

07:43
x_wind {λ = 0.995, β = 0} 0
y_wind {λ = 0.99, β = 0} 0

{λ = 0.98, β = 0} 0
{λ = 0.97, β = 0} 0

2

{λ = 1, β = [0, 0]} 1

09:32

x_wind {λ = 1, β = [0.05, 0.05]} 0
y_wind {λ = 1, β = [0.1, 0.1]} 0

{λ = 0.99, β = [0, 0]} 0
{λ = 0.99, β = [0.05, 0.05]} 0
{λ = 0.99, β = [0.1, 0.1]} 0

3
{λ = 0.99, β = [0, 0]} 1

05:01x_wind {λ = 0.99, β = [0.05, 0.05]} 0
y_wind {λ = 0.99, β = [0.1, 0.1]} 0

4
{λ = 0.999, β = [0, 0]} 1

05:06x_wind {λ = 0.999, β = [0.05, 0.05]} 0
y_wind {λ = 0.999, β = [0.1, 0.1]} 0

5

{λ = 0.99, β = [0.05, 0.05]} 0.115

06:36
x_wind {λ = 0.99, β = [0.1, 0.1]} 0
y_wind {λ = 0.999, β = [0.05, 0.05]} 0.885

{λ = 0.999, β = [0.1, 0.1]} 0

6

{λ = 1, β = [0, 0, 0]} 1

09:59

x_wind {λ = 1, β = [0.05, 0.05, 0.05]} 0
y_wind {λ = 1, β = [0.1, 0.1, 0.1]} 0

pressure {λ = 0.99, β = [0, 0, 0]} 0
{λ = 0.99, β = [0.05, 0.05, 0.05]} 0
{λ = 0.99, β = [0.1, 0.1, 0.1]} 0

7
x_wind {λ = 0.99, β = [0, 0, 0]} 1

05:02y_wind {λ = 0.99, β = [0.05, 0.05, 0.05]} 0
pressure {λ = 0.99, β = [0.1, 0.1, 0.1]} 0

8
x_wind {λ = 0.999, β = [0, 0, 0]} 1

05:06y_wind {λ = 0.999, β = [0.05, 0.05, 0.05]} 0
pressure {λ = 0.999, β = [0.1, 0.1, 0.1]} 0

9

{λ = 0.99, β = [0.05, 0.05, 0.05]} 0.734

06:47
x_wind {λ = 0.99, β = [0.1, 0.1, 0.1]} 0
y_wind {λ = 0.999, β = [0.05, 0.05, 0.05]} 0.266

pressure {λ = 0.999, β = [0.1, 0.1, 0.1]} 0

10

{λ = 1, β = [0, 0, 0, 0]} 1

10:09

x_wind {λ = 1, β = [0.05, 0.05, 0.05, 0.05]} 0
y_wind {λ = 1, β = [0.1, 0.1, 0.1, 0.1]} 0

pressure {λ = 0.99, β = [0, 0, 0, 0]} 0
temperature {λ = 0.99, β = [0.05, 0.05, 0.05, 0.05]} 0

{λ = 0.99, β = [0.1, 0.1, 0.1, 0.1]} 0
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11

x_wind {λ = 0.99, β = [0, 0, 0, 0]} 1

05:04
y_wind {λ = 0.99, β = [0.05, 0.05, 0.05, 0.05]} 0

temperature {λ = 0.99, β = [0.1, 0.1, 0.1, 0.1]} 0
pressure

12

x_wind {λ = 0.999, β = [0, 0, 0, 0]} 1

05:05
y_wind {λ = 0.999, β = [0.05, 0.05, 0.05, 0.05]} 0

temperature {λ = 0.999, β = [0.1, 0.1, 0.1, 0.1]} 0
pressure

13

x_wind {λ = 0.99, β = [0.05, 0.05, 0.05, 0.05]} 0.737

06:42
y_wind {λ = 0.99, β = [0.1, 0.1, 0.1, 0.1]} 0

temperature {λ = 0.999, β = [0.05, 0.05, 0.05, 0.05]} 0.263
pressure {λ = 0.999, β = [0.1, 0.1, 0.1, 0.1]} 0

14

x_wind {λ = 1, β = [0, 0, 0, 0, 0]} 1

10:23

y_wind {λ = 1, β = [0.05, 0.05, 0.05, 0.05, 0.01]} 0
pressure {λ = 1, β = [0.1, 0.1, 0.1, 0.1, 0.1]} 0

temperature {λ = 0.99, β = [0, 0, 0, 0, 0]} 0
gust {λ = 0.99, β = [0.05, 0.05, 0.05, 0.05, 0.05]} 0

{λ = 0.99, β = [0.1, 0.1, 0.1, 0.1, 0.1]} 0

15

x_wind {λ = 0.99, β = [0, 0, 0, 0, 0]} 1

05:08
y_wind {λ = 0.99, β = [0.05, 0.05, 0.05, 0.05, 0.05]} 0

temperature {λ = 0.99, β = [0.1, 0.1, 0.1, 0.1, 0.1]} 0
pressure

gust

16

x_wind {λ = 0.999, β = [0, 0, 0, 0, 0]} 1

05:10
y_wind {λ = 0.999, β = [0.05, 0.05, 0.05, 0.05, 0.05]} 0

temperature {λ = 0.999, β = [0.1, 0.1, 0.1, 0.1, 0.1]} 0
pressure

gust

17

x_wind {λ = 0.99, β = [0.05, 0.05, 0.05, 0.05, 0.05]} 0.247

06:45
y_wind {λ = 0.99, β = [0.1, 0.1, 0.1, 0.1, 0.1]} 0

temperature {λ = 0.999, β = [0.05, 0.05, 0.05, 0.05, 0.05]} 0.753
pressure {λ = 0.999, β = [0.1, 0.1, 0.1, 0.1, 0.1]} 0

gust

18

x_wind {λ = 1, β = [0, 0, 0]} 1

10:08

y_wind {λ = 1, β = [0.05, 0.05, 0.05]} 0
gust {λ = 1, β = [0.1, 0.1, 0.1]} 0

{λ = 0.99, β = [0, 0, 0]} 0
{λ = 0.99, β = [0.05, 0.05, 0.05]} 0
{λ = 0.99, β = [0.1, 0.1, 0.1]} 0

19
x_wind {λ = 0.99, β = [0, 0, 0]} 1

05:05y_wind {λ = 0.99, β = [0.05, 0.05, 0.05]} 0
gust {λ = 0.99, β = [0.1, 0.1, 0.1]} 0

20
x_wind {λ = 0.999, β = [0, 0, 0]} 1

05:04y_wind {λ = 0.999, β = [0.05, 0.05, 0.05]} 0
gust {λ = 0.999, β = [0.1, 0.1, 0.1]} 0

21

x_wind {λ = 0.99, β = [0.05, 0.05, 0.05]} 0.045

06:38
y_wind {λ = 0.99, β = [0.1, 0.1, 0.1]} 0
gust {λ = 0.999, β = [0.05, 0.05, 0.05]} 0.955

{λ = 0.999, β = [0.1, 0.1, 0.1]} 0

22

x_wind {λ = 0.99, β = [0.5, 0.5, 0.5]} 0.308

06:46
y_wind {λ = 0.99, β = [1, 1, 1]} 0
gust {λ = 0.999, β = [0.5, 0.5, 0.5]} 0.692

{λ = 0.999, β = [1, 1, 1]} 0

43



Table A.4: Statistics with 95 % confidence of the NECP(-N) model configura-
tions presented in Table A.3.

Number Val 0.9 Width 0.9 Val 0.5 Width 0.5 CRPS
1 0.929± 0.028 6.094± 0.038 0.503± 0.055 2.042± 0.010 0.864± 0.070
2 0.929± 0.028 6.094± 0.038 0.503± 0.055 2.042± 0.010 0.864± 0.070
3 0.923± 0.030 6.080± 0.039 0.516± 0.055 2.053± 0.015 0.873± 0.072
4 0.929± 0.028 6.084± 0.039 0.510± 0.055 2.045± 0.010 0.864± 0.070
5 0.936± 0.027 6.255± 0.057 0.500± 0.055 2.033± 0.016 0.870± 0.070
6 0.929± 0.028 6.094± 0.038 0.503± 0.055 2.042± 0.010 0.864± 0.070
7 0.923± 0.030 6.080± 0.039 0.516± 0.055 2.053± 0.015 0.873± 0.072
8 0.929± 0.028 6.084± 0.039 0.510± 0.055 2.045± 0.010 0.864± 0.070
9 0.929± 0.028 7.483± 0.287 0.513± 0.055 2.108± 0.080 0.906± 0.069
10 0.929± 0.028 6.094± 0.038 0.503± 0.055 2.042± 0.010 0.864± 0.070
11 0.923± 0.030 6.080± 0.039 0.516± 0.055 2.053± 0.015 0.873± 0.072
12 0.929± 0.028 6.084± 0.039 0.510± 0.055 2.045± 0.010 0.864± 0.070
13 0.929± 0.028 7.419± 0.285 0.513± 0.055 2.104± 0.080 0.905± 0.069
14 0.929± 0.028 6.094± 0.038 0.503± 0.055 2.042± 0.010 0.864± 0.070
15 0.923± 0.030 6.080± 0.039 0.516± 0.055 2.053± 0.015 0.873± 0.072
16 0.929± 0.028 6.084± 0.039 0.510± 0.055 2.045± 0.010 0.864± 0.070
17 0.936± 0.027 7.738± 0.296 0.526± 0.055 2.139± 0.080 0.906± 0.068
18 0.929± 0.028 6.094± 0.038 0.503± 0.055 2.042± 0.010 0.864± 0.070
19 0.923± 0.030 6.080± 0.039 0.516± 0.055 2.053± 0.015 0.873± 0.072
20 0.929± 0.028 6.084± 0.039 0.510± 0.055 2.045± 0.010 0.864± 0.070
21 0.936± 0.027 6.353± 0.066 0.503± 0.055 2.026± 0.019 0.870± 0.070
22 0.933± 0.028 7.427± 0.224 0.503± 0.055 1.976± 0.059 0.900± 0.072
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A.3 QRF

Table A.5: Input and hyperparameter configurations of the QRF method and
execution time of each teaching schedule. The ratio of each parameter combi-
nation used for prediction in the teaching schedule are presented in the Ratio
column.

Number Input Set of Hyperparameters Ratio Time

1
x_wind {WL = 100, T = 200} 0.237

43:39y_wind {WL = all, T = 100} 0.006
{WL = all, T = 200} 0.756

2
x_wind {WL = 100, T = 200} 0.167

52:38y_wind {WL = all, T = 100} 0.029
pressure {WL = all, T = 200} 0.804

3

x_wind {WL = 100, T = 200} 0.141

1:03:39
y_wind {WL = all, T = 100} 0.010

temperature {WL = all, T = 200} 0.849
pressure

4

x_wind {WL = 100, T = 200} 0.391

1:07:39
y_wind {WL = all, T = 100} 0.038

temperature {WL = all, T = 200} 0.571
pressure

gust

5
x_wind {WL = 100, T = 200} 0.417

49:01
y_wind {WL = all, T = 100} 0.048
gust {WL = all, T = 200} 0.535

6
red(x_wind) {WL = 100, T = 200} 0.663

22:57
red(y_wind) {WL = all, T = 100} 0.026
red(gust) {WL = all, T = 200} 0.311

Table A.6: Statistics with 95 % confidence of the QRF model configurations
presented in Table A.5.

Number Val 0.9 Width 0.9 Val 0.5 Width 0.5 CRPS
1 0.891± 0.034 5.924± 0.221 0.526± 0.055 2.467± 0.135 0.906± 0.075
2 0.926± 0.029 6.142± 0.221 0.532± 0.055 2.481± 0.144 0.909± 0.080
3 0.889± 0.035 6.295± 0.219 0.526± 0.055 2.566± 0.132 0.962± 0.089
4 0.869± 0.037 4.814± 0.141 0.506± 0.055 1.943± 0.083 0.785± 0.062
5 0.869± 0.037 4.622± 0.141 0.510± 0.055 1.902± 0.082 0.776± 0.061
6 0.785± 0.046 3.863± 0.143 0.397± 0.054 1.588± 0.101 0.904± 0.132
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Appendix B

PIT histograms

Here follows the PIT histogram plots for all the tested configurations in Ap-
pendix A. The histograms for each method are sorted under corresponding sec-
tions below.
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B.1 CPDS

(a) CPDS 1 (b) CPDS 2

(c) CPDS 3 (d) CPDS 4

(e) CPDS 5 (f) CPDS 6

Figure B.1: PIT histograms from the CPDS configurations 1 through 6 in Table
A.1.
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(a) CPDS 7 (b) CPDS 8

(c) CPDS 9 (d) CPDS 10

Figure B.2: PIT histograms from the CPDS configurations 7 through 10 in
Table A.1.
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B.2 NECP(-N)

(a) NECP(-N) 1, 2, 6, 10, 14, 18 (b) NECP(-N) 3, 7, 11, 15, 19

(c) NECP(-N) 4, 8, 12, 16, 20

Figure B.3: PIT histograms from the NECP(-N) configurations with duplicate
results in Table A.3.
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(a) NECP(-N) 5 (b) NECP(-N) 9

(c) NECP(-N) 13 (d) NECP(-N) 17

(e) NECP(-N) 21 (f) NECP(-N) 22

Figure B.4: PIT histograms from the NECP(-N) configurations 5, 9, 13, 17, 21
and 22 in Table A.3.
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B.3 QRF

(a) QRF 1 (b) QRF 2

(c) QRF 3 (d) QRF 4

(e) QRF 5 (f) QRF 6

Figure B.5: PIT histograms from the QRF configurations A.5.
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