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Abstract

Gravitational light deflection in the Solar System can be detected by high precision
astrometric measurements. We discuss the parametrized post-Newtonian framework and
the comparison of metric theories of gravity. At the precision of a few micro-arcseconds,
Gaia data will permit tests of the PPN parameters β and γ and to distinguish monopole
and quadrupole gravitational light deflection. Accounting for relativistic effects is neces-
sary to achieve the aimed for precision. The theoretical formulation of light deflection is
discussed. We deduce an expression for the source direction derivatives required by the
AGIS scheme in a simplified relativistic model. This model accounting for monopole and
quadrupole deflection terms has been implemented in AGISLab. We have validated the
implementation and maintain convergence of the astrometric solution for Gaia.
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Introduction

« ubi materia, ibi geometria »

Johannes Kepler’s Thesis XX from
De fundamentis astrologiae certioribus

1 Introduction

Determining the positions and motions of stars and other stellar objects with ever greater
precision has been a task of paramount importance in astronomy over thousands of years and
has spawned manifold discoveries. The study of kinematic and dynamic properties of stars
has allowed a deeper understanding of their physical properties such as their spectra and their
sizes. The Gaia satellite mission will be an astrometric survey of one billion stars at a precision
of a few micro-arcseconds. We here discuss the influence of gravitational light deflection on the
data reduction for Gaia and how this can be used as a test of general relativity and competing
theories.

Measurement of gravitational light deflection by the Sun and the planets of the solar system
constitutes a test of general relativity and its extensions. All light deflection measurements to
date only allow to confirm the correctness of the monopole light deflection predicted by general
relativity. The quadrupole light deflection however has not yet been measured. It serves as a
test of General Relativity and other contending theories of gravitation.

1.1 Scope of this work

The objective of this six months project is to simulate gravitational light deflection by the
Sun and the planets of the solar system and to study the detection of these effects by the
Gaia mission. The goal is to determine the possibility to constrain post Newtonian models of
gravity.

In section 2 we present the astrometric problem in the context of the Gaia mission. We
describe its main features which will make it possible to achieve the aimed for precision.

We will discuss the equations of gravitational light deflection in section 3. The theoretical
foundations and experimental evidence leading to general relativity and competing theories of
gravity are examined. Then the parametrized post Newtonian framework described in Will
[1993] is introduced. It allows for the predictions of general relativity and other metric theories
to be compared.

The appendices give acronyms and notations, units and quote the full parametrized post-
Newtonian framework as described by Will [2006].
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Section 2

2 Astrometry

2.1 Historical overview of astrometry

What is astrometry? Astrometry is the discipline concerned with the study and measure-
ment of the kinematic and dynamic properties, and the brightness (magnitude) of celestial
bodies. Among those properties are the positions and motions of objects, as well as their size
[Kovalevsky, 2002]. The development of astronomy and astrometry is tightly linked to the com-
pilation of star catalogues. They can be traced back to Timocharis, Aristillus and Hipparchus
in the second century BC, and have gradually increased in size. Their form has changed from
hand written recordings on papyrus or paper to globally accessible digital databases such as
Simbad. Today these are updated daily and incorporate data from satellite missions such as
HIPPARCOS.

A catalog provides the identification of stars and their positions. This allows one to track
the motion of stars and the evolution of their physical characteristics. [Perryman, 2010]

The increase in precision of measurements has spawned discoveries of new phenomena and
objects, such as the precession of orbits, the structure of the galaxy, the motion of the Sun
around the center of the Milky Way galaxy, and the discovery of other galaxies.

The kinematic properties are the positions and motions of the planets. The sky is usually
mapped by a spherical coordinate system consisting of two angles describing an object’s ori-
entation on the sky and the third coordinate being the distance to the origin. The proper
motion of an object is the variation of these three parameters. A more detailed discussion of
coordinate systems and reference frames can be found below.

The dynamic properties are found from the variations in the time series of observations.
They are described by their apparent acceleration. The precise determination of all of these
needs careful transformation between different reference frames to take into account relativistic
effects.

Gaia - Taking the Galactic Census Astrometric Accuracy Assessment

Progress in astrometric accuracy from Hipparchus to Tycho Brahe, Hipparcos, and Gaia. ESA’s space astrometry
mission Gaia pushes astrometric measurements to the limits.

Gaia’s main goal is to collect high-precision astrometric data (i.e. positions, parallaxes, and proper motions) for
the brightest 1 billion objects in the sky. These data, complemented with multi-band, multi-epoch photometric
and spectroscopic data collected from the same observing platform, will allow astronomers to reconstruct the
formation history, structure, and evolution of the Galaxy. In the Gaia Concept and Technology Study Report
(published by ESA in 2000), it was shown that meeting these main mission objectives will require the observation
of a complete sample of stars down to 20-th magnitude combined with end-of-life astrometric accuracies of
∼20–25 µas (or better) at V = 15 mag.

Order-of-magnitude estimates of Gaia’s expected end-of-life astrometric accuracy can easily be obtained by using
back-of-the-envelope calculations involving overall, system-level parameters such as primary mirror size, detector
efficiency, and mission lifetime. In the current phase of the project, however, a fully-fledged astrometric accuracy
tool is indispensable for carefully assessing the impact of various design alternatives on the scientific value of the
mission product, for optimizing instrument parameters such as the mirror coating reflectivity, and for safeguarding
the mission objectives in general. It has been the responsibility of the Gaia Project Scientist Support Team to set
up, maintain, and expand such a general astrometric accuracy model.

The astrometric accuracy model currently in place provides a simplified yet realistic end-to-end simulation of
the Gaia observation process, ranging from photon emission at the astronomical source at the one end, through
the effects introduced by, e.g. the revolving scanning law and CCD TDI operation, to single-transit centroiding
measurements of the line spread function, and the averaging of these results over the operational mission lifetime,
at the other end. The model also includes, among other things, wave-front errors due to aberrations and image
smearing due to transverse motion of sources in the focal plane and charge diffusion in the CCD detectors. The
longer-term goal of this modelling effort is to include all effects affecting the final mission accuracies and to
expand the model to include photometric and radial-velocity accuracy assessments.
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Source: Jos de Bruijne For more about Gaia visit the Gaia web site:
http://www.rssd.esa.int/Gaia

2009-08-25 (Rev. 1)

Figure 1: Diagram illustrating the progress in astrometric accuracy from Hipparchus to Gaia.
The latter space astrometry mission will push astrometric measurements to the limits. (Jos
de Bruijne, 2009, ESA Science Team [2010] 2)
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Astrometry

Objects studied in astrometry Star maps and catalogs describe the positions and motions
of celestial objects. To give but a brief overview of the different kinds of objects, a more detailed
one can be found in most modern astronomy textbooks (for instance Kovalevsky [2002]).

• planets : “wandering” objects which move quickly compared to an apparently fixed
background

• stars : on short time scales these appear to be fixed on the celestial sphere and are small
and possibly bright objects. They are self gravitating balls of gas.

• diffuse objects such as nebulae, clusters, galaxies which may be composed of hot gas,
dust, or large numbers of stars

The Milky Way has three structural components: the flat disc, the bulge and the halo.
The flat disc contains nearly 1011 stars of all spectral types and ages orbiting the Galactic
centre. The bulge is less flattened, supposedly contains a supermassive black hole and may
contain a bar. The halo surrounds the disc and bulge, has roughly 109 stars, which are old
and metal poor, as well as approximately 160 globular clusters and a small number of satellite
dwarf galaxies. This entire system is embedded in a massive halo of dark material of unknown
composition and poorly known spatial distribution [Jos de Bruijne, GAIA: Galactic Structure
in Gaia Infosheet 2009 ]2. The internal physical properties of these objects are not the subject
of study of astrometry and will not be further discussed here.

The main concern of astrometry is the precise measurement of positions and motions of
these objects. These are expressed in a reference frame. The sky is mapped by a spherical
coordinate system consisting of two angles describing an object’s orientation on the sky and
the third coordinate being the distance to the origin. This is discussed in in further detail in
section 3.2.4.

Astrometry and relativity In the history of scientific thought considerable effort has gone
into devising a simple elegant description and model of planetary motion. The Keplerian
revolution and Newton’s law of gravitation provided a unified framework for astrometric cal-
culations and provided a basis for new discoveries. The ideas at the heart of special and
general relativity originate in the same search for a simple geometrical description of reality
on all scales. These theoretical frameworks have allowed to explain phenomena which had
hitherto remained mysterious such as the perihelion precession of Mercury. The latter is a
small effect (43′′ per century) and highly accurate instruments and techniques are required to
obtain precise measurement.

The main principle of relativistic theories is the principle of equivalence, which contains
the assumption of constant speed of light. This will be further discussed in section 3.2.1.

The ties between astrometry and relativity lie in the experiments. Today’s precise astro-
metric measurements require models which take into account relativistic effects. This in turn
allows to test the predictions of special and general relativity. The Eddington experiment
performed during the 1919 solar eclipse measured the light bending by the Sun. It was one
of the first tests of the general theory of relativity, although the quality of the data has been
the subject of dispute. Today the improvements in experimental techniques have allowed to
place constraints on the validity of general relativity and to test its predictions against those
of alternative theories. The upcoming Gaia mission will survey the sky and permit tests of
general relativity to higher precision. One of these is the measurement of gravitational light
deflection by Jupiter which is the subject of this project.

2 http://www.rssd.esa.int/index.php?project=GAIA&page=Info_sheets_overview
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Section 2

Hipparcos and subsequent catalogs Earth bound astrometry was limited by effects such
as atmospheric variability and seismic perturbations. The motivation behind the Hipparcos
mission was to lift these limits by making high precision astrometry space-borne to avoid these
limitations.

Hipparcos (High Precision Parallax Collecting Satellite) was a satellite mission of the Eu-
ropean Space Agency during the 1990’s. It produced a three-dimensional map of the sky.
The first catalog produced using this data, the Hipparcos catalog contains 117 955 stars with
astrometric data. The positions are accurate to better than 2 milli arcseconds, which is about
a factor 100 better than can be obtained from Earth based observatories. The project also
produced the Tycho catalog. It is more complete since it contains more than two million
additional stars, but their astrometric data is less precise. [Perryman, 2010]

2.2 Gaia and current missions

2.2.1 The Gaia mission

The ESA mission Gaia has been designed with a view to survey our galaxy, the Milky Way. It
will yield a star catalog with a precision of 8–25 µarcsec(µas) and will encompass stars down
to magnitude 20 [Prusti, 2011]. Originally GAIA was an acronym for: Global Astrometric
Interferometer for Astrophysics. As the mission has increased in complexity and different
choices in technological implementation have been made, this has become obsolete. The idea of
the mission was originally outlined in Lindegren et al. [1992] as a successor to ESA’s Hipparcos
mission. The mission was approved by ESA in 2000. The launch is planned for 2013 and the
five years of observations are to start by 2014. The nominal duration of the mission is five
years.

The scientific objectives of the Gaia mission are far reaching. The study of the Milky
Way galaxy and its origin lie at their heart. Aside from the study of galaxy formation and
galactic dynamics, it will provide statistics on many stars and thereby help to improve the
understanding of stellar physics and evolution. The objects to be detected are also expected to
be of all classes of astrophysical objects including brown dwarfs, white dwarfs, and planetary
systems. The Gaia mission will also allow us to carry out a new Solar System census. Moreover
the results of Gaia will contribute to the understanding of fundamental physics. In particular,
high precision astrometry, that is precise angular distance and motion measurements will allow
us to test General Relativity against competing theories of gravitation, which can be expressed
in the parametrized post-Newtonian formalism (PPN gamma). This is discussed in more detail
in section 3.2.3.

It will deliver a catalogue of about one billion stars in the Milky Way galaxy down to
magnitude 20. The expected precision will allow to improve the distance scale of the Galaxy
and the universe. It is expected that this will result in a three dimensional structural map of
one billion stars in our galaxy, an improvement on the Hipparcos catalog by a factor of about
ten thousand.
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Astrometry

2.2.2 The Gaia satellite

Mechanics and orbit: The main structural element of Gaia is the silicon carbide torus, on
which the instruments are mounted. The satellite will be in orbit around the Lagrange point
L2 of the Sun-Earth system. Its orbit is designed to allow it to scan the whole sky such that
every object will be observed about 70 times.

• spinning on its axis at 6h for a full circle

• spin axis precessing a full circle in 63 days

• the orbital motion around the Sun in one year

These three motions allow an almost homogeneous coverage of the sky. On average 70
observations per source over the five year mission will be obtained.

At the second Lagrange point (L2) Gaia will be in a nearly periodic Lissajous orbit, which is
stable and avoids the need for large maneuvres. Small maneuvres will be required roughly one
a month. This orbit also helps to avoid the eclipse zone during the mission. This is essential
for the solar panels that generate power, and to keep the thermal environment stable. The
selection of the orbit arose from a trade-off between communication, operations, cost, thermal
and radiation environment, and accessibility with current rockets.

Figure 2: At the left, overview of the Gaia satellite showing the space craft and payload on
top. A zoom on the payload module at the right shows the two main mirrors M1 and M1′

and focal plane (Copyright ESA).

Optics and detectors: There are three instruments in the payload on board Gaia. They
will carry out astrometry, photometry and spectroscopy.

Here we shall give a brief overview of the science that the photometry and spectroscopy in-
struments will do and the general error requirements. Gaia will observe in the visual spectrum,
in the magnitude range from 6 to 20. For astrometry the precision of the data will depend
on the magnitude of the star. The parallax error is to be around 7 µarcsec for the brightest
stars (G < 13)3, 20µas (microarcseconds) at 15 mag, and 200µas at 20 mag. The photometric
instrument will allow the determination of stellar surface parameters. It is designed to give
temperatures to a few hundred Kelvin, gravities and metallicities to 0.2 dex. Thus the require-
ments on its sensitivity are: 8 to 20 mmag for a 15 mag star. The spectroscopic instrument
is necessary for the determination of radial velocities of objects. It is designed for a precision
better than 1 km/s for bright stars (V<13.5 mag), covering wavelengths from 330 to 1000 nm.
The signal to noise ratio (S/N) of the spectroscopic instrument is required to be at resolution

3Here we use G to denote Gaia magnitudes. The definition of G and the transformation to other magnitude
scales, is beyond the scope of this work. They are discussed briefly in Bastian [2007], and more extensively in
Jordi et al. [2010].
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better than ∆λ/λ = 10 000 for deduction of astrophysical parameters for a subsample of the
sources [Prusti, 2011].

Figure 3: This diagram shows the CCD layout in focal plane of Gaia, with the astrometric
field in light gray at the center. (Copyright EADS Astrium)

2.2.3 Limitations of the Gaia mission

There are technical limitations to the data Gaia will deliver. One of these is related to the
filters used, they determine the observable wavelengths.

According to [Prusti, 2011] the problems are mainly of the following types. It is difficult
to meet the astrometric precision requirements for blue stars, the reference star is B1V and
the deviation is about 10% for the parallax error. Another class of stars that have high errors
are those of magnitude G < 7 mag, the parallax requirement is missed by 1 to 2µarcsec.
This is determined by the gating scheme used in the mission. Another problem is saturation
of the CCDs by bright objects, Jupiter has V magnitude in the range of [−3,−1.6] and its
angular size is about 40 arcsec. This will result in a temporary blinding of the CCDs and
make observations impossible within 5 arcsec of Jupiter. This is an important factor in the
measurement of light deflection, mostly for the quadrupole (and weaker) terms [Hobbs et al.,
2010, Martin Fleitas et al., 2011]. Additionally there are optical limitations such as the size of
the mirrors and CCDs.

How far away can Gaia see into the Milky Way? This depends not only on the technical
characteristics, but also on the extinction coefficients of interstellar matter and the direction

12



Astrometry

in which it is pointed. Distant objects can be seen if they are very bright or magnified by a
gravitational lens for instance. What can be ascertained more clearly is the expected fraction of
stars/objects/sources in the Milky Way that will be covered by the telescope. Approximately
a billion objects in the magnitude range between 6 and 20, this corresponds only to 1% of all
objects in the galaxy.
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Figure 4.3: The Scanning Reference System (SRS), the Gaia viewing directions and the Field-of-View Reference
Systems (FoVRS). The angles between the two viewing directions are not drawn to scale. The black dots near
the centre denote 90◦ angles (marked by the arcs). The big ellipse indicates the instantaneous scan great circle
on the celestial sphere. The small rectangles indicate the fields on the sky; the small arrows show the orientation
of the field angles. The principal axes f of the FoVRS point towards the centre of each field of view. The w and
z axes (not labelled in the diagram) point parallel to the η and ζ axes, respectively. The direction to the sun is
always at an angle of 45 degrees from the positive z axis.

4.2.4.2 SRS, Celestial Coordinates

Celestial coordinates in the SRS differ from those in the CoMRS only by a Euclidean rotation, given by
the attitude of the satellite, see Section 4.2.4.3. They are expressed by cartesian unit vectors.12

The unit vectors along the principal axes are called x, y, z, see Fig. 4.3. The z axis is the nominal
rotation axis of the satellite; with the direction towards the sun being at an angle of 45 degrees from the
z axis during Gaia operations. The x axis is in the plane of the two Astro viewing directions (i.e. the two
projections of the optical axis of Gaia’s telescope onto the sky), half a basic angle (γ/2, i.e. 53.25◦) away
from each of them. The y axis is also in the plane of the two viewing directions such that the system x,
y, z is right-handed. A general unit vector u in the SRS has direction cosines x, y, z, such that

u = xx + yy + zz (4.6)

with x2 + y2 + z2 = 1.

The nominal rotation of Gaia is positive about the positive z axis. The y axis thus precedes the x axis
on the sky by 90 degrees. A given star is first seen in the field no. 1 (preceding field), and 106.5◦ later in
the field no. 2 (following field).

Note that during nominal operations the sun by definition has a positive z coordinate in the SRS.

4.2.4.3 SRS, Attitude: The Transformation CoMRS → SRS

The attitude of the satellite is the orientation of the SRS with respect to the CoMRS (i.e. essentially
with respect to the ICRS). It is expressed by the attitude matrix A, an orthonormal 3 × 3 matrix, as

12Some earlier documents used angular coordinates in the SRS as well, calling them instrument angles, and denoting
them as η and ζ. It is proposed to avoid these in the future, in order to avoid confusion with the field angles η and ζ which
will be defined in Section 4.2.5 for the Field-of-View Reference Systems.

(a) The Scanning Reference System (SRS), the Gaia view-
ing directions and the Field-of-View Reference Systems
(FoVRS). The angles between the two viewing directions are
not drawn to scale. The black dots near the centre denote
90◦angles (marked by the arcs). The big ellipse indicates the
instantaneous scan great circle on the celestial sphere. The
small rectangles indicate the fields on the sky; the small ar-
rows show the orientation of the field angles. The principal
axes f1, f2 of the FoVRS point towards the centre of each
field of view. The w and z axes (not labeled in the diagram)
point parallel to the η and ζ axes, respectively. The direc-
tion to the sun is always at an angle of 45◦from the positive
z axis.
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Figure 4.2: Illustrative sketch of the celestial sphere indicating the ICRS spherical coordinates (α, δ) and direction
cosines (X, Y, Z) of a unit vector u towards a star (upper right), with the origin of (α, δ) at front left and the
ICRS north pole towards the top.

Note that the time coordinate used by the Development Ephemeris is not TCB, but something close to
Barycentric Dynamical Time (TDB). The time parameter of a particular Development Ephemeris (e.g.
DE405) can be called TDE405 etc. The relation of that TDE405 and TCB can be found by the procedure
described e.g. in [19] and requires some numerical integration with the data of the ephemeris itself. This
has to be taken into account whenever ephemeris coordinates are used.

4.2.2 The Geocentric Reference System (GCRS)

In certain fields of science (geodesy, geophysics etc.) this reference system is the natural one. It is also
of importance for parts of astronomy, since most astronomical observations are made with instruments
moving with the Earth. Also, spacecraft orbits (ephemerides) are frequently described in geocentric terms.

Most probably the GCRS will play no role in the Gaia data reduction. But perhaps the primary repre-
sentation of the Gaia orbit (to be provided by the ground segment) will be a geocentric one, since the
ground stations are located on the rotating Earth. This is as yet undefined.

4.2.2.1 GCRS, Definition

The GCRS is defined by the BCRS/ICRS and the coordinate transformations given in the IAU Resolution
B1.3 (2000), as given and explained in [4] and [13].

The spatial origin of the GCRS is the barycentre of the Earth. Its time coordinate is the Geocentric
Coordinate Time (TCG). By definition TT is identical to TCG except for a small difference in rate
(about 7 10−10).4 The GCRS is defined by the IAU as kinematically non-rotating with respect to the
BCRS.

4Comments by S. Klioner: Formerly TT was defined in such a way that the mean rate of TT coincided with the mean
rate of the proper time of an observer situated on the rotating geoid. This definition was revised by IAU 2000 because the
precision of atomic clocks is expected to increase much faster than the accuracy of the geoid determinations. The scaling
factor between TT and TCG now is a defining constant which for continuity was chosen so that the mean rate of the proper
time of an observer on the rotating geoid as defined in 2000 be as close as possible to that of (the re-defined) TT. However,
any third-body effects on the geoid are fully ignored by the new definition. This will become important probably even before
the Gaia launch.

(b) Illustrative sketch of the celestial
sphere indicating the ICRS spherical co-
ordinates (α, δ) and direction cosines
(X,Y, Z) of a unit vector u towards a star
(upper right), with the origin of (α, δ) at
front left and the ICRS north pole towards
the top.

Figure 4: The satellite and ICRS frames, both from Bastian [2007]

2.2.4 Scanning space astrometry

Scanning space astrometry is the term designating the kind of astrometric observation used in
the Hipparcos and Gaia missions. It relies on the transformation between (linear) positional
data and the spinning telescope. We will give an overview here, a detailed account can be
found in Lindegren and Bastian [2011] and references therein.

Indeed, as Gaia will be scanning the sky, the precise time when the centre of a star image
has some well-defined position in the field of view (FoV) is determined. The position is defined
by the pixel layout of the CCDs in Gaia. Then the observation time is the one-dimensional
(along-scan, AL) measurement of the stellar position relative to the instrument axes. At the
same time an approximate across-scan (AC) position of the star is also measured. However,
the AC measurement is less accurate due to the geometry of the CCDs which are elongated in
the AC direction, the lower optical resolution across-scan, and the way the pixels are read out.
The astrometric catalogue is produced after processing a very large number of such observation
times. This process involves a precise reconstruction of the instrument pointing (attitude) as
a function of time and of the optical mapping of the CCDs through the telescope onto the
celestial sphere.

A number of factors impact the AL measurement. We will discuss the basic angle, the
scanning law and parallax determination in the following.
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Section 2

Gaia’s two fields of view (FoV) coincide on the focal plane shown in figure 3. The basic
angle between them is Γ =106.5◦. This choice is motivated by two reasons. The first is
to make it as large as possible, the second to avoid divisors of 360◦. The accuracy of the
one-dimensional AL position measurement depends on the basic angle. In the 1D case there
are peaks in the variance of star positions for basic angle values of the kind Γ = m/n (rad)
with m,n being small integers. These peaks should be avoided. In the case of Gaia we have
m = 71 and n = 240, which are large enough to avoid such problems. It can be noted that
this effect disappears for two dimensional measurements when the global solution over the
whole celestial sphere is considered. Basic angle variations are unavoidable and have to be
monitored, to compensate for the errors they could induce. This should be precise to within
10µarcsec, and will be monitored and measured down to 1µarcsec.

The scanning law describes the attitude of the satellite as a function of time. It gives the
transformation between the Gaia proper frame and the reference frame for the catalog (e.g.
BCRS). It prescribes the precession rate, the direction of the spin axis z as a function of time,
the spin rate, which for Gaia is 60′′s−1, the phase of the spin at some initial epoch, and solar
aspect angle ξ = 45◦.

To optimize the parallax measurement, large ξ are preferred, however protecting the satel-
lite optics from direct and indirect sunlight imposes the constraint ξ ≤ 45◦. The chosen fixed
value is also a factor that contributes to the constant thermal environment.

The spin period of Gaia is P = 6hr, the AC size of the FoV is Φ = 0.69◦. Preferably the
areas of the sky scanned in successive spins should overlap, to avoid the occurrence of gaps.
Therefore |z| ≤ Φ should be verified. This condition is not quite satisfied for Gaia, so there
will be gaps. The precession rate is the inverse of the number of loops per year K = 5.8 for
Gaia.
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Fig. 5. The spin axis z makes loops around the Sun, which must overlap as in the left

and middle diagram in order to provide good observing conditions. The star at point a

may be scanned whenever z is 90◦ from a, i.e., on the great circle A at z1, z2, z3, etc.

2.4 Why does the scanning law look the way it does?

The first element of the so-called scanning law is a prescription for how the direc-
tion of the spin axis, z, should evolve as a function of time. It can be expressed,
for example, by the functions αz(t), δz(t) which should be continuous and smooth.
This prescription is complemented by the fixed spin rate (60′′ s−1 for Gaia) and
the phase of the spin at some initial epoch.

For parallaxes we want to make sin ξ as large as possible, where ξ is the solar
aspect angle. ξ = 90◦ is not possible because the Sun would then enter the FoVs
on every spin of the satellite. Considerations of straylight and the size of the
sunshield have led to the practical constraint ξ ≤ 45◦ for Gaia (though an earlier
design had ξ = 55◦). The conclusion is that the solar aspect angle should be kept
constant at its maximum feasible value, or 45◦ for Gaia. A constant angle is also
good for minimizing variations of the solar thermal impact on the instrument.

Given the apparent path of the Sun on the celestial sphere and the fixed ξ,
the first element of the scanning law reduces to the specification of ν(t), where ν
is the inclination of the Sun-z arc to the ecliptic. A continuously increasing (or
decreasing) ν(t) represents a precession-like, or revolving, motion of z around the
Sun, resulting in a series of loops on the sphere (Fig. 5). The areas of the sky
scanned in successive spins should preferably overlap, so that no gaps occur. This
requires |ż|P ≤ Φ, if P = 6 hr is the spin period and Φ = 0.69◦ the AC size of the
FoV. Actually, this condition is not quite satisfied for Gaia, so there will be gaps;
but in any case a roughly constant inertial precession rate |ż| minimizes the non-
uniformity of the sky coverage. Thus ν(t) is uniquely defined by the initial angle
and adopted precession rate. The resulting “uniform revolving scanning law” is
the baseline for both Hipparcos and Gaia, albeit with slightly different parameters.

The choice of ξ and precession rate (or, equivalently, K = the number of
loops per year) determines the overall pattern of scanning. The resulting number
and geometry of scans across an arbitrary point can be visualized as in Figure 5.
From this it can be seen that the loops of z should overlap slightly as in the left
diagram, in which case there are at least six distinct epochs of observations per

Figure 5: The precession of Gaia’s spin axis, from [Lindegren and Bastian, 2011]. The spin
axis z makes loops around the Sun, which must overlap as in the left and middle diagram in
order to provide good observing conditions. The star at point a may be scanned whenever z
is 90◦ from a, that is on the great circle A at z1, z2, z3 and so on.

The resulting “uniform revolving scanning law” is the baseline for both Hipparcos and Gaia,
with slightly different parameters.

Lindegren and Bastian [2011] have pointed out that absolute parallaxes are obtained, even
though scanning space astrometry also makes purely differential measurements. The principle
of the parallax measurement is illustrated in figure 6. In Lindegren and Bastian [2011] this
is explained as follows. This is made possible by the measurement of the relative parallax
shifts between stars at large angular separations. For an observer at 1 AU from the Sun, the
apparent shift of a star due to its parallax $ equals $ sin θ and is directed on a great circle
from the star towards the Sun. As shown in Figure 6 (left), the AL parallax shift of the star at
F is $F sin θ sinψ = $F sin ξ sin Γ, where ξ = 45◦ is the constant solar aspect angle (between
the Sun and the spin axis). At the same time the AL parallax shift of the star at P is zero.
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The AL measurement of F relative to P therefore depends on $F but not on $P , while the
reverse is true at a different time, as shown in the right diagram.

The sensitivity to parallax is proportional to sin ξ sin Γ, which should therefore be maxi-
mized. The choice of ξ was discussed above. While Γ = 90◦ is optimal for the basic angle
according to this analysis, we have seen that other considerations led to a slightly larger value
being adopted for Gaia.
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Fig. 3. The relative variance of positions along a great circle (left) and on a sphere

(right), as obtained from differential measurements between two randomly positioned

fields separated by a given basic angle Γ. In the 1D case (left) certain values of Γ should

be avoided. In the 2D case (right) there are no particularly bad angles although Γ ∼ 90◦

is preferable. (Calculations and diagrams by courtesy of S. Nzoke, Lund Observatory.)

observer at 1 AU from the Sun, the apparent shift of a star due to its par-
allax ! equals ! sin θ and is directed on a great circle from the star towards
the Sun. As shown in Figure 4 (left), the AL parallax shift of the star at F is
!F sin θ sin ψ = !F sin ξ sin Γ, where ξ = 45◦ is the constant solar aspect angle
(between the Sun and the spin axis). At the same time the AL parallax shift of
the star at P is zero. The AL measurement of F relative to P therefore depends
on !F but not on !P, while the reverse is true at a different time, as shown in
the right diagram.

The sensitivity to parallax is proportional to sin ξ sin Γ, which should therefore
be maximized. The choice of ξ is discussed below. While Γ = 90◦ is optimal for
the basic angle according to this analysis, we have seen that other considerations
led to a slightly larger value being adopted for Gaia.

Fig. 4. The measured along-scan (AL) angle between the stars at P, F depends on their

parallaxes !P, !F in different ways depending on the position of the Sun. This allows

to determine their absolute parallaxes rather than just the relative parallax !P − !F.

Figure 6: The geometry of the parallax measurement: The measured along-scan (AL) angle
between the stars at P, F depends on their parallaxes $P , $F in different ways depending on
the position of the Sun. This allows to determine their absolute parallaxes rather than just
the relative parallax $P −$F . [Lindegren and Bastian, 2011].

This is relevant to the study of light deflection because the monopole deflection of the Sun
is similar to a global shift of the parallaxes [Hobbs et al., 2010].

The parallax shift of a star is directed toward the Sun, as shown by the arrows on F and P
in figure 6. The monopole light deflection is a shift of the apparent position of the star away
from the Sun (along the great circle). In figure 6 the angle between the Sun and the star F
along the great circle is θ. This effect has been shown to result in a statistical correlation of
PPN γ and the parallax zero point [Mignard, 2002]. Both shifts have to be taken into account
to determine the correct direction toward the star. These two shifts differ in their dependence
on the angular separation from the Sun, this property is used in the data processing chain to
distinguish them and determine the value of PPN γ for the Sun.
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2.3 Data processing : AGIS, AGISLab and GREM

Gaia will produce a large amount of data, approximately 40Gb of telemetry data per day and an
estimated 100 Tb over the 5 year mission. (Uwe Lammers, Gaia: Astrometric Data Reduction
ESA Science Team [2010]) To cope with the data processing the Gaia Data Processing and
Analysis Consortium (DPAC) has been formed in 2006 to structure the Gaia working groups
and the efforts of the scientific community across Europe (M. Perryman, 2006, ESA Science
Team [2010]). DPAC is in charge of the data reduction for Gaia. This comprises astrometric
data reduction and the reduction of spectroscopic and photometric data. Among these are
binary recognition, search for moving objects and exoplanets.

The main steps of the data processing chain are shown in figure 7. There are two phases
the daily data processing and the Astrometric Global Iterative Solution (AGIS). The Initial
Data Treatment (IDT) first processes the daily telemetry data, which evaluates the astromet-
ric image parameters using the raw CCD data. The output of IDT is fed to the One Day
Astrometric Solution (ODAS) which is part of Gaia’s First-Look (FL) system. It evaluates
the source parameters, the satellite’s attitude and calibration parameters to sub-milli-arcsec
accuracy. The daily results are then written into the Main Data Base (MDB). (Uwe Lammers,
Gaia: Astrometric Data Reduction ESA Science Team [2010])

Gaia - Taking the Galactic Census Astrometric Data Reduction

Simplified schematic overview of Gaia’s astrometric data reduction system. The main processing modules are
IDT, FL-ODAS, and AGIS which will iteratively generate the final astrometric mission products.

The objective of Gaia’s astrometric data reduction system is the construction of the core mission products: The
five standard astrometric parameters, position (α, δ), parallax (#), and proper motion (µα∗ , µδ) for all observed
stellar objects brighter than G = 20 mag with targeted micro-arcsec accuracies (e.g. < 10 µas [G < 10 mag],
< 25 µas [G = 15 mag], < 300 µas [G = 20 mag]). To this end, all the available ∼70 observations per object
gathered during Gaia’s 5 year lifetime will have to be combined in a single, global, and self-consistent manner.

The figure depicts a simplified schematic overview of the system. The ∼40 GB of daily telemetry data coming
from the satellite are first processed by the Initial Data Treatment (IDT) which determines from the raw
CCD measurement data astrometric image parameters (“centroids”). A second main task is the so-called
“cross-matching” that links observation data to celestial objects. These outputs of IDT form the main input to
the One Day Astrometric Solution (ODAS) which is part of Gaia’s First-Look system. ODAS produces from one
day’s worth of data estimates for source positions, satellite attitude and calibration parameters at the level of
sub-milli-arcsec accuracy. The results of the daily processings of IDT and ODAS are written to the Main Database.

Gaia’s core data processing module is the Astrometric Global Iterative Solution (AGIS) system. AGIS treats
the wanted source parameters, the satellite’s attitude and calibration parameters as unknowns and tries to
find the best global match in a least-square sense between all measurement data and an observational model
that is formulated in terms of these unknowns. Numerically this is done through an iterative adjustment
of the parameters from a starting point to an approximation to the sought solution of the least-squares
problem. The system is considered converged and iterations are stopped if the adjustments become sufficiently
small. At this point the results are written back to the Main Database. The fact that attitude and calibra-
tion parameters are optimized together with the source parameters in the same scheme is a necessity since
they cannot be determined to the required level of micro-arcsec accuracy in any other way. This elegant as-
pect of the astrometric data reduction is the reason why Gaia is sometimes referred to as a self–calibrating mission.

Only single, non–variable stars which fit the standard 5–parameter astrometric model – in number perhaps up to
500 Million – will take part in such a “primary” AGIS cycle. For the remaining objects (binary, multiple systems,
etc.) only provisional values will be computed by AGIS in a subsequent “secondary” cycle which only optimizes
source parameters using the attitude and calibration solutions from the preceding primary cycle. Astrometry for
secondary objects may be further improved by dedicated software in CU4 (“Object Processing”).

Unlike IDT and ODAS which run daily, AGIS is executed only about every 6 months on an ever increasing
data volume. IDT, ODAS, and AGIS are developed in the framework of Gaia’s Data Processing & Analysis
Consortium (DPAC) Coordination Unit 3. During operations all systems will run on dedicated processing hardware
installed at ESA’s European Space Astronomy Centre (ESAC) in Spain near Madrid. Owing to the large data
volume (100 TB) that Gaia will produce and the iterative nature of the processing the computing challenges are
formidable: The AGIS processing alone is estimated to require some 1021 FLOPs which translates to runtimes
of months on a baselined 10 FLOP/s local computing system at ESAC. The usage of external Cloud computing
services is being studied as a possible alternative.
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Source: Uwe Lammers For more about Gaia visit the Gaia web site:
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Figure 7: This diagram shows a schematic overview of the astrometric data processing chain
for Gaia. The main units are IDT, FL-ODAS and AGIS which are described above. IDT
and FL-ODAS perform preliminary evaluation of data and astrometric parameters. AGIS will
generate the final astrometric mission products every six months and on the final data set.
(Credit: Uwe Lammers ESA Science Team [2010])

2.3.1 AGIS and AGISLab

The MDB will accumulate data constantly, it is this data which is the input to AGIS, the
core data processing module, which will analyse this data every 6 months. It produces a “Gaia
catalog” with expected accuracies of 8–25 µarcsec (µas) for trigonometric parallaxes, positions
at mean epoch and annual proper motions of simple stars4 [Lindegren et al., 2011, p. 1] The
subset of well-behaved primary stars is now believed to be substantially larger than 100 million
[Lammers and Lindegren, 2011].

The determination of the “core solution” is an exceedingly difficult task, since there are
very large quantities of data involved and due the complexity of the relationships between
astrometric, spectroscopic and photometric data, as well as data collected at different epochs.

4i.e. apparently single stars
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The astrometric core solution determines the five astrometric parameters for the primary
stars. The direct resolution of the overdetermined problem involving about 1012 measurements
and roughly 5 · 109 unknowns is unfeasible, despite the sparse nature of the matrix (figure 8).
AGIS minimises the merit function χ in a least squares algorithm.

χ2(X) =
∑

i

Ri(X)2

σ2
i + ε2i

w


 Ri(X)√

σ2
i + ε2i


 (1)

where X is the vector containing the unknowns, i is the observation index, Ri the residuals,
σi the formal observation certainty, εi the excess noise, and w the down-weighting function.
This formula is discussed in Lammers and Lindegren [2011].

From equation (1) the standard system of normal equations for source, attitude and cali-
bration parameters is deduced. This system can be solved by iterating in a straight forward
way. In practice alternating phases of “Simple Iterations”, “Accelerated Simple Iterations” and
Conjugate Gradient iterations have been employed. There is a large number of unknowns,
approximately: 5 · 108 source parameters, 4 · 107 attitude parameters and 106 calibration pa-
rameters. To this a small set of global parameters may be added [Lammers and Lindegren,
2011] (PPN γ is discussed in section 3.2.3). A global normal matrix can also be deduced
when the global parameters are solved for, the global normal equation is given as equation
(90) in Lindegren et al. [2011]. At least as many measurements as unknowns are needed to
obtain an accurate solution. Consequently, AGIS will be executed only about once every 6
months, when enough data has been collected. This choice was made, considering the number
of operations needed for the solution (expected to be some 1020 FLOPS) and the expected
increase in precision achievable. One full run at the end of the mission is estimated to take
about 2 months on a 10 TFLOP/s processing system. Further discussion of the complexity of
the astrometric problem can be found in Bombrun et al. [2010].
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Fig. 1. Structure of Normal equation matrix to be solved with AGIS. Setting four of the

off-diagonal block to zero (red figures) gives the Gauss-Seidel pre-conditioner.

diagonal blocks correspond to source, attitude, and calibration parameters with
sizes of ≈ 5×108 (100 Million sources with 5 parameters each), ≈ 4×107 (quater-
nion spline coefficients), and ≈ 106 (calibration parameters), respectively. The
cross-diagonal blocks link source, attitude, and calibration parameters in a com-
plex way and make the problem computationally intractable. By setting 4 of
the blocks to 0 (as indicated in the figure) one arrives at the Gauss-Seidel pre-
conditioner matrix approximation K to the full Normal equation matrix N . By
using K which is much easier to solve than N , and doing iterations the whole
problems becomes solvable in a rather straightforward way. There are many ways
to carry out the iterations. The most simple one is called “Simple Iterations”
(SI) in which source, attitude, and calibrations are solved independently of each
other, i.e. first source, and then attitude and calibration in parallel making use
of the just updated sources. An improvement of this is the “Accelerated Simple
Iteration” (ASI) in which first for a small number of sources “trial” updates are
calculated. Then, an extrapolation factor is determined and used to scale the cal-
culated updates for all other sources. This ASI scheme has been the baseline in
AGIS since 2008.

2 Conjugate Gradients in AGIS

Conjugate Gradients (CG) is a rather standard method in Linear Algebra which
is known since decades but has never been used in the context of the global astro-
metric problem. CG was found applicable and usable in the AGIS framework by
Lindegren (Lindegren 2008), then coded and demonstrated to work in AGISLab
by Bombrun (Bombrun et al. 2010), and finally implemented in AGIS over the
summer 2009. A CG iteration starts with the execution of the so-called “kernel”
which computes provisional updates and normal equation residuals. Unlike SI,

Figure 8: The structure of the normal equation matrix to be solved with AGIS. Setting four
of the off-diagonal block to zero (red figures) gives the Gauss-Seidel pre-conditioner. Numbers
in braces indicate the number of parameters of each kind. Lammers and Lindegren [2011]

AGISLab is a scaled version of AGIS developement mainly by Holl, Hobbs and Lindegren
in Lund. It can run on less than 106 stars and therefore allows a significant number of Monte
Carlo simulations with different noise realisations to be made in a relatively short time [Holl
et al., 2010].

The scaling parameter is S, the simulations run in AGISLab use a fraction S of the total
number of sources. AGISLab is designed to modify the Gaia layout in such a fashion that
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certain quantities of interest for data analysis are conserved. This is achieved by reducing the
focal length of the telescope and its spin rate, whereby “the mean number of stars in the focal
plane at any time, the mean number of field transits of a given star over the mission, and the
mean number of observations per degree of freedom of the attitude model ” are conserved [Holl
et al., 2010].

Building on the work in Hobbs et al. [2010], we have studied the possibilities of measuring
light-deflection and PPN γ with Gaia by expanding the model for gravitational light deflection
used in AGISLab.

2.3.2 Gaia relativity models

The resolution of the astrometric problem for Gaia, requires a consistent treatment of source
parameters in a relativistic framework. As described in Crosta and Vecchiato [2010], there
are currently two models that permit to obtain this solution with microarcsecond precision:
GREM and RAMOD.

The baseline relativity model for Gaia is the Gaia Relativistic Model (GREM). This frame-
work is built on the post-Newtonian approximation of metric theories of gravity5 and the
parametrized post-Newtonian formalism. It takes into account light deflection and other rela-
tivistic effects inside and outside the Solar System. These effects are treated as perturbations
to the assumed solution (source direction) outside the Solar System [Crosta and Vecchiato,
2010, Klioner, 2003, 2008]. This is akin to the model we solve in the PPN formalism (see
section 3.3.5).

The Relativistic Astrometric Model (RAMOD) follows a different approach. It solves the
inverse ray tracing problem for general relativity. It is not constrained to approximations and
this allows to probe the predictions of general relativity specifically. [Crosta and Vecchiato,
2010]

The advantage of GREM is that it allows to directly compare the different viable theories
of gravitation and to place boundaries of the PPN parameters6. Both models are designed to
be used for Gaia data reduction, thus is it essential that their results can be compared. Crosta
and Vecchiato [2010] discuss a comparison between the two frameworks.

In the next section we will present a model of light deflection based on [Crosta and Mignard,
2006] and accounting for monopole and quadrupole light deflection. This model will be imple-
mented into AGISLab to perform realistic numerical simulations of the astrometric solution
on Gaia data. The quadrupole effect is also studied by the Gaia Relativistic Experiment on
Quadrupole light deflection (GAREQ formerly GAREX). We believe that the comparison of
our results to the preliminary results of these more complete models will prove to be beneficial.

5See section 3.2.1 for a definition of metric theories of gravity of which general relativity is one example.
6The parametrized post-Newtonianframework and parameters (PPN) are discussed in section 3.2.3
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that one more step in the modeling is needed: a relativistic
description of the process of observation. This part of the
model allows one to compute a coordinate-independent the-
oretical prediction of the observables starting from the
coordinate-dependent position and velocity of the observer
and, in some cases, the coordinate velocity of the electro-
magnetic signal at the point of observation.

Mathematical techniques to derive the equations of
motion of the observed object and the observer, to formu-
late the equations of light propagation, and to find the
description of the process of observation in the relativistic
framework are well known and will be discussed below.
These three parts can now be combined into relativistic
models of observables. The models give an expression for
each observable under consideration as a function of a set
of parameters. These parameters can then be fitted to obser-
vational data using some kind of parameter estimation
scheme (e.g., least squares or other estimators). The sets of
certain estimated parameters appearing in the relativistic
models of observables represent astronomical reference
frames.

Note that a reference system is a purely mathematical
construction (a chart) giving ‘‘ names ’’ to spacetime events.

Fig. 1.—General principles of relativistic modeling of astronomical observations

observer

object

light ray
observation

Fig. 2.—Four constituents of an astronomical event: (1) motion of the
observed object, (2) motion of the observer, (3) propagation of an
electromagnetic signal from the observed object to the observer, and (4) the
process of observation.

1582 KLIONER Vol. 125

Figure 9: Representation of the general principles underlying the relativistic modeling of
astronomical observations. Klioner [2003]
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3 Gravitational light deflection

3.1 Light bending and experimental tests of relativity

3.1.1 A brief history of light bending and relativity

We here want to retrace the development of relativistic thought and point out major experi-
ments involving light and especially bending of light trajectories to test general relativity and
other theories of gravitation.

Considerations of the gravitational pull of massive objects altering light trajectories go
back to Michell, Cavendish, Laplace and Soldner at the turn of the 18th to the 19th century.
The first publication to discuss the shift of stellar positions due to Newtonian gravitation was
Über die Ablenkung eines Lichstrahls (“On the deviation of a light ray”) by Soldner [1801]. The
effect is noted to be small and to decrease with the separation from the deflecting body. He
concluded that considering the state of “practical astronomy” at the time, these effects could
be neglected. Indeed experimental results were not obtained until the 20th century.

By that time however, the mechanical worldview had been shaken by the advent of rel-
ativity and early quantum mechanics. We shall focus on the evolution of the first which is
directly related to the phenomenon of light deflection, studied here.

By the end of the 19th century electromagnetism and mechanics were well established
physical theories. They had been in agreement with most experiments, however measurements
of the speed of light consistently produced the same value regardless of the velocity of the frame
of the laboratory. This is achieved in the famous Michelson–Morley experiment and similar
setups. This led Lorentz to propose the transformation, which bears his name and a number
of physicists, notably Poincaré to elaborate upon. An elegant solution was proposed in 1905
by an unknown patent clerk named Albert Einstein. His theory which came to fame under the
name of the special theory of relativity, solved the kinematic problems of electromagnetism.
It was incomplete though, as it did not account for the other fundamental force known at the
time, gravitation. The search for a theory capable of explaining and superseding Newtonian
mechanics, lead to the geometric theory of gravity called the general theory of relativity.

Over the past century general relativity and its predictions have been tested by a number
of solar system experiments. In the subsequent paragraphs, we shall examine a selection of
them. Yet let us point out first, that there exist concurrent theories of gravity, some of which
are relativistic and do comply with present day experiments in the solar system. general
relativity may have the advantage of simplicity, notwithstanding concurrent theories can only
be invalidated if their predictions are proven wrong. To make comparisons the parametrized
post-Newtonian framework has been developed and we discuss it in section 3.2.3. This will
lead us to discuss the reach of the tests feasible with Gaia. It is the challenge of future
experiments to reach a precision where deviations from the predictions of general relativity
could be detected.

3.1.2 Experimental tests of general relativity

We will present the three classical tests of general relativity and then discuss more recent
ones. In the solar system, the predictions of general relativity are in good agreement with
Newtonian mechanics and observations. Most planetary orbits are in good agreement with
both theories. However there are three instances of physical effects which have helped establish
general relativity as a more correct theory than its predecessor. They are: Mercury’s perihelion
precession, the light deflection by the Sun for grazing rays and gravitational redshift of light.
All of them are relatively small effects.

According to Kepler’s second law, planet’s move on elliptical orbits around the Sun. In
Newtonian mechanics, these orbits are perturbed by the small gravitational pull of the other
planets. According to Will [1993, p. 4] the three strongest contributions to the rate of preces-
sion of Mercury, as predicted by Newtonian theory are due to Venus, the Earth and Jupiter.
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After summing the contributions of all planets a discrepancy of 42.7′′ per century remains.
The presence of this advance was first noted by Le Verrier in 1859. The value is close to the
prediction from general relativity which is 42.95′′ per century.

This effect can be explained heuristically by two contributions. The first is the special rel-
ativistic mass increase of the planet. The second is due to the mass associated with the energy
density of the Sun’s gravitational field. This term adds to the Sun’s gravitational potential
in the Newtonian picture. This is discussed in further detail in Sexl and Sexl [1979]. Will
notes that the solar quadrupole moment may also contribute to this shift. From helioseismic
measurements and assumptions about the internal structure of the Sun it has been inferred
that its quadrupole moment is J2 = (2.2± 0.1) 10−7 [Roxburgh, 2001]. The correction to the
precession rate is smaller than experimental errors, hence general relativity passes this test.

The second classical test is the deflection of light by massive objects. Interest in this weak
phenomenon was restored by the advent of general relativity. In the solar system the most
massive body is the Sun, therefore the deflection due to the Sun was studied first. Notably
the 1919 solar eclipse and Eddington’s expedition caught public attention. The experiment
was performed by two teams in Sobral in Brazil and on the Island of Principe off the Atlantic
coast of Africa and measured the displacement of stars close to the Sun. Due to the limitations
in optical equipment at the time, observations had to be made during a total eclipse when
the Moon blocks out direct Sun light and the field of stars in its vicinity becomes visible.
The observations were recorded on photographic plates and compared to records of the same
field when the Sun was not present. The results were given as 1.13 ± 0.07 and 0.92 ± 0.17
times the value predicted by Einstein (1.75 arcseconds) [Will, 1993, p. 5]. This value is twice
that obtained by Soldner using the Newtonian theory. These results were questioned and
indeed offered only weak agreement compared with modern ones. During the 1970’s they
were finally confirmed with a precision of 1% using radio wave interferometry. A pair of
experiments was carried out using a radio interferometer of 35-km base-line at the National
Radio Astronomy Observatory (NRAO) in 1974 and 1975. The set up differed also in the
angles between the sources and the Sun, nonetheless according to [Fomalont and Sramek,
1976], “the mean gravitational deflection is 1.007 ± 0.009 (standard error) times the value
predicted by general relativity”. It also gave an estimate of the post-Newtonian parameter
γ = 1.014 ± 0.018 (standard error) and the corresponding absolute value of deflection at the
solar limbs of 1.761± 0.016 arcseconds.

This effect has also been employed in the data reduction for Hipparcos and will be for
Gaia. The equations describing the phenomenon will be developed later in the parametrized
post-Newtonian formalism in section 3.3.5.

The third classical test is gravitational red shift of light. This was the first to be proposed
by Einstein himself. Since it is a test of the equivalence principle, we shall discuss it in the
sections 3.2.1 and 3.2.2.

Will proposed the time delay of light as a third classical test of general relativity, instead
of the red shift experiment for which the predictions of every metric theory of gravitation are
identical. In 1964 Irwin Shapiro discovered that a ray of light propagating in the gravitational
field of a massive body will traverse a given distance in a longer time, than if the field were
absent. In the decades following the discovery of this effect a number of solar system exper-
iments have been carried out. What is measured is the round trip time of a signal emitted
from Earth and reflected from another body (planet or space craft). Radar ranging of targets
was commonly used. A detailed discussion can be found in Will [1993, p. 173]. It is one of
the most precise tests of general relativity. Time delay has also been exploited in the Cassini
2002 Solar Conjunction Experiment which gave the limit γ − 1 ≤ 2.3 · 10−5 . This experiment
will be discussed in more detail in section 3.2.3.

During the second half of the 20th century, gravitational lensing and gravitational waves
emerged as fields of application of general relativity. Both are linked to extragalactic astro-
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physics.
The idea that the gravitational bending of light is similar to the action of optical lenses

goes back to the earlier years of the theory. It was realised that multiple images of an object
can be formed. In 1937 Zwicky predicted gravitational lensing by galaxies and expected the
phenomenon to be observable. However the phenomenon was not observed until 1979, when
Walsh, Carswell and Weyman detected the first gravitational lens candidate with multiple
images. In 1987 Lynds and Petrosian announced “luminous arcs”: highly distorted images of
high redshift galaxies. Ringlike deformed objects were finally discovered in 1988. An account
of the historical evolution of ideas can be found in the introduction of Schneider et al. [1992].

Gravitational waves have been looked for over the past decades, and the sources whose
emission if most likely to be picked up are inspiralling close compact systems and mergers
of objects like black holes and neutron stars. Recently experimental effort has gone into the
development of large scale laser interferometric gravitational-wave observatories on ground
such as LIGO in Washington and MiniGRAIL in Leiden (Netherlands) and in space such
as the proposed LISA mission. Meanwhile theoretical activity in the field has focused on
obtaining accurate predictions of the gravitational wave form signal. There is experimental
evidence. Orbital decay due to the emission of gravitational waves has been detected. Its
amount is estimated to agree with general relativity to better than half a percent using the
Hulse–Taylor binary pulsar, [Weisberg and Taylor, 2005]. Other binary pulsar systems have
yielded other tests, especially of strong-field effects. Will [2011] points out that the post-
Newtonian approximation, presented in section 3.3.1, has been shown to be “unreasonably
effective” for extreme conditions such as mergers of compact objects. When direct observation
of gravitational radiation from astrophysical sources begins, new tests of general relativity will
be possible.

3.2 Modeling the physics of light propagation

In this section we are concerned with the theoretical framework that allows us to compare
contending theories of gravitation. Our goal is the geodesic equation in the parametrized
post-Newtonian formalism. This equation will be studied later in simulations using Gaia data.

We will consider the case of metric theories of gravity as defined below. In this case light
follows a geodesic line in space-time. Thus the geometry of space-time determines the light
path. The distribution of masses determines the geometry (curvature) of space-time, and
hence influences light propagation. The effect results in a shift of the apparent position of a
star due to the gravitational field along the light path.

The other factor impacting the light path is the theory of gravitation employed, we will
see that there are different possible theories of gravitation and present the parametrized post-
Newtonian framework which permits a consistent comparative treatment of alternative theo-
ries.

In the case of lensing, distortion of the image or even multiple images can occur, we will
not go into its details here. In the more modest case of light deflection the light path is only
slightly altered and thus the apparent position of stars is changed [Schneider et al., 1992]. We
are not concerned with effects such as magnification and distortion of the source, since we will
not consider extended sources in our simulations of the astrometric solution for Gaia. For our
purposes the deviations will be small enough compared to the apparent size of the objects, to
neglect pure lensing effects.

There are different models and formalism to account for gravitational deflection of light.
In order to achieve microarcsecond precision in astrometric measurement it is necessary to
account for quadrupole light deflection. This is discussed in Klioner [2003]. In Zschocke and
Klioner [2011] the tensorial approach for the calculation of light deflection terms, as used
in GREM, is outlined. We will follow up on the work by [Crosta and Mignard, 2006] and
out forward a simplified relativistic model accounting for quadrupole light deflection in the
source direction calculation of AGISLab. There is also a dipolar light deflection effect due
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Gaia - Taking the Galactic Census Gravitational Light Deflection

All-sky map (in ecliptic coordinates, for an L2-based observer) displaying the total amount of post-Newtonian
light deflection due to all planets, and the Moon, at 25 May 2014 (two-letter object-name abbreviations appear
above the top axis). The Sun has been suppressed because of its immense contribution, extending all over the
sky, compared to the other bodies. The colour coding has been chosen such that significant light bending is
predicted in all regions of the sky coloured different from blue.

Gaia will determine the positions, parallaxes, and proper motions for the brightest 1 billion objects in the sky.
Expected astrometric accuracies are 20–25 µas at 15-th magnitude and a few µas for the brightest stars (up to
12-th magnitude). At these accuracy levels, it is vital to treat the Gaia data in a general-relativistic context. For
example, photons detected by Gaia are bent during the last hours of their long journey, while traversing the solar
system, under the influence of the gravitational fields of the Sun, planets, moons, asteroids, etc. The amount of
this post-Newtonian light deflection depends on the mass of the perturbing object, its distance to the observer
(Gaia), and the angular separation at which the photon passes the object. A well-known example is a light ray
grazing the limb of the Sun: an observer on Earth will notice a deflection of 1.75 arcsec.

In the context of Gaia, correcting for solar-system light bending is critical: for a spherical perturbing body with
a mean mass density ρ (in g cm-3), the light deflection for a limb-grazing light ray is larger than δ (in µas)
if its radius r > ρ-1/2 · δ1/2· 624 km. Typically, ρ ∼ 1 g cm-3 for objects in the solar system, so that Gaia’s
astrometric measurements will be ‘affected’ to a significant extent (δ ∼ 1–10 µas) by all bodies with radii larger
than ∼ 624 km. (For Jupiter and Saturn, the quadrupole contributions of their gravitational fields should also be
taken into account.)

In principle, this translates for Gaia, observing from L2, to the Sun and all planets (including the Earth
and Moon) and to a number of the larger moons (notably Io, Europa, Ganymede, Callisto, and Titan; light
deflection in these cases, however, is only significant at angular separations smaller than a few arcseconds).
In practice, however, due to the geometry of the scanning law which effectively creates a 45◦-radius zone of
avoidance on the sky centered on the Sun, the contributions from Mercury and the Moon, for example, can
always be neglected. Minor bodies (e.g. main-belt asteroids and Kuiper-Belt objects) and smaller moons are
unimportant. The Sun, on the other hand, contributes significantly to light bending even 180◦ away from its center.

G
a
ia

:
G
ra

vi
ta

ti
o
n
a
l
L
ig

h
t

D
efl

ec
ti
o
n

Source: Jos de Bruijne For more about Gaia visit the Gaia web site:
http://www.rssd.esa.int/Gaia

2009-08-25 (Rev. 0)

Figure 10: This map of the sky shows the total post-Newtonian light deflection due to all
planets, and the Moon, at 25 May 2014. This representation uses ecliptic coordinates, for an
L2-based observer. The contribution from the Sun has been suppressed because it is immense
compared to the other bodies and extends all over the sky. The colour coding shows significant
light bending is predicted in regions coloured different from blue. Two-letter object-name
abbreviations, above the top axis, label the deflecting objects. (Credit : Jos de Bruijne ESA
Science Team [2010], Gaia: Gravitational Light Deflection)

to the motion of the planets. This has been discussed by Kopeikin and Makarov [2007]. It
will not be further investigated here. We believe that the model presented here will be less
computationally intensive than the full GREM and that the comparison of results will be
valuable.

3.2.1 Relativity principles

The principle of equivalence was already stated by Newton in his Philosophiae Naturalis Prin-
cipia Mathematica (1687). As noted by [Will, 1993] Newton’s principle can be stated as the
“inertial mass” of a body is equal to its “passive gravitational mass”. Today this is called the
Weak Equivalence Principle (WEP). In modern terms as stated by [Will, 1993] (p.22) it is :

“If an uncharged test body is placed at an initial event in spacetime and given
an initial velocity there, then its subsequent trajectory will be independent of its
internal structure and composition.”

Where “uncharged” refers to the object having zero electrical charge. The “test body”
is required to have negligible self-gravitational energy and has to be small enough so that
coupling to external inhomogeneities can be ignored. This idea lies at the foundations of
relativity. In this section we discuss different versions of the equivalence principle and their
relation to theories of gravitation.

A local nongravitational test experiment has to comply with the following requirements:
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(i) be performed in a freely falling laboratory that is shielded and is sufficiently
small that inhomogeneities in the external fields can be ignored,

(ii) in which self-gravitational effects are negligible.

Based on the two preceding defintions, the Einsteinian Equivalence Principle (EEP) is
formulated in the following way by Will :

(i) The Weak Equivalence Principle is valid,

(ii) The outcome of any local nongravitational test experiment is independent of
the velocity of the (freely falling) apparatus,

(iii) The outcome of any local nongravitational test experiment is independent of
where and when in the Universe it is performed.

The theories we will discuss later will satisfy the postulates of Metric Theories of Gravity,
as formulated by Will:

(i) Spacetime is endowed with a metric tensor g,

(ii) The world lines of test bodies are geodesics of that metric,

(iii) In local free falling frames, called Lorentz frames, the nongravitational laws of
physics are those of special relativity.

As Will has pointed out, a theory satisfying EEP would appear to satisfy these postulates
of Metric Theories of Gravity. Examples of metric theories of gravity are general relativity,
the Rosen bimetric theory and Brans-Dicke theory and the theory of general relativity which
are discussed in Will [1993].

EEP entails that all nongravitational laws of physics must be Lorentz invariant, this is
called Local Lorentz Invariance. This is the second requirement of EEP. The postulate of Local
Position Invariance says that “the results of local nongravitational test experiments must be
independent of the spacetime location of the frame”. It is in fact the third requirement of EEP.

The strong equivalence principle (SEP) states that:

(i) WEP is valid for self-gravitating bodies as well as for test bodies,

(ii) The outcome of any local test experiment is independent of the velocity of the
(freely falling) apparatus,

(iii) The outcome of any local test experiment is independent of where and when
in the Universe it is performed.

The difference between EEP and SEP, is that the latter includes self gravitating bodies as
well as experiments involving gravitational forces such as Cavendish experiments and gravime-
ter measurements. However EEP is included in SEP in the case where the local gravitational
forces can be ignored. Will notes that it can be deduced from SEP that there “there must be
one and only one gravitational field in the universe, the metric g”. general relativity respects
SEP.

To close this discussion on the principles of relativity, it seems appropriate to consider
the connection between WEP and EEP. Leonard I. Schiff conjectured that in fact (we quote
the formulation used by [Will, 1993] ): “any complete self-consistent theory of gravity that
embodies WEP necessarily embodies EEP.” If Schiff’s conjecture is correct WEP guarantees
Local Lorentz Invariance and Local Position Invariance.

The first successful attempt to prove Schiff’s conjecture more formally was made by Light-
man and Lee [1973]. They developed a framework called the THεµ formalism that encompasses
all metric theories of gravity and many non-metric theories. They show that if one consid-
ers electromagnetic interactions only, the rate of fall of a “test” body made up of interacting
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charged particles is independent of the internal electromagnetic structure of the body. Which
shows that, given their restrictions, WEP implies EEP.

According to Will [2006, section 2.3], there is mounting theoretical evidence to suggest that
EEP is likely to be violated at some level, whether by quantum gravity effects, by effects arising
from string theory, or by hitherto undetected interactions. “In string theory, for instance, the
existence of EEP-violating fields is assured, but the theory is not yet mature enough to enable
a robust calculation of their strength relative to gravity, or a determination of whether they
are long range, like gravity, or short range, like the nuclear and weak interactions, and thus
too short range to be detectable.”

Despite the possible existence of long-range gravitational fields in addition to the metric
in various metric theories of gravity, the postulates of those theories demand that matter and
non-gravitational fields be completely oblivious to them. The only gravitational field that
enters the equations of motion is the metric g. The role of the other fields that a theory may
contain can only be that of helping to generate the spacetime curvature associated with the
metric. Matter may create these fields. These fields together with the matter density may
generate the metric, but they cannot act back directly on the matter. Matter responds only
to the metric. [Will, 2006]

3.2.2 Tests of the equivalence principle

Since the equivalence principle lays the foundation for general relativity, a number of exper-
iments to test its validity have been devised. In the following we shall discuss the Eötvös
experiment and the gravitational red shift of light.

To test the equivalence principle one looks for variations in the effects of physical laws for
bodies of different composition. Supposing that the inertial mass and passive gravitational
mass of an object are different, one can define a quantity called “Eötvös ratio” usually denoted
η. Using two bodies of different composition, for instance one made of iron and another made
of carbon, one can measure the corresponding “Eötvös ratio”. This can be carried out by using
a pendulum or the classic torsion balance used by Eötvös. Recently a sophisticated torsion
balance tray has been used for the “Eöt–Wash” experiments carried out at the University of
Washington, to compare the accelerations of various materials toward local topography on
Earth, movable laboratory masses, the Sun and the galaxy. These tests have reached a level
of 3 · 10−13. [Adelberger [2001], Baeßler et al. [1999], Su et al. [1994] as cited by Will [2006].]
Therefore WEP is well supported by the Eötvös experiment. Possible space bound tests of
WEP are STEP and MICROSCOPE [Will, 2006].

Let us come back now to the third classical test of general relativity, the gravitational red
shift of light, which was predicted by Einstein in 1911. Since it is a test of the equivalence
principle, all metric theories of gravity predict the same value. A typical gravitational redshift
experiment measures the frequency or wavelength shift Z = ∆ν/ν = ∆λ/λ between two iden-
tical frequency standards (clocks) placed at rest at different heights in a static gravitational
field. The comparison of their frequencies is directly related to the comparison of the veloc-
ities of two local Lorentz frames. Measuring it was challenging, the first successful redshift
measurment were the Pound–Rebka–Snider experiments of 1960 to 1965. They measured the
frequency shift of gamma-ray photons emitted from 57Fe as they ascended or descended the
Jefferson Physical Laboratory tower. There were attempts to use solar spectral lines for red-
shift experiments, but solar spectral lines are strongly affected by the Doppler shift, only in
1962 a realisable experiment was made.
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3.2.3 The parametrized post-Newtonian formalism

As early as 1922 Sir Arthur Stanley Eddington had parametrized the post-Newtonian approx-
imation, to work with the vacuum gravitational field exterior to an isolated spherical body.
A modern version of the PPN formalism was pioneered by Kenneth Nordtvedt, who studied
the post-Newtonian metric of a system of gravitating point masses, extending earlier work by
Eddington, Robertson and Schiff [Will, 1993, section 4.2]. The generalization of the framework
to include perfect fluids was elaborated by Will. Together, Will and Nordtvedt developed a
general and unified version of the PPN formalism. Other versions of the PPN formalism have
been developed to deal with point masses with charge, fluid with anisotropic stresses, bodies
with strong internal gravity, and post-post-Newtonian effects [Will, 1993, section 4.2 and 14.2].

The formalism was devised to allow comparison between different theories of gravitation
and experiments. It is in the words of Will a “theory of theories of gravity”. The motivation for
the development of this framework was the advent of alternative theories of gravity during the
second half of the 20th century which, although they are based on the equivalence principle,
make predictions that differ from those of general relativity. A range of alternative theories
have been mentioned in 3.2.1, of which a detailed discussion can be found in chapter 5 of Will
[1993] and in section 3.3 of Will [2006].

This framework is an important tool for the comparison of different metric theories of
gravity and has been applied in the analysis of solar system gravitational experiments. It has
provided a means to quantify the possible deviation from general relativity, which as we shall
see is small for all effects of post-Newtonian order.

The comparison of competing theories of gravity necessitates a coherent presentation in
terms of mathematical notation. This notation covers the coordinates, the matter variables,
the metric tensor of the theory as well as other scalar, vector and tensor fields involved in
the theory. Because the metric and the equations of motion for matter are the predominant
entities for calculating observable effects, what distinguishes one metric theory from another is
the specific mechanism through which matter and possibly other gravitational fields generate
the metric. Rigorous definitions and detailed calculations of these can be found in Will [1993].

Will [1993] shows that the comparison of metric theories of gravity with each other and
with experiment becomes particularly simple when one takes the slow-motion, weak-field limit.
This approximation is known as the post-Newtonian limit, discussed in 3.3.1. According to
Will, it is sufficiently accurate to encompass most solar-system tests that can be performed
in the foreseeable future. In this limit, the spacetime metric g predicted by nearly every
metric theory of gravity has the same structure. It can be written as an expansion about the
Minkowski metric (ηµν = diag(−1, 1, 1, 1)) in terms of dimensionless gravitational potentials
of varying degrees of smallness. These potentials are constructed from the matter variables by
analogy of the Newtonian gravitational potential.

In the parametrized post-Newtonian framework there are ten parameters which describe
the behaviour of a theory of gravitation in the post-Newtonian limit. They are dimensionless
quantities, but do correspond to physical effects depending on the post-Newtonian potential
they are associated with. The complete set of parameters with their values in general relativity
and two other classes of theories are shown in table 2.

Will uses the terms “fully conservative theory” and “semi-conservative theory” to express
the conservation laws the theories possess .

A “fully conservative theory” is any theory of gravitation which possesses the conservation
laws of total momentum (i.e. energy and momentum), angular momentum and center of mass
motion. That is, all of the post-Newtonian conservation laws hold. It can be shown that for
such a theory the post-Newtonian limit has three free PPM parameters γ, β, ξ. In particular,
such theories do not predict any post-Newtonian preferred-frame effects.

A “semi-conservative theory” is any theory of gravitation which possesses the conservation
laws of total momentum. Any theory that is based on an invariant action principle is semi-

26



Gravitational light deflection

conservative and has five free PPN parameters γ, β, ξ, α1, α2. The effects associated with the

The Confrontation between General Relativity and Experiment 29

The “order of smallness” is determined according to the rules U ∼ v2 ∼ Π ∼ p/ρ ∼ �, vi ∼
|d/dt|/|d/dx| ∼ �1/2, and so on (we use units in which G = c = 1; see Box 2).

A consistent post-Newtonian limit requires determination of g00 correct through O(�2), g0i

through O(�3/2), and gij through O(�) (for details see TEGP 4.1 [281]). The only way that one
metric theory differs from another is in the numerical values of the coefficients that appear in front
of the metric potentials. The parametrized post-Newtonian (PPN) formalism inserts parameters
in place of these coefficients, parameters whose values depend on the theory under study. In the
current version of the PPN formalism, summarized in Box 2, ten parameters are used, chosen
in such a manner that they measure or indicate general properties of metric theories of gravity
(see Table 2). Under reasonable assumptions about the kinds of potentials that can be present at
post-Newtonian order (basically only Poisson-like potentials), one finds that ten PPN parameters
exhaust the possibilities.

Parameter What it measures relative
to GR

Value
in GR

Value in semi-
conservative

theories

Value in fully
conservative

theories

γ How much space-curva-
ture produced by unit rest
mass?

1 γ γ

β How much “nonlinearity”
in the superposition law
for gravity?

1 β β

ξ Preferred-location effects? 0 ξ ξ

α1 Preferred-frame effects? 0 α1 0

α2 0 α2 0

α3 0 0 0

α3 Violation of conservation 0 0 0

ζ1 of total momentum? 0 0 0

ζ2 0 0 0

ζ3 0 0 0

ζ4 0 0 0

Table 2: The PPN Parameters and their significance (note that α3 has been shown twice to indicate
that it is a measure of two effects).

The parameters γ and β are the usual Eddington–Robertson–Schiff parameters used to describe
the “classical” tests of GR, and are in some sense the most important; they are the only non-
zero parameters in GR and scalar-tensor gravity. The parameter ξ is non-zero in any theory of
gravity that predicts preferred-location effects such as a galaxy-induced anisotropy in the local
gravitational constant GL (also called “Whitehead” effects); α1, α2, α3 measure whether or not
the theory predicts post-Newtonian preferred-frame effects; α3, ζ1, ζ2, ζ3, ζ4 measure whether or
not the theory predicts violations of global conservation laws for total momentum. In Table 2 we
show the values these parameters take

1. in GR,

2. in any theory of gravity that possesses conservation laws for total momentum, called “semi-
conservative” (any theory that is based on an invariant action principle is semi-conservative),
and
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Table 1: The PPN Parameters and their significance (note that α3 is shown twice to indicate
that it is a measure of two effects), from Will [2006, table 2 p. 29]

parameters can be tested by different kinds of experiments which we shall discuss briefly.
The “preferred frame” and “preferred location” effects are violations of SEP predicted by

certain theories of gravity. They indicated that outcomes of local gravitational experiments
may depend on special properties of the location or the frame in which they are carried out.
For “preferred frame” effects, which are accounted for by the αi parameters, this means that
the outcome may depend on the velocity of the laboratory relative to mean rest frame of the
universe. The Lense–Thirring effect or “dragging of inertial frames” is a gravitomagnetic effect
in the sense that it describes a contribution to the gravitational field originating from the
motion or rotation of matter. This effect is predicted by general relativity and involves γ and
α1. It has been tested by the Relativity Gyroscope Experiment (Gravity Probe B).

In the case of “preferred location” effects the outcome may depend on the location of
the laboratory relative to a nearby gravitating body. The latter are accounted for in the ξ
parameter. To give but one example let us mention the so-called “Whitehead” effects, referring
to galaxy-induced anisotropy in the local gravitational constant GL.

The five parameters ζ1, ζ2, ζ3, ζ4 and α3 are associated with the conservation laws of total
momentum. ζ4 is associated with the gravity generated by fluid pressure and for theoretical
reasons (see Will [2006] p.48) it follows that 6ζ4 = 3α3 + 2ζ1 − 3ζ3 . This is the equation
that table 2 is referring to as equation (58). According to Will [2006, section 3.7.3] a non zero
value of any of those parameters would entail a violation the conservation of momentum, or
equivalently of the equality of action and reaction in the Newtonian limit.

The Eddington–Robertson–Schiff parameters γ and β are used to describe the “classical”
tests of GR. In a sense they are the most important; they are the only non-zero parameters in
GR and scalar-tensor gravity.

The β parameter measures the non-linearity in the superposition law of gravity. That is
whether gravitational fields do interact with each other. Its value in general relativity is one.
To conclude this section it is of interest to point out that there are a variety of other effects
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which may involve any number of PPN parameters, let us just mention that when including
PPN contributions to the perihelion shift of Mercury, β is involved along with γ, α1, α2, α3

and ζ2. Another class of experiments that allow us to determine β are measurements of the
Norvedt effect. Norvedt showed [Nordtvedt Jr, 1968] that a number metric theories of gravity
predict violations of the Weak Equivalence Principle for massive bodies. More precisely their
acceleration will depend on their gravitational self energy. The formula as given in Will [2006]
reads :

a =
m

mp
∇U =

(
1− ηN

Eg
m

)
∇U (2)

ηN = 4β − γ − 3− 10ξ/3− α1 + 2α2/3− 2ζ1/3− ζ2/3 (3)

Asteroid tracking with Gaia will provide new bounds on β. Indeed asteroids are very common
objects in the solar system and can be found on elliptical orbits of high eccentricity. Although
they are faint for Solar System objects, many of them can be detected by Gaia. They have
the advantage of having little mass and behaving very closely like test particles. Gaia’s high
precision astrometry will permit us to measure the perihelion shift of these objects, at different
distances from the Sun, and thus permit to discern between the contributions of β and the
Solar quadrupole moment J2. However, non-gravitational interactions, such as collisions, may
produce perturbations to the predicted effects. This is discussed in [Hestroffer et al., 2010], they
expect a precision with standard deviations of about 0.6 < σβ ·104 < 6 and 0.5 < σJ2 ·108 < 10.

The γ parameter is of great interest for the present work since its precise determination
is possible using Gaia data and is necessary to produce a star catalog of µarcsec precision.
It quantifies the space-curvature produced by unit rest mass. Its value in general relativity
is one. Therefore it appears in effects and measurements which probe this curvature, such
as light bending and time delay of light. According to Bertotti et al. [2003], “the quantity
(γ − 1) measures the degree to which gravity is not a purely geometric effect and is affected
by other fields ; such fields may have strongly influenced the early Universe, but would have
now weakened so as to produce tiny – but still detectable – effects”. It is also related to the
precession of a gyroscope in curved space time. In sections 3.3.2 and 3.3.5 we will see that
PPN γ appears in the formula for the light deflection angle.

The Cassini 2002 Solar Conjunction Experiment constitutes the most precise measurement
of PPN γ to-date. Bertotti et al. [2003] report a measurement of the frequency shift of radio
photons to and from the Cassini spacecraft as they passed close to the Sun. They found
γ = 1 + (2.1 ± 2.3) · 10−5. This can be compared to the precision of previous astrometric
observations, Froeschle et al. [1997] have calculated an estimate of PPN γ from Hipparcos
data. Their final result is γ = 0.997 ± 0.003, which is about two orders of magnitude worse.
Gaia is expected to give an accuracy of up to 10−6 [Hobbs et al., 2010].

Over the past decades, experiments of increasing precision have been carried out. The
bounds which were obtained are shown in Table 2. It has been shown that the values of the
parameters are close to those they take in general relativity. The maximal deviation is 2% for
ζ1 which has not been measured directly but was deduced from combined bounds on the PPN
parameters. The best known parameter is α3 whichhas been inferred from measurements of
the time derivatives of pulsar periods. [Will, 2006, p.46].

To test the precision to which general relativity fits the solar system dynamics and improve
the bounds on the PPN parameters new missions have been proposed. Aside from Gaia which
we have already discussed, there are a number of other interesting experiments. The Laser
Astrometric Test Of Relativity (LATOR) is a proposed NASA mission that will attempt to
improve the precision of γ by light deflection measurements, the quadrupole moment of the sun
J2, and the solar frame-dragging effect, using optical tracking and an optical interferometry
on the International Space Station. It may also measure effects of the next post-Newtonian
order (c−4) of light deflection resulting from the non-linearity in gravitation. The Apache
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Parameter Effect Limit Remarks

γ − 1 time delay 2.3 × 10−5 Cassini tracking

light deflection 4 × 10−4 VLBI

β − 1 perihelion shift 3 × 10−3 J2 = 10−7 from helioseismology

Nordtvedt effect 2.3 × 10−4 ηN = 4β − γ − 3 assumed

ξ Earth tides 10−3 gravimeter data

α1 orbital polarization 10−4 Lunar laser ranging

2 × 10−4 PSR J2317+1439

α2 spin precession 4 × 10−7 solar alignment with ecliptic

α3 pulsar acceleration 4 × 10−20 pulsar Ṗ statistics

ηN Nordtvedt effect 9 × 10−4 lunar laser ranging

ζ1 — 2 × 10−2 combined PPN bounds

ζ2 binary acceleration 4 × 10−5 P̈p for PSR 1913+16

ζ3 Newton’s 3rd law 10−8 lunar acceleration

ζ4 — — not independent (see Equation (58))

Table 4: Current limits on the PPN parameters. Here ηN is a combination of other parameters
given by ηN = 4β − γ − 3 − 10ξ/3 − α1 + 2α2/3 − 2ζ1/3 − ζ2/3.

advance in the perihelion of Mercury. The modern value for this discrepancy is 43 arcseconds
per century. A number of ad hoc proposals were made in an attempt to account for this excess,
including, among others, the existence of a new planet Vulcan near the Sun, a ring of planetoids,
a solar quadrupole moment and a deviation from the inverse-square law of gravitation, but none
was successful. General relativity accounted for the anomalous shift in a natural way without
disturbing the agreement with other planetary observations.

The predicted advance per orbit ∆ω̃, including both relativistic PPN contributions and the
Newtonian contribution resulting from a possible solar quadrupole moment, is given by

∆ω̃ =
6πm

p

�
1

3
(2 + 2γ − β) +

1

6
(2α1 − α2 + α3 + 2ζ2)

µ

m
+

J2R
2

2mp

�
, (51)

where m ≡ m1 + m2 and µ ≡ m1m2/m are the total mass and reduced mass of the two-body
system respectively; p ≡ a(1− e2) is the semi-latus rectum of the orbit, with the semi-major axis a
and the eccentricity e; R is the mean radius of the oblate body; and J2 is a dimensionless measure
of its quadrupole moment, given by J2 = (C − A)/m1R

2, where C and A are the moments of
inertia about the body’s rotation and equatorial axes, respectively (for details of the derivation see
TEGP 7.3 [281]). We have ignored preferred-frame and galaxy-induced contributions to ∆ω̃; these
are discussed in TEGP 8.3 [281].

The first term in Equation (51) is the classical relativistic perihelion shift, which depends upon
the PPN parameters γ and β. The second term depends upon the ratio of the masses of the two
bodies; it is zero in any fully conservative theory of gravity (α1 ≡ α2 ≡ α3 ≡ ζ2 ≡ 0); it is also
negligible for Mercury, since µ/m ≈ mMerc/M⊙ ≈ 2 × 10−7. We shall drop this term henceforth.

The third term depends upon the solar quadrupole moment J2. For a Sun that rotates uni-
formly with its observed surface angular velocity, so that the quadrupole moment is produced by
centrifugal flattening, one may estimate J2 to be ∼ 1× 10−7. This actually agrees reasonably well
with values inferred from rotating solar models that are in accord with observations of the nor-
mal modes of solar oscillations (helioseismology); the latest inversions of helioseismology data give

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2006-3

Table 2: Current limits on the PPN parameters. Here ηN is a combination of other parameters
given by eq. (3), from Will [2006, table 4 p.43]

Point Observatory Lunar Laser-ranging Operation is the successor of the Lunar Laser Rang-
ing experiment which established bounds on β. The proposed proposed ESA Bepi-Columbo
Mercury orbiter would also improve the understanding of possible variations of the Gravita-
tional constant and the parameters γ, β, α1 and J2. As mentioned by Will [2006], Nordtvedt
has argued that “grand fits” of large solar system ranging data sets, including radar ranging
to Mercury, Mars, and satellites, and laser ranging to the Moon, could yield substantially
improved measurements of PPN parameters.
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3.2.4 Coordinate systems and relativity

Coordinates are needed to process Gaia data. For convenience different coordinate systems
are in use, this is partly due to the motion of the spacecraft and observers with respect to
the rest of the universe. In this section we discuss the astronomical reference systems used for
Gaia and the distinction from the mechanical reference systems used to describe the satellite.20 CHAPTER 4. REFERENCE SYSTEMS AND REFERENCE FRAMES

Mechanical Systems

FoVRS FoVRS
Field 1 Field 2

attitude
rotation

projection
optical

Satellite Ref. Syst.

Barycentric Ref. Syst. / International Celestial Ref. Syst.

Center−of−Masses Ref. Syst.

CoMRS
Geocentric Ref. Syst.

SRS
fixed to the

spacecraft body spacecraft body
fixed to the

BCRS / ICRS
quasi−inertial
non−rotating

non−rotating

GCRS
non−rotating

Mechanical Spacecraft Ref. Syst.

Astronomical Systems

Lorentz transformations
a kind of generalized

Field−of−View Ref. Systems Focal−Plane Ref. System

rotation to viewing
directions

location within the
spacecraft

FPRS

SCRS

Figure 4.1: Schematic overview of the reference systems defined in Chapter 4

systems will be just three-dimensional.

Comment by S. Klioner: This is acceptable from the relativistic point of view because there are

no physical “events” to be described in the mechanical reference system(s) which need to be time-

tagged with high precision. The mechanical systems will be used only to describe essentially time-

independent lengths.

A synoptic diagram giving an overview over the various reference systems and their mutual relations is
given in Fig. 4.1.

4.2 Astronomical Reference Systems

4.2.1 The International Celestial Reference System (ICRS) and the BCRS

The ICRS is the primary reference for astronomical coordinates. All other astronomical systems in this
document are derivatives of the ICRS.

Figure 11: Overview of the reference systems associated with Gaia (BCRS, CoMRS, SRS)
discussed below from [Bastian, 2007, Chapter 4].

Reference systems and reference frames As explained by [Bastian, 2007] there is a
distinction between reference systems and reference frames.

1. A reference system gives an idealised, abstract definition of a coordinate system.

2. A reference frame is a practical realisation of such a system.

The astronomical reference systems used here are the ICRS and derivatives of it (e.g.
BCRS). In the following we outline the definitions of ICRS/BCRS, CoMRS and SRS. These
reference systems must be fully relativistic to comply with the precision goals of Gaia. We will
explain how transformations between them are take into account in data processing and in
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AGISLab. An overview of the different reference systems used in the context of Gaia is given
in figure 11.

According to [Bastian, 2007], the International Celestial Reference System (ICRS) and
the Barycentric Reference System (BCRS) are defined as a quasi-inertial and rotation-free
reference system. The BCRS is defined to be nonrotating with respect to distant extragalactic
objects, its origin is the solar-system barycentre. A precise definition as given by the IAU
convention can be found in Rickman [2001].

The ICRF is the primary reference for astronomical coordinates, its realisation is the Inter-
national Celestial Reference Frame (ICRF). The position of stars, or more generally, directions
(toward stars) in the astronomical sense, are given in the International Celestial Reference Sys-
tem (ICRS). The Barycentric Coordinate Time (TCB) is the basic time coordinate for all Gaia
data processing. The spatial orientation of the ICRF is defined by a set of distant radio sources
observed with the VLBI. A secondary realisation is the Hipparcos Catalogue. A realisation
of the ICRF must also provide an ephemeris giving the three-dimensional spatial coordinates
of solar-system bodies as function of a time coordinate. The coordinates used for the Gaia
mission and AGIS are equatorial coordinates (α, δ, . . . ), they are discussed in the paragraph
on coordinate systems below. The time coordinate is also discussed below There are two
main practical realisations, one is the “Development Ephemeris” series provided by by the JPL
(Pasadena) and the other are the ephemerides of IMCCE (Paris). The ICRF as a practical
realisation of the ICRS may be imperfect. Rotational and translational non-inertiality of the
frame can be due to the uncertainties in the experimentally measurable quantities (angles,
precession rates etc. ). A summary of the complete post-Newtonian metric and other formulae
in the ICRS can be found in Soffel et al. [2003].

In [Bastian, 2007] it is pointed out that: “Ecliptic and galactic coordinates are alternate
coordinates for the ICRS”. As such they are not distinct reference systems, however for in-
terpretation of results of the Gaia mission it is convenient to use transformations from the
equatorial ICRS coordinates to these coordinate systems. Bastian mentions that there is a
10-digit version of these transformations given in the Hipparcos catalog.

The Center-of-Mass Reference System of Gaia (CoMRS) has its spatial origin at the center
of mass of the Gaia satellite. It must be defined fully relativistically. Per definition it is sup-
posed to be kinematically non-rotating with respect to the ICRS/BCRS. The definition of the
CoMRS and a discussion is given in from Bastian [2007, section 4.2.3] and references therein.
The transformations from BCRS to CoMRS are a central part of the relativity modeling for
Gaia and are studied by the REMAT group. A concise and useful description is given in
Lindegren [2001] and the definitions are given in Klioner [2004].

The Scanning Reference System (SRS) is co-moving and co-rotating with the body of the
Gaia spacecraft. It is rigidly connected to the body of the Gaia spacecraft (which in turn is
assumed to be a rigid body) and its origin is at the center of mass of Gaia. Therefore the
transformation from CoMRS to SRS is the attitude rotation. This is illustrated in figure 4
(a). The main use of the SRS is to define the satellite attitude. The natural time coordinate
is the proper time of the spacecraft. The practical realisation of the SRS consists mainly of
a model for the attitude as function of time. According to Bastian [2007] there are several
such models: the nominal attitude (sometimes also called nominal scanning law), the real-time
attitude, (also called on-board attitude), the high-precision scientific attitude, reconstructed
on ground from the measurements performed by the Gaia instruments. The latter will be an
approximation of the real attitude at the level of 10µarcsec.

The relations between different reference frames are illustrated in figure 11. BCRS and
CoMRS are connected by a generalized Lorentz transformation in a similar fashion as BCRS is
connected to the Geocentric Reference System (GCRS) [which is defined in the IAU Resolution
B1.3 (2000)].
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Coordinate systems The ‘world line’ of a physical body is given by three spatial coordinates
and a time coordinate. In astronomy the sky is usually mapped by a spherical coordinate
system, two angles describing an object’s direction in the sky and the third coordinate being
the distance to the origin, its parallax. By convention, the angular coordinates are called right
ascension α and declination δ . They are the spherical longitude and latitude respectively and
represent the coordinate direction of the body.

In BCRS the unit vectors along the principal directions are denoted X,Y,Z. Where
X points towards (α, δ) = (0, 0), Z points towards the ICRS north pole (δ = +90◦),and
Y = Z × X. They form a right-handed coordinate system. A general unit vector u has
direction cosines X,Y, Z, such that X2 + Y 2 + Z2 = 1 :

u = XX + YY + ZZ = cos(α) cos(δ)X + sin(α) cos(δ)Y + sin(δ)Z (4)

Bastian [2007] further points out that there is no physical unit associated with the cartesian
coordinates (X,Y, Z). The coordinate system is illustrated in figure 4 (b).

The Barycentric Coordinate Time (TCB) is the natural time coordinate used with ICRS.
The transformations to other relevant time coordinates, such as TT, TAI and UTC 7 , are non
trivial and must account for relativistic effects and orbital motions. Bastian notes that “the
precision of these transformations increases with time due to better ephemerides and general
physical knowledge”. The proper motions associated with (α, δ) are denoted µα = ∂tα = α̇
and µδ = ∂tδ = δ̇. Using the TCB time coordinate for the time derivative.

A star (source) is described by its direction, parallax, proper motion, radial velocity and
magnitude. The proper motion of a star is the change in its position over time with respect to
the barycenter of the Solar System [Kovalevsky, 2002]. The radial velocity is particularly hard
to measure and its determination relies on the spectroscopic instrument. It will not be solved
for by AGIS accurately and high precision follow up measurements will be needed [Jasniewicz
et al., 2011].

Time Coordinate The different physical time scales used for Gaia are to be considered
in a relativistic context. These different time scales are a result of time dilation of moving
objects, as predicted by special relativity, and the general-relativistic time dilation of objects
in a gravitational potential, as predicted by general relativity. [Bastian, 2007]

As mentioned above the natural time coordinate in ICRS is TCB, it will be used for Gaia
data processing. The Barycentric Coordinate Time (TCB) is the time-like coordinate of the
Barycentric Reference System (BCRS). In the data processing, this time coordinate will be
used in its representation in terms of nanoseconds since J2010.0 (TCB) 8 In the Java toolbox
“GaiaTools”, the two fundamental Java classes “GaiaTime” and “EarthTime” encapsulate the
useful representations and transformations. [Bastian, 2007]

7These are according to Bastian [2007]: Terrestrial Time (TT) is approximately the time of a clock on
the geoid, International Atomic Time (TAI) is the practical realisation of TT Coordinated Universal Time :
UTC = TAI + leap seconds, Geocentric Coordinate Time (TCG), TG the proper time of Gaia’s master clock
and its realisation On-board Time (OBT).

8This uses the Julian year, defined in Bastian [2007].
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3.3 Equations for light propagation in the post-Newtonian limit

The pivotal point in astrometry is stressed by [Bastian, 2007](section 4.2.1.3, p. 22):

The primary quantity to be measured is the direction of light rays. This quantity
also can be expressed in the ICRS by spherical longitude and latitude coordinates
(α) and (δ), or else by Cartesian unit vectors. Conceptually, however, it should
not be mixed up with the BCRS coordinates of the corresponding body from which
the light ray originated. Light rays are curved, and the observed direction of a light
ray depends on the point of observation and on the motion of the observer.

This sums up two essential features in relativistic astrometry: that the geometry of space
has to be taken into account and that the motion of the observer has to be accounted for.
Both are crucial to making the best use of Gaia data.

What is needed to achieve this is a metric theory of gravity and a set of frames, coordi-
nates and data about the physical universe (mass distributions) to provide a model for light
propagation. Several different approaches to this problem exist and have been outlined in
Klioner [2003], Crosta and Mignard [2006], Kopeikin and Makarov [2007] and Crosta [2010].
In this study of light deflection by Jupiter we have followed the model presented in Crosta and
Mignard [2006] and implemented it for calculations in AGISLab.

In this section, we will present the main results of the post-Newtonian approximation useful
in our calculation. Here PPN γ will make its appearance to quantify the possible deviations
of physical universe from general relativity. We then present the model used for the planet
(multipole expansion) and then the equations derived in Crosta and Mignard [2006] as well as
the derivation of a quantity needed for calculations in AGISLab.

3.3.1 The post-Newtonian limit for theories of gravitation

We outline how the post-Newtonian Limit of a gravitational theory is obtained. [Will, 1993]
gives a detailed overview covering the procedure for different kinds of theories in chapter 5. We
will discuss the main steps and then go on to the post-Newtonian equations of light bending
we study here.

The field equations of general relativity : (5) are elegant and deceptively simple, showing
how geometry is generated by matter.

Gµν =
8πG

c4
Tµν (5)

(
−∂2

ct +∇2
)
hαβ = −16πG

c4
ταβ (6)

Where Gµν is the Einstein tensor which is a function of the components of the metric (gαβ),
its first derivatives and its second derivatives. For a given material energy-momentum tensor
Tµν , (5) are second order differential equations constraining the metric, and thereby defining
the geometry of space-time. 9 The constant G is Newton’s constant of gravitation and c is
the speed of light in vacuum, their units are discussed in appendix C. The quantity 8πG/c4 =
2.07 ∗ 10−43[s2m−1kg−1] is called Einstein’s constant of gravitation.

The space-time metric being gαβ and g = det(gαβ). The tensor hαβ in (6) is used in
the post-Newtonian approximation. It quantifies the deviation of the metric from the flat
Minkowski metric which is (ηαβ):

hαβ = ηαβ − (−g)1/2gαβ. (7)

The “relaxed” Einstein equations (6) are employed in post-Newtonian calculations. Will in
Will [2011] calls ταβ the “effective” energy-momentum pseudotensor. It can be directly seen
that (6) are a second order differential equations.

9 The Einstein tensor is a function of the Riemann curvature tensor. Definitions are given in appendix B.
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The post-Newtonian approximation supposes that gravitational fields are weak and that
characteristic motions of matter are slow compared to the speed of light. As pointed out byWill
[2011], this means that for the system in question the quantity ε ∼ (v/c)2 ∼ GM/(Rc2) ; 0 is
small. Here v,M,R denote the characteristic velocity, mass, and distance within the system.
He stresses that it is unkown whether the post-Newtonian expansion forms a convergent series.

In brief the steps to calculate the post-Newtonian limit of a metric theory of gravitation
according to [Will, 1993](chapter 5) are shown in table 3.

step 1: identify the variables of the theory
step 2: set cosmological boundary conditions
step 3: expand in a post-Newtonian series about asymptotic values
step 4: substitute into field equations
step 5: solve for the metric element h00 to second order
step 6: solve for the metric elements hij to second order and solve for h0j to third order
step 7: solve for the metric elements h00 to fourth order. (Will mentions that

this is the biggest step and involves the non-linearities of the theory.)
step 8: convert to local quasi-cartesian coordinates and standard PPN gauge
step 9: comparison with a reference “shape” of the equations

to read of the values of the parameters

Table 3: Procedure to deduce the post-Newtonian limit of a metric theory of gravitation
according to [Will, 1993](chapter 5).

The values of the PPN parameters for general relativity, as given in table 1, are:

γ = β = 1

ξ = 0

α1 = α2 = α3 = 0

ζ1 = ζ2 = ζ3 = ζ4 = 0

We note that general relativity is a fully conservative theory, as a consequence of αi = 0 and
ζi = 0, without preferred frame effects (αi = 0). For alternative theories these parameters will
depend on its fundamental scalar and vector fields.

3.3.2 Equations of light propagation

Our goal is to compare the difference in light deflection effects predicted by alternative theories
of gravitation in the post-Newtonian limit. This case is relevant for observations of light
deflection by the giant planets of the solar system with Gaia. We denote the coordinates xβ ,
with Greek indices ranging form 0 to 3.

In the limit of geometrical optics, that is when the wave length of the electromagnetic wave
of our light ray is small compared with the scale at which its amplitude changes and the scale
at which the background geometry changes, we have along the light path:

gαβ∂λx
α∂λx

β = 0 (8)

∂λx
α
(
∂λx

β
)

;α
= 0 (9)

This is the geodetic equation for a light ray. As discussed in Will [1993, equation (6.7)],where λ
is the “affine” parameter measuring the length along the light path. A;α denotes the covariant
derivative of A. The first relation (8) shows that the trajectory of the light ray is a null-
geodesic. The equation (9) leads to (10), where Gamma is the Christoffel symbol:

∂2
λx

µ + Γµαβ∂λx
α∂λx

β = 0 (10)
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From which one can deduce, by applying the post-Newtonian approximation and the parametrized
post-Newtonian framework:

d2xj

dt2
= ∂jU

(
1 + γ δik

dxi

dt

dxk

dt

)
− 2(1 + γ)

dxj

dt

(
δik

dxi

dt
∂kU

)
(11)

Where U is an arbitrary gravitational potential satisfying conditions discussed in the next
section (3.3.3) and δij is the Kronecker delta. This is expression (1) used by Crosta and
Mignard [2006].

3.3.3 The multipole expansion

In this section we discuss the gravitational potential we use. This is part of the modeling of
the light deflection problem as discussed above. A potential is needed for equation (22). The
shape of the potential determines the effects which can be obtained from it. The expression,
valid in any coordinate system, for the gravitational potential of a given mass distribution
described by a density ρ is :

U(x, t) =

∫

B
d3r

Gρ(r, t)

||x− r|| (12)

where x = (x1, x2, x3) is the coordinate three vector of the point at which we compute the
potential, r is the coordinate three vector of integration and B designates the volume occupied
by the mass distribution, which may depend on time. The density ρ measures the rest-mass
density in a local freely falling frame momentarily comoving with the gravitating matter.

Since our objective is to calculate the gravitational potential of a giant gaseous planet the
multipole expansion is a useful tool in simplifying expression (12). It is obtained by Taylor
expansion of the norm ||x− r||:

1

||x− r|| =
(
x2 − 2x · r + r2

)−1/2
=

1

x

∞∑

n=0

( r
x

)n
Pn ( cos(χ) ) (13)

where χ is the angle between r and x. Their respective norms are denoted by r and x. In
the series expansion (13) the Pn are Legendre polynomials10. They are further discussed in
appendix D. The series is convergent for all x such that r < x, therefore it does converge if
x is outside a sphere containing the body. This is a classical result of the theory of spherical
harmonics [Landau and Lifshitz, 1975, §41].

The potential can now be written as :

U(x, t) =

∫

B
d3r

Gρ(r, t)

x

∞∑

n=0

( r
x

)n
Pn ( cos(χ) ) (14)

=
G

x

∞∑

n=0

(
1

x

)n ∫

B
d3r ρ(r, t)rn Pn ( cos(χ) ) (15)

=
GM

x
+
Gp · x
x3

+
G

2

Qijxixj
x5

+ . . . (16)

In the above terms of higher order than quadrupole have been neglected. We denote the
total mass of the distribution by M .

The dipole moment of the mass distribution is given by (17).

p(t) =

∫

B
d3x ρ(x, t) x (17)

10 The Legendre polynomials were introduced in 1782 by Adrien-Marie Legendre for exactly this expansion
of the Newtonian potential. [Le Gendre, 1782]
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In the planet’s proper frame, it vanishes if the mass distribution has a center of symmetry,
since all masses are positive and the symmetry entails that the integrand is an uneven function.
This is a very good approximation for a planet like Jupiter.

The quadrupole moment of the mass distribution is given by (18), it is a symmetric trace
free tensor of rank 2.

Qij(t) =

∫

B
d3x ρ(x, t)

(
xixj −

1

3
δijr

2

)

To a very good approximation, planets are spherical and they are cylindrically symmetric
around their axis of rotation. This shape can be accounted for to reasonably good approx-
imation by the monopole and quadrupole terms in the expansion. The latter accounts for
the flattening at the poles as a deviation from spherical shape. Since Qij is a symmetric real
valued tensor it can be brought to principal axes. One of these is the axis of rotation of the
planet z, which is also a symmetry axis. The principal value associated with this axis shall be
denoted by J2, then the other two principal values I1, I2 associated to axis in the x, y plane
are equal, since Q is trace free : I1 = I2 = −1/2 J2.

With these assumptions the potential can be written as :

U(x, t) =
GM

x
+

G

2

Qilxixl
x5

+ . . . (18)

⇒ ∂jU(x, t) = GM ∂j
1

x
+

G

2
∂j

(
Qilxixl
x5

)
(19)

The gradient ∂jU of the potential, is used in the formulae for quadrupole light deflection.
Jupiter is the most massive planet in the Solar System and has the largest radius also. A

selection of physical data relevant to our experiment is presented in table 4. In the context
of light deflection, Jupiter is heavy enough to create observable monopole light deflection. Its
quadrupole moment is also large enough for the quadrupole deflection to reach 240 arcsec at
its limb (table 1 p. 1588 [Klioner, 2003]). To compute the quadrupole term the direction
of Jupiter’s rotation axis must be known. In the present work we will assume that it is
orthogonal to Jupiter’s orbital plane, more sophisticated models have been discussed by the
REMAT group Lattanzi and Crosta [2009].

Partly due to its size it is a very bright object (V ≈ −2.7), this is far below the magnitude
threshold of G = 5.7 mag, even accounting for the correction of V → G [Martin Fleitas et al.,
2011]. For this reason it cannot directly be observed by Gaia and observations in its vicinity
may be impaired [ibidem].
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Quantity Symbol Unit Value

radius mean RJ [km] 69 911± 6
— mean equatorial RJme [km] 71 492± 4

mass MJ [1024 kg] 1898.13± 19
density ρJ [g cm−3] 1.3262± 0.0004
quadrupole moment † J2 [1] 14.7 ∗ 10−3

period, orbital T [yr] 11.862615
— spin S [day] 0.41354

magnitude ∗ V [mag] −2.70
grazing ray deflection (monopole)11 δφ [arcsec] 0.0163

Table 4: Physical parameters for Jupiter provided by JPL : http://ssd.jpl.nasa.gov/
?planet_phys_par. ( † The value for the quadrupole moment J2 is taken from Fienga et al.
[2008] as cited by Zschocke and Klioner [2011]. ∗ The value for V is taken from Martin Fleitas
et al. [2011].)

Figure 12: A picture of Jupiter in the visible taken by the Cassini probe.
(Credit: NASA/JPL/Space Science Institute; PIA04866)

11Calculated using the formula 31, for an observer on Earth or for Gaia’s orbit (for the point of closest
approach of Jupiter and the observer). Klioner [2003] gives 1620 µarcsecfor monopole deflection by Jupiter
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3.3.4 Transformations of the source direction

The source direction is the direction from the observer towards the source, it can be expressed
in different reference systems. The source direction undergoes transformations as outlined in
Lindegren et al. [1992] and Klioner [2008].

At a given time a star in the Milky Way has a definite position in the BCRS. This direction
is defined by the source’s astrometric parameters, which to obtain with great accuracy is
the point of astrometry. We here study the extent to which light deflection, in particular
monopole and quadrupole contributions affect measurement of stellar positions for the Gaia
space mission.

The (BCRS) coordinate direction of a sources is the (apparent) Euclidean (3-vector) direc-
tion from the barycenter of the Solar System toward the source. It is expressed in the locally
Euclidean (or Minkowskian) reference frame of an observer at the barycenter. The notation
for it is ū. It is obtained from the (BCRS) barycentric astrometric parameters of the object
by taking into account transformations for secular acceleration, proper motion and parallax.

The natural direction is û. It is the direction from a hypothetical observer, who is stationary
in BCRS. The transformation from the coordinate direction to the natural direction accounts
for the shift of origin from the barycenter of the Solar System to the position of the observer.
That is the origin of the natural frame of the satellite (SRS). This vector is obtained by
accounting for light deflection (∆Φ) by the sun and planets, notably Earth and Jupiter. This
term will be considered in the next section 3.3.6. The transformation from ū to û is given by:

û = 〈 ū + ∆Φ 〉 =
ū + ∆Φ

|| ū + ∆Φ || (20)

The observable or “proper” direction of a source is denoted u. For Gaia it is the source direction
expressed in the CoMRS frame. It is obtained by carrying out the Lorentz transformation
accounting for the observer’s motion in BCRS. This means that, it is obtained from the
natural direction by accounting for stellar aberration due to the barycentric velocity (v) of the
satellite.

u =

〈
û + v

1 + û · v(c+ e)−1

e

〉
(21)

where e = (c2−||v||2)1/2. These equations (20) and (21) are taken from section 5.2 of Lindegren
[2001].
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3.3.5 Equations of quadrupole light deflection

The differential equations of the null-geodesic light path in the post-Newtonian approximation
are (22). The potential and its gradient derived in the previous section are then used to
solve them. For a given observed star position, the equations allow to trace the light path
back to emission event, that is the location of the source at the moment of emission. For
the configurations and bodies we study, the gravitational fields are weak and therefore the
“deflection” effect is small. We will calculate the deflection vector of the light path ∆Φ, its
magnitude can be interpreted as the deflection angle. We use the ICRS frame (also called E in
Gaia notation), to define vectors. It is a local quasi Cartesian coordinate system [Will, 1993,
p. 92].

We discuss the equations given in Crosta and Mignard [2006]. The notation has been
adapted to AGISLab notation. Stars will be referred to as “sources”. We use the right-handed
basis n, t,m which is defined by the light ray arriving from the source as seen in figure 13.
The tangent vector to the ray is t, the vector n points towards the planet along the impact
parameter b and m = n×t. The notation for the spin axis of the planet is z. The direction from
the observer to the planet is up. Crosta and Mignard suppose that the planets are “isolated
stationary axisymmetric masses”. Hence the formulae we give below are valid in Jupiter’s rest
frame.

For a light ray passing outside the matter distribution, Crosta and Mignard integrate the
following equation:

∂2
t x

j
D⊥ = (1 + γ)∇⊥U (22)

where xjD is the relativistic deviation to the zero order (Newtonian) straight line trajectory,
and ∇⊥U is the projection of the gradient of U (19) onto the plane perpendicular to the light
ray. This is the (n,m) plane shown in figure 13 (b).

The light deflection of the ray is obtained as:

∆Φ =

∫

path
∂lt dl =

∫

path
(1 + γ)∇⊥U dl (23)

with the following expression for the gradient:

∇⊥U =

[
− b

r

(
−M
r2

+
3M

r4
J2R

2 5 cos2(χ)− 1

2

)
− 3M

r4
J2R

2 cos(χ) (z · n)

]
n

(24)

− 3M

r4
J2R

2 cos(χ) (z ·m) m
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Figure 1. The geometry of light deflection due to a planet (P): the spin axis of the planet z is out
of the plane; t represents the unit tangent vector from a distant star (S) to the observer (O) on the
unperturbed light trajectory; u is the unit direction from O to P along their distance a; finally, χ is
the angle SÔP, and b is the impact parameter.

-n
m

∆α cos(δ)

∆δ

Figure 2. Light deflection by a planet: tangent plane on the sky. The position of the star is
displaced both in the radial (−n) and orthoradial m directions. The spin axis of the planet z (not
shown here) does not lie in this plane in general.

so the radial distance becomes

r = b(1 + λ2)1/2. (9)

Each integral entering (6) must be computed with λ running positively in the same direction
as the photon from λ = −∞ to λ = 1/ tan χ , with χ standing for the angular separation
between the directions star/observer and observer/planet (figure 1). At the closest approach
on the unperturbed ray one has λ = 0. The explicit expressions of the integrals are given in
appendix A. After some algebra, the light deflection vector is split into two components, the
first one along n and the second one along m, both including the monopole and the quadrupole
contribution of the planet in the function of the angular separation χ :

#Φ = #$1n + #$2m, (10)

where, precisely,

#$1 = (1 + γ )
2M

b

{
(1 + cos χ) + J2

R2

b2

[(
1 + cos χ +

1
2

cos χ sin2 χ

)

− 2
(

1 + cos χ +
1
2

cos χ sin2 χ +
3
4

cos χ sin4 χ

)
(n · z)2 + (sin3 χ − 3 sin5 χ)

× (n · z)(t · z) −
(

1 + cos χ +
1
2

cos χ sin2 χ − 3
2

cos χ sin4 χ

)
(t · z)2

]}
(11)

(b) Light deflection by a planet: tangent plane
on the sky. The position of the star is dis-
placed both in the radial (−n) and orthoradial
m directions. The spin axis of the planet z (not
shown here) does not lie in this plane in general.

Figure 13: Figures describing the light deflection geometry from Crosta and Mignard [2006]

Upon integration of equation (23) along the path from the source to the observer the
projection of the deflection vector onto the (n,m) plane is obtained. For its components
Crosta and Mignard [2006] obtain:

∆Φ = ∆Φ1 n + ∆Φ2 m (25)

∆Φ1 = (1 + γ)
GM

c2

1

ab

(
(1 + cosχ) + J2

R2

a2b2

[
(1 + cosχ+

1

2
cosχ sin2 χ)

− 2 (1 + cosχ+
1

2
cosχ sin2 χ+

3

4
cosχ sin4 χ)(n · z)2

+ (sin3 χ− 3 sin5 χ)(n · z)(t · z)

− (1 + cosχ+
1

2
cosχ sin2 χ− 3

2
cosχ sin4 χ)(t · z)2

] )
(26)

∆Φ2 = (1 + γ)
GM

c2
J2

R2

a3b3

(
2(1 + cosχ+

1

2
cosχ sin2 χ) (n · z) (m · z)

+ sin3 χ (m · z) (t · z)

)
(27)

The parameters in this formula are :

• R is the equatorial radius of the deflecting object, M its mass and J2 the quadrupole
moment.

• where d as shown in figure 13 (a) is the distance from Gaia to the deflecting object,
measured in astronomical units (AU)
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• b is the impact parameter, the distance from the planet to the trajectory of the light ray,
it is also measured in AU. We have: b = d sin(χ)

• χ if the angle between the directions from the observer toward the source and the planet,
we have χ = ̂( up , −t ) and cos(χ) = −(up · t).

• a is the value of 1 AU in meters as given in table 10 in appendix C.

An interesting particular case of formula (25) is the limit J2 → 0.

∆Φ1 → (1 + γ)
GM

c2

1

ab
( 1 + cosχ ) (28)

∆Φ2 → 0 (29)

⇒ ∆Φ → (1 + γ)
GM

c2

1

ab
( 1 + cosχ ) n = (1 + γ)

GM

c2

1

ad

(
1 + cosχ

sinχ

)
n (30)

We obtain the expected equation for the monopole light deflection:

||∆Φ|| → δmφ = (1 + γ)
GM

c2ad

(
1 + cosχ

sinχ

)
= (1 + γ)

GM

c2ad
cotan

(χ
2

)
(31)

The monopole deflection angle δmφ (with γ = 1) was used by Eddington for the solar light
deflection experiment to confirm general relativity. Its value is 1.75 arcsec for grazing rays.
The formula was also used in Hipparcos data reduction for light deflection by the Sun and
Earth [Lindegren et al., 1992].

In the following we call quadrupole term the quantity: ∆qΦ = (∆Φ1 − δmφ) n + ∆Φ2 m.

3.3.6 The quadrupole efficiency factor and derivatives

A further equation is needed for numerical resolution of the quadrupole light deflection equa-
tions in the AGIS framework. Therefore we introduce the quadrupole efficiency factor and
deduce equations (37) and (38). We then obtain the equation (50) for the derivatives of the
source direction vector, as required by the AGIS scheme. This refers to the method outlined
in section 4.1 of report 2.

The formulae (26) and (27) being heavy, we introduce the following notation:

A = (1 + γ)
GM

c2

1

ab
(32)

B = J2
R2

a2b2
(33)

C =
GM

c2

1

a2d2

1

1− cos(χ)
(34)

f1(χ) = (1 + cosχ+
1

2
cosχ sin2 χ)

− 2 (1 + cosχ+
1

2
cosχ sin2 χ+

3

4
cosχ sin4 χ)(n · z)2

+ (sin3 χ− 3 sin5 χ)(n · z)(t · z)

− (1 + cosχ+
1

2
cosχ sin2 χ− 3

2
cosχ sin4 χ)(t · z)2 (35)

f2(χ) = 2(1 + cosχ+
1

2
cosχ sin2 χ) (n · z) (m · z)

+ sin3 χ (m · z) (t · z) (36)
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The quadrupole efficiency factor (QEF) is denoted by ε, as in [Crosta and Mignard, 2006]. It
scales the quadrupole term in equations (26) and (27). These equations become:

∆Φ1 = A [ (1 + cosχ) + ε B f1(χ) ] (37)
∆Φ2 = εA B f2(χ) (38)

Equation (25) still holds, the total deflection is ∆Φ = ∆Φ1 n + ∆Φ2 m.
The derivatives required by the AGIS framework are those of the natural source direction

û with respect to ε. Here we give the detail of their calculation.

∂ û

∂ε
= ∂ε û (39)

=
∂ε∆Φ

|| ū + ∆Φ || + (ū + ∆Φ) ∂ε

(
1

|| ū + ∆Φ ||

)
(40)

=
( ∂ε∆Φ1 ) n + ( ∂ε∆Φ2 ) m

|| ū + ∆Φ || + (ū + ∆Φ) ∂ε

(
1

|| ū + ∆Φ ||

)
(41)

Where we use the notation: ∂x = ∂
∂x . It follows:

∂ε∆Φ = ( ∂ε∆Φ1 ) n + ( ∂ε∆Φ2 ) m = A B f1(χ)n + A B f2(χ)m (42)

∂ε

(
1

|| ū + ∆Φ ||

)
= −

(
1

|| ū + ∆Φ ||2
)
∂ε || ū + ∆Φ || (43)

|| ū + ∆Φ || =
√

ū2 + ∆Φ2 + 2 ū ·∆Φ (44)

∂ε|| ū + ∆Φ || =
1

2

1

|| ū + ∆Φ ||
(
∂ε
(

∆Φ2
)

+ ∂ε 2 ū ·∆Φ
)

(45)

∂ε|| ū + ∆Φ || =
1

2

1

|| ū + ∆Φ || ( 2 ∆Φ · ∂ε∆Φ + 2 ū · ∂ε ∆Φ ) (46)

=
(ū + ∆Φ) · ∂ε ( ∆Φ )

|| ū + ∆Φ || (47)

Thus:

∂ε û =
∂ε∆Φ

|| ū + ∆Φ || + (ū + ∆Φ) ∂ε

(
1

|| ū + ∆Φ ||

)
(48)

=
∂ε∆Φ

|| ū + ∆Φ || + (ū + ∆Φ)

(
−
(

1

|| ū + ∆Φ ||2
)

(ū + ∆Φ) · ∂ε ( ∆Φ )

|| ū + ∆Φ ||

)
(49)

∂ε û =
∂ε∆Φ

|| ū + ∆Φ || − (ū + ∆Φ)
(ū + ∆Φ) · ∂ε∆Φ

|| ū + ∆Φ ||3 (50)

This final expression (50), is the analytic formula for the derivative in the case of a single
deflecting body. In the case of multiple deflecting bodies their contributions have to be added
as: û′ = ū + Σi∆Φi and every body may have its own QEF εi. In the case of solar system
objects and the configuration of Gaia which does not observe close to the Sun, it is sufficiently
accurate to calculate derivatives in the approximation of a single body, treat each contribution
separately since || ū + Σi∆Φi || ≈ || ū || . This discussion is relegated to section 3.4.

The analog of (50) for the monopole term and gamma is (51). In which we use the
heliocentric position of Gaia r, the notation u1 = ū + ∆Φ and u1 = || u1 || .
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Next we compare this expression to a further approximation (52), which was used for the
derivatives in PPN γ for Hipparcos [Lindegren et al., 1992] and in AGISLab [Hobbs et al.,
2010].

∂ û

∂γ
= −C 1

u3
1

(
(1 + γ) C r2 + (r · u)

)
u1 +

1

u1
C r (51)

∂ û

∂γ
≈ (r − ū(ū · r))

GMc−2

r(r + ū · r)
(52)

In analogy to (52) we would like to write for ∂ε û :

∂ε û = ∂ε∆Φ − (ū + ∆Φ) ∂ε(ū ·∆Φ) (53)

The derivation of equation (52) uses Taylor expansions. Knowing that the deflection term
∆Φ is small (in most observable cases), we can rewrite (20):

û =
ū + ∆Φ

|| ū + ∆Φ || (54)

= ( ū + ∆Φ )
(
ū2 + 2 ū ·∆Φ + ∆Φ2

)− 1
2

= ( ū + ∆Φ ) ( 1 + 2 ū ·∆Φ + o(||∆Φ||) )−
1
2

≈ ( ū + ∆Φ )

(
1− 1

2
2 ū ·∆Φ + o(||∆Φ||)

)

≈ ū + ∆Φ− ū (ū ·∆Φ)−∆Φ( ū ·∆Φ) + o(||∆Φ||)
≈ ū + ∆Φ− ū (ū ·∆Φ) + o(||∆Φ||)
≈ ū + (1− ū ūT )∆Φ + o(||∆Φ||) (55)

where ū2 = 1 and ∆Φ( ū ·∆Φ) = o(||∆Φ||)
Upon deriving (55) with respect to ε:

∂ε û ≈ ∂εū + ∂ε
(

(1− ū ūT )∆Φ
)

(56)

≈ 0 + (1− ū ūT ) ∂ε∆Φ

∂ε û ≈ (1− ū ūT ) ∂ε∆Φ (57)
∂ε û ≈ ∂ε∆Φ− ū ( ū · ∂ε∆Φ ) (58)

Alternatively, deriving (55) with respect to γ:

∂γ û ≈ ∂γū + ∂γ
(

(1− ū ūT )∆Φ
)

(59)

≈ 0 + (1− ū ūT ) ∂γ∆Φ

∂γ û ≈ (1− ū ūT ) ∂γ∆Φ (60)
∂γ û ≈ ∂γ∆Φ− ū ( ū · ∂γ∆Φ ) (61)

These different expressions for the derivatives have been implemented and tested in AGISLab.
The results of the different formulae are compared in the next section.
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3.4 Testing the derivatives for QEF ε

3.4.1 Design choices

In this section we discuss the testing strategy used in AGISLab. We first have started to
implement the equations discussed above in AGISLab. Then we have developed a set of
simple stand-alone tests.

The objective is to test the formulae for quadrupole deflection. For the purpose of testing
the formulae for light deflection up to quadrupole order and the source direction derivatives,
we have adopted a design using three classes: QuadrupoleDerivatives, QuadrupoleDerivativesTest
and QuadrupoleDerivativesStructuredData. Their relations are shown in figure 7.

The class QuadrupoleDerivatives implements the formulae to be tested. The monopole
deflection formula (31) and the equation (37) and (38) which includes the quadrupole terms
are implemented. For the derivatives we have implemented three versions for both ∂εû and
∂γû. For ∂εû we calculate (50), (58) and a numerical derivative described below (62). For ∂γû
we calculate (52), (61) and a numerical derivative defined by (63).

QuadrupoleDerivativesTest implements a set of tests described below. The auxiliary class
QuadrupoleDerivativesStructuredData is a data structure designed to store parameters for cal-
culations, such as Gaia’s and Jupiter’s positions and the A,B, f1, f2 factors in (37) and (38)
which may be reused for the evaluation of the derivatives.

Figure 14: The UML diagram of the relations between the classes QuadrupoleDerivatives,
QuadrupoleDerivativesTest and QuadrupoleDerivativesStructuredData.

In the next step, we turned toward the implementation of the calculations in AGISLab.
The light deflection calculation in AGISLab is handled by the SourceDirection interface. There
is a pre-existing implementation of SourceDirection called SourceDirectionGeometricImpl, im-
plemented by Hobbs et al. [2010]. This calculates the “proper source direction” starting from
observation data and it uses a model for monopole light deflection for the Sun and planets.
This is very similar to the model that was used in Hipparcos data processing [Lindegren et al.,
1992]. We will subsequently call this implementation the “old” model.

The implementation we are devising is SourceDirectionGeometricQuadImpl which will take
into account the light deflection terms up to quadrupole order. It implements the validated
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equations (37) and (38) and the derivatives (50) for QEF ε and (51) for PPN γ. An intermedi-
ary implementation SourceDirectionGeometricMonoImpl has been implemented for the purpose
of comparing results to those of the “old” model. It is an early version of SourceDirectionGeo-
metricQuadImpl. It uses the new formalism and derivative equations for PPN γ, We have paid
attention to writing documentation for the implemented methods. The final design of this
class will be discussed later. We call this the “new” model. Its first test is to reproduce the
monopole results (convergence plots) for the Sun and Jupiter.

3.4.2 Testing strategy

The main type of test we have implemented is designed to compare the results of different
derivative and deflection calculations. To obtain these values in different configurations the
following steps have to be carried out.

Before any test method runs the main parameters are set (see table 6 for values). The
physical constants provided by the Gaia Parameter Database were used.

Then the positions of Jupiter and Gaia are calculated from ephemeris and the star list
is generated. For these tests the position of Jupiter was chosen arbitrarily, a set of different
coordinates has been tested and it was shown that they have no effect on the results. This
is to be expected as the effect is not coordinate dependent, it depends only on the relative
position of the star, Jupiter and Gaia. Later Jupiter’s position is obtained from the ephemeris
(SolarSystemEphemeris) implemented in GaiaTools.

We generate stars near Jupiter (for instance the one shown in figure 15), by creating a
rectangular field of stars, near some object (e.g. Jupiter) using two parameters: the smallest
angle between two stars (in radian), and the number of stars on one side of the rectangle.
Finally the deflection and/or derivatives are calculated, compared to numerical derivatives
and written to an output file.

We chose to implement monopole and quadrupole calculations in separate methods as this
is required later for use with AGISLab. For the numerical derivative ∆εû∗ for a star we use
the symmetrised numerical derivative, defined as:

∆εû∗(ε) =
û∗(ε+ ∆ε/2)− û∗(ε−∆ε/2)

∆ε
=

∆Φ∗(ε+ ∆ε/2)−∆Φ∗(ε−∆ε/2)

∆ε
(62)

This numerical scheme has been implemented for both derivatives in QEF ε and PPN γ, to
allow verification.

∆γû∗(γ) =
û∗(γ + ∆γ/2)− û∗(γ −∆γ/2)

∆γ
=

∆Φ∗(γ + ∆γ/2)−∆Φ∗(γ −∆γ/2)

∆γ
(63)

Different test cases were implemented to verify distinct aspects of the implementation of
the formulae. They are shown in table 5.

Test 1 compare the analytical and numerical derivative formulae
Test 2 unit test check the formal validity of the algorithm
Test 3 compare the deflection norms (monopole, quadrupole, total)
Test 4 compare the analytical and numerical deflection formulae at the antipode of Jupiter
Test 5 compare the quadrupole (ε) derivatives : analytical, approximate and numerical
Test 6 compare monopole (γ) derivatives : analytical, approximate and numerical

Table 5: The different test cases for the derivative equations and deflection formulae.

We will discuss the most pertinent results from these tests in the paragraphs that follow.
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3.4.3 Results from the stand-alone test set

The tests allowed us to get a feeling for the magnitude and variability of the quadrupole
deflection term. In the tests of the deflection equations (37) and (38) we have computed
the quadrupole and monopole deflection terms and compared them to the established results.
Our numerical values agreed with the ones found in the literature [Crosta and Mignard, 2006,
Klioner, 2003]. The monopole term for Jupiter is of the order of 16.3 milli arcsec for a grazing
ray (see table 7). The quadrupole term for a grazing ray is about 200 µarcsec in agreement
with [Klioner, 2003]. The unit tests allowed us to trace the calls made by the algorithms and
validate the steps in the calculation scheme. The tests of the different derivative formulae
(tests 4 , 5 , 6 in table 5) agreed well, for the chosen values of the parameter δ = ∆ε or
δ = ∆γ. In general for stars outside Jupiter’s radius a value of δ = 0.001 for the numerical
step size is sufficient for 6 decimals of agreement with the analytical and numerical derivative
formulae. The agreement of the analytical with approximate formulae is of the same order.
This warrants the approximations mentioned in 3.3.6.

Far away from Jupiter, the quadrupole deflection term (25) is expected to be negligible
since it is proportional to the inverse of the cube of the impact parameter b : ∆Φ ∝ (1/b3)
according to (27) . The derivative of the source direction (50) would then be small as well,
because || ū + ∆Φ || ≈ ||ū|| ≈ 1 and ∂ε∆Φ ∝ AB ∝ (1/b3) in virtue of (42) . This has
been tested at the antipode of Jupiter, i.e. at the point on the celestial sphere diametrically
opposite to Jupiter (test case 3). At the antipode of Jupiter the deflection and derivatives
are zero exactly due to symmetry reasons. In the immediate surroundings of the antipode (20
arcsec), the norm of the total deflection is of the order of 10−16 rad (or 10−5 µarcsec) and the
norm of the derivative in ε is 10−26 rad (or 10−15 µarcsec). These are very small compared
to the values in the vicinity of Jupiter, at 20 arcsec the norm of the total deflection is of the
order of 10−7 rad (or 10−2 arcsec) and the norm of the derivative in ε is 10−9 rad (or 10−4

arcsec). For a grazing ray (observed from earth) we obtain : about 17 milliarcsec for the total
deflection in agreement with [Klioner, 2003]. These values are the results of tests 3, 4, 5 in
table 5.

Quantity Unit Value

Jupiter’s apparent radius [arcsec] ≈ 20
angle between stars [arcsec] 20
total number of stars [ND] n2 = 16
numerical step size (δ) [ND] 0.001

grazing ray deflection (monopole) [arcsec] 0.0163
maximal level of the quadrupole term12 [µarcsec] 240

maximal level of ∂εû [arcsec] 10−4

minimal level of ∂εû [arcsec] < 10−15

maximal level of the derivative in γ [arcsec] 10−3

minimal level of the derivative in γ [arcsec] < 10−11

Table 6: Test parameters for the first tests of the implementation of quadrupole light deflec-
tion terms and derivates. (We write [ND] to indicate that the quantity in question has no
dimension.)

For the derivative in PPN γ for Jupiter test 5 (table 5), the behaviour is similar. The
results are shown in table 6.

12 This is the value given in table 1 p. 1588 [Klioner, 2003].
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Figure 15: Grid of stars (100 × 100) used for the derivative test, the center of the grid is
the position of the deflecting object (Jupiter) in the spherical coordinate system, projected
onto the plane tangent to the celestial sphere in the direction of the deflecting object. [image
generated with Gnuplot]

Figure 16: Monopole deflection for the same stars (100 × 100) as in figure 15. This shows a
zoom on the inner 160 arcsec. Jupiter is located at the center of the field and is represented
by a red circle of radius 24 arcsec. (The scale of the arrows is in milli arcsec, i.e. they have
been scaled up by a factor of one thousand compared to the angular scale.) [image generated
with Gnuplot]
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3.4.4 Testing the convergence of the new setup in AGISLab

After these preliminary tests, we have implemented the derivatives in the SourceDirection-
QuadImpl. We tested the convergence of the new scheme to calculate light deflection, we
restricted the calculation to the monopole term using the new formalism (25) up to monopole
order (31) and the derivative equation (51) for PPN γ. The results of our new runs agree with
runs using the old formalism to a good precision, as shown in table 7.

Figure 17 shows the convergence plot for the global parameters, PPN γ of the Sun and
PPN γ of Jupiter, in the old configuration. Figure 18 shows the convergence plot for the global
parameters, PPN γ of the Sun and PPN γ of Jupiter, in the new set up.

Both runs use the same setup parameters, specified in a properties file. The essential ones
are scale parameter: S = 0.020 and the reference number of sources: nSources = 106, which
results in 20 000 sources. We do 50 iterations using a conjugate gradient scheme with 5 years
of data starting in 2014.

Moreover we tried to make the simulation as realistic as possible despite the small scale
parameter. In these simulations we use bright stars, we chose to use stars of magnitude G = 13
only. The model includes Observation noise as described in de Bruijne [2009]. It accounts for
the estimated AL and AC location-estimation performance of Gaia. This is a function of
magnitude and affects the weight (w) of each observed star in equation (1).

The initial error in PPN γ is set to a 0.1 deviation. The value initially assumed by AGISLab
is therefore γ = 1.1 for both Jupiter and the Sun. These runs also include initial errors in
attitude and source parameters, defined by the run properties.

Quantity Value

scale parameter (S) 0.020
number of stars 20 000
number of iterations 50
start date J2014
initial error in PPN γ +0.1

ErrSun(γS) (old) −5.516 ∗ 10−5

ErrSun(γS) (new) −5.501 ∗ 10−5

ErrJup(γJ) (old) −2.322 ∗ 10−4

ErrJup(γJ) (new) −2.374 ∗ 10−4

Table 7: Test parameters and results for the two runs of monopole light deflection terms and
derivates for figures 17 and 18.

The results shown in table 7 and the numbers given at the bottom of the figures below
are the values of the errors in “global parameters” PPN γ for the Sun, PPN γ for Jupiter, and
QEF ε for Jupiter, and their “updates” at the end of the last iteration, iteration 50 in this
case. The errors are defined by the following relations:

ErrSun(γ) = γS − 1 (64)
ErrJup(γ) = γJ − 1 (65)

We are calculating two estimates for PPN γ, to asses the precision with which it can be
determined using a given method.

The plots in figures 17 and 18 show an oscillating behaviour initially, as the conjugate
gradient algorithm tries to find the optimum solution. As the errors oscillate around zero and
assume both positive and negative values, it is not possible to generate logarithmic plots with
negative values of the errors ErrSun and ErrJup. This issue will be addressed in future revisions
of AGISLab.
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The larger amplitude of the oscillations for Jupiter is due to the fact that the monopole
deflection is weaker than the Sun’s. Since Jupiter is about a thousand times less massive, but
only about one tenth smaller in radius than the Sun, the grazing ray deflection is smaller by
a factor of one hundred as given in table 8. For an observer in the vicinity of the Earth and
even for Gaia, these are the maximal values of light deflection observable for the solar system
objects. A discussion of this is given in (table 1 p. 1588) [Klioner, 2003]. The monopole
deflection decreases with the separation between the source, since it is proportional to the
inverse of the impact parameter b = d sinχ. For the deflection of the Sun as observed by Gaia
in the opposite direction is still larger than the expected Gaia precision13. For Jupiter the
effect is weaker. At optimal precision of the measurements half the sky could contribute to
the determination of PPN γ using Jupiter’s monopole deflection.

Thus many more observations constrain the value of PPN γ for the Sun than for Jupiter,
which explains the smaller oscillations. Each star contributes for the Sun, but for Jupiter
only those stars in the vicinity of Jupiter when it is observed by Gaia contribute. This is also
responsible for the difference in the converged values of the errors.

Quantity Unit Jupiter Sun

Equatorial radius [ m ] 7.149 · 107 6.960 · 108

Angular radius [ arcsec ] 19 960
Distance to the observer [ AU ] 4.2 1
Mass [ kg ] 1.898 · 1027 1.988 · 1030

Monopole grazing ray light deflection [ arcsec ] 0.0163 1.75

Table 8: Comparison of the monopole deflection at the equator by the Sun and Jupiter. With
PPN γ = 1 and the observer in the vicinity of Earth. Deflection calculated using (31) and
rounded parameters from the Gaia Parameter Database (http://gaia.esac.esa.int/gpdb).

The agreement is to 2.3 % of the error value for Jupiter’s PPN γ obtained with the original
AGIS implementation. The absolute difference is |∆ErrJup| = 5.3 ∗ 10−6.

For the Sun, the agreement is to 0.27 % of the Sun’s PPN γ error value obtained with the
original AGIS implementation. The absolute difference is |∆ErrSun| = 1.5 ∗ 10−7.

There is also a difference in the updates for the errors of Jupiter (of the order of 10−6)
and the Sun (of the order of 10−7). This is of the order of the numerical precision of the
calculation. For both the Sun and Jupiter, we can conclude that the error has converged at
the level of 10−5 and 10−4 respectively. However since the updates are of the order of the
disagreement between the two methods, we cannot say how large it really is, but it must be
smaller than the value given. With larger runs better precision can be reached.

This test shows that the new implementation gives correct results up to numerical precision
and the limitation imposed by a small scale parameter. The results are good for such small
simulations. We plan to run bigger simulations and implement the quadrupole calculation, to
study the sensitivity to which Gaia can probe this effect.

13 At the antipode exactly, at 180◦ from the center of the Sun, the effect is precisely zero for symmetry
reasons. However even close to the antipode the Sun’s monopole effect must still be considered for high
precision astrometry. At 179◦ for instance, we obtain δmφ = 35.5 µarcsec (for γ = 1) according to (31) and
the constants given above. This is in agreement with table 1 p. 1588 [Klioner, 2003]which indicates that the
effect is larger than 10 µarcsec for an angular separation of 180◦ between the source and the deflecting body.
For Jupiter the effect falls below the 1µarcsec limit at 90◦, this can also be found in table 1 in [Klioner, 2003].
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Section 3

Figure 17: Convergence plot for the global parameters, in red (→) the error in PPN γ of the
Sun and in yellow (→) the error in PPN γ of Jupiter, original AGIS implementation. The
numbers in the box at the bottom of the graphs indicate the values at the end of iteration 50.
(Plot generated using AGISLab)

Figure 18: Convergence plot for the global parameters, in red (→) the error in PPN γ of
the Sun and in yellow (→) the error in PPN γ of Jupiter, revised implementation using the
formula from Crosta and Mignard to monopole order, and the derivative formula (61). The
numbers in the box at the bottom of the graphs indicate the values at the end of iteration 50.
(Plot generated using AGISLab)
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4 Conclusion

We have shown that the formalism we wish to implement in the tests and in AGISLab gives
coherent results. Our first tests in AGISLab agree with the results obtained with the previously
implemented formalism. The main limitation of our results here is the size of the simulation.
Indeed it is a small run with only 20 000 stars. It does allow to establish that the setup
converges. The results however are only lower bounds on Gaia’s possible performance in
measuring PPN γ for both the Sun and Jupiter.

The quadrupole effect is more difficult to detect as it is weaker and multiple observations
of the field in the vicinity of Jupiter are necessary to separate the monopole and quadrupole
effects. It is also made harder to detect by the saturation of the CCDs by Jupiter. The
impossibility to observe in the vicinity is expected to present the greatest constraint for its
detection. The effect is strongest for small separations from Jupiter, but it is estimated that
for most stars (G>13.5) within 5 arcsec of the planet’s limb no measurement data can be
obtained. [Martin Fleitas et al., 2011].

It has been pointed out by Zschocke and Klioner [2011] that it is not necessary to compute
Jupiter’s quadrupole deflection and derivatives for stars all over the sky. Due to the smallness
of the effect far away from Jupiter, it is likely to be drowned in noise. In our simulations of
about 100 thousand stars however this is not a big concern. For larger runs a filter for stars
at large angles from Jupiter could be implemented in AGISLab.

Our work on this model of general relativity in the context of Gaia, AGIS and AGISLab
will allow to demonstrate the feasibility of this calculation, and will be of use for the integration
of Gaia’s baseline relativity model, GREM, into AGISLab [Klioner, 2003, 2008]. We hope that
the comparison of the results of this model with those obtained by more detailed relativistic
models such as GREM and RAMOD, will give greater insight into the possible performance
of Gaia.

Another effect that can be studied is the correlation of the errors in PPN γ (of the Sun)
and basic angle variations. This correlation may potentially be broken by including light
deflection effects from the planets. The avoidance of (large) basic angle variations is an essential
requirement of the mission, their amplitude will be constantly monitored. However they cannot
be completely avoided and the effect even of small variations is being studied by DPAC [Hobbs
and Lindegren, 2010]. An interesting extension of this project would be to study how the
estimation of plentary deflection can improve the robustness of Gaia to these variations of the
basic angle.

In a second report we will describe the implementation of relativistic model in AGISLab
and discuss the effects of monopole gravitational light deflection in the data reduction for Gaia.
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Tensor equations

A Acronyms and Notations

Abbreviation Meaning

AC across-scan
AGIS Astrometric Global Iterative Solution
AL along-scan
as or ′′ second of arc or arcsecond (arcsec), 1 part in 3600 of one degree
AU astronomical unit
BCRS Barycentric Reference System
ESAC European Space Astronomy Centre (ESAC), near Madrid
CoMRS Center-of-Mass Reference System (of Gaia)
FL First-Look
FoV field of view
Gaia (formerly) Global Astrometric Interferometer for Astrophysics
GCRS Geocentric Reference System
Hipparcos High Precision Parallax Collecting Satellite
IAU International Astronomical Union
ICRS International Celestial Reference System
ICRF International Celestial Reference Frame
IDT Initial Data Treatment
IMCCE Institut de Mécanique Céleste et de Calcul des Éphémérides, Paris
ISO International Organisation for Standardization, Geneva
JD Julian Date; a notation for time
JPL Jet Propulsion Laboratory, NASA, Pasadena
ODAS One Day Astrometric Solution
PPN parametrized post-Newtonian
µarcsec micro arcsecond
QEF quadrupole efficiency factor

Table 9: The listing of the acronyms used in this work.

B Tensor equations

B.1 Covariant derivative and Christoffel symbols

For partial derivatives we use the following notation :

∂βAα :=
∂

∂xβ
Aα (66)

Some authors also use the notation Aα , β = ∂βAα which we have avoided here. In tensorial
equations, we use the Einstein summation convention. Greek indices range from 0 to 3, latin
indices from 1 to 3. The Christoffel symbols Γαβγ (also called connection coefficients): are
defined by (67). Relation (68) relates them to the metric tensor.

Γαβγ = − ∂βx̄µ∂γ x̄ν∂µ̄∂ν̄xα (67)

Γαβγ =
1

2
gνµ ( ∂βgµα + ∂αgµβ − ∂µgαβ ) (68)

We define the covariant derivative of a covariant tensor Aα by

Aα;β = ∂βAα + ΓναβAν (69)
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Section D

B.2 Riemann and Einstein tensors

The Riemann curvature tensor Rµναβ , which is a function of the Christoffel symbols and there-
fore of the metric itself.

Rµναβ = ∂αΓµνβ − ∂βΓµνα + ΓµγαΓγνβ − ΓµγβΓγνα (70)

as given in Will [1993, section 3.2].
The Einstein tensor Gµν is defined as:

Gµν = Rµν −
1

2
gµνR (71)

where Rαβ and R are defined as contractions of the Riemann curvature tensor. The Ricci
tensor is Rαβ = Rνανβ and the Ricci scalar is R = gαβRαβ .

B.3 Energy-momentum tensor

The energy momentum tensor appearing the in the field equations (5) will depend on the
model of matter chosen. A fairly general example is given by [Will, 1993], where matter is
modeled as a perfect fluid in which case:

Tµν = ( ρ+ ρΠ + p )uµuν + p gµν (72)

where the quantities are defined as follows:

• ρ is rest-mass–energy density of atoms in the fluid element,

• p is the isotropic pressure of the fluid,

• Π is the specific density of internal kinetic and thermal energy,

• uµ = dxµ/dτ is the four-velocity vector of the fluid element.

and τ is the separation between two space-time events:

dτ2 = ε gµνxµxν (73)

τ =

∫

Path:a→b
dτ (74)

where ε = ±1 is chosen so that dτ2 is positive. The separation between two events is called
time-like if ε = −1 and space-like otherwise. If gµνxµxν = 0 the separation is called light-like,
since light rays move along these null trajectories.

C Units

In this work we use SI units14. It is noteworthy that units are locally defined as “proper units”
in a reference frame. The question of their use and interpretation in general relativistic context
is discussed in the IAU resolution of 1991 Guinot [1992].

quantity unit value

G [m3kg−1s−2] 6.67428 · 10−11

c [ms−1] 2.99792458 · 108

a [mAU−1] 1.49597870691 · 1011

Table 10: Values of constants used in AGIS and AGISLab, provided by the Gaia Parameter
Database (http://gaia.esac.esa.int/gpdb).

14 Système International http://www.bipm.org/en/si/
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Legendre polynomials

D Legendre polynomials

The Legendre polynomials are given by the concise explicit expression (75):

Pn(y) =
1

2n(n!)
∂ny
[(
y2 − 1

)n] (75)

(n+ 1)Pn+1(y) = (2n+ 1)yPn(y)− nPn−1(y) (76)

where n is a positive integer number. Relation (76) is called Bonnet’s recursion formula.
These mathematical results can be found at http://dlmf.nist.gov/ and Abramowitz and

Stegun [1964] chapter 8.
The following are the first four polynomials which are used in the calculation in section

3.3.3.

P0(y) = 1 (77)
P1(y) = y (78)

P2(y) =
1

2

(
3y2 − 1

)
(79)

P3(y) =
1

2

(
5y3 − 3y

)
(80)
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Section E

E The equations of the PPN formalism

The equations shown below in figures 19 and 20, are taken from Will [2006, p. 29 and 30].
They show the role of the PPN parameters in the metric, as well as the definitions of the
metric potentials in terms of the matter variables and coordinates.

30 Clifford M. Will

3. in any theory that in addition possesses six global conservation laws for angular momentum,
called “fully conservative” (such theories automatically predict no post-Newtonian preferred-
frame effects).

Semi-conservative theories have five free PPN parameters (γ, β, ξ, α1, α2) while fully conservative
theories have three (γ, β, ξ).

The PPN formalism was pioneered by Kenneth Nordtvedt [197], who studied the post-Newtonian
metric of a system of gravitating point masses, extending earlier work by Eddington, Robertson
and Schiff (TEGP 4.2 [281]). Will [274] generalized the framework to perfect fluids. A general
and unified version of the PPN formalism was developed by Will and Nordtvedt. The canonical
version, with conventions altered to be more in accord with standard textbooks such as [189], is
discussed in detail in TEGP 4 [281]. Other versions of the PPN formalism have been developed
to deal with point masses with charge, fluid with anisotropic stresses, bodies with strong internal
gravity, and post-post-Newtonian effects (TEGP 4.2, 14.2 [281]).

Box 2. The Parametrized Post-Newtonian formalism

Coordinate system:

The framework uses a nearly globally Lorentz coordinate system in which the coordinates are
(t, x1, x2, x3). Three-dimensional, Euclidean vector notation is used throughout. All coordi-
nate arbitrariness (“gauge freedom”) has been removed by specialization of the coordinates
to the standard PPN gauge (TEGP 4.2 [281]). Units are chosen so that G = c = 1, where G
is the physically measured Newtonian constant far from the solar system.

Matter variables:

• ρ: density of rest mass as measured in a local freely falling frame momentarily comoving
with the gravitating matter.

• vi = (dxi/dt): coordinate velocity of the matter.

• wi: coordinate velocity of the PPN coordinate system relative to the mean rest-frame
of the universe.

• p: pressure as measured in a local freely falling frame momentarily comoving with the
matter.

• Π: internal energy per unit rest mass (it includes all forms of non-rest-mass, non-
gravitational energy, e.g., energy of compression and thermal energy).

PPN parameters:

γ, β, ξ, α1, α2, α3, ζ1, ζ2, ζ3, ζ4.

Metric:

Living Reviews in Relativity
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Figure 19: The full equations of the PPN formalism as given in [Will, 2006]. (TEGP 4.2
refers to [Will, 1993] section 4.2)
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• Stressed matter: Tµν
;ν = 0.

• Test bodies:
d2xµ

dλ2
+ Γµ

νλ
dxν

dλ

dxλ

dλ
= 0.

• Maxwell’s equations: Fµν
;ν = 4πJµ, Fµν = Aν;µ − Aµ;ν .
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Figure 20: The full equations of the PPN formalism as given in [Will, 2006], continued.
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