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Chapter 1 
 
Introduction 
 
 

This thesis concentrates on the study of the Ball and Beam process. The modeling has been 
done with Modelica and Dymola. 

 Dymola is an integrated environment for developing models in the Modelica language and 
a simulation environment for performing experiments.  

To do the control design there are many possibilities; this project presents an observer-
based control design development in Matlab based on pole-placement. The simulations are made 
in Simulink and Dymola. The experiments with the real Ball and Beam process are done with the 
controller implemented in a real-time extension to Simulink and viasual feedback from a camera 
system. 
 

A short description of the thesis chapter is outlined below: 
 
Chapter 2 presents an explanation of different tools used for the modeling. 

 
Chapter 3 describes the study of the Ball and Beam process. 
 
Chapter 4 presents the mathematical modeling of the physical system. 
 
Chapter 5 gives the modeling in Modelica of the beam and ball process. 

 
Chapter 6 contains control design of the obtained models and the corresponding 

simulations.  
 
Chapter 7 contains the experiments done.  
    
Chapter 8 presents the summarized conclusions of this thesis.  
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Chapter 2 

Dymola and Modelica 
 

This chapter gives a short introduction to the different tools used for the modeling in the 
thesis. 

 

2.1 Dymola 
 

The company Dynasim's mission is to develop the software tools that industry needs for 
solving demanding modeling, simulation and design problems. The emphasis is on handling 
large, multi-engineering systems efficiently. Dymola pioneered the object-oriented physical 
modeling methodology and the accompanying simulation technology.  
In 1996, Dynasim took the initiative to design a new unified object-oriented language for 
physical systems modeling, called Modelica. Founded in 1992, Dynasim is the leading developer 
and implement of object-oriented multi-engineering modeling technology and the Modelica 
language [2]. 
 

Dymola - Dynamic Modeling Laboratory - is a tool for multi-domain modeling and 
simulation. Dynasim developed it. Dymola supports the modeling language Modelica for which, 
there are a number of free and commercial model libraries that include models of mechanical, 
thermal, hydraulic, and thermodynamic and control systems. [4] 
 

Dymola uses a new modeling methodology based on object orientation and symbolic 
manipulation of equations. The usual need for the manual conversion of equations to a block 
diagram is removed by the use of automatic formula manipulation. 
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2.1.1 Dymola features: 
 

 Model Translator 
 

 Automatic causality analysis 
 Symbolic solution of equations and index reduction 
 Solution of algebraic loops 
 Automatic handling of time and state events 
 Generate C-code 

 
 Handles large, complex multi-domain models 

 
 Faster modeling by graphical model composition 

 
 Graphical model editor and browser 
 Drag submodels from libraries 
 Parameter forms 
 Connect graphically 
 Build icons - polygons, circles, text, color etc… 
 Text editor for declarations and equations 
 Automatic HTML model documentation 

 
 No manual equation manipulation needed 

 
 Faster simulation - symbolic pre-processing 

 
 Open for user defined model components 

 
 Open interface to other programs 

 
 Animation 

 
 Real time 3D animation 
 Boxes, spheres, cylinders, etc - predefined visual classes 
 Import of DXF and STL files 
 Hidden surface removal, shading 
 Plotting 

 
 Simulator 

 
 Handles ODE and DAE models 
 State or the art numerical integration 
 Flexible initialization 
 Interface to external C-functions 
 Matlab/Simulink, xPC an d SPACE interfaces 
 DDE interface 
 Real time simulation [1] 
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2.1.2 The modeling environment 
 

Dymola is an integrated environment for developing models in the Modelica language and 
a simulation environment for performing experiments. 
The Dymola modeling environment is divided in two main parts: 
 

 At the modeling mode called, Model Editor, where the models are composed from 
library components (from the Modelica standard library, other libraries, and 
commercial and proprietary libraries) as well as models developed by the user. Models 
are either composed of other, more primitive, components, or described by equations at 
the lowest level.  
This mode allows: 
 

 Model composition 
 Default parameter settings 
 Definition of equations 

 
 At the simulation mode, Dymola transforms a declarative, equation based, model 

description into efficient code. In this level it is possible show the results as animations 
or using plot windows for visualization of simulation results. 

 
Dymola provides a complete simulation environment, but can also export code for 

simulation in Simulink. In addition to the usual offline simulation, Dymola can generate code for 
specialized hardware-in-loop systems, such as, dSPACE, xPC and others [5]. 
 

Dymola uses Modelica, which is an object orientated modeling language, which supports 
hierarchical structuring, reuse and evolution of large and complex models independent from the 
application. It uses acausal modeling based on differential and algebraic equations. 
 
 
 
2.2 Modelica 
 

Modelica [3] is a powerful language for modeling of physical systems designed to support 
effective library development and model exchange. It is a modern language built on acausal 
modeling with mathematical equations and object-oriented constructs to facilitate reuse of 
modeling knowledge. 
 

The work with Modelica started in September 1996 with a group of about fifteen persons 
with knowledge about modeling languages and models with differential algebraic equations 
(DAE). 

The first version of the Modelica language definition was finished in September 1997. In 
January 2002 a new version was released. 
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2.2.1 Modelica features 
 

The four most important features of Modelica are: 
 

 Is based on equations instead of assignment statements. This permits acausal 
modeling that gives better reuse of classes since equations do not specify a certain 
data flow direction. Thus a Modelica class can adapt to more than one data flow 
context. 

 
 Has multi-domain capability, meaning that model components corresponding to 

physical objects from several different domains such as e.g. electrical, mechanical, 
thermodynamic, hydraulic, biological and control applications can be described and 
connected. 

 
 Is an object-oriented language with a general class concept that unifies classes, 

generics, and general subtyping into a single language construct. This facilitates reuse 
of components and evolution of models. 

 
 Has a strong software component model, with constructs for creating and connecting 

components. Thus the language is ideally suited as an architectural description 
language for complex physical systems, and to some extend for software systems. 

 
Models and sub-models are declared as classes with connection interfaces called 

connectors. This connection capability allows the use of model libraries to compose complex 
models with the drag and drop and connection drawing facilities of modern graphical editors. 
 

The goal of the Modelica design effort is to design physical systems modeling language 
that makes life for the model builders considerably easier and more productive. 
 

Following are described the general features of Modelica. 
 

 Hierarchical modeling 
 

Modelica supports both high levels modeling by composition and detailed library 
component modeling by equations. Models of standard components are typically available in 
model libraries. Using a graphical model editor, a model can be defined by drawing a 
composition diagram by positioning icons that represent the models of the components, drawing 
connections and giving parameter values in dialogue boxes. Constructs for including graphical 
annotations in Modelica make icons and composition diagrams portable between different tools 
[2]. 
 

 
 
 
 
 
 



   
  Chapter 2. Dymola and Modelica 

 6  

 
 
An example of the textual representation of a simple motor drive system is: 

 
model MotorDrive 

  PID  controller: 
  Motor  motor; 
  Gearbox gear (n=100); 
  Inertia  inertia (J=10); 

equation 
  connect(controller.outPort, motor.inPort); 

 connect(controller.inPort2, motor.outPort); 
  connect(gear.flange_a     , motor.flange_b); 

 connect(gear.flange_b      , inertia.flange_a); 
end MotorDrive; 

 
 

The composition diagram of the model class Motor is shown below: 
 

 
Figure 2.1: Motor drive with Modelica libraries 
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Structure model libraries 
 

A powerful package concept is available to structure large model libraries and to find a 
component in a file system giving its hierarchical Modelica class name. 
 
 

Hybrid modeling 
 

A unique feature of Modelica is the handling of discontinuous and variable structure 
components such as relays, switches, bearing friction, clutches, brakes, impact, sampled data 
systems, automatic gearboxes etc. Modelica has introduced special language constructs allowing 
a simulator to introduce efficient handling of events needed in such cases. 
 
 
 Array 
 

Modelica supports arrays, utilizing a Matlab like syntax. The elements of arrays may be 
of the basic data types (Real, Integer, Boolean, String) or component models. This allows 
convenient discretization of simple partial differential equations. 
 
 
 Class parameters 
 

Besides ordinary numeric parameters, Modelica allows model class parameters. As an 
example assume that an auto-tuning controller should replace a PI controller. It is of course 
possible to just replace the controller in a graphical user environment, i.e., to create a new model. 
The problem with this solution is that two models must be maintained. Modelica has the 
capability to instead substitute a model component so only one version of the rest of the model is 
needed. 
 
 
 Equations 
 

Models in Modelica are mathematically described by differential, algebraic and discrete 
equations. No particular variable needs to be solved manually. A Modelica tool will have enough 
information to decide it automatically. Modelica is designed such that available, specialized 
algorithms can be utilized to enable efficient handling of large models having more than hundred 
thousand equations. Modelica is suited and used for hardware-in-the-loop simulations and for 
embedded control systems. 
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2.3  How to learn Dymola and Modelica 

 
The first task of this thesis was learning Dymola and the Modelica language. In my 

computer version (5.1) of Dymola was installed, available as free source code. Most of the 
existing tutorials are based on examples, besides I used several tutorials and books, some of them 
were: 

 
 The guide “Getting Started with Dymola” [1] included in Dymola user’s manual which 

provides some examples in order to guide you through Dymola. For detailed 
information about the program, you can consult the on-line documentation available in 
the Help menu, after selecting Documentation. 

 
 The book “Introduction to Physical Modeling with Modelica” [6], which introduces to 

the Modelica modeling language and shows the use the powerful features of the 
Modelica language. 

 
 A tutorial package called “Beginner tutorial” [7], which contains exercises. These 

exercises are good to learn to write simple models, the use the Modelica standard 
library etc… 

 
 Modelica tutorial document and Modelica specification document, both define the 

Modelica language [8]. 
 

 Advanced Tutorial is a continuation of Beginner tutorial [9]. 
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Chapter 3 

Ball and Beam 
  

This chapter gives an introduction to the process of the ball rolling on the beam.  
 

 
3.1 Process Description 
 

The ball and beam system is one of the most enduringly popular and important laboratory 
models for teaching control systems engineering. The ball and beam is widely used because it is 
very simple to understand as a system, and yet the control techniques that can be studied it cover 
many important classical and modern design methods. It has a very important property; it is open 
loop unstable. 
 
         

 
Figure 3.1: Diagram of Ball and Beam  



   
  Chapter 3. Ball and Beam  

 10  

 
The system is very simple, a steel ball rolling on the top of a long beam. The beam is 

mounted on the output shaft of an electrical motor and so the beam can be tilted about its center 
axis by applying an electrical control signal to the motor amplifier.  

 
The control job is to automatically regulate the position of the ball on the beam by 

changing the angle of the beam. This is a difficult control task because the ball does not stay in 
one place on the beam but moves with acceleration that is approximately proportional to the tilt 
of the beam. In control terminology the system is open loop unstable because the system output 
(the ball position) increases without limit for a fixed input (beam angle). Feedback control must 
be used to stabilize the system and to keep the ball in a desired position on the beam. 

 
Two different implementations of the Ball and Beam process have been considered, both 

available at the course lab of the Department of Automatic Control, see figure 3.2 and 3.3. 
 
 

 
The beam is connected to a velocity controlled DC-motor via a gearbox. This makes it 

much easier to control the process and there is very little influence of the cross-couplings from 
the ball to the beam. 

 
 
 
 
 
 
 
 

Figure 3.2: Ball and Beam connected via gearbox 
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Direct driven beam: The beam is directly connected to the axis of a DC-motor. 

 
 
 
The beam angle is measured but not the angular velocity. The ball position needs also to be 

measured and in the standard configuration of the process at the Department of Automatic 
Control the metal ball closes an electrical circuit along the rail of the beam. 

 
In our experimental setup, see chapter 7, we have used a vision system for determining the 

ball position. The speed of the ball needs to be estimated. 
 

Figure 3.3: Ball and Beam directly connected to the axis of a DC-motor 



   
   

 12  

 
 
 
 
 
 
 
 
 
 
 
Chapter 4 

Mathematical modeling 
 
This chapter describes how to obtain the equations of motion for the Ball and Beam 

process. 
 
 

4.1 Ball and Beam Model 
 

The equations for obtaining the model in Modelica have been realized by means of two 
different methods. One of them is derived with simple mathematic equations using Newton’s 
second law and another through the use of the Lagrangian Method. 
 
 
4.1.1 Newton’s second law 
 

In this model we first consider only the relation between the beam angle and the position of 
the ball. 

 
 
         α      x 
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The parameters of the ball and beam are defined as follows: 

α  Beam angle coordinate 
L  Beam Length 
m  Mass of the ball 
R  Radius of the ball 
J  Ball’s moment of inertia 
G  Gravitational acceleration 
x  Position of the ball 

 
 

Neglecting frictional forces, the two forces influencing the motion of the ball are: 
 

- Ftx Force due to translational motion 
- Frx Force due to ball rotation 

 
Translational: 

 
Torque due to the ball rotation is: 

 

xmFtx &&⋅=
2

2

dt
xdx =&&

x
R
J

dt
R
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J
dt
R
vd

J
dt

dwJRFT

b

b
rxr &&⋅=

⎟
⎠
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⎜
⎝
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The moment inertia of the ball is (sphere): 

 

 
Substituting the equation (4.3) into the equation (4.2), we get: 

 

 
Newton’s second law along the inclination: 

 
 

Substituting in the equation (4.4): 

 
In conclusion, we have: 

 
 

In this derivation we have taken into consideration how the ball position affects the angle 
α. 
 
 
 
 
4.1.2 Lagrangian methods 
 

The control objective is to control the torque τ applied at the pivot of the beam, such that 
the ball can roll on the beam and track a desired trajectory. The torque causes thus a change of 
the beam angle and a movement in the position of the ball. 
 
                                         τ                                  θb 

                     
             rb 
          

2

5
2 RmJ ⋅⋅=

xmFrx &&⋅⋅=
5
2

αsin⋅⋅=+ gmFF txrx
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5
2

⋅⋅=⋅+⋅⋅ gmxmxm &&&&

αsin
7
5

⋅⋅= gx&&

( )3.4

( )4.4
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The parameters of the ball and beam are defined as follows: 

 
 
Ib  Beam’s moment of inertia  
θb  Beam angle 
ms  Mass of the ball 
Is  Ball’s moment of inertia 
rs  Radius of the sphere 
rb  Position of the ball 

 
 
The kinetic energy of the system is: 
 

 
Each energy is: 

 
 

 The rotational kinetic energy of the beam is: 

 
 

 The ball has kinetic energy with respect to the frame in both radial and circular motion: 

 
 The rotational kinetic energy of the sphere about its body center, 

 
 The rotational inertia of the rolling sphere is 

 

spherebeam TTT +=

centerbodybeambeamframebeambeam TTT __)()( +=

0)( =framebeamT

2
, 2

1
bbcenterbeam IT θ&⋅⋅=

( ) 222
, 2

1
2
1
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5
2 2
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and applying a rolling without slipping: 

 
Substituting the equations (4.6) and (4.7) into the equation (4.5), we get: 
 
 

 
 

The kinetic energy of the system is: 

 

 
 
Simplifying the equation (4.8), we have:  
 

 
 
The rolling ball alone exhibits the potential energy of the system: 
 

 
 
To sum up: 
 

 KINETIC ENERGY 
 

 
 

 POTENTIAL ENERGY 
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To write the equations of motion, we define the Lagrangian L, to be the difference between 

the kinetic and potential energy of the system. 
 

 

where q denote the so-called generalized coordinates of the system, T is the kinetic energy 
of the system and V is the potential energy of the system. 
 
Substituting the equations (4.9) and (4.10) into the equation (4.11), we get: 

 
 
Lagrange’s equations of motion are formed from: 

 
  
where Fqi is the external force, in this case Fqi is τ. 
 
      qi  in this case are θb and br&  

 
 
If we derive both expressions with respect to time t, we get: 
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The others equations, which we need are: 

 
  
EQUATIONS OF MOTION: 
 

 

 
where τ is the torque applied to the beam. 
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Chapter 5 
 
Modeling in Modelica 
 

In this chapter the two models are written in the Modelica language through equations and 
another model is created with the Modelica’s libraries. We also present simulation results using 
Dymola for the different models. 
 
 
5.1 Models with the Modelica language  

 
Modelica is unlike most general-purpose languages not primarily based on algorithms, but 

uses equations instead, that is one does not need to reformulate the differential equation into the 
standard form (explicit) 

 
but can have general equations where the time derivatives appear implicitly. For every model the 
programmer can define a number of equations describing the properties of the model. The 
equations define the relation between the different quantities in the simulation. 

 
The main reason why Modelica uses equation is that every simulation problem in fact is a 

mathematical problem. It also give the language a high abstraction level, because an equation is 
often more intuitive than an algorithm.  

 
Dymola provides a complete simulation environment. Dymola transforms a declarative, 

equation based, model description into efficient code. After a model has been translated into 
simulation code, the simulation run is set up. Parameters and initial conditions are be defined, as 
well as the duration of the simulation. 

),,( tuxf
dt
dx

=
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Dymola is used to visualize dynamic behavior. Plots of the time-response of variables are 

often hard to interpret and a more realistic graphical view is needed. Dymola supports a 3-
dimensional animated model view in addition to dynamic modeling with a library of graphical 
objects. When a model is described in Dymola with equations and submodels, it is also possible 
to define its visual appearance. This is done including predefined graphical objects of various 
shapes. 

 
The two obtained models in the previous chapter can be written in Modelica through their 

equations of motion. These two programs are shown below with the respective simulations done 
with Dymola. 
 
 
 
 
5.1.1 Modelica model: Newton’s second law 
  

model ball_beam_1 
import Modelica.SIunits; 
 
// Constants 
constant Real g=Modelica.Constants.g_n "Gravitational Acceleration"; 
 
// Parameters 
parameter Real k=1.0 "Motor constant"; 
 
// Variables 
Real alpha "Beam angle"; 
Real v "Velocity of the ball"; 
Real a "Acceleration of the ball"; 
Real x "Position of the ball"; 
Real u "Control signal"; 
equation 
 
v = der(x); 
a = der(v); 
 
// Mathematical modeling 
a = (5/7)*g*Modelica.Math.sin(alpha); 
der(alpha) = k*u; 
 
// Control signal 
u = 0; 
 
end ball_beam_1; 
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Figure 5.1: Dymola simulation: Response of beam angle, position of the ball and velocity open-

loop response for model base on Newton’s second law  

 
This model fits well the beam, which is driven via a gearbox, that is the ball position, and 

the torque the ball causes, does not affect the angle of the beam. 
 
 
 
5.1.2 Modelica model: Lagrangian method 

 
model ball_beam_2  
import Modelica.SIunits; 
   
  // Parameters 
  parameter SIunits.Mass m=0.1 "Mass of ball"; 
  parameter SIunits.Length L=1.0 "Beam length"; 
  parameter SIunits.Radius r=0.015 "Radius of the ball"; 
  parameter SIunits.MomentOfInertia J=(2/5)*m*r^2 "Sphere's moment of Inertia"; 
  parameter SIunits.MomentOfInertia I=1e7 "Beam Inertia, value"; 
   
  // Constants 
  constant Real g=Modelica.Constants.g_n "Gravitational Acceleration"; 
   
   
// Variables 
  Real theta "Beam Angle"; 
  Real w "Angular Velocity"; 
  Real alpha "Angular Acceleration"; 
  Real x(start=0.0) "Position the ball in the beam"; 
  Real v "Velocity of the ball"; 
  Real a "Acceleration of the ball"; 
  Real tau(start=0.0) "Torque"; 
equation  
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  v = der(x); 
  a = der(v); 
  w = der(theta); 
  alpha = der(w); 
   
  // Lagrangian method   
  (I + m*x^2)*alpha + 2*m*x*v*w + m*g*x*Modelica.Math.cos(theta) = tau; 
  a + (5/7)*(g*Modelica.Math.sin(theta) - x*w^2) = 0; 
   
  // Control law 
  tau = 0; 
   
end ball_beam_2; 

 
 

 

Figure 5.2: Dymola simulation: Response of beam angle, position of the ball and velocity Open-
loop response for the Lagrangian model 

 
This model is appropriate for a beam, which is direct-driven from the motor (no gearbox) 

and easy to move by hand. Therefore the ball position and the corresponding torque due to 
gravity will affect the beam angle much more. 

 
 

 Both models can be exported to Simulink for either simulation or control design, which is  
later to be used for the control of the beam and ball process through feedback from a vision 
system. With this program, running on another computer, we can determine the ball position, 
which are then sent to the controller via a network connection. 
 
 The export of a linearized model to Simulink can be realized from mode Simulation of 
Dymola. In order to do it, you can use the command Linearize, included in the Simulation Menu. 
This command calculates a linearized model at some determined initial values. The linearized 
model is stored in Matlab format and can be loaded into Matlab with the m-file tloadlin. 

 Another way to do the exportation from Dymola to Simulink can be found in the 
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Master Thesis Project by Xavier Callier [9] or Francesco Calugi [10].   
 

5.2 Model with Modelica’s libraries 
 
This section explains another alternative to model rolling on a surface. 
 
The free MultiBody library contains 3-dimensional mechanical components to model rigid 

multi-body systems, such as robots, satellites or vehicles. 
 
The library provides basic model classes for rigid bodies, joints, forces, measurement and 

animation elements. Revolute, prismatic and other ideal joints connect bodies. Kinematic loops 
can be handled by using cut-joints to break the loops.  

For a user it is easy to introduce new components or copy and modify existing ones. 
 
A unique feature of the library is the property that joints can have a variable structure. That 

is, every degree of freedom of a joint can be locked and unlocked during movement without 
degenerating efficiency. 
 

This library offers an alternative to the ModelicaAdditions.MultiBody library. 
 

The obtained model with Modelica libraries is shown below: 
 
model TestSphere  

   
   parameter SI.Acceleration g=9.81; 
   inner parameter SI.Acceleration[3] Gravity={0,-g,0}; 
 
   // Ellipsoid semi-diameters 
   inner parameter SI.Length a1=1; 
   inner parameter SI.Length b1=1; 
   inner parameter SI.Length c1=1; 
   inner parameter SI.Angle delta=Modelica.Constants.pi/10; 
 
   Base Base1 annotation (extent=[-60, 0; -40, 20]); 
   RollingBody RollingBody1( 
     q(start={1,0,0,0}),  
     r(start={0,1,0}),  
     I=[1, 0, 0; 0, 1, 0; 0, 0, 1],  
     v(start={0.05,0,0}),  
     omega(start={-1,-1,-0.05})) annotation (extent=[20, 0; 40, 20]); 
   Ellipsoid_on_Plane Ellipsoid_on_Plane1 annotation (extent=[-20, 0; 0, 20]); 
 

equation  
 

   connect(Base1.InPortRoll, Ellipsoid_on_Plane1.OutPortA) 
     annotation (points=[-50, 19; -50, 30; -13, 30; -13, 19]); 
   connect(Base1.OutPort, Ellipsoid_on_Plane1.InPortA) 
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   annotation (points=[-50, 1; -50, -10; -13, -10; -13, 1]); 
   

connect(Ellipsoid_on_Plane1.InPortB, RollingBody1.OutPort) 
     annotation (points=[-7, 1; -7, -10; 30, -10; 30, 1]); 
   connect(Ellipsoid_on_Plane1.OutPortB, RollingBody1.InPortRoll) 
     annotation (points=[-7, 19; -7, 30; 30, 30; 30, 19]); 
 

end TestSphere; 
 
 
For more details please refer to the web page:  
http://www.modelica.org/Conference2003/papers.shtml [12] 
 

 
The architecture of information interactions is shown below: 
 
 

 
One should consider all connectors used above as bidirected ones. Arrows in Figure 5.3 are 

used to show the semantics of interactions. It’s clear that the whole construction considered 
above is a virtual one. Constructing the model the compiler extracts all equations from the 
objects and assembles them composing the DAE system optimized for a numeric integrator. 

 
 
 

Figure 5.3: Architecture of obtained model with Modelica libraries 
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A basic feature is that all components have animation information with appropriate default 

sizes and colors. A typical screenshot of the animation of beam and ball is shown in the Figure 
5.4 below.  

 
 
 
 
 

Figure 5.4: Animation of obtained model with Modelica libraries 
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Chapter 6 
 
Control Design and Simulations 
 

This chapter details the control design of the two obtained models with the Modelica 
language. With the Newton’s second law model, we do the study through an observer design and 
with the Lagrangian model we work with a linearized model and an observer to do the study. In 
this chapter are also shown the obtained simulations in Simulink. 

 
 

6.1 Control design  
 
6.1.1 Control design through observer 
 

All states are not available for feedback in many cases and one needs to estimate 
unavailable state variables. Estimation of unmeasurable state variables is commonly called 
observation. A device (or a computer program) that estimates or observes the state is called a 
state-observer or simply an observer. If the state-observer observes all state variables of the 
system regardless of whether some state variables are available for direct measurement, it is 
called a full-order state observer. 
An observer that estimates less than the dimension of the state-vector is called a reduced-order 
state-observer or simply a reduced-order observer.  
 
 The reason for introducing the observer is that pole placement with full state feedback, is 
not very practical. First, for an n-dimensional system, it requires n measurements, which, in turn, 
means n transducers. Such a controller would be both expensive and bulky. Further, to be 
implementable all the states would have to be measurable. Even if such a state model 
formulation could be obtained, it might not be a preferred formulation. 
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Basically, there are two forms of the implementation of an estimator as open loop and 

closed-loop. The difference between these two is a correction term, involving the estimation 
error, used to adjust the response of the estimator. A closed-loop estimator is referred to as an 
observer. 

 
Because of our Ball and Beam model is open loop unstable, is necessary to have some kind 

of measurement of the ball velocity. The classical proportional PD-controller gets a velocity 
measure by differentiating the ball position. The classical phase lead compensator does 
something very similar. Another way of doing this is to use an observer based upon a model of 
the ball and beam to estimate the systems states, and use the state estimates (of ball position and 
velocity) in a state feedback controller.  

 
We design a full-order state observer to estimate those states that are not measurable. We 

want to do our observer as fast as it is possible, without amplifying too much high frequency 
disturbances. Therefore we place the poles of the observer in the range of two to five times larger 
in magnitude than the controller poles. 

With our controller we want to get that the system is stable. Below a schematic of our 
plant-observer and controller system is shown. 
 
 

 
Figure 6.1: Simulink: Newton's second law model; plant-observer and controller 
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6.1.2 Control Design: nonlinear system 
 
Considering the obtained equations of motion in section 4.1.2, we do a study of control 

design through a linearized state model of the system around a equilibrium position. We also 
obtain a stabilizing controller for the linear model, when the angular position is measured. 

 
The equations of motion were: 
 

 

 
The nonlinear states are: θb, bθ& , r and r&   

   
and the state equations become: 
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and the control input,  

 
 

By substituting values in f2, we obtain: 

 
working with these new values in the state equations and considering the equilibrium, 
x1=x2=x3=x4=u=0, we thus have the linearized state model: 

 
where x is a vector representing the state, u is a scalar representing the input and y is a 
scalar representing the output. The matrices A, B and C determine the relationships 
between the state and input and output variables.  
In our system the matrices A, B and C have the following representation: 
 
 

 
 
The next step is to check the controllability and the observability of the system. For the 
system to be completely state controllable, the controllability matrix  

 
 
must have the rank of 4. The rank of the matrix is the number of independent rows (or 
columns). In the same way, for the system to be completely state observable, the 
observability matrix  
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must also have rank of 4. 
 
To obtain a stabilizing controller for the linearized model, we need to have a stable 
characteristic polynomial for the closed loop system (roots strictly in the left half-plane). In 
this example we determine a state-feedback gain (k) such that the closed-loop poles are at 
s=-1 (order 4). The characteristic polynomial is: 
 
           αc(s)=(s+1)4=s4+4s3+6s2+4s+1 
 
           αc(A)=A4+4A3+6A2+4A+I 
 
     
Thus, by Ackermann´s formula, 

 
 where, Qc is the controllability matrix previously defined.                 
 
 
We place the poles of the observer in s=-5, that is five time bigger than our controller 
poles, with it we get that our system is faster. Thus, we have: 
 

αo(s)=(s+5)4=s4+20s3+150s2+500s+625 
 
           αo(A)=A4+20A3+150A2+5004A+625I 
 

 
Thus, by Ackermann´s formula, 
 

 
where, Qo  is the observability matrix defined before. 
 
 
Thus, we have the observer feedback controller, 
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The following Simulink model can be used to simulate the system. 

 
 

 
 
 
6.2 Simulations 
 
6.2.1 Simulations in Simulink 
 

Simulink is an interactive environment integrated in Matlab for modeling, simulation and 
analyzing dynamic systems. Simulink provides a graphical user interface for constructing block 
diagram models via drag and drop operations. Models can be grouped into hierarchies to create a 
simplified view of components or subsystems. Therefore a model built up in Simulink consists of 
blocks that correspond to subsystems of the model. In each block there are mathematical 
relationships that describe the physical behavior of the system. If the subsystems affect each 
other, information between the blocks has to be exchanged in order to evaluate the relationships. 
 

The benefit with Simulink is the easy to use design and since the software is integrated 
with Matlab it makes it very powerful with a lot of useful analysis and design applications. 

Figure 6.2: Controller of linearized Lagrangian model in Simulink 
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Another benefit is the easy way to create plots of signals. Further, the ability to easily and 
quickly simulate a model built in Simulink is another benefit with this modeling program. 

 
However it lacks the benefits of Modelica to define implicit equations and relationships.   

 
 Control design through observer 

 
 
In Figure 6.3 we can see the behavior with the calculated controller and observer. The 

closed loop system behaves well. 
We can observer how the position and the position estimate of the ball are almost the same. 

Both responses are stabilized at 1 like the reference, and besides we can see that the beam angle 
and the velocity estimate are stabilized in few seconds. 

Figure 6.3: Simulations obtained with the Newton’s second law model and observer 



   
    

 33

 
 
 
 
 
 
 
 
 
 
 
Chapter 7 
 
Experiments 
 

This chapter describes the experimental setup for the Ball and Beam experiments. Initial 
experiments are performed to identify process parameters and finally the control experiments are 
performed. An alternative implementation to the one described in Chapter 6 is presented. 

 
 

7.1 Experimental Setup 
 
We use the ball and beam process shown in Figure 7.2. The beam is controlled by a DC-

motor and the beam angle can be measured. The ball position is estimated from a vision system 
written by Tomas Olsson, PhD student at the Department of Automatic Control and uses a Fire-i 
camera connected to a PC running a “ball detection” program. The ball coordinates are sent via a 
network connection to a Linux PC running the control implementation in a real-time extension of 
Matlab/Simulink developed by A.Blomdell. A sketch of the connections can be visualized in 
Figure 7.1. 
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7.2 How to do the experiments 

 
The first task in this work consists of determining which is the correct model of the real 

process of the ball and beam, including finding appropriate parameters. To find this correct 
model, we do some experiments with the real process. The “ball and beam”-process is shown 
below and the controller is implemented in Matlab/Simulink with a real-time extension, where a 
Simulink block represents the connection to analog inputs and analog outputs, see Figs. 7.2 and 
7.3. 

Figure 7.2: Ball and Beam used 

 

Fire-i
matcomm

Vision @Windows PC

Simulink ctrl@Linux PC

Figure 7.1: Sketch of the connections between used ball and beam, vision system and PC’s
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Beam-angle dynamics 
 
The beam is directly connected to a DC-motor without any gearbox according to Fig. 7.4. 

Here we can note that there is a distance, d, between the motor axis and the beam. This will make 
the beam oscillate like a pendulum if no control signal, u, to the motor, is applied, and thus we 
can expect an oscillatory behavior. We will first do a simple experiment to find out the 
eigenfrequency and possible damping of this motion. The next step is to find the gain from 
commanded control signal in the Simulink model to the motor torque and to the process output 
(beam angle).  

 

 
We first start with applying an impulse disturbance to the uncontrolled beam for an initial 

angle=0. The input signal proportional to the beam angle is shown in Fig.7.5. 
 
 

Figure 7.3: Controller of the Ball and Beam process 

Figure 7.4: Ball and beam with distance d 

Figure 7.5: Response of the beam with applied impulse 
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The period time of the oscillation is approximately 3 seconds, therefore the frequency 

w≈2rad/s. Now that we have our frequency, we can find which are our damping and our 
overshoot. 

With these values and using tools of Matlab we can observer the impulse response of the 
system being this shown in the Fig 7.6: 

 

 
We can observer from the response, that there is an additional damping and an oscillatory 

behavior, in comparison what we have discussed previously.  
From Figure 7.6, we can estimate the impulse response correspond to a system, which 

transfer function has a gain ≈22. This gain has been calculated through of the Figure 7.5.  
 

 

 
Through this transfer function, we can represent the system in state-space form, doing it 

the following way: 
 

 
   u      y     

 
 

 
 

uyysys ⋅=⋅+⋅⋅+⋅ 2246.02

Figure 7.6: Impulse Response of the Ball and Beam process 
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we have x1=y, then the state equations are: 

 
substituting: 

 

 
The state-space representation is shown below: 

 

 
 
 
To do the study of the system we write an m-file in Matlab. In this m-file we include the 

matrices of state-space system and the obtained values of desired frequency and damping. With 
these values we can calculate the desired roots of our system. 

 
Now we have our poles, we can use Matlab to find a controller (k matrix) by using the 

place command, see Chapter 6. 
 
To implement our controller we have to find an observer, which can do an estimation of 

the unmeasurable state variables. Normally the poles of the observer are faster than those of the 
controller. We place the poles two times faster than our controller. The observer is basically a 
copy of the plant; it has the same input and almost the same differential equation. An extra term 
compares the actual measured output y to the estimated output ŷ ; this will cause the estimated 
states x̂  to approach the values of the actual states x. The error dynamics of the observer are 
given by the poles of (A-L*C). In the same way as before with the command place we find the 
observer (L matrix). 

 
The next step is to do the Simulink model with the plant of the real process and the 

obtained observer and controller. This Simulink model is shown in the Fig 7.7. 
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Figure 7.7: Simulink model of observer based control of beam angle 

 
 
We can now simulate the closed-loop response and we can check if the found model is 

correct. Changing the values the w we can observer if the system is faster or slower and we can 
see if its behavior is right. We can also change the values of the inputs the check if the response 
of the real process is correct in every moment.  

 
A design problem does not necessarily have a unique answer. Using this method (or any 

other) may result in many different compensators. 
 
For the implementation to control the real process we use a discrete-time feedback from an 

observer based on a sampled version of the system 7.1. 
 
We have used the Matlab command c2d to convert between continuous and discrete time. 

The sampling time for the Simulink controller was set to 10ms. The poles of the discrete-time 
design (used in place) was transformed from continuous-time specifications according to 
disc_pole=exp(cont_pole.* tsamp). 
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Ball controller 
 
For the real-time implementation of the ball controller we have chosen to do a cascade-

design, re-using the beam-controller from the previous subsection for the inner loop, instead of 
the controlled presented in Chapter 6. 

 
The coordinates of the ball from the vision systems are updated with 30Hz. However the 

camera pictures may be delayed ≥ 30ms in the controller and the camera is not synchronized 
with the rest of the controller. To handle this uncertainty we have chosen to run a faster inner 
loop and an outer-loop with a slower sampling rate. 

  
 
From  Chapter 4, we have an approximate model of a double integrator from beam angle to 

ball position, and we start to do a simple experiment to find out the gain with respect to the 
position provided by the vision system. We can visualize it in the figure 7.8. 

 

 
 
 
A video sequence of the experiment can be found at [13]. 
 
 
 
 
 

Figure 7.8: Graphic to find out the gain with respect to the position provided by the vision system 
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Figure 7.9: Simulink model to do the beam control  
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Figure 7.10: Simulink model to do the ball position controls trough the vision system 
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Chapter 8 
 
Conclusions 
 

In this chapter the conclusions of this work are presented followed by suggestions on how 
to continue the development. 

 
 

8.1 Conclusions 
 
The main goal of this thesis was to do the modeling and control of the Ball and Beam 

process. This objective has been fulfilled by the presentation of several kinds of control, which 
have been done through Modelica and Matlab and finally by experiment on the real process. 

 
Over this thesis we can visualize how control theory relates to real systems. Computer 

simulations can help, but simulations alone are limited by how well the system in question has 
been modeled. It is more enlightening if the results obtained theoretically are actually applied to 
a physical system. Applying the theoretically calculated results to a real system helps us not only 
visualize, but to evaluate how well the model was able to predict the system performance. 

 
The best way to learn about control systems is to design a controller, apply it to the system 

and then watch the system in operation. A system is modeled on a computer, and, with the help 
graphics, the system can be seen in action. However, the system being observed in the simulation 
is in reality just a model of the true system. The model must always be a simplified 
representation of the system, and cannot reproduce all aspects of system behavior. Such effects 
are difficult to simulate, and are best understood from hands-on experience with the physical 
system.
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