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Abstract

Rendering volumetric clouds is a compute-intensive process which makes it
difficult to use in real-time applications. At the same time, the need for vol-
umetric clouds is evident as game developers look for new places to increase
the realism of their games. Skyboxes and flat textures work well in 3D scenes
where the camera is expected to be far away from the clouds and not move
over large distances. But in open world games where the position of the cam-
era cannot be assumed, skyboxes give a static impression and flat texture can
give artefacts.

This thesis explores different techniques to save computational time when
implementing volumetric clouds for real-time rendering. We start from a re-
alistic implementation and from there propose different approximations and
methods to see which performance gains can be accomplished, and at what
costs.

Our implementation presents a way of forming cloud textures that uses
a mixture of precalculation and real-time calculations, and allows for easy
configurations and flexibility in creating different cloudscapes. For the cloud
rendering, we present a way to preprocess the cloud texture and create a low
resolution structure which saves a lot of rendering time.

Keywords: Clouds, Real-time rendering, Volumetric ray marching, Cellular noise,
Deferred shading
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Chapter 1
Introduction

Game developers are always pushing their games to be the most realistic in some aspect.
Realistic and impressive graphics has always been such an aspect. But they can only
push the graphics so far before computational power becomes an issue. This master thesis
will investigate this balance between visual and computation performance and specifically
it will investigate different approaches to generating volumetric clouds and cloudscapes.
Skyboxes, using cube mapping, has been common practise in the industry for a long time
for rendering clouds in the 3D world. This means that images of sky, clouds, and even
distant scenery is placed at a locked distance around the viewer, giving the impression of
an environment infinitely far away. The illusion of a sky surrounding the observer is held
for scenes were the observer is placed close to ground level and is not expected to travel
too far, such as first-person shooters and racing games. But in the increasingly popular
open-world games and in flight simulators, a skybox would give a static feel and sense
of travel would be lost. There is also no possibility to render the scene close to or inside
of the clouds when using a skybox, which might be desirable. To remedy this, physical
clouds must be placed in the 3D scene. This can be done using 2D texture but the results
will likely look flat and not very realistic; volumetric clouds are needed for good results.

The goal of this master thesis is to produce volumetric clouds and explore different
techniques and approaches to, under given circumstances, render them in real-time. Real-
time means that we are aiming for a frame time of about 33 ms—effectively giving us a
render frequency of 30 frames per second (FPS)1. We will start by implementing a model
that mirrors what happens in real clouds and from there make trade-offs and algorithmic
choices to achieve the wanted frame time. The frame time goal is of course arbitrary and
the algorithms would need to be re-tuned for a real-world application. Even though the
outcome would differ, the algorithms discussed in this thesis could still be used.

In Figures 1.1 and 1.2, photographs of clouds are presented to show the kind of effects
we are hoping to accomplish. Figure 1.1 shows the kind of cloud form we are after as well

1Akenine-Möller et al. [1] defines real-time as being at least 15 FPS, but to make sure that the image is
not perceived as too choppy we aim for 30 FPS and game developers often aim for 30–60 FPS.
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1. Introduction

as the lighting effect where the light gets attenuated as it passes through the clouds. The
other figure, Figure 1.2, shows how the sun light scatters through the clouds, which results
in bright edges and dark cores of the clouds, with the exception of the clouds covering the
sun which are brightly lit.

Figure 1.1: A photograph showing clouds with rounded tops and
flat bottoms. We can see how the light attenuates as it travels
through the clouds.

Figure 1.2: A photograph showing how the light in the direction
of the sun (behind the cloud in the centre of the photograph) has a
higher amount of forward scattering.

The rest of this chapter will explain the underlying theory such as the rendering pipeline
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1.1 Rendering Pipeline

and how it is accessed. At the end of this chapter some theory about clouds will be dis-
cussed as well as earlier works and contributions.

1.1 Rendering Pipeline
The rendering pipeline is the process in which we take the information described in our
application and get it presented on our display, in other words the process of presenting the
3D space on the 2D display. Typically the rendering pipeline is described as in Figure 1.3.
In the explanation throughout this chapter we will consider the modern type of rendering
pipeline with programmable stages.

Application Geometry Rasterisation Display

Figure 1.3: A very basic outline of the rendering pipeline. Appli-
cation is were the 3Dworld resides and the Display is what the end
user sees. All stages are explained in more detail below. Source:
[14].

1.1.1 Application Stage
In the application stage, the scene to be rendered is built. It can consist of models, cam-
eras, lights, etc. Typically these are described with a position in the world space and
some kind of orientation. Take a cube for example. We can describe it as eight points
(0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1) and (1, 1, 1), and then place
it at (2, 2, 1) in the world space (see Figure 1.4). It is these points, position and orientations
that are fed to the geometry stage.

This means that each object in the scene has its own coordinate system. Since the goal
is to render to a display, i.e. represent the scene in the display’s coordinate system (screen
space), some transformations need to be done. These transformations are calculated and
supplied by the application stage in the form of matrices that are passed on the geometry
stage along with the aforementioned points, position and orientations. These points are of-
ten referred to as primitives, as they describe primitive geometric shapes such as triangles,
quads or other polygons.

1.1.2 Geometry Stage
The geometry stage consists of several substages and are typically divided into the steps
presented in Figure 1.5 [1, 14]. This stage involves lots of transformation and will be
important later on in the construction of the ray marcher presented in Section 2.4.

Through the geometry stage, a model, defined as vertices (the corners of the primi-
tives), will go from being represented in its model space to end up in screen space coor-
dinates. The model, view, and projection transformation matrices are passed down from

9



1. Introduction
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Figure 1.4: The model is described with its local coordinate sys-
tem (model space) and is then placed in theworld space by defining
a position for the origin of the cube’s model space. Other trans-
formations such as rotation or scaling can also be stored for each
object. Note that the coordinate systems in computer graphics are
not always right-hand systems.

Geometry
Model
& View
Transfor-
mations

Vertex
Shading Projection Clipping Screen

Mapping

Figure 1.5: The substages of the geometry stage. The first
three substages are part of the vertex shader and is the first pro-
grammable stage in the rendering pipeline. Source: [14].

the application stage and are typically applied in the vertex shader, which is the first pro-
grammable stage in the rendering pipeline. The vertex shader is passed the vertex at-
tributes for each vertex; vertex attributes typically contain vertex position, vertex colour
and texture coordinates. This allows us to modify the end result on a vertex basis, like
calculating per-vertex lighting or applying a height map to a plane. This is known as the
vertex shading. Projection is the last part of the vertex shader and allows us to for example
choose perspective or orthographic projection. We will use perspective projection as this
how a camera would capture a scene; an orthographic projection (also known as parallel
projection) preserves parallel lines and can be used for artistic effects.

Clipping and screen mapping are the last two substages of the geometry stage. Since
everything in the scene is not visible at the same time, all primitives outside of the visi-
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1.1 Rendering Pipeline

ble scene are terminated from continuing through the pipeline and the primitives that are
partially visible are clipped, or cut-off, so that the non-visible parts are removed from the
pipeline. The screen mapping maps the visible scene to the coordinate system of the users
screen.

1.1.3 Rasterisation Stage
The rasterisation stage is the stage that actually decides what colour should be assigned
to a screen pixel. Just like the geometry stage, the rasterisation stage can be divided into
several substages as presented in Figure 1.6.

Rasterisation

Triangle
Setup

Triangle
Traversal

Pixel
Shading Merging

Figure 1.6: The substages of the rasterisation step. The pixel
shading step is a programmable stage in the rendering pipeline.
Source: [1].

In the triangle setup the vertex attributes of the primitives are handled and used in
computation to determine what the face of the primitive should look like. The triangle
traversal, sometimes called scan conversion, traverses the faces of the triangles to check
which screen pixels they cover.

The next programmable stage of the rendering pipeline is found here in the rasterisation
stage—the pixel shader2. The majority of the algorithms in this thesis will be performed
in the pixel shader, which allows us to create effects such as per-pixel lighting and texture
mapping.

The last step in the rasterisation is the merging. The colours calculated in the pixel
shader are here merged with colour buffers containing prior pixel information. The merg-
ing stage also handles the pixel visibility. This is typically done using Z-buffers [1].

1.1.4 Display Stage
The final stage of the rendering pipeline is the display stage. This is were the results are
presented on the screen. Or rather, the results are sent to a framebuffer that might be sent
to the screen. We will use framebuffers to “catch” the results so that we can add additional
effects before presenting them to the end user.

2Actually, there is the geometry shader and the tessellation shader in before, but they are optional and
will not be used in this thesis.
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1. Introduction

1.2 Graphics Processing Units
For the rendering pipeline to work efficiently, with all its stages and transformations, the
process is hardware accelerated using a graphics processing unit (GPU). GPUs can be
integrated in the motherboard or in the CPU, or come in the form of an external graphics
card. GPUs are specially built to perform graphics calculations by working in parallel,
utilising vectorisation and SIMD units [1, 2].

1.3 OpenGL
There are different APIs to interact with the GPU. Some of the more known are DirectX,
OpenGL and Vulkan. We will be using OpenGL (Open Graphics Library) to get access to
the GPU. OpenGL is developed by Khronos Group and uses a extension system that allows
for the latest features to be available immediately [1]. OpenGL also provides its own shader
language, the OpenGL Shading Language (GLSL). It is used to write the shader programs
which are the programmable stages in the rendering pipeline. GLSL is a C-like language
that gives access to functions explicitly made for handling graphics. The shader programs
are compiled on the GPU using the drivers provided by the chosen API.

1.4 Cloud Theory
Clouds are composed of small liquid droplets or crystals, mainly consisting of water, which
are formed when humid air rises and expands as it reaches lower atmospheric pressure.
This is because when the air expands, the temperature falls, and the water vapour in the
humid air condenses. The formation and structure of clouds are very dynamic and are
mainly the result of vertical motions. We will consider cumulus clouds, which get their
vertical motion from convection, for our implementation. These vertical motions can be
compared to a dense and coloured liquid being dropped into a water tank, creating a circu-
lating vortex [10]. The convection plays a big part in the features of the clouds. Another
aspect that contribute to the features of the clouds is the droplet size distribution. The
droplet size distribution affects the Mie scattering, which accurately describes how the
photons scatter in water droplets for different angle of approaches [3]. Figure 1.7 shows
the Mie scattering phase function as calculated by Philip Laven’s MiePlot software [9].
This software allows for a variety of different situations to be constructed by entering dif-
ferent values for air humidity and temperature, mean droplet size, droplet size distribution,
the wavelength of the light, etc. We will not consider different situations or wavelength
dependent scattering but rather compare this performance intensive scattering to another,
computationally cheaper, type of scattering. In this case an arbitrary wavelength in the
visible spectrum is chosen as well as normal temperature and pressure for the atmospheric
settings. As mentioned earlier the droplet size distribution affects the scattering and is
chosen as a modified Gamma distribution as discussed by Bouthors et al. [3] and Mason
[10]. The plot in Figure 1.7 shows that the majority of light is scattered forward, however
there are some other peaks as well resulting in some interesting phenomena. The peak
around 140° is the phenomenon known as a fog bow and the peak at 180° is known as a
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1.5 Related Work

glory. See Figure 1.8 for a photograph of these phenomena. The larger circle is the fog
bow and the smaller circle in the middle, surround the shadow of the photographer, is the
glory.
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Figure 1.7: A plot showing the intensity of the light as it scatters
in different directions.

Figure 1.8: A photograph showing the fog bow and the glory.
Source: [7]

1.5 Related Work
Bouthors et al. [3, 4] discuss the usage of Mie theory for calculating the light scattering
in clouds. They also resort to Philip Laven’s MiePlot software to attain realistic light
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1. Introduction

scattering functionality, but have a different approach for the higher orders of the light
scattering and use collector slabs on the surface of the clouds to calculate the incident
light.

Harris and Lastra [6] use a implementation similar to our but handle their multiple
forward scattering using bi-directional scattering distribution functions (BSDF). For the
phase function, they use Rayleigh scattering and mention that this could be substituted for
a more physically based function.

Schneider and Vos [13] also present a implementation very similar to our but do not
discuss the usage of a more physically based phase function, like the Mie phase function.

1.6 Contributions
Our implementation compares the usage of a simpler phase function (Henyey-Greenstein)
to a more physically based one (Mie) and what this means practically, as the Mie phase
function is to complex to calculate in real-time. We also present a way to construct clouds
by carving cloud shapes out from blocks of noise textures.

14



Chapter 2
Implementation

In this chapter we will discuss the different techniques explored to find desirable perfor-
mance while not compromising the visual results too much. The first section presents the
outline of the cloud generation and rendering before going into implementation details.

2.1 The Cloud Rendering Algorithm
To render clouds realistically, we would need to trace each photon radiating from the sun,
follow their paths as they scatter through the clouds and register those few photons that
end up in the camera. This is of course computationally very intensive and we do not
want to trace all photons that never end up in the viewer’s perspective. This is why our
cloud rendering algorithm is built upon a ray marching technique, which means that we
reversely trace a ray from the camera into the scene instead. The rays that are cast from
the camera perform equidistant samples to determine whether a cloud is to be rendered
or not. The clouds are procedurally generated and stored in 3D textures that are placed
in the scene. A second ray marching is performed at each sample point inside a cloud.
This ray is cast toward the sun to perform lighting calculations. This means that we are
only considering the first order of scattering. In Section 2.5 an approximation for the
higher order of scattering is presented. Figure 2.1 shows a basic setup of the whole cloud
rendering algorithm.

2.2 Noise Functions
The typical way of rendering procedural clouds—or anything procedural for that matter—
is to use noise functions, whether it be 2D clouds or volumetric 3D clouds. A completely
white noise lacks structure and is not too pleasant to look at, as it does not resemble any-
thing, so in computer graphics there are different ways to modify the white noise and create
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2. Implementation

3D Texture

Figure 2.1: A ray is cast from the camera for every pixel on the
screen. The ray marches through the scene, sampling at pre-set
intervals. If the ray samples a point inside of a cloud, a second ray
is cast towards the sun to calculate how much light reaches that
point.

something with a bit more structure without introducing artefacts. This usually means that
we want to keep the gradient continuous for the produced texture, i.e. the texture should
be in C2. We also want to construct cloud covers larger than the texture, without having
visible edges, so the textures need to wrap continuously over the edges of the texture.

The noise generation algorithms presented below can be quite costly and the resulting
textures are therefore precalculated and stored on the hard drive.

2.2.1 Perlin Noise
In 1983 Ken Perlin developed a gradient noise, now commonly known as Perlin noise.
Perlin has since improved his algorithm [12, 11] into what sometimes is referred to as
improved Perlin noise. It is this improved version that we use.

Perlin noise is lattice based and is generated by assigning a random gradient vector to
each intersection of the lattice (see Figure 2.2). When the value of the noise is read at a
specific coordinate, the lattice cell wherein the coordinate lies is determined and the value
is calculated by interpolating the cell’s corner gradients using dot product and linear inter-
polation. Figure 2.3 shows what the resulting noise texture might look like. By assigning
the gradient vectors to the lattice in a repeating pattern, a wrapping texture can be attained.

16



2.2 Noise Functions

Figure 2.2: Perlin noise uses a lattice with randomly assigned
unit vectors that denote the gradients of the texture at the lattice
intersections.

Figure 2.3: This is what the Perlin noise looks like. The texture
seems random, yet it has some structure making it suitable as a
base texture whenmimicking natural phenomenons, like wood and
marble surfaces or clouds. We use 3D textures and this image
shows a cross-section of a Perlin noise 3D texture.

2.2.2 Cellular Noise
Cellular noise, also commonly calledWorley noise or Voronoi noise, is a point based noise
as opposed to the lattice based Perlin noise. It was first introduced by Steven Worley in
1996 [16]. The idea is to take random feature points in space and then for every point in
the space assign the value which corresponds to the range to the closest feature point. In
our 3D implementation of cellular noise, we divide the space into cells and assign one

17



2. Implementation

feature point per cell. This means that the closest feature point to a sample point must be
in either the same cell or one of the neighbouring cells as shown in Figure 2.4. Just as
with the gradient vectors in the Perlin noise, the feature points are generated in a repeating
pattern, with one iteration of the repetition exactly fitted into the texture to make sure that
the texture wraps continuously at the edges.

Figure 2.4: This is what the cellular noise setup looks like. The
black circles are the randomly chosen feature points. In this setup
exactly one feature point is present in each cell. When the noise
function is sampled (at the blue square), only the immediate neigh-
bouring cells need to be checked for the closest feature point. This
means that a 3× 3× 3 block of cells needs to be analysed for each
sample point when using a 3D texture.

To get a result that works well for cloud generation, we do not sample the shortest
distance to a feature point, but rather the theoretical maximum distance minus the shortest
sampled range. For cells consisting of unit cubes, the theoretical maximum distance (the
space diagonal) is

√
3. The values for the texture are hence calculated as (in this function

the value gets normalised as well to get a result in the range [0,1])

value = 1.0 −
shortest_distance

√
3

.

This gives a result with ball-like features around each feature point which better imitates
the look of a cloud. A cross-section of our 3D cellular noise is presented in Figure 2.5.

18



2.2 Noise Functions

Figure 2.5: This is what cellular noise looks like. We can see the
ball-like features.

2.2.3 Fractional Brownian Motion
The noise texture described above forms the foundation for our cloud textures. The next
step of our noise generation is called fractional Brownian motion [17], often abbreviated as
fBm, which when applied to noise textures renders results that look like smoke or clouds.
The fBm noise is constructed by layering a noise texture of different sampling frequencies
on top of itself. By changing the frequency in powers of 2 the wrapping effect can be
preserved. The number of layers is usually called octaves and Figure 2.6 shows the 5
octave fBm version of our textures.

(a) (b)

Figure 2.6: (a) This is Perlin noise with 5 octaves of fBm. Com-
pared to Figure 2.3, we can see that the underlying structure is
the same but the overall noise texture has much more finer details.
(b) This is the cellular noise with 5 octaves of fBm. This texture
has more distinct structure with deeper cracks and resembles the
texture of a cauliflower.
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2. Implementation

2.3 Cloud Forming
To get the actual cloud shapes from the noise textures, several step are conducted to achieve
the different features of clouds, with these features being the flatter bottoms of clouds and
the towering tops that are the results of the convection mentioned in Section 1.4.

2.3.1 Height Distribution
We have a height distribution function in our implementation which governs the shape of
the clouds to be denser toward the bottom of the 3D texture and gradually thinner towards
the top. The function looks like this:

HD(h) = (1 − e−50·h) · e−4·h,

where h is the height. This gives the clouds a high probability of existing near the bottom of
the texture, effectively giving the clouds a flat bottom, as well as retaining a slight chance
of towering clouds. The choice of using a function of the form f (x) = (1 − e−a·x) · e−b·x is
based on that it gives an easily accessible way of tuning the result, by just altering a and b.
a = 50 and b = 4 were found by trail and error and dictates the sharpness of the falloff in
the bottom and top respectively. Figure 2.7 shows the function applied to the noise based
3D texture.

Figure 2.7: The height distribution function is applied uniformly
for the whole 3D texture by simply multiplying, for each point of
the texture, the texture with the output of the function; the height
coordinate of the point in the texture is fed to the HD-function.
This does not disrupt the edges were the texture wrap.
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2.3 Cloud Forming

2.3.2 Gaussian Towers
Since the height distribution function is applied uniformly, no distinct cloud tower will
emerge. An additional height function in our implementation allows for creation of peaks
or towers in the 3D texture. We choose to implement the towers as multivariate normal
distribution peaks. This gives us an easy way of moving and modifying the shape of the
peaks. The only limitation with this approach is that the peaks may not be placed too close
to the edges so that they disturb the continuity of the texture wrapping.
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Figure 2.8: This is an example of what the Gaussian towers look
like. Note that the function is zero along the edges so that when
this function is added as an offset value to the 3D texture, the tex-
ture wrapping is kept intact.

2.3.3 Finalisation
The last step of the cloud forming was to use a threshold function—a simple cut-off value.
This cuts away the “thinner” parts of the 3D texture and showsmore distinct clouds. Figure
2.9 shows a cross-section of the final 3D texture.

The 3D texture used in our implementation has noise of different frequencies in the
four colour channels of the texture. This means that with a single texture read we can
retrieve the shape of the clouds from one channel, as well as other noise functions at higher
frequencies. This allows us to apply finer detail and easily tune the end result by mixing
in different amounts of each channel in the base cloud shape.
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2. Implementation

Figure 2.9: This is what the 3D texture looks like after a threshold
function is applied.

2.4 Volumetric Ray Marching
The details of the implementation discussed until now were computed offline (not in real-
time) and saved to textures. The ray marching is done in real-time on the GPU so the
implementation must take performance hits into consideration.

2.4.1 Deferred Shading and Ray Casting
To be able to perform the ray casting, deferred shading is used. Deferred shading means
that the scene is first rendered without the clouds and then, deferred to a later stage, the
clouds are rendered. The whole scene, excluding the clouds, goes through the rendering
pipeline and is rendered to a texture that is assigned the framebuffer. A second render pass
is then performed by rendering a primitive which covers the entire screen, i.e. a full-screen
quad. This allows us to access each pixel on the screen in the pixel shader. To cast the rays
into the scene, the screen coordinates need to be transformed into world space coordinates.
This involves reversing all the transformations discussed in Section 1.1. As the ray is cast
through the scene, it samples at equidistant point to determine whether a cloud is to be
rendered or not, as discussed in Section 2.1. The first time cloud is encountered by the
ray marcher, the 3D texture’s value at that sample point is stored as an alpha value 1.
Subsequent non-zero samples are added to this value. When the alpha reaches a value of
1, the alpha value is saturated and we know that none of the colours from the scene texture
will show through. The ray marching is then halted. An upper limit to the length of the
ray is set so that it eventually stops even if it never encounters any clouds. After the ray
marcher stops, the colour of the clouds (this is calculated as described in Section 2.5) is
blended with the pre-rendered scene texture using the sampled alpha value. See Listing

1An alpha value is used to describe the translucency of pixel.
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2.4 Volumetric Ray Marching

2.1 for a clearer overview of the ray marcher.

1 vec4 cast_ray ( vec3 origin , vec3 dir ) {
2
3 vec4 value = vec4 (0.0) ;
4
5 float delta = 1.0;
6 float start = gl_DepthRange . near ;
7 float end = 500.0;
8
9 for ( float t = start ; t < end ; t += delta ) {
10
11 /* Calculate new sample point */
12 sample_point = origin + dir * t;
13
14 /* Stop rays that already reached full opacity */
15 if ( value .a == 1.0) {
16 break ;
17 }
18
19 value .a += cloud_sampling ( sample_point , delta );
20 value .a = clamp ( value .a, 0.0 , 1.0) ;
21
22 /* Calculate cloud colours from shadows and scattering */
23 ...
24 value . rgb += ... * alpha ;
25 }
26 }
27 return value ;
28 }

Listing 2.1: This listing shows a heavily condensed version of
the ray marcher implemented in GLSL. cast_ray() casts
a ray from origin in the direction of dir. Here the step
length is called delta and is set to 1 unit. The upper limit
for the ray marcher is set to 500 units. On line 23 a second ray
marcher is placed to calculate the lighting effects.

2.4.2 Step Length
The ray marchers performance impact is highly dependent on the amount of samples (or
steps) it needs to take for each pixel. The amount of steps can be reduced by increasing the
distance between the steps. If the distance is increased too much, artefacts—in the form of
colour banding—will start to appear. There are ways to reduce the banding effect [5] but
a very simple approach is to add some small random length to the first step of the march.
This distorts the structure of the banding and it becomes less visible. In Figure 2.10 some
artificial banding effects have been constructed to show what the result of using a random
step length at the start of the ray marching looks like.

An adaptive step length is an approach tested in our implementation to try to reduce
the amount of steps taken in the ray marcher. This means that after some distance we allow
the steps to increase in length. This means that a lot of computational power can be saved
when rendering clouds far away. But for saving computational time for clouds close to the
viewer, a second approach to this is also implemented and discussed next.
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2. Implementation

(a) (b)

Figure 2.10: (a) The curved lines are a result from a too long
step length. Typically the banding would not be this severe; this is
an extreme example of banding. (b) After applying some random
step length to the first step, the banding issue is less obvious. This
method works best for banding with high frequency. If there had
just been a couple of bands across the circle, they would still be
visible after applying the noise, although their edges would be less
defined.

Preprocessed Cloud Structure
We want to exploit the fact that we already know exactly where the clouds are in the 3D
texture. At program start, before the rendering starts, we put a preprocessing step of the
cloud texture. In this step a low resolution structure is constructed such that it completely
encloses the clouds and is stored in another 3D texture. Figure 2.11 shows cross-sections
from these 3D textures.

The low resolution structure is used as a boundary to determine whether small or large
step lengths should be used. The ray marcher is altered to accommodate for the low reso-
lution structure:

• The ray marcher starts with a larger step length. The larger step length is set so that
it corresponds to less than a pixel length in the low resolution structure.

• When the ray marcher starts to sample non-zero bits from the low resolution struc-
ture, it takes one large step backward and changes to a small step length. The initial
step backward is necessary so that no “cloud bits” are missed.

• The ray marcher continues with the smaller step lengths and samples the cloud tex-
ture instead. Every time the small steps adds up to a large step length, the low
resolution structure is sampled to determine if it can change back to the large step
length or not.

Going back to Figure 2.11, we can see that the structure adds a broad margin to the
actual cloud. The preprocessing step is implemented to add double padding to the clouds
so that the ray marcher is not able to cut the corners of the structure, which would result in
ugly artefacts. This is because the structure is constructed so that the larger step length is
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2.5 Lighting Calculations

(a) (b)

Figure 2.11: (a) This is the 3D texture that is passed through the
preprocessing stage. (b) This is what the low resolution structure
looks like. In this figure it is stretched to the same size as the cloud
texture to demonstrate that it encapsulates all “cloud bits” in the
original texture.

just a bit shorter that the side of one structure cell. The ray marcher will detect the cloud
structure when approaching head-on but in the cases where the observer is not aligned
with the grid pattern of the cloud structure, the ray marcher may take a step past the corner
of the cell without detecting it. This is why double padding was used, and means that a
second layer of cloud structure encloses the actual clouds even if the outermost layer does
not contain any cloud to be rendered. It is only there to make sure that we are trying to
sample the high resolution cloud texture when we are in the proximity of it.

2.5 Lighting Calculations
There are two types of light effects considered in our implementation. The first one is the
attenuation of the light as it passes through the cloud. This effect can be calculated using
Beer-Lambert’s law

T(d) = e−m·d ,

where T is the transmitted light, m is a material dependent variable and d is the length the
light travels through the material [15].

The second effect considered is light scattering. When the light from the sun reaches
the water droplets in the clouds, it scatters according to Mie theory as discussed in Section
1.4. To calculate how all these light rays scatter indefinite times in the cloud in real-time
is not feasible, so the scattering is split up into two parts. (There are other ways to handle
the different orders of scattering [3, 4], but this is how we decided to do it in our imple-
mentation.) One part deals with proper angle-dependent scattering as shown in Figure
1.7. This is only done for a single light scatter. The the other part is an approximation of
multiple scattering within the cloud. The following function is our approximation of the
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2. Implementation

in-scattering in the clouds:
S(d) = 1 − e−c·d ,

where S is the intensity of the scattered light, c is a variable that determines how fast the
scattering effect builds up in the cloud, and d is the length the light travels through the
cloud. This function together with Beer-Lambert’s law constitutes our light function (see
Figure 2.12). This way of calculating the light was discussed by Andrew Schneider of
Guerrilla Games at SIGGRAPH 2015 [13].
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Figure 2.12: The plot shows Beer-Lambert’s law and our scat-
ter approximation function. Multiplied together they create our
light function. We can see how a light ray that passes through a
cloud first starts to scatter but as the cloud attenuates the light, the
brightness falls off.

The clouds are given a dark base colour at the start of the ray marching, to which a
brighter colour is added depending on how exposed to the sun they are. As mentioned ear-
lier, the lighting calculations are implemented using a ray marcher as well. Every time the
cloud ray marcher samples a point inside a cloud, the ray marcher for the light calculations
samples the cloud texture towards the sun to determine how deeply embedded in the cloud
the original sample point is. This depth is passed to the light function which calculates
how much bright colour should be added to the dark base colour.
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2.6 Phase Function

2.6 Phase Function
The Mie scattering phase function in Figure 1.7 can be used for the single light scatter by
saving the values from Philip Laven’s MiePlot software to a texture. This texture can then
be used as a look-up table for different angles, which are the angles between the sample
point and the sun as seen by the camera.

A common way of approximating the Mie scattering phase function is to use the much
simpler Henyey-Greenstein phase function [4]. The Henyey-Greenstein phase function is
given as

HG(θ) =
1 − g2

4π(1 + g2 − 2gcos θ)3/2

where HG is magnitude of the scattered light, for a certain angle θ, and g ∈ [−1, 1] is a pa-
rameter which determines the concentration of the scattering; a negative g gives backward
scattering [8]. This function is plotted in Figure 2.13.
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Figure 2.13: This is is the Henyey-Greenstein scattering phase
function for g = 0.9. This gives a high concentration of forward
scattering much like in Figure 1.7 but it lacks the peaks around
140° and 180°.

It is possible to implement the Henyey-Greenstein phase function directly in the frag-
ment shader as opposed to the much more complicated Mie phase function. This saves
the one texture read that is involved when using the Mie phase function. In our imple-
mentation we try both using the precomputed Mie phase function and the fragment shader
implemented Henyey-Greenstein phase function.
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2.7 High Dynamic Range Lighting
Usually the colour channels in the framebuffers are stored as 8 bit values, ranging from 0 to
1. This means that the colour channels can only assume 256 different values. This works
for most applications, but the nature of the clouds and sun gives us very bright areas on
the screen. This can lead to parts of the screen losing important colour information as the
colours get rounded to the nearest of the 256 states. A way around this problem is to use
high dynamic range (HDR) lighting. Instead of binding textures with 8 bit values for each
colour channel to the framebuffers, a floating point value is used. In our implementation
we use a 32 bit floating point value for each channel. HDR lighting also allows us to assign
colour values above 1 to the framebuffer. Before the final framebuffer is rendered to the
screen, the values need to be transformed back to the range 0 to 1. This is done using what
is known as tone mapping. This is the tone mapping used (from [1]):

Ld(x, y) =
L(x, y)

1 + L(x, y)
,

where L(x, y) is the luminance of the pixel at (x, y) and Ld(x, y) is the tone mapped value
in the range 0 to 1. This tone mapping compresses high luminance values while retaining
more information for the low luminance values [1].

The HDR lighting also gives the ability to implement some extra effects. Light bloom-
ing is such an effect. It allows for bright areas to bleed in to neighbouring areas which
results in some smoother light transitions around the bright areas and gives the bright area
a glowing feature. This is implemented by extracting the bright pixels, above some thresh-
old, and blurring these using Gaussian blur. Theses blurred pixels are then added on to
the scene texture before the tone mapping.
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Chapter 3
Results

3.1 Hardware and Software
All results are captured on a Windows 10 machine with a Intel Xeon E5-1620 v3 running
at 3.50 GHz and 64 GB of RAM. Even though the CPU and RAM are high end, the GPU
is provided by an Nvidia GeForce GTX 680 card which can be considered a mid-tier card
at the time of writing. The results are captured at 1280 × 720 resolution.

The OpenGL context is provided by Simple DirectMedia Layer (SDL) and OpenGL
Extension Library Wrangler (GLEW) is used to provide OpenGL extensions. Microsoft
Visual Studio 2013 is used to compile the C++ code. The complete implementation can
be found here (ray marcher):

• https://github.com/rikardolajos/clouds

and here (texture generation using noise):

• https://github.com/rikardolajos/noisegen.

A benchmarking test track was constructed for the camera to allow for fair comparisons
between the different implementations. In this chapter we will compare the frame times
along the test track for the different algorithms to better understand their performance hit.
The test track is constructed so that is passes through different situation in the scene (e.g.
below clouds, above clouds, inside clouds, etc.) so that we can see which algorithm are
preferable in which conditions. For all plots showing frame time in this chapter, less is
better.
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3. Results

3.2 Collected Data
This section presents frame times collected along the test track. Figure 3.1 and Table 3.1
show the result using the preprocessed cloud structure. While utilising the preprocessed
cloud structure, we can see an overall improvement in frame time except for the part where
the ray marcher gets saturated early—when the camera is inside the clouds.
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Figure 3.1: A plot showing the performance when using the pre-
processed clouds structure compared to not using it. The sections
where the graphs overlap is when the camera passes through the
clouds.

Preprocessed cloud structure Average frame time Average frequency
On 23.728955 ms 42.142606 FPS
Off 56.155690 ms 17.807635 FPS

Table 3.1: The preprocessed cloud structure performs on average
about 32 ms faster.
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3.2 Collected Data

In Figure 3.2 and 3.3 the result of using an adaptive step length is shown. The average
frame time and frame render frequency is presented in Table 3.2. In general the adaptive
step length does not have a noticeable impact on the frame time. It only affects the parts
where the camera is placed far from the clouds (see around 60 s in Figure 3.2). For these
measures large step length was set to 20 units while the adaptive step length started at 1
unit, and for samples more than 100 units away they increase with 1 unit each unit.
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Figure 3.2: This plot shows an adaptive step length compared to
a static step length for the smaller steps. Around the 60 s mark
the camera is far away from the clouds and the graphs are showing
very different results.

Adaptive step length Average frame time Average frequency
On 21.761936 ms 45.951795 FPS
Off 23.728955 ms 42.142606 FPS

Table 3.2: On average the saved frame time is about 2 ms when
using the adaptive step length.
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3. Results

Figure 3.3: This figure shows a zoomed in part of the clouds when
using an adaptive step length. Far from the camera, where the
adaptive steps are allowed to grow large, some artefacts start to
form.
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3.2 Collected Data

Figure 3.4 and Table 3.3 present the impact the overall lighting calculations have on
the rendering, i.e. the impact of running the ray marcher for the lighting. We can see that
the light calculations affect the frame time regardless of the camera position.
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Figure 3.4: The green line is for the clouds renderedwithout using
light calculations. The blue line shows the frame time when light
calculations are performed.

Light calculations Average frame time Average frequency
On 23.764996 ms 42.078694 FPS
Off 12.553803 ms 79.657134 FPS

Table 3.3: The raymarcher for the lighting calculating takes about
11 ms on average during the test.
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The impact of reading the phase function from a precomputed texture compared to
calculating it on-the-fly in the fragment shader is presented in Figure 3.5 and Table 3.4.
We can see that the texture reading takes longer time to perform than computing the phase
function in the fragment shader.
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Figure 3.5: The Henyey-Greenstein phase function (calculated on
the fragment shader) compared to the Mie phase function (read
from a texture). The third graph shows the frame time when no
phase function is used.

Phase function Average frame time Average frequency
Henyey-Greenstein 23.643466 ms 42.294982 FPS

Mie 25.999220 ms 38.462692 FPS
Off 22.585036 ms 44.277105 FPS

Table 3.4: Calculating the phase function on the fragment shader
(Henyey-Greenstein) takes about 1 ms while reading from a tex-
ture (Mie) takes a little over 3 ms.
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3.3 Rendered Images

3.3 Rendered Images
This section presents some rendered images (Figures 3.6 through 3.9) of the final imple-
mentation. These images were constructed using the preprocessed cloud structure, a static
step length and the Henyey-Greenstein phase function. The noise textures are completely
based on the cellular noise. The images in Figures 3.10 and 3.11 shows the visual differ-
ence between using the Henyey-Greenstein versus using the Mie phase function.

Figure 3.6: In this image the camera is placed on the ground and
looking up toward the sun.
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Figure 3.7: The sun is off to the left in this image. The camera
is placed up amongst the clouds and the shadows, as a result of
Beer-Lambert’s law, are clearly visible.

Figure 3.8: The camera is placed so that we can see the flat bot-
toms of the clouds. The sun is behind the camera. The darker
contours of the cloud in the centre of the image (in front of the
towering cloud) are a result of the “faked” in-scattering effect from
the light function.
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Figure 3.9: Here the camera is again placed on the ground and
looking up towards the sun. The effect of the phase function can
be seen here as the part of the cloud that is covering the sun is
almost glowing.
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Figure 3.10: This is an image showing the Henyey-Greenstein
phase function.

Figure 3.11: This is an image showing the Mie phase function.
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3.4 Rendered Video

3.4 Rendered Video
A video is also available. This gives the real-time aspect better justice than the images in
Section 3.3. The video is available here:

• https://rikardolajos.se/archive/clouds/video.php

• https://www.youtube.com/watch?v=V-Ij1HPSkb8 (mirror)

The first part of the video shows the test track used for the data collection. After the cut
we try to better show the effect of the phase function. Same implementation settings as
used for the images in Section 3.3 are used for the video.
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Chapter 4
Discussion

The two main parts of this thesis were the forming of the clouds and rendering the clouds
in actual real-time without losing too much of the visual details. The cloud forming is
harder to evaluate objectively, while the cloud rendering has the frame times from Section
3.2 as concrete evaluation.

4.1 Cloud Forming
In our implementation both Perlin noise and cellular noise were tested. We test using
plain Perlin noise, plain cellular noise and a mix of both as the base for our 3D texture.
The differences in the final result are not very distinct and are hard to present in the result
chapter. The images presented in Section 3.3 are based completely on the cellular noise
since the cellular noise gives rounder structures to the clouds. This is partly because clouds
are not formed completely randomly, like Perlin noise which is based on the randomly
assigned gradient vectors, but rather have a under lying structure as result of the convection.

The clouds in Figures 3.6 through 3.9 lack some higher resolution details. Our imple-
mentation makes use of higher frequency noise, placed in different colour channels of the
3D texture, which is visible in the shaded part of Figure 3.7. But the overall surface does
not have the finer details of real clouds as shown in the photo in Figure 1.1.

A way of obtaining finer details is to use a higher resolution for the 3D texture; we use
a 128×128×128 resolution for the texture. But when raising the resolution, the following
points needs to be considered:

• if Perlin noise is used, Perlin’s implementation of the noise must be altered if we
want resolution over 256 × 256 × 256 as it natively does not support this,

• the construction of the 3D-texture takes O(n3), so just a doubling in resolution takes
8 times longer in construction,
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• and if we use the preprocessing of the cloud structure, this also takes O(n3).

If the construction of the 3D texture takes a longer time, this might not pose a too large
implication, as the 3D texture is saved and read from the disk, but the preprocessing and
construction of the low resolution structure is performed at program start and each time
the clouds change. This would lead to heavily increased loading times in an end-product.

4.2 Cloud Rendering
Lowering the amount of steps that are taken in the ray marcher is essential for keeping the
frame times low. Saving on average 32 ms in rendering time shows that the preprocessed
cloud structure works well in the test track case. A great advantage of this method for
reducing the number of steps is that it does not affect the rendered result, because the
smaller steps are always used while inside the clouds. The drawbacks of using this low
resolution texture is that the preprocessing takes time and that we must know where the
clouds will be rendered. If we want to generate the clouds in the fragment shader, the low
resolution structure would not work without reconstruction. Generating the clouds like
this would allow for animation to be implemented easily as the clouds would not be based
on the static 3D texture. Another way of implementing animation of the clouds would be
to use 4D textures. This could give us the possibility to also use a 4D texture for the low
resolution texture, and again probably save a lot of rendering time.

The adaptive step length is another way of reducing the number of steps taken. This
implementation is more of a balancing act as noticeable improvements in frame times
(about 2ms) does not occur until severe banding and artefacts starts appearing in the distant
clouds (see Figure 3.3). In addition, the gained performance is dependent on where the
camera is placed in relation to the clouds.

The light calculation takes a lot of time to perform. The 11ms it takes could be valuable
in an end-product, where the allotted 33ms can not all be spent on rendering just the clouds
in the scene. In such cases the ray marcher for the light calculation could be completely
scrapped in favour for some more “faked” and less computationally expensive lighting
calculations.

It is interesting to see that the phase function that is read from a texture takes longer to
render than the one that is computed on-the-fly; the Mie phase function is more than three
times slower than the Henyey-Greenstein phase function. This is the result of memory
bandwidth. Reading from texture result in memory bandwidth being used and can be
quite expensive. The result of using this kind of angle dependent scattering for only the
first order of scattering gives an acceptable visual result and the effects from the phase
function that are present in Figure 3.9 are comparable to the photograph in Figure 1.2.
Both figures show how the parts of the clouds that directly cover the sun are brightly lit,
while the surrounding clouds have bright contours with darker cores.

For the higher order of scattering, the result of using our approximation in the light
function looks believable when the first order of scattering also contributes (as in Figure
3.9), but in Figure 3.8 the angle to the sun is around 180° and the phase function becomes
negligible. The edges of the clouds in this image are darker, giving the clouds some distinct
contours, but the cores—where the higher order light scattering is approximated—have a
heavily saturated white look and most details are gone.
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Chapter 5
Conclusion

Our implementation shows that there is much computational time to be saved when using
ray marchers, mainly by presuming the circumstances that concern the scene that is to be
rendered. By presuming the location of the media that is to be ray marched, the largest
optimisation could be done.

The second ray marcher used for the lighting calculation is necessary for realist shad-
ows, however it does have a large impact on the performance and other ways of calculating
the light could have been tested if time had allowed.

The noise based cloud texture work well for the cloud forming, both as a satisfactory
visual result and the non-complex implementation allows for parts of it to be either im-
plemented on the shader or precalculated and saved to textures. This helps in tuning for
optimal balance between memory bandwidth usage and computation time. For the cloud
forming we only scratched the surface of the possible ways this could be done. We gen-
erated the 3D texture by “carving” out the clouds from noise textures, but the 3D textures
could have been generated by using a fluid solver or maybe by constructing the clouds by
combining smaller cloud pieces (tiles) and utilising Wang tiles.

The implementation of the phase function also posed an interesting question: is it worth
three times larger performance impact to read the texture with the realistic phase function,
or are we satisfied with it being approximated and calculated in the fragment shader?
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Realtidsrendering av volymetriska
moln

POPULÄRVETENSKAPLIG SAMMANFATTNING Rikard Olajos

Att återskapa volymetriska moln digitalt är en kostsam process, räknat i processor-
tid, och kan vara svårt att genomföra i realtid. Men behovet för realistiska moln
i 3D applikationer finns och lösningen involverar en balansgång mellan vad som
praktiskt går att göra och vad som ser verklighetstroget ut.

På grund av sin enkla implementering och snabba
rendering har det länge varit vanligt att använda det
som kallas skyboxes i spel för att representera en him-
mel i 3D-världen. En skybox består av sex sidor,
med bilder på himmeln i olika riktningar, som omger
betraktaren och ger en illusion av en himmel som
är placerad oändligt långt bort. En sådan lösning
fungerar när betraktaren inte förväntas röra sig över
stora ytor eller röra sig upp i himmeln nära mol-
nen, exempelvis som i bilspel. Men i open world-
spel där spelaren kan röra sig mer eller mindre fritt
i 3D-världen, ger en skybox ingen känsla av att man
förflyttar sig. Man kan återskapa moln genom att
bygga upp dem av bilder (2D-texturer) och som fy-
siskt existerar i 3D-världen. Dessa moln ger ett mer
trovärdigt intryck men eftersom de är skapade av
”platta” bilder kan det uppstå konstiga bieffekter så
som rotationer när man passerar rakt under eller över
ett moln. För att undvika dessa bieffekter som 2D-
baserade moln för med sig, måste molnen byggas upp
med 3D-texturer.

Detta arbete presenterar ett enkelt sätt att skapa
dessa 3D-texturer samt jämför och diskuterar olika
sätt att rendera dem. 3D-texturerna bygger på brus-
funktioner som kombineras med andra funktioner för

att skapa de drag som karaktäriserar moln. Dessa
funktioner ser till exempel till att ge molnen en rel-
ativt platt undersida medan ovansidan kan tillåtas
resa sig i tornliknande strukturer som ett resultat av
den turbulens och konvektion som sker i riktiga moln.
Bildserien ovan visar ett tvärsnitt av 3D-texturer
som visar arbetsgången och uppbyggnaden av mol-
nen. Det finns inget naturligt sätt att återge 3D-
texturerna direkt, utan de måste samplas genom att
stega från varje pixel på användarens bildskärm ut i
scenen för att avgöra hur mycket moln som ska synas
för en viss pixel. Denna metod kallas ray march-
ing. Genom att analysera 3D-texturerna innan de
placeras i scenen, kan en lågupplöst struktur ska-
pas och användas för minska antalet steg som måste
tas. Detta sparar mycket processorkraft och gör det
möjligt att rendera molnen i realtid.
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