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Abstract 

Rhizosphere interactions have high influence on the fluxes of carbon to and from 

terrestrial ecosystems. One very important part of the rhizosphere interactions is 

the rhizosphere priming effect (RPE) which is defined as changes in the 

decomposition rate of soil organic matter (SOM) in response to labile organic 

carbon input from plant roots. Changes in decomposition of SOM affect nutrient 

availability and nutrient cycling, and does also bring changes in emissions of CO2 

from soil. Therefore, changes in the RPE can have a crucial impact in the 

ecosystems of soil and on the atmospheric concentrations of CO2. Oxidation of 

methane in soil is another component affecting carbon fluxes in soil and global 

climate. The aim of this study was to test whether differences in priming could be 

observed in soil of different agricultural land uses; arable land, pasture and ley, and 

at the same time measuring methane oxidation to test if any differences occurred 

between the three different land uses. According to the microbial mining 

hypothesis, it was hypothesized that the highest levels of priming would occur in 

pasture soil with low availability of nitrogen. Due to expected low concentrations 

of nitrogen and especially ammonium, methane oxidation was also expected to be 

highest in pasture. Priming was observed as significant changes in SOM 

decomposition due to glucose amendments. No significant differences were found 

between arable land, pasture and ley in terms of SOM respiration, priming or 

methane oxidation. However, a pattern supporting the stoichiometric 

decomposition theory was observed, as pasture on average had the lowest priming 

effect. At the same time, the highest methane oxidation rate was observed on 

pasture. This indicate low emissions of greenhouse gasses from pasture relative to 

arable land and ley. However, this pattern is not significantly evident and does need 

more research. 
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Introduction 

Soil organic matter (SOM) is the largest terrestrial reservoir of organic carbon 

(Cheng et al., 2014). Changes in decomposition of SOM affect the atmospheric 

concentration of CO2 and small changes in SOM decomposition might have very 

large effects on global carbon pools and fluxes (Cheng et al., 2014).  

The rhizosphere is the layer of soil surrounding and affected by the growing 

root, and it ranges from a few millimeters up to 1 cm (Philippot et al., 2013). The 

microbial activity in the rhizosphere soil is usually much higher than in the rest of 

the soil, partly because the roots exudate labile organic carbon, benefitting 

microbial activity in a plant-microbe interaction (Philippot et al., 2013). Increased 

microbial activity affects decomposition of SOM and this has at least two 

consequences. One, is changes in nutrient availability and nutrient cycling (Dijkstra 

et al., 2013; Murphy et al., 2015), and another is changes in emission of CO2 from 

soil (Cheng et al., 2014). Therefore, changes in the SOM decomposition can have 

a crucial impact in the ecosystems of soil and on the atmospheric concentrations of 

CO2.  

Rhizosphere interactions (activity in the root zone) has a high influence on the 

fluxes of carbon to and from the soil. One very important part of the rhizosphere 

interactions is the rhizosphere priming effect (RPE) which is defined as changes in 

the SOM decomposition rate in response to labile organic carbon input from plant 

roots (Dijkstra et al., 2013).  

The RPE can be divided into positive and negative effects on rhizosphere 

priming, where a “positive priming effect” is defined as an increase in the 

decomposition rate of SOM and a “negative priming effect” as a decrease in the 

decomposition rate (Dijkstra et al., 2013). It is not clear what determines the 

magnitude and direction of the process. Many factors seem to be involved, and 

which ones are the dominating factors is still a topic for research (Dijkstra et al., 

2013). Some important factors are likely to be nutrient availability, soil properties 

and vegetation type (Cheng et al., 2003; Dijkstra et al., 2013; Cheng et al., 2014; 

Murphy et al., 2015). A positive priming effect may be explained by the microbial 

mining hypothesis, suggesting that in soils with low nitrogen availability microbes 

use the root exudates to release nitrogen by breaking down SOM, thus increasing 

decomposition rate (Dijkstra et al., 2013; Murphy et al., 2015). A negative priming 

effect may be explained by the preferential substrate utilization hypothesis, 

suggesting that in soils with high nitrogen availability microbes use labile root 
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exudates as their carbon source instead of decomposing recalcitrant SOM (Dijkstra 

et al., 2013; Murphy et al., 2015). This may be the case especially if carbon is 

limiting microbial activity and not nitrogen (Murphy et al., 2015). Another 

explanation for negative priming effects is the competition hypothesis that propose 

that microbes and plant compete for the same nutrients (Dijkstra et al., 2013). As 

plants grow they take up nutrients from soil and this might reduce microbial 

decomposition (Dijkstra et al., 2013), which may explain negative priming effects 

on soils with low nutrient availability and therefore high competition for nutrients.  

Climate change is likely to affect the RPE through higher CO2 concentrations 

in the atmosphere and higher global temperatures, which might sustain a higher 

vegetational growth rate and are likely to affect the exudation from roots with 

changes in the RPE as a consequence (Dijkstra et al., 2013; Cheng et al., 2014). 

One plausible scenario may be that higher rates of root exudates will cause higher 

rates of decomposition of SOM, resulting in a positive feedback mechanism 

concerning atmospheric CO2 and thus accelerating climate change (microbial 

mining hypothesis). On the other hand, it is also a possibility that increasing rates 

of root exudates into soil will decrease the decomposition rate as more labile 

organic carbon is available and the microbes will prefer this instead of the more 

recalcitrant (“old”) organic carbon (preferential substrate utilization hypothesis). 

This will be a negative feedback mechanism slowing down climate change.  

It is important to expand the knowledge in this field, as the magnitude and 

direction of RPE are not very well understood, and contradicting results have been 

observed. Cheng et al. (2003) found no significant differences in priming due to 

NPK fertilizing, but did find that plant phenology and temporal variation had 

significant effects on the RPE. This contradicts the microbial mining hypothesis. 

On the contrary, Dimassi et al. (2014) concluded that priming was mainly 

controlled by nutrient availability and that tillage had no significant effect on 

priming, and Zang et al. (2016) observed that increasing N fertilizing caused 

negative priming effects and decreasing rates of decomposition which resulted in 

lower emissions of CO2. These two later studies thereby support the microbial 

mining hypothesis. Nutrient availability in agricultural soil, and especially nitrogen, 

is tightly linked to the land use type. Therefore, this study will investigate the RPE 

on three different land use types. 

Methane (CH4) is also playing an important role in the carbon cycle of 

terrestrial ecosystems. Being one of the most important greenhouse gasses (together 

with CO2), and since atmospheric concentrations have increased over the past 

century, fluxes of methane to and from the atmosphere is an important factor in 

global climate change (Mancinelli, 1995). Methane is oxidized by certain bacterial 

enzymes in aerobe soil which represents a flux of methane from the atmosphere 

into soil (Goulding et al., 1995). However, the process can be interrupted if 

ammonium (NH4
+) in soil occurs in sufficient amounts, as this will cause inhibition 

by competing with CH4 for the active site (Goulding et al., 1995). Therefore, as 
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nitrogen availability have an impact on methane oxidation, this process is also 

likely to be affected by land use. Addition of labile organic carbon to the soil does 

not affect these specialized bacteria directly, but it might increase the demand for 

nitrogen for the bacteria and thus lower the concentration of NH4
+, which in turn 

might result in higher rates of methane oxidation. It should be mentioned that even 

if methane oxidizing bacteria produce CO2, being another greenhouse gas, their 

total effect is a greenhouse gas reduction, as most of the consumed methane is 

transferred into organic carbon as biomass (Mancinelli, 1995). 

This study aimed to test whether differences in rhizosphere priming and 

methane oxidation, respectively, could be observed between three different types 

of agricultural land uses; arable land, pasture and ley. Ley in this study refers to 

grassland which is harvested mechanically, in opposition to pasture which is only 

grazed by animals. Arable land in this study is defined as done by Eurostat (2015):  

“land worked (ploughed or tilled) regularly, generally under a system of crop 

rotation”.  

Arable land of this study is fertilized with manure regularly while the pasture 

and ley is not fertilized. While the ley in this study has not been fertilized for at 

least ten years (possibly much longer) it contains different species of legumes that 

fix nitrogen from the atmosphere. Therefore, ley was not expected to be as low in 

nitrogen availability as the pasture. The crop on the arable land was rye (Secale 

cereale) having a height above soil of 10-15 cm at the sampling time. 

It was hypothesized that the largest (positive) priming effect would occur in 

fields with low nitrogen availability, as predicted in the microbial mining 

hypothesis; pasture was expected to show higher rates of priming compared to ley 

and especially arable land. Methane oxidation was expected to be highest in soils 

with low nitrogen availability as the methanotrophs switch to consuming NH4
+ if 

this occur in high concentrations of instead of consuming CH4. As arable land is 

fertilized and ley contains nitrogen-fixing plant species, methane oxidation might 

be inhibited in these types of land use. Therefore, methane oxidation was 

hypothesized to be highest in pasture soil.  

The results can be used to broaden the discussion of land use impact on global 

climate in terms of RPE and soil ecology processes. Soil properties (nitrogen 

availability, pH, SOM % and soil water content) were also measured and it was 

tested whether any significant differences occurred between land uses, and whether 

it correlated with priming or methane oxidation.  
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Material and Methods 

Experimental design and site description 

The priming effect were estimated by adding labile organic carbon (13C-glucose) to 

one soil sample and comparing it to a control (an identical soil sample without 

additional glucose). By isotope-marking the added carbon it was possible to 

distinguish between the CO2 emissions derived from SOM decomposition 

(including the priming effect) and the CO2 from microbial respiration of glucose, 

the latter being marked with 13C. An isotope analyzer (Picarro G2201-i Analyzer) 

was used to measure the “potential priming” of the soil samples, meaning that a 

relatively high amount of glucose was added to the soil to get all potential priming 

within two days.  

Methane oxidation was measured by injecting CH4 to the soil samples and 

then measuring the changes in CH4 concentration with the Picarro analyzer in the 

same way as described above. This experiment was carried out in the Ecology 

building at Lund University between the 19’th of April and the 23’rd of April.  

Differences in priming were investigated between arable land, pasture and ley. 

All three experimental fields were situated close to each other near a small farm 

just outside the village of Vomb in southern Sweden, and have been managed 

continuously in the same way for at least ten years (probably much longer). From 

each land use type, four replicates were taken with five meters between in a line 

parallel with a small unpaved road. This, to avoid differences in nitrogen 

concentrations between replicates due to emissions of nitrogen oxides from cars. 

Each replicate consisted of three cores of soil from 0 to 15 cm below surface.  

Limitations of this study 

Due to the limited time for experimental work and data analysis, potential 

differences between organic and conventionally managed fields are not a part of 

this study. This is for other studies to be done. Furthermore, variation between 

different fields of the same land use type is not tested either. Only the variation 

inside one field of the same land use type is tested. 
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Measurements of CO2 and CH4 

CO2 and CH4 concentrations and atom%13C was measured using the Picarro 

Analyzer. The workflow was as following. Soil samples were taken out from the 

fridge 1 hour before measurements. Control samples received additional water to 

adjust water content to 40 % of water holding capacity. 8 minutes before closure of 

chambers the samples that did not had any water added, received 6 atom% 13C-

glucose in concentrations that were adjusted so that these samples would also reach 

a water content of 40 % of water holding capacity. The concentration ratios after 

addition to soil were 1,0 mg glucose per g soil dry weight (dw).  

A sequence was created to program the Picarro analyzer when to measure 

each sample and for how long:  

o 1 minute of flushing the Picarro analyzer with fresh air 

o 5 minutes of carbon trapping 

o 3 minutes of measuring 

(Continuing to the next sample…)  

After one round finished a new began automatically. Samples were put into 

chambers and flushed with air and the lids were closed 15 min before the 

measurement for each sample began. 0,25 ml air with methane was injected 

immediately after lids were closed, resulting in a methane concentration of 

approximately 140 ppm in the headspace of the chambers. The Picarro analyzer 

was run for 48 hours in total, performing measurements every 3’rd second. After 

24 hours, lids were opened to release vacuum and the chambers were flushed for 1 

minute. Methane was re-injected as above. Lids were opened after 48 hours and 

experiment ended.  

In total 24 samples were analyzed, as 3 different fields were chosen, 4 

replicates analyzed for each field and an equal number of samples analyzed as 

controls. As the Picarro analyzer could only measure a maximum of 14 samples at 

a time, the experiment was divided into two groups of samples, two replicates with 

controls in the first group and the rest in the second group. The first group was 

measured from the 19’th to the 21’st of April and the other from the 21’st to the 

23’rd of April. This gave a small difference in time between measurements of the 

two groups of replicates. However, as samples had an initial incubation time of 6 

days before the experiment, and were kept in refrigerator to minimize microbial 

activity, no significant differences between replicates were expected due to this, 

and couldn’t be observed in the results either. 

 

 



11 

Calculations and statistics 

The priming effect was calculated by partitioning the CO2 flux from the soil into 

glucose- and soil-derived CO2 using equation (1). The calculated Pgluc is the 

proportion of CO2 deriving from glucose, and thus the rest is the CO2 derived from 

decomposition of SOM. The priming effect was calculated as the difference in CO2 

fluxes between sample with glucose and control when taking away the glucose-

derived CO2.   

 𝑃𝑔𝑙𝑢𝑐 = (𝑎𝑡𝑜𝑚%13𝐶𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑎𝑡𝑜𝑚%13𝐶0) / (𝑎𝑡𝑜𝑚%13𝐶𝑔𝑙𝑢𝑐 − 𝑎𝑡𝑜𝑚%13𝐶0) (1) 

Where: 

Pgluc = proportion of total CO2 derived from glucose 

Atom%13Csample = Atom%13C-CO2 signature for the sample at each measuring point 

Atom%13C0 = Atom%13C-CO2 signature for the control treatment 

Atom%13Cgluc = Atom%13C of the added glucose 

 

Tests of significance on the results were performed by the software Statistica. 

A two-way ANOVA was performed when testing 2 variables at the same time (land 

use and glucose-addition). This was the case when testing respiration and methane 

oxidation for significant differences with respect to both land use and glucose 

addition. A one-way ANOVA was performed when testing only one variable (land 

use). This was the case when testing differences in soil nitrogen levels between land 

uses, and when testing differences between priming and land use. All data were 

initially tested without being log10-transformed, but to ensure a normal distribution 

and a homogeneity of variances, two important assumptions of the test, most data 

was also log10-transformed before a redoing of the statistical tests. In the results, 

only the test of methane oxidation was performed with the original data, while all 

other tests were done using the log10-transformed data. 

Linear regression was performed in Microsoft Excel 2016 to calculate R2 

values for both priming as a dependent variable on total inorganic nitrogen, and for 

a correlation between methane oxidation and rates of respiration.   
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Results and analysis 

Soil properties 

Total inorganic nitrogen was significantly lower for pasture compared to arable 

land (p<0.001) and ley (p<0.001), but no significant differences were observed 

between arable land and ley (p=0.249). The concentration of NH4
+ was significantly 

higher in ley soil compared to the other two land uses (p<0.001). A complete list of 

nitrogen content (NO3
-, NH4

+ and total) for all replicates can be found in Table 1 in 

Appendix A. Significant differences were found for pH (P<0.001), but no 

significant differences in SOM % were found (P=0.080).  

 
Table 1 Soil properties (average of all replicates) for arable land, pasture and ley, obtained from soil 

samples used in the study. 

Land use SOM % pH NO3
- (ug 

N/g soil) 
NH4

+ (ug N/g 
soil) 

total inorganic 
nitrogen (ug N/g soil) 

Arable land 3.76 7.33 4.17 1.63 5.80 

Pasture 3.20 6.43 0.31 1.19 1.50 

Ley 3.38 6.06 4.14 4.84 8.98 

 

SOM respiration and the rhizosphere priming effect  

Positive rates of priming were observed in all land uses (p<0.01), as significant 

differences were observed in SOM respiration between glucose treatments and the 

controls (figure 1 and figure 4).  

SOM respiration in 48 hours for the three land use types varied between 21-

28 mg C per kg soil dw in controls, and between 33-43 mg C per kg soil dw in 

glucose amended samples (figure 1). The lowest SOM respiration was observed in 

pasture while higher rates were observed in arable land and ley (figure 1). The same 

pattern was observed for glucose respiration (figure 2) and total respiration (figure 

3). However, the differences between land uses were not significant for either SOM 
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respiration (p=0.368), glucose respiration (p=0.683) or total respiration (p=0.538), 

respectively.  

 

 

Figure 1 Cumulative SOM respiration in 48 hours for three land use types. Significant differences 

were observed between glucose treatments and controls for all land uses (p<0.01), but no significant 

differences were observed between land uses (p=0.368). Error bars represent standard deviation of 

the mean.  

 

Figure 2 Cumulative glucose respiration in 48 hours for three land uses types. No significant 

differences due to land use were observed (p=0.683). Error bars represent standard deviation of the 

mean. 
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Figure 3 Cumulative total respiration (SOM and glucose) in 48 hours for three land uses types. No 

significant differences due to land use were observed (p=0.538). Error bars represent standard 

deviation of the mean. 

Considering the magnitude in SOM respiration for the respective controls 

(figure 1), SOM respiration increased relatively more for ley (82% increase) 

compared to arable land (46% increase), when treated with glucose. This explains 

that the priming effect was calculated higher in ley compared to arable land (figure 

4). Despite a higher relative increase in SOM respiration for pasture (57%) 

compared to arable land, the lowest priming effect in absolute numbers was 

observed in pasture, with the highest being in ley and an intermediate priming effect 

in arable land (figure 4). In pasture a priming effect of 0.34 mg C per kg soil dw 

and hour was observed, compared to 0.6 and 0.9 for arable land and ley, 

respectively. However, the differences in priming between land uses were not 

significant (p=0.674). 

 

 

Figure 4 The priming effect per hour and land use type. No significant differences due to land uses 

were observed (p=0.674). Error bars represent standard deviation of the mean. 
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Priming was positively correlated with nitrogen availability (figure 5) 

meaning that a higher nitrogen availability correlated with a higher priming effect. 

The correlation would have been even stronger (R2 = 0.45) without one outlier 

showing a relatively large negative priming effect. 

 

  

Figure 5 A scatterplot shows priming effects as a dependent variable of nitrogen availability (4 

replicates from each of the three land use types). Priming effect on the y-axis and total inorganic 

nitrogen on the x-axis (NO3
- and NH4

+). A liniar regression revealed an R2 value of 0.28. 

Methane oxidation 

Rates of methane oxidation among the controls ranged between 3.1-4.2 mg C per g 

soil dw, the highest rates being observed in pasture and the lowest in arable land, 

with an intermediate level in ley (figure 6). In the glucose treatments, methane 

oxidation ranged between 1.7-2.4 mg C per g soil dw, with pasture showing the 

highest rates, and arable land and ley having similarly lower rates figure 6). 

However, as for the SOM decomposition (figure 1) and priming (figure 4) no 

significant difference in methane oxidation was observed between land uses 

(p=0.512).  
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Figure 6 Cumulative methane oxidation in 48 hours for three land uses types. No significant 

differences due to land use were observed (p=0.512). Error bars represent standard deviation of the 

mean. 

A strong negative relationship was observed between methane oxidation and 

rates of respiration (figure 7), as methane oxidation decreased with higher rates of 

both SOM respiration (R2 = 0.75) and glucose respiration (R2 = 0.93). 

 

 

Figure 7 A scatter plot shows a negative correlation between CH4 oxidation on the y-axis and both 

SOM respiration and glucose respiration on the x-axis. A liniar regression revealed R2 values of 

0.75 and 0.93 for SOM respiration and Glucose respiration respectively. 
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Although not significant, a pattern can be observed as pasture on average had 

the lowest SOM respiration, and the highest CH4 oxidation rate, which both result 

in low emissions of carbon relative to arable land and ley. This was also illustrated 

by the priming effect which was lowest in pasture (figure 4). This is going to be 

evaluated in the discussion. 
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Discussion 

According to one hypothesis of this study, the priming effect was expected to be 

largest in fields with low nitrogen availability, as predicted in the microbial mining 

hypothesis (Dijkstra et al., 2013; Murphy et al., 2015). Non-fertilized pastures were 

expected to have lower N concentrations and therefore to show higher rates of 

priming compared to ley and arable land. This was not the case, even if pasture had 

the lowest N concentrations. On the contrary, although not significantly, the lowest 

rates of SOM respiration and the lowest priming effect was observed in pasture 

(0.34 mg C per kg soil dw) compared to arable land and ley (0.6 and 0.9 mg C per 

kg soil dw, respectively). This does not correspond with the microbial mining 

hypothesis (Dijkstra et al., 2013; Murphy et al., 2015). 

The results showed on average positive priming effects meaning that neither 

the competition hypothesis nor the preferential substrate utilization hypothesis can 

be used as explanations. This calls for more theories on the subject. 

A fourth hypothesis can be used to explain the results, the stoichiometric 

decomposition hypothesis. According to this, increased rates of SOM 

decomposition will occur when both nitrogen and carbon input matches 

stoichiometric C and N ratios demanded by the microbes (Chen et al., 2014). In 

other words, sufficiently high availability of both nitrogen and carbon is needed to 

reach a high, positive priming effect. In this study a positive correlation between 

nitrogen availability and priming was observed (figure 3) which supports this 

theory, and indicate that, even if the relationship was not clear for land uses, the 

nitrogen availability itself is likely to have an important impact on priming. Chen 

et al. (2014) concluded that input of labile organic carbon acts as a primer for SOM 

decomposition by switching microbes to an active state and producing extracellular 

enzymes for breakdown of SOM, but high availability of inorganic nitrogen allows 

the microbes to produce more extracellular enzymes, thereby controlling the 

process of priming. Thus, the mechanism of stoichiometric decomposition is likely 

to be responsible for the priming effect when availability of both C and N are high, 

while the mechanism of microbial mining might be responsible for the priming 

effect during input of labile organic carbon when availability of N is low. These 

mechanisms might even coexist in the same soil and have influence on the priming 

effect at the same time due to different microbial groups (Chen et al., 2014). This 

view is also shared by Cheng and Kuzyakov (2005) arguing that different 
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mechanisms operate in combination due to spatial and temporal variations in the 

availability of C and N. 

Understanding of the mechanisms behind the priming effect is needed to be 

able to develop agricultural practices that emit the lowest possible quantities of CO2 

or even act as atmospheric C sink. Whether a soil ecosystem acts as C sink or source 

is decided by the net ecosystem production (NEP), which is the difference between 

gross primary production and ecosystem respiration (Ehtesham and Bengtson, 

2017). Increasing global temperature and atmospheric concentration of CO2, in 

combination with sufficient availability of nitrogen, might not only lead to higher 

primary production but also increased exudation of labile organic carbon from roots 

and increasing decomposition of SOM (Bengtson et al., 2012; Cheng et al., 2014). 

This scenario would lead to a positive feedback loop, with increasing concentration 

of CO2 in the atmosphere and devastating consequences for global climate. In 

opposition, Ehtesham and Bengtson (2017) found that labile C input reduced SOM 

respiration. Furthermore, as increasing nutrient availability is likely to occur with 

increasing SOM decomposition (Dijkstra et al., 2013; Murphy et al., 2015), this 

could also lead to increased plant growth, with an increased uptake of CO2 by plants 

as a consequence, representing a negative feedback loop. The contradiction of the 

studies mentioned and the lack of significant results in this study itself, emphasizes 

the importance of more research in this field and a need for stronger evidence. 

Methane oxidation was expected to be highest in soils with low nitrogen 

availability, and in terms of land use this was expected to be pasture soil. No 

significant differences were observed between land uses in this study, but the 

results give some indication of a possible trend. The highest methane oxidation rate 

was observed in pasture, which corresponds with the hypothesis that the highest 

methane oxidation occurs in soil with low nitrogen availability, especially if NH4
+ 

is low (Goulding et al., 1995). Both total inorganic nitrogen and ammonium was 

significantly lower in pasture compared to other land uses. As CH4 is an important 

greenhouse gas, and since its atmospheric concentrations have increased over the 

past century, it is playing an important role in global climate change (Mancinelli, 

1995). To understand how to optimize methane oxidation in soil, via methanotrophs 

that are keeping down the levels of methane in the atmosphere, will be important 

in mitigating global climate change. Agricultural land use may be a key factor to 

this (Goulding et al., 1995), even though significant differences was not observed 

in this study between the three land uses tested. According to Mancinelli (1995) 

application of ammonia fertilizers on agricultural land has resulted in a significantly 

reduced capacity for methane oxidation. 

Methane oxidation was negatively correlated with rates of respiration in soil 

as higher respiration (both SOM and glucose) correlated with decreasing methane 

oxidation. This was unexpected as the addition of glucose results in an increased 

microbial activity and thereby an uptake of nitrogen, meaning less available 

nitrogen in soil. This would give incitement to the methanotrophs to oxidize 
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methane instead of NH4
+ (Goulding et al., 1995). One explanation might be that the 

time frame of two days was not enough to activate these mechanisms. Another 

explanation could be that concentrations of NH4
+ where too low in the tested soils. 

However, this is not likely as Goulding et al. (1995) observed that a relatively low 

annual application of 22 kg N per hectare and year, during 15 years, was enough to 

reduce CH4 by 41 % compared to unfertilized pasture. Also, the fact that observed 

levels of methane oxidation were not only unaffected of respiration but showed a 

negative correlation, makes other explanations needed. The decrease in methane 

oxidation might be due to oxygen deficit in soil provoked by the intense increase 

in microbial respiration and activity, as oxygen availability is a controlling factor 

of methane oxidation (Mancinelli, 1995). High microbial activity might also lead 

to competition between other nutrients (e.g. fixed nitrate and copper) and thus 

inhibit methane oxidation (Mancinelli, 1995).  

As described above, the results of this study indicate that land use alone did 

not have significant effects on the RPE and thus no effects via priming on the 

atmospheric concentrations of CO2. Whether this corresponds with reality or is due 

to the design of the experiment is not clear. The number of replicates were adjusted 

from 5 to 4 due to technical limitations and the time frame of the study. However, 

as within-site variation was larger than variation between sites, more replicates 

seem necessary to make safe conclusions in this field.  

Nevertheless, the results give some interesting indications that should be 

investigated in more detail in further studies. Pasture on average has the lowest 

SOM respiration, and the highest methane oxidation rate, both resulting in lower 

emissions of carbon relative to arable land and ley. This is also illustrated by the 

priming effect which is lowest in pasture. If this tendency could be stated with 

significance, environmental recommendations could be given in terms of limiting 

carbon emissions due to agricultural land use. As pasture and soil with low nitrogen 

availability may have a higher ability of sequestration of carbon, and thus a smaller 

impact on global climate compared to arable land and ley, one recommendation 

could be that grazing animals would be less harmful for global climate than growing 

crops as feed for domestic animals. This view is not supported by significant results 

and does need more research. Off course, other aspects also need to be considered, 

for example emissions of CH4 from domestic ruminants, and whether type of feed 

etc. affects emissions from these. 

As SOM content was slightly higher in arable land (3.76%) than in pasture 

(3.20%) it might seem conflicting to draw the conclusion that carbon sequestration 

is higher in pasture, but the high content of SOM in arable land may be explained 

by the regularly application of manure which cause increased content of SOM. 

From this perspective, a relatively high SOM content seems to be sustained in 

pasture. In comparison, ley had an intermediate level of 3.38 %. 

As the difference between replicates showed, a high variation exists in each 

land use type and thus a high spatial variation inside each land use type in general 
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is likely, both in terms of soil properties but also in terms of soil processes like 

priming and methane oxidation. To draw conclusions that can be used in decision 

making, more than one field of each land use type will be necessary, as the sites 

used for this study might not be representative for these land uses in general. 

Especially ley can be very different from field to field in terms of nutrients and 

management. Ley is a broad term sometimes including fertilized fields, and 

differences in cutting regime occur. Some leys can even be grazed after harvesting 

and thus the distinguishing between ley and pasture becomes less clear. Two 

replicates of the ley in this study had an availability of nitrogen close to those of 

pasture while two had as high values as the highest in arable land (Table 1 in 

Appendix A). Whether those nitrogen levels derive from much earlier fertilization 

or because of legumes in the ley is not clear. But as legumes occur in the ley, it is 

not a surprise that the nitrogen availability is higher than in the pasture. The 

legumes might also explain the extremely high variation in nitrogen as the legumes 

appear in clusters in the field. 

In this study, there are uncertainties in the soil sampling and the methods of 

measuring might also be a source of error, which could be minimized with more 

replicates, as mentioned above. Long term experiments might also give more liable 

results than to extract potential priming in two days like this experiment aimed to 

do. Another factor to be aware of is that the measurements were done in a lab, 

which means that soil samples were incubated and isolated from surrounding 

ecology, and that “real” plants are not present when doing the measurements 

(Cheng et al., 2003). 



23 

Conclusion 

The priming effect was observed for all land uses with significant increases in SOM 

decomposition in soil treated with glucose. However, priming or SOM 

decomposition did not differ significantly between land uses (arable land, pasture 

and ley). Also, no significant differences were found in methane oxidation between 

land uses. However, a pattern can be observed, as pasture on average has the lowest 

SOM respiration, and the highest methane oxidation rate, which both results in low 

emissions of carbon relative to arable land and ley. From a climate change 

perspective, this indicates that pasture might be the more climate friendly land use 

type, if only focusing on the emissions of greenhouse gasses from the soil. These 

relationships should be investigated in more detail in future studies. One suggestion 

is to expand the number of replicates in a similar study, and to perform a study of 

the priming effect on a longer time scale, e.g. 2 weeks or even more.  
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Appendix A 

Table 1 Nitrogen content for all replicates. Observe the large variation for arable land and ley. 

Sample Soil Type Replicate NO3-N 

(ug N/g 

soil) 

NH4-N 

(ug 

N/gsoil) 

total 

inorganic 

nitrogen 

1 Arable land 1 1.37 1.34 2.71 

2 Arable land 2 2.86 1.27 4.14 

3 Arable land 3 9.10 2.80 11.90 

4 Arable land 4 3.33 1.10 4.44 
      

6 Pasture 1 0.33 1.24 1.56 

7 Pasture 2 0.29 0.97 1.26 

8 Pasture 3 0.29 1.20 1.49 

9 Pasture 4 0.33 1.34 1.67 
      

11 Ley 1 6.93 8.54 15.48 

12 Ley 2 1.54 1.88 3.42 

13 Ley 3 2.71 2.76 5.47 

14 Ley 4 5.38 6.17 11.55 
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