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Abstract

Historical data shows a strong relationship between hourly changes in CDS index iTraxx

Main and equity futures EURO STOXX 50. We hypothesize that the relatively stable

relationship should allow us to trade the two markets. A Markov regime switching model

is introduced, distinguishing cointegrated regimes that allows the cointegration relation-

ship to be switched on and off. A pairs trade between the two securities is carried out in

the cointegrated regimes. We show that trading exclusively in these regimes produces a

significantly better performance compared to static pairs trading over the whole data set.

Keywords: Algorithmic Trading, CDS indices, Equity futures, Markov Regime Switch-

ing Models, Cointegration
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Chapter 1

Introduction

This thesis explores the relationship between the european CDS index iTraxx Main

and European equity futures index EURO STOXX 50. The idea to the thesis was

given to us by Senior Portfolio Manager Ulf Erlandsson at the Fourth National Swedish

Pension Fund (AP4). It is well known that these indices are correlated in some way

enabling a cross asset pairs trade. To further strengthen this statement, we formulated a

hypothesis that the correlated indices experience regimes of cointegration. We introduce

a regime switching Markov model distinguishing cointegrated regimes and allows the

cointegration relationship to be switched on and off, which builds the base of the decision

making process of when to enable the pairs trade.

1.1 A brief history of the CDS market

In the early summer of 1994 a team of about 80 bankers from JP Morgan assembled

for a ”weekend offsite” at the posh holiday resort of Boca Raton, just off the Florida

coastline [Lanchester, 2009]. The get-away was designed to let the derivatives and swaps

people at JP get together to blow off some steam and to come up with new interesting

business opportunities for the bank. There, squeezed into a conference room just by

the the Boca Raton marina, someone came up with the idea of mixing derivatives with

traditional credit risk.

A few months later, Robert Reoch, a young British banker at JP Morgan’s London

branch brokered a ”first-to-default” swap, which is a basket-like product based on a
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credit default swap (CDS), to an investor [Tett, 2006]. The contract ensured JP Mor-

gan was covered against credit losses if anyone of a number of European government

bonds would default. This innovative way to manage credit exposure would open the

gates to the novel world of credit derivatives.

1.2 CDS Indices

As the scope of credit markets and trading in credit derivatives became profitable busi-

ness, other banks were quick to open their own operations and embark on this new area

of financial innovation. As the market increased, a natural demand to track performance

on these products emerged and soon indices on CDS’s began to surface. Some of the

first synthetic credit indices that appeared was in 2001 when JPMorgan launched the

JECI and Hydi credit indices, as well as rival Morgan Stanley’s presenting its TRAC-

ERS counterpart [markit, 2008].

In 2003 JP and Morgan Stanley joined their respective indices to create the Trac-x.

However, only a year later in 2004 the Trac-x was again merged with the newly created

iBoxx, in order to form two new synthetic credit indices. These were CDX for the North

American credit market and iTraxx for Europe and Asia. These indices are still to this

day the most closely followed references for credit traders and investors.

Following its early years, the CDS market grew exponentially. From totalling around

$300 billion in 1998, with JP Morgan representing one sixth of total global volume, to

over $2 trillion by 2002 (with the market share of any one player fully eroded) [Gillian,

2009]. The overly exuberant CDS-market inflows continued until 2007 when notional

volumes peaked at $62.2 trillion [ISDA, 2010].

Credit Default Swaps then come to play a major role in the credit crisis of 2008, which

led to heavy scrutiny of these markets with new regulation and requirements coming into

effect. Since its peak level the CDS market today stands at just over $10 trillion [ISDA,

2017b]. Moreover the fraction of these contracts being cleared centrally have gone from

about one tenth only three years ago to over 75% of CDS contracts being centrally

cleared as of 2016 [ISDA, 2017a].
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The creation of official CDS indices led to trading in contracts on CDX and iTraxx

to begin. Since then many sub indices such as iTraxx Europe Senior Financials, iTraxx

Asia ex-Japan High Volatility and CDX have also been added to the offering.

1.3 Credit Default Swaps

The purpose of a credit default swap is to let credit risk be valued and traded in a similar

manner to other forms of financial risk [Hull and White, 2000]. In 1998 the International

Swaps and Derivatives Association (ISDA) published standardised documentation for

credit default swaps in order to facilitate trading and liquidity for these contracts.

1.3.1 Defintion

A Credit Default Swap (CDS) is a financial contract whereby the buyer (premium leg)

buys protection in case of a credit event on the underlying credit asset (reference en-

tity). The CDS contract more specifically allows the premium leg to sell the defaulted

entity for its par value. Hereafter, we will make this equivalent to receiving (100−R)%

(recovery) on the defaulted asset, where 100 denotes the par value and recovery is the

residual value of the defaulted asset.

In exchange for this insurance the protection buyer compensates the protection seller

by paying periodic coupons until maturity of the CDS or until the refereance entity

experience a credit event (as determined by an ISDA Credit Derivatives Determina-

tions Committee) [ISDA, 2016]. Membership in a Determinations Committee (DCs)

includes both sell- and buy-side representatives. In order to declare a credit event a

super-majority of 80% of the committee is required to vote for the occurrence of a credit

event.

In case a credit event is determined to have occurred, the CDS contract can be set-

tled either in cash or by physical delivery. If the contract specify physical delivery the

premium leg transfers the defaulted paper and in exchange receive par notional amount.

If the contract is cash settled the protection seller pays the protection buyer par minus

recovery value (100−R)%, without any exchange of the reference entity. The recovery
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value R, is determined by a calculation agent that polls intermarket dealers to establish

the fair mid market price of the reference entity, post credit event.

Figure 1.1: Depiction of cash flows from a Credit Default Swap between the protection
seller and the protection buyer

1.3.2 Pricing of CDS Contracts

This section provides a standard introduction to the pricing of CDS contracts. It is

based on research from Lehman Brothers [O’Kane and Turnbull, 2003]. The valuation

of CDS contracts requires more sophisticated methods than in the standard bond case.

To compute the fair mark-to-market value, we need to consider the term structure of

default swap spreads, a recovery rate assumtion and a model.

To make this a little more explanatory we will start off by going through an exam-

ple. If we consider an investor that buys a 5-year CDS on a company at a default spread

of 60 bp (basis points), what is the Mark-To-Market (MTM) value of the contract after

1 year if the default swap spread on that date is 170 bp?

MTM = (Current Market Value of Remaining 4y Protection)

− (Expected Present Value of 4y Premium Leg at 60 bp) (1.1)
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Since the value of the CDS increased and the market value of a new default swap is

zero, we have that

(Current Market Value of Remaining 4y Protection) =

(Expected Present Value of 4y Premium Leg at 170 bp) (1.2)

Hence, the MTM for the protection buyer is

MTM = (Expected Present Value of 4y Premium Leg at 170 bp)

− (Expected Present Value of 4y Premium Leg at 60 bp) (1.3)

For simplicity we define the expected present value of 1 bp on the premium leg until

maturity (or default) as Risky PV01 we can simplify the expression as

MTM(tv, tN ) = ±(S(tv, tn)− S(t0, tN ))RPV 01(tv, tN ) (1.4)

Where t0 is the time of the initial trade, S(t0, tN ) is the contractual spread, tv is the

offset valuation time and tN is the maturity. The RPV01 is risky in the sense that the

stream of premia is uncertain if any credit event would occur. To realize the gain or loss,

the investor can either unwind the contract with the initial counterparty or enter into

an offsetting position (by selling protection during the next 4 years). By no-arbitrage

assumptions both choices have same value today.

Pricing Models

To calculate RPV01 we need to use a model that includes the probability of the refer-

ence entity surviving each premium payment. There are two main approaches to credit

modelling - the structural approach and the reduced form approach. We will shortly

adress both below.

Structural Approach

In the structural apporach a potential default is seen as a consequence of a credit event,

i.e. resulting in that the company does not have enough assets to repay a debt. It is

called a structural approach since, according to the model, corporate bonds should trade

7



based on the internal structure of the firm. Hence it requires balance sheet information

to link pricing in the equity and debt markets. There are several limitations with this

model. The most obvious one is that it is hard to calibrate since company data cannot

be observed continously.

Reduced Form Approach

In the Reduced Form approach the probability of a credit event is modelled from market

prices. Jarrow and Turnbull (1995) developed a reduced form approach that is widely

used. It models the credit events as the first event of a Poisson process at time τ with

probability

P (τ < t+ dt|τ ≥ t) = λ(t)dt (1.5)

where λ(t) is known as the hazard rate. It can be shown that the continuous survival

probability (dt→ 0) is given by

Q(tv, T ) = exp(−
∫ T

tv

λ(s)ds) (1.6)

This can be used to value both the premium and protection legs, and therefore also the

breakeven spead of a CDS.

Valuation of the Premium Leg

The premium leg is the regular stream of payments the protection buyer pays to the

seller until maturity or credit event. If assuming N payments on times t1...tN and the

contractural default swap spread S(t0, tN ), then the present value of the premium leg

of an existing contract is

PV (tv, tN ) = S(t0, tn)

N∑
n=1

∆(tn−1, tn, B)Z(tv, tn)Q(tv, tn) (1.7)

where ∆(tn−1, tn, B) is the day count fraction between tn−1 and tn in the basis conven-

tion B. Q(tv, tn) is the arbitrage free survival probability of the reference entity. Z(tv, tn)

is the Libor discount factor.

If we want to include the premium accrued, i.e. the premium from the last payment to

the credit event (before the next payment), we have to calculate the expected accrued
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premium by considering probability of default between two payments. The premium

accrued is given by

S(t0, tN )
N∑
n=1

∫ tN

tn−1

∆(tn−1, s, B)Z(tv, s)Q(tv, s)λ(s)ds (1.8)

As shown in O’Kane and Turnbull (2003) this expression can be approximated as

S(t0, tN )

2

N∑
n=1

∆(tn−1, tn, B)Z(tv, tn)(Q(tv, tn−1)−Q(tv, tn)) (1.9)

The full value of the premium leg is

Value of Premium Leg = S(t0, tn)RPV 01 (1.10)

where

RPV 01 =
N∑
n=1

∆(tn−1, tn, B)Z(tv, tn)

[
Q(tv, Tn) +

1PA
2

(Q(tv, tn−1)−Q(tv, tn))

]
(1.11)

1PA = 1 if contract says that premium should be accrued and 0 otherwise.

Valuation of the Protection Leg

The protection leg pays (1-Recovery Rate) on the face value of the protection if the CDS

triggers. When pricing the protection leg timing of the credit event is important to find

the correct present value. Therefore we condition on small time intervals [s, s + ds]

between tv and tN when calculating the expected present value of the recovery payment

as

(1−R)

∫ tN

tv

Z(tv, s)Q(tv, s)λ(s)ds (1.12)

To simplify the calculations we assume that a credit even only can occur a finite number

of times and we get

(1−R)

MtN∑
m=1

Z(tv, tm)(Q(tv, tm−1)−Q(tv, tm)) (1.13)

Calculating the breakeven default swap spread

Having priced the protection and premium leg we can now extract the survival prob-
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abilities from the quoted default swap spread in the market. This breakeven spread is

given by

PV of Premium Leg = PV of Protection Leg (1.14)

Since tv = t0 for a new contract we can substitute in equation (1.11) and (1.13) and get

S(tv, tN ) =
(1−R)

∑MtN
m=1 Z(tv, tm)(Q(tv, tm−1)−Q(tv, tm))

RPV 01
(1.15)

Trading in CDSs

An investor can trade a CDS contract either for hedging or for speculative purposes.

If the investor owns the underlying reference entity, say a corporate bond, but wishes

to protect himself from the credit risk associated with this investment he could then

purchase a CDS with this bond as underlying, thereby hedging out the credit risk.

However, if an investor does not own the underlying paper (or something correlated

with the underlying) a CDS can still be bought as a pure bet on the credit quality of

the reference entity. If the belief is that the market is underpricing the financial risk in

a bond, the investor could buy protection on this name in order to make a financial gain

when this risk is identified by the broader market. Another advantage is that a CDS do

not require much margin or capital to take a position and furthermore synthetic credit

markets generally have much better liquidity then cash bonds [Oehmke and Zawadowski,

2016].

CDS contracts can reference either single bonds (single names) or a basket of bonds.

There are also many variations such as first-to-default and nth-to-default products, which

covers a basket of assets and whose mechanics is like a normal single name CDS when

any (either the first or the nth) asset in that basket experience a credit event.

As mentioned previously one can also trade in CDS indices. Trading in a CDS in-

dex, such as the iTraxx Europe Main, is equivalent to trading each constituent in the

index equivalent to its weighting (in the case of iTraxx Main this translates to 1/125th on

each index member) [Markit, 2017]. A portfolio manager that wishes to gain exposure

to the broader corporate credit market could sell protection on the iTraxx Main, which
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would essentially give long exposure in corporate debt. This way, the portfolio manager

does not need to form a view on certain individual names or buy many different bonds.

In CDS index trading the offered contracts normally are of 3, 5, 7 and 10-year ma-

turities, with the 5-year contract being by far the most liquid and actively traded.

Furthermore these contracts are rolled (updated) every sixth months in order to extend

the maturity of the index traded and to potentially update the list of constituents in

the index.

CDS contracts are by historical conventions quoted in spread (basis points of notional)

but traded at upfront with standardized fixed coupons (for iTraxx Europe Main the fixed

rate is 100 bp’s) and is being paid quarterly throughout maturity of the contract. The

upfront amount being exchanged in the trade is equivalent to the difference in quoted

and fixed spread, adjusted for any coupons accrued.

1.4 Equity market contracts

1.4.1 Equities and Equity indices

Equity markets are what people generally think of when financial markets and trading

are referenced. The history of stock markets dates several hundred years back and

have played a major role in the development of the modern world and its economic

systems. Equivalently to the evolution of the synthetic credit market described in Section

1.2 equity indices have also emerged. Some of the most well known and dominating

equity indices are the American S&P 500 and the Dow Jones index. In Europe the

English FTSE 100 and the pan-European EURO STOXX 50 are the most prominent

counterparts.

1.4.2 EURO STOXX 50

The EURO STOXX 50 Index, introduced in February 1998, is a leading blue-chip in-

dex representing supersector leaders in the Eurozone. It serves as underlying for many

investment products such as Exchange Traded Funds (ETF), Futures and Options, and

structured products. The index includes 50 stocks from 11 Eurozone countries: Aus-
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tria, Belgium, Finland, France, Germany, Ireland, Italy, Luxembourg, the Netherlands,

Portugal and Spain [stoxx, 2017]. EURO STOXX 50 is provided by STOXX, which is

an index provider owned by Deutsche Börse Group. Its futures contract is amongst the

most liquid of such instruments globally and is to a greatly used gain European equity

market exposure.

1.5 Our Contribution

Several previous papers have looked into the applications of Hidden Markov Models on

financial time series data as a foundation for trading strategies or portfolio allocation,

for example [Erlandsson, 2005], [Nystrup et al., 2016] and [Idvall and Jonsson, 2008].

These papers have however, mainly looked into Hidden Markov Models applied on data

from exchange traded markets. Based on the papers authored by [Bhattacharyya and

Erlandsson, 2007], [Alavei and Olsson, 2015] and in discussions with AP4 we concluded

that there could exists interesting opportunities in applying this very promising area

of mathematics (HMMs) to the algorithmically less exploited markets of CDS index

contracts (see Section 3.2.1 for a description of the features related to trading in Over-

the-Counter (OTC) markets). Hence we have dedicated this thesis to extend on the

work by [Alavei and Olsson, 2015] to investigate whether this cointegration pairs trade

can be further improved by introducing a Markov regime switching model.

1.6 Outline of the thesis

The next Chapter will briefly go through the most vital theory needed to understand

the concepts of the regime switching Markov model. At the end of the Chapter, the

model will be introduced, as well as some trading strategies based on the model. In

Chapter 3, the details of the indices data that we used will be discussed, i.e. origin and

different properties. In Chapter 4 the results from both the regime switching model

and the trading strategies will be presented. The final conclusions will be discussed in

Chapter 5.
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Chapter 2

Theory

This section will provide the probabilistic background necessary in order to understand

the theoretical foundations behind the modeling approach chosen for this thesis.

2.1 Linear Regression

In linear regression, the dependent variable yi is a linear combination of the parameters.

Simple linear regression has only one independent variable x and can be described as

yi = β0 + β1xi + εi (2.1)

The residual, εi = ŷi − yi, is the distance between the observation data point and

the regression line. One way of estimating the parameters is through a method called

ordinary least squares (OLS). This method minimizes the sum of squared errors

min
β0,β1

n∑
i=1

= ε2i (2.2)

which makes it possible to solve for the parameters as

β̂1 =

∑
xiyi − 1

n

∑
xi
∑
yi∑

x2i −
1
n(
∑
xi)2

and β̂0 = ȳ − β̂1x̄ (2.3)

This ordinary least squares estimator can be shown to be BLUE (Best Linear Unbiased

Estimator) given that the following assumptions are satisfied.
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2.1.1 OLS Assumptions

i. Linearity in Parameters

ii. Independent and Identically Distributed Error Terms

iii. No Perfect Collinearity

iv. Homoscedasticity

If these assumptions are not perfectly fulfilled the ordinary least squares estimator may

not be the best linear unbiased estimator.

2.2 Robust Regression

Results from an OLS regression can be misleading if the assumptions in Section 2.1.1

are not true, thus ordinary least squares is unstable to violations of its assumptions.

Robust regression methods are designed to reduce the bias effect of estimators overly

affected by violations of assumptions by the underlying data-generating process. It is

particularly effective in the presence of outliers in the data. In order to calculate a more

robust estimation the least squares deviations are multiplied by a weight function that

assigns a given weight to each observation.

2.2.1 Bisquare weight function

One popular method of preforming robust regression is by using the bisquare weight

function to generate the vector of weights, which is specified by:

weights(r) = (abs(r) < 1)(1− r2)2 (2.4)

with

r =
εi

4.685s
√

1− h
(2.5)

where εi is the vector of residuals from the previous iteration, h is the vector of leverage

values from a least-squares fit, and s is an estimate of the standard deviation of the

error term given by:

s =
MAD

0.6745
(2.6)
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Here MAD is the median absolute deviation of the residuals from their median. The

constant 0.6745 makes the estimate unbiased for the normal distribution [Mathworks,

2016].

2.3 Markov Chains

A probability space can be represented by the triplet (Ω,F ,P). Here, Ω refers to the

sample space of all possible outcomes, F is a set of events where each event is a set

containing zero or more outcomes, and P is the probability measure function. If we let S

be a measure space (S,S), then an S-valued stochastic process X = (Xt, t ∈ T ) adapted

to the filtration (Ft, t ∈ T ) is said to posses the Markov property with respect to {Ft}

if, for each A ∈ S and each s, t ∈ T with s < t,

P(Xt ∈ A|Fs) = P(Xt ∈ A|Xs) (2.7)

A discrete-time Markov chain is a sequence of random variables {Xi}, i = 1, ..., n, with

the Markov property, i.e. that the probability of changing state only depends on the

current state and not the previous [Durrett, 2011].

P(Xn+1 = x|X1 = x1, ..., Xn = xn) = P(Xn+1 = x|Xn = xn) (2.8)

2.4 Time series models

A time series is a collection of observations {Xt} made sequentially through time.

2.4.1 Stationarity

Broadly speaking, a time series is said to be stationary if there is no substantial and

systematic change in mean and variance, i.e. the time series is not trending in any

direction. Below, a mathematical definition of stationarity is given.

Strict Stationarity

A time series is said to be strictly stationary if the joint distribution of X(t1), ..., X(tn)

is the same as the joint distribution of X(t1 + τ), ..., X(tn + τ) for all t1, ..., tn, τ . Hence,
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shifting the time series window by τ does not affect the joint distributions [Chatfield,

2004].

Weak Stationarity

Normally it is more practical to define stationarity in a less restricted manner than

what was described above. A second-order stationary process (weakly stationary) has a

constant mean and an autocovariance function only depending on the lag so that:

E[X(t)] = u (2.9)

and

Cov[X(t), X(t+ τ)] = γ(τ) (2.10)

If we let τ = 0 it implies that the variance and the mean is constant. Also, we note that

both mean and variance must be finite [Chatfield, 2004].

2.4.2 Order of integration

A time series is integrated of order d if

(1− L)dXt (2.11)

is a stationary process, where L is the lag operator, i.e.

(1− L)dXt = Xt −Xt−1 = ∆X (2.12)

Hence, a process is integrated to order d if taking differences d times gives a stationary

process [Hamilton, 1994].

2.4.3 Model evaluation

The Akaike Information Criterion

Assume that there is a statistical model M based on some data x. We set k to the

number of parameters in the parameter set θ corresponding to the model and L̂ as the

16



maximized likelihood, i.e.

L̂ = max
θ

P(x|θ,M) (2.13)

Then, the AIC (Akaike Information Criterion) of the model is calculated as

AIC = 2k − ln L̂ (2.14)

Given a number of models for the data, the model with the minimum AIC value is

preferred [Akaike, 1974].

The Bayesian Information Criterion

A closely related concept to the AIC within model selection is the Bayesian Information

Criterion (BIC). It fulfills the same purpose as the AIC but takes overfitting into con-

sideration, punishing the model evaluation score when adding more parameters. The

BIC is defined as

BIC = ln(n)k − 2 ln L̂ (2.15)

where n is the sample size [Schwarz, 1978].

2.5 Dickey-Fuller tests

The procedures described so far neither provide a formal test of stationarity nor do they

allow to distinguish between trend stationarity and difference stationarity. In a Dickey-

Fuller tests, developed by David Dickey and Wayne Fuller in 1979, the null hypothesis

whether a unit root is present is tested in an autoregressive model. The alternative

hypothesis depends on if the model is tested for stationarity or trend-stationarity [Dickey

and Fuller, 1979].

The standard Dickey-Fuller test

In an AR(1) process we have

yt = ρyt−1 + εt (2.16)
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where εt is the error term and ρ is a coefficient. The process has a unit root if ρ = 1

and is non-stationary in that case. Rewrite the equation as

∆yt = (ρ− 1)yt−1 + εt = δyt−1 + εt (2.17)

We can now estimate the model and testing the hypothesis that δ = 0. Since we test

the residual term rather than the raw data, we test the t-statistics against a specific

distribution simply known as the Dickey-Fuller table. The three most common versions

of the test are as follows:

1. Testing for a unit root:

∆yt = δyt−1 + εt

2. Testing for a unit root with drift:

∆yt = α0 + δyt−1 + εt

3. Testing for a unit root with drift and deterministic time trend:

∆yt = α0 + α1t+ δyt−1 + εt

The Augmented Dickey-Fuller test

The approach for conducting the Augmented Dickey-Fuller test (ADF-test) is the same

as in the standard DF-case, but it is applied to the model

∆yt = α+ βt+ γyt−1 + δ1∆yt−1 + ...+ δp−1∆yt−p+1 + εt (2.18)

where p is the order of the autoregressive model. Hence, the order of lags must be

determined before applying the test. A way to do this is using an information criterion

such as the Akaike information criterion (AIC), Bayesian information criterion (BIC) or

the Hannan–Quinn information criterion.

The null hypothesis γ = 0 is tested against γ < 0 when comparing the test statistics

DFτ =
γ̂

SE(γ̂)
(2.19)

is compared to the relevant critical value for the Dickey–Fuller Test. We reject the

null hypothesis if the test statistics is smaller than the critical value [Kirchgässner and
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Wolters, 2007].

2.5.1 Cointegration of financial time series

Udne Yule was the first to introduce the concept of spurious correlations between time

series in 1926. A spurious relation exists when two independent variables may be wrongly

interpreted as dependent of each other due to coincidence (e.g. presence of a unit root in

both variables) or due to a third unseen factor (common response variable). Before the

80s, linear regression was commonly used on de-trended ”non-stationary” data. In 1974,

Clive Granger and Paul Newbold showed that this could indeed produce spurious corre-

lations, since standard detrending techniques can produce non-stationary data [Granger

and Newbold, 1974]. In a simulation study they regressed two independently generated

random walks on each other. They observed that the least-squares regression parame-

ters do not converge towards zero but towards random variables with a non-degenerated

distribution. Later on, Clive Granger and Robert Engle formally described the cointe-

grating vector approach and introduced the concept of cointegrating time series [Engle

and Granger, 1987].

Cointegration is characterised by two or more I(1) variables indicating a common long-

run development except for transitory fluctuations. This is a statistical equilibrium

which can often be interpreted as a long-term economic relation. According to Granger

and Engle, the elements of a k-dimensional vector Y are cointegrated of order (d,c),

Y ∼ CI(d, c), if all elements of Y are integrated of order d, and if there exists at least

one non-trivial linear combination z of these variables, which is I(d-c), where d ≥ c > 0

holds, if and only if

β′Yt = zt ∼ I(d− c) (2.20)

Here, β is what is called the cointegration vector. The number of linearly independent

cointegration vector makes up the cointegration rank r. The cointegration vectors are

the columns of the coitegration matrix B in

B′Yt = Zt (2.21)
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The Bivariate Case

Let x and y be I(1) processes. If there exists a parameter b such that:

yt − btx = zt + a (2.22)

is stationary, then we say that x and y are cointagrated. The process z is I(0) and has

expectation 0. The parameter a defines the level of corresponding equilibrium relation

which is given by

y = a+ bx (2.23)

The cointegrated variables x and y follows the same stochastic trend, which can be

modelled as a random walk. Hence, we can represent the relation as follows

yt = bwt + ỹt where ỹt ∼ I(0) (2.24)

xt = wt + x̃t where x̃t ∼ I(0) (2.25)

and

wt = wt−1 + εt (where εt is white noise) (2.26)

According to the Granger representation theorem, there exists an error correction rep-

resentation for any cointegrating relation. In this bivariate case it can be written as

∆yt = a0 − γy(yt−1 − bxt−1) +

ny∑
j=1

ayj∆yt−j + uy,t (2.27)

∆xt = b0 − γx(yt−1 − bxt−1) +

kx∑
j=1

byj∆yt−j + ux,t (2.28)

where u is a pure random process. If x and y are cointegrated, at least one γi, i = x, y,

has to be different from 0 [Kirchgässner and Wolters, 2007].

2.6 Markov Regime Switching Models

Markov Regime Switching models are very flexible as they can handle processes driven by

heterogeneous states of the world, which can often be the case when modelling financial

time series. The Markov switching model was popularized by Hamilton in 1988 and
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is one of the most popular nonlinear time series models in literature. It is structured

by several regimes represented by equations that characterize the different states of

the world. The model switches between these states with a mechanism controlled an

unobservable state variable that follows a first-order Markov chain.

2.6.1 A Simple Example

Let st represent two unobservable states (1 and 2). A simple switching model for the

variable zt is letting it switch between two autoregressive states.

zt =


α0 + βzt−1 + εt, if st = 1,

α0 + α1 + βzt−1 + εt, if st = 2.

(2.29)

where |β| < 1 and εt ∈ i.i.d.. This is a stationary AR(1) process with mean α0/(1− β)

in state 1 and (α0 +α1)/(1−β) in state 2. The state specification st follows a first order

Markov chain with a transition matrix

P =

P(st = 1|st−1 = 1) P(st = 2|st−1 = 1)

P(st = 1|st−1 = 2) P(st = 2|st−1 = 2)

 =

p11 p12

p21 p22

 (2.30)

2.6.2 Hidden Markov Models

Efficient parameter estimation of the dynamics of financial time series is of great im-

portance when it comes to valuation of derivatives, risk management and asset allo-

cation. The first major results HMM-filtering was made during the 60s. Since then,

much has been done, including results as the forward-backward method [Baum et al.,

1970], the Baum-Welch filter [Baum et al., 1970], the Viterbi algorithm [Viterbi, 2006],

the Expectation Maximisation algorithm [Dempster et al., 1977], the Markov-switching

model [Hamilton, 1988] and much more. In this section we will introduce the theory

and all the underlying assumptions behind Hidden Markov Models based on [Tenyakov,

2014].

Let {Xk, k ≥ 0} be a Markov chain where k is a non-negative integer. As in the case

with financial time series, we let {Xk} be embedded in noisy signals. Hence, we say that

{Xk} is hidden since the process that we can observe is corrupted by noise. However, the
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process that we can observe, {Yk, k ≥ 0}, is a distorted version (and a function) of {Xk}.

If we follow the formulation of Hidden Markov Models described in [Cappé et al., 2005],

the HMM is formulated as a bivariate discrete process {Xk, Yk}, where {Xk} is a Markov

chain and {Yk} is random variables conditional on {Xk} [Cappé et al., 2005]. This can

be formulated as

Xk+1 = f(Xk, Uk) (2.31)

Yk = g(Xk, Vk) (2.32)

where f, g are measurable functions and {Uk}, {Vk} are sequences of random variables

belonging to the same underlying distributions. This is visualized in Figure 2.1.

Figure 2.1: A simple Hidden Markov Model where Xt is the hidden states and Yt is the
observation process.

2.6.3 Distinguish Regimes of Cointegration

Since Engle and Granger developed the concept of cointegration in 1987 it has been used

widely in research and in applications in real data analysis. A Markov regime switching

model is now introduced that allows the cointegration relationship between two time

series to be switched on or off over time via a discrete-time Markov process.

Suppose that we have two non-stationary I(1) series Ut and Vt, and Yt = Ut − δVt − α.

Here, α and δ are parameters from a (rolling) regression between the two time series.

If Yt is stationary, then we say that time series Ut and Vt are cointegrated. To test for

stationarity, we use the Engle-Granger method which tests the γ = 0 null hypothesis
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using the ADF unit root test based on the error correction model with lag order K [Cui

and Cui, 2012].

∆Yt = u(Xt) + γ1{Xt=0}Yt−1 +
K∑
k=1

β
(Xt)
i ∆Yt−k + ε

(Xt)
t (2.33)

PXt =

p00 p01

p10 p11

 (2.34)

where u is a constant, βi are autoregression coefficients, εt is the error term and P is

the Markov transition matrix. When Xt = 0 there exists a cointegration relationship

and Xt = 1 specifies a unit root process for Yt and hence no cointegration exists.

2.6.4 Implementation of the Markov Regime Switching Model

In this section the algorithms used in our computational implementation will be de-

scribed formally. Our model was implemented using the Matlab package MS Regress

[Perlin, 2015].

Maximum Likelihood Estimation

The general Markov Switching model can be estimated with either maximum likelihood

methods or Gibbs-Sampling (Bayesian inference). In the Matlab package that we used,

all models are estimated using maximum likelihood. A general overview of the theory

will be described below.

Consider a regime switching model

yt = uSt + εt (2.35)

εt ∈ N(0, σ2St
) (2.36)

St = 0, 1 (2.37)

The log likelihood of this model is

lnL =

T∑
t=1

ln

 1√
2πσ2St

exp(−yt − uSt

2σ2St

)

 (2.38)
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If all the states would have been known, the maximum likelihood estimation is straight-

forward, with a simple maximization of the expression with respect to the parameters.

In the regime switching setting we change the notation for the likelihood function. Con-

sider f(yt|St = j,Θ) as the likelihood function for state j conditional on the parameter

set (Θ). In this case, the full likelihood function of the model is given by

lnL =

T∑
t=1

ln

2∑
j=1

(f(yt|St = j,Θ)P(St = j)) (2.39)

This the weighted average of the likelihood function in each state, where the weights

equals the state probabilities. However, when the state probabilities are not observed,

this weighted likelihood function is not enough, but Hamilton’s filter can be used to

calculate the filtered probabilities of each state.

Hamilton’s filter

Let ψt−1 be the matrix of available information at time t− 1 and the following iterative

algorithm can be used to estimate P(St = j).

1. Set a guess for the initial probabilities at t = 0, P(S0 = j) for j = 0, 1, e.g.

[0.5; 0.5].

2. From t = 1 calculate the probabilities of each state given information in previous

state

P(St = j|ψt−1) =
2∑
i=1

pijP(St−1 = i|ψt−1) (2.40)

where pij are the Markov transition probabilities.

3. Then update the probability of each state given the new information according to

P(St = j|ψt) =
f(yt|St = j, ψt−1)P(St = j|ψt−1)∑2
j=1 f(yt|St = j, ψt−1)P(St = j|ψt−1)

(2.41)

4. Set t = t+ 1 and iterate step 2 and 3 until t = T .

See Hamilton (1994) and Kim and Nelson (1999) for a more thorough discussion on the

topic.
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Viterbi Algorithm

Given a sequence of observations {Yi}, i = 1...T , we want to compute the most likely

sequence of states {Xi}, i = 1...T , conditional on our observations.

arg max
X

P (X|Y ) (2.42)

Then, we define for arbitrary t and i the maximum probability of ending up in state Si

at time t

δt(i) = max
X1...Xt−1

P ({X1...Xt, Xt = Si} ∩ {Y1...Yt}) (2.43)

Since

max
X

P (X|Y ) = max
P (X ∩ Y )

P (Y )
(2.44)

we have that

arg max
X

P (X|Y ) = arg max
X

P (X ∩ Y )

P (Y )
= arg max

X
P (X ∩ Y ) (2.45)

To summarize, we end up in an algorithm as follows

• Initialization step: δ1(i) = πibi(Y1) for 1 ≤ i ≤ N

• Induction step: δt(j) = max1≤i≤N δt−1(i)aijbj(Yt), 2 ≤ t ≤ T , 1 ≤ j ≤ N

To recover the most likely sequence of states, we define

ψT = arg max
1≤i≤N

δT (i) (2.46)

and use XT = SψT
. The remaining states are found recursively through

ψt = arg max
1≤i≤N

δt(i)aiψt+1 (2.47)

and then letting

Xt = Sψt (2.48)

Forward Backward Smoothing Algorithm

The whole idea of the Forward Backward Algorithm is to answer the question of how

to efficiently calculate the probability of a specific sequence of observations given a
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parameter set λ = (A,B, π). We define the joint probability of this observation and

being in state Si at time t as

α(t, i) = P (Y1, ..., Yt, Xt = Si) (2.49)

The Forward Algorithm is then carried out as

• Initialization: α(1, i) = πibi(Y1)

• Induction: α(t+ 1, i) =
∑N

j=1 α(t, j)ajibi(Yt+1)

• Termination: P (0) =
∑N

i=1 α(T, i)

The Backward Algorithm calculates the probability β(t, i) given by

β(t, i) = P (Yt+1, ..., YT |Xt = Si),where 1 ≤ t ≤ T − 1 (2.50)

We set β(T, j) = 1 ∀j and calculate the above equation backwards from t = T − 1 as

β(t− 1, i) =

N∑
j=1

aijbj(Yt)β(t, j) (2.51)

2.7 Trading Strategies on Regime Shifts

The natural motivation for finding cointegrated regimes is to develop efficient and prof-

itable trading strategies. In this section we suggest a couple of trading strategies based

on the results of our statistical modelling of the iTraxx and EURO STOXX indices.

2.7.1 Algorithmic Trading

Algorithmic trading represents the computerized executions of financial instruments

[Kissell, 2013]. Trading via algorithms requires investors to first specify their trading

rules through mathematical instructions. It can be used to maximizing profits but also

minimize the cost, market impact and risk in execution of an order.

2.7.2 Pairs trading

Pairs trading is a trading or investment strategy used to exploit financial markets that

are out of equilibrium [Elliott et al., 2005]. In the 1980s, the Wall Street quant Nunzio
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Tartaglia at Morgan Stanley together with his team of mathematicians and computer

scientists tried to find arbitrage opportunities in the equities market. The group devel-

oped highly technical trading schemes that were executed through automated trading

systems. One phenomenon that they exploited with great success was to trade securities

that tended to move together - in 1987 the group made an astonishing $50 million profit

to the firm. Even though the group ended their operations in 1989 after some bad years,

pairs trading has since then become a popular ”market neutral” investment strategy for

hedge funds, institutional and individual traders [Gatev et al., 1999].

The standard pairs trade looks at the magnitude of the spread of the pairs, i.e. the

residuals of the rolling regression. A long position is put on the relatively undervalued

security and a short position is put on the relatively overvalued security. We tried dif-

ferent thresholds to initiate and exit the trades described in Section 2.7.2. The model

was specified as

∆Yt = γ1{Xt=0}Yt−1 + β(Xt)∆Yt−1 + ε
(Xt)
t (2.52)

PXt =

p00 p01

p10 p11

 (2.53)

where compared to Section 3.5.2 we have set u = 0 and k = 1, since the original series

are I(1) and ∆Yt has no drift. The Viterbi path described in Section 3.6.4 assumed to

have the initial state probability vector [0.5; 0.5].

2.7.3 The trading setup

Our trading strategies are based on looking at the magnitude of the regression residuals,

during the cointegrated regimes. This section will go through and motivate the trading

rules that we will be using. Their performance will be disclosed in Chapter 4.

• When in a cointegrated regime, if residuals > k1σ short the spread, i.e. sell equities

and sell protection. Exit the trade when residuals < k2σ.

• When in a cointegrated regime, if residuals < k3σ go long the spread, i.e. buy

equities and buy protection. Exit the trade when residuals > k4σ.

Here, σ is the standard deviation of the residuals, and k is just a scaling factor to the

threshold of when to enter and exit the trade. Figure 2.2 visualizes the trading strategy,
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showing the residuals next to the regimes and trading thresholds.
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Figure 2.2: Illustration of the trading strategy, showing the regimes, residuals and trad-
ing thresholds k1 − k4 as horizontal lines.
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Chapter 3

Data

3.1 The data sets

The data set that we are working with consists of three series of iTraxx Europe Main

(Series 20-22) ranging from 2013-09-20 to 2015-03-11, as well as EURO STOXX 50

futures from the corresponding time period (Figure 3.1). All prices for both of the

indicies are roll adjusted.
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Figure 3.1: iTraxx (blue line, left axis (basis points)) plotted with EURO STOXX 50
(red line, right axis (index level)).
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3.2 Properties of the CDS data

When working with historical CDS prices, like most financial time series data, there

are some special features that must be taken into consideration, such as: stationarity,

autocorrelation and so forth. In a later section of this chapter we will therefore dedicate

some effort into the statistical properties and stylized facts of our data.

3.2.1 Price recording of OTC CDS prices

The CDS data provided for this thesis is historical price data on the iTraxx Europe

index. Unlike equity futures that are traded on organized and electronic exchanges CDS

index contracts are OTC products. OTC stands for Over-the-Counter and means that

these contracts are traded on inter-dealer broker markets. When an order is placed on

an exchange the order information is easily available to all members of the exchange.

Moreover, this data is recorded by many agents and easily accessible afterwards (e.g.

through a Bloomberg Terminal). However when a trade occurs in an OTC market it is

a bilateral transaction that only the two parties in the trade are aware of. Orders and

transactions are thus not publicly available. Therefore, there is nothing in the structure

of the market that prevents two trades to occur simultaneously, but at different prices,

in contrast to an order on a public exchange. The index provider (Markit Group Lim-

ited) only publishes daily data points, which is based on an average of daily transactions.

The data provided to us for this thesis from AP4 is therefore quite unique. As a portfolio

manager, AP4 have the privilege of being approached by sell-side representatives that

quotes them on the levels were they can offer to trade. Ulf Erlandsson at AP4 have set

up a system to scrape and store the levels quoted to him. Thus he has a very time dense

data set of where the biggest CDS index brokers, such as the big investment banks, are

offering to trade these contracts.

3.2.2 Rolling of CDS series

The price data we were given from Erlandsson was raw price data. In actual trading

these contracts are rolled every sixth month. This is done in order to sustain the

maturity of the contract, so that there are always available contracts with standardized

maturities. By convention, traders and portfolio managers roll to a new on-the-run
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series semiannually, around March 20 and September 20 [ISDA, 2016]. Rolling over to

a new on-the-run series also allows changes to the single name constituents of the index

(e.g. in case of a credit event in any of the index members). The roll down the curve,

implied by the extended maturity, is manifested in an abrupt price change when a series

is rolled. In the data employed for analysis in this paper, adjustments have been taken

to account for this roll effect on all series. Information on impact from the roll was given

to us by Erlandsson in the data file, who has observed the price effect from the set of

days then both the subsequent series were trading with good liquidity.

3.3 Properties of the EURO STOXX data

Unlike the CDS index contracts, EURO STOXX futures are an exchange traded product

and does not have the same opacity issues, since trading takes place on public exchanges

where all trades are centrally recorded. Because of this, algorithmic trading strategies

for equity futures is more straightforward and requires less infrastructure. Contracts are

priced directly on the index with a fixed euro amount per index tick level.

3.3.1 Rolling of EURO STOXX series

EURO STOXX futures contracts are rolled in a similar fashion to iTraxx Europe Main,

however, with a quarterly frequency. EURO STOXX futures contracts are rolled on

specified end dates for each of the months: March, June, September and December.

Also for the EURO STOXX price time series data, the raw price has been adjusted for

the roll effect in accordance with the discrepancy when both series were liquidly trading.

3.4 Order of integration

The aim is to identify the regimes in which the original I(1) iTraxx and EURO STOXX

series are co-integrated, hence making the residuals of a linear combination stationary,

so that a trading algorithm can be developed based on a divergence/convergence be-

haviour under the periods identified as co-integrated. A first step is to examine establish

that the original series are indeed I(1).

In order to test the iTraxx and EURO STOXX time series being integrated of order
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one an ADF-test (described in Section 2.5) is conducted using MATLAB’s built in

adftest. Both time series were tested with the default significance level of α = 0.05.

Results from these statistical tests clearly indicates failure to reject the null hypothesis

of no unit-root being present in the data. Figure 3.2 depicts the return series of the

EURO STOXX 50 and the iTraxx Europe Main indices (first differences of logarithms

of the index, 4221 observations).
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Figure 3.2: iTraxx Europe Main log returns (blue line, top graph) plotted with EURO
STOXX 50 log returns(red line, bottom graph).

3.4.1 Heavy tails and leptokurtosis of return data

A stochastic random variable is described to have fat tails if it exhibits larger deviation

outcomes than a normally distributed random variable with equal mean and variance.

Furthermore, fat tails can be defined by the existance of excess kurtosis in a distribution.

The kurtosis of a distribution is its fourth standardized moment, defined as:

Kurtosis[X] =
µ4
σ4

=
E[(X − µ)4]

(E[(X − µ)2])2
(3.1)

Excess kurtosis is kurtosis surpassing that of what is displayed from a normal distri-

bution. High kurtosis displayed in financial time series is due to asynchronous larger

deviations than what is predicted by the standard normal distribution (which has kur-

tosis equal to 3), often with a more peaked density of the mean, often referred to as
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leptokurtosis. The table below presents the sample kurtosis for both iTraxx and EURO

STOXX data.

Table 3.1: Sample kurtosis of log returns

Series EURO STOXX 50 iTraxx Europe Main

Kurtosis 9.3269 20.4425

As mentioned, a normally distributed random variable has kurtosis of 3. Thus, we

can confirm that both of our time series exhibits typical characteristics of financial time

series and are indeed heavy tailed. By analyzing the histograms of log returns we can

also establish that both of the series also display leptokurtosis.

3.5 Regression analysis of the the data

3.5.1 Optimal memory length for regression parameters

To form a successful algorithmic trading strategy using the iTraxx and EURO STOXX

pair, a first approach is to examine the linear relationship between the two series. For

this purpose a rolling linear regression model was used. In calibration of a MW-rolling

window regression the MW latest observation are used to form the current regression

parameters. This will give a (N −MW )(p + 1) matrix of regression parameters for a

data set consisting of N samples conducted with a regression of order p.

Since this paper uses hourly data and aims to capture current market-sentiment, so

called risk-on/risk-off behaviour trends in the assets classes concerned, the effective

memory length suitable to use for these series should be about one to two months. This

assumption stands reasonable given that most economic data, such as PMI, GDP, labour

market statistics as well as central bank rates are released so that investors are able to

form a relatively consistent economic outlook picture in this period of time. This percep-

tion was confirmed by people in the industry as a good way to capture current market

risk-on/risk-off behaviour and allocation flows to different regions and asset classes. For

rigorousness we tested the regression for both a rolling regression window of one and

two months (MA=200, MA=400). The rolling level of the parameters for both memory

lengths are depicted in Figure 3.3. We also tried shorter horizons, MA = 100, but got

worse results that we chose not to include in the figure.
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Figure 3.3: Parameters of rolling OLS regression of the log time series. iTraxx set as
the dependent and EURO STOXX 50 as the explanatory variable. 200 hour in blue and
400 hour moving linear regression in red.

Since one is clearly able to see that there are some notable differences in both speed of

adoption and robustness for the parameters, depending on whether the memory length

employed was chosen as one or two months, the remainder of this thesis will conduct

analysis on both time frames to see how well different market dynamics are captured

and represented.

3.5.2 Stability to outliers

From the analysis conducted in Section 3.4 we recall that our training data displayed

many typical characteristics of financial time series data, such as heavy tails and lep-

tokurtosis. These non-normality effects could be an indication of outliers in the data,

to which ordinary least squares regression, as described in the previous subsection, is

sensitive. In order to test for the influence of potential outliers and stylized facts a

robust regression is also performed, for an explanation of robust regression readers are

referred to Section 2.2.
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In Figure 3.4 are the results from robust regression, calculated using the bi-square weight

function.
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Figure 3.4: Comparison of rolling window regression with robust regression for a 200
hour moving window.

Even though the regression above is performed on the shorter length memory of

a 200 hour moving window, which has a higher sensitivity to outliers, it can clearly

be seen that the effect of robust regression is minimal and would be even less using a

longer memory. Therefore, it can be concluded that a normal ordinary least squares

regression provides satisfactory results, without having to resort to more advanced ro-

bust regression techniques. Thus, for training of the regime switching Markov machine,

path decoding and trading strategies the standard OLS residuals will be used since the

influence of outliers was negligible.

3.6 Residual analysis of the data

Since this thesis aims to investigate algorithmic trading based on linear dependence

structures between our series, we will look into the characteristics of the residuals, which

is the input data for our learning algorithm, for both time frames considered.
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Figure 3.5: Residuals from rolling OLS regression with a 200 and 400 hour moving
window.

Above are the residuals resulting from a 200 hour (top) and 400 hour (bottom)

moving regression. From a quick visual inspection it seems obvious that the series are

mean reverting (µ200 = −0.0051, µ400 = −0.0110) and that there are period where the

residuals are consistently trending away from their long run equilibria.
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Chapter 4

Results

This chapter will present the results of the Markov machine modelling and trading

strategies.

4.1 The Regime Switching Model

First, the raw data was down-sampled to hourly business time data (daily 08:00-18:00)

through simple linear interpolation. Then a rolling OLS regression was used to calculate

the residual vector. As describer earlier, we used a rolling window size of 200 and 400

hours when performing the regression. The model was specified as

∆Yt = γ1{Xt=0}Yt−1 + β(Xt)∆Yt−1 + ε
(Xt)
t (4.1)

PXt =

p00 p01

p10 p11

 (4.2)

where compared to Section 2.6.3 we have set u = 0 and k = 1, since the original series

are I(1) and ∆Yt has no drift. The Viterbi path described in Section 2.6.4 assumed

to have the initial state probability vector [0.5; 0.5]. We will go through the results in

detail for a regression window of 200 and 400 hours.

4.1.1 200 hour Regression Window

In Figure 4.1 we have plotted the explained variable ∆Yt against the conditional stan-

dard deviation of equation (4.1) in state 1 and the smoothed state probabilities with a

regression window of 200 hours.
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Figure 4.1: State 0: cointegrated series, State 1: no cointegration. 200 hour regression
window.

The expected duration of state 0 is 72.86 hours and the expected duration of state

1 is 42.55 hours. The most probable path can be calculated with the Viterbi algorithm

looks as follows.
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Figure 4.2: Viterbi path of the 200 hour moving regression. State 0: cointegration
between iTraxx and EURO STOXX, State 1 : No cointegration between iTraxx and
EURO STOXX
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4.1.2 400 hour Regression Window

Again, we have plotted the explained variable ∆Yt against the conditional standard devi-

ation of equation 4.1 in state 1 and the smoothed state probabilities with the regression

window of 400 hours.

0 500 1000 1500 2000 2500 3000 3500 4000
-0.1

0

0.1

Explained Variable #1

0 500 1000 1500 2000 2500 3000 3500 4000
2

4

6

8
10

-3

Conditional Std of Equation #1

0 500 1000 1500 2000 2500 3000 3500 4000

Time

0

0.5

1

S
m

o
o

th
e

d
 S

ta
te

s
 P

ro
b

a
b

ili
ti
e

s

State 1

State 2

Figure 4.3: State 1: cointegrated series, State 2: no cointegration. 400 hour regression
window.

The expected duration of state 0 is 70.26 hours and the expected duration of state

1 is 43.43 hours. We note that there is no considerable difference in expected state

durations between the regression window sizes of 200 and 400 hours. For the major

part of the backtest the smoothed state probabilities generated by the Markov learning

algorithm clearly distinguishes the most probable state. However, as for the 200 hour

moving regression case mentioned before, in order to present the most probable path

over the whole sequence taking the trajectory of the path into consideration. This most

likely path, i.e. the Viterbi path looks as follows:
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Figure 4.4: Viterbi path of the 400 hour moving regression State 0: cointegration be-
tween iTraxx and EURO STOXX, State 1 : No cointegration between iTraxx and EURO
STOXX

4.1.3 Transition Probabilities

The transition probability matrices, which denotes the probability of being in one state

at time t1 and remaining in that state, respectively moving to another at t2, are pre-

sented below for the 200 hour moving regression setup:

PXt =


X1 X2

X1 0.9872 0.0220

X2 0.0128 0.9780

 (4.3)

And for the 400 hour moving regression:

PXt =


X1 X2

X1 0.9858 0.0230

X2 0.0142 0.9770

 (4.4)

4.1.4 Model Parameters

The parameters in equation (4.1) were estimated as follows
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Table 4.1: Model Parameter Estimation Results

State γ β

Window 200 1 -0.0215 -0.0753
Window 200 2 0 -0.0844
Window 400 1 -0.0111 -0.0665
Window 400 2 0 -0.0756

4.1.5 Model Evaluation

In Table 4.1 the two different Markov regime setups are compared and evaluated ac-

cording to a number of information criteria and stability tests. The results are fairly

stable over both regression window lengths. Therefore, for consistency and rigorousness

reasons we carried out the trading strategies with a window of 200 and 400 hours.

Table 4.2: Statistical properties with different regression windows

AIC BIC LL E[dur|St = 1] E[dur|St = 2]

200 hour window -3.0442e04 -3.0366e04 1.5233e04 72.86 42.55
400 hour window -2.8949e04 -2.8874e04 1.4487e04 70.26 43.43

Here AIC is the Akaike information criterion, BIC is the Bayesian information cri-

terion, LL is the log-likelihood and E[dur|St = i], i = 1, 2, is the expected duration

(hours) of each state.

4.2 Comparison with naive pairs trading strategy

To get an initial perspective on the trading strategies, we compare them to the perfor-

mance of letting trades be initiated in both states.

Table 4.3: Trading Strategy Performance (Without considering the regimes)

Regression Window k1/− k4 k2/− k3 yield (%) Number of trades

Strategy 1 200 0.75 0 13 268
Strategy 2 200 0.5 0 14 360
Strategy 3 400 0.75 0 -3 160
Strategy 4 400 0.5 0 -4 244

Interestingly, the performance of the same strategies are much worse. As expected

the number of trades increase significantly, but since transaction costs are overlooked,
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the bad performance is simply due to trading in unprofitable regimes. In Figure 5.1 the

percentage cumulative return for strategy 4 is visualized. As seen, when comparing to

the next Section, the volatility is much higher and in the latter part of the data set when

state 2 is more present, the performance is lousy. These negative returns are obviously

avoided when applying the trading rules based on the Markov regime switching model.
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Figure 4.5: Percentage cumulative return for strategy 4.

4.3 The Trading Strategies

Simulated trading was conducted on the data set according to the setup in Section

2.7.2. However, the trading environment has been significantly simplified. We assume

no transaction costs and the pricing of the CDS contracts is also substantially simplified.

A constant RPV01 of 4.6 is used. In reality the RPV01 would depend on several factors

described in Section 1.3.2. For the EURO STOXX futures contracts the contract tick

value was set to 10 euro, and for the CDS index contract it was set to the fixed RPV01

(4.6). In Table 4.4 performance of different strategies are summarized.
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Table 4.4: Performance of different trading strategies

Regression Window k1/− k4 k2/− k3 yield (%) Number of trades

Strategy 5 200 0.25 0 25 320
Strategy 6 200 0.5 0 27 200
Strategy 7 200 0.75 0 23 148
Strategy 8 200 1 0 8 104
Strategy 9 400 0.25 0 19 204
Strategy 10 400 0.5 0 14 132
Strategy 11 400 0.75 0 16 92
Strategy 12 400 1 0 19 56

Since our simulated trading environment is relatively far away from reality, con-

sidering all the simplifications, one should look at the performance of the strategies

for comparative purposes only. Not surprisingly, the number of trades is a decreasing

function of the distance between the trading thresholds. Also, we note that a larger

regression window causes fewer trades. The number of trades is simply the number

of transactions, i.e. 4 trades for each cycle (2 for each asset). See Figure 4.5 for the

percentage cumulative return for strategy 6 and Figure 4.6 for strategy 11.
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Figure 4.6: Percentage cumulative return for strategy 6.
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Figure 4.7: Percentage cumulative return for strategy 11.

We assumed an amount of initial capital when starting the algorithm of 60 000

euro. Then for each cycle 1 equity futures contract was bought or sold. To balance this

with the correct number of CDS index contracts we used the following self explanatory

formulae.

#iTraxx contracts

#EURO STOXX contracts
=

10

4.6

EURO STOXX index level

iTraxx index level
(4.5)

i.e. the tick value relationship multiplied with the index level relationship when the

trade is initiated.
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Chapter 5

Conclusions

This thesis has successfully proposed a novel approach of distinguishing regimes in which

the cross asset pair consisting of EURO STOXX 50 futures and iTraxx Europe Main

CDS contracts statistically indicates cointegration. A regime switching Markov model

is introduced allowing us to determine when the cointegration state is deemed to be

statistically significant.

5.1 Establishing efficient memory length

In chapter 4 we have conducted statistical analysis and presented the results for both

200 and 400 hour moving regressions, as motivated in Section 3.6. It seems that gener-

ally, the 200 hour strategies preform better than its 400 hour counterparts. One purely

mathematical explanation behind this characteristic could relate to the average duration

of the different co-integrated states. The average duration of the the respective states

are about 70 and 50 hours (cointegrated vs. non-cointegrated) so by setting the memory

length to 400 hours means that there is a clear risk of running over several regimes when

calculating the residuals, thereby smoothing out current trends all too much.

Therefore, for reasons of completeness we also conducted a quick test using a 100 hour

moving window. The results here where however dissatisfying as none of the strategies

we tested could generate a double digit return. Thus indicating setting the memory

length close to levels of average state duration risks making the behaviour of the regres-

sion parameters too erratic.
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5.2 Considering transaction costs

In all of the above investigated trading strategies of this theses, the effect of transactions

costs have been neglected. In real trading, one both faces the effect of brokerage fees as

well as the bid-offer spread.

The brokerage fee is fixed and payed to the exchange-connected broker for executing

the transition on behalf of the client whereas the spread is a function of current market

liquidity. After discussions with AP4 we established that a reasonable range for the

total transaction costs would be about 0.1-0.25 bp for iTraxx and 1 tick in spread with

negligible broker fee for EURO STOXX futures.

Thus we can easily conclude that the totalt impact of transations cost of these strategies

is well below 1 percent of capital yearly. As a result, including the effect of transactions

cost into the strategies would only have a minor impact for the most promising of our

listed strategies. For the more transaction intensive ones (with lower trading thresholds)

the impact would of course be larger. Although, these strategies are less profitable even

when transaciton costs are excluded.

5.3 Further Research Areas

For future research on this topic it is of course very important to have a good and stable

model. Therefore it would be very interesting to test the model over a much larger

data set and making several out of sample tests. Throughout our dataset equities are

constantly strengthening and hence protection is declining. How does the model react

in a state of the world where the inverse is true or equities are fairly constant?

Other natural suggestions for further research is complementing with other cross as-

set pairs, such as an American pair (S&P 500 futures and CDX). The extension of

possible trading strategies on pairs is infinite. In this thesis, the main focus has been

the implementation of the Markov regime switching model. Naturally, it would be of

great interest to simulate a more realistic trading environment with a proper CDS index

pricing technique and real transaction costs.
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