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Abstract

When an internet user opens a web page containing an advertising slot, how
is it determined which ad is shown? Today, the most common software-based
approach to trading advertising slots is real time bidding: as soon as the user
begins to load the web page, an auction for the slot is held in real time, and the
highest bidder gets to display their advertisement of choice. But each bidder
has a limited budget, and strives to spend it in a manner that maximizes the
value of the advertisement slots bought. In this thesis, we formalize this prob-
lem by modelling the bidding process as a Markov decision process. To find
the optimal auction bid, two different solution methods are proposed: value
iteration and actor–critic policy gradients. The effectiveness of the value it-
eration Markov decision process approach (versus other common baselines
methods) is demonstrated on real-world auction data.

Keywords: Reinforcement learning, Markov decision process, value iteration, policy
gradient, real time bidding
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Chapter 1

Introduction

1.1 Real time bidding
When an internet user opens a web page containing advertising slots, how is it determined
which ad is shown? Today, the most common way is through programmatic advertising,
i.e. using software to trade advertising slots. In turn, the most common type of program-
matic advertising is real time bidding (RTB): a process where available advertising slots
are auctioned off as soon as a user loads the web page containing them.

The essential steps of a single real time bidding auction are visualized in Figure 1.1. For
clarity, we divided the process into two main parts. Figure 1.1a shows the bidding part,
where the main steps are:

i. A user visits a publisher’s website or app. When the user begins to load a page contain-
ing an eligible advertisement slot, the supply side platform (SSP) is almost instantly
notified.

ii. A supply side platform holds an auction for the ad slot by sending out requests for bids
to several different bidders, called demand side platforms (DSPs). The bid requests
contain information about the ad slot and target user, and reach the DPSs approxi-
mately 10 milliseconds after the user loads the web page.

iii. Each DSP responds with a single bid (in USD) for the ad slot. The responses have to
arrive, at the latest, roughly 100 ms after the bid request is relayed.

Figure 1.1b illustrates the steps which occur after the bids have been submitted:

iv. The supply side platform compares the bids and awards the ad slot to to the highest
bidder. They can now, barring some technical details, place their advertisement of

7



1. Introduction

(a) The bidding step.

(b) The serving step.

Figure 1.1: A flowchart visualizing the real time bidding auction
process for a single advertisement slot. The bidding step starts as
soon as a user begins to load a web page. A winner is determined
and an ad is served in less than 100 ms.
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1.2 Approach

choice in the slot. However, the actual price paid by the highest bidder is not his own
bid. Instead, most SSPs employ second price auctions: the highest bidder wins, but
only has to pay an amount equal to the second highest bid. Second price auctions are
used to incentivize bidders to bid their true value.1 Note that the final price is only
revealed to the winner, and that competitors’ bids are never revealed to any of the
bidders.

v. The DSPs are not the advertisers (e.g. retailers, organisations) themselves. The role of
a DSP is to handle the bidding process/infrastructure on behalf of their clients, which
are the actual advertisers. Thus the chosen advertisement is not for the DSP itself, but
from one of its clients.

Emerse AB owns and operates a demand side platform, and is continuously bidding for
advertisement slots on behalf of its clients. The main problem is that each advertising
campaign has a limited budget, and Emerse wants to spend it in a manner that maximizes
the value of the purchased ad slots.

1.2 Approach
In this thesis, we utilize reinforcement learning to build two different bidding algorithms.
The goal of these is offer bids in a manner that, compared to Emerse’s current algorithms,
increases the value gained from the limited campaign budgets. We formalize the bidding
process by modelling it as a Markov decision process (MDP). We then propose two differ-
ent solution methods for finding the most suitable bid for each auction: (i) value iteration
and (ii) actor–critic policy gradients. The methods are evaluated using real-world histori-
cal auction data from Emerse AB. Assigning an all-encompassing numerical value to an
ad slot is a futile task, wherefore we will primarily focus on two performance measures
for our bidding methods: total number of clicks on bought ad slots and the cost per click.
To summarize the results: the value iteration method successfully outperforms the base-
line methods, while the actor–critic policy gradient approach suffers from convergence
problems.

1.3 Contributions and problem statement
The contributions of this thesis are mainly practical; the theory and methods used are
well-known. The literature study that we carried out made it apparent how the MDP for
the bidding process should be formulated (see for example Wu et al. (2018)) and that
it was possible to solve the RTB-specific formulation of the MDP with value iteration
(Cai et al., 2017). Both value iteration and the baseline methods require us to estimate
certain parameters, and ways to carry out these estimations were suggested in Zhang et al.
(2014). We considered and combined the information gained from the literature study and
implemented the value iteration solution and baseline methods on/for Emerse’s data.

1Details: Vickrey auction on Wikipedia.
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1. Introduction

On the other hand, we were not able to find any papers applying a policy gradient based
approach to RTB. Thus, our actor–critic policy gradient approach is the (apparent) first
attempt at doing so. Even though our implementation failed to converge to a satisfactory
solution, we hope that our efforts will facilitate the success of any further attempts at a
policy gradient based approach to RTB.

The problem statement has a different focus for each of our two chosen solution methods:

i. The value iteration solution
Since the value iteration solution had previously been successfully applied to RTB, is
it possible to implement it and reproduce its good results on Emerse’s (not identical
& more recent) data?

ii. The actor–critic policy gradient solution
The actor–critic policy gradient approach to RTB has not been previously attempted,
thus we aim to answer the following questions. Is it a generally viable approach for
RTB? Will a simple implementation of this method be fast enough to handle RTB?
Will its ability to naturally handle continuous action spaces facilitate convergence to
a satisfactory solution? Will the problem of sparse rewards be as impactful as in
previously attempted Deep Q-Learning based methods?

1.4 Related work and other applications
There have been recent efforts to apply various machine-learning methods (reinforcement
learning included) to real time bidding. Wu et al. (2018) proposed a model-free approach
with Deep Q-Learning (Mnih et al., 2015), and also implemented a neural network so-
lution for handling sparse rewards. Cai et al. (2017) took the value iteration approach,
leveraging neural network value function approximation to achieve large-scale viability.
Jin et al. (2018) utilized clustering methods to assign the most suitable bidding agent the
each cluster of advertisers. Wang et al. (2017) used an asynchronous stochastic Deep Q-
Learning method to successfully learn to bid from raw high-level semantic information.
Lastly, Zhang et al. (2014) provided a first complete public RTB dataset and appropriate
methods for benchmarking RTB performance.

Since real time bidding is a process unique to internet advertising, direct alternative appli-
cations of our solution implementations are very limited. However, reinforcement learn-
ing is a very general framework (see Section 2.1) and can, along with appropriate solution
algorithms, therefore be applied to a wide variety of problems. Some of these arise in
environments similar to RTB, while others arise in areas of a very different nature. The fi-
nancial markets could in some sense be considered similar to the RTB environment. There,
an actor–critic method called Deep Deterministic Policy Gradient (Lillicrap et al., 2015)
has been successfully applied to portfolio management (stock trading); see for example
Xiong et al. (2018) or Yu et al. (2019). For an extensive survey of reinforcement learning
in the financial markets, see Fischer (2018).

As mentioned, reinforcement learning algorithms also have applications in areas not at
all similar to RTB; as an example, take the area of robotics. In recent papers on how
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1.5 Outline

to teach robots appropriate control schemes, we find reinforcement learning solutions.
For example, Hwangbo et al. (2019) utilized a custom reinforcement learning setup to
train a four-legged robot in a simulated environment, and then successfully transferred the
knowledge to a real-world scenario. As another example, Huang et al. (2019) proposed a
new reinforcement learning approach for teaching a robot to complete its tasks in a gentle
manner.

Another area where reinforcement learning algorithms excel is in playing games. Perhaps
the most famous example arose in March 2016, when DeepMind2 made headlines after
beating the 18-time world champion of the board-game Go in a five-game match.3 To do
so, they utilized a reinforcement learning algorithm (Silver et al., 2016). From there, the
algorithm underwent further development to allow it to teach itself from scratch (Silver
et al., 2017, e.g.). The most recent state-of-the-art version of the algorithm is, starting
from scratch, able to to teach itself to beat world champions in both chess, Go, and shōgi
(Silver et al., 2018).

1.5 Outline
Chapter 2 introduces the general idea behind reinforcement learning, and the theoretical
foundation of the value iteration and actor–critic policy gradient methods. Chapter 3 be-
gins by explaining our reasoning behind choosing those two methods in particular. We
then describe how the theory presented in Chapter 2 is utilized in our RTB setting. We
also give implementation-specific details of our approach. Chapter 4 presents the test re-
sults and associated discussion. Lastly, final thoughts and a summary of our findings are
presented in Chapter 5.

2www.deepmind.com
3See e.g. “AlphaGo versus Lee Sedol” on Wikipedia.
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1. Introduction

1.6 Terminology quick-reference
As a closing note in this section, we list common jargon and acronyms used in the digital
advertising industry (Table 1.1).

Term Description

Impression A successful purchase and delivery of one advertisement slot, i.e. one
advertisement view.

Creative An advertisement.
Advertiser Someone who wishes to distribute advertisements.
Publisher A provider of advertisement slots, e.g. a newspaper.

Campaign An advertising campaign initiated by an advertiser. Usually active for
pre-defined duration and with a pre-defined budget.

DSP Demand side platform. Bids on RTB auctions on behalf of their clients
(or themselves). Emerse AB provides such a platform.

SSP Supply side platform, sells ad slots on behalf of publishers. Plays the
role of the auctioneer in RTB auctions.

CTR Click-through rate is the probability of an impression generating a click.
Can also be used in the context of whole campaigns or groups of users.

CPM Cost per mille is the average cost of one thousand impressions, often
used in the context of a campaign.

CPC Cost per click is the total advertisement cost divided by the number of
generated clicks.

Table 1.1: Explanations of common terms used in the advertising
industry.
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Chapter 2

Theory

In this section, we present the theory behind the methods used in our report. We aim
to give the reader both a qualitative and quantitative understanding of the methods used.
First we will describe the general idea behind reinforcement learning (RL). Then we will
introduce the standard mathematical framework, i.e. the Markov decision process (MDP).
Next we present the theoretical foundation of the value iteration and actor–critic policy
gradient approaches. As a closing note, we compare the two methods and discuss their
advantages and disadvantages. Unless otherwise stated, we refer the reader to Sutton and
Barto (2018) for details on the theory.

13



2. Theory

Figure 2.1: An overview of a few selected reinforcement learning
methods.

2.1 Reinforcement Learning

In general, one can divide the field of machine learning into three main paradigms: super-
vised learning, unsupervised learning, and reinforcement learning. While there is overlap
between the three categories, the definition of reinforcement learning is still fairly clean-
cut: it is the area of machine learning studying how an agent should act in its environment
in order to maximize some performance measure.

Figure 2.2 shows a standard reinforcement learning process. Starting from the depicted
dotted line and proceeding clockwise, the steps of the cycle are as follows:

1. We have a given state and reward from previous interactions with the environment.
The agent uses this information to decide on its next action. Index this action by i.

2. The agent then interacts with the environment by executing the chosen action. This
yields a new state and reward.

3. The new state and reward is in turn used to decide action i + 1 , and the cycle con-
tinues...

The general goal of reinforcement learning is to build an agent that through interactions
with the environment learns to perform actions that will maximize the cumulative reward
over time. To successfully reach its goal the agent needs to both exploit its current knowl-
edge/experience, and gain new knowledge by freely exploring the environment.

14



2.2 The Markov Decision Process

Figure 2.2: The reinforcement learning process. An agent inter-
acts with the environment through an action, usually chosen with
the current state and previous reward as input. The interactionwith
the environment yields a new state and reward, which in turn is
used to choose a new action, and the cycle continues. The general
idea is that through exploring the environment and exploiting past
experience, the agent will eventually learn which actions result in
the largest reward over time.

2.2 The Markov Decision Process

A Markov decision process is an extension of the Markov chain concept, so let us start
from there. A Markov chain is simply a probability based model describing a series of
events or states. The probability of ending up in state X after the next step only depends
on where you are now. Conversely, the so called transition probabilities do not depend
on the path that brought you to your current state. This property is often referred to as
memorylessness or the Markov property. Figure 2.3 shows a simple Markov chain with
only two states. Note that the transition probabilities from each state all sum to one.

Figure 2.3: A visualization of a simple Markov Chain. Arrows
and labels indicate possible transitions and their probabilities.
Note that the transition probabilities from each state all sum to
one.

15



2. Theory

The Markov decision process (MDP) extends the Markov chain by adding actions and
rewards. Choosing actions is now allowed, and one goes from modelling a series of events
tomodelling a decision making process. A MDP is, in its entirety, defined by four objects:

Object 1: State space, S
This is a finite set of all possible states s. A state can be defined in various ways;
details for our implementation are given in Sections 3.1.1 and 3.2.

Object 2: Action space, A or As
This is a finite set of available actions. The available actions can depend on
which state s we are in, or alternatively they could stay the same for all states.
Both discrete and continuous action spaces are allowed.

Object 3: State transition function, Pa(s, s′)
Yields the probability of ending up in state s′ after taking action a in state s.

Object 4: Expected immediate reward function, Ra(s, s′)
This is the reward received when transitioning to state s′ after taking action a in
state s.

Figure 2.4: A visualization of a simple Markov decision process.
Compare with Figure 2.3 and note the addition of choices (via
actions) and rewards. To reduce clutter we did not mark every
transition with a reward. One could assume that it is zero if not
explicitly drawn. Note that the transition probabilities from each
action all sum to one.

In addition to these objects, one also needs to set a discount factor 0 < γ ≤ 1 and a horizon
H ≤ ∞. Figure 2.4 illustrates a simple Markov decision process.

The last term we need to introduce is policy, denoted by π or π(s). In simple terms, it is the
set of rules the agent follows when deciding its actions. There are two types of policies:

16



2.3 Methods for finding the optimal policy

• Deterministic policy
Outputs a single action for each input state.

• Stochastic/probabilistic policy
Outputs the probability of choosing each available action in the input state. The
output is usually a probability distribution if A is continuous, and probabilities for
each action if A is discrete.

Once the Markov decision process framework is established, the main goal remains: find
the best decision in each state. As stated in the previous section, by “best decision in each
state” one usually means the policy that results in the largest expected total (discounted)
future reward. Such a policy is called an optimal policy, denoted by π∗(s). To summarize
in a more formal manner, a solution algorithm’s main goal is to find the policy π(s) that
maximizes

H∑
i=0

γi · Rai (si, s′i+1) , where ai = π(si) . (2.1)

Note that combining aMarkov decision process with a deterministic policy, fixes the action
for each state and reduces it to a Markov chain (with rewards).

2.3 Methods for finding the optimal policy
Numerous methods for finding the optimal policy exist, Figure 2.1 only lists a few. In this
thesis, we decided to use two different methods: value iteration and actor–critic policy
gradients. As for why we chose these two methods in particular, see Section 3.1. Before
we introduce the two chosen methods, a short paragraph on the most naive approach, i.e.
brute force.

The brute force approach to finding the optimal policy would go as follows: for each
possible policy, follow it for some time and record rewards; then pick the one with the best
reward. Unsurprisingly, this method is rarely viable since the number of possible policies
can be extremely large. Consequently, more sophisticated solution/search algorithms are
required.

2.3.1 Value Functions and Value Iteration

As shown in Figure 2.1, value iteration belongs to the class of solution algorithms which
perform some kind of value function estimation. But what is a value function? In short,
the value function of some policy π outputs the total expected (discounted) reward when
starting in state s and following π. One can intuitively think of it as a measure of how good
it is to be in state s if we follow the current policy. Using the established MDP framework,
we mathematically define the value function (of some policy π) as

V π(s) =
∑

s′
Pa(s, s′) (Ra(s, s′) + γV (s′)) , where a = π(s) . (2.2)

17



2. Theory

Note the recursive nature of Equation 2.2, and that we choose actions by querying the
policy with the current state as input. While Equation 2.2 is valid for any policy, the most
interesting one is the value function acquired while following the optimal policy π∗. This
optimal value function is denoted by V ∗(s), and can mathematically be defined as

V ∗(s) = V π∗(s) = max
π

V π(s) . (2.3)

When working with reinforcement learning, the progression is often divided into segments
called episodes. For example, if one is teaching an agent to play Tetris it is natural to take
each playthrough attempt (from first block to failure) as an episode. Since the Tetris agent
can survive a longer or shorter time, the episodes will be of varying length. For some
environments it is more suitable to choose episodes of a fixed length. Such is the case in
this thesis; to be able to balance the budget usage, our algorithms need to know how many
auctions they have left “to work with”. Since the constant flow of auctions (bid requests)
has no natural episode length, we introduced an artificial one by segmenting the bidding
process into fixed episodes of a 1000 auctions each. The total advertising budget budget
was distributed over the episodes. We chose an episode length of 1000 auctions based on
the fact that (judging from historical data) roughly one out of every 1000 ads are clicked.
Note that after implementing our solution, we tried varying the episode length to 500,
2000, and 10000. The final results were ever so slightly worse for an episode length of
500, while they did not markedly improve for neither lengths of 2000 nor 10000. Thus,
we surmised that keeping the episode length at 1000 auctions would strike a satisfactory
balance between performance and computational complexity.

For a (general) process with fixed-length episodes, denote the number of step left in the
episode with k. One then usually adds an extra index k to Equation 2.3: from V ∗(s) to

V ∗k (s) = max
a

∑
s′

Pa(s, s′) (Ra(s, s′) + γVk−1(s′)) . (2.4)

This equation still measures the total expected reward when following π∗, but now also
considers that we have k steps left. Due to the recursive nature of Equation 2.3, to calculate
V ∗k (s) one also needs to calculate V ∗k−1,V

∗
k−2, . . . ,V

∗
1 ,V

∗
0 .

Equation 2.4 is used in the value iteration solution method proposed by Bellman (1957),
shown in pseudo-code here:

This is a bottom up dynamic programming algorithm: we start with the smallest subprob-
lem (i.e. V ∗0 ), memorize the solution, and use it to solve V ∗1 (s) without re-doing the calcu-
lation for V ∗0 (s). By repeating this scheme, we work our way up the recursion (from “the
bottom”) until V ∗0 does not change anymore (convergence). Although here we are content
as long as the difference is less than θ, which is a laxer (more reasonable) condition than
a strict equality.

Once the calculation converges, we have found the optimal value functionV ∗(s) which sat-
isfies Equation 2.3 (for the infinite horizon problem with discounted rewards). No matter
what initial value for V ∗0 we pick, the algorithm will eventually converge (Puterman, 1994,
pp. 161-163).

18



2.3 Methods for finding the optimal policy

Algorithm: Value Iteration
Input: H, γ, Pa(s, s′), and Ra(s, s′) from MDP framework.
Output: Optimal policy π∗(s) for horizon H.
For all states s in S, initialize V ∗0 (s) = 0.
k ← 0
repeat

k ← k + 1
for each state s do

V ∗k (s)← maxa
∑

s′ Pa(s, s′) (Ra(s, s′) + γVk−1(s′))
end

until |V ∗k (s) − V ∗k−1(s)| < θ ∀ s or k = H;
for each state s do

π∗k(s)← arg maxa
∑

s′ Pa(s, s′)
(
Ra(s, s′) + γV ∗k−1(s

′)
)

end

As the reader may have noted, the optimal policy is only derived once convergence in the
value function is reached. This is a main characteristic of value iteration versus other exact
solution method like policy iteration. Once we haveV ∗(s), we can derive π∗(s) for any state
s by calculating

π∗(s) = arg max
a ∈ As

∑
s′∈ S

Pa(s, s′) (Ra(s, s′) + γV ∗(s′)) . (2.5)

2.3.2 Policy Gradients – Vanilla and Actor-Critic

Direct policy search methods, in contrast to the previous section, do not concern them-
selves with estimating a value function. As hinted in Figure 2.1, they instead work directly
with the policy. Standard policy gradients belong to this group ofmethods. This algorithm,
without any extra frills, is often referred to as “vanilla” policy gradients. It is important to
understand this method, since the mathematical step from the vanilla version to the actor–
critic version is very small. We will for this reason describe and derive the vanilla version,
and then take the (small) leap to actor–critic.

In policy gradient methods, actions u are generated by sampling from a probability dis-
tribution. The distribution we sample from is still called a policy, and can still depend on
the current state. Formally noted, ut ∼ πθ(ut |st). Note the change of notation for an action:
from a to u. The θ in πθ arises from the assumption that we can describe our policy by a set
of parameters. These are collected into a vector denoted by θ. An advantage of sampling
actions from a probability distribution is that it naturally incorporates exploration of the
environment which, as mentioned in previous sections, is a necessity for learning.

In vanilla policy gradients, the policy is represented by a neural network.1 It takes the
current state st as input and outputs the mean and standard derivation of a normal distribu-
tion, which we subsequently sample (probabilities of) actions from. Thus, θ contains the

1Often referred to as the “policy network”.
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2. Theory

weights and biases of the neural network. The main goal of reinforcement learning, i.e.
finding a policy maximizing the total discounted reward, is now a problem of finding the
right network parameters. As the method’s name suggests, this is done though gradient
descent.

The upcoming derivations follow Sutton and Barto (2018, pp. 324-336) and Sutton et al.
(2000). To approach the gradient descent problemmathematically, let us begin by defining
utility U(θ) as

U(θ) = E
 H∑

t=0

R(st, ut; πθ)
 =∑

τ

P(τ; θ)R(τ) . (2.6)

Equation 2.6 introduces new notation which will be used this section:

• τ is a sample path (trajectory) of an episode, i.e. a series of state-action pairs.

• R(τ) is the total reward of a trajectory: R(τ) =
∑H

t=0 R(st, ut). Note that we overload
the notation to improve readability.

• P(τ; θ) indicates the probability of a sample path under the policy determined by θ.
Upcoming derivations will show that this does not need to be explicitly stated.

Now take the gradient of Equation 2.6:

∇θU(θ) = ∇θ
∑
τ

P(τ; θ)R(τ) =
∑
τ

∇θP(τ; θ)R(τ)

=
∑
τ

P(τ; θ)
P(τ; θ)

∇θP(τ; θ)R(τ) =
∑
τ

P(τ; θ)
∇θP(τ; θ)
P(τ; θ)

R(τ)

=

[
Recognize

∂

∂x
log f (x) =

1
f (x)

∂

∂x
f (x) , use it to rewrite.

]
=

∑
τ

P(τ; θ) ∇θ log P(τ; θ) R(τ) . (2.7)

Equation 2.7 is equivalent to the expected value E
[
∇θ log P(τ; θ) R(τ)

]
, which can be em-

pirically estimated by following policy πθ for n sample paths, and then calculating

∇θU(θ) ≈
1
n

n∑
i=0

∇θ log P(τ(i); θ) R(τ(i)) ≡ ĝ , (2.8)

where sample path i is denoted by τ(i). Intuitively one can think of Equation 2.8 as a
gradient that tries to increase the probability of paths with positive reward, and decrease
probabilities of paths with a negative R(τ).

We previously stated that onewould not have to explicitly expressP(τ(i); θ), although Equa-
tion 2.8 might lead us to think that we have to. But it turns out we can circumvent this by
assuming that the dynamics are Markovian, and then separating P into states and actions
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in the following manner:

∇θ log P(τ(i); θ) = ∇θ log


H∏

t=0

P(s(i)
t+1|s

(i)
t , u

(i)
t )︸ ︷︷ ︸

Dynamics model

· πθ(u(i)
t |s

(i)
t )︸ ︷︷ ︸

Policy


= ∇θ

( H∑
t=0

log P(s(i)
t+1|s

(i)
t , u

(i)
t )︸ ︷︷ ︸

Does not depend on θ!

+

H∑
t=0

log πθ(u(i)
t |s

(i)
t )

)

=

H∑
t=0

∇θ log πθ(u(i)
t |s

(i)
t ) (2.9)

Again, note the Markovian assumption in the first step. Equation 2.9 can be calculated
by applying backpropogation to the policy network. By substituting Equation 2.9 into
Equation 2.8, we acquire an unbiased2 estimate of ∇θU(θ), which does not require us to
explicitly express P(τ(i); θ):

∇θU(θ) ≈ ĝ ≡
1
n

n∑
i=0

∇θ log P(τ(i); θ) R(τ(i))

=
1
n

n∑
i=0

 H∑
t=0

∇θ log πθ(u(i)
t |s

(i)
t )

 R(τ(i)) (2.10)

Although this is not quite enough; even though ĝ is unbiased, it is very noisy. To make it
viable for most real-world applications, we need to reduce the noise. This will be achieved
through two methods: by introducing a baseline, and by utilizing the temporal structure
of the sample paths. Adding a baseline is simply a matter of adjusting the reward part of
Equation 2.8, e.g. by subtracting some value b in the following manner:

∇θU(θ) ≈ ĝ ≡
1
n

n∑
i=0

∇θ log P(τ(i); θ)
(
R(τ(i)) − b

)
. (2.11)

A simple and intuitive choice for b is the average reward for a sample path (empirically
estimated). This choice modifies the PG algorithm to increase/decrease the probabil-
ity of paths with better/worse than average reward, instead of considering purely posi-
tive/negative reward. Note that the estimate in Equation 2.11 is still unbiased (, p. 331).
There are of course other more advanced (better) ways of choosing b. We will come back
to these, but first we will show how one can utilize the temporal structure of the sample
paths to further reduce the variance. Take

(
R(τ(i)) − b

)
from Equation 2.11 and expand it

(see Eq. 2.6):

∇θU(θ) ≈ ĝ ≡
1
n

n∑
i=0

[
· · ·

] [
R(τ(i)) − b

]
=

1
n

n∑
i=0

[
· · ·

][ t−1∑
k=0

R(s(i)
k , u

(i)
k )︸ ︷︷ ︸

Does not depend on u(i)
t .

+

H−1∑
k=t

R(s(i)
k , u

(i)
k ) − b

]

2Unbiased estimate means E
[
ĝ
]
= ∇θU(θ).
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Figure 2.5: The general idea of the actor–critic policy gradi-
ent method. Evaluation of the current policy is handled by the
critic. The actor implements and executes the current policy, and
is trained with the help of the critic.

Removing the sum (part of the sample path) that does not depend on the current action
can help in lowering variance. Doing so, we are left with (cf. Equation 2.10)

∇θU(θ) ≈
1
n

n∑
i=0

 H∑
t=0

∇θ log πθ(u(i)
t |s

(i)
t )

 (
Advantage, At︷ ︸︸ ︷

H−1∑
k=t

R(s(i)
k , u

(i)
k )︸ ︷︷ ︸

Rt

−b(s(i)
t )

)
. (2.12)

Equation 2.12 is the full vanilla policy gradient (nb. definitions vary). As mentioned, there
are better ways to choose the baseline b(s(i)

t ) than the empirical average return. To improve
learning, we instead use a value function estimation as the baseline, i.e. b(s(i)

t ) = V π(s(i)
t ).

The modification carries us away from pure policy search methods to the realm of hybrid
methods (see Figure 2.1).

As we stated in the beginning of this section, the step from here to the actor–critic policy
gradients (ACPG) family ofmethods is rather small. Themain characteristic of actor–critic
methods is that they usemore advanced bootstrappingmethods to estimate Rt (compared to
the sum in Equation 2.12). Figure 2.5 illustrates the (general) actor–critic policy gradient
method.

There are various ways to estimate and bootstrap Rt and/or At. Some are fairly simple,
e.g. advantage actor–critic (A2C), while other methods like A3C (Mnih et al., 2016) or
GAE (Schulman et al., 2015) are more complex. We will (rather concisely) present A2C,
since it is the method used in our implementation. In A2C, we use the following advantage
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calculation:
At = Aπ(s, a) = Qπ(s, a) − V π(s) , (2.13)

where Qπ(s, a) is the standard Q-function, i.e. the value of taking the action a in state s and
then following the policy π. Intuitively, Q is the value function V with the added option of
choosing the action we take in the starting state. An action and state based value function,
if you will.

One could be led to think that one would need two sets of estimation parameters (neural
net parameters) to implement Equation 2.12 with the advantage function in Equation 2.13.
But through the following astute observation, it turns out we only need one set:

At = Aπ(s, a) = Qπ(s, a) − V π(s) = Eπ

[
r + V π(s′) | s, a

]
− V π(s) , (2.14)

where r is immediate reward. Using Equation 2.12 with the advantage derived in Equation
2.14, we acquire the REINFORCE with baseline method from Sutton and Barto (2018,
p. 330).

Limitations and comparison

When considering the value iteration solution algorithm for a MDP, one should keep a few
limitations/disadvantages in mind. First off, the update equations in the value iteration al-
gorithm require known transition dynamics. Also, to be able to store the computations in-
memory, problems with small discrete state-action spaces are preferred. The action space
also needs to be reasonably sized, since we iterate over it to solve the arg maxa. Lastly,
one needs to balance the computation horizon with computational time and memory re-
quirements. On the other hand, policy search algorithms in general have a disadvantage
compared to value estimation algorithms: policy search algorithms are less sample effi-
cient, i.e. one usually needs more data to find a good solution.

So the primary limiting factor of the value iteration method is computational complex-
ity/time and memory requirements, while for the policy gradient method it is availability
and quality of data. Also, note that we do not need to know the transition dynamics to
implement the policy gradients algorithm. This could allow us to circumvent estimations
and assumptions in the pre-processing step, resulting in an approach free from model as-
sumptions (“model-free”). As a closing note, we want to point out that getting policy
gradient methods to converge to a good solution can prove a tough challenge. Since value
iteration is a so called exact method (we “just” solve Eq. 2.4), we do not have to worry
about convergence but rather about the quality of the assumptions used to derive the MDP
framework.
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Chapter 3

Approach

3.1 Method
As mentioned in Section 2.3, multiple methods for finding the optimal policy exist. There-
fore, we will begin this chapter by explaining our reasoning which led us to choose value
iteration and actor–critic policy gradients.

The value iteration method is a classic and well-known approach (Sutton and Barto, 2018,
p. 82), and it had previously been successfully applied to RTB (Cai et al., 2017). Thus, we
saw it as a natural (and fairly safe) choice for the first solution method. It is also a so called
exact solutionmethod, meaning that as long as we are able to derive and solve the equations
involved the acquired solution will be adequately good. In contrast, when utilizing ACPG
the algorithm can converge to unsatisfactory solutions. While this source of uncertainty is
worrying, value iteration has a major drawback of its own; it is not applicable in a large-
scale setting, since the memory and calculation requirements would most likely be too
demanding. It was this drawback that led us to look for more advanced methods, suited
for large-scale application, in the first place. Since we need to respond to bid requests
within a short time frame (< 100 ms), we specifically wanted to find an algorithm where
it was possible to separate and parallelize the fast action step (i.e. bidding) from the slow
learning step.

Deep Q-Learning (Mnih et al., 2015) can be implemented in such a parallel manner (Mnih
et al., 2016). It had also successfully been applied to RTB, see for example Wang et al.
(2017) or Wu et al. (2018). So why did we choose the actor–critic policy gradient method?
First off, ACPG can also be implemented in a parallel manner that allows for large-scale
application, see e.g. A3C (Mnih et al., 2016). Secondly, the action space (i.e. possible
bid responses) of our environment is for all intents and purposes continuous. ACPG nat-

25



3. Approach

urally handles such continuous action spaces, unlike Deep Q-Learning where continuous
action spaces have to be discretized. Thus, we thought that it could be advantageous to
use ACPG over Deep Q-Learning. The final reason that led us to choose ACPG over Deep
Q-Learning was that we could not find any papers applying a policy gradient approach to
RTB. Therefore, we thought it would be interesting to provide an (apparent) first attempt
at the policy gradient approach.

3.1.1 Solving the MDP with Value Iteration

MDP formulation

Section 2.2 presented the framework of a Markov decision process. In this section, we
will specify and derive the objects required to formalize the bidding problem through an
MDP (see Section 2.2). As a starting point we note that each advertising campaign usually
contains a great amount of auctions, wherefore we will manage computation and memory
requirements by treating the real time bidding process in batches/episodes of H = 1000
auctions at a time. The total budget will be divided and distributed over the episodes.

Each request for a bid contains various information about the request, e.g. approximate
geographical location, site, ad slot size, timestamp, and so on. We refer to this as the
feature vector representing a bid request, denoted by x. In addition to x, let us define b
as the remaining budget and t as the number of auctions left in the current episode. The
feature vector combined with the remaining budget and number of remaining auctions,
form our states s = (t, b, x) ∈ S. Our state space S is thus every possible combination of
t, b, and x, which is huge. This will be handled when we derive V (s).

The action space As of our MDP is simply the available bids (in USD) we can send in
response to a bid request. The bids we are able to offer do not depend neither on x nor on
t; they are only upper bounded by either the remaining budget or a pre-set maximum bid.
The lower bound is always approximately zero. A problem arises here: since we can offer
bids with a resolution of less than 0.001 USD, the action space is so large that it is almost
continuous. We handle this by discretizing the available bids into integer values [0, b].

After bidding for an impression, we either win or lose the auction. Thus we only have two
“scenarios” for the state transition function (won/lost auction). The transition to one of
them will depend only on the probability distribution of the market price for that particular
impression auction. This probability distribution is unknown, and to estimate it we assume
that the market price distribution only depends on the feature vector of the bid request.
Let us denote this simplified market price distribution with m(δ, x), where δ is the price
variable and x is the feature vector of a particular bid request.

Remember that we are dealing with second price auctions, therefore the price δ of an
auction/impression is not the same as our bid response a: after winning an auction by
responding with the highest bid, the actual price (cost) will be equal to the second highest
bid. Thus, the price δ of a won auction can thus have values in the range [0, a].1 This

1We discretize into integer steps here too.
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yields the following transition function for bidding on an auction that has a market price
of δ:

Pa(s, s′) =
Pa

(
(t, b, x), (t − 1, b − δ, x′)

)
= px(x′)m(δ, x) if a ≥ δ ,

Pa
(
(t, b, x), (t − 1, b, x′)

)
= px(x′)

∑∞
δ=a+1 m(δ, x) if a < δ .

(3.1)

Since our value function will be derived as in Cai et al. (2017), an approximation m(δ, x) ≈
m(δ) has to be made. Although it might seem so at first, one does not have to assume that
the approximation holds for the whole space of possible feature vectors X. We instead
segment X by which advertising campaign the bid request belongs to, and assume that
m(δ, x) ≈ m(δ) holds with different distributions in each segment.

The only object left to specify is the expected immediate reward function Ra(s, s′). At first
thought, it could be tempting to only reward the agent when it buys an impression (wins
an auction) where the user clicks the ad. But with roughly one click for every 500–1000
auctions won, one would have a problem of sparse rewards. To combat this we will predict
the CTR (probability of a click) for each auction, and use that as the reward received upon
winning an auction. Losing an auction will yield zero reward. Denote the predicted CTR
with θ(x). Just as with m(δ) in the previous paragraph, this requires additional steps/work
in the data preprocessing. Again, due to the nature of the real time bidding process, we
only have two general scenarios for s′ and Ra(s, s′):

i. Won the auction: reward is θ(x).
Decrease remaining auctions by one. Decrease budget left by the cost of the auction.
Receive feature vector of next auction.

ii. Lost the auction: reward is 0.
Decrease remaining auctions by one. Receive feature vector of next auction.

Since our goal is to simply acquire as many clicks as possible, there is no need to discount
the rewards. We will hence set the discount factor γ to 1.

Predicting CTR for reward function

The reward function of our MDP formulation requires us to predict the CTR (i.e. the prob-
ability of a user click) for each impression auction. As suggested by Zhang et al. (2014),
we use logistic regression (LR) to estimate the CTR. This model yields the logarithmic
CTR probability as a linear combination of the input features.

The most important aspect of the logistic regression model is not necessarily the actual
values of the probabilities it outputs, but rather that more valuable impression auctions
(i.e. where the user clicked) consistently have a larger predicted CTR than the ones where
the user did not click. Remember that we are using LR to solve the problem of sparse
rewards, we are not trying to perfectly predict the CTR. Though it is probably good if the
predicted CTR is fairly consistent with actual CTR values, e.g. by having the same mean.
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Finding the optimal value function

In Section 2.3 we presented the value iteration algorithm for finding the optimal policy
π∗(s) of a MDP. In our real time bidding framework, a policy maps a state s = (t, b, x)
to an auction bid a. In the same manner, our optimal value function (see Eq. 2.3) is also
a function of s = (t, b, x). However, by following the derivation in Cai et al. (2017) (and
utilizing m(δ, x) ≈ m(δ) assumption) to integrate away x, we acquire an approximate value
function which is a function of only t and b:

V (t, b) = max
0≤a≤b

 a∑
δ=0

m(δ) θavg +
a∑
δ=0

m(δ) V (t − 1, b − δ) +
∞∑

δ=a+1

m(δ) V (t − 1, b)
 (3.2)

Compare Equation 3.2 with Equation 2.2. The sums over m(δ) arise from the transition
probabilities in Equation 3.1 when integrating out x. θavg relates to Ra(s, s′) and arises from
the immediate reward θ(x), also after integrating out x. The two sums containingV (·) arise
from γV (s′) in Equation 2.2: one for winning the auction, the other one for losing.

Once V (t, b) has been calculated we can find the optimal policy, i.e. the optimal auction
bid a(t, b, x), through Equation 2.5:

π∗(s) = a(t, b, x)

= arg max
0≤a≤b

 a∑
δ=0

m(δ, x)(θ(x) + V (t − 1, b − δ)) +
∞∑

δ=a+1

m(δ, x)V (t − 1, b)


=

Utilize ∞∑
δ=0

m(δ, x) = 1 to change summation index and collect into one sum.


= arg max
0≤a≤b

 a∑
δ=0

m(δ, x)
(
θ(x) + V (t − 1, b − δ) − V (t − 1, b)︸ ︷︷ ︸

≡ν(δ)

) (3.3)

The keys to solving this equation are three important observations:

i. ν(0) = θ(x) > 0

ii. m(δ, x) > 0

iii. SinceV (t−1, b) monotonically increases with respect to b,V (t−1, b−δ) monotonically
decreases with respect to δ. This implies that ν(δ) is monotonically decreasing with
respect to δ.

So m(δ, x) is always positive, while ν(δ) starts out positive at zero and decreases as we
increase δ. This means that the sum in Equation 3.3 starts out positive, and will keep on
decreasing as we increase δ. Thus, to find the a that maximizes Equation 3.3 we calculate
ν(0), ν(1), . . . until ν(n) is negative, and then we pick a(t, b, x) = n − 1 (n is an integer).
Although, keep in mind that we can hit our remaining budget (or maximum bid) limit
before ν(n) ≤ 0. If that is the case, we will set a(t, b, x) to our remaining budget (or
maximum bid).

To summarize: we formulated ourMDP framework and used it to derive the value function
V (t, b) and optimal bid a(t, b, x) (Equations 3.2 and 3.3). To efficiently calculate V (t, b)
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we will utilize bottom up dynamic programming (see section 2.3 for general algorithm),
wherein we solve Equation 3.3 using the method described in the previous paragraph.

3.1.2 Evaluation and Baselines
We will evaluate the performance of our methods by comparing them to three different
baseline approaches. The constant baseline is the bidding method most commonly used
at/by Emerse, and is thus important to surpass. The other two baselines are supervised
machine learning bidding methods commonly used in the industry. In addition to being
commonly used in the industry, they are also often used as baselines in papers on RTB, see
for example Wu et al. (2018) or Jin et al. (2018). Note that we hence refer to our method
utilizing value iteration to solve the MDP as “Value Iteration MDP”. We will now list and
describe each of the baselines used:

Constant – Bids a pre-set constant value on each auction. When used in the industry, the
DSP’s client usually set the fixed bid themself. This baseline is the main competing
method we aim to beat.

• Bid = b0 , constant b0 ∈ R+

Linear – This is a more advancedmethodwhich, just as our Value IterationMDP, requires
prediction of the CTR for each impression auction. It starts with a base bid b0, which
it then increases/decreases if it deems the auctioned impression is more/less likely
to get a click.

• Bid = b0 · θ(x)/θavg , where θ(x) is a CTR prediction.

Max CPC – Also relies on CTR prediction. Tries to limit the cost per click by bidding in
proportion to a pre-set CPC target:

• Bid = CPC · θ(x) , where θ(x) is a CTR prediction.

Note that Value Iteration MDP, Linear bidding, and Max CPC bidding all require CTR
predictions. For a fair comparison, we will use the same linear regression based CTR
prediction for all of them. Bidding performance can be gauged with a wide variety of
measures, but we will mainly focus on the most common ones: number of clicks and cost
per click. The number of clicks is exactly what it sounds like, just the total number of
auctions won where the user clicked the ad. Cost per click (CPC) is simply the advertising
cost divided by the number of clicks. So a good bidding method/algorithmwill have a high
number of clicks with a low CPC. Auxiliary performance measures for the full evaluation
are presented in Table 1 in the appendix.
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3.2 Implementation

We decided to implement our approaches in Python (version 3.6.7) due to the wide avail-
ability of packages for data preprocessing and machine learning. Also, we will implement
actor–critic policy gradients with TensorFlow (1.10.0) which further supports our choice
of Python.

3.2.1 Data and preprocessing

Emerse AB saves auction data in SQL databases, which allows us to fetch heaps of data
with just a few lines of code. During the span of this project we have used auction data
from week 4 and 5 of year 2019.2 Week 5 is our main test data, while data from week 4
was used to estimate m(δ) and as training data to predict CTR for week 5.

The data consists of the bid request, plus some additional information, for each RTB auc-
tions won by Emerse (in week 4 and 5). Some of the fields in the data are added retroac-
tively, e.g. if the impression was clicked or for what duration the user watched a video ad.
Since CTR prediction needs to take place as soon as a bid request arrives, those fields will
not be used as input features. Note that extensive details on many of the data fields can be
found in the OpenRTB specification from the Interactive Advertising Bureau (IAB).3 We
will now list and describe each input field/feature used:

User is the (scrambled) unique ID for the user who loaded the advertisement slot in ques-
tion.

Exchange tells us from which ad exchange the bid request arrived.

Creative is the unique ID of the actual advertisement content.

Publisher is the publisher of the site (media) where the advertisement will be placed.
Note that a single publisher can own/have multiple sites.

Site is the website where the ad will be placed. Originally contained the full page address,
but to reduce unique values we replaced it with just the main site-name and top-level
domain.

Platform is the platform where the ad will be placed: iPhone, iPad, Android, ChromeOS,
Windows, MacOS, or Linux.

Browser specifies which browser the user is using, e.g. Safari, Chrome, Firefox, or AOL.

Position specifies the position of the ad, e.g. header, footer, sidebar, fullscreen, above or
below the fold (i.e. initially visible (or not) after loading the page in question).

Device type indicates the type of device where the ad will be placed, e.g. mobile, tablet,
personal computer, or smart TV.

22019-01-21 00:00:00 through 2019-02-03 23:59:59.
3IAB: OpenRTB API Specification Version 2.5. More on OpenRTB here.
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Hour of day is exactly what it sounds like, i.e. the hour of the day the bid request ar-
rived (indicated by 0 through 23). Extracted from exact arrival times (which has a
resolution of seconds) to reduce unique values.

Click indicates if the served advertisement was clicked or not. Is retroactively added to
auction data, and is (of course) not used in the CTR prediction.

As per tradition, a significant part of the time spent on our project went towards cleaning
and wrangling the data. In this section, we will give an overview of the noteworthy steps:

• Load auction data with appropriate data types to minimize RAM usage. Make good
use of the categorical data type in pandas.

• Segment the data by advertising campaign. For each campaign in week 5, calculate
the following metadata: total impressions, total clicks, CTR, total price (sum of cost
of auctions), average and median price, minimum price, maximum price.

• Estimate m(δ) for each campaign. We decided to take a purely empirical approach
and calculated histograms over price data from week 4. We used 300 bins for each
campaign’s histogram. Also save the edges of the bins, since the edges will be dif-
ferent for each campaign. Note that the first bin is of a different size than the rest.
Save the metadata, histograms, and bins to disk (e.g. as a CSV file).

• Split the raw auction data from week 5 into separate files and folders, one for each
advertising campaign.

CTR prediction

The final step of the preprocessing is to predict the CTR, i.e. θ(x), for each auction in
our test data (week 5). Our value iteration MDP method and two out of three baselines
requires us to calculate θ(x). As described in Section 3.1.1, we decided to approach the
the CTR prediction with logistic regression. Scikit-learn’s LR model was used to perform
this task.

Before we can use the LR model, we need to one-hot encode our categorical data. Note
that when we calculated m(δ) and metadata, we really only used the price and click
fields from the auction data. This time we will use 11 fields (see Table 3.1). In contrast to
price and click, where NaN values are non-existent, the fields we are now using have
plenty of NaN values. We handle this by encoding NaN values as one-hot vectors of only
zeros. This way, the NaN values will not raise any errors when encoding and will not be
taken into account by the LR when appearing in input.

The more unique categorical values we one-hot encode, the larger (wider) the matrix con-
taining our encoded data will be. To determine whether or not it was feasible to include
certain fields, we investigated the percentage of unique values in relation to the total num-
ber of values (see Table 3.1).

We decided to one-hot encode all of the columns in Table3.1, except for the user col-
umn. Being able to identify the user would most likely improve the accuracy of our CTR
predictions. However, due to RAM restriction, we could not one-hot encode it as is. To
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Table 3.1: Table over unique values in each column for the auc-
tions from week 4, both the raw numbers and as a percent of total
values in the column. We used this determine if it was viable to
one-hot encode the columns.

Column name User Exchange Creative Publisher
Unique values 2868584 28 1727 7844
(percent of total) 54% 0% 0.03% 0.15%
Column name Site Position Device Type Campaign ID
Unique values 24432 8 9 112
(percent of total) 0.46% 0% 0% 0%
Column name Platform Hour of Day
Unique values 11 24
(percent of total) 0% 0%

circumvent this, we decided to replace the unique user IDs with a scalar value which we
would not need to one-hot encode: the historical CTR for the user. We calculated CTR
per user from our training data (week 4 data). If the user was previously unknown, we set
its CTR to the average CTR for the whole of week 4. We also adjusted outlier CTR values
(which usually arose from too few data points) by squeezing user CTR that was 10 times
larger or smaller than the average into the range [10 · θavg, 0.1 · θavg].

So we one-hot encoded all input columns except for the calculated user CTR, which we
scaled to zeromean and unit variance. The encoder and scaler usedwas Scikit-learn’s One-
HotEncoder and StandardScaler. For ease of use, these two transforms were combined into
one single transform with Scikit-learn’s ColumnTransformer.4 The ColumnTransformer
was fit on data from week 4. Then that same data was encoded and scaled (transformed),
whereafter it was used to fit the Logistic Regression model. The final step was then to
predict the CTR for auctions from week 5. We transformed the week 5 data (Column-
Transformer still only fitted to week 4 data), and predicted CTR with our LR model (also
still only fitted to week 4 data). We checked the feasibility of our predictions by studying
the accuracy, mean, min/max, and quantiles. Once satisfied, we split the CTR predictions
by advertising campaign and saved them in separate files and folders (matching the way
we split the raw auction data).

3.2.2 Main program, Value Iteration MDP, and base-
lines

As stated in the beginning of Section 3.2, we decided to use Python (version 3.6.7). Figure
3.1 is an overview of how the algorithms (except for ACPG) were implemented and evalu-
ated. Everything except the main script (main.py) was implemented as classes. The exe-
cution begins when one runs the main script. (Various command-line options exist, which
were added with the Python package argparse.) The Preprocess class handles the

4Documentation: www.scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing.
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3.2 Implementation

Figure 3.1: A simple implementation diagram. The actor–critic
policy gradient method was implemented in a stand-alone manner.
The model objects are initialized in main.py and are then passed
to the evaluation class/object, which executes them and saves the
results.

first step, namely the loading and final preparation of the input data. The Evaluate class
is then initialized. To evaluate a model, we simply instantiate the model’s corresponding
class (with desired hyperparameters) and then pass it to the Evaluate object. Evalu-
ate runs and evaluates the model, then logs (and/or displays) the result. Separating the
model implementation from the evaluation allowed us to easily swap out and test different
models.

3.2.3 Actor–Critic Policy Gradients
The actor–critic policy gradient method was implemented in Python using TensorFlow
(version 1.10.0).5 This solution algorithm was implemented as a stand-alone module,
and was due to time constraints not integrated into the framework shown in Figure 3.1.
However, it still shares much of the workflow, e.g. the one-hot encoding of the input is the
same as in the LR CTR prediction. Also, to evaluate the ACPG model we used the same
performance measures as before. Nevertheless, we added a few extra measures to better
monitor the learning progress, e.g. mean and variance of output distribution, average bid
placed in each episode, and at which step 20% budget left was reached.

As for the size and depth of the neural network layers composing the actor and critic, many
variations were experimented with. We had the best (or least-worst) results using a single
fully-connected layer of size 30 with a ReLU activation function for both the actor and the
critic. Those layers were then connected to output layers/nodes of size one; two in the case
of the actor (one for the mean, one for the standard deviation) and a single one in the critic.
After the actor outputs a mean µ and a standard deviation σ, actions (bids) are drawn from
the normal distribution N(µ, σ2).

5See www.tensorflow.org.
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The actor–critic variation used is the A2C version (reduced to REINFORCEwith baseline)
presented in Equations 2.12 and 2.14 in Section 2.3. For further implementation details,
see Sutton and Barto (2018, p. 330). As a closing note to this section, we would like to
comment on the TensorFlow version used (1.10.0). TensorFlow 2.0 Alpha was announced
at the TensorFlow Dev Summit on March 6-7 (2019), i.e. during the early stages of this
thesis. Even though it would have been nice to be able to take advantage of the improve-
ments in version 2.0, we decided to opt for version 1.10.0 to minimize the risk of running
into stability and/or compatibility problems.
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Chapter 4

Evaluation

4.1 Results
In this section, we will present our results. To keep things manageable, this section will
only contain visualizations of subsets of the full test results. The full test results are instead
presented as a table in the appendix. We will briefly discuss the individual results, while
a more thorough and overarching discussion will take place in Section 4.2.

4.1.1 Market price estimation
The market price estimation m(δ) does not have to be perfect, although it is preferable if
the resulting histogram at least somewhat resembles a distribution. Figure 4.1 shows two
examples of a good, or at least acceptable, m(δ) estimation. Barring occasional peaks,
the histograms somewhat resemble a continuous distribution. They are far from perfect
though, as gaps and outliers are present.

Shown in Figure 4.2 are two examples of bad m(δ) estimations. Figure 4.2a is fragmented
into a few small peaks, with a large single peak at ∼ 13 USD. Figure 4.2b is even worse,
the estimated m(δ) almost entirely consists of a single peak at 1.2 USD. This is due to the
way some advertising campaigns are set up in Emerse’s DSP; a single fixed bid is set by the
customer, which is adjusted downwards when possible. But like in this example, there is
not always room for downward adjustment and almost all impressions in the campaign end
up at the same price. In the final evaluation the campaign of the histogram in Figure 4.2b is
ignored due to the bad m(δ) estimate, which arose from a lack of ample price information.
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(a)

(b)

Figure 4.1: Two examples of a good m(δ) estimation. Except for
a peak here and there, the histograms have some resemblance of a
continuous distribution.
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(a)

(b)

Figure 4.2: Two examples of a bad m(δ) estimation. The his-
togram is fragmented or consists of (almost) only a single peak.
They both have low resemblance of a continuous distribution.
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Figure 4.3 is a general overview of the m(δ) estimation for 40 out of the 41 (removed one
to even out subfigures) campaigns of week 5 with more than 10000 impressions. A few
suffer from the problems described above. But in the end, 31 of them were usable.

Figure 4.3: Overview of the m(δ) estimation for 40 out of the 41
(removed one to even out subfigures) campaigns of week 5 with
more than 10000 impressions. Axes are the same as in Figure 4.1
and 4.2, i.e. Price×1000 on the x-axis and Counts on the y-axis.
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4.1.2 CTR prediction
Figure 4.4 is an overview of the predicted CTR probabilities for auctions from campaign
6228 in week 5. The top figure shows the CTR predictions divided into two histograms;
one for auctions where the user did not click the impression, and one where they did click.
The bottom figure shows, for clarity, the best fitting normal distribution for each histogram.
Figure 4.5 shows similar histogram-fitted normal distributions for 30 out of the 31 usable
campaigns. As stated in Section 3.1.1, our goal is not to perfectly predict the actual click
probability but rather to introduce some kind of relative value between the auctions. We
think that this has been achieved: there is some (greater or smaller depending on campaign)
distinction between auctions where the user clicked and where they did not.

Figure 4.4: A visualization of the CTR probabilities predicted by
the logistic regression for advertising campaignwith ID 6228. The
top figure shows the CTR predictions divided into two histograms;
one for auctions where the user did not click the impression, and
one where they did click. The bottom figure shows, for clarity, the
best fitting normal distribution for each histogram.
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Figure 4.5: Overview of the CTR predictions for 30 out of the 31
(removed one to even out subfigures) usable campaigns of week 5
with more than 10000 impressions. Since plotting the histograms
(as in Figure 4.4) did not yield a legible enough overview, we in-
stead show normal distributions fitted to the histograms’ values.
Axes are the same as in Figure 4.4, i.e. predicted CTR on the x-
axis and probability (density) on the y-axis. Note that we, for vi-
sual clarity, normalized the height of the probability distributions.
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4.1.3 Value Iteration MDP and baselines
As stated in Section 3.1.2, we used three different baseline methods: constant bidding,
linear bidding, and max CPC (cost per click) bidding. But for both constant and linear
bidding, we tested two different parameter values. To avoid cluttering the final click and
CPC figures with multiple variations of the same baseline, we will begin with comparing
baseline alternatives and decide on only one version of each method.

In the constant bidding baseline, we tried setting the fixed bid to either the average price or
the median price for each campaign. Figure 4.6 is a comparison of the results for the top
20 campaigns sorted by number of impressions. Figure 4.6a shows the acquired clicks,
and Figure 4.6b shows the cost per click. The results are similar enough that we can safely
say that picking the average or median price will not significantly alter the results.

We did the same comparison for the linear bidding baselines. This time we compare the
standard method, which uses θavg, to using the median CTR. As above, Figure 4.7 is a com-
parison of the results for the top 20 campaigns sorted by number of impressions. Figure
4.7a shows the acquired clicks, and Figure 4.7b shows the cost per click (CPC). Here too,
the results are similar enough that we can safely say that picking the average or median
CTR will not significantly alter the results.
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(a) Clicks. (b) CPC.

Figure 4.6: Comparison of two variations of the constant bidding
baselines: one using the average price as the fixed bid, and the
other using the median price. The results are similar enough that
we can safely say that picking the average or median price will
not significantly alter the results. We decided to proceed with the
average price version.
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(a) Clicks. (b) CPC.

Figure 4.7: Comparison of two variations of the linear bidding
baselines: one using the average CTR as the fixed bid, and the
other using the median CTR. The results are similar enough that
we can safely say that picking the average or median CTR will
not significantly alter the results. We decided to proceed with the
average CTR version.
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Figure 4.8: Comparison of acquired clicks performance between
our Value Iteration MDPmethod and three baseline methods. The
top 20 campaigns (by total impressions) are shown, sorted by lin-
ear bidding clicks in descending order.
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Figure 4.9: Comparison of CPC performance between our Value
Iteration MDP method and three baseline methods. The top 20
campaigns (by total impressions) are shown, sorted by constant
bidding CPC in descending order.
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(a)

(b)

Figure 4.10: Figure 4.10a shows comparison of the budget con-
sumption comparison for an entire campaign. Figure 4.10b is
a zoomed view and shows budget consumption for the first two
episodes of a campaign. Spending the budget evenly across all
auctions would put us at ∼16600 budget left after 2000 auctions.
Value Iteration MDP (approximately) hits this mark, while con-
stant and linear bidding consume the budget too fast. The con-
sumption rate of Max CPC will vary wildly depending on which
CPC goal we use. Here the goal results in a too low of a bid,
wherefore Max CPC wins few auctions and fails in spending the
entire budget. Sidenote: markers every 10000 steps in (a), while
every 100 steps in (b).
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After comparing the two constant and linear bidding baselines, we settled on using the av-
erage price and CTR for our final evaluation. Again, a description of the baseline methods
can be found in Section 3.1.2. To reduce clutter, we chose to plot the top 20 campaigns
by number of impressions. The campaigns are sorted in the manner that yielded the best
visual clarity (e.g. similar height scaling). For clicks, that turned out to be by the linear
average baseline in descending order. For CPC sorting by the constant bidding baseline in
descending order resulted in the best visual clarity.

Figure 4.8 shows the acquired clicks for the baselines and our Value IterationMDPmethod.
First off, note that the constant bidding method was clearly bested by our method and the
linear bidding baseline. The performance of the linear bidding model is fairly consistent,
and comes close to Value Iteration MDP on several occasions. The Max CPC baseline’s
performance varies massively. Sometimes it performs surprisingly well (e.g. campaign
6299), and other times it lags far behind. One reason is that it is sensitive to the choice of
CPC target. Also, Max CPC does not rely on relative CTR predictions like linear bidding,
but rather on that the actual CTR probability predictions are correct. This increases its
sensitivity to the accuracy of the CPC predictions, having less error leeway than the linear
bidding model. Value Iteration MDP seems to be the most stable of the models, with click
performance ranging from good to excellent.

Figure 4.9 shows cost per click (CPC) for the baselines and our Value Iteration MDP
method. Constant bidding is the worst performing model here too (high CPC with few
clicks). Linear bidding has higher CPC than Value Iteration and Max CPC, with a CPC
almost as high as constant bidding in a few cases. Although remember that linear bid-
ding acquires a relatively large amount of clicks, so maybe the high CPC can be for-
given. Most of the time, Max CPC manages to stay at or below its target of $0.3 CPC
(= 300 [CPC × 1000]). However it does not achieve this by smart bidding, but rather by
only winning cheap (often very few) impressions. This can be seen in the budget con-
sumption graph, and often results in low click performance. For all campaigns (except the
6288 outlier), our Value Iteration Method beats the constant bidding baseline. Also when
it does not perform much better than the linear bidding, it has roughly equal amounts of
clicks, but with a lower CPC. The outlier campaign 6288 has very few clicks across the
board (and only one with Value IterationMDP), which may help to explain the abnormally
high CPC value.

Reasons behind similarities and differences in the performance of the methods will be
discussed in the next section. As a closing note to this section, we humbly suggest that
Value Iteration MDP has the best across-the-board performance: high amount of acquired
clicks, low CPC, and good budget pacing.
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Figure 4.11: Illustrates the poor click performance of the actor–
critic policy gradient approach. We believe this is mainly due to
the sparse rewards. Results for campaign 6254 is presented here,
but the performance is equally poor on all campaigns.

As we havementionedmultiple times, we were unable to produce a well-performing actor–
critic policy gradient bidding agent. Figure 4.11 illustrates the click performance of this
(unsuccessful) bidding agent. Note that click results from Value Iteration MDP and the
baselines are listed in the a box in the figure. The ACPG method outperforms Max CPC
here, but only since this is one campaigns where Max CPC performed the worst. The
figure also illustrates what we believe is the main problem: the sparse rewards (clicks).
Suggestions on how to handle this are brought up in the next section. We chose to only
present one example of the ACPG agent’s performance, since the performance on all the
campaigns is as poor as shown in Figure 4.11.
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4.2 Discussion
In this section we will discuss the data, the methods, and the results. We will address
issues and suggest changes and improvements. But first, let us address a point we touched
upon in the previous section: the poor performance of constant (fixed price) bidding. If
the value of every auction were known, every bidder would of course try to win the most
valuable ones. But the value is unknown, andwe suggest that it is in trying to uncover it one
can gain an advantage and build a good bidding algorithm. Value Iteration MDP, Linear
Bidding, and Max CPC all have something in common: they utilize the CTR predictions
θ(x). We take this as an indication that a very important factor in building a good bidding
algorithm is to somehow assign a value to each impression auction/opportunity. We have
done so through CTR prediction with LR, but we are sure other approaches are viable too.
Linear bidding’s superior performance when compared to Max CPC leads us to suggest
that ranking CTR predictions in a relative manner reduces sensitivity to CTR prediction
errors. At its core, the importance of ranking auction values in relation to each other stem
from the fact that we have a resource limit: the advertising budget.1 Since we can not buy
impressions in a limitless manner we need to concentrate our resources where they count,
i.e. on auctions for impressions with high relative value.

Data Quality

The first issue when working with real time bidding is one of data availability. The final
price for an auction is only revealed to the one who placed the winning bid. All other
bidders are left in the dark, only knowing that they lost. The competitors’ bids are never
revealed to any of the bidders. (Except for the second highest one in the case of winning a
second price auction. Although we do not know who placed it.) Unless the bidders share
data (which they generally do not), each bidder can only test their algorithms offline by
reusing the auctions they have previously won. Are those auctions representative of the
auction landscape as a whole? The answer is that it depends on how the auctions were
won. If they were won by using only a few different bid values, they will not properly
reflect the auction landscape no matter how many impressions we acquire. Instead, we
argue that to gain a good representation of the auction landscape one needs to win auctions,
and thus acquire data, for a wide variety of bids. Only after exploring many different bid
levels we gain a dataset of auctions that can be used for effective offline historical testing.
Checks for this type of non-representative data are naturally incorporated into the Value
Iteration MDP method: when estimating m(δ) and studying the histograms, we uncover
the described non-representative datasets.

Speed, complexity, and scalability

As shown in the introduction (Section 1), speed is of the essence when working with real
time bidding; the bidders need to respond in 100 ms. In practice, due to overhead from the

1We would like to highlight the similarity of the bidding problem and the age-old knapsack problem.
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rest of the system, our algorithms only have roughly 40 ms to input a state and output a bid.
This inhibits the viability of Value Iteration MDP: calculating the value matrix takes us
about a second. However once that is done, using it to serve a bid only takes a millisecond
or so. The actor–critic policy gradient method has an advantage here; it can be built to
be fully online, with fast prediction and slow learning happening asynchronously (i.e. in
parallel). For our implementation, it takes the actor 24(±4) milliseconds to take a state as
input and output a bid.

The problem we face is a common trade-off: speed versus performance. Larger and more
complex methods often perform better, but are slower than simple baseline approaches.
This brings us onto the issue of scalability: is it possible to apply a model in a large-scale
environment and still retain speed and performance? As mentioned in Section 3.1.1, the
calculation and memory requirements for the Value Iteration MDP method grow with the
budget and episode length. Therefore, a workaround is needed for large-scale viability. As
suggested in Sutton and Barto (2018) (chapter 9), one can approximate the value function
(even non-linear ones) with a neural network. Cai et al. (2017) demonstrated large-scale
viability of this value function approximation solution. As for the actor–critic policy gra-
dient method, it yet again has the theoretical advantage. Due to its online nature and the
possibility to implement in an asynchronous manner, it should have no problem scaling.
For implementations, see e.g. Mnih et al. (2016). We would also like to quickly address
the scalability of the baseline methods. Fixed (constant) bidding has, provided adequate
supporting infrastructure, no scalability issues. Linear and max CPC bidding both utilize
CTR prediction. At first though this may seem like a limiting factor, but since the CTR
is predicted auction-by-auction this is not the case. Provided that the predictor does not
get significantly slower as we scale up (e.g. by limiting the size of the lookback horizon
for training), the model is large-scale viable as long as the prediction is fast enough for
a single auction. Also, training of the predictor can take place offline and thus does not
really need to be taken into account.

Improvements

Since our efforts to stop time were to no avail, we had to limit the scope of the project.
In this subsection, we will suggest some improvements which we would have liked to
implement.

As a starting point, we would have liked to investigate the effects of improving the CTR
prediction and m(δ) estimation. We did not prioritize quantifying exactly (in a numerical
manner) howmuch the accuracy of these two estimations affects the final result. One could
most likely improve the CTR prediction by including more user-specific data in features,
e.g. user (group) data from an external database. One could also try using XGBoost
instead of LR, since it has had good performance in past CTR prediction contests.2 By
regularly updating the m(δ) as we gain more price information (by winning auctions), the
estimation could probably be improved. Given enough auction volume, one might be able
to base m(δ) on the previous day’s data instead of the previous week’s. The more recent
data the better, provided we have enough price data to form a robust estimate.

2See e.g. this Kaggle contest (and this interview with the top contestant, Owen Zhang).
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4.2 Discussion

We would also have liked to include an additional baseline, namely “Budget Smoothed
Linear Bidding” (BSLB, see Wu et al. (2018)). It is exactly what it sounds like; the linear
bidding baseline with an additional (time left ratio / budget left ratio) factor. Since a more
balanced budget consumption seems to positively impact the results, BSLB could have
served as a tough baseline to beat.

Lastly, we would like to suggest improvements to our model-free actor–critic policy gra-
dients approach which might help in achieving convergence and a successful result. A
model-free reinforcement learning approachwas successfully developed byWu et al. (2018).
They used a Deep Q-Learning method, combined with an additional neural network to
combat the sparse rewards problem. We would also have liked to try a similar solution
to the sparse rewards problem in our actor–critic policy gradient approach. Perhaps this
could have been implemented through improvements to the critic. In addition to improv-
ing the reward function design, we would have liked to engineer more features to add to
our input state. We suggest including continuously updated performance measures, e.g.
the current budget consumption rate, the current CPM, and the current win rate.
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Chapter 5

Conclusions

In this thesis, we modeled the real time bidding process with a Markov decision process
and solved for the best bid using a value iteration algorithm. An actor–critic policy gradi-
ent solution was also implemented, it was however unable to converge. The value iteration
MDP approach and three other baseline methods were evaluated on real-world data. Our
value iteration MDP approach proved to be (compared to the baselines) successful in in-
creasing clicks, lowering CPC, and smoothing budget consumption. However for it to
be viable in a real-world large-scale settings, one would need to increase its speed, e.g.
through function approximation of the state-value matrix.

While carrying out our literature study, we were not able to find any papers applying a
policy gradient based approach to RTB. Thus, we aimed to provide an (apparent) first
exploration of the viability of a policy gradient based real time bidding algorithm. While
our actor–critic policy gradient approach was unable to converge to a satisfactory solution,
we still hope that our efforts will facilitate the success of any further attempts. Should such
an attempt be made, we suggest that one considers the following lesson learned: rewarding
the algorithm onlywhen a click is acquiredwill yield too sparse rewards, which is likely the
main issue preventing convergence to an adequate solution. To further increase likelihood
of success, we also suggest utilizing feature engineering to including more information in
the state than just the data from the bid request. Barring these problems, we believe the
policy gradient approach to be a good fit for RTB, since it naturally handles the almost
continuous action (bidding) space and is applicable to a large-scale environment.
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Table 1: Full test results from week 5. As described in Section
3.2, we only treated campaigns with more than 10000 impres-
sions. This leaves us with 41 campaigns from week 5, where 10 of
them were ignored due to non-representative price data (see Sec-
tion 4.2).

Campaign ID Algorithm Auctions Bought Clicks Cost CPM CPC Win Rate Budget
6228 Const. Average 1131312 88917 85 157.2524 1.7685 1.8500 0.0786 157.2524
6228 Value Iter. MDP 1131312 138606 199 157.3480 1.1352 0.7907 0.1225 0.1390
6228 Max CPC 1131312 9421 17 10.4701 1.1114 0.6159 0.0083 157.2524
6228 Linear Average 1131312 72625 127 157.2524 2.1653 1.2382 0.0642 157.2524
6318 Const. Average 451051 48297 39 36.0841 0.7471 0.9252 0.1071 36.0841
6318 Value Iter. MDP 451051 355853 212 36.1590 0.1016 0.1706 0.7889 0.0800
6318 Max CPC 451051 59637 80 26.3410 0.4417 0.3293 0.1322 36.0841
6318 Linear Average 451051 40974 44 36.0841 0.8807 0.8201 0.0908 36.0841
6325 Const. Average 280671 24747 11 34.8032 1.4064 3.1639 0.0882 34.8032
6325 Value Iter. MDP 280671 46202 27 34.8440 0.7542 1.2905 0.1646 0.1240
6325 Max CPC 280671 700 0 0.5698 0.8140 0.0000 0.0025 34.8032
6325 Linear Average 280671 18400 11 34.8032 1.8915 3.1639 0.0656 34.8032
6289 Const. Average 236696 22252 12 42.1319 1.8934 3.5110 0.0940 42.1319
6289 Value Iter. MDP 236696 27371 32 42.1860 1.5413 1.3183 0.1156 0.1780
6289 Max CPC 236696 754 10 0.3966 0.5260 0.0397 0.0032 42.1319
6289 Linear Average 236696 19720 26 42.1319 2.1365 1.6205 0.0833 42.1319
6254 Const. Average 146248 14207 23 20.7672 1.4618 0.9029 0.0971 20.7672
6254 Value Iter. MDP 146248 18785 27 20.8740 1.1112 0.7731 0.1284 0.1420
6254 Max CPC 146248 1339 3 1.2067 0.9012 0.4022 0.0092 20.7672
6254 Linear Average 146248 10825 23 20.7672 1.9184 0.9029 0.0740 20.7672
6274 Const. Average 131359 13836 18 16.5512 1.1962 0.9195 0.1053 16.5512
6274 Value Iter. MDP 131359 33539 54 16.6320 0.4959 0.3080 0.2553 0.1260
6274 Max CPC 131359 8583 42 3.5533 0.4140 0.0846 0.0653 16.5512
6274 Linear Average 131359 13997 23 16.5512 1.1825 0.7196 0.1066 16.5512
6329 Const. Average 107540 9347 13 22.9058 2.4506 1.7620 0.0869 22.9060
6329 Value Iter. MDP 107540 11406 28 23.0040 2.0168 0.8216 0.1061 0.2130
6329 Max CPC 107540 162 14 0.5983 3.6934 0.0427 0.0015 22.9060
6329 Linear Average 107540 8388 18 22.9060 2.7308 1.2726 0.0780 22.9060
6261 Const. Average 104100 10546 24 73.5987 6.9788 3.0666 0.1013 73.5987
6261 Value Iter. MDP 104100 8197 76 73.6250 8.9819 0.9688 0.0787 0.7070
6261 Max CPC 104100 1206 57 7.7931 6.4619 0.1367 0.0116 73.5987
6261 Linear Average 104100 4767 59 73.5987 15.4392 1.2474 0.0458 73.5987
6281 Const. Average 100700 9489 26 19.9386 2.1012 0.7669 0.0942 19.9386
6281 Value Iter. MDP 100700 13023 117 19.9400 1.5311 0.1704 0.1293 0.1980
6281 Max CPC 100700 589 94 0.5453 0.9259 0.0058 0.0058 19.9386
6281 Linear Average 100700 10008 89 19.9386 1.9923 0.2240 0.0994 19.9386
6299 Const. Average 84823 7535 9 6.0224 0.7993 0.6692 0.0888 6.0224
6299 Value Iter. MDP 84823 13152 15 6.0350 0.4589 0.4023 0.1551 0.0710
6299 Max CPC 84823 2606 29 2.3519 0.9025 0.0811 0.0307 6.0224
6299 Linear Average 84823 5615 16 6.0224 1.0726 0.3764 0.0662 6.0224
6256 Const. Average 75555 9062 8 10.8799 1.2006 1.3600 0.1199 10.8799
6256 Value Iter. MDP 75555 21525 18 10.9440 0.5084 0.6080 0.2849 0.1440
6256 Max CPC 75555 1185 2 0.6006 0.5068 0.3003 0.0157 10.8799
6256 Linear Average 75555 8596 9 10.8799 1.2657 1.2089 0.1138 10.8799
6319 Const. Average 72723 6829 17 50.1061 7.3373 2.9474 0.0939 50.1061
6319 Value Iter. MDP 72723 5356 94 50.2290 9.3781 0.5344 0.0736 0.6890
6319 Max CPC 72723 617 17 3.1588 5.1197 0.1858 0.0085 50.1061
6319 Linear Average 72723 4353 45 50.1061 11.5107 1.1135 0.0599 50.1061
6184 Const. Average 70714 7635 32 15.6278 2.0469 0.4884 0.1080 15.6278
6184 Value Iter. MDP 70714 14411 232 14.7580 1.0241 0.0636 0.2038 0.2210
6184 Max CPC 70714 2128 203 2.9593 1.3906 0.0146 0.0301 15.6278
6184 Linear Average 70714 7541 220 9.1955 1.2194 0.0418 0.1066 15.6278
6316 Const. Average 70285 5606 147 5.5525 0.9905 0.0378 0.0798 5.5525
6316 Value Iter. MDP 70285 14794 276 5.6090 0.3791 0.0203 0.2105 0.0790
6316 Max CPC 70285 4508 160 5.5525 1.2317 0.0347 0.0641 5.5525
6316 Linear Average 70285 4667 207 5.5525 1.1897 0.0268 0.0664 5.5525
6309 Const. Average 63207 5471 13 25.1564 4.5981 1.9351 0.0866 25.1564
6309 Value Iter. MDP 63207 6065 46 25.4160 4.1906 0.5525 0.0960 0.3980
6309 Max CPC 63207 1747 63 7.1470 4.0910 0.1134 0.0276 25.1564
6309 Linear Average 63207 5032 53 25.1564 4.9993 0.4746 0.0796 25.1564
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Campaign ID Algorithm Auctions Bought Clicks Cost CPM CPC Win Rate Budget
6185 Const. Average 57449 5062 12 9.9386 1.9634 0.8282 0.0881 9.9387
6185 Value Iter. MDP 57449 5779 14 10.0340 1.7363 0.7167 0.1006 0.1730
6185 Max CPC 57449 356 5 0.5786 1.6252 0.1157 0.0062 9.9387
6185 Linear Average 57449 4679 22 9.9387 2.1241 0.4518 0.0814 9.9387
6300 Const. Average 56296 5052 13 9.6266 1.9055 0.7405 0.0897 9.6266
6300 Value Iter. MDP 56296 8768 36 9.7470 1.1117 0.2707 0.1557 0.1710
6300 Max CPC 56296 887 47 0.6555 0.7390 0.0139 0.0158 9.6266
6300 Linear Average 56296 5822 65 9.6266 1.6535 0.1481 0.1034 9.6266
6288 Const. Average 54793 4848 4 7.7806 1.6049 1.9452 0.0885 7.7806
6288 Value Iter. MDP 54793 6617 1 7.8100 1.1803 7.8100 0.1208 0.1420
6288 Max CPC 54793 877 2 0.9822 1.1199 0.4911 0.0160 7.7806
6288 Linear Average 54793 4283 3 7.7806 1.8166 2.5935 0.0782 7.7806
6253 Const. Average 36424 3321 9 17.6292 5.3084 1.9588 0.0912 17.6292
6253 Value Iter. MDP 36424 3626 38 17.8440 4.9211 0.4696 0.0995 0.4840
6253 Max CPC 36424 1062 38 4.3712 4.1160 0.1150 0.0292 17.6292
6253 Linear Average 36424 2366 27 17.6292 7.4511 0.6529 0.0650 17.6292
6310 Const. Average 33760 5295 3 4.9290 0.9309 1.6430 0.1568 4.9290
6310 Value Iter. MDP 33760 11962 10 4.9640 0.4150 0.4964 0.3543 0.1460
6310 Max CPC 33760 6080 5 4.9290 0.8107 0.9858 0.1801 4.9290
6310 Linear Average 33760 3646 3 4.9290 1.3519 1.6430 0.1080 4.9290
6304 Const. Average 30870 3563 6 24.0477 6.7493 4.0080 0.1154 24.0477
6304 Value Iter. MDP 30870 2115 33 24.1230 11.4057 0.7310 0.0685 0.7790
6304 Max CPC 30870 324 15 2.2274 6.8747 0.1485 0.0105 24.0477
6304 Linear Average 30870 1794 31 24.0477 13.4045 0.7757 0.0581 24.0477
6270 Const. Average 26919 2023 7 26.7021 13.1993 3.8146 0.0752 26.7037
6270 Value Iter. MDP 26919 1414 27 26.6920 18.8769 0.9886 0.0525 0.9920
6270 Max CPC 26919 94 14 1.9936 21.2081 0.1424 0.0035 26.7037
6270 Linear Average 26919 1561 24 26.6927 17.0998 1.1122 0.0580 26.7037
6314 Const. Average 25917 3732 2 24.7767 6.6390 12.3883 0.1440 24.7767
6314 Value Iter. MDP 25917 3235 3 24.8560 7.6835 8.2853 0.1248 0.9560
6314 Max CPC 25917 201 1 0.0445 0.2216 0.0445 0.0078 24.7767
6314 Linear Average 25917 1756 3 24.7766 14.1097 8.2589 0.0678 24.7767
6290 Const. Average 21055 1498 45 1.7897 1.1947 0.0398 0.0711 1.7897
6290 Value Iter. MDP 21055 3638 115 1.8290 0.5027 0.0159 0.1728 0.0850
6290 Max CPC 21055 1440 50 1.7897 1.2428 0.0358 0.0684 1.7897
6290 Linear Average 21055 1628 120 1.7897 1.0993 0.0149 0.0773 1.7897
6293 Const. Average 21003 1840 1 1.7642 0.9588 1.7642 0.0876 1.7643
6293 Value Iter. MDP 21003 7115 10 1.7660 0.2482 0.1766 0.3388 0.0840
6293 Max CPC 21003 811 8 0.6742 0.8313 0.0843 0.0386 1.7643
6293 Linear Average 21003 1700 4 1.7643 1.0378 0.4411 0.0809 1.7643
6311 Const. Average 20433 2259 1 3.7392 1.6553 3.7392 0.1106 3.7392
6311 Value Iter. MDP 20433 3848 7 3.8430 0.9987 0.5490 0.1883 0.1830
6311 Max CPC 20433 2408 6 2.7384 1.1372 0.4564 0.1178 3.7392
6311 Linear Average 20433 1194 0 3.7392 3.1317 0.0000 0.0584 3.7392
5801 Const. Average 20133 1881 19 3.3823 1.7981 0.1780 0.0934 3.3823
5801 Value Iter. MDP 20133 4064 45 3.4930 0.8595 0.0776 0.2019 0.1680
5801 Max CPC 20133 232 67 0.3805 1.6402 0.0057 0.0115 3.3823
5801 Linear Average 20133 1082 68 1.0373 0.9587 0.0153 0.0537 3.3823
6282 Const. Average 18080 1377 3 2.0611 1.4968 0.6870 0.0762 2.0611
6282 Value Iter. MDP 18080 2052 2 2.1610 1.0531 1.0805 0.1135 0.1140
6282 Max CPC 18080 91 1 0.1021 1.1221 0.1021 0.0050 2.0611
6282 Linear Average 18080 1332 3 2.0610 1.5473 0.6870 0.0737 2.0611
6224 Const. Average 15236 1938 5 6.2467 3.2233 1.2493 0.1272 6.2468
6224 Value Iter. MDP 15236 2184 7 6.5550 3.0014 0.9364 0.1433 0.4100
6224 Max CPC 15236 1040 9 1.2968 1.2470 0.1441 0.0683 6.2468
6224 Linear Average 15236 1726 8 6.2466 3.6191 0.7808 0.1133 6.2468
6327 Const. Average 13551 1197 3 1.6939 1.4151 0.5646 0.0883 1.6939
6327 Value Iter. MDP 13551 4298 6 1.7500 0.4072 0.2917 0.3172 0.1250
6327 Max CPC 13551 237 6 0.2561 1.0804 0.0427 0.0175 1.6939
6327 Linear Average 13551 1551 3 1.6939 1.0921 0.5646 0.1145 1.6939
4751 Const. Average 10023 951 2 1.8842 1.9813 0.9421 0.0949 1.8843
4751 Value Iter. MDP 10023 1192 4 1.9450 1.6317 0.4863 0.1189 0.1880
4751 Max CPC 10023 7 0 0.0022 0.3100 0.0000 0.0007 1.8843
4751 Linear Average 10023 1210 3 1.8843 1.5573 0.6281 0.1207 1.8843
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POPULÄRVETENSKAPLIG SAMMANFATTNING Erik Smith

Majoriteten av den internet-reklam du ser idag har blivit utvald genom ett blixtsnabbt
auktionsförlopp: så fort du börjar ladda en reklamplats, lägger företag som vill visa
reklam för dig bud på den. Högstbjudande får visa sin reklam i platsen, men vilket
bud är bäst att lägga?

I själva verket är det sällan företagen själva som
hanterar reklambudgivningen, då de saknar nöd-
vändig teknik-infrastruktur. Av samma anledning
är det inte heller de som har reklamplatserna (t.ex.
tidningar eller bloggar) som genomför själva auk-
tionen. Istället hanteras de tekniskt komplicerade
stegen av mellanhänder. En så kallad supply side
plattform (SSP) tar hand om ut-auktioneringen
för de som vill visa reklam på sin sida. I samma
anda läggs budgivningsansvaret över på så kallade
demand side plattformar (DSPs). En DSP rep-
resenterar och sköter budgivning åt de som har
själva reklam-materialet, t.ex. företag eller in-
tresseorganisationer. Företaget vi har gjort detta
examensarbete hos är/driver en sådan DSP.

Reklamkampanjer har en begränsad budget och
löper över en begränsad tidsperiod. Man har långt
ifrån råd att köpa alla reklamplatser som auktion-
eras ut, så för att en kampanj ska påverka så my-

cket som möjligt måste budgeten spenderas strate-
giskt. Hur bra är reklamplats X, och är det är värt
att lägga ett högt bud på den eller ska vi vänta och
hoppas på att en ännu bättre dyker upp? I vårt
examensarbete skapade vi, genom en typ av mask-
ininlärning som kallas reinforcement learning, en
budgivnings-algoritm som presterar bättre än den
som används i nuläget.

Genom att lägga bud på ett smartare sätt, så får
företagen mer valuta för sina reklam-pengar. Det
kan även eventuellt leda till att internetanvändare
får se mer relevant reklam. Till exempel skulle
algoritmen möjligtvis kunna identifiera att vissa
sportintresserade personer aldrig klickar på spel-
reklam, och därigenom sluta visa (köpa) onödig
reklam för de personerna.

Vi skapade två budgivningsalgoritmer. Den
ena, en så kallad Markov decision process löst
via value iteration, visade lovande resultat. Med
samma budget som andra jämförelse-algoritmer
lyckades den köpa fler reklamplatser som blev
klickade på, medan den samtidigt spenderade min-
dre budget för att “få ett klick”. Den lyckades även
spendera budgeten i en jämnare takt än de andra
jämföreselse-algoritmerna.
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