3
> \
Y -
| MASTER'S THESIS 2019" b B . 'r

I Managing Programmatic
Advertising Using Machine
Learning

Carl Dahl, Pontus Ericsson

ISSN 1650-2884
LU-CS-EX 2019-16 :

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2019-16

Managing Programmatic Advertising
Using Machine Learning

Carl Dahl, Pontus Ericsson

Managing Programmatic Advertising
Using Machine Learning

Carl Dahl Pontus Ericsson
datl4cda@student.lu.se datl4pel@student.lu.se

July 5, 2019

Master’s thesis work carried out at Emerse Sverige AB.

Supervisors: Pierre Nugues, Pierre.Nugues@cs.lth.se
Carl-Johan Grund, carl-johan.grund@emerse.com
Rasmus Larsson, |lrasmus.larsson@Remerse.com

Examiner: Jacek Malec, Jacek .Malec@cs.lth. se

mailto:dat14cda@student.lu.se
mailto:dat14pe1@student.lu.se
mailto:Pierre.Nugues@cs.lth.se
mailto:carl-johan.grund@emerse.com
mailto:rasmus.larsson@emerse.com
mailto:Jacek.Malec@cs.lth.se

Abstract

This thesis is an exploratory study into the possibility of using machine learn-
ing to manage advertisement campaigns and agents involved in real-time bid-
ding. The norm for the industry of real time bidding is currently having human
operators managing campaigns by changing settings to maximize the number
of clicks. The goal was to investigate the possibility of automating this pro-
cess, to at the very least assist the human operators with making better deci-
sions. The first part of the project was to build a model for predicting the click-
through rate (CTR) of the ad campaigns. The second part was to use the model
to suggests optimal settings for bidding agents. The outcome was a model with
an accuracy of 92% in predicting whether an ad was to generate any clicks or
not, and with an accuracy of 58% to predict the outcome of an agent in the
different categories “few clicks”, “some clicks” and “many clicks”. We tried
the model with eight live tests giving varying results, but overall the average
CTR of the test agents was 8% better when compared to a test agent created by
a human operator. These tests show that the model carries potential, but needs
further development to become more stable. Unexpectedly using the images
in the ad banners as part of the input to train models resulted in a lower accu-
racy compared to without. This was however likely due to the small amount of
training data. The conclusion for the project is that the method of automating
advertisement could be utilized with much success but requires large datasets.

Keywords: Machine Learning, Classification, Programmatic Advertising

Acknowledgements

This master thesis was done at Emerse Sverige AB and would not have been possible
without their help and access to their platform and data. We want to thank Carl-Johan
Grund and Rasmus Larsson for the opportunity and the help along the way. We also want
to thank the people working in ad-ops at Emerse for helping us with the live tests during
our project.

A final thanks our supervisor Pierre Nugues for his support throughout the entire
project and for taking the time for weekly meetings in the beginning of the project to
make sure we got started on the right track. He gave us many tips on how to filter and
prepare our data, and how to improve our models.

Contents

(L__Introduction|

1

Vocabulary| 0oL

M3

2 Method

21

The architecture of the market platform|

[2.1.1 Agent features|

n3

n3

2.6

B3 Resulf

B

Model accuracy|

[3.1.1 Models without images|

[3.1.2 Classification with image-based prediction|

Online advertising|.
(1.4 The Interactive Advertising Bureau|
(L5 Previous workl

Analyzing thedata]
2.3.1 Click-throughrate]
2.3.2 Feature selectionl

Building themodel|,
2.5.1 Regression|
252 Classificationl
[2.5.3 Ablationstudy|
[2.5.4 Image-based prediction|
[2.5.5 Ensemble learning|
Utilizing themodel,
[2.6.1 Selecting between equal classes|
[2.6.2 Livetestingl

10
10
11
12

13
13
13
15
16
16
17
18
18
19
19
20
21
21
23
24
24
26

29
29
29
29

CONTENTS

B2

Livetesting|

B21 Firsttestl.

k!

Ablationstudy|. L

[3.4.1 Model output after ablation|.

i roxl

A1

Resultanalysis|

4.1.2 Ablationstudy| oo
[4.1.3 Regression|
4.1.4 Classificationl L oo

%)

The importance of abundantnew data]

A3

The potential for image-based CTR prediction|

4.3.1 Resizing|. oo

4.3.4 Practical analysis| 0o 0oL

4.4

Other attempts at increasing CIR|.

a5

Practical application|. oo oL

41
41
41
42
43
43
44
45
45
45
46
46
46
47
47

49

51

Chapter 1

Introduction

Online advertising is a fast growing business. In the first six months of 2018 in the United
States, internet advertising revenues totaled 49.5 billion dollars. Roughly a 23% increase
from the year before (Silverman and Gafiney, 2018). The latest statistics for the market
in Europe comes from 2017 where the revenue totaled 12 billion euro, an increase from
2016 by 27% (Puffett, 2018).

This project was done at Emerse Sverige AB who develops its own demand side plat-
form (DSP), which is an online tool for companies to buy ad-spaces. Emerse also de-
velops algorithms for the automated purchase of online ad spaces through programmatic
exchanges. A major part of the company is managing different advertisement campaigns.
This is done through the DSP by adjusting different parameters such as the pacing of the
budget, what age group to target, and which websites to advertise on, to name a few.

This master thesis explores the possibility of using a machine learning model to predict
the optimal settings for such parameters given an ad campaign. The goal for the model
is to perform at least as good, and hopefully better than a human operator. The purpose
of the model is not to replace human operators, but rather to automate some parts of the
daily work of adjusting different campaigns. This would reduce the effort required for each
campaign, which in turn allows one operator to manage more campaigns at the same time.

1.1 Vocabulary

This section will give the definitions of the words and abbreviations used throughout the
report. The first time a word in the vocabulary is mentioned in the report it is shown in
italics as an indication.

1. INTRODUCTION

Word Definition

Ad space A place on a website or app reserved for an ad. Theses spaces
are what are sold on programmatic exchanges. Each ad space
has a predetermined size.

Agent A managing instance of an ad that has assigned values such as

daily budget and target audience which allows for deciding what
ad spaces to bid on online.

Assurance value

A percentage of certainty used by the program to establish the
best variable settings. Explained further in Section [2.6.1

Campaign

A set of creatives and agents with the same goal for the same
client can be described as a campaign. One campaign could
be to advertise a new version of a product, for which multiple
different ad banners and videos could be used.

Categorical data

Data from the agents features that can be categorized i.e non
numerical values, such as budget, IAB category, pacing type
etc.

Click-through rate | Defined as the number of unique clicks divided by the number

(CTR) of impressions. This metric shows the percentage of people who
saw the ad and clicked on it.

Constant A feature of an agent that can not be changed when optimizing.

Examples of this is budget and IAB category

Convolutional neu-
ral network (CNN)

A neural network with convolutional layers to extract features
from images.

Creative

An image or video of the ad. If an ad banner has multiple dif-
ferent sizes then each one is its own creative. If an ad has both
an image and a video then they are different creatives.

Demand side plat-
form (DSP)

A tool used by companies looking to buy ad spaces. DSPs are
connected to multiple programmatic exchanges and allows for
RTB.

Interactive advertis-
ing bureau (IAB)

An recognized international group of marketing companies
which sets standards and best practices of the industry.

Impression A measurement of how many times an ad is shown to a user.

Model A machine learning model that predicts agent performance. The
model refers to the one designed in this thesis if not otherwise
described.

Mutant An instance of the agent the program is currently optimizing,

with some variables changed.

Table 1.1: Vocabulary and abbreviations table

1.1 VOCABULARY

Word

Definition

Program

The entire end-product of the thesis, being a system that utilizes
the model to optimize agent performance rather than just predict
it.

Real-Time Bidding
(RTB)

Bidding on programmatic exchanges in real time.

Supply Side Plat-

A tool used by companies looking to sell ad spaces. Like DSPs,

form (SSP) they are also connected to multiple programmatic exchanges.

Variable A model feature from an agent which can be changed to optimize
the performance. Examples of this is Pacing type and Optimiza-
tion strategy.

Unique Clicks Number of unique people that have clicked on an ad. The num-

ber of times an ad has been clicked in total is just referred to as
clicks.

Table 1.2: Vocabulary and abbreviations continued

1. INTRODUCTION

1.2 Problem statement

The objective of the thesis is to explore how machine learning can be used to increase
effectiveness for the online marketing business. In practice, we did this by designing a
program that assists with optimizing advertisement performance at an online marketing
company. As such, a more practical statement of the problem is divided into two steps:

1. The first step is to design a machine learning model that is trained to predict the
final click-through rate (CTR) for a certain agent based on both the settings and
situational constants of the agent.

2. The second step is to create an algorithm that takes an agent with all its relevant
features, and for each of the different variables, such as active hours and device
preference, predicts the CTR using the machine learning model and determines the
optimal settings of the agent.

We used the CTR to measure performance, but other metrics exist. For example, the
number of impressions or cost per click for the agent. We however determined that these
were too closely associated with the budget. We hypothesized that CTR was more affected
by changes to the other settings of the agent and therefore more relevant to the model.

1.3 Online advertising

As previously stated online advertising, or internet advertising, is a multi-billion dollar
industry and in this section we will briefly describe how programmatic advertising works.

In 2017, about 62% of European online ads were traded programmatically (Puffett,
2018)). This refers to what is also known as real-time bidding (RTB), where ad spaces are
bought on programmatic exchanges (Yuan et al., 2013).

RTB is exactly what the name suggests: Bidding in real time on ad spaces. It emerged
in 2009 according to Yuan et al.| (2013)). When a user opens, for example, a website with
an ad space, a bid request for that impression will be created and sent to an ad exchange.
These exchanges show all current bid requests along with some meta data regarding the
user. All advertisers connected to that ad exchange can see the bid request and can then
choose to place a bid. The ad exchange will then check all the bids received on the request
and decide the winner. The winning advertiser will send their ad so that it can be shown
to the user (Yuan et al., [2013)).

These ad exchanges, as mentioned by|Yuan et al. (2013), consist of multiple different ad
network publishers, who offer to sell impressions. Ad exchanges are a way to combine ad
networks to make it easier for advertiser to buy fitting impressions. They also mitigate the
inconvenience of registering to every ad network, and instead allow for simply registering
to the ad exchange.

In order for advertisers to take advantage of RTB on ad exchanges, they work with a
third party platform referred to as a demand side platform, or DSP. The DSP will act as a
delegate to the advertiser and will bid on bid request interesting to the advertiser. Figure
[I.T)illustrates how the different parties in online advertising are connected.

Yuan et al. (2013) lists three advantages of using a DSP as compared to interacting
with ad networks yourself:

10

1.4 THE INTERACTIVE ADVERTISING BUREAU

1. Advertisers only have to register with the DSP and avoid having to manage many
registrations with different ad networks.

2. DSPs allows for more detailed optimization and information, thanks to local logs
instead of periodic reports from ad networks.

3. DSPs allows for more customization in terms of the campaign. One example being
that DSPs can track the unique id of users to limit the amount of impressions for
each user. As such it can restrict the showing of one specific ad to x times per
day/week/month to the same person. Another example is to show ads based on the
weather in the region of the user. This can be done thanks to the meta data from the
bid request including both the coordinates and IP address of the user. The DSP can
then simply look at whichever weather forecast site they prefer to determine if the
user belongs to the target group of the ad.

On the opposite side, supply side platforms (SSPs) are a help to publishers by acting as
central management consoles for different ad exchanges. Just like DSPs allow advertisers
to customize their campaigns more, SSPs allow publishers to customize the impressions
they sell. For example setting a preference of bidders (bid bias) (Yuan et al., 2013).

Ad network Ad network

A
Supply side
platform

Publisher

Ad exchange

Ad exchange Demand side
platform

Advertiser

Figure 1.1: Overview of online advertising and the connections
between different parties

1.4 The Interactive Advertising Bureau

As most online ad creatives are in the form of images and videos that need to fit a certain
space on a website allocated for advertisements, it is important that the sizes match up.
The Interactive Advertising Bureau (IAB) serves as an international source for guidelines

11

1. INTRODUCTION

on what ads should look like, what counts as an impression and view, and standardize sizes
for ads and ad spaces (Interactive Advertising Bureau, |[2019).

IAB have also designed a set of categories to divide ads into what type of product or
service they are advertising. This list includes 26 different topics that includes but is not
limited to: Education, Health & Fitness and Society (AerServ, 2018]).

Whether the displaying of an ad counts as an impression or not is decided through a
visibility ratio decided by IAB. This definition also depends on whether the ad is large or
not.

A small ad is defined as an ad with a creative consisting of fewer than 242,500 pixels.
This is equivalent to a 970x250 image. The ad must be in a visible space in an active
window with at least 50% of the pixels showing for at least one continuous second. For a
large ad of more than 242,500 pixels, at least 30% of the ad has to be visible for the full
continuous second for it to count as a valid impression (MRC| 2014)).

1.5 Previous work

There is a multitude of articles written on the subject of predicting CTR in online adver-
tising. However, most of them tend to focus on predicting the CTR for a singular viewing
of an ad, rather than the performance of an autonomous agent deciding which ad spaces
to purchase (Chen et al., [2016; Graepel et al.| 2010).

When it comes to using machine learning to improve online advertisement in more
general terms, there are many scientific articles on the subject. Two examples of this are
the papers “Ad analysis using machine learning by classifying and recommending adver-
tisements for a given category of videos” by |[Kaushik et al.| (2017) and “Real Life Machine
Learning Case on Mobile Advertisement: A Set of Real-Life Machine Learning Prob-
lems and Solutions for Mobile Advertisement” by Seker| (2016). The first paper, is an
experimental analysis whether machine learning can be applied to make advertisements
for videos better directed to the target audience. The second paper, is an output of data for
a science study on a set of real life problems from the mobile advertisement industry.

Both of these papers conclude that there are a multitude of machine learning based
solutions for these fields. They also argue for that these have good potential and that the
results gained can benefit the advertisement industry at large.

12

Chapter 2
Method

In this chapter we present an analysis of the data used as well as what tools were used in
the project. We also describe how we created the models and how we used them in order
to optimize settings for agents.

2.1 The architecture of the market platform

An essential part to understand how to optimize ad performance is to look at what can
be optimized and how it connects to the remaining system. For this problem, the focus is
agents. The decisions on which impressions to buy are determined by the agents based
on their settings. Each agent markets a certain campaign and is connected to one or more
creatives, such as banners or videos. The more creatives, the more options for the agent on
which impression to buy since the creative and the ad space size must match. A campaign
can have multiple agents and in many cases, this is preferred. The benefit of creating
multiple agents for the same ad is that then every agent can be customized to better target
different kinds of users or websites. How an ad is split into multiple agents is shown in
Figure[2.1]

Another advantage of this is that not all eggs are placed in the same basket so to speak;
the risk of failure is spread out across multiple agents instead of focused on one. Since
there is no magic set of settings that will always work, managing ad campaigns consists
of making educated guesses based on experience in the field.

2.1.1 Agent features

Agents are the data points used as input in training the machine learning model. The agents
contain many different parameters and a lot of them were ignored in training for different
reasons. Only the parameters we actually used in the project are presented here, separated
between variables and constants.

13

2. METHOD

Website

E Y

Buys i i
| ys impression |
|

Agent Agent Agent

Settings Constants Settings Constants Settings Constants

Creative
(video/gif
fimage)
[y

Creative
(video/gif
fimage)

Creative
(videolgif
fimage)

Provides creative

and constants

Ad

Figure 2.1: A visualization of the agents relation to the ads and
websites

Constants

CTR: As explained in the vocabulary, this is the clicks per impression ratio and is
used as the target value for our model to optimize over.

Budget: The amount of money an agent has available for bidding on impressions.

Start and end date/Flight time: The dates from which the agent goes live and ends.
In the model this is simplified as the number of days the agent was active, referred
to as flight time.

IAB category: The IAB category that the ad belongs to.
Is Video: Whether the creative is an image/GIF or a playable video.

Width: The width of the creative banner in pixels. If the creative is a video, width
is always zero.

Height: The height of the creative banner in pixels. If the creative is a video, height
is always zero.

H/W ratio: Width and height divided. If the creative is a video, H/W ratio is always
zZero.

14

2.2 TooLs USED

Variables

* Optimization Strategy: A Boolean that dictates whether the bid on impressions
should be a fixed sum of money for each impression, or if an algorithm should be
used to determine the value of the impression so that a bid can be made thereafter.

* Pacing type: Can have one of three values, and dictates how the budget should be
spent over the course of the campaign. The value can be either "Even” to spend
the money evenly across the campaign, "Fast" to spend as much as possible in the
beginning of the campaign, and "Custom” where a set daily budget is spent every
day.

* Hour-of-week filter: A binary string of 168 bits, where each bit represents an hour
of the week and whether the ad should be active during this hour. This setting was
simplified to a binary string of 8 bits and how is mentioned later in this chapter.

* Device type: A binary string of seven bits where each bit represents an allowed type
of device to buy impressions on. This includes phones, personal computers, tablets
and so on.

2.2 Tools used

Tools we used that aided the project are mentioned here.

Scikit learn. Scikit learn is a package for python to implement and manage machine
learning models. We used this to design both the initial prototype and the complete model.
We also used Scikit learn in the preparation of data before training: For example scaling
numerical data and one hot encoding categorical data (Pedregosa et al.,|[2011).

Keras. Keras is an API designed for making neural networks written in Python. We
used Keras to create various image classification models and ensemble methods (Chollet
et al., 2015).

ImageNet and ResNet-50. ImageNet is a large public database of images for
training different machine learning models (Deng et al., 2009). There are millions of
images in the set, all labeled with what they depict. At the time of writing this report,
ImageNet currently contains 14,197,122 images (Fei-Fei et al.,[2019).

In this project, we used a pre-trained network called ResNet-50 which is trained on
ImageNet (He et al., 2015). It gets its name from the fact that it is a residual network that
is 50 layers deep. A residual network is built up of blocks of layers where the idea is to
add the input to the block again after passing through the layers in the block, also known
as shortcut connections. This is shown in Figure[2.2] Thanks to the shortcut connections,
residual networks allows for building deeper networks without a degradation problem, as
stated by |[He et al.| (2015]).

15

2. METHOD

Figure 2.2: Simplified version of a residual building block

2.3 Analyzing the data

We extracted the data necessary for constructing the model from the database of the Emerse
DSP. This consisted of 13,048 Agents each with their associated settings and results. In
reality there were many more agents available that we decided not to use. The reasoning
behind this comes from the advertisement market requiring new strategies constantly to
stay productive (Louth, 1966)). We suspected that using data from agents not intended to
finish over the coming year would only serve to confuse the model and lessen the result.
Agents older than 2 years were also removed for the same reason.

Agents with fewer impressions than 500 were also singled out as these were likely
small-scale tests or agents terminated abruptly due to errors or mishappenings. There was
also a handful of agents with null-values for some of the settings used, and were as such
also removed.

2.3.1 Click-through rate

To get a proper understanding of the data, we plotted it to evaluate the distribution of CTR
for all agents. The plot immediately uncovered two data points that were determined to be
outliers, two agents with a CTR of 88% and 50% respectively. As all other agents have a
CTR below 11% and a majority of them below 2%, the two outliers were removed. This
plot with the outliers removed is displayed in Figure [2.3]

We later decided to only include agents with a CTR below 5% after speaking with
experienced employees at Emerse. They explained that an unusually high CTR probably
means that the agent is incorrect in some way. For example the ad could be misleading or
in other ways tricking the user to click it.

Another noteworthy item regarding the data is the fact that over half the agents had a
CTR of 0%. A result of having either zero clicks, or too few clicks compared to the agents
impressions making the quotient almost zero. This was the reason why we later decided
to divide the program into two models. One model classifying if the agent has a CTR of
zero or not and the second one how good the CTR is.

16

2.3 ANALYZING THE DATA

010 1

0.08 4

(.06 1

CTR

004 4

002 1

),

0 2000 4000 6000 8000 10000 12000
Agent

0.00 4

Figure 2.3: A graph over the distribution of CTR for the agents.

2.3.2 Feature selection

As the data contains multiple features, we had to use a selection process to determine
the most useful ones. This process consisted mostly of experimentation, i.e. training the
model with a new feature and see if the result is better or worse. We also spoke to the
employees at Emerse to better understand which features were interesting.

At first we selected features mostly at random to create a base for the model. This natu-
rally resulted in a low-accuracy model. Thus the features had to be looked at more closely
and some needed to be adapted while others had to be removed entirely. An example of
this is start and end dates of an agent that we adapted to a duration instead. The number
of days an agent is active is more relevant than just a date, and it’s easier to interpret for a
machine learning model.

An issue common in machine learning, is when data points are missing some column
of data. The problem is then how you represent this missing value, since all samples given
to the model must have the same number of features.

An easy solution to this is to apply imputation. What this means is to replace all
missing values with the average, or the most common value, depending on which is the
most applicable to the feature. However, these solutions are counterproductive if a large
part of the samples have inserted values. The data can become biased towards the most
common value for example. There were a lot of different interesting settings available to
agents, but since only a few of them used these settings it was impossible for a model to
learn them effectively.

17

2. METHOD

2.3.3 Hourly distribution

To optimize over what hours are effective to run an ad, it became essential to look more
closely at the hour-of-week filter attribute. As this attribute was an array of 168
binary numbers, one-hot encoding it would result in the feature list being about 75% one
hot-encoded hours. There was also a strong suspicion, that hours close to each other likely
hosts similar audiences. Therefore, we plotted the data to look for trends, displayed in

Figure[2.4]

10400 1

10300

10200 1

10100 4

10000 4

Agents active

9900 -

5800 -

0 75 50 75 00 125 150 175
Hour {weelk)

Figure 2.4: A graph over the distribution of hours when an agent
is active in order of Sunday to Saturday

The plot shows a clear correlation of the hourly distribution between weekdays and
weekends, and as such we decided to group all weekdays together and likewise group
Saturday and Sunday together. We then simplified the data further by dividing each day
into 4 categories. These are: Morning (07-11), Afternoon (12-16), Evening (17-22) and
Night (23-06). This meant that the active times of one agent could be represented with 8
bits instead of 168, 4 for weekdays and 4 for weekends. If the agent had at least one active
hour in a category, then that category will be marked as active, and all hours within that
time frame will be treated as active.

2.4 Neural Networks

In the field of machine learning, one subfield is deep learning. The word “deep” in this case
refers to the learning process being built up of layers with increasing importance. Deep
learning is in practice almost always implemented with models called neural networks
(Francois, 2017)).

18

2.5 BUILDING THE MODEL

In this project we tried different versions neural networks with varying success. Here
we will describe some key concepts in neural networks, starting with layers.

The layers in a neural network are the building blocks. There are different kinds but
the general idea for one is to take an input, transform it in some way, and then return an
output. The input is often a tensor, i.e. a matrix or vector. The output of a layer depends
on its purpose. If its an intermediate layer in the model then the output will generally
be a tensor. However, if its the final layer of the model then the output could be a real
number in the case of regression, or a natural number representing a class in the case of
classification. The transformation in a layer depends on the type of layer. In a Dense layer
the transformation looks like this: output = relu(dot(W,input) + b) (Francois, |2017).
Breaking this down, the first thing that happens is a dot product between the input tensor
and the tensor W. After that its an addition with a vector b, followed by a relu operation
which means to replace all negative numbers with zero. The W and b are attributes of the
layer and are called the weights.

Before we define what the weights of a layer refers to, first we will describe the loss
function. This function is the measurement of success during training in machine learning
(Francois, 2017). After the model has turned input data into predictions, the loss function
compares these predictions to the actual values and produces a loss value. In this project
we used two different loss functions, categorical crossentropy for classification and mean-
squared error for regression.

The next thing to understand is the weights in a layer. These are the learning part of
machine learning. When training a model its the weights that change. When training a
new model the weights are initially randomized. Obviously the initial values of the weight
matrices are not very useful. They are in fact useless in predicting the desired data. But
they are a starting point for the training. In training the weights are adjusted gradually
over multiple iterations to find the optimal permutation. In order to know whether the
values should be increased or decreased the gradient of the loss is calculated with regards
to the weight matrix (Francois, 2017). The gradient is a generalisation of the derivative
for multiple variables. This algorithm is called gradient descent.

In practice there are multiple ways to implement the gradient descent algorithm, in
neural networks they are referred to as the optimizer of the model. In this project we
mainly used RMSprop.

2.5 Building the model

The process of constructing the final model consisted of a lot of trial and error. In this
section, we present this process and the decisions we made to arrive at the architecture of
the model used in the end.

2.5.1 Regression

Initially we tried training multiple models, including linear regression, decision trees, and
random forests. The resulting models performed rather poorly. We believe this was mainly
due to the distribution of the dataset where over half the samples had a CTR of zero.

19

2. METHOD

After multiple attempts, we finally concluded that regression was impractical in this project
because of the low accuracy. We therefore decided to exclusively use classification.

The final version of the regression model we used was a neural network built in Keras.
The model consisted of 3 dense layers, followed by a dropout of 5% and then another dense
layer as output. Multiple other setups were attempted including more dense layers and a
larger dropout but this is the one that resulted in the highest accuracy. The result of this
can be seen in Section 3.1.1

2.5.2 Classification

As can be seen in Figure [2.3] where the CTR is plotted, there is a large portion of the
data samples that have a CTR of zero. The result of this is that the model had trouble
to estimate the exact values as half the time the value was just zero. To mitigate this we
trained a model to classify the data into two categories, zero or not. This model was used to
filter out samples predicted to have a CTR of zero, so we could add a second model which
we only trained on non-zero CTR samples. The connection between these two models is
shown in Figure [2.5]

The second model, trained on non-zero samples, was also a classification model. As
we had a limited number of samples to work with, since about half of were filtered out,
only three classes were used. The boundaries of the classes were chosen so every class
had a similar amount of samples from the dataset. The three classes we determined were:
Agents with a CTR of less than 0.1%, more than 0.1% but less than 0.2%, and lastly more
than 0.2%. This technique of using two models focused on different types of classification
improved the overall accuracy of the program substantially.

To decide what kind of model would be most appropriate, we tested ten different clas-
sification models from Scikit learn. These were all run on the same training and test data
to see which scored the highest accuracy. The models tested were nearest neighbour, linear
support-vector machine, radial basis functions support-vector machine, Gaussian process,
decision tree, random forest, multi-layer perceptron, adaptive boosting, naive Bayes and
quadratic discriminant analysis. Out of these models, adaptive boosting turned out to be
the most accurate.

After implementing adaptive boosting, we also tested XGBoosting. After some exper-
imentation the result was a minimal increase in accuracy of less than one percent, however
the training time was more than doubled. As such we still considered adaptive boosting
the superior choice.

Adaptive boosting. Adaptive boosting, more commonly referred to as AdaBoost,
is a classification model that was introduced in 1995 (Freund et al.| [1999). It is a form of
learning model that centers around iterating over a training set using a set of different
learning models to create estimations. In the context of our thesis, we used decision trees.
After a first layer of estimations is completed, a remodelling of the training data is
done. Previously evenly distributed weightings of the data is now altered so the samples
incorrectly classified by the model are more significant in training for future iterations. In
other words the model is designed to use a weak learner with focus on the parts of the
training that are more difficult to establish rather than an even iteration over the set.

20

2.5 BUILDING THE MODEL

Training data

Remove 0's by first
model standards

Data classified

Test data Data classified as as 0. 10r2

First model 1 .| Second model Returned
classification | classification Predictions

— >

Data classified

L asi

Figure 2.5: A graphic representation of our complete sequence
of classification models

Specifying hyperparameters. After deciding on AdaBoost as the classifier
the next step was tuning the hyperparameters. We used decision tree as a base since this
was the default option in Scikit learn. This meant the hyperparameters to be determined
were the depth and the number of estimators. We wrote a simple function that trained
and evaluated a model and saved the results, then repeated this while incrementing the
depth by one each iteration. We tested with values ranging from 1 to 20 and found that 8
was the best. Then the same process was repeated for the number of estimators, this time
with values from 1 to 1000. We decided to set this to 250, even though the accuracy did
continue to increase with the number of estimators. The reason for this was that after 250
the accuracy increase was trivial while the training time increased exponentially.

2.5.3 Ablation study

At the end of the project an ablation study was done. An ablation study is a procedure to
evaluate the quality of the selected features of a given model.

This is conducted by recording the model accuracy for the test set, followed by remov-
ing one feature. After removing the feature, the model is re run and the new accuracy
is compared to that of the complete model to see if the model becomes better or worse.
The exact change is recorded, and the feature is re-inserted into the model, followed by
repeating the process for another feature until all have been tested.

The result of this study can be seen in Section [3.4]

2.5.4 Image-based prediction

At the core of every ad, no matter the settings of the agent, one of the most essential
influences for an ads performance is the creative of the ad. The model could suggest the
best settings but if the ad image is not enticing whatsoever the CTR will still be close
to zero. Therefore we attempted to incorporate images as part of the input to the model.
We tried two different methods, first using a convolutional neural network (CNN) built
with Keras, and then a model built using predictions from a pre-trained network called
ResNet-50.

21

2. METHOD

Convolutional neural network. We built a sequential model with Keras con-
taining three sets of convolutional and max pooling layers, followed by 2 dense layers
including the output layer. The model would predict the CTR into three classes, the same
classes as the model for categorical data. The predictions from the CNN and the model
trained on categorical data would then be used as input to a new model. A basic type of
ensemble learning. The dataset had to be restricted to agents with images that were ac-
cessible. As a result many agents that could previously be trained on were now removed
due to the ad being a video or a GIF, or simply because the image could not be found.
Mainly old campaigns with images that were not hosted by Emerse themselves were no
longer available.

Since campaigns often consist of multiple agents, many agents use the same image. In
order to avoid training on the same image multiple times, only one agent per creative was
allowed. This meant that generally only one agent per campaign could be used and the
training set was significantly reduced.

All of the reasons mentioned above meant there were only 1422 images to work with.
These images had different shapes and the model required everyone to have the same size.
So before training every image was resized to the most common size, being 300x250 pixels.
Figure [2.6] shows an example of a resized image.

100
200
300

400

500 42

Figure 2.6: A sample of a resized image. The picture is a stock
photo of Eileen Collins taken by NASA.

Pre-trained network, ResNet-50. In the second attempt to use images to
increase accuracy, we used a pre-trained network to extract features from the image. The
features could then be used as input, along with the categorical data from the agent, to a new
model. We decided to use ResNet-50 that is trained on the ImageNet dataset. ResNet-50
originally returns a prediction of what object that can be seen in the image. There are 1000
possible objects that it can classify the image as, for example different kinds of animals
like howler monkeys or different types of clothes like a cardigan or a bow tie. However
since in this project the features of the image is whats interesting, not what kind of object
is in it, we used the output tensor from the second to last layer (before the classification)
instead. This tensor is 2048 features long and two dense layers was used on it before it was

22

2.5 BUILDING THE MODEL

concatenated with the categorical data and used as input in the final classification model.
An illustration of the model is shown in Figure

Categorical data Image

| |

{ 2 Dense layers]

ResNet50

Classification layer |

'S ™

2 Dense layers

. v

Y

{ 3 Dense layers]

!

Predicted class
[0,1, 2]

Figure 2.7: Illustration of the multi-input model with a pre-trained
network (ResNet-50) for the images where the second to last layer
is used as input.

The images for the pre-trained network also had to be resized. ResNet-50 has a few
different acceptable sizes and we chose 224x244 pixels simply because it was the largest.

2.5.5 Ensemble learning

Ensemble learning is the method of combining multiple models in order to improve results
(Chollet et al., 2015). By using different models to predict and then pool together the
predictions, a more accurate final prediction can be reached. The method is based on the
assumption that different independently trained models are accurate for different reasons
and each of them knows part of the “truth”. Hence by combining all models the whole
“truth” can be seen.

According to van Rijn et al. (2018) ensembling classifiers is, in many cases, the most
accurate kind of classifier available. What is known as heterogeneous ensembles are es-
pecially good. These are ensembles with models built using different techniques. For
example in the context of this project an AdaBoost classifier was used along with a CNN.
Other techniques could be support-vector machines or Bayesian classifiers. There are also
homogeneous ensembles which involve using multiple models built with the same tech-
nique.

23

2. METHOD

2.6 Utilizing the model

The second step of the project was to build a program utilizing the designed model to
predict the optimal settings for a given agent. The structure of this program is as follows.
First taking a given agent complete with all its selected features, including both its con-
stants such as active time and budget, and its variables such as hour-of-week filter and
targeted devices. Then iterating over the variables, trying all combinations while predict-
ing the resulting CTR. The optimal settings could then be found among the combinations
classified as the third class, representing a good CTR. The result was a program that could
properly analyze an existing agent and give recommendations for what settings should be
changed to increase performance.

2.6.1 Selecting between equal classes

A number of issues arose due to the exclusive usage of classification rather than regres-
sion in the model. Primarily, classification is not capable to estimate a “best value”. An
immediate solution would be to select a result at random from those belonging to the most
optimal class. This however raises a second problem, being the risk for false positives.

To deal with this second issue, we implemented an algorithm to instead extract the
most trusted setting. The most trusted setting is decided by creating a set of mutants that
has the same constants as the original agent, but different settings on the variables. This
is done for every possible combination of those values, followed by predicting the class of
every mutant. All mutants not predicted as class 2 (good CTR) were discarded.

After this is done, an Assurance value is estimated for each variable. This is done by
looking at the sample distribution for each individual variable, comparing how many more
samples the most popular value has than any other value. For example, if the optimization
strategy variable has the values o f £ and on. Perhaps there are 10,000 instances of class 2
mutants, where 6,000 have optimization strategy set to on and 4,000 has it setto of £. As
the most popular value is on due to having 60% of all instances, the variable optimization
strategy is estimated to have an assurance of 60%.

This is done for all the other values, and the one that holds the highest percentage is
“locked”, meaning to discard all mutants not having the chosen variable being equal to
the most assured value. In this example case only the mutants with optimization strategy
set to on is kept. The program then calculates the second most assured variable, followed
by locking this as well. This process repeats until all variables are locked, resulting in
suggesting the locked variables as the most probable successful setting for the tested agent.
In the case of a tie for assurance, all remaining variables are locked for the most common
value of each variable. If there is a tie between the most common value, the algorithm
checks the previous iterations for a common value, and if non is found sets the value to a
default setting, for example "all hours" for the hour-of-week filter. The process is visually

described in Figures [2.8}{2.12]

24

2.6 UTILIZING THE MODEL

=
- -~
7 S
/// \\\
I
Mutant Mutant Mutant Mutant \
(0,0,0,0) (0,1,0,0 (1,0,0,0) (1,1,0,0) \
1 I 1 I
Prediction: Prediction: Prediction: Prediction:
o 2 1 2
I
Ji Mutant Mutant Mutant Mutant
(0,0,0,1) (0,1,0,1) (1,0,0,1) (1,1,0,1)
I
" || 1 1 1 1
| Prediction: Prediction: Prediction: Prediction:
(aq%elng) optimize_settings() 1 a 1 1
1.1, | ;
A lI Mutant Mutant Mutant Mutant
Predl;:hon. | (0,0,1,0) (0,1,1,0) (1,0,1,0) (1,1,1,0)
I'.I v v y
\ | | | |
\ Prediction: Prediction: Prediction: Prediction:
\ 0 1 2 2
\\ ;
N\ Mutant Mutant Mutant Mutant
\ (0,0,1,1) (0,1,1,1) (1,0,1,1) (1,1,1,1) /
‘\ I / 1 / I I ’ :
Prediction: Prediction: Prediction: Prediction:
2 1 2 2
S
e ~
~ -
\x\
—_
Figure 2.8: Create mutants and predict results
1
' Y !/' Y Fa 0
Mutant Mutant Mutant Mutant
(0,0,1,1) (0,1,0,0) (1,0,1,0) (1,0,1,1) 0
| | |
Prediction: Prediction: Prediction: Prediction: 1
2 2 2 2
0
Mutant Mutant Mutant 0
(1,1,0,0) (1,1,1,0) (1,1,1,1)
1
R E— R E— R E—
Prediction: Prediction: Prediction:
2 2 57| 417

Figure 2.9: Extract the best mutants and select the most certain
variable based on the most frequent value for each variable

25

2. METHOD

Mutant Mutant
(1,0,1,0) (1,0,1,1)
[I
Praediction: Prediction:
2 2
Mutant Mutant Mutant
(1,1,0,0) {1,1,1,0) {1,1,1,1)
I ’ - I . ’
Prediction: Prediction: Prediction:
2 2 2

35

415

3i5

Figure 2.10: Remove all mutants with other values than that of
the most certain for the selected variable and repeat

Mutant Mutant
(1,0,1,0) (1,0,1,1)
[I
Prediction: Prediction:
2 2
Mutant Mutant
(1,1,1,0) (1,1,1,1)
I i) I
Prediction: Prediction:
2 2

214

214

Figure 2.11: Continue until tie is found, and establish the most
frequent value of the remaining variables. In the case of a tie the
most frequent value in the previous iteration takes precedence.

2.6.2 Live testing

To evaluate whether the model is actually accurate, we conducted live tests. This meant
generating suggestions for an actual agent buying real impressions and getting clicks from
real users. We took an agent running with settings predetermined by a human operator at
Emerse, and copying it into a second agent. This new agent was then given to our program
which suggested new settings. Both agents were then left to run until their budget was
gone. We then compared the CTR of the original agent with the CTR of our agent with

suggested settings.

26

2.6 UTILIZING THE MODEL

optimize_settings()

Mutant
(1,1,1,0)

|
Prediction:
2

Figure 2.12: Return the last remaining mutant as the optimal set-

tings for the agent

27

2. METHOD

28

Chapter 3
Result

In this chapter, we will present the results of our model in training with the accuracy on
the test set as well as confusion matrices. We will also show the results of the live tests.

3.1 Model accuracy

To quantify the performance of the models, we focused on the accuracy through a com-
parison between the predicted class of each agent in the test set and their actual class.

3.1.1 Models without images

Regression model. The initial attempt of predicting CTR, was done through lin-
ear regression. The results of this was very quickly discovered to be close to random when
it came to giving predictions. Even after much tweaking of the model parameters. The
graph of the result from predicting the test set can be seen in Figure[3.1] This clearly shows
that the regression model was performing very poorly.

Classification model. For the first complete prototype, the model consisted of
a two-step classification model using AdaBoost to estimate the result for the agents. The
accuracy of these two classification resulted in 92% for the first step, and 58% for the
second. Confusion matrices for both steps can be seen in Figure [3.2]

3.1.2 Classification with image-based prediction

Here we will present the results of the two different approaches to image based prediction.

29

3. REsuLt

10

03

0.6

CTR

04

0.2

0.0

0 200 400 500 800 1000 1200
Agent

Figure 3.1: A Graph depicting the true CTR values for the regres-
sion models training set (dark blue) and the predicted CTR for the
same set (light blue)

Normalized confusion matrix

MNormalized confusion matrix

09 06
08 0-0.001 .10
07 05
x

_ 06 04

] < 000100021 027

= 05 3

s = 03

= D4 '
03 D00z-0.05 4 013 0z
02
01 & & Q@:

© + o @:“' &
Predicted label o o

Predicted label

Figure 3.2: Left: Confusion matrix for the first classification step.
Right: Confusion matrix for the second classification step.

First attempt (image classification on its own). Our attempt to train
a CNN proved unsuccessful, as only around 30% accuracy was reached. This is worse
than if the model would guess randomly between the three classes. The confusion matrix
showed that the model would always predict only one of the three classes. Which of the

30

3.1 MODEL ACCURACY

classes was picked varied between attempts seemingly at random. In Figure [3.3]one such
confusion matrix can be seen.

Normalized confusion matrix

10
0] 000 0.00
08
T 06
]
=, 000 0.00
5
= -0.4
21 000 0.00 -0
—L o0
S Y T

Predicted labsl

Figure 3.3: Normalized confusion matrix for our CNN.

Second attempt (pretrained network prediction). For the second it-
eration, we used ResNet-50. The accuracy improved markedly compared the previous
attempt with a resulting accuracy of 52.8%. However, even with this improvement the
multi-input model with categorical data and images was not better than the original model
that only used the categorical data. The confusion matrix, Figure [3.4] for this model also
shows that it was much worse at classifying agents in class 2, an important aspect in the

context of this project. As a result, we decided that the final model had to remain without
images.

31

3. REsuLt

Confusion matrix, with normalization

0.6

0.5

0.4

True label

- 0.3

0.2

0.1

Predicted label

Figure 3.4: Confusion matrix for the model using images to assist
prediction

3.2 Live testing

To establish the certainty behind the model and the results generated, we ran a series of
live tests using real ads managed by Emerse. Their specifics and results are detailed below.

3.2.1 First test

We ran the test by using an existing ad that had a campaign budget of 62 dollars. To test
this ad, we ran the original settings through the program and created a new agent with the
settings suggested by the program. This new agent was then put up live with a budget of
52 dollars and was allowed to run simultaneously as the original agent. The CTR could
then be compared between the two.

The ad used was an advertisement banner by a company named Eriks fonsterputs for
cleaning windows in Sweden. The banner itself can be seen in Figure[3.3]

Test result. The test agent gave a resulting CTR of 0.0010 over 22 unique clicks.
We compared this with the original agent, which received a CTR of 0.0007 over 19 unique
clicks. This netted an increase in CTR by almost 43%, showing a clear indication that
the program was capable of positively enhancing the ads performance through the given
suggestions. In Figure[3.6 we have plotted the CTR of both agents each day.

A noteworthy remark is that the cost per click was also reduced greatly. This meant
that the optimization was not only beneficial in terms of effectiveness but also lowering
the cost of clicks, as the original had a cost per click of 2.695 USD and the test agent had
2.363 USD.

32

3.2 LIVE TESTING

Forenkla
din vardag!
| R e

Bestall har och f3
forsta putsningen
till fast pris!

Eviks

fonsterputs

Figure 3.5: The ad banner of the first live test

0,0020
— O rigin al
—Test
0,0015
£ 00010
¥
—--_-.-_-_-—
0,0005 \/
0,0000
73 /3 5/3 w3 13 12/3 13/3 14/3 1s/3 18/3 17/3 18/3

Time [Date)

Figure 3.6: A graph over the live test depicting the CTR of the
original agent and the test agent.

Confidence interval. To establish how trustworthy these results are, we calcu-
lated the confidence interval. As unique clicks are independent and occurs at a constant
rate, the function for CTR was described as a Poisson distribution. We did this for the

33

3. REsuLt

summed result of clicks and impressions for both agents, which can be seen in Table[3.1]

Agent CTR Confidence interval 90% Confidence interval 95%
Original 0.0007 0.0005 - 0.0010 0.0004 - 0.0011
Test 0.0010 0.0007 - 0.0014 0.0006 - 0.0015

Table 3.1: Confidence interval for the first test

3.2.2 Second test

This test was done in a very similar manner to the first live test. The only real difference
was that the test agent and the original agent did not run simultaneously. The original ad
campaign started on March 19 and ran until April 1. The test agent was started on March
25 and was kept running until April 10. The budget was also larger for this campaign with
a budget of 112 dollars.

As with the previous test, the original parameters for an agent were run through the
program, and a new agent was created with the parameters suggested. Following this we
set up the new agent in the DSP with a smaller budget of 102 dollars.

This test used an ad banner for a company named Phonak, advertising hearing aids.
The banner for the ad that was used for the test can be seen in Figure

PH’?NAI{

E15

Figure 3.7: The ad banner used in the second live test.

34

3.2 LIVE TESTING

Test result. This second test gave a poorer result than the first, having a CTR of
0.0006. When compared to the original agents CTR of 0.0008, this is a decrease of 25%.
The results from the test is displayed in Figure [3.8]

The amounted cost for the advertisement also suffered as the cost per click was in-
creased from 2.50 USD to 3.45 USD.

uuuuu

m—— Criginal

Test
0,0015

uuuuu

..........
uuuuuu

19/3 22/3 75/3 28/3 31/3 3/4 6/4 /4

Time (Date)

Figure 3.8: A graph over the second live test depicting the CTR
of the original agent and the test agent.

For this test, we looked closer on when clicks occurred to assess the hour-of-week
filter. Our model suggested quite a specific hour-of-week filter, only between 7 and 11
on weekdays and all hours except between 7 and 11 on weekends. The original agent was
active during all hours. In Figure[3.9|the amount of clicks throughout the day is shown. The
light blue graph is the test agent with settings chosen by our model. If we use the original
agent as a reference for when the ad received clicks, we can evaluate the effectiveness of
the suggested hour-of-week filter. The diagrams show that the test agent chose one of the
most popular times during the weekdays. However on the weekends it chose not to run in
the mornings, which turned out to be the second best time for the original agent. It was
also active in the evenings on weekends where neither of the agents got any clicks.

Confidence interval. Through the same method as for the first test, the confi-
dence interval is estimated in Table

Agent CTR Confidence interval 90% Confidence interval 95%
Original 0.0008 0.0006 - 0.0010 0.0006 - 0.0011
Test 0.0006 0.0004 - 0.0008 0.0004 - 0.0008

Table 3.2: Confidence interval for the second test.

35

3. REsuLt

Click times weekday

14 B Test
HEm Criginal
12 1
10 |
n 81
o
=)
O
6 4
44
2 4
0 - . -
Night (23-6) Morning (7-11) Afternoon (12-16) Evening (17-22)
Time of day

Click times weekend

BN Test
14| EEE Criginal
12 4
10 1

2
U 8
@]
6 4
4 4
2 4
0- . - —
Night (23-6) Morning (7-11) Afternoon (12-16) Evening (17-22)

Time of day

Figure 3.9: Amount of clicks per hour for the second test. The test
agent was active for mornings during the weekday (above) and for
all hours except mornings for the weekend (below).

3.2.3 Continued testing

After the two initial large-scale tests, a larger batch of six agents where run simultaneously
in the same manner as the previous two tests, but with smaller budgets. Out of the six
agents, four had budgets of 20 dollars each allocated to them and two had 10 dollars.

All tests were run until the budget ran out, followed by a CTR comparison.

36

3.3 BASELINE TEST

Statistical summary. In Table 3.3|the results of all live tests are shown. Each
row represents a pair of agents, the test agent and the original agent.

Test Original
Unique clicks Impressions CTR Unique Clicks Impressions CTR
4 3172 0.0013 3 6447 0.0005
3 8410 0.0004 6 10,771 0.0006
2 6964 0.0003 13 11,051 0.0012
11 8107 0.0014 11 6596 0.0017
28 51,260 0.0006 45 53,421 0.0008
88 42,132 0.0021 72 34,896 0.0021
4 1154 0.0035 16 7425 0.0022
22 21,192 0.0010 19 26,087 0.0007
Total Total Average Total Total Average
clicks Impressions CTR clicks Impressions CTR
162 142,391 0.0013 185 156,694 0.0012

Table 3.3: Test results for every test we ran. Each row represents
one test agent and original agent pair.

3.3 Baseline test

Aside from running tests comparing our program to a human operator, we also ran a test
comparing our program to a baseline. In this case our baseline was created by randomizing
parameters for 5 agents with a budget of 10 dollars. We then compared the resulting CTR
from these tests to an agent created with suggested parameters from our program, this
agent had a larger budget of 50 dollars. The individual results of each agent can be seen
in Table 3.4

The different agents with randomized settings had varying results. For a better compar-
ison to the agent with the suggested setting, we took the average CTR of the randomized
agents. The average CTR of these was 0.0010.

Clicks \ Impressions \ CTR
Random settings

0 14 0

2 2,752 | 0.0007

1 2,099 | 0.0005

6 2,874 | 0.0021

1 2,723 | 0.0004
Predicted settings

14 | 11904 |0.0012

Table 3.4: Results of the baseline test

37

3. REsuLt

3.4 Ablation study

In Table [3.5] the result of an ablation study is presented for all features used in the final
version of the model for both the first and second step. Ablation studies is a statistically
sound method for establishing a ranking of significance for the model features (Meyes
et al., 2019).

In Table[3.5] the ablation score is defined as the percentage of accuracy lost when the
specified variable is removed from the model. A negative score means the model benefited
from losing the feature.

Baseline Accuracy first step Accuracy second step
Unmodified 0.921915 0.575781
Feature name Ablation score first step | Ablation value second step
IAB category 0.03794 0.014844
Flight time 0.03130 0.014844
Optimization Strategy 0.00147 0.005469
Budget 0.02320 0.001562
Device type 0.00110 0.000781
Is Video -0.002578 -0.002344
Width -0.006262 -0.004688
Pacing type 0.00405 -0.007031
Height -0.000737 -0.008594
H/W ratio -0.000000 -0.009375
Hour-of-week filter 0.00037 -0.010157

Table 3.5: Ablation study result for all features in both steps of
the final version of model.

3.4.1 Model output after ablation

After experimenting with the features in regard to the ablation study, we attempted to gain
an optimal accuracy value for the model. We removed the most negative feature according
to the ablation study. Then we made a new ablation study to determine the next feature
to remove and so on until no negative features remained. This however, meant removing
variables from the model, thus making it unusable in practise due to not being able to
optimize over the agents.

The result of this was an agent with an accuracy of 59,5%, that consisted of the same
features as the unmodified agent excluding the features Hour-of-week filter, Height, H/'W
ratio and Is Video. The confusion matrix for this model can be seen in Figure [3.10]

38

3.4 ABLATION STUDY

Mormalized confusion matrix

06
0-0.001 0.10
05
[
0.4
f 0.001-0.002 4 024
2
= - 03
0002-0.05 { 019 - 0.2
T — I}].
~ 2 %
& Y &
Q:'?" it

Predicted label

Figure 3.10: Confusion matrix for the model with features re-
moved based on the ablation study

39

3. REsuLt

40

Chapter 4

Discussion

In this chapter, we will discuss some potential error sources, analyze the result, and reflect
on the effect the data size limitations had on the project. We will also discuss some attempts
at improving the model, and what could be done in the future.

4.1 Result analysis

Here we will review the results we documented in the previous chapter further. We will
discuss the reasons for why we got these results and also explore possible error sources.

4.1.1 Error sources

Test evaluation. One source of error, is that for all the tests, the original agent had
been running for some time before each test agent was set up. This meant that we were
forced to limit the comparison between days when both agents were active. The reason
for this was to avoid the result being incorrectly worsened, due to CTR generally being
harder to increase the longer an ad has been running. This is based on the notion that the
group of potential clickers for an ad decreases over time, as people whom have seen the ad
have already made the choice to click or not. This trend can also be seen clearly in both
the Figures [3.6] and [3.8] where the CTR increases for the first few days and then slowly
decreases. In practice however, this has very little impact on the results as we disregarded
all data from before both agents were running.

This wouldn’t be a big problem if the target audience for an ad is large. However, in the
case of the second test, the target audience was Danish speakers in need of hearing aids,
which is a quite niched group. As a result the total amount of clicks for both agents was
very low, and thus the result became somewhat uncertain.

Another source of error is the fact that most tests ran on a very small budget, resulting
in very few clicks. The result of this is that the confidence intervals for both the first and

41

4. DiscussioN

second tests did not give clear results. This leaves some uncertainties whether the results
were a stroke of luck, or due to our program actually having impact.

One of the reasons for the test agents resulting in such a poor performance can in part
have been caused by the hour-of-week filter. In second test, depicted in Figure [3.9] we
can see that the accuracy of the program when deciding the optimal times to run, is very
varying depending on the the weekends and weekdays.

For the weekday, the model did well in selecting the optimal time to display ads. How-
ever during the weekends, the selection was very poor as both afternoons and evenings
were the chosen times to air on even though these resulted in no clicks for the agent.

We think the poor performance of the hour-of-week filter was in part affected by our
way of scaling this feature. If the agent had at least one active hour in the time span then it
would count as being active for all of that period. For example if an agent was just active
at 8.00 then it would still count as being active the whole morning period, 7 to 11. It may
have been better to base the decision on the average number of active hours for that period
instead.

Baseline test. The results of the baseline test were not as decisive as we thought
they would be. The CTR of the agent with settings suggested by our program was only
20% better than the average CTR of the randomized agents. The reason for why the CTR
was similar was because one of the randomized agents performed really well. Four of
the five randomized agents had a low CTR, but one of them had a much higher CTR of
0.0021. Looking at the settings for this agent they are not much different from the others.
The most unique setting is the hour-of-week filter which says the agent is only active during
the night on weekdays and during the afternoon, evening and night on weekends. There
is no clear reason for why this randomized agent performed much better than the other
ones. We believe this is an anomaly, and this is the reason for why we created 5 different
randomized agents instead of just one. If this agent is ignored however, the average CTR
of the randomized agents would be 0.0005. A significantly worse performance.

4.1.2 Ablation study

We analyzed the result of the ablation study. It appeared that the removal of most individual
features had a very small impact on the model accuracy, with an ablation score smaller than
1% in all but three values.

However, a few features were still found to have much individual importance. The
most impacting features according to the results were IAB category and flight time, i.e the
duration of the campaign. The most impacting feature in terms of improving the model
when removing the feature was the hour-of-week filter.

For IAB category and flight time it seemed natural that these values would have a
large positive contribution to the predictions. The IAB category of course dictates the
target audience, which can differ greatly in both device use and active hours during the
day. Flight time as well can have great impact. The group of potential clickers can be
exhausted if the flight time is set too long. If an ad continues to run after this exhaustion,
the amount of impression will increase but the clicks will not. Users who have already
seen the ad and clicked on it are less likely to click on it again. In the end this leads to a
poorer CTR.

42

4.1 RESULT ANALYSIS

However, hour-of week-filter was not expected to have such a negative contribution to
the model accuracy. Mainly because of the reasons it was implemented in the first place,
as explained in the method.

The reason for why hour-of-week filter was a poor feature is most likely because of the
lack of data. This prevented the model from learning good enough patterns. A big issue
was that a lot of agents trained on did not use a specific hour-of-week filter, i.e they were
active all hours. With more data, and specifically more samples with a varying hour-of-
week filters would likely yield a better result.

It was a surprise that the budget feature had such a low impact on the model. We ex-
pected this feature to be contributing more. Both due to experience shared from employees
at Emerse, but also as it was shown in previous non-tracked experimentation’s with feature
removal that it had a very large impact when the number of features was small. This is
likely due to correlations with other variables, such as flight time that tends to scale with
the budget in at least some manner.

Even though Pacing type might contribute negatively to the model, it is most likely
required. The reason for this is that the model has to have a pacing type either way, as
there is no clear default value.

It is unfortunate that over half of the values included in the model had a negative score,
meaning that the model would have performed better without at least one of these features.
As such, potential future work would be to apply the results of this study and run new tests.
If that would have been the case, then the test might have resulted in a higher performance
for the test agents.

However, it is worth mentioning that the accuracy does not actually benefit from re-
moving all of these features at once, as we showed in the Results. The result of the ablation
study is not as bad as one might get the impression of when initially looking at Table [3.5]

4.1.3 Regression

As can be seen in the result chapter and the Figure[3.1] it is clear that the regression model
was far too inaccurate to be used in any meaningful way. We believe that regression is
viable but it requires more data. Looking at other papers attempts at applying regression
to predict the CTR of individual viewings of ads, it is clear that with more specific data
and more variables to describe the environment in which the ad is placed, it is likely that
regression may yet have a better potential (Guo et al., 2018)).

4.1.4 Classification

Analyzing the results given from the first test, it would initially seem that the model is
performing excellently. However, due to the confidence interval and the tests that followed,
it would rather seem that the model in its current state is relatively unstable.

Given the statistical summary of the tests however, the average increase of CTR was
positive. This meant that the model in fact does perform slightly better on average than
a human operator. Taking this into account along with the fact that this model has room
for improvement, it would seem clear that this method of CTR optimization can be very
beneficial if work is continued to increase performance further.

43

4. DiscussioN

It is important however, to consider the fact that the model does not evaluate the best
settings. Instead, the model selects the safest option among those that are believed to be
among the best. This means that the model is prone to reach a ceiling for improvement,
unless the model is altered to either go back to regression, or create models with more
classes to gauge success. This would of course first require a big increase in model accu-
racy, as more classes are very likely to result in an accuracy so low that the result would
suffer. This is due to difficulties separating the classes, even if the attempted predictions
would be more specific.

4.2 The importance of abundant new data

Throughout the entirety of the project, the amount of data available to us for training was
a constant problem holding progress back. This problem heavily relates to how difficult
it is to produce new data. In our case, data is created slowly through new customers ap-
proaching the ad management company. As such it is not reasonable to expect new data
to be produced and collected throughout the project. This means that the data available to
us from the start is the data used throughout the project.

The largest setback this caused can be seen in the classification attempts with images.
Multiple banners did not fit into the model, due to being GIF’s or videos rather than regular
images. This along with many images being unavailable resulted in the very small batch
of 686 images after filtering out agents with a CTR of zero. We quickly realized that this
was far too small of a dataset as the model was so prone to over-fitting that no efficient and
accurate output could be generated and used.

It is clear through this that no matter how well the model is designed and enhanced,
more data is always helpful to make proper estimations. It can also be said that this project,
if continued, would most likely improve incrementally with time, as data is accumulated.
Alternatively this would also be the case in another environment where more data is already
available.

A big aspect of this, is the relevance factor. What is meant by this is that the advertise-
ment industry is a very fast-paced market in terms of changing both tools and strategies
(Johnston, 2008). As a result of this, many agents that were included in the training of the
model in this thesis might not have been as relevant as others. As the strategies to optimize
CTR constantly changes with the times due to both ads behaving differently, and people
developing a changed perception of the ads shown to them (Johnston, 2008)).

This notion also heavily implies that the model created and trained in this thesis might
not be relevant in a short notion of time, and as such need to be trained with new data. This
might not be an issue assuming that more data is created at the same pace that old data
becomes irrelevant. It does however mean that for the amount of available relevant data
to increase, the market needs to grow in order to produce new ad campaigns faster than
old ones become irrelevant. An interesting solution to this would be a larger collaboration
between marketing companies, which might result in a great increase to performance for
all involved.

However according to Silverman and Gaffney (2018) the advertisement market is cur-
rently increasing rapidly, as we described in the introduction, which speaks for that the
model tested in this thesis has great potential for the future.

44

4.3 THE POTENTIAL FOR IMAGE-BASED CTR PREDICTION

4.3 The potential forimage-based CTR pre-
diction

In theory it seemed obvious to us that introducing images as input to the model would
improve accuracy. Where the ad is shown, at what times and to what people are all impor-
tant aspects but the image shown to the consumer is undoubtedly a major factor towards
whether the ad is clicked on or not. There are also articles of previous work regarding
predicting CTR with images, one of them being Deep CTR Prediction in Display Adver-
tising by (Chen et al. (2016). This further proved that introducing images to the model was
a good idea.

Yet when we implemented a multi-input model, with input both from categorical data
from the agent and the corresponding ad image, the results worsened. Even when just the
height, width and ratio of the available images where passed to the model this had either
a marginal or negative impact on accuracy. There are a few reasons behind this failure
which will be discussed below.

4.3.1 Resizing

Firstly one of the reasons could be that the images had to be resized before they were passed
along to the model. In the best attempt with the pre-trained network, all images were
resized to 224x224. This meant that the images were stretched and squeezed. Although
some images with similar height and width were barely affected by the resize, there were
also images with dimensions like 120x600 with text that became unreadable after resizing.

There were some ideas on how the issue with resizing could be countered, mainly by
cropping the image instead of resizing it. This would mean focusing on the central part
of the image. The problem with this solution would be that the crop would have to be of
the same size as the smallest image, resulting in an extremely small sample taken from the
larger pictures. This could probably have been solved by training large and small images
separately, however due to the model already being affected by the data set being too small,
it would unlikely have helped with the currently available batch of images.

4.3.2 Data batch size

Although resizing was a problem in some of the images, one major reason for why the
model could not achieve better prediction accuracy, especially when training the CNN, was
the insufficiency of samples. As mentioned previously, the amount of images available was
limited due to a number of factors. We concluded after multiple attempts at tweaking the
image based classifier, that unfortunately we had too few samples for it to learn anything
usable.

Only 686 images are available to train on after the first part of the program filters out
roughly half of the agents, the ones with a CTR of zero. Because of this, the model was
prone to over-fitting. As such, it ended up giving a worse accuracy than predicting the
CTR without images, only using the categorical data from the agent settings.

45

4. DiscussioN

4.3.3 Pre-trained networks

With the pre-trained network the accuracy was significantly better. This was due to the
simple reason that the model did not have to train on images, so the small sample size was
not as much of a problem. The dataset was not as limited because all agents belonging to
the same campaign using the same advertisement banner was now usable.

When training the CNN, training on the same image multiple times was avoided. How-
ever, in the new model the image features were extracted and concatenated with other data.
The images were not trained on directly. The sample size was however a bit smaller com-
pared to training without images when ads with other formats than images were allowed.

There was still a problem with the results of the model using images even though the
accuracy was quite close to our best image-free model. As we mentioned in the results,
and is shown in Figure[3.4] most of this accuracy comes from correctly categorizing agents
as class ‘0’ and ‘1°. Although this theoretically gives a higher accuracy, the practical
application of our problem only handles whether an agent is a class ‘2’ or not, representing
a good CTR. As only 21% of the agents labeled ‘2’ in the test set were classified correctly,
this would mean that if this model was to be used in a live test, it’s very likely that a huge
portion of the agents with a genuine good CTR would be discarded as poor alternatives.
As such the suggested settings for the live tests run on this model would not be particularly
accurate and would probably yield a poor CTR.

4.3.4 Practical analysis

In conclusion, training on images along with categorical data is potentially a good idea.
Thinking about it intuitively, images have a huge impact on the performance of an agent
and as such it should be beneficial to train on the images to increase the accuracy of the
predictions.

Previous work done by |Chen et al.| (2016) shows that it can be done. However as
discovered in this thesis, it requires plentiful data to work. Chen et al.|(2016) had a data
set with a size of 59 million, with 118,960 unique images. Our data set consisted of around
1000 unique images, which is not enough to train a CNN.

4.4 Other attempts at increasing CTR

There were more attempts at introducing other features to the model. To involve the im-
ages more, we tried to include whether the ad banner was large or not. To define a large
image we used the guidelines from IAB, which we described in the Introduction chapter.
Unfortunately, this feature affected the accuracy of the model negatively. We therefore
decided not to include it in the final version of the model.

Another feature we experimented with was a frequency limit for how many times a
person was allowed to see an ad. This could be limited in different ways such as per day or
per month. Unfortunately, only a third of the available agents used this feature. The result
of this was that the feature only confused the model. However, it is likely that limiting a
user to a certain number of viewings could in many cases lead to a higher CTR. This is
true since a person who has seen the same ad twenty times is probably less likely to click

46

4.5 PRACTICAL APPLICATION

on it compared to someone who hasn’t seen it. The money spent on that impression could
be spent on a new user instead.

4.5 Practical application

With the results gained from the project, it can be said that using machine learning methods
to improve upon targeted ads have great potential. However, the question remains whether
it can be applied in a realistic manner over time in a way so that it can be beneficial for the
industry at large, or at least the company utilizing the method.

Due to the results produced, the simplicity of modifying the model built, the constantly
more or less automatic growth in data, and the potential for further modifications and
increases in variable usage, this method certainly has great potential. This would be true
even if the model is currently lacking in dependability. It will however most likely take
a long time before a model like this could be made completely autonomous and replace
a human operator. The tests run during the lifetime of this project, are not enough to
establish whether the program is reliable over a longer time. However due to this, it is
probably much more useful as a support tool for humans managing online advertisement
than it would be as an independent and autonomous tool.

It remains to see what results could have been achieved with further testing if the ab-
lation study and other corrections would have been applied in time. It is likely that the
increased accuracy of the model would have led to a better result, although it outlives the
scope of this thesis.

4.6 Future work

Here we discuss some improvement to the model that could have been done if more re-
sources and time was available

General improvements. Looking at what more can be done for the model, fu-
ture work could possibly involve building a more complex model that can make sugges-
tions to even more parameters. Another improvement is making the model capable of
autonomously setting up the agents in the DSP. This would eliminate the need for the hu-
man operator, and perhaps increase the accuracy and performance even further. This will
however require more available data, and as such time will have to tell if this is possible
in the near future as the market grows.

Real time prediction based suggestions. Another interesting aspect not
covered in this thesis, is the strategy observed and used by Emerse employee’s managing
the advertisement. There, an agent is set up and then repeatedly monitored for perfor-
mance. This allows for tweaking the agent if the performance does not live up to the
standards.

The program created in this report only evaluates the CTR predicted to be achieved at
the end of a campaign. However, should the model be capable of continuously adapting

47

4. DiscussioN

to its own mistakes as the agent begins to run and live data is supplied, a higher end value
might very likely be achieved.

Image classification. We think that an image classifier has great potential if
enough data is provided. This is based on the fact that it’s the only thing the targeted
user actually sees. Considering how the model after much work achieved an accuracy
only slightly worse than the one without images, this would probably surpass the image-
less model if more were supplied, or more advanced models of image classification were
used.

Another future improvement related to the image classification is handling GIF’s and
videos. This form of creative representation was very common, but had to be removed
for training on images only. However, it could be interesting to try different approaches,
including extracting snapshots from the videos and GIF’s to include them with the im-
age analysis. Another solution to generate more data for the images would be to slightly
manipulate the images by duplicating and rotating them. This would result in similar but
newer data-points for the model to learn from, perhaps improving the accuracy.

48

Chapter 5

Conclusion

In this thesis we tackled the problem of trying to predict the CTR in order to automate
online advertisement by using a multitude of different methods. The methods used were
done by collecting data, sampled over a long period of time by the company Emerse. This
was followed by using this data to train machine learning models, intended to suggest the
settings of an autonomous agent bidding on impressions online. The different models we
tried include linear regression, classification and image-based classification (both with and
without pre-trained models).

Our main difficulty in this project was the amount of data available to train the models
on. This was the suspected reason for why both image classification and linear regression
turning out very poorly in terms of accuracy. A model built for classifying whether a
bidding agent was to receive any clicks received an accuracy of 92%, and a model for
classifying agents between good, mediocre and poor results had an accuracy of 58%. The
other methods received poorer accuracy, such as the image classification receiving 53%
accuracy at best for selecting between the same three classes as the model not using images.

The classification models that yielded good accuracy were used to conduct a number of
live tests to see if they could perform better than a manually created agent. The summary of
these tests resulted in the test agents receiving an average of 0.0013 CTR. The compared
agents set up by humans working with this form of ad-management, gained an average
CTR of 0.0012.

Due to these results and the accuracy of the models, it was concluded that there is a
big potential for machine learning when it comes to managing bidding agents. However,
the result in this thesis is limited due to the difficulty of gathering data, both due to old
data becoming irrelevant over time and data being collected relatively slowly. As such,
even if the results gained in this thesis is satisfactory, there is a need for a growth in the
industry or collaborations between companies to gain proper and useful models that could
guarantee a good result in this field.

49

5. CONCLUSION

50

Bibliography

AerServ (2018). List of IAB categories. https://support.aerserv.
com/hc/en-us/articles/207148516-List-of-IAB-Categories. Ac-
cessed: 2019-04-04.

Chen, J., Sun, B., Li, H., Lu, H., and Hua, X. (2016). Deep CTR prediction in display
advertising. CoRR, abs/1609.06018.

Chollet, F. et al. (2015). Keras. https://keras.io.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A
Large-Scale Hierarchical Image Database. In CVPRO09.

Fei-Fei, L., Li, K., Russakovsky, O., Mellon, C., Krause, J., Deng, J., and Berg, A. (2019).
Imagenet. http://www.image—net.org. Accessed: 2019-04-11.

Francois, C. (2017). Deep learning with python.

Freund, Y., Schapire, R., and Abe, N. (1999). A short introduction to boosting. Journal-
Japanese Society For Artificial Intelligence, 14(771-780):1612.

Graepel, T., Candela, J., Borchert, T., and Herbrich, R. (2010). Web-scale bayesian click-
through rate prediction for sponsored search advertising in microsoft’s bing search en-
gine. In ICML 2010 - Proceedings, 27th International Conference on Machine Learn-
ing, pages 13-20, Microsoft Research Ltd.

Guo, L., Ye, H., Su, W,, Liu, H., Sun, K., and Xiang, H. (2018). Visualizing and under-
standing deep neural networks in ctr prediction. SIGIR.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recogni-
tion. CoRR, abs/1512.03385.

Interactive Advertising Bureau (2019). Our story. https://www.iab.com/
our—story/. Accessed: 2019-05-06.

Johnston, A. (2008). The relevance factor. DMNews.com. Accessed: 2019-04-16.

51

https://support.aerserv.com/hc/en-us/articles/207148516-List-of-IAB-Categories
https://support.aerserv.com/hc/en-us/articles/207148516-List-of-IAB-Categories
https://keras.io
http://www.image-net.org
https://www.iab.com/our-story/
https://www.iab.com/our-story/

BIBLIOGRAPHY

Kaushik, R. V., Raghu, R., Reddy, L. M., Prasad, A., and Prasanna, S. (2017). Ad analysis
using machine learning: Classifying and recommending advertisements for a given cat-
egory of videos, using machine learning. In 2017 International Conference on Energy,
Communication, Data Analytics and Soft Computing (ICECDS), pages 2434-24377.

Louth, J. D. (1966). The changing face of marketing. McKinsey Quarterly.

Meyes, R., Lu, M., de Puiseau, C. W., and Meisen, T. (2019). Ablation studies in artificial
neural networks. CoRR, abs/1901.08644.

MRC (2014). MRC viewable ad impression measurement guidelines.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825-2830.

Puffett, M.-C. (2018). IAB Europe report: European programmatic market sizing 2017.
Report from IAB Europe with numbers related to growth and revenue as well as statistics
for ads on different devices.

Seker, S. E. (2016). Real life machine learning case on mobile advertisement: A set of
real-life machine learning problems and solutions for mobile advertisement. In 2016
International Conference on Computational Science and Computational Intelligence
(CSCI), pages 520-524.

Silverman, D. and Gaftney, B. (2018). Iab internet advertising revenue report. Interactive
Advertising Bureau. New York, page 26. Report from IAB about the numbers related to
online advertising, such as revenue and growth. Is a biannual report.

van Rijn, J. N., Holmes, G., Pfahringer, B., and Vanschoren, J. (2018). The online per-
formance estimation framework: heterogeneous ensemble learning for data streams.
Machine Learning, 107(1):149-176.

Yuan, S., Wang, J., and Zhao, X. (2013). Real-time bidding for online advertising: mea-
surement and analysis. In Proceedings of the Seventh International Workshop on Data
Mining for Online Advertising, page 3. ACM.

52

INSTITUTIONEN FOR DATAVETENSKAP | LUNDS TEKNISKA HOGSKOLA | PRESENTERAD 2019-06-11

EXAMENSARBETE Managing Programmatic Advertising Using Machine Learning

STUDENTER Carl Dahl, Pontus Ericsson

HANDLEDARE Pierre Nugues (LTH), Carl-Johan Grund (Emerse), Rasmus Larsson (Emerse)

EXAMINATOR Jacek Malec (LTH)

Hur maskininlarning kan oka antalet
klick pa internetreklamer

POPULARVETENSKAPLIG SAMMANFATTNING Carl Dahl, Pontus Ericsson

Marknadsforing pa internet ar en snabbt vaxande industri med manga miljarder dollar
investerade. Med den framskridande utvecklingen av att applicera maskininlarning pa
verkliga problem har det blivit en naturligt foljd att forsoka kombinera dessa.

I vart projekt har vi trdnat en modell som kan
forutspa procentchansen att internetreklam blir
klickad pa. Modellen ar byggd med algoritmen
AdaBoost och har trédnats pa data fran tidigare
reklamkampanjer pa foretaget Emerse Sverige
AB. Datan innehéller olika instéllningar pa kam-
panjen och dven vilken klickchans den hade. De
olika instdllningarna &r exempelvis vilka tider
reklamen ar aktiv, hur stor budget den har, vilken
malgruppen dr med mera. Modellen kategoriser-
ade en kampanj till en av tre kategorier: Lag,
medel och hog klickchans. Modellen gissade ratt i
58% av fallen.

Vi anvinde sedan denna modell for att forscka
ta fram de optimala instéllningarna fér en reklam
sa att den visas med de forutsdttningar som ger sa
hog klickchans som mojligt. Detta gjordes genom
att ge modellen en kampanj och férutspa dess
klickchans. Sedan &dndrade vi pa vérden i kam-
panjen och gav den till modellen igen. Genom
att testa alla kombinationer av instédllnigarna sa
kunde vi hitta de optimala.

Programmet testades med atta tester pa riktiga
reklamer dar vi jamfoérde klickchansen pa kampan-
jer som vart program stéllt in med kampanjer som

Reklamkampanj Modell Optimal
n variant
i 7
Program Varianter Kategorier

anstéllda pa Emerse stéllt in. Vart program fores-
log instéllningar som i medel gav en klickchans
pa 0,13%, medan Emerse anstéilldas installningar
i medel gav 0,12% klickchans.

Var slutsats i detta projekt dr att maskininldrn-
ing har stor potential nér det kommer till mark-
nadsforing pa internet, men att det kommer krévas
mer arbete fér att en modell som var ska kunna
bli helt sjalvgaende. I nuldget fungerar den béattre
som ett assistentverktyg for de som redan arbetar
med att stéilla in reklamkampanjer. Daremot tror
vi att med internetreklambranschens konstanta
tillvixt under de senaste aren sa kommer denna
teknik att bli mer och mer vanlig, samt battre och
béttre pa att rikta ritt reklam till rdtt personer.

	Introduction
	Vocabulary
	Problem statement
	Online advertising
	The Interactive Advertising Bureau
	Previous work

	Method
	The architecture of the market platform
	Agent features

	Tools used
	Analyzing the data
	Click-through rate
	Feature selection
	Hourly distribution

	Neural Networks
	Building the model
	Regression
	Classification
	Ablation study
	Image-based prediction
	Ensemble learning

	Utilizing the model
	Selecting between equal classes
	Live testing

	Result
	Model accuracy
	Models without images
	Classification with image-based prediction

	Live testing
	First test
	Second test
	Continued testing

	Baseline test
	Ablation study
	Model output after ablation

	Discussion
	Result analysis
	Error sources
	Ablation study
	Regression
	Classification

	The importance of abundant new data
	The potential for image-based CTR prediction
	Resizing
	Data batch size
	Pre-trained networks
	Practical analysis

	Other attempts at increasing CTR
	Practical application
	Future work

	Conclusion
	Bibliography

