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Abstract  

Yellow rust (Puccinia striiformis f. sp. Tritici) is a crop disease of wheat that regularly 

causes yield loss in Ethiopia. The disease has significant consequences for the country’s 

crop production, food security, health, and socioeconomic well-being. Anticipating 

yellow rust epidemics can help better manage them and mitigate their adverse impacts. 

This study explores the potential of remote sensing-based early prediction of yellow rust 

in the Oromia region in Ethiopia. The research focuses on modeling the incidence of 

yellow rust among young wheat in the region by looking at unique environmental 

conditions that enable off-season survival of the rust pathogen.  

 

Tiller and boot-level yellow rust incidence data from 2016-2018 in Oromia was analyzed 

together with the environmental variables generated through AgERA5 (temperature), 

CHIRPS (precipitation), ProbaV-NDVI, and SRTM-DEM (terrain characteristics). 

Univariate Area Under ROC Curve analysis and Classification Tree analysis were used 

to understand the influential environmental variables and filter those with high relevance 

to the early-stage rust infection. Subsequently, General Additive Model and Boosted 

Regression Tree were applied to fit and test the early warning models and their prediction 

capacity. The models were built for three data sets: data with all available observations; 

tiller-level observations; and data that share the same climate zone.  

 

As a result, the climate zone-based GAM model performed at a 78% accuracy level with  

Kappa 0.44 (moderate). The tiller-only GAM model performed at a 72% accuracy level 

with Kappa 0.44 (moderate). The all-observation BRT model had a 71% accuracy level 

with Kappa 0.34 (fair agreement). Rain characteristics served as particularly strong 

predictors in these models. Especially, excessive rain had a strong relationship with a 

lower probability of yellow rust cases among young wheat. The models also suggest that 

terrain characteristics serve as the static environmental conditions that expose certain 

locations to the disease. The study demonstrated the potential of yellow rust early warning 

solely based on remote sensing. The models could be further tested with a larger volume 

of data set to confirm the strength. Consideration of the probability of varying rust 

severity (low, moderate, high) and types of wheat cultivars would further add value to the 
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models.  Lastly, additional field and laboratory-based knowledge on the off-season rust 

survival would be a vital step towards a more accurate configuration of early warning 

models.    
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1. Introduction 
 

Yellow (stripe) rust, a wheat disease caused by the fungus Puccinia striiformis f. sp. 

Tritici (Pst) (Zadoks, 1961) is common in Ethiopia, causing frequent crop failure and 

resulting in economic loss (Jaleta et al., 2019). Ethiopia’s agriculture sector accounts 

for 37% of the country’s GDP, employing 72% of the total population, of which 74% 

are small-scale farmers (FAO, 2018). Ethiopia is a leading wheat producer in sub-

Saharan Africa (FAO, 2018), but the country’s wheat production has been continuously 

undermined by rust epidemics such as in 1977, 1980-83, 1986, 1993, 2010, and 2013-

2014 (Badebo et al., 1990, Jaleta et al., 2019, Olivera et al., 2015). Ethiopia’s average 

wheat yield capacity is about 1.83𝑡 ℎ𝑎−1, which is much lower than the world average 

of 3.47𝑡 ℎ𝑎−1 (Mengesha, 2020). Disruptive rust epidemics are compounded by a new 

norm of extreme weather, droughts, and floods, generating additional pressure on wheat 

production, contributing to food insecurity in a country with a growing population 

(Alemu and Mengistu, 2019) and where a quarter of the population still live under 

US$ 1.9 a day (WB, 2020). Food insecurity can fuel other long-term complications such 

as malnutrition (Humphries et al., 2015), conflicts over food resources, and social 

instability (Martin-Shields and Stojetz, 2019).  

 

The study of wheat rust started as early as 1767, and over the centuries, the wheat rust 

pathology has been better understood. As a result, its management has been somewhat 

successful through the introduction of fungicides and disease-resistant wheat varieties 

(Martinelli et al., 2015). Despite improved rust management techniques, the fungi 

evolve and new races of yellow rust emerge and continue to impact up to 5% of the 

crop across the wheat-producing countries today (Wellings, 2011). 

 

Yellow Rust mainly spreads in the form of urediniospores through the wind, and it can 

disperse over large areas (Beest et al., 2008, Chen and Kang, 2017, Eriksson, 1894). 

The rust can propagate aggressively depending on atmospheric conditions, such as 

temperature, humidity, and sunlight (Zadoks, 1961). Efforts have been made to estimate 
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the severity of future rust epidemics and potential wheat production loss based on 

climate data (Beest et al., 2008, Coakley et al., 1987, Grabow et al., 2016, Park, 1990). 

A similar approach with climate data has been applied in Ethiopia’s early detection and 

communication of wheat rust outbreaks during the season, with the aim to help rust 

control measures (Allen-Sader et al., 2019). 

 

Many of the yellow rust prediction models rely on rust incidence observations from the 

middle of a wheat season or the records of epidemics that come at the end of the season 

to facilitate more effective fungicide use. Meanwhile, projections made based on rust 

cases from the middle of the season imply that the disease is already happening and 

there is production loss inevitably expected for farmers. While complete avoidance of 

rust damage is impossible, such loss can be costly for the many small farmers of 

Ethiopia.  

 

This research explores the possibility of identifying the signs of yellow rust outbreak 

earlier than the planting season in Ethiopia by looking at the conditions that enable 

yellow rust to survive the off-season period. Yellow rust can spread through dormant 

spores on volunteer wheat after the harvest (Rapilly, 1979, Zadoks, 1961). If the wheat-

growing sites meet certain environmental conditions known to enable off-season 

survival of the pathogen, yellow rust outbreaks in the surrounding wheat field could be 

anticipated earlier before the crop season. This research will test this hypothesis in the 

context of Ethiopia's Oromia region by examining the relationship between yellow rust 

cases at the early stage of wheat growth and various environmental conditions 

observable with remote sensing.  

 

Objectives and Research Questions 

This research's overall objective is to develop and test a model for pre-season early 

warning of yellow rust in the Oromia Region of Ethiopia based on the environmental 

conditions favorable for off-season survival of yellow rust by maximizing the use of 

remotely sensed (RS) environmental data. The study designed the following sub-

objectives and research questions to guide various steps of the research.  
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Sub-objective 1: 

To examine the relationship between the past yellow rust incidence and the relevant 

RS-based environmental conditions during the pre-planting season.  

 

Research Question 1.a  

What are the associations between the yellow rust incidence and off-

season environmental conditions captured by RS-derived indicators? 

 

Research Question 1.b. 

What are the most relevant or important yellow-rust inducing 

environmental parameters detected before planting season? 

 

Sub-objective 2: 

To develop a functional yellow rust prediction model based on the off-season 

environmental conditions in the Oromia region. 

 

Research Question 2 

How reliably can yellow rust incidence be predicted before planting 

season by the environmental conditions captured by RS-derived 

indicators? 
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2. Background 

2.1 Yellow Rust 

Yellow rust starts with yellow or light-orange colored smooth surface flecks of varying 

sizes on primary leaves, lower leaves, transition leaves, or even on stem leaves (Zadoks, 

1961). Over several days, these freckles transform into lesions with little bumps of 

pustules that could eventually cover leaf surfaces (Zadoks, 1961). Figure 1 below shows 

the progression of yellow rust infection on leaves.  

 

Figure 1: Adult plant host response to yellow rust 
The graphic was adapted from Roelfs et al. (1992). R, MR, MS, and S represent field response (type 

of disease reaction). R (Resistant): visible chlorosis or necrosis, no uredia are present. MR 

(Moderately Resistant): small uredia are present and surrounded by either chlorotic or necrotic areas. 

MS (Moderately Susceptible): medium sized uredia are present and possibly surrounded by chlorotic 

areas. S (Susceptible): large uredia area present, generally with little or no chlorosis and no necrosis. 

 

     

Puccinia striiformis requires a host plant to survive on, and these plants are categorized 

into the primary host that is wheat, and alternate hosts that are non-wheat plants 

(Grabow, 2016, Aime et al., 2017). On the primary host, pathogen reproduces asexually 

in the form of urediniospores (Figure 2), one of the five spore stages (Grabow, 2016).  

The graphic was adapted from Roelfs et al. (1992) 

Figure 2: Symptoms and spore (urediniospore) morphology of yellow rust disease  
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Weeds and other local plants have been thought to serve as an alternate host (Rapilly, 

1979). However, so far, only a limited number of plants such as Berberis spp  (Yue Jin 

et al, 2010) and Mahonia aquifolium (Oregon grape) (Wang and Chen, 2013) are proven 

to be alternate hosts that can contribute to increased pathogen variability. Between the 

primary host and alternate host, yellow rust completes five distinct spore stages: 

uredinial, telial, basidial, pycnial, and aecial stages (Mehmood et al., 2020).  

 

Figure 3 below is the schematic illustration of the lifecycle of Puccinia striiformis f. sp. 

tritici (Pst), which occurs on the primary host (wheat) and alternate hosts throughout 

different stages of the rust’s life cycle. Yellow rust starts as an infection by 

urediniospores (A). The yellow patches of urediniospores become dark spots of 

teliospores (B) and basidiospores (C), which could infect alternate hosts. In the process 

of infecting the alternate hosts, the disease propagates in the form of pycnispores and 

aeciospores (Sexual cycle). Urediniospores can continue infecting wheat without 

advancing to teliospores (Asexual cycle). The final aecial stage can disperse 

aeciospores to infect wheat as well.  

 

Adapted and modified from Mehmood et al. (2020) 

 

Figure 3: Lifecycle of Puccinia striiformis f. sp. tritici (Pst) on primary host and alternate host  
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Figure 4 demonstrates how the infection propagates on wheat from a single piece of 

urediniospore. The infection starts by arrival and adhesion of a urediniospore. The spore 

extends the germination tube to form an appressorium and penetrate through the leaves' 

tissues where rust colonization and reproduction occurs (Kumar et al., 2018). 

Deposition of a urediniospore on leaves and subsequent germination and appressoria 

formation depends on various climate factors such as temperature, rainfall, humidity, 

and sunlight (Park, 1990, Rapilly, 1979, de Vallavieille-Pope et al., 2018, Zadoks, 

1961). The same climate factors also influence the speed, termination, and latency 

(being inactive but live infection after germination and before pustulation) (Rapilly, F, 

1979). Rain and wind can be rust spreading factors but also have adverse effects on 

spore survival (Rapilly, 1979, Chen, 2005).  

 

The graphic was adapted from Kumar et al. (2018) 

 

Figure 4: Propagation of infection on leave by a urediniospore 
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The disease can originate from distant locations through spores traveling in the air for 

hundreds of kilometers (Rapilly, 1979, Zadoks, 1961). It can also spread from the 

spores that remained dormant on the voluntary wheat (primary host) or alternate host 

nearby wheat fields after the harvesting (Rapilly, 1979, Zadoks, 1961). Such dormant 

rust infections are the result of so-called rust oversummering or overwintering.  

 

2.2 Oversummering and Overwintering of Yellow Rust 

Frequent outbreaks of yellow rust are partly explained by the pathogens surviving the 

season when wheat crops are not grown (Sharma-Poudyal et al., 2014). Oversummering 

is the survival of rust pathogens during summer as a latent or dormant infection between 

harvest and the next season, and it occurs on self-grown volunteer wheat from the grain 

shed during harvest and late-tillers that grew out of the roots left after harvest (Zadok, 

1961) (Figure 5). Plowing before planting does not entirely remove volunteer wheat 

with oversummering rusts, leading to infecting autumn-sown wheat, some of which 

carry the pathogen until the following spring by overwintering (Zadoks, 1961). 

Temperature and precipitation can determine the effectiveness of volunteer wheat and 

later spread the yellow rust pathogens. Under a stable high temperature and lack of 

rainfall, oversummering of yellow rust can be interrupted (Zadoks and Bouwman, 

1985). However, warm/cool weather with sufficient water available creates a conducive 

environment for the pathogen to survive. 

 

On the other hand, overwintering is the survival of rust infection on winter wheat 

planted in autumn that goes through a slow vegetative phase during winter and 

continues growing in the following spring (Zadoks and Bouwman, 1985). 

Overwintering occurs as urediniomycelium (not necessarily visible on the leaves but 

germination and appressorium penetration occurred already) in the wheat plants 

exposed to yellow rust at one point and endures winter climate (Zadoks, 1961). The 

pathogen can die at a temperature below about - 4 ℃, but so long as the host plant is 

alive, it can survive as a latent infection for 118 to 150 days in a growth conducive 

environment, such as snow cover, which provides insulation and allows the pathogen 

to survive (Zadoks, 1961).  
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Figure 5: Growth cycle of wheat influenced by the rust infection on volunteer wheat 
After harvest, some grains remain in the field and end up growing as new young wheat. When this young wheat gets 

infected by yellow rust and survives as dormant/latent infection during the off-season, it can infect the new wheat 

during the following wheat season. The graphic was made based on the Feekes Scale of Wheat Development adapted 

from Large (1954) and Marsalis and Goldberg (2016). 

 

 

Off-season survival of rust on volunteer wheat increases the chance of local infection 

of young wheat in the following season and the severity of overall rust incidence later 

on. Eversmeyer and Kramer (1998) observed that there was a significant difference in 

the leaf rust severity between the field with the prevalence of rust-infected volunteer 

wheat plants (80-100% severity) and the fields of the same wheat with no volunteer 

plants around (10-30%). According to Zadoks and Bouwman (1985), one lesion of 

yellow rust overwintering is sufficient to cause a rust epidemic in the upcoming spring. 

As such, while distant spore dispersal is a common way of rust spreading, proximity to 

the infected volunteer wheat matters a great deal. Anticipating the areas where off-

season rust survival occurs has drawn attention to promoting better control of yellow 

rust  (Sharma-Poudyal et al., 2014). 

 

2.3 Yellow Rust Prediction Models 

Over the years, the epidemiology of yellow rust has advanced. It led to various rust 

management techniques such as fungicide application, continuous improvement of rust-

resistant cultivars, and adjusting farming practices (Chen and Kang, 2017). Efforts have 

also been made to predict yellow rust epidemics to mitigate the potential loss from the 

disease. 
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Coakley et al. (1987) presented one of the earlier predictive models of yellow rust 

severity of a few winter wheat varieties. The model applied a stepwise regression to 

analyze the critical meteorological factors associated with disease severity to develop 

the so-called Disease Index. Rust data used in this model was from milk and dough 

wheat growth stages for three wheat cultivars. Parameters such as temperatures in 

October and November, the days of maximum temperature above 25℃, precipitation 

in June played a crucial role in this model. The model intended to facilitate a more 

effective fungicide application. 

 

Grabow et al. (2016) worked on yellow rust epidemic models for winter wheat in 

Kansas in the United States. A combination of Classification Tree and Generalized 

Estimating Equation (GEE) selected the key predictors and modeled the epidemics. Soil 

moisture from October to December (planting season for winter wheat) was strongly 

associated with yellow rust epidemics. Several other environmental predictors such as 

temperature, relative humidity, and precipitation from March to May (the period during 

which nodes development to boot, heading, and flowering occur) were applied to 

classify the predicted severity of epidemics based on the yield loss data. This model’s 

novelty was in consideration of soil moisture, which was assumed to provide sufficient 

wet microenvironments that are favorable for the yellow rust pathogen to grow on 

leaves. Soil moisture can influence canopies' growth, where yellow rust thrives under 

wet conditions (Grabow et al., 2016).   

 

In Canada, Newlands (2018) proposed an integrated model-based framework for 

forecasting disease risk in Southern Alberta. The two models were built based on the 

Coffee Leaf Rust models developed in Colombia (temperatures and leaf wetness 

duration) and the multivariate spatiotemporal endemic-epidemic model (leaf wetness 

duration, temperature, relative humidity). In addition to weather station data and RS-

based environmental data, the study was supported by airborne inoculum samples 

(spores traveling in the air) collected in the region. 

 

Sharma-Poudyal et al. (2014)‘s work is one of the few studies available that looked at 

predicting off-season survival of the yellow rust pathogen with temperature, humidity, 

and precipitation. The model projected the extent to which climates of different US 

regions are favorable for oversummering or overwintering of yellow rust.  Similarly, 
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Xu et al. (2019) pursued a yellow rust overwintering model for northwestern China 

based on the cultivars' empirical field observations with different hardiness levels 

related to temperature. The logistic models demonstrated that overwintering 

of Puccinia striiformis f. sp. is mainly influenced by the duration of low temperature in 

the coldest period in December and January. Overwintering probability had different 

thresholds for the cultivars with different hardiness. For example, the probability 

declined under the average temperature below -2 ℃ for the cultivar with weak winter 

hardiness, but the cultivar with moderate and strong winter hardiness saw the decline 

in overwintering probability only below -4 ℃.  

  

In recent years, learnings from the past rust modeling have been applied in the context 

of Ethiopia as well. Allen-Sader et al. (2019) present an overview of the novel early 

warning system of wheat rust in Ethiopia, where a synthetic rust predictive model feeds 

into the network of last-mile communication with the farmers about the risk of rust 

infection. Canopy temperature, free moisture, and solar radiation derived from the UK 

meteorological Unified Model serve as the model’s critical environmental parameters. 

What makes the model unique compared to other models is that this considers 

atmospheric spore dispersion (based on the Numerical Atmospheric dispersion 

Modeling Environment (NAME) model), which influences the long-distance dispersal 

of urediniospores. 

 

2.4 Knowledge Gap 

The earlier yellow rust prediction models mostly rely on yellow rust incidence data 

from the middle of the growing season or yield loss data at the end of the season to 

promote efficient fungicide-based rust control. Meanwhile, these models naturally 

imply that the disease is already occurring, and there is some level of production loss 

inevitably expected. Such loss can be very costly for many smallholder farmers in 

Ethiopia. As Eversmeyer and Kramer (1998) observed in their study, infection and 

survival of yellow rust during the off-season tends to lead to severe rust infection during 

the actual wheat season. Rust infection in young wheat also has a considerable impact 

on the quality of the grains produced later (Wellings, 2011). Observing the conditions 

of oversummering and overwintering is one way to promote earlier warning of yellow 

rust, but this is not a commonly adopted approach and yet to be examined in Ethiopia. 
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Figure 6: Focus of this study in relation with the existing yellow rust models and stages of Pts 

infection 
This study focuses on the environmental conditions that enable the pathogen to survive in latent infection (become 

dormant before sporulating) or pustulated infection during the off-season. 
 

 

Cold and hot weather usually terminate the yellow rust pathogen (Zadoks, 1961). 

However, if the climate is warm or cold enough, urediniomycelia, which is the critical 

inoculum for yellow rust, can remain latent on the host plants, prolonging the incubation 

time of the rust before the actual wheat season begins (Rapilly, 1979, Sharma-Poudyal 

et al., 2014, Tollenaar and Houston, 1967, Zadoks, 1961). As crop season begins, the 

surviving urediniospores are dispersed through the air to nearby or distant crop fields 

to infect the newly planted wheat (Rapilly, 1979). Tollenaar and Houston (1967), 

Eversmeyer and Kramer (1996), and Sharma-Poudyal et al. (2014) looked into the 

potential of off-season fungi survival in relation to meteorological parameters that are 

similar to the ones used in rust epidemic prediction. These studies were done in the US, 

where a robust network of weather stations is available. In-situ weather stations are not 

widely available in Ethiopia. However, remote sensing technology can feed the 

necessary environmental data at a high spatial and temporal resolution. 
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3. Method 

3.1 Study Area 

The research will focus on Ethiopia’s Oromia region. The Oromia region spreads 

through the center to the western and southern parts of Ethiopia. The region is situated 

between the latitude of 3°30’ N and 10°23’ N and the longitude of 34°7’ E and 42°55’ 

E (Figure 7), covering a total area of 353,690 square kilometers that is split into several 

climate zones by the Great African Valley offering abundant agricultural cropland 

including that for wheat production (Mohammed et al., 2020). 

 

 

  

Figure 7: Map of Study Area - Oromia region, Ethiopia 
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3.2 Methodological Flowchart 

Figure 8: Methodological Flowchart 
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Figure 8 is the methodological flow chart outlining the process of data acquisition, 

processing, and analysis. The following section describes the data and steps more in 

detail.  

 

 

3.3 Data 

Yellow Rust Incidence Data  

Yellow rust incidence data was attained from the International Maize and Wheat 

Improvement Center (CIMMYT) Ethiopia. The original data set contained 4,342 

yellow rust observation points over three years (2016–2018) across the country 

recorded at different wheat growth stages - Tiller, Boot, Heading, Flowering, Milk, 

Dough, and Maturity. This study's geographic scope is limited to the Oromia Region, 

and the analysis is on the yellow rust cases in the early stage of wheat rust in relation 

to pre-seasonal environmental conditions. Therefore, only the observations from the 

Oromia Region at Tiller and Boot stage were filtered. In total, 258 observations from 

2016 to 2018 were made available for the analysis (Table 1). 

 
Table 1: Yellow rust incidence data used in the study 

 
Yellow Rust Incidence 

(Tiller and Boot) 

 
None (0) 

 
Low 

(less than 20%) 

 
Moderate 

(20-40%) 

 
High 

(more than 40%) 

 
Total 

(n=258) 

2016 35 83 9 3 108 

2017 40 26 1 5 71 

2018 32 45 3 3 79 

 
Incidence level is described with an average score of how the disease is visually observed in the field. The 

percentage represents the severity of the yellow rust propagation on the leaves according to the rust scoring guide. 

 

 

RS-based Data on Environmental Condition 

Weather (temperature and precipitation) and Normalized Difference Vegetation Index 

(NDVI) were used in the analysis as dynamic environmental parameters. In addition, 

in this study, elevation, slope, and aspects were also considered as the static 

environmental conditions that could influence the off-season survival of yellow rust 

pathogens. While NDVI is regarded as a dynamic environmental parameter, the study 

also used this to identify a static characteristic of climate zones based on a unique range 

of NDVI values. The dynamic and static RS-based products are summarized in Table 

2 and Table 3.  
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Table 2: List of RS-based products for dynamic environmental conditions 

 
RS Product Spatial res. period Use 

AgERA5 (Temperature) 11 km 2016-2018 Temperature predictor 

variables 

CHIRPS (Precipitation) 5.55 km 2016-2018 Rain-based predictor variables 

NDVI 10-day maximum composite 

data (ProbaV) 

1 km 2016-2018 NDVI-based predictor 

variables 

    

 

Table 3: List of RS-based products for static environmental conditions 

RS Product Spatial res. period Use 

NDVI 10-day maximum composite 

data (ProbaV) 

1 km 2016-2018 Common climate zone 

SRTM-DEM 30m 2000 Elevation, slope, and aspect 

 

 

AgERA5 (Temperature)  

A collection of daily surface meteorological data prepared for environmental and 

agricultural modeling. Temperature data is among the multiple parameters made 

available. The temperature data (Kelvin) is available from 1979 to 2018 at the 

resolution of 0.1° grid (about 11 km) with global coverage. The product is the 

aggregation and correction of ECMWF (European Center for Medium-range Weather 

Forecast) ERA5 data. ERA stands for ECMWF Re-Analysis, a deterministic climatic, 

land, and oceanic climate data at surface level with 30km (0.28215°) spatial resolution. 

ERA5 derives from historical observations by multiple satellite sensors into global 

estimates using advanced modeling and data assimilation systems. ECMWF ERA5 data 

went through spatial scaling down to 0.1° grid with Nearest Neighborhood algorithm, 

temporal aggregation to daily time steps, and bias correction based on the finer 

topography, land use pattern, and land-sea delineations to arrive at AgERA5. Source: 

ECMWF (2020) 

 

CHIRPS (Precipitation) 

A Quasi-global rainfall data set is available over 30 years at 0.05° grid (5.55 km) 

resolution. CHIRPS has been developed since 1999 by the U.S. Geological Survey 

Earth Resources Observation and Science Center, initially to support the United States 
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Agency for International Development (USAID)’s Famine Early Warning System 

Network (FEWS NET) in collaboration with the National Aeronautics and Space 

Administration (NASA) and the National Oceanic and Atmospheric Administration 

(NOAA). The product is derived through: rainfall estimates by the infrared Cold Cloud 

Duration (the measurement of the threshold at which clouds become precipitation), 

long-term historical in-situ observation data, and existing gauge observations for bias 

correction. In Ethiopia, CHIRPS products are commonly used in the analysis of 

precipitation anomalies, drought, and food insecurity. Reference: Funk et al. (2015)   

 

Note: Relative humidity is another commonly used climate parameter in the study of 

rust propagation. However, currently available humidity data was at the resolution of 

27km (Global Forecast Systems) or 17km (UK Met Unified Model). This spatial 

resolution was considered not adequate for the analysis since many rust observations 

spread within the space of 1 to 5 km (many observation points would end up having the 

same relative humidity value). The literature review suggests that relative humidity 

becomes essential at the time of germination to sporulation of the rust but not 

concerning the off-season survival of the already germinated or sporulated lesion of 

yellow rust (Tollenaar and Houston, 1967, Eversmeyer and Kramer, 1998). Hence this 

variable was not included in this study. 

 

Normalized Difference Vegetation Index (NDVI) 

A vegetation index is calculated by comparing the visible and near-infrared sunlight 

reflected by the surface. NDVI layers entail the maximum value (range: -0.08 - 0.9) out 

of 10 individual images taken over ten sequential days at 1km spatial resolution with 

the geographic projection WGS84 (EPSG:4326). The data were generated by the 

Global Land Service of Copernicus, the Earth Observation program of the European 

Commission in Digital Number (DN) through PROBA-V daily top-of-atmosphere orbit 

reflectance values (BRDF-adjusted; Release-Candidate #3 produced by VITO). The 

retrieved images were processed to obtain their long-term median data by dekad 

between 1999 and 2018 (20 years) to create the 36 dekad specific “normal” data series. 

NDVI physical values (PhyVal) are usually generated using DN value, scale factor, and 

offset (VITO, 2019).  

 

𝑃ℎ𝑦𝑉𝑎𝑙 = 𝐷𝑁 ∗ 0.004 (𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟) − 0.08 (𝑜𝑓𝑓𝑠𝑒𝑡) 
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In this study, NDVI was used as an environmental variable potentially associated with 

yellow rust incidence. Also NDVI was used to subset the yellow rust observation data 

by a unique climate zone. (See 3.4 Data Processing, Data Sub-setting) 

 

DEM 

Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) from the 

NASA was used as altitudes and to generate additional terrain characteristics such as 

slope and aspect (orientation of slope). SRTM DEM comes in WGS84 Datum and 

30m/90m (USGS) spatial resolution.  

 

 

3.4 Data Processing 

Yellow Rust Incidence Categories 

Yellow rust incidence was recorded in four levels: None (0), Low (1), Moderate (2), 

and High (3). The study initially aimed to assess all four levels of incidence to compare 

the probability of different yellow rust incidence levels. However, among the 

observations, the Moderate and High incidence was minimal. Thus, the study used a 

binary category of yellow rust (0, absent) and yellow rust (1, present) (which includes 

low to high incidence). 

 

Retrieval and Processing of Weather Data 

AgER5 and CHIRPS data were accessed through Google Earth Engine (GEE) using the 

point feature (.shp) generated with the yellow rust observation data from CIMMYT. 

The daily values for the period of April-September, 2016-2018, were extracted through 

GEE and tabulated using Python and R to calculate the dekad (10-day) maximum, 

minimum, and mean temperature; dekad sum of precipitation; and dekad number of 

rainy days (>3mm). The Javascript used for the point-based extraction of AgERA5 and 

CHIRPS data is available in the Appendices.  

 

A ‘dekad’ approach for dynamic environmental variables 

Of all the RS-based data retrieved for temperature, precipitation, and NDVI, variables 

for modeling were generated for the period between April and September. April is a 
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few months before the wheat cropping season begins in Ethiopia.  September is where 

some tiller-level observations were still observed in rust data each year. Earlier rust 

prediction models typically applied monthly intervals or rolling averages over 10, 20, 

30, and 60 days for those dynamic variables. However, in this study, 10-day (dekad) 

was applied to align the NDVI data interval and was prepared as a 10-day maximum 

composition. A dekad is a period of ten days typically used in weather and vegetation 

analysis. For example, the first dekad of January is from 1st to 10th  January. The second 

dekad is from 11th to 20th January, and the third dekad is from 21st to 31st January (the 

third dekad in the month with the 31st day contains 11 days).  In this study, the dekad 

numbering was done annually from the beginning of January till the end of December 

(dekad 1 to 36). The analyses focused on the data from the dekad 10 (1-10 April) to the 

dekad 27 (21-30 September). Each dekad measure was considered as a dynamic 

environmental condition that represents a certain point in time.  

Precipitation, temperature, and NDVI are dynamic variables that change over time. 

Meanwhile, elevation (DEM), slope, and aspect are considered as static environment 

variables. Table 4 below is the list of dynamic and static variables prepared based on 

the data from AgERA5 (temperature), CHIRPS (precipitation), NDVI, and SRTM 

(elevation, slope, aspect). A total of 111 variables were initially taken into consideration. 

 

Table 4: Environmental variables and description 

Variable Code Description 

prc_mm_10 ~ prc_mm_27 Accumulated precipitation (mm) per dekad 

daysr_10 ~ daysr_27 The number of rainy days with more than 3mm precipitation  

maxT_10 ~ maxT_27 Maximum temperature in dekad (℃) 

minT_10 ~ minT_27 Minimum temperature in dekad (℃) 

meanT_10 ~ meanT_27 Average temperature in dekad (℃) 

ndvi_10 ~ ndvi_27 10-day vegetation density (DN-value) 

DEM Elevation (m) 

Slope Degree of slope 

Aspect Compass direction that slope faces.  

0 = North, 90 = East, 180 = South, 270 = West 
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Data sub-setting 

The rust observation data prepared for this study contains the observations from tiller 

and boot level from all over Oromia. Different climate zones, growth levels (tiller or 

boot), or even observation timing could have distinct characteristics in the relationship 

with environmental variables, hence yields a better model. Therefore, the original data 

was further subset into the tiller-only data set, and Climate Zone b data set.  

The variability of climate zones was determined based on the unique characteristics of 

NDVI propagation over time (through ISODATA pixel clustering), shared across the 

observation points. Of five major climate zones (a, b, e, h, j) identified (Figures 9 and 

10), the study used the Climate Zone b data set, which had more than 100 observations.  

 

 

Figure 9: NDVI profile by group (climate zone) 
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Major climate zones share similar NDVI signatures, and they were identified based on the 

yellow rust observation points.  The zones with more than 20 observation points (a, b, e, h, 

and j) were mapped as major climate zones. 

 

 

After all, three sets of data: mydata, mydata.till, and zone.b were used in the analysis 

(Table 5).  

 

Table 5: Three data sets prepared for the analysis 

Dataset Description 

Observations 

(n= total,  [0] = no rust, [1] = rust) 

mydata Tiller and boot level observations. n = 258 

[0] 95, [1]163 

mydata.till Tiller-level yellow rust observations. n = 159 

[0] 75, [1] 84 

zone.b Climate Zone b, tiller and boot level 

observations. 

n = 111 

[0] 28 , [1]83 

 

 

Figure 10: Map of major climate zones in Oromia Region 
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3.5 Analysis 

Initially, the weather data was explored to understand the seasonal weather variability 

and crop growing seasons around the locations of rust observations in the Oromia 

Region. Subsequently, using the tabulated data sets, analyses were conducted to address 

the three Research Questions (RQs) designed for this study (Figure 8: Methodological 

Flowchart - Analysis). The scripts used in the analyses are available in Appendices. 

 

 

3.5.1 Variable Exploration (RQ1.a) 

Research Question 1.a (RQ1.a) probes the association between yellow rust incidence 

and environmental conditions. The RS-based 111 environmental variables (temperature, 

precipitation, NDVI, and terrain characteristics) were examined against yellow rust 

observations in the three data subsets: mydata, mydata.till, and zone.b. The objective 

here was to understand what types of variables are more associated with yellow rust 

and narrow down the number of related variables. A combination of univariate 

correlation analysis and Classification Tree (CT) analysis were applied.  

Univariate correlation:  

When there are multiple variables in hand, Area Under ROC Curve (AUC) helps 

identify the more relevant ones than the others. Especially when the response variable 

(rust incidence) is categorical (i.e., incidence or no-incidence), AUC quantifies the 

extent to which the respective variable can separate these two categories. An AUC score 

of around 0.5 is an indication of a completely irrelevant variable. The R. 

package ‘caret’ was used to calculate AUC for each variable. AUC values were 

calculated by k-fold cross validation that enabled several repetitions of AUC value 

calculation. By averaging multiple cycles of AUC calculation, the AUC values 

presented were made more reliable. AUC helps identify the variables that are 

individually associated with yellow rust infection. However, this does not address 

interactions between different variables that may create an environment conducive to 

potential off-season survival of pathogen and impact early infection at the tiller/boot-

level.  
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Classification Tree (CT):  

CT was applied to identify a small number of variables that serve as good predictors. It 

categorizes the observation data into smaller and homogeneous groups by repeating a 

binary splitting based on the influential predictors (Hastie et al., 2009). This splitting 

aims to categorize the observation data, for example, in the case of yellow rust, 

into infected or not infected based on the influencing factors such as temperature and 

precipitation. Initially, the data categorized as infected may contain some uninfected 

observations, but this ‘impurity’ minimizes as splitting is repeated multiple times to 

better categorize the classes. The resulting summary of all the splitting forms a tree-like 

shape. Practically, CT is a modeling process on its own, but this was used purely for 

variable exploration and reducing the number of potential environmental variables in 

this part of the analysis. CT was undertaken using the ‘cart’ package in R.  

The variables were analyzed group-wise: maxT, minT, meanT, prc_mm, daysr, ndvi, 

and terrain (DEM, slope, aspect). The top-performing variables from each variable 

group were put together to find out the combination variables that achieved the lowest 

relative errors, and cross-validation errors were grouped as the variables most 

associated with the rust and forwarded to the next step to address RQ1.b.   

 

3.5.2 Finding the most critical variables (RQ1.b) 

The study applied General Additive Model (GAM) and Boosted Regression Model 

(BRT) to understand more about the critical variables associated with the early yellow 

rust incidence. Datasets were randomly split into training data (70%) for model training 

and test data (30%) for model evaluation using the R package ‘caret’. This part of the 

analysis essentially builds models that explain the interaction of different 

environmental variables related to yellow rust incidence. The best performing models 

were forwarded to address the subsequent Research Question 2.  

 

GAM 

GAM (Hastie et al., 2009) is a progression of the Generalized Linear Model (GLM, 

Nelder and Wedderburn (1972)) which had considered the response variable that are 

not-normally distributed. GAM enhances GLM by considering nominal/categorical and 
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ordinal predictors in their characteristics and maximizing a model's prediction capacity 

(Ravindra et al., 2019). While the ordinary regression model fits simple least-squares 

as function, GAM model fitting is based on the ‘smoothing’ function using a scatterplot 

smoother such as cubic smoothing spline or kernel smoother (Hastie et al., 2009). The 

smoothing function takes into consideration the nature of predictive variables that are 

not normally distributed. Thus, GAM is a flexible statistical method for identifying and 

characterizing nonlinear regression effects  (Hastie et al., 2009). 

With a random variable 𝑌  and a set of the predictor variable  𝑋1, 𝑋2, … , 𝑋𝑝 , a 

regression model estimates 𝐸(  𝑌 | 𝑋1, 𝑋2, … , 𝑋𝑝) . The formula for a traditional 

regression model like GLM is expressed as: 

𝐸(  𝑌 | 𝑋1, 𝑋2, … , 𝑋𝑝) =  𝛽0 + 𝛽1𝑋1 + … + 𝛽𝑝𝑋𝑝 

where 𝛽0, 𝛽1, … , 𝛽𝑝 are generated by least squares. Meanwhile, GAM assumes the 

following formula:  

𝐸( 𝑌 | 𝑋1, 𝑋2, … , 𝑋𝑝) =  𝑠0 + ∑ 𝑠𝑗(𝑋𝑗)

𝑝

𝑗=1

 

where 𝑠𝑗(. )’s are smooth functions that are estimated through a scatterplot smoother. 

The details of how scatter smoothers work are available by Hastie and Tibshirani (1986). 

To the best of the author’s knowledge, GAM has not been applied in yellow rust 

modeling. However, this has been widely used in many other fields, such as in plant 

ecology (Yee and Mitchell, 1991), species habitat study (Suárez-Seoane et al., 2002), 

and environmental health (Bouzid et al., 2014).  The R package ‘mgcv’ was used in 

GAM analysis. GAM has a function called ‘smoothing’ or ‘splines’ to realize flexible 

non-linear expression. In R. package ‘mgcv’, this smoothness can be defined by the user 

or automatically suggested by setting the method with Restricted Maximum Likelihood 

(REML).  

Some of the methods to understand model convergences are: 

i. summary() for model statistics to check parametric coefficient and significance 

of smooth terms 

ii. plogis() to transform the model outcome to the log-odds scale to assess the extent 

of the model’s prediction of a positive outcome (i.e., yellow rust infection). 



 

 

25 

iii. plot() to visualize the partial effect of the concerned variables with a confidence 

interval.  

iv. gam.check() to check the random distribution of residuals for each predictor 

variable. “Basis function” (this influences the smooth parameter) for variables is 

adjustable to improve the model performance.     

v. Collinearity and Concurvity check 

Collinearity is the correlation among the predictors that potentially influence the 

model convergence. ggpairs() in the ‘GGally’ package was used to plot the 

variable interactions. Variance Inflation Factor (VIF) calculation was also 

conducted to decide which variable to drop.  

Concurvity is when one variable smooth term in GAM is approximated by one or 

more other variable smooth terms. Even though the variables are not collinear, 

concurvity can occur. The function concurvity() was used to check and rule out 

potential concurvity.  

  

BRT 

BRT (Friedman, 2001) is a combination of statistics and machine learning, guided by 

an algorithm to achieve the most optimal model (Youssef et al., 2016). BRT’s rule sets 

are two-fold: “classification/regression trees” to find the most influential predictors; 

and “boosting” to synthesize many possible models to build the best performing model 

(Elith et al., 2008, Schapire, 2003).  

There are four parameters that need to be set and adjusted to maximize the resulting 

model performance.  

i. learning rate (lr): signifies the contribution of each tree to the final fitted model;  

ii. tree complexity (tc): the number of total nodes (split point) in the tree;  

iii. number of trees (nt): the result of lr and tr; and  

iv. bag fraction (bf): the portion of data to be used for each iteration.  
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BRT can be applied to data that is not-normally distributed, and it is widely used in 

ecological and environmental model building (Naghibi et al., 2016, Pittman and Brown, 

2011, Zellweger et al., 2013). BRT can select only relevant variables and ignore non-

informative predictors. However, as Elith et al. (2008) point out, for small datasets 

where redundant predictors may degrade performance by increasing variance, it is 

better to simplify the list of predictor variables in advance instead of putting them all at 

once into the model.  Thus, only the pre-selected list of predictor variables from RQ1.a 

was used in BRT. The R package ‘dismo’ and ‘gbm.step’ were used in BRT analysis.  

In R, gbm.step() uses cross-validation (default k=10) to estimate the optimal number of 

trees. Considering the relatively small sample size (number of observations) used in the 

analysis, tree complexity (tc)  2 and learning rate (lr) 0.001 were used, unless a smaller 

lr yielded better models. 

Model statistics in summary() and gbm.plot() report were examined to understand the 

relative importance/influence of key environmental variables. Tree Complexity (tc) and 

Learning Rate (lr) were as necessary to achieve better model statistics.  

gbm.interactions() was used to understand the interactions between the critical 

environmental variables, and gbm.perspec() was used to visualize the interactions. 

 

3.5.3 Assessing Model Predictive Capacity (RQ2) 

Research Question 2 (RQ2) examines how reliably the RS-based environmental 

predictors can project yellow rust incidence among young wheat. The trained GAM and 

BRT models were used to predict yellow rust incidence using the test data (30% of 

observations). The R. package ‘mgcv’ and ‘gbm’ were used to conduct prediction.  

The output of model prediction is in the form of probability with the values ranging 

from 0 to 1. This value was classified into 0 (probability < 0.5) and 1 (probability >= 

0.5) in order to compare with the actual incidence of yellow rust.  

A confusion matrix (Figure 11) was created with the prediction and actual observation.  
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Figure 11: Confusion Matrix 

 
 

On R., a function ModelPerformance() was used to examine the key statistics to assess 

the GAM and BRT models' predictive performance. These statistics include Accuracy, 

Kappa Statistic, Sensitivity, Specificity, and Precision. 

a. Accuracy is the ratio of correct predictions calculated by the true positive (TP) 

and true negative (TN) divided by the total number of events. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
 

b. Kappa Statistic (Cohen, 1960): the extent to which prediction and observations 

agree with the actual yellow rust incidence 

𝐾𝑎𝑝𝑝𝑎 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 =  
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒
 

where 𝑃𝑜  is the relative observed agreement, and 𝑃𝑒  is the hypothetical 

probability of chance agreement.  

𝑃𝑜 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑒 =  (
𝑇𝑁 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗

𝑇𝑁 + 𝐹𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 )

+ (
𝐹𝑃 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗

𝐹𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 ) 

Kappa statistic Level of agreement 

≦0 no agreement 

0.01 – 0.20 none to slight agreement 
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c. Sensitivity is a true positive (TP) rate. It measures the rate of actual yellow rust 

cases corrected (predicted yellow rust case is an incidence in the observation) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

d. Specificity is a true negative (TN) rate. It measures the rate of the negatives 

correctly predicted (the predicted no-yellow rust case is the no-yellow rust in 

the real observation data) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

e. Precision is how accurately the model predicted the positive cases 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

 

 

 

3.5.4 Model Extrapolation over Oromia Region 

The models with good predictive performance were used to extrapolate the yellow rust 

probabilities (in the scale of 0 – 1) over wider areas of interest. The maps were 

generated for 2016, 2017, and 2018, respectively. The key environmental variables 

from the identified dekad period (for dynamic variable) were re-generated as raster 

layers from the respective sources (AgER5, CHIRPS ProbaV NDVI, and STRM DEM) 

of RS products. The R scripts used in the extrapolation are available in Appendices. 

 

 

  

0.21 – 0.40 fair agreement 

0.41 – 0.60 moderate agreement 

0.61 – 0.80 substantial agreement 

0.81 – 1.00 almost perfect agreement 
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4. Results 

4.1 Understanding Oromia’s Wheat Growing Environment 

In Ethiopia, wheat is generally grown at a high elevation of around 1500 – 3200 meters 

above sea level in cool weather, and sowing happens during Meher, which is the 

primary crop growing season with rain lasting from June till September, and harvesting 

is from October through January (USDA, 2015). The period between wheat harvest and 

sowing (i.e., from March to May) is a minor growing season called Belg with lesser 

rain, suitable for growing potatoes and yams (Alemayehu et al., 2012, Mohammed et 

al., 2020). 

Figure 12 shows the average maximum/minimum temperature and precipitation (mm) 

across all the rust observation locations throughout the three years from 2016 to 2018. 

Meher season (June to September) generally shows an increased amount of rain with 

moderate temperatures ranging from 10 to 22℃. Rainfall drops drastically from around 

October till January, which is the season for harvesting. The minimum temperature 

during this season drops, but stays above 0℃, while the maximum temperature is slowly 

on the rise, which leads to an increased day-night temperature difference. It is also 

noticeable that every year there is a rise of rainfall in April-May, right before the Meher 

season (i.e., the end of Belg season).     

Figure 12: Temperature (max, min) and precipitation at the rust observation points in 

Oromia 2016–2018 
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The map below (Figure 13) represents the yellow rust observation locations in the 

Oromia region with elevation spanning from 1620 to 2978 meters above the sea level.   

 

Figure 13: Distribution of yellow rust observation points in Oromia Region 
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According to the yellow rust observation data from CIMMYT, there is a wide variety 

of wheat cultivars grown in the region. About one-quarter of them are Digelu or Hidase 

variety (Figure 14).  

 

Figure 14: Proportion of different wheat varieties grown in Oromia Region 

  

The table below shows the distribution of yellow rust observation data across different 

periods in dekad. The data used in this study are limited to the ones recorded at the tiller 

and boot stage of wheat growth, and most of the observations were recorded in August 

and September. Based on the growth stage and observation time, the planting period 

for most of the wheat field observed is anticipated somewhere between June and August, 

depending on the location. This trend concurs with major crop growing Meher season 

in Ethiopia. 

Table 6: Distribution of rust observation across dekad periods 

Month April May June July August September  

Date 1-

10 

11-

20 

21-

30 

1-

10 

11-

20 

21-

31 

1-

10 

11-

20 

21-

31 

1-

10 

11-

20 

21-

31 

1-

10 

11-

20 

21-

31 

1-

10 

11-

20 

21-

30 
 

Dekad 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Total 

Tiller           1  71 10 36 10 31  159 

Boot   1        3  12 10 51 5 15 2 99 

        Anticipated period of pre-planting/planting season   →      
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Earlier, in the preparation of dynamic environmental variables (precipitation, 

temperature, and NDVI), variables were prepared for the dekad period from 10 (April 

1-11) to 27 (September 21-31). Considering the distribution of rust observations in 

Table 6, most of the locations are entirely in the wheat-growing season from August 

(dekad 22). As this study's focus is on pre-season environmental conditions, eventually, 

dynamic environmental variables were considered only up to dekad 21. Dekad 21 is the 

end of July and possibly still a pre-planting season for some locations for which yellow 

rust cases were recorded in late August and September. It reduces the initially prepared 

111 environmental variables to 74 variables.   

 

Overwintering or Oversummering? 

Based on the rust observation data and the knowledge of general wheat-growing 

practice in Ethiopia, it seems that the Oromia region does not grow so-called winter 

wheat, which is usually sown during autumn to yield over the following spring. 

Temperatures maintain above 0℃ and below 30℃ throughout the year as well as during 

the off-season. 

Past studies examined pathogen termination temperature. At the low-end, under a 

temperature as low as -4℃ without snow cover, the pathogen can perish together with 

the host plants (Zadoks, 1961). At the high-end, it is known that urediniospores 

diminish at the temperature of more than 25℃ for a certain number of days (Dennis, 

1987). Tollenaar and Houston (1967) give a variation of temperatures to be considered 

as pathogen termination points as a 10-day average minimum temperature of 22.3℃ or 

10-day average maximum temperature of 32.4℃.  

The temperature trend in the Oromia region suggests that the climate is never too cold 

or too hot for yellow rust to die out, and rather conducive temperature range for the 

pathogen to oversummer unless there are other conditions to terminate the infection. 

Meanwhile, in Ethiopia, the term oversummering may be somewhat confusing because 

their off-season (i.e., February to May/June) is not summer as the term is used in the 

context of Europe or North America. This season is a combination of the post-

harvesting period, Belg (short rain period), and early-Meher (primary rain season). The 

study considered this as off-season survival of pathogen instead of using the 

term oversummering to avoid such confusion. 
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4.2 Association between rust incidence and pre-season 

environmental condition 

In this section, the results of variable exploration are introduced for each of the three 

data sets below.  

a. All observations (data frame: mydata) 

b. Only tiller-level observations (data frame: mydata.till) 

c. Observations from Climate Zone B (data frame: zone.b) 

 

a.  All observations (data frame: mydata) 

daysr = number of rainy days during a dekad period 

prc_mm = accumulated dekad precipitation (mm) 

ndvi = normalized difference vegetation index in a dekad period 

maxT/minT/meanT = maximum/minimum/mean temperature during a dekad period 

0.5 0.6 0.7

maxT_13
ndvi_17
maxT_12

ndvi_13
ndvi_19

prc_mm_17
prc_mm_11

ndvi_18
daysr_11

prc_mm_12
prc_mm_18

aspect
prc_mm_13
prc_mm_21
prc_mm_19

daysr_10
ndvi_10

prc_mm_10
daysr_19
daysr_16
daysr_18
daysr_17

slope
prc_mm_15
prc_mm_16

daysr_14
daysr_20
daysr_21

prc_mm_20
daysr_15

AUC (ALL OBSERVATIONS)

Figure 15: AUC values (all observations) 
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Figure 15 ranks the variables with univariate Area Under ROC Curve (AUC) scores of 

more than 0.55. The pattern observed here is that rain-based variables (i.e., precipitation 

and number of rainy days) dominate higher AUC scores above 0.6. NDVI and 

temperature variables seem to have less strong univariate association compared to that 

of rain variables. Terrain characteristics such as slope and aspect show some relevance 

as an individual variable related to yellow rust cases.  

 

The result of Classification Tree (CT)-based analysis was a small set of multi-variables 

to classify yellow rust incidence at the tiller and boot level. A total of 11 variables were 

selected as a set of multi-variables associated with yellow rust among young wheat. 

These are: 

- Number of days during dekad 20 and 21; 

- Precipitation during dekad 10 and 14;  

- Maximum temperature from dekad 19;  

- Minimum temperature from dekad 14;  

- NDVI from dekad 10, 14, and 20;  

- Elevation (DEM); and  

- Aspect  

The table below highlights the selected variables with variable importance (values 

highlighted) corresponding to the dekad period.    

 

Table 7: CT selected variables and variable importance (all observations) 

 
 

Dekad period corresponding to calendar month/date 

  April May June July August September 

 10       20        30      10      20      31      10     20      30      10     20      31      10       20      31      10      20            
 

                   

  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

# of rust observation           4  83 20 87 15 46 2 

Dynamic 
variables 

maxT          11         

minT     8              

meanT                   

prc_mm 8    8              

daysr           5 16       

ndvi 6    12      9        

                    

Static 
variables 

DEM 6                  

slope 10                  

aspect 1                  
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Figure 16 below shows the 11 environmental variables' interactions that achieved the 

best classification result (relative error 0.39, cross-validation error 0.76, and cross-

validation standard deviation 0.076). As briefly explained in the methodology section, 

CT analysis was not for modeling but to explore the variables and narrow down the 

number of influential variables.   



 

 

 

Figure 16: Classification Trees (all observations) 
The blue shaded boxes (0=no rust)  and the green shaded boxes (1=rust incidence) are the results of classification based on the variables used to split the tree with the 

number of actual observations points falling into the resulting category.  For example, the blue box in the far left of the tree resulted from the first split by daysr_21 

(number of rainy days, dekad 21). The locations with more than eight rainy days were classified into “no rust,” and this contains 23 observation points, of which 21 

observation points had no rust, and two had incidence (hence, misclassification). The lower the number of misclassification, the stronger the result of the CT is.
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b. Tiller-level dataset (mydata.till) 

In the tiller-only data set, the rain-based variables were again more associated with the 

yellow rust cases (Figure 17). It is particularly the case for the variables with an AUC 

score above 0.6.  

Slope stands out in the tiller-level dataset as highly associated univariate with the early 

incidence of yellow rust. More NDVI variables appear to have an AUC score of more 

than 0.55 compared to the previous data set (all-observation data set). There are no 

temperature-related variables that showed a significant univariate association with a 

positive rust observation.     

 

Meanwhile, CT analysis identified a combination of 8 variables that are a mixture of 

high-AUC variables and low-AUC variables from univariate analysis. Those are: 

- Number of rainy days in dekad 21; 

0.5 0.6 0.7

prc_mm_11

ndvi_16

daysr_12

daysr_11

ndv i_21

ndv i_17

prc_mm_12

daysr_19

ndv i_18

ndv i_19

ndv i_11

aspect

ndv i_20

prc_mm_19

prc_mm_14

daysr_16

prc_mm_17

daysr_20

daysr_17

prc_mm_16

daysr_18

prc_mm_20

prc_mm_15

prc_mm_21

ndvi_10

daysr_10

prc_mm_10

prc_mm_18

daysr_15

daysr_21

slope

daysr_14

AUC (TILLER-ONLY DATA)

Figure 17: AUC values (tiller-only) 
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- Maximum temperature during dekad 12; 

- Minimum temperature during dekad 11; 

- Mean temperature during dekad 11; 

- NDVI during dekad 19;   

- Slope; 

- Elevation (DEM); and 

- Aspect 

 

The matrix below highlights the selected variables with variable importance (values 

with highlight) corresponding to the dekad period.    

 

Table 8: CT selected variables and variable importance (tiller-only) 

 
 

Dekad period corresponding to calendar month/date 

  April May June July August September 

 10       20        30      10      20      31      10     20      30      10     20      31      10       20      31      10      20            
 

                   

  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

# of rust observation           1  71 10 36 10 31  

Dynamic 
variables 

maxT   21                

minT  9                 

meanT   19                

prc_mm                   

daysr            15       

ndvi          19         

                    

Static 
variables 

DEM 10                  

slope 10                  

aspect 9                  

 

The Classification Tree (Figure 18) shows that the eight variables' interaction is less 

complex than the all-observation data set. The splits made by max_12 and min_11 

(right side of the tree) show an interaction of maximum temperature and minimum 

temperature in April. The areas where the temperature ranges from a minimum of 15℃ 

and a maximum of 22℃ had a clear association with yellow rust cases later on at tiller-

level growth. One of the critical variables, daysr_21, classified 13% of the data into ‘no 

yellow rust incidence’ when there are more than eight days of rainy days during the 

dekad.     



 

 

 

Figure 18: Classification Trees (tiller-only) 

See the caption for Figure 16 for interpretation of the trees.
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c. Observations from the Climate Zone b (data frame: zone.b) 

Climate Zone b shares the similar characteristics of the propagation of vegetation in the 

region (NDVI). The Figure 19 shows those variables scored AUC more than 0.5. In this 

dataset, three top variables had AUC score more than 0.7 and those are precipitation in 

dekad 18 and dekad 19; and the number of rainy days during dekad 15. While rain-

based variables again show more substantial univariate relevance, the ranking also 

indicates that several NDVI-based variables and terrain-based variables also have 

higher AUC values (>0.6), unlike the other two data sets.  

  

0.5 0.6 0.7 0.8

meanT_10
minT_15

minT_12
meanT_21
minT_19

ndvi_10
meanT_11
maxT_17

meanT_12

minT_18
minT_17
minT_14

meanT_13

maxT_21
DEM

maxT_16

daysr_17
prc_mm_14

maxT_13
maxT_11

prc_mm_10
ndvi_12

prc_mm_12
maxT_12

daysr_10
prc_mm_21
prc_mm_13

daysr_16
daysr_11

prc_mm_11
ndvi_15

daysr_18
aspect

prc_mm_17
slope

prc_mm_16
daysr_19
ndv i_13

daysr_20
ndv i_14

prc_mm_20
daysr_21

daysr_14
daysr_15

prc_mm_18
prc_mm_19

AUC (ZONE B DATA)

Figure 19: AUC values (Climate Zone b) 
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The result of CT analysis was a combination of 3 variables: 

- Precipitation during dekad 16; 

- Precipitation during dekad 18; and 

- Aspect 

 

The table below highlights the selected variables with variable importance and 

corresponding to the dekad period. It indicates that the precipitation during dekad 18 

has the highest variable importance, followed by the precipitation during dekad 16 and 

aspect.  

 

Table 9: CT selected variables and variable importance (Climate Zone b) 

 
 

Dekad period corresponding to calendar month/date 

  April May June July August September 

 10       20        30      10      20      31      10     20      30      10     20      31      10       20      31      10      20            
 

                   

  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

# of rust observation           1  38 5 47 1 19  

Dynamic 
variables 

maxT                   

minT                   

meanT                   

prc_mm       37  45          

daysr                   

ndvi                   

                    

Static 
variables 

DEM                   

slope                   

aspect 18                  

 

 

 

The tree generated from this analysis (Figure 20) shows the interaction of the three 

variables selected. The tree splits made by the two strong precipitation variables 

indicate that the rainfall above a certain amount has an association with the absence of 

yellow rust infection.  
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See the caption for Figure 16 for interpretation of the trees. 

 

 

 

Summary of variable exploration 

Higher relevance of rain-based variables with yellow rust incidence was observed in 

the simple evaluation of univariate Area Under ROC Curve (AUC) scores across all 

data sets. The same was observed in the variable importance under the Classification 

Tree (CT) analysis to identify combinations of variables associated with the yellow rust 

incidence. The larger the number of total observations, the more the associated 

variables were identified across a broad spectrum of environmental variables. For 

example, the dataset mydata (n=258), which entails all the tiller-boot level yellow rust 

observations from the Oromia region from 2016 to 2018, has 11 variables that seem 

highly associated with the rust cases. Tiller-only data set, mydata.till (n=159), had 8 

multi-variables suggested. Climate zone-based dataset, Zone.b (n=111), had only three 

variables highly associated with the rust. The set of multi-variable identified was 

forwarded to the next step to analyze the most critical parameters further.    

 

 

Figure 20: Classification Trees (Climate Zone b) 



 

 

43 

4.3 Most Influential Environmental Parameters  

The previous section selected a small number of multi-variables as rust associated off-

season environmental variables. Based on these variables, GAM and BRT models were 

fit to understand the most influential yellow rust inducing environmental parameters 

and their interactions. This section addresses the Research Question 1.b (RQ1.b) and 

uses 70% of the total observations in each data sets described below.  

 

1. All observations (mydata, training n=182) 

2. Only tiller-level observations (mydata.till, training n=112) 

3. Observations from Climate Zone B - tiller and boot mixed (zone.b, training n=79) 

 

a. All observations (data set: mydata)  

The training data set with 182 observations were used in fitting GAM and BRT. In the 

GAM model, the approximate significance of smooth terms indicates that the number 

of rainy days in dekad 21 (daysr_21) and maximum temperatures in dekad 19 

(maxT_19) are the most critical variables. They are followed by slope, altitude (DEM), 

and precipitation during dekad 14 (prc_mm_14).   

Logistic function (logit) was used to model a probability of yellow rust between 0-1. Asterisks next 

to the p-values in Parametric Coefficients indicates statistical significance of the model. The summary 

also shows the p-value and significance of smooth term for each predictor. In this case, maxT_19 and 

daysr_21 are the most significant predictors, followed by slope. edf stands for effective degrees of 

freedom which shows the complexity of the smooth (higher number indicates more complexity). 

Figure 21: GAM summary (all observation) 
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Partial effect plots (Figure 22) show the effect of the respective predictor's smooths that 

makes up the model. The x-axis of each plot is the value range of the respective 

predictor. The y-axis indicates the probability of rust incidence occurring according to 

the fitted model on the scale of 0 to 1. The short, sometimes dense, tick marks on the 

x-axis are from the observations, and the circles around the smooth lines are partial 

residuals. The gray shaded area indicates a 95% confidence interval, and the narrower 

shade indicates improved confidence. 

Figure 22: GAM Partial Effect Plot (all observations) 
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The partial plot for maximum temperature in the early-July (dekad 19) shows that the 

probability of yellow rust incidence increases when the temperature is warm about 20℃ 

or above up to about 28℃. Two precipitation periods have contributed to the model 

with a different smooth line. One is the precipitation during early April (dekad 10), and 

the other is the precipitation during the middle of May (dekad 14).  The scatter plot for 

the number of rainy days during late July (daysr_21) shows that more than six days of 

rainy days contributed to a drastic reduction of the probability of rust incidence.  

The two static environmental parameters, altitude (DEM) and slope, show that the 

probability of early-stage yellow rusts incidence tends to increase in the places with 

milder slope and higher elevation.  

Finally, this model's only NDVI parameter comes from early April (ndvi_10, upper-left 

corner). The scatter plot shows that the NDVI (DN value) between 60 and 90 is related 

to yellow rust incidence with a higher confidence interval (narrow gray shadow area).  

The boxplot below (Figure 23) shows the trend of NDVI in this data set. Early April 

contributed to this model, and this is when the vegetation indices are at the lowest 

among the dekad periods. 

  



 

 

 

Figure 23: Box chart of NDVI trend (all observations) 
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Meanwhile, in the BRT model, the number of rainy days in late-July (daysr_21) had 

the highest variable importance. This is followed by slope, precipitation during early 

April (prc_mm_10), NDVI during mid-May (ndvi_14), the maximum temperature 

during early-July (maxT_19), and elevation (DEM).   

 

 
> summary(yrust.tc2.lr001.3) 

var    rel.inf 

daysr_21  19.391407 

slope  18.621347 

prc_mm_10  17.009422 

ndvi_14  15.945774 

maxT_19  14.345800 

DEM   10.448235 

 

 
Figure 24: BRT optimal number of trees (all observations) 
The black curve line is the mean, and dotted curves indicate one standard error for holdout deviance. The 

red horizontal line (minimum of the mean holdout deviance) and the green vertical line crosses at the 

number of trees at which minimum deviance occurs.   

 

 

 

There are two noteworthy interactions between the key variables. Those are the 

interaction among altitude (DEM), slope, and the number of rainy days in dekad 21. 

Figure 25 visualizes the most critical variable interaction, which is between altitude and 

slope. It indicates a higher probability of early-stage rust infection (vertical axis in the 

3D figure) at an elevation higher than 2400m. The probability is even higher when 

combined with a slope of less than 10 degrees.   
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The interaction between altitude and daysr_21 (Figure 26) indicates a higher probability 

of rust incidence at tiller at the places where elevation is more than 2400m with less 

than seven days of rain during the off-season period of around 21-31 July. 

 

 

Figure 26: BRT variable interaction between altitude and 

daysr_21 (all observation) 

Figure 25: BRT variable interaction between altitude and 

slope (all observation) 
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b. Tiller-level observations (data frame: mydata.till) 

The test data set with 112 observations were used to fit GAM and BRT for tiller-level 

observation data.  

The best performing GAM model was based on the mix of variables the number of 

rainy days during end-July (daysr_21), the minimum temperature during mid-April 

(minT_11), aspect, slope, altitude (DEM), and NDVI at the beginning of July (ndvi_19).  

Logistic function (logit) was used to model a probability of yellow rust between 0-1. Asterisks next to 

the p-values in Parametric Coefficients indicates statistical significance of the model. The summary 

also shows the p-value and significance of smooth term for each predictor. In this case, aspect is the 

most significant predictor of all. edf stands for effective degrees of freedom which shows the complexity 

of the smooth (higher number indicates more complexity). 

 

 

From the summary report, the most significant smooth term is the aspect. Its partial plot 

(Figure 28) below shows that the aspect of 10-150 degrees (ranging from North-East to 

South-East) has a higher probability of early-stage yellow rust incidence. The number 

of rainy days during dekad 21(upper-left corner of Figure 28) and slope are also 

significant in this model, and they exhibit similar characteristics as the other GAM 

model fit with the data set with all observations. The number of rainy days of more than 

six days during this period drastically decreases the probability of rust and a higher 

probability for the wheat grown on a milder slope.     

Figure 27: GAM summary (tiller-only) 
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Figure 28: GAM Partial Effect Plot (tiller-only) 

 

It is observed from the width of the partial plots' confidence interval that the static 

variables such as aspect, slope, and elevation (DEM) tend to show a more distinct 

relationship with yellow rust incidence than the dynamic variables such as temperature 

and NDVI.       

 

 

In the BRT model for tiller-only data, the same variables with higher significance as 

the GAM model (i.e., aspect, daysr_21, slope) play the top most significant variables.   

> summary(yrust.tc2.lr.001.c) 

var    rel.inf 

aspect  25.335903 

daysr_21  22.798807 
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slope  15.913423 

maxT_12  14.615917 

ndvi_19  14.203403 

DEM   7.132548 

 
 

The BRT model for tiller-level observation yielded about 3200 trees as the tree's 

optimal size, and the model identified two critical variable interactions. One is between 

maxT_12 and daysr_21, and the other one is between daysr_21 and aspect. 

Figure 30: BRT variable interaction between maxT_12 and 

daysr_21 (tiller-only) 

Figure 29: BRT optimal number of trees (tiller-only) 
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Figure 30 is a 3D visualization of the most critical variable interaction between 

maximum temperature in dekad 12 and the number of rainy days in dekad 21. While 

the general trend is that a high number of rainy days lowered the probability, some 

probabilities variations depend on the level of maximum temperature.  

 

Another 3D variable interaction between aspect and number of rainy days during dekad 

21 (Figure 31) shows that the areas with less than 50 degrees aspect (North-East 

direction) receiving less than five days of rain during this period had the highest 

probability of yellow rust.   

 

 

 

 

 

 

 

Figure 31: BRT variable interaction between daysr_21 and aspect 

(tiller-only) 
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c. Observations from Zone b - tiller and boot mixed (data frame: zone.b) 

Zone b training data with 79 observations were used to fit GAM and BRT. Due to the 

small volume of training data, the BRT model did not fully converge in this data set. 

Thus, this section presents only the GAM model outcome.  The resulting GAM model 

had precipitation during mid-June (prc_mm_18) and aspect as the only and most 

important variables.   

Logistic function (logit) was used to model a probability of yellow rust between 0-1. Asterisks next to the 

p-values in Parametric Coefficients indicates statistical significance of the model. The summary also shows 

the p-value and significance of smooth term for each predictor. In this case, prc_mm_18 is the most 

significant predictor, followed by aspect. edf stands for effective degrees of freedom which shows the 

complexity of the smooth (higher number indicates more complexity). 
 

The partial effect plots (Figure 33) indicate that the accumulated precipitation in dekad 

18 (left) less than 60mm has a higher probability of yellow rust among young wheat 

Figure 33: GAM Partial Effect Plot (zone.b) 

Figure 32: GAM summary (zone.b) 



 

 

54 

later during the season. Further, the places with aspects from 30 to 250 degrees (North-

East ~ South ~ South-West) show a higher probability. 

 

4.4 Prediction and Accuracy 

In the previous section, several yellow rust models were fitted based on the off-season 

environmental conditions. One GAM model and one BRT model was trained for the 

data set with all-observations (n=258) and tiller-only data set (n=159). For the Climate 

Zone b data set (n=111), only the GAM model was trained. The models’ predictive 

capacity was assessed with the 30% test data, based on accuracy, kappa statistics, 

precision, sensitivity, and specificity. Together with the confusion matrix, the statistics 

were summarized in the table below.  

 

Table 10: Confusion matrix and model predictive performance statistics 

Data all observation tiller-only climate zone b 

Observation n = 258 n = 159 n = 111 

Model type GAM BRT GAM BRT GAM 

Confusion 
Matrix 

FN    9 
FP   17 
TN   11 
TP   39 

FN    7 
FP   15 
TN   13 
TP   41 

FN    5 
FP    8 
TN   14 
TP   20 

FN    6 
FP    9 
TN   13 
TP   19 

FN    4 
FP    3 
TN    5 
TP   20 

Accuracy 
Kappa 

Precision 
Sensitivity 
Specificity 

0.6579 
0.2184 
0.6964 
0.8125 
0.3929 

0.7105 
0.3386 
0.7321 
0.8542 
0.4643 

0.7234 
0.44 

0.7143 
0.8 

0.6364 

0.6809 
0.3538 
0.6786 

0.76 
0.5909 

0.7812 
0.44 

0.8696 
0.8333 
0.625 

 

 

Overall, the Climate Zone b GAM model performed the best at a 78% accuracy level 

with Kappa 0.44 (moderate agreement). The tiller-only GAM model achieved a 72% 

accuracy level and Kappa 0.44 (moderate agreement). Finally, the all-observation BRT 

model performed at a 71% accuracy level with Kappa 0.34 (fair agreement). The 

models performed better in predicting positive yellow rust cases than in predicting no-

yellow rust cases. It is observed from the higher values for sensitivity (true-positive 

rate) than specificity (true-negative rate).  
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4.5 Model Extrapolation 

Based on the predictive capacity assessed in the previous section, the GAM model for 

tiller-only observations and Climate Zone b were extrapolated over a wider area to 

visualize the probability of yellow rust incidence at an early stage of wheat growth.  

Figure 34 below represents the probability of yellow rust incidence at the early stage of 

wheat growth (tiller-level) over the Oromia Region. The tiller-only GAM model 

Figure 34: Yellow rust probability maps with the tiller-only GAM model 
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(accuracy 72%, Kappa 0.44) was used for this. The probability is expressed on the scale 

of 0-1, and the value closer to 1 indicates a higher probability of yellow rust infection.  

Similarly, Figure 35 is an extrapolation of the zone.b GAM model (accuracy 78%, 

Kappa 0.44) over the Climate Zone b. The higher probability of yellow rust incidence 

is represented by orange and red color.  

Figure 35: Yellow rust probability map for Climate Zone based on the zone.b GAM model 
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5. Discussion 

This study examined RS-based environmental conditions in Oromia’s wheat growing 

area during the off-season and their relationship with early-stage yellow rust incidence. 

The study is based on the assumption that yellow rust survives in the field during the 

off-season after every harvesting, contributing to early local infection of young wheat, 

which increases the risk of repetitive yellow rust epidemics in the field. This section 

presents some reflections on the results of the analyses in line with the research 

questions and recommendations for future research.   

 

Rainfall as a critical parameter 

The variable exploration and model training process demonstrated higher importance 

of rain-based variables during the off-season than temperature, which is often regarded 

as the critical parameter in the past yellow rust modeling and exploration of pathogen 

survival during the off-season (Dennis, 1987, Tollenaar and Houston, 1967). The 

models for all-observation data (n=258) and tiller-observation data (n=159) indicated 

that more than 6-7 days of rainy days in late July decreased the probability of rust at 

the tiller and boot stage. Similarly, the model for the Climate Zone b observation data 

(n=111) indicated higher probabilities of yellow rust incidence in the places rainfall 

was less at the end of June. This trend recalls that long periods of rain are typically not 

conducive to the survival of rust during the off-season as it washes the spores from the 

plants, and low-placed infected leaves can be covered by mud, hence terminating the 

pathogens (Zadoks and Bouwman, 1985). In the Oromia region, maximum and 

minimum temperatures tend to remain at around 20-27℃ and 3-13℃, respectively, 

throughout the off-season. As per the epidemiological studies conducted in the past, 

these temperatures are not hot or cold enough to terminate the pathogens and provide a 

stable conducive environment for pathogens' survival. Under such conditions, it is 

possible that rainfall stood as the critical determiner and the parameter that brings the 

impact of off-season rust survival on the following wheat season in the Oromia region.    

 



 

 

58 

How early is early enough? 

The periods that are deemed to be essential for the fitted models are June and July. 

These months are the beginning of Meher, the primary rain season. Considering the 

dates of rust observations concentrated around August and September (tiller/boot 

growth level), June and July are estimated as the period right before or around sowing 

could happen at many locations. In other words, monitoring weather conditions toward 

the end of the off-season instead of right after harvesting could lead to an effective early 

warning of the potential impact of off-season survival of yellow rust pathogen on young 

wheat plants at the beginning of a new wheat season. 

 

Role of static environmental characteristics   

The rust observations used for this study are located at a relatively higher altitude 

between 1620m and 2978m. According to Tollenaar and Houston (1967), off-season 

survival (in their study, oversummering) of yellow rust is less likely at the elevation 

below 1829m (6000ft) because of unfavorable summer temperatures at these altitudes. 

The models trained for all-observation data set and tiller-observation data set were 

featured partially by altitude (DEM) parameter and confirmed this trend by showing 

that rust probability increased as the altitude increased. What was unique about this 

study was the findings around the roles that other static terrain characteristics can play 

in modeling. For example, milder slope (less than 10 degrees) and aspect less than 200 

degrees (facing somewhere in the rage of North-East to South) increased the probability 

of yellow rust incidence in the new season. It triggers a thought around exposure to 

sunlight that may or may not influence prudence of pathogen survival on the host plants 

during the off-season.   

 

Strength of Models 

While the comparison of GAM and BRT as modeling method is not the focus of this 

study, applying different modeling methods helped confirm the most critical 

environmental variables and arrive at a better-performing model depending on the 

concerned data set. For the all-observation data set, BRT performed better with 71% 

accuracy. As for the tiller-observation data set and Climate Zone b data set, GAM 

models achieved 72% and 78 % accuracy, respectively. Looking at the Kappa statistics, 
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the models for tiller-only observation data and the Climate Zone b data set are 

moderately reliable, while the all-observation data set requires further improvement. 

All the models were more robust in sensitivity than their specificity. This indicates that 

the models predict rust cases better than predicting no-rust cases. For this, the threshold 

to classify rust case or no-rust (0.5) could be adjusted and see if the performance 

changes.  

 

One emerging hypothesis from the result of the predictive capacity assessment is that 

when the observation data is more homogeneous than not, the models could be 

performing better. For example, the tiller-observation data set is limited to the 

observations at the tiller growth stage, which are about 2-3 weeks from sowing. Boot-

level observations have more time since the time of sowing, and they can be as matured 

as one month or even two months into the growing stage. The more mature the observed 

wheat is, the more possible it would be that the rust infection at that time is influenced 

by additional factors such as in-season rust propagation including longer-distance 

pathogen infection through the dispersal of urediniospores via wind. An early warning 

model based on off-season environmental conditions may be more effective if it limits 

the observations to tiller-level rust cases.  

 

Climate Zone b data performed the best in prediction. This data set has common climate 

conditions based on the vegetation trend. This model’s predictive capacity is the most 

promising among the three models. However, at this point, it is not clear if the model 

performed better (accuracy) because of the homogeneity of the data set (i.e., the same 

climate zone), or it was simply because the data set was small. At the time of data 

preparation, other Climate Zones were identified based on the NDVI profiles, but due 

to the number of observations available, they were not included in the modeling process. 

If a larger volume of observations is made available, climate Zone-based predictive 

models can be tested further to confirm its strength.    

 

Opportunities for RS-based ‘earlier’ warning of yellow rust 

The study demonstrated the possibility of using solely RS-based freely available data 

to analyze and model the relationship between yellow rust incidence on young wheat 

and off-season environmental conditions in Ethiopia’s Oromia region. Amid a limited 
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number of country-specific studies on yellow rust epidemic prediction, this study's 

outcome highlights some opportunities that could pave the way for a functional earlier 

warning of yellow rust incidence in Ethiopia. 

 

For example, it would be more useful to understand what makes Moderate and High 

incidence at a very early wheat growth stage. Due to the smaller number of Moderate-

High incidence in the sample data, this study's analysis was limited to binary categories. 

Similarly, yellow rust effects based on cultivar types would add values to modeling and 

make sense to understand the susceptibility of different wheat variety to yellow rust 

when certain environmental conditions are met. It was impossible to include this 

analysis in this study, as one-quarter of the observations did not have a cultivar name 

assigned to the observation. These aspects would be important in order to prioritize 

mitigation actions on the ground. If certain areas are prone to more severe incidence of 

yellow rust than the others, or if some cultivars seem to be more vulnerable to particular 

environmental conditions than the others, the resources and guidance should be directed 

to those areas with priority. With a larger volume of data beyond this study's time-scale, 

some of these additional analyses may be possible.   

 

In this study, the off-season period was identified based on the general crop calendar 

and the estimated from the date of rust observation recorded at the tiller and boot stage 

in the absence of planting date information. However, it is worth noting that planting 

dates could play an important role in better understanding the relationship between the 

pre-planting environmental conditions and early-stage yellow rust incidence.  

 

The modeling approach is one way to understand and analyze the complexity of the 

system of yellow rust infection. However, it requires strong empirical knowledge of 

how biology and physiology behave in a particular set of environment. This study drew 

the knowledge of yellow rust epidemiology from the work of Zadoks (1961), Tollenaar 

and Houston (1967), Coakley and Line (1981), Dennis (1987),  Rapilly (1979), and 

Devallavieillepope et al. (1995). While their work is still referred to by many recent 

rust modeling initiatives, empirical studies around off-season survival of yellow rust 

are still very limited. Laboratory-based observation of actual survival of yellow rust on 

specific wheat cultivars in the Ethiopian highland would be highly beneficial for fine-

tuning of the environmental parameters used in the modeling.  For example, in this, 
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study the rain parameters were designed with the accumulation of precipitation and the 

number of rainy days (>3mm) over ten days. It may well be the number of consecutive 

rainy days over a much shorter or longer period of time that matters more.  

Similarly, the study was undertaken with the assumption that pathogen's off-season 

survival on volunteer wheat influences the local infection in the upcoming season. 

While some unique characteristics were found on this relationship through this study, 

some field studies of off-season rust survival and local infection in the context of the 

Oromia region would be beneficial to confirm or modify the model configurations. For 

example, the presence of volunteer wheat or alternative hosts and their yellow rust 

infection status in the wheat field could be monitored during the off-season and linked 

with the nearby observation of yellow rust infection among young wheat in the 

upcoming wheat season.  
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6. Conclusion 

The research explored the possibility of earlier forecasting of yellow rust infection by 

looking at the RS-based environmental conditions unique to off-season survival of 

yellow rust in the Oromia region of Ethiopia. While the epidemiology of yellow rust 

typically indicates the importance of temperature in the survival of pathogens, the study 

highlighted additional factors of rain and terrain characteristics that play a key role in 

the relationship between the off-season environmental conditions and yellow rust 

incidence on young wheat in the next season. Climate zone-based observations and 

tiller-only observations generated moderately reliable predictive models (Accuracy > 

70%, Kappa > 0.40). 

Further analysis is recommended using a larger volume of observation data to confirm 

the model's general strength and allow for more specific categorical analysis based on 

different severity of rust incidence and unique cultivars. Little is known or documented 

empirically about the ground reality of off-season yellow rust survival, especially in the 

context of Ethiopia. With such additional analysis and empirical knowledge, the 

approaches tested in this study could be enhanced for its practical application for RS-

based early warning of yellow rust in the future.    
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APPENDICES 
 

 

Chapter 3. Method 

 

3.4 Data Processing 

 

Retrieval of precipitation and temperature data on GEE 

 

Google Earth Engine (GEE), point-data extraction of precipitation (CHIRPS), and 

temperature (AgERA5). Below is the example of precipitation data extracted for the 

month of April 2018. (Javascript reference) 
 

var aoi: Table users/ccendoo/OromiaYellowRust2018_TB 

print(aoi); 

Map.addLayer(aoi); 

 

// Script to extract CHIRPS precipitation values with point data on 

Google Earth Engine 

 

var start = ('2016-04-01'); 

var end = ('2016-05-01'); 

 

// Daily precipitation - load in image collection and filter by area and 

date 

var era5_prec = ee.ImageCollection('ECMWF/ERA5/DAILY') 

                   .select('total_precipitation') 

                   .filter(ee.Filter.date(start, end)) 

                   .map(function(image){return image.clip(aoi)}); 

//Clips data based on "aoi" 

                    

print('collection', era5_prec); 

 

//Create variables and extract data 

var scale = era5_prec.first().projection().nominalScale().multiply(0.5); 

print(scale); 

era5_prec = era5_prec.filter(ee.Filter.listContains('system:band_names', 

era5_prec.first().bandNames().get(0))); 

 

var ft = ee.FeatureCollection(ee.List([])); 

//Function to extract values from image collection based on point file 

and export as a table  

var fill = function(img, ini) { 

  var inift = ee.FeatureCollection(ini); 

  var ft2 = img.reduceRegions(aoi, ee.Reducer.first(), scale); 

  var date = img.date().format("YYYYMMdd"); 

  var ft3 = ft2.map(function(f){return f.set("date", date)}); 

return inift.merge(ft3); 

}; 

 

// Iterates over the ImageCollection 

var profile = ee.FeatureCollection(era5_prec.iterate(fill, ft)); 

print(profile,'profile'); 

 

// Export 

Export.table.toDrive({ 

  collection : profile, 

  description : "ERA5_prec-"+start+"-"+end, 

  fileNamePrefix : "ERA5_prec-"+start+"-"+end, 

  fileFormat : 'CSV', 

  folder: 'ERA5', 

  selectors: ["date","first"] 

}); 

https://stackoverflow.com/questions/59992533/extract-timeseries-data-from-era5-google-earth-engine
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3.5 Analysis 

 

3.5.1 Variable Exploration (RQ1.a) 

 

 

Univariate AUC values 
 

library(tidyverse) 

set.seed(123) 

folds <- createFolds(mydata2$rust, k=10) 

# The result of this is a list of vectors storing the row numbers for 

each of the k=10 requested folds. 

 

library(caret) 

# Use lapply() to conduct identical steps to calculate the Area Under 

ROC curve (AUC) for each fold 

 

rocVal <- lapply(folds, function(x){ 

  test <- mydata2[x, ]  

  train <- mydata2[-x, ]  

  rocVal <- filterVarImp(x = train[ , -1], y = train$rust) 

}) 

 

#Combine list of all 10-fold AUC data frames into one to calculate a 

mean 

library(data.table) # to activate rbindlist() 

rocVal_comb <- Map(cbind, rocVal, predictor = lapply(rocVal, rownames)) 

rocVal.mydata2 <- rbindlist(rocVal_comb, idcol = TRUE) %>% 

  group_by(predictor) %>% 

  summarise_at(vars(X0, X1), list(mean_ROC = mean))     

 

 
Classification Tree (‘cart’ package) 

 

library(rpart) 

library(rpart.plot) 

cart.model <- rpart(rust ~ var1 + var2 + ... + varX, 

                     method = 'class', #classification 

data = dataset,  

parms = list(split='information'), 

control = rpart.control(cp=0.001)) 

 

#cp = complexity parameter 

#The parameter ‘information’ is a splitting criterion, 

and it is also called entropy index that forms the 

category groups by minimizing the within-group 

diversity.  

 

rpart.plot(cart.model, type = 5, extra = 1, branch.lty = 3, box.palette 

= "auto", nn=TRUE) 

 

summary(cart.model) 

plotcp(cart.model) # plot complexity parameter 
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3.5.2 Finding the most critical variables (RQ1.b) 

 

 

General Additive Model (GAM) 
 

library(mgcv) 

gam.model <- gam(rust ~ s(var1) + s(var2) + ... + s(varX), 

                   data = dataset, 

                   family = binomial, #Classification 

                   method = "REML")  

 

# “REML”: Restricted Maximum Likelihood method: automatic smooth 

parameter selection 

 

summary(gam.mydata2) 

plogis(coef(gam.mydata2)[1]) 

gam.check(gam.mydata2) 

 

par(mfrow = c(2, 2)) 

plot(gam.mydata2, pages = 2, 

     trans =plogis, # transform y-axis to 0-1 scale 

     shift = coef(gam.mydata2)[1], # adding model intercept 

     seWithMean = TRUE, # consider intercept uncertainty 

     residuals = TRUE, pch = 1, cex = 1, 

     shade = TRUE)   

 

 
GAM concurvity report 

> concurvity(gam.tiller, full = TRUE) 

                 para s(daysr_21) s(minT_11) s(aspect)  s(slope)    s(DEM) s(ndvi_19) 

worst    1.358463e-18   0.7813170  0.7784903 0.6610410 0.7400053 0.7767376  0.7792632 

observed 1.358463e-18   0.6680082  0.5369568 0.4489580 0.6543160 0.5753127  0.5027777 

estimate 1.358463e-18   0.5712507  0.5238092 0.4527114 0.5995162 0.5561714  0.6337436 

In the convurvity report when the values on ‘worst’ is above 8, there is a possibility 

of concurvity and adjustment in predictors may be required. Thus, the details 

should be checked for each variable against the other variables to find out which 

combination of variables have concurvity. 

 

 
library(GGally) 

library(tidyverse) 

# Checking potential collinearity 

dataset %>% ggpairs(columns = c("maxT_19","minT_14", "prc_mm_10",  

"prc_mm_14", "daysr_20", "daysr_21", 

"ndvi_10", "ndvi_14", "ndvi_20", "DEM", 

"slope"), 

                upper = list(continuous = wrap('cor', size =4)), 

                lower = list(combo = wrap("facethist", bins = 30))) 

 

# VIF calculation 

VIFcalc(data.frame(dataset$maxT_19, dataset $minT_14, dataset 

$prc_mm_10,  

dataset 

$prc_mm_14,dataset$daysr_20,dataset$daysr_21, 

dataset $ndvi_10, dataset $ndvi_14, dataset$ndvi_20, 

dataset$DEM, dataset$slope)) 

 

 

# GAM PREDICTION  

predictions <- predict(gam.model, newdata = dataset, 
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                       type = "link", se.fit = TRUE) 

 

 
Boosted Regression Tree (BRT) 

 

library(gbm) 

library(dismo) 

source("brt.functions.R") 

yrust.tc2.lr.001 <- gbm.step(data=mydata2train,  

                             gbm.x =c(53,10,99,3,14,69,84,38,25,39,19),  

                             gbm.y = 1, 

                             family = "bernoulli",  #binomial model 

                             tree.complexity = 2,   

                             learning.rate = 0.001, 

                             bag.fraction = 0.75)  

# bag fraction specifies proportion of data to be selected at each step 

(In this case, 75% of the data is drawn at random) 

 

 

# Identify important interactions of variables(pair-wise interactions) 

find.int <- gbm.interactions(yrust.tc2.lr001.3)  

find.int$interactions 

find.int$rank.list  

 

# Visualizing the identified key interactions (example) 

gbm.perspec(yrust.tc2.lr001.3, 7, 6, theta = 150) 

 

gbm.perspec(yrust.tc2.lr001.3, 6, 7, z.range = c(0.5, 1), theta = 220 , 

cex.lab = 0.8, cex.axis = 0.6) 

 

gbm.perspec(yrust.tc2.lr001.3, 6, 4, z.range = c(0.2, 1), theta = 240 , 

cex.lab = 0.8, cex.axis = 0.6) 

 

 

# BRT prediction  

predictions <- predict.gbm(yrust.tc2.lr001.3, mydata2test, 

                      n.trees = yrust.tc2.lr001.3$gbm.call$best.trees, 

                        type = "response") 

   

 

 

 

 
3.5.3 Assessing Model Predictive Capacity (RQ2) 

 

Generating Confusion Matrix 
 

# Creating the table with probability, prediction (0 or 1), actual 

observation (0 or 1), and accuracy (TP, FP, FN, TN) 

 

pred.table <- as.data.frame(predictions2)  %>% 

  rename(probability=predictions2) %>% 

  mutate(prediction=if_else(probability >= 0.5, '1', '0')) %>% 

  cbind(mydata2test$rust) %>% 

  rename_at(3, ~'observation') %>% 

  mutate(accuracy = case_when( 

    prediction == 1 & observation == 1 ~ "TP", 

    prediction == 1 & observation == 0 ~ "FP", 

    prediction == 0 & observation == 1 ~ "FN", 

    prediction == 0 & observation == 0 ~ "TN")) 

 

pred.table # print prediction table 
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# create confusion matrix by counting TP, FP, FN, TN  

ConfusionMatrix <- as.data.frame(table(pred.table$accuracy)) 

ConfusionMatrix 

 

fn <- ConfusionMatrix[ConfusionMatrix$Var1 == "FN", "Freq"] 

fp <- ConfusionMatrix[ConfusionMatrix$Var1 == "FP", "Freq"] 

tn <- ConfusionMatrix[ConfusionMatrix$Var1 == "TN", "Freq"] 

tp <- ConfusionMatrix[ConfusionMatrix$Var1 == "TP", "Freq"] 

 

 

ModelPerformance()  
 

#calculate statistics for accuracy, kappa, precision, sensitivity, and 

specificity.  

ModelPerformance = function(tp, tn, fp, fn){ 

  { # Accuracy 

    correct = tp+tn   

    total = tp+tn+fp+fn 

    print(paste0("Accuracy: ", round(correct/total, digits= 4))) 

  } 

  { # Kappa 

    total=tp+tn+fp+fn 

    observed_acc=(tp+tn)/total 

    expected_acc=((tn+fn)/total)*((tn+fp)/total) + 

((fp+tp)/total)*((fn+tp)/total)  

    print(paste0("Kappa: ", round((observed_acc - expected_acc)/(1 - 

expected_acc), digits = 4))) 

  } 

   

  { # Precision 

    print(paste0("Precision: ", round(tp/(tp+fp), digits = 4))) 

  } 

   

  { # Sensitivity 

    print(paste0("Sensitivity: ", round(tp/(tp+fn), digits = 4))) 

  } 

   

  { # Specificity 

    print(paste0("Specificity: ", round(tn/(tn+fp), digits = 4))) 

  } 

 

 

 

 

3.5.4 Model Extrapolation 

 

An example based on the GAM model for tiller-only data, 2018 map. 
 

# Generate extrapolation map based on the GAM model fit with the tiller-

only dataset 

 

setwd("WORKING FOLDER LOCATION") 

tiller.train <- read.csv("tiller.train.csv", header=TRUE) 

 

# Below is the GAM model that performed the best - Accuracy 0.72, Kappa 

0.44 (moderate agreement) 

 

library(mgcv) 

gam.tiller <- gam(rust ~ s(daysr_21) + s(minT_11) + s(aspect) + s(slope) 

+ s(DEM) + s(ndvi_19), 

                  data = tiller.train, 

                  family = binomial, 

                  method = "REML") 
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summary(gam.tiller) 

plogis(coef(gam.tiller)[1]) 

gam.check(gam.tiller) 

plot(gam.tiller, pages = 2, 

     trans =plogis, # transform y-axis to 0-1 scale 

     shift = coef(gam.tiller)[1], # adding model intercept 

     seWithMean = TRUE, # consider intercept uncertainty 

     residuals = TRUE, pch = 1, cex = 1, 

     shade = TRUE)   

 

 

# Preparation for extrapolation using the raster layers of the key 

predictor variables. 

 

# Step 1: Load maps into R. 

require(raster) # Enabling R to read and write maps 

require(rgdal) 

 

# Load maps that are relevant for the analysis.  

# Make sure to change the year of the folder (2016, 2017, 2018) 

depending on the year of interest! (DEM, slope and aspect come from the 

same location) 

daysr_21.rs <- raster("/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/2018/daysr_21.ovr") 

minT_11.rs <- raster("/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/2018/minT_11.ovr") 

ndvi_19.rs <- raster("/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/2018/ndvi_19.ovr") 

DEM.rs <- raster("/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/DEM.ovr") 

slope.rs <- raster("/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/slope.ovr") 

aspect.rs <- raster("/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/aspect.ovr") 

 

# Step 2: Converting raster image to data frame (.df)   

daysr_21.df <-as.data.frame(daysr_21.rs) 

minT_11.df <-as.data.frame(minT_11.rs) 

ndvi_19.df <-as.data.frame(ndvi_19.rs) 

DEM.df <-as.data.frame(DEM.rs) 

slope.df <-as.data.frame(slope.rs) 

aspect.df <-as.data.frame(aspect.rs) 

 

# Collate all the maps into one data frame 

gam.till.df <- data.frame(daysr_21 = daysr_21.df, minT_11 = 

minT_11.df,ndvi_19 = ndvi_19.df, DEM = DEM.df, slope = slope.df, aspect 

= aspect.df) 

 

# Column head for minT_11 remained "mint_11". Change this to the exact 

variable name "minT_11" so that model extrapolation works well.  

colnames(gam.till.df)[2] = "minT_11"  

     

# Step 3: calculate prediction for the data frame generated 

gam.till.df$predict <- predict.gam(gam.tiller, gam.till.df, type = 

"response") # the new data frame (in matrix) 

# "response" indicates probability in the scale of 0-1. Do not use the 

Link function! 

 

 

# Step 4: converting predictions into map 

gam.till.matrix <- matrix(gam.till.df$predict,  

                      nrow=DEM.rs@nrows, ncol=DEM.rs@ncols, byrow=TRUE) 

gam.till.rs <- raster(gam.till.matrix,crs=DEM.rs@crs,  

                     xmn=DEM.rs@extent@xmin, 

                     ymn=DEM.rs@extent@ymin,  

                     xmx=DEM.rs@extent@xmax,  

                     ymx=DEM.rs@extent@ymax)    
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# check the result raster and save.  

library(RColorBrewer) 

coul <- colorRampPalette(c("white", "yellow", "orange","brown")) 

plot(gam.till.rs, col = coul(100), axes = FALSE) 

 

#exporting the image to file 

writeRaster(gam.till.rs,"/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/2018/gam.till.2018.img") 
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