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1 Abstract
Animals are impacted by the humidity of their surrounding environment, it
affects their ability of thermoregulation, water retention and their overall well-
being. For small insects the effects of the surrounding humidity is even more
important as they have a limited water storage which depletes faster in a drier
environment. Some insects such as the vinegar fly Drosophila melanogaster
have developed the ability to sense humidity (hygrosensation) and navigate
using humidity cues. Much research has contributed to our understanding
of hygrosensation but the process is still not fully understood. In this thesis
a framework is developed which is able to detect and visualise results from
behavioural assays. The framework consists of a statistical analysis of tra-
jectory data and a Gaussian mixture Hidden Markov Model (HMM) which
simulates fly locomotion. A behavioural assay is also conducted in this the-
sis, in which vinegar flies are subjected to variations in humidity and their
resulting trajectories are measured. The developed framework is applied to
the experiment data in order to investigate hygrosensation. However as the
reaction from flies was insufficient in the experiments of this thesis, the HMM
is also applied to an external data set from an assay investigating olfaction,
where distinct responses to stimuli were found. Furthermore when separate
HMMs were fitted to trajectory data from different responses, the result-
ing model fits showed notable differences. Trajectories simulated from each
model also differed, where one model showed flies moving towards the stimuli
source at an increased speed and another showed flies moving sporadically
with a reduced speed. The developed framework could be applied for analyz-
ing further experiments investigating hygrosensation and serve as a starting
point for analyzing trajectory data in general.
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3 Introduction

3.1 Background
For small insects the temperature and humidity of the surrounding environ-
ment impacts survival, causing them to seek out optimal conditions. Thus
insects have developed the ability to sense humidity (hygrosensation) and to
navigate using humidity cues.[1] Much research has contributed to our under-
standing of hygrosensation but the process is still not fully understood. We
know that humidity is sensed in a sensory organ called sacculus, by special-
ized sensory hairs called hygrosensilla.[2] Each hair containing three different
sensory neurons that reacts to: increasing humidity, decreasing humidity and
decreasing temperature. How these neurons collectively encode humidity cues
and especially the possible contribution of the neuron reacting to temperature
is uncertain.[2]

3.2 Research Target
The Sensory Neurophysiology group at the Department of Experimental Med-
ical Science of Lund University researches hygrosensation in vinegar flies,
Drosophila melanogaster. Their recent research suggests a model for hy-
grosensation where humidity cues are encoded by sensory neurons swelling
with relative humidity and the strength of their responding activity is mod-
ulated by the temperature. In this thesis the hypothesised model will be
investigated by conducting behavioural experiments, subjecting vinegar flies
to brief variations in humidity and recording their movement. The potential
reactions to humidity stimuli will be investigated by applying a framework of
statistical analysis and modelling to the resulting trajectory data. The initial
objective was to investigate hygrosensation and the possible contribution of
the temperature neuron in three steps:

• Firstly to investigate if the vinegar fly shows a significant response to
our humidity stimuli.

• Secondly to measure the difference in response at two temperatures.

• Finally to silence the temperature neuron in vinegar flies and measure
the difference in response.

However, when no significant reaction to humidity could be detected from
the experiments, the objective of this thesis was restricted to the first step.
Comparing the difference in response between two groups requires that there
is a significant response overall. Furthermore a general goal is also to see how
statistical analysis and modelling can be applied to behavioural assays and
to provide a framework for future work involving trajectory analysis.
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In order to show how the developed model could simulate flies expressing
different responses, it was also applied to an external data set from another
study. This data set contained trajectory data from flies that reacted signif-
icantly to odor stimuli.

3.3 Outline
In the first part of the thesis an experiment setup for the behavioural assay
is developed. The setup records and measures the trajectory data of vinegar
flies moving in an arena while receiving an automated humidity stimulus.
The second part consists of preprocessing and analyzing the resulting tra-
jectory data. Several features describing the characteristics of fly movement
are calculated, and potential reactions are investigated as changes in feature
values at stimuli onset and offset.
Lastly, the movement of flies is statistically modelled by implementing a
Gaussian mixture hidden Markov model and fitting it to trajectory data. In-
ference about the fly behaviour can be drawn from studying the model fit
and the responses from separate periods can be differentiated. Simulated
trajectories can also be generated by sampling from a fitted model.
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4 Theory

4.1 Neurophysiological background

This section presents the necessary theory regarding hygrosensation in vine-
gar �ies. Both from the perspective of the underlying mechanisms of humid-
ity sensing and how humidity stimuli translates into �y behaviour. Providing
context to how the experiments in this thesis can deduce information about
�y hygrosensation and the role of the temperature neuron.
In this thesis humidity levels are measured using relative humidity, which is
the ratio between the amount of water vapor in the air and the amount of wa-
ter vapor at saturation for a given temperature. The relative humidity thus
increases with the amount of water vapor and decreases with temperature,
as more water vapor is then required for the air to be saturated.[1]

4.1.1 Hygrosensation

When insects navigate through an environment they are able to use cues from
multiple senses. They process olfactory information from odor plumes to �nd
food sources, detect objects using visual and auditory cues and they are also
able to sense the relative humidity of their surroundings. [3][4] The ability
of humidity sensing is called hygrosensation, and is important for the insects
survival. As a consequence of their small size and in relation large surface
area, insects have a limited water storage that depletes relatively quickly
when the surrounding air is dry. Therefore it is bene�cial to sense and seek
out optimal humidity levels. Insects are adapted to di�erent humidity levels
corresponding to their natural habitat, and species with the ability of hy-
grosensation are drawn to their preferred humidity level. Their preference
also depend on their internal state; as a dried out �y is more likely to move
towards humid areas.[2]

The vinegar �y Drosophila melanogasterprovides a good model system to
study hygrosensation as it is commonly used in experiments and it is genet-
ically accessible. Meaning that it is possible to target and silence individual
neurons involved in hygrosensation. The vinegar �y senses humidity in an
invagination called sacculus, located on the third antennal segment. The sac-
culus consists of three chambers with walls covered by sensory hairs called
sensilla. There are di�erent forms of sensilla used for olfaction, termorecep-
tion and hygroreception (hygrosensilla).[2] Each hygrosensillum are coupled
to three distinct hygrosensory receptor neurons (HRN) forming a hygrosen-
sory triad, a structure also present in other humidity sensing insects.
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The hygrosensory triad consists of one moist, one dry and one temperature
HRN. The discharge frequency of each of the HRN increases by the corre-
sponding actions: an increase of water vapor for the moist neuron, a decrease
of water vapor for the dry neuron and decreased temperature for the tem-
perature neuron.[2] The sacculus, hygrosensilla and HRN are illustrated in
�gure 4.1. It is unclear how the information from the HRN are combined to
determine the humidity level, in particular the potential contribution of the
temperature neuron.[1]

Figure 4.1: An illustration of the sacculus and hygrosensory neurons (image
used with permission from Anders Enjin). (A) D. melanogasterwith the
antenna highlighted in orange. (B) A section of the antenna, displaying the
location of the sacculus. (C) The internal structure of the sacculus, displaying
the location of hygrosensilla. (D) A hygrosensory triad of neurons. (E) The
dry, moist and temperature (hygrocool) neuron belonging to the hygrosensory
triad with the ionotropic receptors (IR) expressed by each neuron.

4.1.2 Mechanisms behind hygrosensation

There are three major theories regarding humidity transduction: a mechanosen-
sory model, a psychrometer model and an evaporation model. In the mechanosen-
sory model the sensilla absorbs water vapor from the surrounding air, causing
them to expand with rising relative humidity. The volume change of the sen-
sillum causes mechanical stress in the neuronal membrane, sensed by ion
channels known as mechanoreceptors, which encode the relative humidity
into signals.[1]
In the psychrometer model humidity is measured by comparing the temper-
ature di�erence between the sensillum surface and the surrounding air. The
water in the sensillum evaporates into the surrounding air. Cooling the sur-
face similar to how a body cools down from sweating, transferring thermal
energy to the air. As drier air is able to absorb more humidity, the air hu-
midity can be measured by the degree of the cooling e�ect.
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In the evaporation model humidity is measured from changes in ion concen-
trations in the liquid surrounding the sensory neurons, the sensillum lymph.
Water evaporates to the surrounding air, causing a concentration change in
the lymph that is dependent to the saturation de�cit of the air. The resulting
concentration change will in turn activate ion channels on the HRN, encoding
the humidity change into signals.[1]

The Sensory Neurophysiology group at Lund University has put forth an
alternate hypothesis for the mechanisms behind hygrosensation, which the
experiments in this thesis are designed to test. The research group proposes
an extended mechanosensory model, where the moist and dry neurons react
to humidity as in the previously described mechanosensory model but the
strength of their response is modulated by the temperature neuron. Thus
the moist and dry cells swell with increasing relative humidity, similarly to
how a pine cone opens and closes with changes in air humidity. They then
believe that the signal transduction is governed by ionotropic receptors which
activates from mechanical stress. Additionally they believe that a decrease
in temperature causes the temperature neuron to inhibit the activity of the
moist and dry neuron.

Previous evidence against a mechanosensory model was that given a con-
stant water vapor level, a rise in temperature, decreases the relative hu-
midity. Therefore, the activity of the moist and dry neurons responding to
humidity variations should be lower when increasing the temperature. But
on the contrary studies have shown that the activity of the neurons increases
with temperature.[1] However these models do not include the temperature
neuron. The research group believes that the temperature neuron has an
inhibitory e�ect on the two other neurons via ephaptic coupling. Meaning
that since the neurons are bundled together and share the same surrounding
extracellular �uid, their activities are dependent. The activity of one neuron,
alters the ionic concentration in the surrounding �uid, which in turn alters
the membrane potential and �ring rate of the other neurons. A similar in-
hibitory e�ect has already been observed in olfactory receptor neurons of the
vinegar �y.[5] The hypothesis is therefore that decreasing the temperature,
rises the activity of the temperature neuron and thus inhibits the activity of
the moist and dry neuron.
Studies suggest that the temperature neuron is silent for temperatures above
the threshold of 25 degrees.[6] Therefore the experiment in this thesis will be
performed at 24 and 26 degrees, above and below the suspected threshold.
A reaction to humidity is suspected at both temperatures, with a stronger
response at 26 degrees. When using genetically modi�ed �ies with a silenced
temperature neuron the expectation is that the response will be equally strong
at both temperatures.
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4.1.3 Navigation using sensory cues

The behaviour of insect navigation induced by stimuli has been studied ex-
tensively.[2][7][3] Studies have shown that the humidity level preference of
vinegar �ies is relatively �ne tuned. In one two-choice assayD. melanogaster
was able to choose between two areas with di�erent humidity levels during
four hour experiments. A prominent trend was detected where �ies actively
moved towards areas with 70 % humidity and avoided areas with 20 % or 85
% humidity.[2] Furthermore, there are indications that �ies placed in a circu-
lar arena react to a humidity increase in the center within tens of seconds.[7]
This project will subject vinegar �ies to a gradient of humidity where the
humidity level is either increased or decreased for about twenty seconds, in
order to elicit a reaction. The humidity gradient provides a �ner scale of con-
trast in humidity compared to a two-choice assay. The �ies should be able to
sense the altered humidity, the question is how strong of a reaction the stim-
ulus can evoke. Studies of vinegar �y navigation with a similar experiment
setup have been conducted. These show that second long pulses of vinegar
attracts starved �ies [8] and that �ies are able to navigate through complex
plumes using olfactory cues.[3] Although hygrosenation and olfaction are two
separated processes using di�erent receptors, this shows that vinegar �ies are
able to �nd the source of an attractant by sensing cues from rapidly varying
stimuli gradients.

One particular study of olfactory navigation by Alvarez et al.[8], served as an
inspiration for this study. This thesis uses their arena design and inspiration
has been drawn from their experimental setup and parts of their analysis.
Their experiments consisted of minute long trials with constant wind �ow,
where odor stimuli in the form of a ten second long vinegar pulse was activated
in each trial. The measured trajectory data is analyzed by investigating how
features such as velocity, upwind speed (towards the source) and angular
velocity vary during the course of trials. When calculating the mean feature
values of all �ies two prominent responses were found:

ˆ ON-response during the stimuli onset, where �ies tend to direct towards
and move upwind against the gradient with an increased speed.

ˆ OFF-response during the stimuli o�set, where �ies show local search
behaviour, trying to �nd the attractant that disappeared. During the
OFF-response the speed decreases while the angular velocity increases
and the �y performs more sporadic turns. [8]

Flies subjected to humidity stimuli will possibly show similar responses if the
stimuli acts as a powerful attractant.
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4.2 Analytical background

This section presents the necessary theory for the analysis and modelling in
this thesis. It �rst explains the Wilcoxon signed rank test which are used to
determine if reactions are statistically signi�cant. This section also explains
the Hidden Markov model (HMM) that is implemented in this thesis. The
model is deployed to simulate �y locomotion and further investigate di�er-
ences in �y behaviour caused by stimuli, illustrating di�erent characteristics
of �y locomotion. The concepts behind the model are explained along with
how the Baum-Welch algorithm is utilized to statistically determine a model
that �ts a given data set.

4.2.1 Wilcoxon signed rank test

This thesis deploys the Wilcoxon signed rank test in order to determine if
a response is statistically signi�cant. The Wilcoxon signed rank test com-
pares if two samplesX = [ X i ; i = 1;:::N ], Y = [ Yi ; i = 1;:::N ] share the same
underlying distribution. Whereas other comparative tests assume the data
to be normally distributed, this test is nonparametric and does not assume
the type of the underlying distribution. The test is performed by �rst pairing
randomly selected values from the two samples. The di�erences of all pairs
are then calculatedD = [ D i = X i � Yi ;1;:::N ] and the di�erences are ranked
based on their magnitude. Given that the samples share the same underly-
ing distribution, the median of the di�erences should be zero. The test thus
calculates the probability that the median is not zero.[9]
One should note that performing several Wilcoxon signed rank test on the
same data set introduces the problem of multiple comparisons. Meaning that
as the number of comparisons increases it becomes more likely that some of
them will be statistically signi�cant. It is possible to compensate for this
e�ect by adjusting the signi�cance level � . A common method for adjusting
� is the Bonferroni method where� is divided by the number of comparisons.
[10]

4.2.2 Hidden Markov model

Modelling the movement of vinegar �ies comprised the process of �tting a
HMM to the �y trajectories of the experiment data. Previous work by Tao et
al.[11], that �tted a hierarchical hidden Markov model to �y locomotion has
served as an inspiration. Their model was able to di�erentiate several fea-
tures from �y locomotion, such as when the �y was meandering or charging
forward. The model could also �nd signi�cant di�erences between the move-
ment of individual �ies and found that the presence of odor stimuli impacted
the model �t.[11]
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The HMM depends on two stochastic processes, here denotedf S(t)g and
f O(t)g. Where f S(t)g is a Markov chain andf O(t)g an observable process
that depends onf S(t)g. These two concepts will be brie�y explained to
provide context about a HMM.
The resulting trajectory data from the experiments will be thought of as
realizations of a discrete time stochastic processf O(t)g. A process with non
deterministic properties of which a single sample is a time series of data.
In comparison, realizations of a random variableO(t) gives a single output,
decided by its probability distribution.[12] Whereas the stochastic process is
a family of random variables

f O(t); t 2 Tg (1)

Where the value of the process att on the parameter spaceT (most often
time) is given by a random variableO(t). Thus an entire realization of a
discrete time stochastic process is given by all values at pointst = 1 : T. All
possible realizations are contained in the sample space
 .[12] In HMM appli-
cations the output of of the process is commonly denotedo (observations),
with the observation at time t given asot .

A Markov chain is a special case of a stochastic process that follows the
Markov property. Here the output of the process are referred to as states
s. With the Markov property stating that the probability of the current
state output of the process should only be determined by the state before,
excluding the history of all other previous states.

P (S(n) = sn j S(n � 1) = sn� 1; : : :S(1) = s1) = P (S(n) = sn j S(n � 1) = sn� 1)
(2)

If it is not intuitive that the Markov property holds, it will be used as an
approximation.[13] This will be the case for the model in this thesis, where
the impact of the history of the process is deemed insigni�cant. In reality
the �y is complex enough to process information gained from various time
points into its decision.[4]
Figure 4.2 (a) shows a simpli�ed example of what the underlying discrete
time Markov chain in this thesis model could be. For each time point the
�y alternates between three states, either moving forward or turning left or
right. Where the probabilities of transitioning between states is given by the
transition matrix A.
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(a) (b)

Figure 4.2: (a) A simpli�ed example of the underlying Markov chainf S(t)g,
describing the movement of the �y. The �y switches between three states,
either going forward, turning left or turning right. With transitional proba-
bilities given by A = ( aij ).
(b) The corresponding HMM. The stochastic processf O(t)g depends on the
Markov chain f S(t)g, where the output ot is di�erent depending on the cur-
rent state st . In this example, the �y starts in state one, thus o1 will be
trajectory data corresponding to the �y moving forward.

Together, the Markov chain f S(t)g and the process behind the measured
trajectory data f O(t)g, describe a HMM. Denoting all variables describing
the model as� . Here the processO(t) generates our observationso, following
a distribution that depends on the statess of the unknown underlying process
f S(t)g. Thus the likelihood of the observations depends on the conditional
likelihood f ojs;� and the state probabilitiesPsj� .

f oj� (o j � ) =
X

s
f ojs;� (o j s; � )Psj� (s j � ) (3)

As f S(t)g is unknown so is also the states of the chain, along with the tran-
sition rates. However the observations,o, provides information about the
Markov chain and by analyzing them one can �nd a model forf S(t)g. Along
with a relationship between the Markov chain states and the observations.[14]

Figure 4.2 (b) shows how the resulting HMM could look, continuing with
the simpli�ed example of an underlying three state Markov chain. The �y
switches between a set number of states, altering its movement. However the
�y does not show which state it occupies, and conclusions has to be drawn by
studying o. In reality, the number of states and the movement they describe
is unknown.
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4.2.3 Two-dimensional Gaussian Mixture Hidden Markov Model

This thesis will deploy an extension of the previously described model denoted
as a Gaussian mixture Hidden Markov model. All parameters of the model
and the data set are described in table 4.1. The model will be �t to a data set
o, consisting of sequences of two-dimensional observations. Each sequence,
o(f ) contains two-dimensional data of measured speed,v and angular velocity,
�

0
. Each sequence ofT data points is measured from a single �y during a

speci�ed time interval.

o =
h
o(1);o(2); : : : ;o(F )

i

o(f ) = [ o(f )
t = [ vt ; �

0

t ]; t = 0; : : :T]

The exact processing of the data set is described in sections 5.2, 5.4.

The probability of observations depends on the Markov states as shown in
equation 3. For each state there is a di�erent probability distribution from
which observations are generated when the Markov chain occupies that state.
Each probability distribution is modeled as a Gaussian mixture model, a
weighted sum of Gaussian probability distributions. Where the likelihood of
the arbitrary observation o(f )

t being generated from statei is given by

f ojs;� (o(f )
t j st = i ) =

MX

k=1
Pik N

�

o(f )
t ; � ik ; � ik

�

(4)

where

N
�

o(f )
t ; � jk ; � jk

�

=
1

(2� )D=2
�
�
�� jk

�
�
�
1=2e

� 1
2

�
o(f )

t � � jk

� T
� � 1

jk

�
o(f )

t � � jk

�

Gaussian mixture models are commonly used for Markov models with con-
tinuous distributions. Whereas �tting a single Gaussian distribution also
assumes that the observations belonging to a state are normally distributed,
a mixture model with a su�cient number of components can approximate all
sorts of distributions.[14] After �tting a HMM, the Gaussian mixture models
will cover areas of our two-dimensional space where there are observations,
as shown in �gure 4.3 Fitting the model to a data set boils down to �nding
parameters for each Gaussian distribution along with stationary and transi-
tional probabilities that �t the data set. The model �t should maximize the
likelihood of the data being generated from the model.[14]
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Figure 4.3: An illustration of a possible �t to the exemplary HMM from
�gure 4.2. The probability distributions of three Gaussian mixture models
(red, blue, green), each corresponding to a state have been �tted to the data
set (black dots). Here a positive angular velocity corresponds to turning left.
Thus, depending on the occupied state, the output of the Gaussian mixture
model results in a left turn, a right turn or going forward.

Parameter Description

s(f )
t = i; i = 1 : N The occupied state at timet, sequencef .

s =
h
s(1);s(2); : : : ;s(F )

i
,

s(n) = [ s(n)
t ; t = 0; : : :T]

The set of state sequences. Denoting the
occupied state for each sequence and time point.

o =
h
o(1);o(2); : : : ;o(F )

i

o(f ) = [ o(f )
t = [ vt ; �

0

t ]; t = 0; : : :T]
The set of two-dimensional observations, each
consisting of a measure of speed and angular velocity.

� = [ A;�;P;�; �] The parameters describing a model �t.

A = ( aij )
The transition matrix. A ij : probability of
transitioning from state i to j .

� = ( � i )
The initial state distribution. Probabilities of
the Markov chain starting in each state.

f ojs(o j s = i ) The observation probability distribution in state i.

� s;m; � s;m;P s;m
The mean, covariance and mixture weight
of the Gaussian belonging to states and mixture m.

F ;T ;N ;M
Number of: sequences, data points of a sequence,
states, Gaussian mixture components.

Table 4.1: Notations describing the data set and all parameters of the model
deployed in this thesis.
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