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Abstract 
 
In making a chess engine using alpha-beta search there are many ways to reduce 
its execution time and thereby improve overall performance. One way is by using 
move ordering heuristics, which are heuristics that reduce the search space by 
attempting to make a rough estimation about which moves are most promising 
before starting a search of a board position. Another example is using a 
transposition table, which can reduce redundant computations. A third example is 
multithreading, which is an attempt to utilize the several cores found in most 
modern computer to improve the amount of information found per unit of time. 
 
The purpose of this thesis is to investigate four different commonly used algorithms 
and heuristics to see how much they can reduce the execution time of a chess 
engine. These algorithms are the move-ordering heuristic known as MVV-LVA, a 
transposition table, iterative deepening and Lazy SMP parallel search. 
 
A Java chess engine named KLAS was implemented and used to measure the 
impact of these four algorithms and heuristics. The largest impact came from the 
MVV-LVA move ordering heuristic which decreased average execution time by 
68.5%. Second most significant was the transposition table, which led to an 
average decrease of 39.8% execution time. Lazy SMP and iterative deepening 
resulted in average execution time reduction of 33.1% and 28.7% respectively. 
 
 
Keywords: chess engine, alpha/beta-search, minimax, move ordering, hash table, 
iterative deepening, Lazy SMP parallel search.  
 



  

Sammanfattning 
 
För att förbättra exekveringstiden av en schackdator som använder alfa/beta-
sökning finns det många olika metoder. Ett sätt är att använda 
dragsorteringsheuristiker, det vill säga heuristiker som minskar sökutrymmet 
genom att göra grova uppskattningar av vilka drag som är mest intressant innan en 
sökning av en brädesposition påbörjas. Ett annat exempel är att använda en 
transpositionstabell, som är en datastruktur vars syfte är att spara information som 
funnits tidigare så att den kan återanvändas. Ett tredje exempel är flertrådning, 
som försöker att utnyttja de flera kärnor man finner i de flesta moderna processorer 
så att man kan undersöka fler möjligheter per tidsenhet. 
Detta examensarbetes syfte är att undersöka fyra olika algoritmer och heuristiker 
som ofta används inom schackprogrammering för att se hur mycket de kan minska 
en schackdators exekveringstid. De algoritmer som undersökts är: 
dragsorteringsheuristiken Most Valuable Victim – Least Valuable Aggressor, en 
transpositionstabell, iterativt fördjupande och flertrådning enligt Lazy SMP. 
 
För att kunna undersöka dessa tekniker implementerades en schackdator i Java 
vid namn KLAS. Mätningarna visade att MVV-LVA hade störst påverkan på 
exekveringstiden och orsakade en genomsnittlig minskning på 68,5%. 
Transpositionstabellen orsakade den näst största genomsnittliga minskningen 
vilken blev 39,8%. Lazy SMP-flertrådning och iterativt fördjupande minskade 
exekveringstiden med 33,1% respektive 28,7% i genomsnitt. 
   
 
Keywords: chess engine, alpha/beta-search, minimax, move ordering, hash table, 
iterative deepening, Lazy SMP parallel search.  
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Definition of Terms 
 

 
The following terms are used in this thesis. 

 
All-node – A node where no moves cause a cut-off nor increase alpha or beta. 

 
Bitboard – A binary number where each bit represents the location of a piece. 
  
Board position – A chessboard including its pieces and their locations. 

 
Branching factor – The factor at which a search tree branches, or in other words, 
the number of possible moves on a given board position. 
 
Cut-node – A node where a move caused a beta or alpha cut-offs. 
 
Depth – The distance, in nodes, from the root node to the current node. 
 
KLAS – The engine implemented as part of this thesis. 
 
Line – A continuous series of moves in a game of chess. 
 
Node – Represents a state in a game where a search algorithm is employed. In 
chess specifically, the nodes represent board positions. 
 
Principle Variation – The specific line of moves that have led to the result 
returned by an alpha-beta search. 
 
PV-node – A node where at least one move increased alpha or beta and no move 
caused a cut-off. 
 
Search – A chess engine considering different moves and the positions they lead 
to. 
 
Transposition Table – A hash table containing data regarding different board 
positions. 
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1 Introduction 

Chess engines are computer programs used for playing and analysing the game of 
chess. The goal of a chess engine is to find the best moves in a game as quickly 
as possible, however the immense number of possible moves makes it impossible 
to fully analyse every chess position to always find the best move. Instead of 
exhaustively analysing every possible chain of chess moves, different optimizations 
are used to limit the amount of moves to be analysed and thereby achieving faster 
results. 
 
This thesis investigates the performance of algorithmic and heuristic optimizations 
that are commonly used to improve the speed and accuracy of chess engines. 
These optimizations are MVV-LVA, Iterative Deepening, Transposition Tables and 
Lazy SMP multithreading. Evaluation of these optimizations is done in a custom 
chess engine named KLAS. We pose the following questions related to these 
algorithmic/heuristic optimizations: 
 
In this thesis we hope to provide an answer to the following questions: 
 

• RQ1 How much execution time can MVV-LVA save on average? 
 

• RQ1.2 How much execution time can Transposition Tables save on 
average? 

 

• RQ1.3 How much execution time can iterative deepening save on 
average? 

 

• RQ1.4 How much execution time can Lazy SMP save on average? 
 

• RQ2 How do each of these optimizations achieve a decrease in 
execution time? 

 

This thesis was carried out on behalf of the department of Computer Science at 
LTH. 
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2 Background 

 
The history of chess engines is almost as old as computers themselves. Around 
the time of the Second World War many advancements were made in the new 
scientific field of computer science. Between 1942 and 1945, Konrad Zuse 
developed a new programming language called Plankalkül which he used to 
describe a chess playing algorithm which can be considered the first chess playing 
program ever written [1]. 
 
In 1948, Alan Turing wrote the chess engine Turochamp for a computer that had 
not yet been invented. Turing tried to implement Turochamp on one of the 
computers available to him at the time, but unfortunately it failed as the computer 
did not have the computing power necessary. Turing used algorithms in 
Turochamp that are still used in chess engines today, such as: a minimax search 
method, variable search depth and an evaluation method which considers the 
mobility of chess pieces, king safety and the ability to castle. Turochamp was 
capable of playing chess on par with an inexperienced amateur [2].  
 
Claude Shannon was also among the first to investigate the possibility of using 
computers for playing chess. In 1949, Shannon estimated the complexity of chess 
and determined that the total number of possible games of chess is at least 10120. 
This number has since came to be known as the Shannon number [3].  
 
The time required for a computer to fully analyse a game of chess can be 
estimated by dividing Shannon’s number by the number of floating-point operations 
the computer can perform per second and multiplying by the number of such 
operations needed to analyse a single board position. To get a very optimistic 
approximation we can pretend that analysing a board position takes one floating-
point operation. 
 
The fastest supercomputer in the world as of July 20211 has a computing power of 
about 400 petaFLOPS, that is, 4 ∙ 1017 floating-point operations per second. If we 
use this number with the estimation method above, we get 10120 / (4 ∙ 1017) 
seconds or 8 ∙ 1085 billion years to fully analyse a chess game from the initial 
position. This shows that it is clearly beyond the capabilities of conventional 
computers to optimally play chess. 
 
To figure out what moves are good and which ones aren’t, chess engines perform 
something called a “search”. Searching is when a chess engine considers what 
moves are available on the board as it is currently and then plays them on its 
internal board representation to then repeat the process. At some point, the engine 
must stop considering possibilities and instead evaluate the boards it has found so 
far as the possibilities in chess rise exponentially with each move. 
  

 
1 The supercomputer Fugaku located at the RIKEN Center for Computational Sciencce in Japan. 
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The ever-present lack of computing power gives rise to what is called the horizon 
effect in the fields of AI and game theory. When a chess engine searches on a 
board position, or in other words, considers different possible outcomes of the 
available moves in that position, the horizon effect must be considered. 
It arises, in a turn-based game, when the computer searches down to a limited 
depth of possibilities and makes a move based on the information it has acquired 
from this search. There is always the possibility that, if the computer had searched 
even deeper, it would have found that this move is a bad choice. However, lacking 
this search depth, it proceeds with the move believing it to be a good choice. The 
horizon effect can never be fully eliminated in chess because the search depth and 
information of the engine is always limited until nearing the end of the game and so 
one must find algorithms and heuristics that can evaluate different chess positions 
and make good move even when it is uncertain what will happen later during the 
game. 

 

2.1 Chess Engine Components 

Chess engines can be described as consisting of the following main components: 
 

• A board representation that describes the location of all chess pieces 
on a chessboard. 
 

• A move generator that enumerates the available moves given a certain 
chess position. 
 

• An evaluation method that determines a favourability score of a chess 
position for the two players. 
 

• A search method that evaluates moves based on the possibilities that 
may unfold after they have been played. 

 
The board representation contains all the relevant information about a chess 
board. It includes the pieces that are still on the board, their location as well as 
whether either of the two players has castled or has lost the ability to castle on the 
kingside and/or the queenside. 
 
The evaluation method is a heuristic method that takes a board representation as a 
parameter and returns a numeric evaluation of how favorable the position is for 
both players. Chess is a two-player game, and so only a relative value is needed, 
as a position that is good for the player with the white pieces is equally bad for the 
player with the black pieces. Usually, a positive value corresponds to a position 
that is considered favorable for the player with the white pieces, while a negative 
value is considered favorable for the player with the black pieces and the value 
zero is considered equally favorable for both players.  
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The evaluation method is static, it does not consider what moves can be played nor 
the possibilities that may occur after any moves have been played as that is the 
responsibility of the search method. Traditionally evaluation was hand-crafted, 
perhaps by skilled chess players, but today many of the more powerful chess 
engines apply neural networks to perform the evaluation. 
 
For a chess engine to be able to accurately determine how good a move is, it 
needs to know what may occur after the move has been played. Therefore, a 
search method is used for exploring possible future moves. The search method 
requires an internal board representation and evaluation method to do just that. 

 
Figure 2.1.1. A search tree. In the analysis of engines playing two-player turn-based games, search trees are 
frequently used to represent the logical flow of the engine’s calculations. In these trees the edges represent 
moves and the nodes are the resulting positions. The numbers inside of the nodes are the evaluations of the 

position by the engine. 

 

 
In the implementation of the four main components of a chess engine, different 
heuristics and algorithms may be used. There are also other commonly used 
optimizations that do not fall under any of these four categories, that serve to make 
the engine more effective in its calculations and thus able to make better moves 
faster. One such optimization is move ordering, where moves are sorted in such a 
way that the most promising move is examined first.  
 
Many optimizations for improving chess engine performance involve the concept of 
“pruning”. Pruning is when a chess engine rejects moves that it deems unlikely to 
be played, to avoid unnecessarily dedicating time towards analysing them. 
Through smart heuristics, an engine can realize that certain moves are surely 
worse than others and thus not worth considering further. The more pruning that 
occurs, the faster an engine can reach a certain search depth; however, this also 
sometimes entails the risk of a good move being pruned despite warranting 
consideration. 
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One of the most common archetypical search methods for turn-based, two-player 
games is the minimax algorithm. A minimax algorithm is a recursive algorithm that 
seeks to alternately maximize and minimize the score of the game. This is based 
on the fair assumption that both players are trying to play their best moves, which 
for one player means maximizing the evaluation and for the other, minimizing it. 
The result it seeks is either the lowest evaluation the maximizing player is assured 
of or the highest evaluation the minimizing player is assured of, given a certain 
position. In this thesis, an enhanced form of a minimax algorithm is implemented 
and examined, specifically using an optimization called alpha-beta pruning. 
 
Optimizations used to improve the speed and playing ability of chess engines can 
be divided into groups based on how they achieve this goal: 
 

• Selectivity-based optimizations, also called pruning optimizations, that 
either decrease execution time by reducing the search space of the 
engine or that improve the playing ability of the engine by increasing the 
search space when necessary.  

 

• Evaluation heuristics - Heuristics that seek to improve the engine’s 
evaluation of positions based on chess concepts such as the value of 
pieces and their mobility, king safety etcetera. 

 

• Space-time trade-off. Some optimizations involve using memory in order 
to save execution time, such as opening tables, allowing the engine to 
save time by playing predetermined moves at the start of a game. 

 

• Algorithmic optimizations - Optimizations that improve performance 
through better algorithms that avoid unnecessary calculations. Examples 
include parallelization to make better use of multithreaded hardware. 
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3 The KLAS Chess Engine 

The repository for the KLAS chess engine can be found on Github at:  
 
https://github.com/henrikbr21/examensarbete21 

 
This chapter explains the inner workings of the chess engine KLAS as well as any 
technical information that is necessary to understand this paper in its entirety. The 
KLAS chess engine contains the following critical components, each explained in 
its own section: 
 

• A board representation in the form of so-called “bitboards”. 
 

• A move generator, which generates the available moves given a certain 
position on the board. 
 

• An evaluation method, which takes into whether either player is checked, 
the material for the two players as well as the location of different pieces.    
 

• An alpha-beta search method. 
 

• Check & checkmate methods, used in both the move generator and 
evaluation method. 

 

• A makeMove function, that updates the internal board representation 
when different moves are considered. 

 

In addition to the vital components listed above, KLAS employs four different 
optimizations for improving execution time: 
 

• Move ordering according to MVV-LVA as well as ordering after the 

principal variation. 

 

• Transposition tables that allow KLAS to remember the results from 

previous searches and reuse them. 

 

• Iterative deepening, an optimization used for time management and to 

make better use of the move ordering optimizations. 

 

• Lazy SMP Parallel search, an algorithm for parallelization of the alpha-

beta search method. 
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3.1 Search Trees 

In combinational game theory, game trees are graphs used to represent all the 
possible outcomes, and their intermediates, in games such as chess. As the 
complexity of chess is much too large for a full game tree to be made for it, search 
trees are commonly used in chess programming. These search trees are subsets 
of the game tree containing the possibilities that an engine considers during a 
search. These possibilities are called nodes, in chess specifically, they represent 
different positions on the board. Rather than being a well-defined data structure, 
they are graphs used to represent the logical flow of an engine. 
 

3.1.1 The Minimax Algorithm 
 

A minimax algorithm is a recursive depth-first algorithm that is used in two-player 
turn-based games. Given that the evaluation is such that a positive value is 
considered favorable for the player with the white pieces and a negative value is 
considered favorable for the player with the black pieces, the minimax algorithm 
can be defined as a co-recursive algorithm consisting of two methods where one 
seeks to maximize the evaluation and the other minimizes it. This algorithm is 
based on the idea of optimal play being achieved when a player presumes that 
their opponent is going to play the best possible moves. The minimax algorithm is 
shown below: 
 
function minimax(board, depthLeft, playerColor)  

    if depthLeft == 0 or checkmate(board) then 

        return evaluate(node) 

    end 

    if player == white then 

        value = NEGATIVE_INFINITY 

        moves = generateMoves() 

        for each move in moves do 

            board.makeMove(move) 

            value = max(value, minimax(board, depth − 1, BLACK)) 

        return value 

    else (* black *) 

        value = POSITIVE_INFINITY 

        moves = generateMoves() 

        for each move in moves do 

        board.makeMove(move) 

        value = min(value, minimax(board, depth − 1, WHITE)) 

    return value 

end 

 

At the start of the function is the end condition, where if the depth left to be 
searched is equal to ‘0’ the method returns the value given by the evaluation 
method for the node. If the end condition is not fulfilled, the method continues by 
finding the child nodes, i.e., the moves available, and then playing each of them on 
the internal board representation and then calling itself to repeat the process. 
When all the children of a node have been searched, the greatest of their 
evaluation is returned if the parent node is a board where it is the white player’s 
turn to move, otherwise if it’s the player with black pieces whose turn it is to move, 
the smallest value of the child nodes is returned. 
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Figure 3.1.1. An example of a search tree for a minimax search algorithm. The bold, red line represents the 
principal variation, or in other words, the moves the algorithm expects will be played. The edges represent 

moves, and the nodes are the resulting board positions. The numbers inside of the nodes are the evaluations 
of the position by the engine. 

 
 

 
Figure 3.1.1 shows an example of a search tree representing the flow of a search 
method in a game of chess. In this, tree the light nodes correspond to board 
positions where it is the maximizing player’s turn to make a move and the dark 
nodes correspond to positions where it is the minimizing player’s turn to make a 
move. The numbers in the leaf nodes are the values given by the evaluation 
method. After a leaf node has been evaluated the evaluation is returned to the 
parent node which in turn returns either the maximum or the minimum value of its 
child nodes. Whether or not the smallest or greatest value is returned depends on 
which player’s turn it is to move. If it is the maximizing player’s, i.e., the player with 
the white pieces, turn to move then the greatest value is returned. Conversely, if it 
is the minimizing player’s turn to move, the smallest value is returned. The result of 
a minimax algorithm called at the root node is either the highest or lowest 
(depending on which of the two recursive methods are called), evaluation the 
player is guaranteed to achieve given expected play. This expected outcome in a 
given position is also called the principal variation, which is the sequence of moves 
that an engine expects to be played given a certain board position.   
 

  



 

 

10 

 

3.1.2 Alpha-Beta Pruning 
 
Alpha-beta pruning is a method of improving the minimax algorithm by reducing the 
search space to save execution time. In the basic minimax algorithm, without any 
sort of pruning, some nodes are examined and evaluated despite them not 
possibly having the potential to affect the result. Pruning is done through so-called 
“cut-offs” which is when an engine avoids visiting a node to save execution time. In 
alpha-beta pruning this is achieved through the maintenance of two variables, 
alpha and beta. Alpha corresponds to the smallest evaluation value the maximizing 
player is assured of, and beta is the greatest value the minimizing player is assured 
given the information gathered from the nodes searched at a given point in time. 

 

 
Figure 3.1.2. A search tree of an alpha-beta algorithm demonstrating nodes that have been pruned. Pruned 

nodes are crossed out with a red line. 
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In an alpha-beta algorithm, all nodes are evaluated, and the alpha and beta values 
are updated, up until the point when a node’s evaluation falls outside the bounds of 
alpha and beta. Because such a node cannot change the outcome of the search, it 
may be pruned without affecting the result. An example of pseudocode 
demonstrating the maximizing method of the alpha-beta pruning algorithm is shown 
below: 
 
function alphaBetaMax(board, alpha, beta, depthLeft) 

    if(depthLeft == 0) 
        return evalPosition(board) 
    moves = generateMoves(board, “WHITE”) 
    for(move in moves) 
        simBoard = new Board(board) 
        simBoard.makeMove(move); 

        score = alphaBetaMin(simBoard, alpha, beta, depthLeft -1) 

    if(score >= beta) 

        return beta //beta cut-off occurs 

    if(score > alpha) 

        alpha = score 

    return alpha 

 

The method above is the maximizing half of the alpha-beta search routine and it 
calls the minimizing method for each of its children, which in turn calls the 
maximizing method and so on. This makes these two methods corecursive. The 
minimizing method is shown below: 
 
function alphaBetaMin(board, double alpha, double beta, int depthLeft) is 

    if(depthLeft == 0) 
        return evalPosition(board) 
    moves = generateMoves(board, “BLACK”) 
    for(Move move in moves) 
        Board simBoard = new Board(board) 
        simBoard.makeMove(move); 

        score = alphaBetaMax(simBoard, alpha, beta, depthLeft -1) 

    if(score <= alpha) 

        return alpha //alpha cut-off occurs 

    if(score < beta) 

        alpha = score 

    return beta 

 

The minimizing method, alphaBetaMin, is mostly identical to the maximizing 
alphaBetaMax except for a few differences. Firstly, it generates moves belonging to 
the player with the black pieces as this is the minimizing player in KLAS. Secondly, 
the usage of alpha and beta is reversed, as alpha is to the maximizing player what 
beta is to the minimizing player.  
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Alpha-beta pruning gives a large average reduction in execution time in chess, 
without the risk of overlooking any relevant possibilities. The worst-case scenario of 
alpha-beta search is when the worst move is always examined first, meaning no 
pruning can be made. In this scenario, the alpha-beta search performs the same as 
the minimax algorithm. Assuming a constant number of moves B available in a 
game of chess, and with a search depth of N, the total number of leaf nodes is BN 
for both the minimax and alpha-beta algorithm. However, in a best-case scenario 
the number of leaf nodes that needs to be examined is b⌈n/2⌉ + b⌊n/2⌋ - 1 [4]. To 
maximize the benefit of alpha-beta pruning one needs accurate move ordering 
(See chapter 3.7). 
 
Many chess engines, including KLAS, build a principal variable as they search for 
the purpose of debugging and to extract the best moves according to the engine. 
The principal variation contains the line of moves the engine expects to be played. 
 

3.1.3 Node types 
 
In the search trees used to represent chess and similar games, there are three 
commonly recognized node types as defined by Donald Knuth, an American 
computer scientist and mathematician. In his 1975 monography, the Art of 
Computer Programming, Knuth analysed a number of algorithms, among them the 
minimax algorithm with alpha-beta pruning. The node types he defined for alpha-
beta search trees are as follows [5]: 
 

• Type 1-nodes or “PV-nodes,” are nodes whose evaluations lies between 

the bounds defined by the alpha and beta values. The PV-nodes 

connected from the root node of a tree together make up the principal 

variation. 

 

• Type 2-nodes or “Cut-nodes” are nodes whose evaluation result in an 

alpha or beta cut-off. 

 

• Type 3-nodes or “All-nodes” are nodes where the evaluation does not 

cause an update in the alpha or beta values nor does it cause any alpha 

or beta cut-off. 

 

When KLAS searches a node, it determines its type and stores that along with its 

score in the transposition table for later use (see chapter 3.8). The node type 

determines what the score means. For PV-nodes the score is exact and for cut-

nodes and all-nodes the score is either an upper or lower bound of the actual 

score. This is because of the alpha-beta pruning which doesn’t need to determine 

the exact score of nodes that are not PV-nodes as all that is relevant is whether a 

score is lower or greater than the bounds alpha and beta or not. 
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3.2 Board Representation 

 
A chess position in KLAS is represented by several bitboards. Bitboards are 64-bit 
variables where each bit is used to represent where pieces are located on a 
chessboard. The squares on the chessboard are numbered 0 through 63 and the 
bit on the corresponding index is set to ‘1’ if there is a piece on the square and if 
not, ‘0’. Because chess involves six different piece types of two colors, a total of 
twelve bitboards are needed to represent a chessboard and all its pieces. 
Bitboards are an effective board representation for chess on modern computers as 
an entire bitboard can be stored in a register of a 64-bit processor.  
 

 
Figure 3.2.1. The mapping in KLAS of squares to indexes in the bitboards as seen from the perspective of the 

player with the white pieces. 

 
In KLAS, the least significant bit i.e., the right-most bit of a binary number, LSB, is 
mapped to the top right square. The most significant bit, which is also the left-most 
bit, MSB, is mapped to the bottom left square. As an example, the following binary 
number corresponds to the position of the white pawns are the start of a chess 
game. 
 

”000000001111111000000000000000000000000000000000000000000” 
Bitstring representing the white pawns at the start of a chess game. 
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The binary number above is shown more pedagogically in figure 3.2.2. 
 

8 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

2 1 1 1 1 1 1 1 1 

1 0 0 0 0 0 0 0 0 

 a b c d e f g h 

 
Figure 3.2.2. The bitboard for the white pawns are the start of chess game. 

 
Lastly, the board representation contains a few other attributes related to castling 
and en passant moves. The use of these is explained in chapter 3.5. 
 

3.3 Finding Moves 

 
Chess engines use move generators to find all available moves on a given 
chessboard. In KLAS, the move generator first generates moves that may not be 
legal as they may leave the moving player’s king in check. After the move 
generator has produced the list of moves, each move is individually checked for 
validity. In case a move in the list causes the player’s own king to be in check, the 
move is illegal and thus removed from the list. 
 
Vital to the move generator’s function are four general use bitboards: the empty-
bitboard, the occupied-bitboard, the friends-bitboard and the enemies-bitboards. 
The empty-bitboard contains 1s for each index at which the square is not occupied 
on the board and the occupied-bitboard is the inverse the empty-bitboard. The 
friends-bitboard is a subset of the occupied-bitboard containing 1s at the indexes 
where the square is occupied, and the occupying piece is friendly to the player for 
which the move generator is currently operating. In turn, the enemies-bitboard 
contains 1s at the indexes where the square is occupied, and the occupying piece 
belongs to the opponent. 
 
  



 

 

15 

3.3.1 Pawns 
 
To generate moves for the pawns, KLAS uses bitshift to create a new bitboard 
containing the squares that the pawns may move to. Shifting a bit eight steps to the 
right is equivalent to moving a piece on step upwards on the board. For example, 
the bitboard for the white pawns at the start of a game is shown in figure 3.3.1. 
 
 

8 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

2 1 1 1 1 1 1 1 1 

1 0 0 0 0 0 0 0 0 

 a b c d e f g h 

 
Figure 3.3.1. Bitboard for the white pawns at the start of a game. 

 
 

The bitboard is then bit shifted eight steps to the right to create a new bitboard that 
contains the possible one square pawn pushes. 
 
 

8 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

3 1 1 1 1 1 1 1 1 

2 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

 a b c d e f g h 

 
Figure 3.3.2. The bitboard in figure 3.3.1 bit shifted eight steps to the left. 
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This bitboard is again bit shifted eight steps to the right to create the bitboard 
containing the available two step pawn pushes. 
 

8 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

4 1 1 1 1 1 1 1 1 

3 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

 a b c d e f g h 

 
Figure 3.3.3. The resulting bitboard after the bitboard containing the white pawns has been bit shifted a total of 

16 steps to the right. 

 
 
To prevent the move generator from generating moves where a pawn is pushed to 
a square that is occupied, these bitboards are intersected with the empty bitboard 
using bitwise AND.  
 

8 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 

6 1 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 

2 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

 a b c d e f g h 
 

Figure 3.3.4. The empty-bitboard at the start of a game. 

 
To generate the pawn attacks, nine and seven step bit-shifting is used. After a nine 
step rightwards bit shift of the bitboards for the white pawns, the resulting bitboard 
will contain their rightward attacks. A pawn cannot attack a square that does not 
contain an enemy, so to remove such moves the bitboard is also ANDed with the 
enemies bitboard. 
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3.3.2 Knights and Kings 
 
In KLAS, knight and king moves are generated using pre-calculated movement 
bitboards which contain all the possible moves for a piece given its position, 
assuming it is not blocked by a friendly piece. At startup, KLAS initializes a 
movement bitboard for each possible square a knight can inhabit for a total of 64 
bitboards.  
 

8 0 0 0 0 0 0 0 0 

7 0 0 0 1 0 1 0 0 

6 0 0 1 0 0 0 1 0 

5 0 0 0 0 0 0 0 0 

4 0 0 1 0 0 0 1 0 

3 0 0 0 1 0 1 0 0 

2 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

 a b c d e f g h 

 
Figure 3.3.5. The movement bitboard for a knight located at e5. 

 

When the move generator finds a knight or king on a square, it retrieves the 
corresponding movement bitboard and XORs it with the friendly-bitboard to avoid 
the capture of one’s own pieces. 
 

3.3.3 Sliding Pieces 
 
In chess, the bishop, rook and the queen are often referred to as “sliding pieces”. 
This refers to their movements as they can slide along rays as far as the 
chessboard allows unless they are stopped by another piece.  
 
The rook moves along four different rays: one in an upwards direction, one 
downwards and two left- and rightward directions. The moves for each of these 
rays are generated in the same way, although separately. First, pre-calculated 
movement bitboards are used to find the movement ray corresponding to the 
position of the rook for which moves are to be generated. The movement bitboard 
for the upward ray of a rook on square e3 is shown in figure 3.3.6. 

 

8 0 0 0 0 1 0 0 0 

7 0 0 0 0 1 0 0 0 

6 0 0 0 0 1 0 0 0 

5 0 0 0 0 1 0 0 0 

4 0 0 0 0 1 0 0 0 

3 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

  a b c d e f g h 
Figure 3.3.6. The bitboard containing the upward ray of a rook located on e3. 

 



 

 

18 

Unlike with the knights and kings, a simple intersection of the movement bitboards 
and the occupied/friendly-bitboards is not enough to calculate the pseudo-legal 
moves of this rook. If the square e7 is blocked by an enemy pawn, the rook cannot 
attack the square behind it, e8. To remove moves that are blocked in this way, the 
movement bitboard for the ray is bitwise XORed with a ray in the same direction 
starting at the piece behind the first occupied piece along the original ray. For 
example, if e7 was occupied, a ray starting at e8 in the same direction is used and 
removed from the original movement ray. 

 
 

3.3.4 Extraction of Moves 
 
We have thus far only shown how the move generator calculates bitboards 
representing the available moves. However, in order to be used, the actual moves 
must be extracted from the bitboards. The move generator iterates over each 
bitboard containing the moves for each piece and then adds a move to the move 
list whenever it encounters a square with a value of 1. As one bitboard is 
generated for each individual piece, it is known which piece moves according to 
which bitboard. However, in the case of pawns, all the one step pawn pushes are 
stored in a single bitboard, and all the two step pawn pushes are stored in another. 
This is possible because pawn pushes are of course always vertical – for example 
if there is a possible pawn push to e4, it must be the pawn in the e column that can 
perform it.  
 
Only the bitboards containing pawn attacks need to be separated when the moves 
are to be extracted as it is possible for two different pawns to attack the same 
square. 
 

3.4 Check & Checkmate Detection 

To detect whether either player is in check, or has been checkmated on a given 
board, a check and a checkmate function are needed. For each node visited during 
a search, the move generator is called, and the only moves that should be 
considered are of course legal ones. In KLAS, the move generator generates 
pseudo-legal moves, which are moves that are legal assuming they do not leave 
the player’s king in check. To determine which of the pseudo-legal moves are legal, 
a function called findMoveList is used. 
 
The findMoveList function first obtains all pseudo-legal moves from the move 
generator, then checks if each move is legal by playing them on its own internal 
board. After a move has been played, a check function is called to determine 
whether the move resulted in the player being checked. If the move leaves the 
player in check, the move is rejected and if the player is not in check, the move is 
added to the list of fully legal moves.  
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In chess, checkmate has occurred when a player is in check and will remain in 
check regardless of what move they attempt to make. In KLAS checkmate is found 
by considering all the pseudo-legal moves that are available to a player in check. 
Should none of them be legal, as they all result in the player still being checked, 
the player is checkmated. 

 
It is very important that the check testing function is as fast as possible as it is 
called once for each pseudo-legal move and many times for each checkmate test. 
Checkmate is tested by the evaluation method, explained in chapter 3.6, for each 
node visited and thus resulting in many calls to the check function. 

3.5 The makeMove Function 

The makeMove function is responsible for updating the internal board 
representation when a move is made. For most moves, this involves simply 
removing a piece from its location on its bitboard using an XOR operation and then 
moving the piece to its new location also using XOR. For taking moves, the enemy 
piece that is taken also needs to be removed in the same way. However, for 
castling moves, the move generator in KLAS simply returns the move for the king 
and then the makeMove function identifies that it is a castling move and continues 
to perform both the necessary moves for the king and the rook in question. 
 
 
As castling moves may only be played once per player, the move generator must 
know if a castling move has already occurred. Therefore, the Board class has 
these additional attributes: 
 
boolean castleWQValid = true; 

boolean castleWKValid = true; 

boolean castleBQValid = true; 

boolean castleBKValid = true; 

 
These attributes keep track of whether castling is allowed on either side. Similarly, 
information about whether en passant moves are possible is also stored in the 
Board class. 
 
The makeMove function is responsible for updating the castling and en passant 
attributes when moves are made on the board. 
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3.6 Evaluation Methods 

 
Evaluation methods give a score to different board positions, i.e., a numerical 
estimation of how favorable a board position is for the two players. Negative values 
are considered more favorable for the player with the black pieces and positive 
values are considered more favorable for the player with the white pieces. The 
magnitude of the value indicates the relative favorability – a large positive value is 
more favorable for the white player than a small positive value. 
 
If a chess engine had infinite computing power, the evaluation would only need to 
evaluate checkmate as the search method could explore the whole chess game 
tree, where leaf nodes are either checkmate or stalemate. However, it is usually 
not possible to search all the way to leaf nodes, except when very few pieces 
remain. Better playing ability can then be achieved for the chess engine by using a 
heuristic evaluation of various qualities of a board position – giving an estimation of 
how likely it is to win for both players in that position. 
 
Common qualities of a board position often evaluated in chess engines include 
material (i.e., the pieces still on the board), piece mobility, king safety, pawn 
structure and the ability to castle. The evaluation score is a sum of the score given 
for each quality examined. 
 
The evaluation of the material on a board position in KLAS is show in the following 
pseudocode: 
 
function evalPosition(board) is 

    for each piece on board 

        if piece == WHITE_PAWN 

            points += 100 

        else if piece == WHITE_KNIGHT 

            points += 320 

        else if piece == WHITE_BISHOP 

            points += 330 

        else if piece == WHITE_ROOK 

            points += 500 

        else if piece == WHITE_QUEEN 

            points += 900 

 

        else piece == BLACK_PAWN 

            points -= 100 

        else if piece == BLACK_KNIGHT 

            points -= 320 

        else if piece == BLACK_BISHOP 

            points -= 330 

        else if piece == BLACK_ROOK 

            points -= 500 

        else if piece == BLACK_QUEEN 

            points -= 900 
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Each piece on the board is given a value based on its type. If the piece belongs to 
the white player, the value is added to the total score, and conversely subtracted if 
it belongs to the black player. This means that positions, where the white player’s 
material is identical to the black player’s, are given the material score of 0. The 
piece values used in KLAS are widely accepted in the chess community as 
appropriate approximate values. 
 

Piece-Square Tables 
 
Another heuristic optimization implemented in KLAS is Piece-Square Tables, 
PSTs, which are two-dimensional arrays of numerical values with an entry for each 
square on a chessboard. These values apply a bonus or deduction on the value of 
a piece depending on its location on the board. In chess, there are statistical 
advantages of placing pieces on certain squares and so the PSTs increase the 
playing ability of the engine. 
 

3.7 Move Ordering 

 
Move ordering is used to improve the performance of the alpha-beta search routine 
by attempting to prioritize the most favorable moves first. Alpha-beta search 
routines perform pruning when a move has been shown to result in a worse 
evaluation than a previously examined move. In the best case, the best available 
move is examined first causing other moves to be quickly pruned as they are 
shown to be worse. The faster the engine finds a good move, the more cut-offs 
may be performed to reduce the search space. 
 
Move ordering optimizations involve a rough estimation of which moves appear the 
most promising before the engine begins to examine them. The moves, which lead 
to different board positions, or “nodes”, are then sorted based on this estimation, in 
the hope that a good move is found early. The best-case scenario occurs when the 
first child of each node is determined to be the PV-node out of all the child nodes. 
 
It should be noted that move ordering optimizations have no effect on the actual 
result of the search. A chess engine will decide on the same move, whether it uses 
any move ordering because it is an optimization that only serves to reduce search 
space through enabling more alpha and beta cut-offs. 
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In figure 3.7.1 a search tree for an alpha-beta method is shown. Inside each node, 
the move that leads to the node is shown. The move “c2-c4” is the move from the 
root node which gives rise to the leftmost child node. Without move ordering, this 
move is explored first for arbitrary reasons that are completely unrelated to how 
promising the move may or may not appear. 

 

Figure 3.7.1. An alpha-beta search tree before any move ordering has occurred.  

 
In figure 3.7.2 the same search tree is shown after move ordering has been 
performed at the root node. The sorting has resulted in the move “e2-e4” being the 
highest priority move of all the root nodes’ children, should this move turn out to be 
the most favorable move at the root, the search space and thus execution time will 
be reduced significantly. 
 

 
Figure 3.7.2. The search tree from figure 3.7.1 after the move ordering has been performed at the root node. 
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After the move ordering routine has been applied at the root node and the most 
promising child node is visited, it is applied once again on the new node “e2-e4”. 
This time the move ordering routine finds that the “e7-e5”-move appears more 
promising than the “c7-c6”-move, resulting in a new order as shown in figure 3.7.3.  

 

 
Figure 3.7.3. The search tree from figure 3.7.2 after the move ordering routine has been performed at the “e2-

e4”-node. 
 

The move ordering optimization is based on the concept that chess moves may be 
divided into categories, some of which are statistically more likely to result in 
favourable positions. However, if the heuristic behind the move ordering is 
inaccurate, it will result in a lower performance than if there is no move ordering 
whatsoever. In a position where the actual best moves are given low priority, move 
ordering will fail to decrease the search space and increase execution time. 
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3.7.1 MVV-LVA 
 
An example of a commonly used heuristic for move ordering is MVV-LVA (Most 
Valuable Victim – Least Valuable Aggressor). In chess, moves, where an 
opponent’s piece of high value is taken by a piece of low value of one’s own, are 
often good moves. The MVV-LVA heuristic uses this reasoning by applying a score 
to each move based on the difference in value between a taking piece and the 
piece that is taken. The higher the value of the taken piece, and the lower value of 
the taking piece, the higher the priority score. For example, a very promising move, 
when available, is a move where one player may take the opponent’s queen with 
their own pawn and this move is thus given the highest priority by the MVV-LVA 
heuristic. Pseudocode for the heuristic is shown below: 
 
function prioritize(moves) 

    for(move in moves) 

        movingPiece = move.movingPiece 

        takenPiece = move.takenPiece 

        switch(movingPiece) 

            case “PAWN” 

                move.priority += -1 

            case “KNIGHT” 

                move.priority += -3 
            case “BISHOP” 

                move.priority += -3 
            case “ROOK” 

                move.priority += -5 
            case “QUEEN” 

                move.priority += -9 
            case “KING” 

                move.priority += -10 

 

        switch(takenPiece) 

            case “PAWN” 

                move.priority += 10 

            case “KNIGHT” 

                move.priority += 30 

            case “BISHOP” 

                move.priority += 30 

            case “ROOK” 

                move.priority += 50 

            case “QUEEN” 

                move.priority += 90 

 

Each move’s priority is decreased depending on the value of the piece that moves 
from one square to another and then increased depending on which piece, if any, 
is taken. The bonus for taking a piece is greater than the penalty of moving a piece 
and so taking moves are given a greater priority than others. 
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3.7.2 PV-Ordering 
 
Another common move ordering optimization is to prioritize the moves that either 
were a part of the principal variation of the previous search or those that, for a 
node, caused an alpha or beta cut-off. These moves have already been 
determined to be the either the best moves for the current node or at least good 
enough to cause a cut-off. KLAS prioritizes these moves the highest, even higher 
than the most promising move according to MVV-LVA. KLAS stores these moves 
in the transposition table, and they are retrieved for the current node at the start of 
both alpha-beta methods. See chapter 3.8.1. 

3.8 Transposition Tables 

During each search a chess engine performs, it encounters different nodes that are 
identical because in chess it is possible for different sequences of moves to result 
in the same board position. For example, the line “e4 → e5 → Nf3” results in the 
same board as the different line “Nf3 → e5 → e4”. These two identical board 
positions as reached by different sequences of moves are called transpositions. 
Whenever a chess engine encounters a transposition, it has already been 
evaluated and so re-evaluating the node would be a waste of time. To avoid this, 
the engine stores results in a transposition table so that they may be used later, 
either during the same search or new ones. 
 
Transposition tables are hash tables that store hashes of board positions along 
with relevant information about them so that it may save time re-evaluating them. In 
KLAS the transposition table is implemented using a HashMap where the keys are 
the hash values of boards, and the values are objects of type TPTEntry. The 
TPTEntry data structure contains the following fields: 
 

• The hash of the board that corresponds to the node in question. 

• The score of the node. 

• The depth at which the node was searched. 

• The node type. 

• Whose turn it is to move on the node. 

 
As chess engines encounter a very large number of different board positions 
during a search, the data for all of them cannot be realistically stored in the 
transposition table for the entire duration of the game. It would simply grow too 
large and so the transposition table in KLAS is fixed size. When the table has been 
filled and a new entry is to be added, the oldest entry in the table is overwritten. 
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3.8.1 Usage of the Transposition Table 
 
During a search, KLAS computes a hash value for each node it examines and tries 
to find a match in the transposition table. Should a match be found, the 
corresponding TPTEntry is retrieved, and its depth is compared to the remaining 
depth to be searched. As the score of a node becomes more accurate the deeper it 
is searched, KLAS rejects any matches where the depth field is lesser than the 
depth remaining to be searched. 
 
The retrieval of entries in the transposition table occurs at the start of both two 
alpha-beta methods. The usage of the entries depends on its depth attribute as 
well as the node type attribute. An entry is only used if its depth attribute exceeds 
or is equal to the depth left to be searched at that point in time. See the following 
pseudocode: 
 
function alphaBetaMax(board, depthLeft, alpha, beta)  

    hash = tpt.hash(board) 

    entry = tpt.get(hash) 

    if(entry.depth >= depthLeft){ 

        if(entry.nodeType == PVNODE){ 

            return entry.score 

        } 

        else if(entry.nodeType == CUTNODE && entry.score >= beta) 

            return beta; 

        } 

        else if(entry.nodeType == ALLNODE && entry.score <= alpha){ 

            return alpha; 

        } 

        ... 
    } 
 
The attribute nodeType allows KLAS to know whether the score attribute is an 
exact score or an upper or lower bound of the actual score. Depending on which 
type it is, KLAS uses the score differently. Should the node be a PV-node, the 
score is known to be exact and is thus returned immediately. However, if the node 
is either a cut-node or an all-node, the score is only usable if it exceeds the current 
alpha and beta bounds as we then know that this node couldn’t possibly affect 
these values.  

 

3.8.2 Creating Entries 
 
Because of the alpha-beta pruning, some results returned by the alpha-beta 
method are not actually exact. When a beta cut-off occurs in the maximizing 
method of the alpha-beta search routine, the value returned is beta which is an 
upper bound of the actual score of the node. If none of the node’s children causes 
a cut-off and none of them succeeds in increasing alpha, the node is known to be 
an all-node with the score being a lower bound of the actual score. In case no child 
nodes cause a beta cut-off and there is at least one child that increases alpha, the 
node is now known to be a PV-node with an exact score.  
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The exact same logic is valid for the minimizing half of the alpha-beta search 
routine except it is, in a sense, reversed. In the minimizing method, child nodes 
with a score smaller than alpha cause alpha cut-offs and the lower bound, alpha, is 
returned. A node where this happens is a cut-node. If none of the node’s children 
causes an alpha cut-off and none of them succeeds in decreasing beta, the node is 
an all-node with a score that is an upper bound. If no child nodes cause an alpha 
cut-off and there is at least one child that decreases beta, the node is known to be 
a PV-node with an exact score. 

 
During the alpha-beta search methods, KLAS creates entries and sets their 
nodeType attribute to their corresponding node type so that their score attribute is 
not misinterpreted when the entries are used. 

 

3.8.3 Zobrist hashing 
 
The Zobrist hash function was invented by Alexander Zobrist as an efficient way to 
calculate hash values for chess positions using bitwise operations and a number of 
random numbers. This type of hashing function is common in chess engines and is 
used in KLAS [6].  
 
Hashing is commonly used in chess engines so that board positions can be 
efficiently compared to each other. The purpose of this comparison is simply to 
determine whether two positions are identical or not. This allows us to retrieve 
information about specific board positions from the transposition table without 
having to compare each field in the Board class. 
 
In KLAS, a two-dimensional array of randomized 64-bit integers is initialized at 
startup. The size of one dimension is 64 and the other 13. These 64 ∙ 13 random 
integers correspond to each square on the chessboard and each of its possible 
states as a square can either be empty or contain six different piece types, each of 
two different colors for a total of 13 possibilities. 
 
To generate the hash of a board, the engine iterates over the squares and when 
examines what state the square is in. For each square, it takes the random integer 
corresponding to that square and performs an XOR operation on it and the hash in 
its current state. This results in a 64-bit hash value with a very low probability of 
collisions. 
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Pseudocode for the hash algorithm is shown below: 
 
function hash(board) is 

    for each piece on board 

        if(pieceType == WHITE_PAWN) 

                hash ^= randomNumbers[WHITE_PAWN][piece.position] 

        else if(pieceType == WHITE_KNIGHT) 

                hash ^= randomNumbers[WHITE_KNIGHT][piece.position] 

        else if(pieceType == WHITE_BISHOP) 

                hash ^= randomNumbers[WHITE_BISHOP][piece.position] 

        else if(pieceType == WHITE_ROOK) 

                hash ^= randomNumbers[WHITE_ROOK][piece.position] 

        else if(pieceType == WHITE_QUEEN) 

                hash ^= randomNumbers[WHITE_QUEEN][piece.position] 

        else if(pieceType == WHITE_KING) 

                hash ^= randomNumbers[WHITE_KING][piece.position] 

        else if(pieceType == BLACK_PAWN) 

                hash ^= randomNumbers[BLACK_PAWN][piece.position] 

        else if(pieceType == BLACK_KNIGHT) 

                hash ^= randomNumbers[BLACK_KNIGHT][piece.position] 

        else if(pieceType == BLACK_BISHOP) 

                hash ^= randomNumbers[BLACK_BISHOP][piece.position] 

        else if(pieceType == BLACK_ROOK) 

                hash ^= randomNumbers[BLACK_ROOK][piece.position] 

        else if(pieceType == BLACK_QUEEN) 

                hash ^= randomNumbers[BLACK_QUEEN][piece.position]                     

        else if(pieceType == BLACK_KING) 

            hash ^= randomNumbers[BLACK_KING][piece.position] 

 
The reason why Zobrist hashing is used in many chess engines is because of how 
it may be efficiently updated during a search. Knowing the previous hash value and 
having access to the previous board position the hash for the new board may 
efficiently be generated using only the changes incurred by the new move to be 
performed. [6] 

3.9 Iterative Deepening 

 
Iterative deepening is an optimization where searches are performed iteratively, 
with each iteration being deeper than the previous one. The purpose is to manage 
the amount of time spent per move as well as speed up execution. For example, 
one may execute a search with a depth of 2 on a board position only to then 
search the same position again with a depth of 4. As the transposition table will be 
filled with information from the previous iteration using a depth of 2, the subsequent 
search to a depth of 4 will be faster. In fact, with PV-ordering, it is possible for an 
iterative deepening search to a given depth to be faster than an immediate search 
to the same depth [7]. 
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3.10 Lazy SMP Parallel Search 

 
Lazy Symmetric MultiProcessing is a simple algorithm for parallelizing an alpha-
beta search method used by many powerful modern chess engines such as 
Stockfish [8]. The method uses multi-threaded execution, running simultaneous 
searches in different execution threads. 
 
On a computer with 4 hardware threads, ideal parallelization of the search could 
speed up the computation by a factor of 4 in real-time. In many cases parallelizing 
an algorithm can be very challenging, however the “Lazy” in “Lazy SMP” refers to 
how easy it is to implement as it requires no direct communication between threads 
other than a shared transposition table. 
 
Lazy SMP can speed up searching by different threads sharing search results in a 
transposition table. A number of helper threads are started, along with the main 
thread and begin to search the board position. The transposition table allows each 
thread to store data regarding the different board positions it has searched thus far 
and then the other threads use this data instead of researching the position. Lazy 
SMP has proven to be an effective optimization and is capable of halving execution 
time in some cases [9]. 
 
If all the threads are searching the same node at the same time no speedup is 
achieved and so to decrease the probability that this occurs, different move 
ordering for each thread may be used. In KLAS the helper threads use randomized 
move ordering at the root node to decrease the probability of two of them 
searching the same node at the same time. 
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3.11 Other Optimizations 

To minimize the execution time penalty incurred by the JVM’s garbage collection, 
we made efforts to avoid initializing new objects when possible and instead reuse 
old ones. One class often instantiated is the Move class which is an abstraction of 
a chess move. To avoid instantiating new moves, a class called 
MoveArrayListManager (MALM) was implemented. The MALM is responsible for 
providing instances of type MoveArrayList (MAL), which are lists of moves. 
 
The MALM class provides two methods: obtainMoveArrayList() and 
renounceMoveArrayList(). When a MAL has fulfilled its purpose, the method 
renounceMoveArrayList() is called which adds the MAL to the MALM’s internal pool 
of recyclable MALs. When obtainMoveArrayList() is called, the MALM instantiates a 
new object and returns it only if there are no MALs available. Otherwise, it returns a 
MAL from its internal pool. This method helps reduce the number of lists 
instantiated by KLAS. 
 
MAL, in turn, is a class that contains an ArrayList<Move> and a size attribute. 
Whenever a MAL has fulfilled its purpose and is added to the MALM’s pool, its size 
attribute is set to 0. Then, whenever the MAL is reused and a new move is to be 
added, an old move in the ArrayList is simply updated to be identical to the new 
move. This way moves in the MoveArrayList are recycled too. 
 
The transposition table also recycles its entries in a similar manner to the 
MoveArrayList. Whenever an old entry is to be overwritten, its attributes are 
updated to the values of the new entry. 
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4 Assessment 

To answer the research questions, we needed to measure the performance of 
KLAS and analyse it from several perspectives. This chapter presents the 
methodology of the measurements, the results as well as the analysis of the 
results, each in its own section.  

 
The optimizations that are discussed in this chapter are: iterative deepening, move 
ordering according to MVV-LVA and PV-nodes, Lazy SMP as well as the usage of 
the transposition table. To be able to examine each optimization independently of 
one or several of the other optimizations a number of different variants of KLAS are 
defined: 

• MT – Complete, multithreaded KLAS which employs all the above 

optimizations. 

• ST – Complete KLAS except Lazy SMP-multithreading is disabled. 

• MO – Single-threaded KLAS without MVV-LVA move ordering. 

• TT – Single-threaded KLAS without using transposition table for 

alpha/beta pruning. 

• ID – Single-threaded KLAS with no iterative deepening. 

The table below shows what optimizations are active in each variant. 
 

Variant Lazy SMP MVV-LVA Transposition 
Table 

Iterative 
Deepening 

MT Yes Yes Yes Yes 

ST No Yes Yes Yes 

MO No No Yes Yes 

TT No Yes No Yes 

ID No Yes Yes No 

 
 
We measured the performance of each of these variants of KLAS by searching 
many different board positions. Each version of KLAS was made to search 600 
different board positions, each being restricted to fifteen seconds of search time 
and a maximum depth of six. While each version was searching, information was 
stored regarding the execution time of each iteration of iterative deepening, the 
number of matches in the transposition table at each depth as well as the type of 
entry that was found. 

4.1 Test System 

All measurements were taken on a Windows 10 system with an i5 6600K CPU 
running at 3.5 GHz with 8192 MBs of DDR4 memory running at 1800 MHz. The 
JDK distribution used was Azul version 13.0.7. All the measurements were run 
using IntelliJ IDEA 2021.1.3. 
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4.2 Board Positions 

The performance of the different KLAS versions was measured using sets of ten 
connected lines, that is, ten board positions where each board is identical to the 
previous one except for one move having been made. The first board in each of 
these sets of ten will be referred to as an “original position”. Each original position 
was chosen from different online resources like chess lessons and professional 
matches. We used 60 sets for a total of 600 board positions.  
 
The 600 board positions can be divided into two different groups, each based on 
how the boards from the original board were generated. These groups are: 
 

1. Random-line boards – where each board following the original board is 

identical except for one randomized move having been made. 

2. KLAS boards – where each board following the original board is identical 

except for one move having been made as chosen by KLAS’ search to a 

depth of 6. 

Most board positions used for the measurements are in the early/midgame. 
Examples of the board positions are shown below: 
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4.3 Metrics 

A number of different metrics were recorded during the 600 searches. Each metric 
recorded is listed and explained below. 
 

• Execution time - the time to execute each search to a depth of 6 from 

the first to the last iteration of iterative deepening, if activated. 

• Memory usage - the difference between the total memory and the free 

memory in the Java Virtual Machine. This was recorded at the end of 

each iteration of iterative deepening, for a total of three data points per 

search. 

• Good Move Index (GMI) 0-5 - the index defined to aid analysis of the 

move ordering heuristics. This was recorded as an average per node at 

each depth of each search during the last iteration of iterative deepening. 

The definition of this index is explained in chapter 4.3.1. 

• TP-Hits 0-6 – the total number of matching entries found in the 

transposition table at each depth of search during the last iteration of 

iterative deepening. Some of these transposition hits may not have been 

used during the search. 

• PV-hits 0-6 – the number of matching entries found in the transposition 

table where the score is exact. These were recorded at each depth of 

search during the last iteration of iterative deepening. 

• CUT-hits 0-6 – the number of matching entries found in the transposition 

table where the entry was at a node that was determined to be a cut-

node. These were recorded at each depth of search during the last 

iteration of iterative deepening. 

• ALL-hits 0-6 - the number of matching entries found in the transposition 

table where the entry was at a node that was determined to be an all-

node. These were recorded at each depth of search during the last 

iteration of iterative deepening. 

• GC collection time – the total amount of time the JVM’s garbage 

collector spent collecting garbage during a search. 

• GC collection count – the number of times the JVM’s garbage collector 

were called during a search. 
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4.3.1 Good Move Index (GMI) 
 
To determine the effectiveness of MVV-LVA we defined the metric “Good Move 
Index”. The Good move index is the index of the move in a move list for a given 
node which either causes an alpha/beta cut-off or is the last node to increase either 
the alpha or the beta bounds. Such a move has the potential of being the best 
move in the move list and is in the worst-case scenario, at least good enough to 
cause a cut-off. 
 
A lower average GMI results in a decrease in execution as figure 4.3.1 
demonstrates using a scatterplot. The trendline shows the correlation between the 
average GMI at all depths and the execution time of a search of the MO variant. 
 

 
Figure 4.3.1. Scatterplot of each search’s execution time and its average Good Move Index (GMI) of 

all depths combined. The trendline demonstrates the correlation between the two.  

  
Although there are also other factors at play, a lower Good Move Index is a 
predictor of lower execution time. 
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4.4 Results 

This chapter presents the results from the measurements of the five different 
variants of KLAS, each in their own section. 

 

4.4.1  MVV-LVA Move Ordering 
 
To investigate the effectiveness of MVV-LVA, the MO variant of KLAS is compared 
to the ST variant, as the only difference between them is the MVV-LVA move 
ordering heuristic. The table below demonstrates the average execution time of 
these two variants: 

 
Variant Execution 

time [ms] 

MO 4066 

ST 1280 

 
The MO variant, without MVV-LVA, executed the searches with an average 
execution time of 4066 milliseconds while the ST variant in only 1280 milliseconds. 
In terms of percent, MVV-LVA move ordering resulted in a decrease of 68.5% in 
execution time on average.  
 
The average Good Move Index of both the ST and MO variants are presented in 
the figure 4.4.1. 
 

Variant GMI (depth 
0) 

GMI (depth 
1) 

GMI (depth 
2) 

GMI (depth 
3) 

GMI (depth 
4) 

GMI (depth 
5) 

MO 5.84 1.60 5.43 3.37 8.97 7.31 

ST 4.89 0.98 2.00 1.35 1.48 0.32 
Figure 4.4.1. The average Good Move Index at each depth of the MO and ST variants of KLAS. 

 
 
The ST variant, using MVV-LVA move ordering, achieved a reduction in GMI at 
each depth of search. The effectiveness of MVV-LVA was bigger at greater depths 
with the GMI being reduced at depth 5 from an average of 7.31 to 0.31.  
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4.4.2 Transposition Table 
 
The transposition table in all variants of KLAS, where activated, had a maximum 
size of 1.000.000 entries. In the TT variant of KLAS, the transposition table was not 
fully deactivated, but the entries were only used for PV-ordering. No entries found 
during a search in the TT variant were used to avoid researching a node. 
 
The average execution time of the TT and ST variants of KLAS are presented in 
the table below. 

 
Variant Execution 

time [ms] 

TT 2124 

ST 1280 

 
The ST variant, which used the transposition table for alpha/beta cut-offs 
performed the average search with a 39.8% reduction in execution time.  
 
The average Good Move Index at each search depth of both the TT and ST 
variants is presented in figure 4.4.2. 
 

 
Variant GMI 

(depth 0) 
GMI 
(depth 1) 

GMI 
(depth 2) 

GMI 
(depth 3) 

GMI 
(depth 4) 

GMI 
(depth 5) 

TT 4.61 1.17 2.03 1.26 1.25 0.17 

ST 4.89 0.98 1.99 1.35 1.48 0.32 
Figure 4.4.2. The average Good Move Index at each depth of the ID and ST variants of KLAS. 

 
In terms of move average GMI, the TT and ST variants are relatively similar at 
most depths. At depth 5 specifically the relative difference is significant, with the ID 
version achieving an almost twice as low GMI. 
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4.4.3 Iterative Deepening 
 
Iterative deepening is an optimization which by itself gives no performance boost. 
However, when paired with move ordering by PV-nodes from previous iterations as 
well as a transposition table for achieving cut-offs, it may give a significant 
reduction in execution time. Therefore, we use the ID variant of KLAS, which has 
move-ordering as well as a transposition table enabled, but no iterative deepening, 
and compare this to the ST variant. This way, iterative deepening is the only 
differentiating factor, allowing us to investigate it. 

 
In KLAS, the search depth is incremented by two every iteration. First, KLAS 
searches to a depth of two, then four and then six. As the ID variant of KLAS uses 
no iterative deepening memory usage was only measured at the end of the search 
at depth 6. The table below demonstrates the execution time of the ID variant and 
ST variant. 

 
Variant Execution 

time [ms] 

ID 1796 

ST 1280 

 
As can be seen in the table above, iterative deepening with PV-ordering caused a 
decrease in execution time of 28.7% on average. 
 
Iterative deepening resulted in significantly more transposition table hits as 
demonstrated in figure 4.4.3. 

 
Variant TP-Hits, 

(depth 0) 
TP-Hits, 
(depth 1) 

TP-Hits, 
(depth 2) 

TP-Hits, 
(depth 3) 

TP-Hits, 
(depth 4) 

TP-Hits, 
(depth 5) 

TP-Hits, 
(depth 6) 

ID 0.0 0.5 0.1 358.0 1120.1 23735.2 2500.0 

ST 0.8 9.7 24.4 718.5 594.1 16030.6 825.9 
Figure 4.4.3. Average number of transposition table hits at each depth of search of the ID and ST 

variants of KLAS. 

 
As can be seen in figure 4.4.3, the number of transposition table hits at lower 
depths increases drastically with iterative deepening. However, at greater depths 
the number of hits decreased with iterative deepening.  
 
 
The average Good Move Index at each depth was recorded for the ID variant of 
KLAS as well. This data is presented in figure 4.4.4. 

 
Variant GMI 

(depth 0) 
GMI 
(depth 1) 

GMI 
(depth 2) 

GMI 
(depth 3) 

GMI 
(depth 4) 

GMI 
(depth 5) 

ID 10.32 1.77 2.86 1.94 1.95 0.40 

ST 4.89 0.98 1.99 1.35 1.48 0.32 
Figure 4.4.4. The average Good Move Index (GMI) at each depth for the ID and ST variants (lower 

is better). 
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The ST variant of KLAS, with its iterative deepening, achieved a much lower and 
thus better GMI at every depth of search. Most significant is the decrease at lesser 
depths while the difference is much lesser at greater depths. 

 

4.4.4 Lazy SMP 
 
The effect on the performance Lazy SMP had was measured using the MT variant 
of KLAS. MT uses a total of four threads during each search, three of which are 
helper threads with randomized move ordering. The fourth thread, the main thread, 
uses MVV-LVA and PV-ordering. 
 
The average execution time and memory usage at each iteration of iterative 
deepening from the MT and ST variants of KLAS is presented below in the table 
below. 
 

Variant Execution 
time [ms] 

Memory usage 
(iteration 1) 
[MB] 

Memory usage 
(iteration 2) 
[MB] 

Memory usage 
(iteration 3) 
[MB] 

MT 850 914.7 944.8 765.8 

ST 1280 759.1 776.3 756.3 

 
The MT variant of KLAS performed the same 600 searches with an average 
execution time of 850 milliseconds while the single-threaded ST variant of KLAS 
performed the same searches with an average execution time of 1280 
milliseconds. In other words, Lazy SMP decreased average execution time by 
approximately 33.4%. 
 
The MT variant used significantly more memory at the first two iterations of iterative 
deepening: an increase of 155.6 or 20.5% and 168.5 MBs or 21.7% respectively. A 
much smaller difference in memory usage was recorded after the last iteration to 
depth 6, specifically 9.5 MBs or 1.2%. 
 
The average number of transposition table hits at each depth per search is 
presented in figure 4.4.5. 
 

Variant TP-Hits, 
(depth 0) 

TP-Hits, 
(depth 1) 

TP-Hits, 
(depth 2) 

TP-Hits, 
(depth 3) 

TP-Hits, 
(depth 4) 

TP-Hits, 
(depth 5) 

TP-Hits, 
(depth 6) 

MT 5.4 245.3 145.7 2030.6 3465.2 33299.4 3539.2 

ST 0.8 9.7 24.4 718.5 594.1 16030.6 825.9 
Figure 4.4.5. Average number of transposition table hits at each depth of search of the MT and ST 

variants of KLAS. 

 

 
Overall, the multithreaded MT variant of KLAS achieved significantly more 
transposition table hits than the single-threaded ST variant at every search depth. 
The biggest relative difference is at depth 1, where the MT variant achieved 2528% 
more hits on average than the ST variant. The biggest absolute difference was at 
depth 5, where the MT variant got 17269 more hits per search. 
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In the MT variant of KLAS the average GMI was recorded at each depth of search 
for only the main search thread. The GMI of the helper threads was not recorded. 
The GMI of the MT and ST variants are presented in figure 4.4.6. 
 

Variant GMI 
(depth 0) 

GMI 
(depth 1) 

GMI 
(depth 2) 

GMI 
(depth 3) 

GMI 
(depth 4) 

GMI 
(depth 5) 

MT 4.59 1.16 2.04 1.44 1.42 0.29 

ST 4.89 0.98 1.99 1.35 1.48 0.32 
Figure 4.4.6. The average Good Move Index (GMI) at each depth for the MT and ST variants (lower 

is better). 

 
For the MT variant the average GMI varied from its lowest value of 0.29 at depth 5 
to its highest value of 4.59 at depth 0. Meanwhile, for the ST variant, the GMI 
varied between 0.32 to 4.89. The MT variant achieved a better GMI at depths 0, 5 
and 5 while the ST variant performed better, in terms of GMI, at depths 1, 2, 3. 
 
The correlation between the average GMI and the execution time shown in chapter 
4.4.1 was observed in the MT variant as well. Figure 4.4.7 shows a scatterplot of 
the GMI as an average of all depths and the execution time. 
 

 
Figure 4.4.7. Scatterplot of each search’s execution time and its average Good Move Index (GMI) of 

all depths combined. The trendline demonstrates the correlation between the two.  

 
 

The correlation between the GMI and execution time is significantly weaker in the 
MT variant of KLAS than the MO variant (see figure 4.3.1, chapter 4.3.1). 
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4.4.5 Garbage Collection 
 
The Java Virtual Machine’s garbage collection was recorded both in terms of the 
number of calls to the garbage collector as well as the time used to collect the 
garbage at the end of each search. The average for all five variants of KLAS is 
presented in the table below. 
 
 

Variant GC Count GC Execution 
Time [ms] 

Total 
Execution 
Time [ms] 

Garbage 
Collection/Total 
Execution Time 
[%] 

MT 5.5 208.1 850 24.5 
ST 2.6 100.0 1280 7.8 
MO 8.5 312.5 4066 7.7 
TT 4.4 143.7 2123 6.8 
ID 3.7 141.5 1796 7.9 

Figure 4.4.8. The number of calls to the garbage collector as well as its average execution time to 
collect the garbage relative to the total execution of the average search. 

 
As can be seen in figure 4.4.8, the execution time penalty incurred by garbage 
collection was quite similar for all the variants of KLAS except for one, the MT 
variant. On average, garbage collection accounted for around 7 to 8% of the 
execution time of the four lowest variants while it accounted for more than 24% of 
the execution time of the MT variant. 
 

4.4.6 Playing Strength of KLAS 
 
No serious attempt at measuring KLAS’ playing ability accurately was made. 
However, we tested KLAS by having it play against different chess bots on the 
website Chess.com. KLAS was able to beat a bot that the website has given an 
estimated rating of 2100 ELO. KLAS was given 30 seconds of time per move 
during this game. 
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4.5 Results Analysis 

 
The optimizations move ordering, iterative deepening, Lazy SMP, and 
Transposition Tables all gave a significant boost to KLAS’ performance, in our 
empirical measurements. Most significant was MVV-LVA move ordering which 
gave a 68.5% reduction in average execution time. In second place comes using 
the transposition table for achieving alpha/beta cut-offs, which gave a 39.8% 
reduction in average execution time. Lazy SMP gave the third greatest reduction in 
average execution time at 33.1% with up to four threads searching simultaneously. 
Least effective was iterative deepening with PV-ordering which reduced average 
execution time by 28.7%. 
 
Below each optimization is discussed individually, in its own section. 

 

4.5.1 MVV-LVA Move Ordering 
 
Move ordering according to MVV-LVA was tested to answer research question 1: 
how much execution time can MVV-LVA save on average? In our tests, MVV-LVA 
move ordering resulted in a decrease in execution time of 68.5% on average and 
was thus the single most effective optimization applied at improving the 
performance of KLAS.  
 
MVV-LVA achieves this performance boost by improving the ordering of moves at 
every depth of search tested, although the improvement was far greater on greater 
depths. No attempts at measuring the overhead incurred by MVV-LVA were made 
but we draw the conclusion that it is highly justified, at least past depth 2.  
 
Although MVV-LVA is very effective at deeper search depth, it does not improve 
move ordering that much at lower depths (see Figure 4.4.1 chapter 4.4.1). By using 
iterative deepening and PV-ordering in conjunction with MVV-LVA, move ordering 
is improved at both greater and lower depths. 
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4.5.2 Transposition Table 
 
The usage of a transposition table was measured to answer research question 1.2: 
how much execution time can transposition tables save on average? The answer 
found through our testing is 39.8% when the entries are used for alpha/beta cut-
offs.  
 
The transposition table in KLAS is also used for PV-ordering as well as achieving 
cut-offs from previously found transpositions. Together with PV-ordering, the 
performance boost that the transposition table results in is significantly higher than 
39.8%.  
 
The TT variant of KLAS managed to achieve a lower average GMI on search depth 
0, 3, 4 and 5. This could be explained by more nodes being searched again due to 
fewer cut-offs having happened. 
 
The transposition table is also the primary source of memory needed. The increase 
in memory usage of the certain variants was in all cases significantly lower than the 
memory the transposition table used. 

 

4.5.3 Iterative Deepening 
 
Iterative deepening with a transposition table was measured to answer research 
question 1.3: how much execution time can iterative deepening save on average? 
The answer we found through our testing was 28.7%. 
 
Iterative deepening achieves this performance boost by greatly increasing the 
number of transposition table hits at lower depths and improving move ordering at 
lesser search depths. The reason why fewer transposition table hits were found at 
greater depths we believe is a result of more hits being found at lesser depths.  
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4.5.4 Lazy SMP 
 
Lazy SMP was tested to answer research question 1.4: how much execution time 
can Lazy SMP multithreading save on average? Through our measurements we 
found Lazy SMP to reduce average execution time by 33.1%.  
 
The reduction in execution time due to Lazy SMP comes from several helper 
threads helping the main thread in its search by filling the transposition table with 
relevant data for the main thread to use. In our testing, the helper threads 
succeeded in increasing the number of hits in the transposition table for the main 
thread at every depth of search, as can be seen in Figure 4.4.5.   
 
Lazy SMP improved the move ordering by decreasing the GMI at every depth of 
search as well. Why this is we do not know but we suspect it is somehow a side 
effect of more alpha-beta pruning. 
 
Memory usage was significantly increased at two of the three iterations of iterative 
deepening when using Lazy SMP. Why memory usage was not increased after the 
third iteration as well we do not know. 
 
Lazy SMP brings with it a much higher impact of the Java virtual machine’s 
garbage collection. We conclude that the usage of Lazy SMP warrants greater 
effort to be taken in reducing this impact. 

 

4.5.5 Garbage Collection 
 
The average execution time penalty incurred by the Java Virtual Machine’s 
garbage collection was relatively consistent across 4 out of 5 variants of KLAS, 
varying between 6.8% to 7.9%. The exception is the multithreaded MT variant 
where the penalty incurred accounted for 24.5% of the total execution time. We 
conclude that taking effort to reduce garbage collection is worthwhile when 
implementing a chess engine in Java, regardless of the specific optimizations used. 
From our tests, this is particularly warranted when using Lazy SMP multithreading. 

 

4.5.6 Choice of Optimizations 
 
The four optimizations examined in this thesis were chosen for different reasons. 
Firstly, it was our hope that they would be effective for the goal of reducing 
execution time. Secondly, they were also chosen as they are all different from each 
other in how they function. It would have been less interesting to investigate four 
optimizations that all operate in a similar manner. The expectation was also that 
they would interfere less with each other. For example, if four different move 
ordering heuristics were implemented, the effectiveness of each individual heuristic 
optimization would probably be diminished due to the other three. 
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4.6 Threats to validity 

To ensure that measurements of execution time are accurate, and generalizable, 
outside factors need to be eliminated. Any other processes running on the test 
system when measurements are made can interfere with the results and so 
execution time is measured in CPU cycles instead of wall-time using the Java class 
ThreadMXBean [9]. Other possible outside factors include the optimization 
performed by the Java Virtual Machine as well as interference from its garbage 
collector. 
 

 

4.6.1 Board Positions 
 
The board positions used for all measurements consist of original boards and 
boards generated from the original boards. The original boards were taken from 
various online resources and mostly constitute example positions from chess 
lessons as well as positions from various professional matches. It is possible that 
the board positions used are not representative of chess as a whole, as most of 
them are from the middle game. The reason why we chose middle game positions 
is because this is where the greatest complexity and greatest branching factor is 
found in chess.  
 

4.6.2 Java Virtual Machine Optimization 
 
The Java Virtual Machine dynamically optimizes Java programs during runtime, 
this is done for example when a particular method has been run many times – it is 
optimized to run faster on subsequent calls. However, these dynamic optimizations 
introduce variance in runtime performance. To reduce these variances in runtime, 
we let KLAS search method run 60 times without any usage of a transposition table 
at the start of each measurement to make the JVM optimize as much as possible 
before actually running a measurement. This should, along with the sample size 
used for our results, reduce the JVM’s optimization as a significant source of error. 

 

4.6.3 Interconnectivity of Algorithms and Heuristics 
 
The different heuristics and algorithms examined in this thesis are interconnected, 
meaning they affect each other’s function. For example, the different threads used 
in the MT variant of KLAS all use MVV-LVA move ordering, which means that the 
results of how effective Lazy SMP is might be dependent on the MVV-LVA 
heuristic. It’s possible that Lazy SMP would be more effective or less effective if 
MVV-LVA move ordering had not been used. 
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5 Conclusion 

Four different algorithmic and heuristic optimizations were examined in this thesis: 
MVV-LVA move ordering, transposition tables, iterative deepening and Lazy SMP 
multithreading. All four optimizations resulted in significant performance boosts to 
the KLAS chess engine with MVV-LVA move ordering having the single biggest 
impact. MVV-LVA resulted in an average reduction in execution time of 68.5% and 
the transposition table, when used to avoid researching nodes, resulted in a 
reduction of 39.8% of average execution time. Lazy SMP parallel search and 
iterative deepening resulted in the average execution time being reduced by 33.1% 
and 28.7% respectively. 
 
 

 
Figure 5.1. The average execution time of each variant of KLAS, demonstrating the impact of each 

of the four algorithms/heuristics. 
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We conclude that all four optimizations are worth implementing in a chess engine, 
particularly MVV-LVA move ordering as it has few downsides. The transposition 
table, while it is a very powerful optimization, has the downside of using a lot of 
memory. As long as there are no strict memory constraints then it is a very 
worthwhile optimization.  
 
Lazy SMP is effective when implemented in Java and run on an Intel CPU with four 
cores. This effect is however dependent on the system having more than one core. 
It would be interesting to see how well Lazy SMP scales with an even higher 
number of available cores. 
 
A significant increase in the amount of time the Java Virtual Machine spent 
collecting garbage was recorded in the MT variant of KLAS. We conclude that it is 
warranted to take effort to reduce the amount of garbage generated if 
implementing Lazy SMP like in KLAS. 
 
Iterative deepening has a significant positive impact on the performance of a chess 
engine and if ease of implementation is a consideration, then it is very worthwhile. 
In KLAS the effect of iterative deepening was dependent on the existence of the 
transposition table, however it is possible to implement it without any sort of hash 
table.  
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A Faster Chess Engine
GIVING A CHESS ENGINE A BOOST

Background
One of the pioneers of computer science, Claude Shannon, published in 1949 his 

paper Programming a Computer for Playing Chess. In which he described how a 

computer could play chess using a minimax algorithm. The minimax algorithm is 

based around the idea that both player are trying to maximize and minimize a 

value alternately. This is the case in chess, if we imagine that a board positions 

that favors the player with the white pieces are given positive values while 

positions that are favorable for the player with the black pieces are given 

negative values. 

Search
Search refers to when a chess engine considers what moves are available on a 

board position, and then plays them on an internal board representation to see 

what the result is. A chess engine may repeat this process several times to a so 

called “depth”, which is the number of moves from the original board position 

the engine considers. The result of a search is a list of moves the chess engine 

expects will be played as it considers them to be the best moves available for 

both players. Different optimizations may be used to speed up this process.

Methodology Results

Henrik Brange
nat15hbr@student.lu.se

The Optimizations

Conclusion

In order to investigate the potential of these four optimizations a Java chess 

engine named KLAS was written and five different versions or “variants” of it were 

defined:

MT – Complete, multithreaded KLAS which employs all four 

techniques.

ST – Complete KLAS except Lazy SMP-multithreading is disabled.

ID – Single-threaded KLAS with no iterative deepening.

TT – Single-threaded KLAS without using a transposition table for 

alpha/beta pruning.

MO – Single-threaded KLAS without MVV-LVA move ordering

These five different versions were used to search 600 different board positions of 

chess and the execution time, as well as other relevant information, was 

measured. After the measurements were performed, the results were analysed 

to find out how these techniques function in practice and how well they 

perform.

The purpose of this thesis was to implement a chess engine called KLAS 

and optimize it to play faster using four different optimizations. These 

optimizations are:

Most Valuable Victim, Least Valuable Aggressor (MVV-LVA) – A move 

ordering heuristic which prioritizes moves where an enemy piece is 

taken. The more valuable the enemy piece and the less valuable the 

taking is piece is, the higher the priority.

Iterative deepening – An algorithm that involves deepening the search  

iteratively. Iterative deepening means that the chess engine first 

searches two steps ahead, then four and then six, and so on.

Transposition table – A data structure storing information about so called 

previously investigated board positions so that they may be reused at a 

later point in time.

Lazy SMP parallel search - An algorithm for multithreading the search of 

the chess engine. It uses the transposition table for sharing information 

between the different threads.
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All four techniques resulted in significant performance boosts 

to the KLAS chess engine with MVV-LVA move ordering 

having the single biggest impact. The MVV-LVA heuristic 

decreased average execution time by 68.5%.

The transposition table, is a very powerful technique as well 

decreasing average execution time by 39.8% on average 

when used to avoid researching board positions.

Lazy SMP decreased average execution time by 33.1% on 

average on the four core test system. However it also 

significantly increased both the memory usage as well as the 

time the Java virtual machine spent on garbage collection.

Iterative deepening reduced average execution time by 

28.7%.

A search tree where the nodes represent board positions and 
the edges represent moves leading from the previous position 
to the next. The numbers in the nodes represent how 
favorable the position is for the two players. The tree as a 
whole represents the logical flow of the chess engine.

We concluded that each of the four techniques were effective in decreasing 

KLAS’ execution time with different upsides and downsides. The move ordering 

heuristic MVV-LVA provides the biggest reduction in execution time and has few 

downsides. The transposition table is another very powerful optimization but it has 

the downside of requiring a lot of memory. Lazy SMP is effective when running on 

the Intel i5 6600K test system, which has four cores, but is of course dependent on 

the CPU having more than one core. 

An example of a board position.


	Framsida Hbg-2021.pdf
	Introduction
	Problem
	Research question
	Outline
	Contributions

	Technical Background
	Related Work
	Baseline model
	Logistic Regression
	k-Nearest Neighbors
	Artificial Neural Network
	Forward propagation
	Backpropagation

	Convolutional Neural Network
	Long Short-Term Memory (LSTM)
	LSTM Cell

	Evaluation metrics

	Data
	Datasets
	Data retrieval
	Features
	Construction of training and test sets
	Defining reversal events
	Data characteristics
	Data imbalance


	Methods
	Data processing
	Sliding windows
	Normalization
	BatchNormalization

	Baseline model
	revLR
	revKNN
	revDNN
	revCNN
	revLSTM
	Evaluation

	Results
	Overview
	revLR
	revKNN
	revDNN
	revCNN
	revLSTM

	Predicting past reversals

	Discussion
	Definition of reversal
	Models
	Importance of distance to price level of previous reversals
	Window sizes and reversal sizes
	Predicting past reversals
	Strengths and limits

	Conclusion
	Future work
	Better dependent value
	Indicators
	Concatenating multiple stocks


	References
	Abbreviations
	The profile of this thesis




