Vectorcardiographic lop alignment and the measurement of morphologic beat-to-beat variability in noisy signals

Åström, Magnus; Carro, E; Sörnmo, Leif; Laguna, P, et al. (2000). Vectorcardiographic lop alignment and the measurement of morphologic beat-to-beat variability in noisy signals. IEEE Transactions on Biomedical Engineering, 47, (4), 497 - 506
Download:
DOI:
| Published | English
Authors:
Åström, Magnus ; Carro, E ; Sörnmo, Leif ; Laguna, P , et al.
Department:
Department of Electrical and Information Technology
Clinical Physiology (Lund)
Abstract:
The measurement of subtle morphologic beat-to-beat variability in the electrocardiogram (ECG)/vectorcardiogram (VCG) is complicated by the presence of noise which is caused by, e.g., respiration and muscular activity. A method was recently presented which reduces the influence of such noise by performing spatial and temporal alignment of VCG loops. The alignment is performed in terms of scaling, rotation and time synchronization of the loops. Using an ECG simulation model based on propagation of action potentials in cardiac tissue, the ability of the method to separate morphologic variability of physiological origin from respiratory activity was studied. Morphologic variability was created by introducing a random variation in action potential propagation between different compartments. The results indicate that the separation of these two activities can be done accurately at low to moderate noise levels (less than 10 microV). At high noise levels, the estimation of the rotation angles was found to break down in an abrupt manner. It was also shown that the breakdown noise level is strongly dependent on loop morphology; a planar loop corresponds to a lower breakdown noise level than does a nonplanar loop.
ISSN:
1558-2531
LUP-ID:
5ab55b1f-b428-4d3f-9111-ada80992e9ad | Link: https://lup.lub.lu.se/record/5ab55b1f-b428-4d3f-9111-ada80992e9ad | Statistics

Cite this