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 80 Abstract	81 
 82 

Circulating proteins are vital in human health and disease and are frequently used as biomarkers for 83 

clinical decision-making or as targets for pharmacological intervention. By mapping and replicating 84 

protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, we 85 

identified 451 pQTLs for 85 proteins. The pQTLs were used in combination with other sources of 86 

information to evaluate known drug targets, and suggest new target candidates or repositioning 87 

opportunities, underpinned by a) causality assessment using Mendelian randomization, b) pathway 88 

mapping using trans-pQTL gene assignments, and c) protein-centric polygenic risk scores enabling 89 

matching of plausible target mechanisms to sub-groups of individuals enabling precision medicine.  90 

 91 
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Main	101 
Proteins circulating in blood are derived from multiple organs and cell types, and consist of both 102 

actively secreted and passively leaked proteins. Plasma proteins are frequently used as biomarkers to 103 

diagnose and predict disease and have been of key importance for clinical practice and drug 104 

development for many decades. 105 

Circulating proteins are attractive as potential drug targets as they can often be directly perturbed 106 

using conventional small molecules or biologics such as monoclonal antibodies1. However, a 107 

prerequisite for successful drug development is efficacy, which is predicated on the drug target 108 

playing a causal role in disease. One approach to clarifying causation is through Mendelian 109 

randomization (MR), which has successfully predicted the outcome of randomized controlled trials 110 

(RCT) for pharmacological targets such as PCSK9, LpPLA2 and NPC1L1, and is increasingly becoming a 111 

standard tool for triaging new drug targets2.  112 

Recent technological developments of targeted proteomic methods have enabled hundreds to 113 

thousands of circulating proteins to be measured simultaneously in large studies3-6. This has paved 114 

the way for studies of genetic regulation of circulating proteins using genome-wide association 115 

studies (GWAS) for detection of protein quantitative trait loci (pQTL), some of which are referenced 116 

here 3,4,7-9. 117 

Here, we present a genome-wide meta-analysis of 90 cardiovascular-related proteins, many of which 118 

are established prognostic biomarkers or drug targets, measured using the Olink Proximity Extension 119 

Assay CVD-I panel 10 in 30,931 subjects across 14 studies. The identified pQTLs were combined with 120 

other sources of information to suggest new target candidates underpinned by insights into cis- and 121 

trans- regulation of protein levels and to evaluate past and present efforts to therapeutically modify 122 

the proteins analysed in the present investigation. We also show that protein-centric polygenic risk 123 

scores (PRS) can predict a substantial fraction of inter-individual variability in circulating protein 124 

levels, explaining a proportion of disease susceptibility attributable to specific biological pathways.  125 



These are the first results to emerge from the SCALLOP consortium, a collaborative framework for 126 

pQTL mapping and biomarker analysis of proteins on the Olink platform (www.scallop-127 

consortium.com). 128 Results	129 Genome-wide	meta-analysis	of	90	proteins	reveals	467	independent	genetic	loci	130 associated	with	plasma	levels	of	85	proteins.		131 

Ninety proteins in up to 21,758 participants from 13 cohorts passed quality control (QC) criteria and 132 

were available for GWAS meta-analysis [Supplementary Table 1].  We found a total of 401 pQTLs that 133 

were significant at a discovery P-value threshold conventional for GWAS (P<5x10-8).  [Supplementary 134 

Table 2]. Conditioning each of these primary pQTLs using the GCTA-COJO software, we identified an 135 

additional 144 proximal pQTLs that independently surpassed conventional genome-wide significance 136 

(P<5x10-8), termed as secondary pQTLs. We attempted to replicate the primary and secondary pQTLs 137 

in two independent studies (9,173 participants) whereupon the discovery and replication datasets 138 

were meta-analysed, leading to 315 primary pQTLs and 136 secondary pQTLs surpassing a Bonferroni 139 

corrected P-value (P<5.6x10-10). The discovery P-values were used for pQTLs absent in the replication 140 

dataset (nsnp=25) [Supplementary Table 2].  141 

Some proteins such as SCF, RAGE, PAPPA, CTSL1 and MPO showed association with more than nine 142 

primary pQTLs, but most proteins (22 of 85) were associated with 2 primary pQTLs. We also observed 143 

that some proteins were associated with multiple conditionally significant (secondary) pQTLs such as 144 

CCL-4 with 4 secondary signals, implicating complex genetic regulation of circulating CCL-4 at the 145 

CCL4 locus. 146 

Analysis	of	trans-pQTLs	suggests	common	mechanisms	by	which	genetic	variants	147 affect	plasma	protein	levels.		148 

A “best guess” causal gene for each of the CVD-I trans-pQTLs was assigned by a hierarchical approach 149 

based on analysis of protein-protein interactions (PPI), literature mining, genomic distance to gene 150 

and manual review of literature around the gene as well as the genomic context of the association 151 



signal. In total, 326 primary trans-pQTLs were assigned to unique genes and 30 trans-pQTLs were 152 

assigned more than one gene, with ABO, ST3GAL4, JMJD1C, SH2B3, ZFPM2 showing association with 153 

the levels of five or more CVD-I proteins [Supplementary Figure 2B] [Supplementary Table 2]. 154 

Extending this analysis to pQTLs from literature expanded the list of genes with five or more protein 155 

associations to include also KLKB1, GCKR, FUT2, TRIB1, SORT1 and F12 [Supplementary Table 4]. 156 

Gene ontology (GO) analysis of genes assigned to all significant trans-pQTLs showed functional 157 

enrichment for chemokine binding, glycosaminoglycan binding, receptor binding and G-protein 158 

coupled chemoattractant activity [Figure 2C]. A broader classification of genes assigned to both cis- 159 

and trans-pQTLs [Figure 2A, 2B] [Supplementary Table 2] using a wider set of tools (Online Methods) 160 

suggested that transcriptional regulation, post-translational modifications, such as glycation and 161 

sialylation, cell-signalling events, protease activity and receptor binding are potential common 162 

mechanisms by which trans-pQTLs influence circulating protein levels. The default gene calls and 163 

paths for the CVD-I trans-pQTLs based on PPI and literature mining can be visualised using the 164 

SCALLOP CVD-I network tool [Supplementary Figure 2B] whereas details on the classification of genes 165 

are available in the Online Methods. 166 

Evidence	of	mRNA	expression	mediating	associations	with	a	third	of	cis	pQTLs		167 

We investigated the overlap of the CVD-I cis- and trans-pQTLs with expression quantitative trait loci 168 

(eQTL) by a combination of approaches and eQTL studies, including direct genetic lookups and co-169 

localisation using PrediXcan 11  and SMR / HEIDI 12. For direct lookups, three studies were used: 170 

LifeLines-DEEP (whole blood), eQTLGen meta-analysis (whole blood and PBMCs) and GTEx (48 tissue 171 

types). Of 545 pQTLs from supplementary table 2, eQTL data were available for 434 SNP-transcript 172 

pairs, including 168 cis-pQTLs and 266 trans-pQTLs. Of these, 72 (43%) of cis-pQTLs had at least one 173 

corresponding eQTL (FDR<0.05) in any of the eQTL datasets investigated, implicating 42 of the 75 174 

proteins with a cis-pQTL. At a more stringent eQTL p-value of P<5x10-8, the percentage with a 175 

corresponding eQTL was 26 %, similar to some previous reports 13-15 [Supplementary Table 5].  176 



Co-localisation analysis of CVD-I cis-pQTLs and mRNA levels was performed in selected tissues from 177 

the GTEx project by first imputing mRNA expression of the CVD-I protein-encoding transcripts using 178 

the PrediXcan11 algorithm  in one of the SCALLOP CVD-I cohorts (IMPROVE), and then testing imputed 179 

mRNA levels for association with CVD-I plasma protein levels using linear regression. Twenty-six of 180 

the 90 CVD-I proteins were associated with their corresponding mRNA transcript (FDR<0.05) in at 181 

least one of the 20 GTEx tissues investigated [Supplementary Figure 3]. All 26 proteins were among 182 

the 42 proteins found to also be an eQTL by direct lookups. Proteins CCL4, CD40, CHI3L1, CSTB and 183 

IL-6RA all associated with their corresponding transcript across five or more tissues whereas proteins 184 

ST2 and RAGE showed significant association exclusively in lung, and CTSD exclusively in skeletal 185 

muscle. 186 

To further investigate if the CVD-I protein pQTLs overlap with eQTLs, we used the SMR/HEIDI 187 

methods12, using data from the Consortium for the Architecture of Gene Expression (CAGE) study. 188 

SMR/HEIDI tests the hypothesis that there is a single variant affecting protein and gene expression 189 

(pleiotropy or causality), with the alternative hypothesis being that protein and gene expression are 190 

affected by two distinct variants. In total, 125 associations between 96 genes and 54 proteins were 191 

identified at an experiment-wise SMR test significance level (PSMR<0.05/8558) and a stringent HEIDI 192 

test threshold (PHEIDI > 0.01) [Supplementary Table 6], of which 23.2 % were in cis-pQTL regions, such 193 

as IL-8 and U-PAR. The 96 genes were located in 74 loci, suggesting that pleiotropic associations 194 

between protein and mRNA expression were present for 18.4 % of significant and suggestive primary 195 

loci using SMR / HEIDI.  196 

A	minor	proportion	of	cis-acting	pQTLs	are	in	high	linkage-disequilibrium	with	197 non-synonymous	coding	variants.	198 

“Pseudo-pQTLs” caused by epitope effects, i.e. differential assay recognition depending on presence 199 

of protein-altering variants, is a theoretical possibility for cis-pQTLs and likely dependent on the 200 

method of protein quantification 4,16. To evaluate the potential for pseudo-pQTLs among the CVD-I 201 

pQTLs, we investigated presence of protein-altering variants for sentinel variants or variants in high 202 



linkage disequilibrium with a sentinel variant. Of the 90 proteins, 85 had at least one pQTL, including 203 

12 with only cis-pQTLs, 10 with only trans-pQTLs and 63 with both cis- and trans-pQTLs. Of the 170 204 

primary or secondary cis-pQTLs for 75 proteins, 20 cis-pQTLs for 18 proteins had a sentinel variant in 205 

high linkage disequilibrium (LD; R2>0.9) with a protein-altering variant, which suggests potential to 206 

affect assay performance [Supplementary Table 1].  207 

Orthogonal	evidence	supports	causal	gene	to	protein	relationships	for	a	subset	of	208 the	CVD-I	trans-pQTLs	209 

Of the 326 trans-pQTLs identified, eight were assigned to gene products targeted by compounds or 210 

antibodies that have been in clinical development [Supplementary Table 7]. Assuming that trans-211 

pQTLs represent causal relationships between gene variants and proteins, we hypothesized that the 212 

downstream CVD-I proteins associated with CVD-I trans-pQTL genes would be modulated on 213 

therapeutic modification of the gene product. Support for this hypothesis was obtained by previous 214 

work showing that circulating FABP4 is upregulated upon treatment with glitazones (PPARG 215 

inhibitors)17; that circulating IL-6 is increased after treatment with tociluzumab18 (IL6R inhibitor) and 216 

that circulating TNF-R2 is decreased upon infliximab (TNFA inhibitor) treatment in patients with 217 

Crohn’s disease19, which supports CVD-I trans-pQTLs for these proteins. Along these lines, we present 218 

novel evidence from a clinical trial supporting our observations that a CCR5 variant is a trans-pQTL 219 

for plasma CCL-4 and a variant in CCR2 is a trans-pQTL for plasma MCP-1 [Supplementary table 2]. 220 

CCR5 and CCR2 are targeted in combination by the small-molecule dual-inhibitor PF-04634817 20. To 221 

test whether dual inhibition of CCR5 and CCR2 resulted in a change of circulating CCL-4 and MCP-1 222 

respectively, we measured these proteins in 350 type 2 diabetes patients in a randomized, double-223 

blind, placebo-controlled phase-II trial evaluating the efficacy of PF-04634817 in diabetic 224 

nephropathy (NCT01712061). In addition, we also measured known or suspected ligands of CCR5 and 225 

CCR2, including CCL-3, CCL-5 (RANTES) and CCL-8, and 5 additional proteins that were present on the 226 

Olink CVD-I panel, and for which assays were readily available. Compared to placebo, we observed a 227 

9.25-fold increase in circulating MCP-1 levels (p < 0.0001) and a 2.11-fold increase in circulating CCL4 228 



levels (p < 0.0001) at week 12 [Figure 3]. An alternative ligand for CCR-2; CCL-8 did not change 229 

following exposure to PF-04634817, and neither did other CCR-5 ligands, such as CCL-5 (RANTES) and 230 

CCL-3. Moreover, EN-RAGE, FGF-23, KIM-1, myoglobin and TNFR-2 were unchanged following PF-231 

04634817 exposure [Supplementary Figure 4]. We conclude that CVD-I trans-pQTLs at CCR5 and 232 

CCR2 were concordant with the effects of PF-04634817 in human.  233 

Two of the genes implicated by CVD-I trans-pQTLs, ABCA1 and TRIB1 for circulating SCF levels, were 234 

also investigated in the mouse. Mice with liver-specific or whole-body knockdown of ABCA121 and 235 

TRIB122 respectively showed decreased plasma levels of SCF compared to matched wild-type controls 236 

[Figure 4], concordant with the human CVD-I trans-pQTLs.  237 

Mendelian	randomization	analysis	revealed	25	CVD-I	proteins	causal	for	at	least	238 one	human	complex	disease	or	phenotype	with	strong	evidence.		239 

To identify potential causal disease pathways indexed by proteins, we conducted an MR analysis of 240 

85 proteins across 38 outcomes. 25 proteins showed strong evidence of causality for at least one 241 

disease or phenotype and an additional 24 proteins showed intermediate evidence of causality. 242 

[Figure 5A; Supplementary Figure 5]. Using open-source information (clinicaltrials.gov)  243 

(www.ebi.ac.uk/chembl/)  (www.drugbank.ca/) (www.opentargets.org) and Clarivate Integrity 244 

(integrity.clarivate.com), we identified records on past or present clinical drug development 245 

programs for 14 of the 25 proteins, all of which have been in phase 2 trials or later [Supplementary 246 

Table 7]. Of the 14 proteins, seven proteins were targeted for an indication different from the 247 

phenotype implicated by our MR analysis. Eleven of the 25 proteins have never been targeted in 248 

clinical trials, but may provide new promising target candidates for indications closely related to the 249 

traits in the MR analysis. 250 

Several published MR findings were confirmed, including that IL6RA variants associated with higher 251 

circulating levels of interleukin-6 (IL-6) and soluble IL6-RA were associated with lower risk of coronary 252 

heart disease (CHD), rheumatoid arthritis (RA) and atrial fibrillation but higher risks of atopy, such as 253 



asthma and eczema23. We also replicated previous findings suggesting a causal contribution of IL-1ra 254 

to rheumatoid arthritis (RA) but an inverse causal relationship with cholesterol levels 24, and a 255 

protective role of genetically higher MMP-12 against stroke 4,25. 256 

Some novel MR observations included higher levels of CD40 protein and increased risk of RA, higher 257 

MMP-12 and increased risk of eczema, and higher TRAIL-R2 proteins levels and prostate cancer. 258 

Further, Dkk-1 has been targeted by a humanised monoclonal antibody (DKN-01) in clinical trials for 259 

advanced cancer (NCT01457417, NCT02375880), and was in our study causally linked to higher risk of 260 

bone fractures and lower risk of estimated bone mineral density (eBMD). In addition, strong 261 

evidence for protective roles of PLGF in CHD, CASP-8 in breast cancer and ST2 in asthma was 262 

observed. RAGE was causally linked to several traits, including lower body mass index (BMI) and a 263 

corresponding lower risk of type 2 diabetes (T2D), higher total cholesterol and triglycerides and 264 

higher risk of prostate cancer and schizophrenia. A small molecule brain penetrant RAGE inhibitor 265 

was tested in a phase 2 trial of Alzheimer’s disease (NCT00566397), but was stopped early for futility. 266 

We saw no strong signal for Alzheimer’s disease (or vascular disease) in our MR analysis. Our findings 267 

identify potential target-mediated effects across multiple other complex phenotypes that might 268 

manifest in beneficial and/or harmful effects on patients receiving RAGE-modifying therapies. 269 

We also collated observational evidence for 23 of the 50 protein-trait pairs identified as causal in the 270 

MR analysis [supplementary table 10]. The direction of effect inferred from observational studies was 271 

concordant with the effect direction from MR estimates for 12 pairs.   272 

Heritability	analysis	and	polygenic	risk	scores	(PRS)	demonstrates	large	273 differences	in	genetic	architecture.		274 

We calculated SNP-heritability contributed by the major reported loci (major loci hSNP
2) 275 

[supplementary table 2], as well as additional genome-wide SNP-heritability (polygenic hSNP
2) for each 276 

protein included in the SCALLOP CVD-I meta-analysis. We observed a large range of different genetic 277 

architectures: Differences in magnitude of the genetic component (hSNP
2) ranged from 0.01 (EGF) to 278 



0.46 (IL-6RA). Differences in the contribution from non-genome-wide significant SNPs ranged from 279 

essentially monogenic (e.g. IL-6RA) to others showing considerable locus heterogeneity with genetic 280 

contributions originating entirely from a polygenic background with no single dominating locus (e.g. 281 

PDGF-B and Galanin) [Figure 6B].  282 

In addition, we calculated the out of sample variance explained in the independent Malmo Diet and 283 

Cancer (MDC) study (N~4,500) both for genome-wide significant loci (major loci V.E.PRS), as well as 284 

additional variance explained by adding PRS (polygenic V.E.PRS) [Figure 6A]. The protein PRS’ applied 285 

in the MDC study for 11 proteins exceeded 10 % of variance explained (V.E.PRS) and the PRS’ for 286 

another 14 proteins exceeded 5 % of variance explained, suggesting that the genetic contribution to 287 

inter-individual variability of CVD-I protein levels is considerable.    288 

A	polygenic	risk	score	for	circulating	ST2	levels	shows	a	dose-response	289 relationship	with	asthma.	290 

Since circulating ST2 showed strong evidence of causation in asthma and inflammatory bowel disease 291 

(IBD) and the polygenic V.E.PRS model for ST2 explained nearly 20 % of its variance, we attempted to 292 

quantify the effect of the ST2 polygenic V.E.PRS on circulating ST2 levels in the MDC study, and risk of 293 

asthma and IBD in 337,484 unrelated White British subjects in the UK Biobank. The range of 294 

circulating ST2 across 11 categories of the ST2 PRS in MDC was nearly 1.2 standard deviations [Figure 295 

7A]. Corroborating the Mendelian randomization analysis, the ST2 PRS showed a strong negative 296 

dose-response relationship with risk of asthma (p=1.2x10-8) and a positive trend for risk of IBD 297 

(p=0.13) [Figure 7B and C]. Overlaying the linear trends for ST2 levels, asthma and IBD using meta-298 

regression, an increase in the PRS equivalent to a 1 standard deviation higher circulating ST2, 299 

corresponded to a 8.6 % (95%CI 3.8%, 13.2%; P=0.004) reduction in the relative risk of asthma and a 300 

4.3 % (95%CI -3.8%, 13.0%; P=0.263) increase in the relative risk of IBD [Supplementary Figure 8]. 301 



Reverse	Mendelian	randomization	identifies	widespread	causal	relationships,	302 where	complex	phenotypes	affects	CVD-I	proteins.			303 

To investigate whether genetic susceptibility (liability) to complex disease and phenotypes causally 304 

alter circulating levels of CVD-I proteins, we also performed MR using 38 complex phenotypes 305 

(including continuous risk factors, such as adiposity and clinical outcomes, such as T2D) as exposure 306 

and CVD-I protein levels as outcomes. All CVD-I proteins were causally altered by at least one 307 

complex phenotype. BMI and estimated glomerular filtration rate (eGFR) causally affected 32 and 29 308 

of the 85 tested proteins respectively [Figure 8A; Supplementary Figure 7C]. BMI seemed to causally 309 

affect protein levels in both positive and negative directions, whereas only REN (renin) was causally 310 

decreased with genetically higher eGFR. In an effort to elucidate whether these estimates were 311 

recapitulated in simple observational analyses, we compared effect estimates from linear regression 312 

analyses of associations of BMI and eGFR with each respective CVD-I protein in one of the 313 

participating study cohorts (IMPROVE). The correlation between the observational and MR estimates 314 

were high for BMI (R=0.78), and more modest for eGFR (R=0.50) [Figure 8B-C].  315 Discussion	316 

Using a meta-analysis approach including >30,000 individuals, we identified and replicated 315 317 

primary and 136 secondary pQTLs for 85 circulating proteins to yield new insights for translational 318 

studies and drug development. Our study demonstrates that pQTLs can be harnessed to enhance 319 

evaluation of therapeutic hypotheses for protein targets, and to support those hypotheses with basic 320 

insights into potential protein regulatory pathways and biomarker strategies. However, we also 321 

observed large differences between proteins in relation to genetic architecture, suggesting that the 322 

relative strength to apply these strategies is likely protein-dependent.  323 

Our pQTL-based framework was developed to address several key challenges associated with drug 324 

development, including a) mapping of protein regulatory pathways, b) identification of new target 325 



candidates c) repositioning of drugs, d) target-associated safety and e) matching of target 326 

mechanisms to patients by protein biomarkers or genetic PRS’ [Figure 9].  327 

The mapping of trans-pQTLs, which typically have smaller effects on protein levels [Supplementary 328 

Figure 9], was aided by the large SCALLOP discovery sample size, yielding on average 4 independent 329 

pQTLs per protein. A causal gene was assigned for each trans-pQTL to generate hypotheses that can 330 

be further tested using in vitro or in vivo perturbation experiments. The robustness of causal gene 331 

assignments for a few selected trans-pQTLs was demonstrated using samples from a randomised 332 

controlled trial testing a dual small-molecular inhibitor of the protein products of assigned genes 333 

(CCR5, CCR2) and transgenic mice with liver-specific knockdown of assigned genes (ABCA1, TRIB1). 334 

Although further studies will be needed for orthogonal validation of most of the genes assigned from 335 

the CVD-I trans-pQTLs, several of the implicated genes have previously been identified as regulators 336 

of some of the CVD-I proteins including CASP126, NLRC426 and GSDMD27 for IL-18, FLT128 for PLGF, 337 

ADAM17 29 for TNFR1 and SLC34A130 for FGF-23 [Supplementary Table 2].   338 

Further, we attempted to estimate the proportion of pQTLs that were likely to be driven by effects 339 

on mRNA expression, using multiple eQTL approaches and datasets. The lowest estimate was 340 

obtained with SMR/HEIDI, suggesting that 18.4 % of pQTLs were also eQTLs whereas direct look-up 341 

and co-localisation analysis using PrediXcan yielded estimates between 26 % - 29 %. We conclude 342 

that the majority of pQTLs identified for the CVD-I proteins were not explained by eQTLs. 343 

Clinical-stage targeting with any drug modality was reported for 35 of the 90 proteins on the Olink 344 

CVD-I panel [Supplementary Table 7]. Our MR analysis identified 11 proteins with causal evidence of 345 

involvement in human disease that have not previously been targeted. Among those, four proteins 346 

were causal for a disease phenotype and did not show strong evidence of inverse causality with 347 

another phenotype (increasing specificity for intended indication), including CHI3L1 and SPON1 for 348 

atrial fibrillation and PAPPA for type-2 diabetes. Strong causal evidence was also identified for 349 

proteins targeted in phase-2 or later development. The MR evidence was concordant with drug 350 



indications for several protein targets but for some also suggested alternative indications or that 351 

monitoring of target-associated safety might be warranted. Monoclonal antibodies that block the 352 

CD40 ligand binding to CD40 – a critical element in T cell activation – have been shown to have 353 

positive clinical effects in patients with autoimmune diseases; but increased risk of 354 

thromboembolism precluded further clinical development31. These observations from clinical trials 355 

are in line with our findings that genetically lower levels of CD40 are associated with lower risk of RA, 356 

but higher risk of stroke. There are ongoing efforts to modify CD40L antibodies to retain efficacy 357 

while avoiding thromboembolism 31. However, our results suggest that decreasing circulating CD40 358 

levels may have target-mediated beneficial effects on RA risk, while increasing the risk of ischemic 359 

stroke, i.e. that the increased risk of thromboembolism (manifest as stroke) is an on-target adverse 360 

effect. TRAIL-R2 is a key receptor for TRAIL, which has been shown to selectively drive tumour cells 361 

into apoptosis. Therefore, considerable effort to agonise TRAIL-R2 for treating cancers has been 362 

made in the past years32. We demonstrated that increased circulating TRAIL-R2 is protective against 363 

prostate cancer, which may suggest that this cancer type should be investigated in clinical trials 364 

evaluating the efficacy of TRAIL-R2 agonists. 365 

Biomarkers can be broadly classified as generic biomarkers for disease risk or prognosis, or as 366 

biomarkers reflecting the activity of specific disease processes or biology. Biomarkers that enable 367 

matching of target mechanisms to patient subgroups with greater than average benefit from 368 

treatment are enablers of precision medicine. We showed that CCR2/CCR5 small-molecule inhibition 369 

modulated circulating levels of CCL-4 and MCP-1, which may suggest that trans-pQTLs can guide 370 

selection of exploratory biomarkers to monitor the efficacy of target mechanisms. We also identified 371 

multiple complex traits causally affecting circulating protein levels. For example, eGFR and BMI 372 

causally influenced over 1/3 of the CVD-I proteins, suggesting that future biomarker studies should 373 

consider these traits as potential confounders. Moreover, the causal phenotype-to-protein 374 

associations may represent pathway-related causality to the complex phenotype of interest; or 375 

alternatively, ‘reverse causality’ which might pose an opportunity to evaluate implicated proteins as 376 



surrogate biomarkers for efficacy in interventional trials 33. We found that higher BMI causally 377 

lowered RAGE, while higher circulating levels of RAGE were causally linked to a lower risk of T2D. 378 

Thus, developing a hypothetical therapeutic to increase RAGE might represent a mechanism by 379 

which it is possible to off-set the risk of T2D arising from the global increases in obesity.  380 

Protein-centric PRS’ may allow stratification of individuals with genetic propensity for high circulating 381 

protein levels. Only 10 % of the protein-centric PRS’ explained 10 % or more of the protein variance 382 

in the independent replication cohort, including ST2, a prognostic biomarker for heart failure34. ST2 383 

showed evidence of inverse causality in asthma and positive causality in IBD. By constructing a 384 

genome-wide polygenic risk score for ST2 levels from the MDC study, applying it to the UK Biobank 385 

and comparing asthma and IBD prevalence across eleven quantiles of the ST2 PRS, estimated the 386 

magnitude of ST2 increase required to decrease the risk of asthma to similar levels as individuals in 387 

the highest ST2 PRS category. Such use of PRS for proteins may be expanded to other disease 388 

endpoints and may be of use in precision medicine, to guide which patients may obtain most benefit 389 

from drugs that pharmacologically alter individual proteins. 390 

In conclusion, our findings provide a comprehensive toolbox for evaluation and exploitation of 391 

therapeutic hypothesis and precision medicine approaches in complex disease. Such approaches 392 

provide an excellent opportunity to rejuvenate the drug development pipeline for new treatments. 393 

 394 
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 396 Figure	and	table	legends	397 
 398 



Figure 1. Chromosomal location of all primary associations at conventional GWAS significance of P 399 

5x10-8. Cis-pQTLs are shown in red (bold) and trans-pQTLs in blue. The gene annotations refer to the 400 

gene closest to the pQTL. 401 

Figure 2. Classification of cis- and trans-pQTL genes. A. The gene ontology label of all cis-pQTL genes, 402 

i.e. the protein-encoding genes. B. The gene-ontology label of all best-guess trans-pQTL genes. C. 403 

Gene set enrichment analysis of genes assigned to all significant trans-pQTLs, showing the top-gene 404 

sets from the Gene Ontology set Molecular Function. 405 

Figure 3. Plasma levels of MCP-1 and CCL4 in human subjects treated with a small-molecule dual-406 

inhibitor of CCR5 and CCR2 (PF-04634817) or placebo. Induction of MCP-1 and CCL4 upon 407 

inhibition of CCR5 and CCR2 mirrors the observed CVD-I trans-pQTLs. 408 

Figure 4. Plot showing plasma levels of SCF in ABCA1 and TRIB1 transgenic mice compared to wild-409 

type controls. Knockdown of ABCA1 or TRIB1 resulted in decreased circulating SCF levels mirroring 410 

CVD-I trans-pQTLs for SCF. Shown in the plot are SCF levels of individual mice represented by filled 411 

circles (wild-type in blue and transgenic mice in red) and the median level per group. 412 

Figure 5. A. Heatmap of Mendelian randomization analyses of 38 complex traits. ICD-10 chapter of 413 

indication and clinical trial stage indicated for each target B. Forest plot showing CVD-I proteins with 414 

strong evidence of causality in the Mendelian randomization analysis. Drug development 415 

abbreviations: PC: pre-clinical, Ph1: Phase 1, Ph2: Phase 2, Ph3: Phase 3, post-MA: post-marketing 416 

authorisation. ICD-10 chapters of disease: A-B: infectious and parasitic; C-D: neoplasms; D: blood and 417 

immune; E: endocrine, nutritional and metabolic; F: mental and behavioural; G: nervous system; H: 418 

eye, adnexa, ear and mastoid; I: circulatory system; J: respiratory system;  K: digestive system; L: skin 419 

and subcutaneous tissue; M: musculoskeletal and connective tissue; N: genitourinary; O: pregnancy, 420 

childbirth, puerperium; P: perinatal; Q: congenital, deformations and chromosomal; R: clinical and 421 

lab findings; S-T: injury, poisoning;  U: provisional assignment (new diseases unknown aetiology); V-Y: 422 

external causes; Z: health status & health services 423 



Figure 6. A. SNP-Heritability in the SCALLOP consortium discovery cohorts stratified by contributions 424 

major loci (light red) and polygenic effects (dark red). In the independent MDC cohort, additional 425 

variability explained by adding major loci (light blue) and polygenic risk scores (dark blue). B. 426 

Differences in how protein levels are affected by polygenic (non-genome-wide significant) loci vs 427 

major loci, shown for both the SCALLOP consortium discovery cohorts as hSNP
2 and for the MDC 428 

cohort as variability explained. 429 

Figure 7. A. Association of a polygenic risk score (PRS) with ST2 levels in the independent MDC 430 

cohort. B. Association of the ST2 PRS with asthma in the UK-biobank. B. Association of the ST2 PRS 431 

with inflammatory bowel disease (IBD) in the UK-biobank. The ST2 PRS was divided into 11 quantiles, 432 

with the middle group (quantile number 6) as the reference category. Effect estimates are presented 433 

as quantile-specific mean differences (ST2) and odds ratios (asthma and IBD) relative to the reference 434 

category. 435 

Figure 8. A. Heatmap showing the causal estimates of 38 complex traits on CVD-I protein levels. B. 436 

Correlation between beta-values for association between body mass index and circulating levels of 437 

CVD-I proteins in the IMPROVE cohort, and causal estimates from the Mendelian randomization 438 

analysis of body mass index genetic liability on same CVD-I proteins. C. Same as B but for estimated 439 

glomerular filtration rate. 440 

Figure 9. Protein-trait relationships that support target validation, repositioning, target-mediated 441 

safety and new candidates for drug development. For more information, see data presented in 442 

Supplementary Table 7. 443 

 444 

 445 

Supplementary Figure 1. Chromosomal location of all primary associations that were selected as 446 

instrument variables for Mendelian Randomization, i.e. those passing Bonferroni corrected GWAS 447 



significance P<5.6x10-10 with replication at nominal p<0.05, or for non-heterogeneous variants 448 

(p<9x10-5), surpassing a P-value threshold of P<5x10-8 in the joint discovery and replication meta-449 

analysis. 450 

 451 

Supplementary Figure 2.  Illustration of the online interactive tools for visualization of genomic loci, 452 

regions and plausible networks (www.scallop-consortium.com). A. Illustration of hotspot loci on 453 

chromosome 10 (left) and illustration of hotspot loci with independent effects established using 454 

COJO analysis (right) B. Circular Manhattan plot for TNF-R2. C. The pathway implicated by trans-455 

pQTLs for plasma TNF-R2. The network shows the likely path from pQTL to TNF-R2. 456 

Supplementary Figure 3. Heat map showing PrediXcan associations across tissues for any protein 457 

with significant associations between protein and predicted mRNA levels (FDR < 0.05) in at least one 458 

tissue. In each cell, numeric labels correspond to the uncorrected P-value from the association of 459 

protein with predicted expression levels. The colour palette shows the relative expression level of the 460 

gene across tissues in the GTeX resource. 461 

Supplementary Figure 4. Effect of exposure to PF-04634817 on EN-RAGE, FGF-23, KIM-1, myoglobin 462 

and TNFR-2. 463 

Supplementary Figure 5. Overview of protein levels having effect on complex phenotypes using 464 

Mendelian Randomization. Similar to figure 5B, but also showing effects with intermediate evidence 465 

strength. 466 

Supplementary Figure 6.  Overview of complex phenotypes having effect on protein levels using 467 

Mendelian Randomization. 468 

Supplementary Figure 7. Work flows describing meta analysis, decisions on significance and the 469 

reasoning behind Mendelian Randomization evidence strength. 470 



Supplementary Figure 8. Meta-regression of quantiles of ST2 polygenic risk score and relative risk of 471 

asthma (left) and inflammatory bowel disease (right).  Values plotted on the x-axis relate to 472 

the quantile-specific mean difference in ST2 as compared to the 6th quantile. Values plotted on the 473 

y-axis relate to the quantile-specific log odds of disease as compared to the 6th quantile. The red line 474 

is the slope derived from the meta-regression across the ST2 quantiles of the PRS on log odds of 475 

disease, weighted by the standard error of the log odds. 476 

Supplementary Figure 9. Comparison of absolute effect sizes of all primary cis- and trans loci listed in 477 

Supplementary Table 2.  478 

 479 

Supplementary Table 1. Information about all measured proteins 480 

Supplementary Table 2. List of all protein quantitative locus (pQTL) associations 481 

Supplementary Table 3. Overview of protein-protein interaction (PPI) and text mining (TM) systems 482 

biology analysis 483 

Supplementary Table 4. Systematic analysis of protein quantitative trait loci (pQTL) in previously 484 

published literature  485 

Supplementary Table 5.  Investigation of overlap between protein quantitative trait loci (pQTLs) and 486 

expression quantitative trait loci (eQTLs)  487 

Supplementary Table 6. Summary-data-based Mendelian Randomization (SMR) using heterogeneity 488 

in dependent instruments (HEIDI) test. 489 

Supplementary Table 7. Overview of gene products targeted by compounds or antibodies that have 490 

been in clinical development  491 

Supplementary Table 8. Overview of participating cohorts 492 



Supplementary Table 9. Overview of external genome-wide association study (GWAS) data used in 493 

mendelian randomization (MR) analyses  494 

Supplementary Table 10. Collation of observational evidence from literature and analysis in the 495 

IMPROVE cohort  496 
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 509 URLs	510 
www.scallop-consortium.com  511 

www.ebi.ac.uk/gwas/ 512 

www.proteinatlas.org 513 

www.uniprot.org 514 



http://www.pantherdb.org  515 

david.ncifcrf.gov 516 

clinicaltrials.gov 517 

www.ebi.ac.uk/chembl 518 

www.drugbank.ca 519 

www.opentargets.org 520 

neic.no/tryggve/ 521 Data	availability	522 
The full summary statistics of the Olink CVD-I protein GWAS have been deposited at the SCALLOP-523 

CVD-I online resource, allowing access to interactive SCALLOP-CVD-I tools and unrestricted download 524 

access for secondary analyses. Additionally, a full copy has been deposited at  525 

https://doi.org/10.5281/zenodo.2615265 for long-term retention. 526 Online	Methods	527 

Selection	of	proteins	528 

Proteins for the Olink PEA CVD-I panel were selected by mining the literature for protein biomarkers 529 

associated with cardiovascular risk or prognosis in human observational studies and in animal models 530 

and by bringing in protein biomarker suggestions from leading cardiovascular disease researchers 10.  531 

The list of proteins curated from these sources was then pruned down based on availability of high-532 

quality antibodies and relative abundance of the proteins in human plasma. 533 

Intra- and inter-plate coefficients of variation (CV) of the CVD-I panel are available from Olink 534 

Proteomics AB (https://www.olink.com/resources-support/document-download-center/). In 535 

addition, we calculated the inter-plate coefficient of variation using data from a pooled plasma 536 

sample in one of the participating cohorts -the IMPROVE study. The mean inter-plate CV was 537 

averaged across proteins was 16.6 %, (range 11 % -26 %) [Supplementary Table 1]. 538 



Cohorts	and	data	collection	539 

Summary statistics from GWAS of Olink CVD-I proteins were obtained from 13 cohorts of European 540 

ancestry. The details of all study cohorts are shown in [Supplementary Table 9]. Together the cohorts 541 

included a total of 21,758 individuals; although the average per-protein sample size was 17,747, 542 

since not all proteins passed quality control (QC) in all cohorts. Each cohort provided data imputed to 543 

1000 Genomes Project phase 3 reference or later or to the Haplotype Reference Consortium (HRC) 544 

reference, which resulted in the testing of 21.4M SNPs. Because imputation schemes varied by 545 

cohort, this resulted in an average of 20.3M SNPs under investigation for each protein. 546 

Each cohort applied quality control measures for call rate filters, sex mismatch, population outliers, 547 

heterozygosity and cryptic relatedness as documented in [Supplementary Table 8]. Prior to running 548 

the genetic analyses, NPX values of proteins (on the log2 scale) were rank-based inverse normal 549 

transformed and/or standardised to unit variance, thus avoiding potential Olink batch-differences 550 

between cohorts. Genetic analyses were conducted using additive model regressions, with 551 

adjustment for population structure and study-specific parameters [Supplementary Table 8]. Forest 552 

plots of cohort-specific effects are available for all significant and suggestive pQTLs using the online 553 

tool. Each contributing cohort uploaded the resulting summary statistics in a standardized format 554 

using a secure computational cluster provided by Neic Tryggve (https://neic.no/tryggve/). All meta-555 

analysis was performed in duplicate at two different research centres using completely separate 556 

bioinformatic pipelines (L.F. and S.G.). 557 

Data	cleaning	and	meta-analysis	558 

A per-protein filtering threshold of >80% samples above the Olink detection limit was applied to each 559 

cohort, leaving data on 90 of the 92 proteins to be analysed. The remaining files had an average of 560 

3% missing samples (per cohort statistics available in [Supplementary Table 8]). Minor allele 561 

frequencies were compared with those reported in 1000 Genomes EUR. A per-SNP filter was applied 562 

based on imputation quality level (at default setting for respective imputation algorithm) and minor 563 



allele count (at least 10 alleles per cohort). This resulted in the omission of 10% of the SNPs. Finally, 564 

meta-analysis was performed using METAL (2011-03-25) 35, applying the inverse-variance weighted 565 

approach (i.e. the STDERR option). Cis-pQTLs were defined as a signal within 1 Mb of the gene 566 

encoding the protein and all other signals were defined as trans-pQTLs. See supplementary figure 7A 567 

for flow chart overview. 568 

Replication	analyses	569 

We sought to replicate the findings in the Malmö Diet and Cancer (MDC) population-based cohort 570 

with 4,678 individuals, and in the Swedish Mammography Cohort Clinical (SMCC, part of the Swedish 571 

national research infrastructure SIMPLER described at www.simpler4health.se) population-based 572 

study of 4,495 women. In MDC, genotypes were imputed to the Haplotype Reference Consortium 573 

reference (HRC Unlimited v1.0.1) and data were analysed using linear regression in EPACTS 3.3.0 574 

(linear Wald test). The genotypes in SMCC were measured using Illumina’s Global Screening Array 575 

and were imputed up to HRC v1.1 and 1000G phase3 (v5), and linear regressions of rank-based 576 

inverse-normal transformed protein values adjusting for age, storage time, and PC1-15 were 577 

performed using PLINK v2 (4 Mar 2019).  578 

Conditional	and	joint	association	analysis		579 

To identify secondary signals at the 401 loci reported in supplementary table 2, we performed 580 

analyses conditioning on the primary signal using conditional-joint analysis in GCTA (version 1.26.0) 581 

36,37. The Stanley cohort was chosen as an ancestrally well-matched LD-reference cohort. Meta-582 

analysis summary data were processed with filtering for MAF (0.01) and r2 (<0.001) to ensure that 583 

secondary association signals identified were not driven by LD with the primary signal.  See 584 

supplementary figure 7B for a flow chart of primary and secondary signals. 585 



Cross-reference	of	pQTLs	with	other	complex	traits	586 

For each pQTL association, we searched PubMed and the EBI GWAS catalogue (URL: 587 

https://www.ebi.ac.uk/gwas/ : November 2018) for published SNPs with any complex trait within 588 

10kb or having an LD of r2 >= 0.85. 589 

Comparison	between	eQTLs	and	pQTL	590 

To identify eQTL that corresponded to each pQTL, we used three independent eQTL studies: 591 

LifeLines-DEEP 38, GTEx39 and eQTLGen40. Each SNP-protein pQTL pair was first converted to SNP-gene 592 

pairs using Olink platform protein identification and the gene annotation of Ensembl v91. Then, the 593 

significance of eQTLs for these SNP-gene pairs was assessed in three eQTL datasets, using two 594 

different cut-offs: a stringent genome-wide significance threshold (P<5x10-8) and a nominal 595 

significance of P<0.05.  596 

In the eQTL dataset of LifeLines-DEEP, individual-level whole blood RNA-seq, protein and genotype 597 

data were available. This allowed for a direct comparison of the concordance of blood eQTLs and 598 

pQTLs. To do so, we re-tested eQTL associations for all pQTL pairs, using a previously published 599 

pipeline 41. The resulting eQTLs were considered genome-wide significant if it passed the 600 

permutation-based FDR <0.05 level, or to be nominally significant if the P-value was < 0.05. 601 

In the eQTL datasets of GTEx v7 and eQTL-Gen, we did not have access to individual level data. Thus, 602 

the comparisons were conducted using publicly available eQTL results.  In these datasets, we 603 

considered an eQTL genome-wide significant if it was within the reported genome-wide significant 604 

list, and nominally significant if it had a nominal P-value < 0.05. Altogether, if one pQTL pair had at 605 

least one significant eQTL effect in any dataset irrespective of allelic direction it was considered an 606 

overlapping pQTL-eQTL pair. 607 

Expression	SMR	analysis	608 

We performed an SMR and HEIDI (heterogeneity in dependent instruments) analysis12 to identify the 609 



expression levels of genes that were associated with protein abundance through pleiotropy using 610 

pQTL summary statistics from this study and cis-eQTL summary data from published studies42,43.  611 

The eQTL summary data used in the SMR analysis were from the Consortium for the Architecture of 612 

Gene Expression (CAGE), comprising 38,624 normalized gene expression probes and ~8 million SNPs 613 

from 2,765 blood samples. The eQTL effects were in standard deviation (SD) units of expression 614 

levels. We excluded the gene probes in the major histocompatibility complex (MHC) region and 615 

included only the gene probes with at least one cis-eQTL at P<5×10−8 (a basic assumption of SMR), 616 

resulting in 9,538 gene expression probes.  617 

The SMR test uses a SNP instrument (i.e., the top associated eQTL) to detect association between 618 

two phenotypes (i.e., gene and protein in this case). The HEIDI test utilises LD between the SNP 619 

instrument and other SNPs in the cis-region to distinguish whether the association identified by the 620 

SMR test is driven by a set of shared genetic variants between two traits (pleiotropic or causal model) 621 

or distinct sets of variants in LD (linkage model)12. Only the associations that surpassed the genome-622 

wide significance level of the SMR test (PSMR < 0.05 / m with m being the number of SMR tests) and 623 

were not rejected by the HEIDI test (PHEIDI > 0.01) were reported as significant.  624 

PrediXcan	and	transcript-wide	association	of	CVD-I	protein	levels	625 

Imputation of gene expression was performed in the IMPROVE study. After standard quality control, 626 

genotypes were pre-phased using Eagle2, and then subsequently imputed by minimac4 using the 627 

1000 Genomes reference. A filter on RSQ 0.8 and minor allele frequency 0.01 was set on the imputed 628 

genotypes prior to prediction with PrediXcan, which used 44 tissue models based on GTEx v7.  629 

Using protein data collected on the CVD-I chip in the same individuals, the associations between 630 

protein levels in plasma and the predicted expression of their respective coding gene across 20 631 

tissues (from the PrediXcan model) were modelled by a linear model in R. False discovery rate were 632 

estimated based on Q-values (using the R package qvalue). In total, 64 genes in one to 18 tissues 633 



were tested for associations between protein levels and predicted expression. Heatmaps were 634 

constructed (using the pheatmap package in R) for any gene with a significant association (FDR<0.05) 635 

in at least one tissue. 636 

Systems	Biology	637 

Two sets of network analysis were performed, one using the protein-protein interaction (PPI) data 638 

from the inBio Map™ (InWeb_InBioMap) and one using significant associations from text-mining 639 

(TM). These two networks each had 13,033 and 14,635 nodes, respectively; and 147,882 and 193,777 640 

edges, respectively. In both setups, the shortest path between any of the cis-gene intermediaries to 641 

the protein was identified; altogether 10,222 pairs were compared. Of the 372 trans-pQTL 642 

associations reported in [Supplementary Table 2], 335 associations had both cis-gene intermediaries 643 

and plasma protein in the network allowing their analysis. The likelihood of a path arising by chance 644 

was calculated by permutation sampling, using 1,000,000 random networks were generated with a 645 

conserved degree distribution. A new algorithm was developed for de novo random network 646 

generation, which generated random networks with a nearly conserved degree distribution in a 647 

feasible time-frame. Further details are available in [Supplementary Notes 1]. 648 

Assignment	of	cis-intermediary	genes	649 

To assign the most plausible causal gene for each of the CVD-I trans-pQTLs we applied a hierarchical 650 

approach based on analysis of InWeb_InBioMap PPI, TM, and genomic distance between gene and 651 

lead variant at each locus. Results were then manually reviewed by literature, gene expression 652 

analysis (proteinatlas.org) and published pQTLs which led to the re-assignment of 52 genes. The 653 

algorithmic gene assignment was overruled or complemented for instances when the assigned gene 654 

was different from the gene assigned by multiple prior studies [Supplementary table 4]. Gene 655 

Ontology analysis of most plausible genes was performed using the DAVID bioinformatics tools and 656 

the GO MF gene set definition, with default settings. The Panther pathway tool, Uniprot and the 657 

Human Protein Atlas were used to classify the genes according to basic functional class (see URLs). 658 



Human	in-vivo	validation	of	trans-pQTLs	659 

PF-04634817 is a competitive dual inhibitor of CCR2 and CCR5 receptors.  In the recent B1261007 660 

study, (ClinicalTrials.gov Identifier: NCT01712061), samples were collected from subjects with 661 

diabetic nephropathy and treated with PF-04634817 for 12 weeks. CCL-2 (MCP-1) was measured in 662 

serum by ELISA at Eurofins (The Netherlands). CCL4 (MIP-1b) and CCL-8 were measured in plasma 663 

using Luminex assays (Bio-Rad, Berkeley, CA). CCL5 (RANTES), was measured in plasma as part of a 664 

multi-analyte panel at Myriad Rules Based Medicine (Austin, TX). 665 

Mouse	in-vivo	validation	of	trans-pQTLs	666 

Plasma from transgenic- and matched control mice were randomised on a PCR plate. The samples 667 

included five mice with targeted deletion of hepatocyte ABCA121 together with five matched control 668 

mice, three mice with whole-body TRIB122 knockdown and three controls and four mice with liver-669 

specific knockdown of TRIB1 and four matched controls. Protein levels of stem cell factor (SCF) was 670 

measured using the Olink PEA Mouse exploratory panel according to the manufacturer’s instruction 671 

(Olink Proteomics, Uppsala, Sweden). The plasma levels of SCF were normalised against average 672 

protein concentrations using information on an additional 91 proteins. TRIB1 whole-body and liver-673 

specific mice were analysed jointly as were the respective wild-type controls. The median plasma 674 

levels of SCF were compared using the Mann-Whitney U test for unpaired samples.  675 

Mendelian	Randomization	676 

To study the causal effects of the protein on selected disease outcomes, we performed two-sample 677 

Mendelian randomization analyses. We used between-study heterogeneity to guide the instrumental 678 

variable selection. In the presence of between-study heterogeneity (P-het<9x10-5), variants had to 679 

surpass a Bonferroni-corrected p-value threshold in discovery (P<5.6x10-10) and show nominal 680 

significance (P<0.05) in the replication studies (9,173 individuals), with directionally concordant beta 681 

coefficients. In the absence of between-study heterogeneity we included variants showing 682 

conventional genome-wide significance (P<5x10-8) in a meta-analysis of the discovery and replication 683 



datasets.  From these, we created two sets of instrumental variables (IVs) for each of the 85 proteins 684 

with variants reaching multiple testing-corrected significance in our discovery GWAS: (a) cis IVs 685 

including one or more independent variants (LD r2=0.001 within ±1Mb of the transcript boundaries of 686 

the gene encoding the protein); and (b) pan IVs including all independent (LD r2=0) variants 687 

associated with the protein, i.e. combining cis and trans pQTLs. The per-allelic beta coefficients from 688 

the main GWAS analyses were used as weights in the IVs. For the outcomes, we obtained the 689 

relevant SNP-to-trait summary statistics from publicly-available GWAS as outcomes [Supplementary 690 

Table 9]. When lead variants from our main GWAS were not available in these summary statistics, we 691 

replaced them with proxies (LD r2>0.85). For each individual SNP-protein and SNP-outcome 692 

association, we generated an instrumental variable Wald ratio estimate, with standard errors 693 

obtained using the delta method. When the instrument included more than one SNP, summary IV 694 

estimates were generated by combining individual SNP Wald estimates by inverse-variance weighted 695 

fixed-effect meta-analysis. We report associations with a Benjamini-Hochberg false discovery rate 696 

(FDR) ≤ 5%, applied separately to summary estimates from cis-pQTL and pan-pQTL IVs, using pooled 697 

estimates for all 38 diseases. We graded the evidence of causality using a framework outlined in 698 

[Supplementary Figure 7], using the following categories: strong (cis-IV estimate FDR≤ 5%); 699 

intermediate (pan-IV estimate FDR≤ 5% with: (i) no heterogeneity between cis-IV estimate and pan-700 

IV estimate; and (ii) no evidence of the MR estimate being unduly influenced by a trans-pQTL in 701 

leave-one-out analysis); or weak (pan-IV estimate FDR≤ 5% but: no cis-pQTL IV available; 702 

heterogeneity between cis- and all- IVs; or evidence of undue influence by a trans-pQTL). 703 

Heterogeneity between pan-IV and cis-IV estimates were calculated using Cochran’s Q tests, with 704 

P<0.05 denoting evidence against the null hypothesis, and applying a Bonferroni adjustment for 705 

multiple testing. Mendelian randomization was conducted in duplicate by two separate analysts and 706 

analyses were performed in Stata (StataCorp, Texas, USA) version 13.3 using the mrivests, metan and 707 

multproc commands and R. Of the 2437 IV estimates derived using cis-pQTL instruments across the 708 

85 proteins and 38 outcome traits, the IV estimates of 50 protein-to-disease associations met the 709 



FDR≤5% (corresponding to an uncorrected P≤1.1x10-3). Of the 3044 IV estimates composed using all 710 

pQTL instruments, 281 IV estimates met FDR≤ 5% (corresponding to P≤ 4.7x10-3; [Figure 5A]. The 711 

decision tree for scoring the strength of MR evidence is available in [Supplementary Figure 7]. 712 Heritability	analyses	713 

We estimated the total SNP-heritability (hSNP
2) for the plasma level of each protein from the summary 714 

statistics of each individual GWAS by summing the contributions from two independent partitions of 715 

the SNPs: primary major loci and polygenic background. We defined the variance explained by 716 

primary major loci (major loci hSNP
2) as the sum of the estimated variance explained (2*β2*f*(1-f)), 717 

where f is the minor allele frequency, and owing to the fact that the phenotypic variance has been 718 

standardized across lead SNPs indexing all primary genome-wide significant loci. We used LDSC 719 

regression44 to estimate the contribution of the polygenic background (polygenic hSNP
2) for each 720 

protein, which we define as the contribution of all loci not indexed by a genome-wide significant lead 721 

SNP. LDSC regression is known to perform poorly when large effect, major genes are present, as it 722 

was derived under the assumption of a simple polygenic genetic architecture44. To account for this 723 

and avoid double counting the variance explained by major loci through LD surrogates, prior to 724 

estimating the LDSC regression polygenic hSNP
2, we censored all SNPs within 10 Mb of genome-wide 725 

significant lead SNPs for all primary loci.   726 

Polygenic	risk	score	calculation	727 

Polygenic risk scores were derived using LDpred algorithm45, which adjusts the effect of each SNP 728 

allele for those of other SNP alleles in linkage disequilibrium (LD) with it, and also takes into account 729 

the likelihood of a given allele to have a true effect according to a user-defined parameter, which we 730 

used as all 7 default LDpred-settings, with values from 1 through 1x10-5. The algorithm was directed 731 

to use HapMap3 SNPs that had a minor allele frequency >0.05, Hardy-Weinberg equilibrium P>1e-05 732 

and genotype-yield >0.95, consistent. Variance explained in the independent MDC-study was tested 733 

according to a step-wise model, first including non-genetic covariates, then additional variability 734 



explained by adding SNPs from genome-wide significant SNPs (major loci V.E.PRS), and then additional 735 

variability explained by adding the 7 LDpred-derived scores as additional covariates (polygenic 736 

V.E.PRS).  737 

ST2	polygenic	risk	score	for	asthma	and	inflammatory	bowel	disease	in	the	UK	738 biobank	739 

Prior to analysis subjects who were not White British (based on self-reported ancestry in 740 

combination with genetic PCA) in the maximum unrelated subset were filtered out. All bi-allelic SNPs 741 

with MAF >= 1% and MaCH rsq >= 0.8 were kept. The Z-score transformed LDpred PRS (wt2) for ST2 742 

was calculated as described for MDC in 337,484 White British UK Biobank participants. Association 743 

with asthma and IBD were tested using logistic regression adjusting for age, sex, PC1-10, genotype 744 

batch using either the continuous PRS or the PRS quantile-bins as predictors. The UK Biobank 745 

protocol has been described previously46 and is available online (https://www.ukbiobank.ac.uk). The 746 

genotype quality control (QC), phasing, and imputation was performed centrally and has been 747 

previously described 47. Outcomes (defined based on self-reported data at baseline and/or the 748 

inpatient and death registry [including primary and secondary causes as well as prevalent and 749 

incident disease]) Asthma: Self-reported touchscreen (6152), self-reported nurse interview (20002), 750 

or ICD-10 "J45". Conflicting self-reported results set to missing unless "J45" was reported.   751 

Inflammatory bowel disease: nurse interview (20002) or ICD-10 K50-K52. 752 

Meta-regression	analysis	for	ST2	PRS,	asthma	and	IBD	753 

We estimated the per-quantile and per-SD associations of the weighted PRS for ST2 (MDC study) on 754 

risks of asthma and IBD (UK Biobank) by taking the quantile associations with ST2, asthma and IBD 755 

and conducting meta-regression analyses whereby the dependent variable was the quantile-specific 756 

logOR and corresponding SE of asthma or IBD and the independent variable was the quantile specific 757 

beta coeffient for ST2. This was conducted using the "metareg" package in STATA SE v13.1 758 

(Statacorp, USA). Plots from the metaregression are presented in [Supplementary Figure 8]. 759 



Observational	evidence	760 

Observational evidence for the CVD-I proteins showing strong evidence of causality in Mendelian 761 

randomization was collated from literature or by de-novo analysis in the IMPROVE cohort 762 

[supplementary table 10]. To identify evidence from literature, we searched for the protein name or 763 

aliases in combination with the implicated trait trait/disease in PubMed. For clinical outcome traits, 764 

only those reported as “significant” by the paper were included, and the table provides the 765 

directional information provided. For quantitative outcome traits, standardised betas and p-values 766 

are reported.  767 
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Target validation
CASP-8: breast cancer

CD40: IBD, RA
DKK1: eBMD

IL-1RA: RA
IL-6RA: RA, CHD

ST2: asthma
TRAIL-R2: prostate cancer

TRANCE: eBMD

New target candidates
EGF: SCZ, eBMD
IL16: 2h glucose

PAPPA: T2D
SPON1: Afib
TF: HbA1c

Repositioning
& target-mediated safety

(latter denoted by *)

ADM: WHR
CASP-8: asthma*

CD40: stroke*
CHI3L1: AFib

CSF: WHR, eBMD
CX3CL1: fracture, SLE

CXCL16: IBD
FAS: IBD

GDF-15: HDL-C
HGF: TG

IL-1RA: total cholesterol*
IL-6RA: asthma, eczema*

IL-6RA: AFib
IL18: eBMD

MMP-12: eczema
PIGF: CHD, eBMD

RAGE: Lipids, BMI, T2D, 
prostate cancer, SCZ

ST2: IBD*
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