

The coherent electromagnetic field and the effect of the pair distribution function

Gustavsson, Magnus; Kristensson, Gerhard; Wellander, Niklas

2021

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Gustavsson, M., Kristensson, G., & Wellander, N. (2021). The coherent electromagnetic field and the effect of the pair distribution function. Abstract from Electromagnetic and Light Scattering Conference.

Total number of authors:

Creative Commons License: Unspecified

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- · You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

The coherent electromagnetic field and the effect of the pair distribution function

Magnus Gustavsson¹, Gerhard Kristensson^{2,*}, and Niklas Wellander¹

P.O. Box 118, SE-221 00 Lund, Sweden

1 Theory and results

The coherent (ensemble average) transmitted and reflected fields from a particulate slab are most commonly computed by the effective wavenumber approach, see e.g. [5]. The effective wave number is obtained from the roots of a determinant relation. An alternative method, presented in [1], solves the coherent transmitted and reflected fields from a particulate slab by solving a system of integral equations in the depth variable. We let a plane wave impinge at normal incidence on the slab, $z \in [0, d]$, containing spherical dielectric particles of radius a. The scattered fields (ensemble average) on either side of the slab, $[z_1, z_2] = [a, d - a]$, are

$$m{E}_{
m s}^{\pm}(m{r}) = rac{3f}{2(ka)^3} \sum_{n} {
m i}^{-l+ au-1} m{A}_n(\pm \hat{m{z}}) k \int_{z_1}^{z_2} {
m e}^{\pm {
m i} kz'} f_n(z') \; {
m d}z' {
m e}^{\pm {
m i} kz}, \quad egin{cases} z > d \ z < 0 \end{cases}$$

The summation is over the multi-index $n = \{\tau, \sigma, m, l\}$, $\tau = 1, 2$, $\sigma = e, o, m = 0, 1, 2, ..., l$, and l = 1, 2, 3..., and $\mathbf{A}_n(\hat{\mathbf{k}}_i)$ are the vector spherical harmonics, see [3] for more details. The volume fraction of the spheres is denoted f. The coefficients $f_n(z)$ satisfies a system of linear, one-dimensional integral equations in z [1], viz.,

$$f_n(z) = e^{ikz} \sum_{n'} T_{nn'} a_{n'} + k \int_{z_1}^{z_2} \sum_{n'} K_{nn'}(z - z') f_{n'}(z') dz', \quad z \in [z_1, z_2]$$

The entries of the kernel in this set of integral equations consist of rapidly oscillating integrals. Fortunately, for the hole correction (HC), these integrals have a closed form solution in terms of a series of spherical waves [2]. Without this analytic solution of the integrals, the integral equation approach offers challenging numerical integration. The particles are completely characterized by the transition matrix $T_{nn'}$, which for a spherical particle is diagonal in its (pairwise) indices. The expansion coefficients of the plane wave in terms of regular spherical vector waves are denoted a_n , see [3].

The hole correction — an adequate approximation for gases and other tenuous media – gives less accurate results for e.g., liquids or other amorphous materials. In this paper, we analyse the effect of the Percus-Yevick (P-Y) approximation of the pair distribution function on the transmitted and reflected fields [4]. This P-Y approximation enlarges the scope of the integral equation approach considerably, and we compare the effect of the P-Y approximation on reflection and transmission from a particulate slab of finite thickness. The kernel entries now include integrals with rapidly oscillating integrands, but, due to the form of the P-Y approximation, the integration interval is accurately approximated by a finite interval, which makes numerical integration feasible.

References

- [1] G. Kristensson. Coherent scattering by a collection of randomly located obstacles an alternative integral equation formulation. J. Quant. Spectrosc. Radiat. Transfer, 164, 97–108, 2015.
- [2] G. Kristensson. Evaluation of some integrals relevant to multiple scattering by randomly distributed obstacles. Journal of Mathematical Analysis and Applications, 432(1), 324–337, 2015.
- [3] G. Kristensson. Scattering of Electromagnetic Waves by Obstacles. Mario Boella Series on Electromagnetism in Information and Communication. SciTech Publishing, Edison, NJ, USA, 2016.
- [4] J. K. Percus and G. J. Yevick. Analysis of classical statistical mechanics by means of collective coordinates. *Phys. Rev.*, **110**(1), 1, 1958.
- [5] L. Tsang and J. A. Kong. Scattering of Electromagnetic Waves: Advanced Topics. John Wiley & Sons, New York, NY, 2001.

¹Swedish Defence Research Agency, FOI, SE-581 11 Linköping, Sweden

²Department of Electrical and Information Technology, Lund University,

^{*}corresponding author's e-mail: gerhard.kristensson@eit.lth.se