LUND UNIVERSITY

Symbolic Evaluation of Certain Complex Integrals

Nilsson, Johan

1994

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Nilsson, J. (1994). Symbolic Evaluation of Certain Complex Integrals. (Technical Reports TFRT-7523).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/7797a26c-994a-4de3-82b9-79678ca9b195

ISSN 0280-5316
ISRN LUTFD2/TFRT--7523--SE

Symbolic Evaluation of
Certain Complex Integrals

Johan Nilsson

Department of Automatic Control
Lund Institute of Technology
August 1994

Document name

Department of Automatic Control INTERNAL REPORT

Lund Institute of Technology Date of issuc
P.O. Box 118 August 1994
S-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--7523--SE
Author(s) Supervisor
Johan Nilsson Karl Johan Astrom

Sponsoring organisation

Title and subtitle
Symbolic Evaluation of Certain Complex Integrals

Abstract

Algorithms to evaluate quadratic loss functions in discrete and continuous time are derived. The algorithms
are implemented in a toolbox for Maple.

Key words
Loss function formulas, Variance evaluation, Computer Algebra, Maple.

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient's notes
English 14

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S-221 03 Lund, Sweden, Fax +46 46 110019, Telex: 33248 lubbis lund.

1. Introduction

Analysis of linear deterministic and stochastic systems with quadratic criteria
leads to a certain class of complex integrals. An early example is given in [4]
where analytic expressions for one type of integral is given for systems of low
order. Similar tables are found in [3]. In [1] it was shown that the integrals can
be computed recursively using algorithms that are closely related to stability
tests using the Routh-Hurwitz (continuous time) or the Schur-Cohn (discrete
time) method. In [2] it is also shown how the integrals are related to the
reflection coefficients associated with a linear transfer function.

In this paper we will present a toolbox in Maple for evaluating the integrals.

2. Problem Formulation

Consider a linear system with the impulse response h(t). The mean square of
the impulse response of the system is

i = /000 h?(t)dt

If the transfer function of the system is

_ B(s)
)= 40s)
it follows from Parsevals theorem that
1 [B(s)B(~s) "
~ i o A(s)A(.s)

Similarly we find that the variance of the output of the system if the input is
white noise is also given by the integral (1), see Figure 1 and [1].

A similar problem for discrete time systems leads to the integral

1 B(z)B(27') dz
= o .7{4 =1 A(2)A(z71) = (2)

u(t) B(s) y(®)
= -
A(S)

Figure 1. Filter driven by the white noise source u(t).

Algorithms to evaluate this type of integrals are given in [1], [3] and [4]. When
evaluating the covariance between the outputs of two filters driven by the same
white noise, see Figure 2, integrals on the form

1 B(2)C(2"") dz
~ omi ff,lﬂ A(2)A(zY) = (3)

B(s) b ()
-
u(t) A(s)
C(s) y, (1)
—
A(s)

Figure 2. Two filters driven by the white noise source u(t).

and

1 [* B(s)C(-s)

= 211)i A(2)A(=8) ™ ()

appears.

To evaluate these integrals the algorithms in [1] have to be generalized.

3. Derivation of Algorithms

The generalized algorithms are derived in the same way as Theorem 5.2.3 and
Theorem 5.3.3 in [1]. Introduce

1 % Bi(s)Ci(—3)

= — d
271 J—ioo Ak(8)Ar(—s) y

I

where the polynomials A,(s) and By(s) are defined by (5.3.9) and (5.3.10) in
[1], and
Cr(s) =chs*F P4 cks* 2+ .+ cf

which is defined recursively from
Cu(s) = C(s)
Ci-1(s) = Cu(s) — 1eAs(s)

We observe that I, = I. An algorithm to calculate I follows from the following
theorem.

THEOREM 1
Assume that the polynomial A(s) has all its roots in the left half plane. Then

1, - .
Iy =11 + 5(7k,6k + BrFr — ﬁ(’;‘yk) k=1,2,..,n
k
IO = 0

where
ap = “Bp

ﬂk:_k

~ b’lc

Br = =%
ag

k

_ ¢
T = %
ay

. ck
Ye — %
ag

Proof:
The proof is done as Theorem 5.3.3 in [1] with the change that

1 tco—¢ Bk 1(3)Ck 1(5)
Tes Eﬁf_,w_e Ae(0) A=) =7

By (s)Cx(—3) s) g — By(5)Ar(—3) .
= 27rz{/ 2() A=) " Zy(o)Aa(=s)"

N Ay(s)Cx(—5) s Ay(s)Ax(-9)
B A4 PRl TNAYNERY
1ﬁk7k

1 -
=1 - §7k,6k ﬂk’)’k + 2 o

From this it follows that

,Bk')'k)

1, - .
Iy =I_, + 5(7k,3k + BrAr —
Qg

which completes the proof. O

In the same way the discrete variant of the theorem, Theorem 5.2.3 in [1], can
be generalized. Introduce

1 Bk(z)Ck(z‘l)E

=55 }',{,,=1 (D) Ae(z) 2 (5)
where Ai(z) and By (z) are defined by (5.2.5) and (5.2.6) in [1], and
Cr(z) = c2f + i1+ .+ cf
with the recursion

Cu(2) = C(2)
Cr_1(z) = 27 {Ci(2) — 1 Ax(2)}

As in the continuous case we observe that I = I,,. An algorithm to calculate
I, follows from the following theorem.

THEOREM 2
Let the polynomial A(z) have all its zeros inside the unit circle. The integrals
I, then satisfy the following recursive equation

L= (1—-of) oy + B k=1,2,..,n
Iy = ﬂo‘)’o

where

Te = %

Proof:
The proof is done as in Theorem 5.2.3 of [1] with the change that

1 1 Bk_l(Z)Gk_l(Z_l) dz
ot ff|—1 z

" 1-of 2mi A,() A=) 2
and thus
& _ 1 [B(2) — Bedi(2)][Ci(z7") — mAi(z7Y)] dz _
(1-a})Lr =]{4:1 s -

_ L By(2)Cr(27") dz _ ‘7_'6]{ By(2)Aj(27") dz
211 Jz =1 A(2)Ak(z7Y) 2 2w Jig=1 Ai(2)Ar(27Y) 2

_ ﬂ_k][A;(2)Cx(27) dz n :Bk'Yk]{ Au(2)Ai(z7Y) dz _
211 J)z =1 Ax(2)Ar(271) 2 2mi Jiz=1 Ar(2)Ax(271) 2

= Iy — B — Brve + Beve = It — Br e

When k = 0 we get from (5) that

1 bd ¢ dz
I=— 5=¢— = BoYo

- 2 0 0
2w1 J|z=1 @9 G 2

And the proof is completed. O

4. Examples

Functions to evaluate the integrals (1)-(4) have been implemented in Maple.
The implementation of these functions are given in Appendix A. The use of
these functions is illustrated with some examples.

ExaMPLE 1

Consider the setup in Figure 1, where
B(s)=2s5+1
A(s)=s"+45+3

and u(t) is white noise with unit variance. The variance of the output, y(t),
can then be calculated with the following Maple sequence.

> read ‘/home/johan/maple/var‘;
> B:=2%g+1:

> A:=5"2+4%s+3:

> filtvarc(A,B);

The answer is 13/24. For the theorem to be applicable stability of A(s) is
needed. This is easily checked with the following Maple command

> stabtestc(d);

This expression evaluates to true, i.e. the filter is stable.

We can verify this directly by residue calculus. The function
B(s)B(—s) (2s +1)(-25+1)
A(s)A(=s) (s+1)(s+3)(s—1)(s-3)

This function has the poles s; = —1 and s; = —3 in the left half plane. The
residues corresponding to these poles are

R — (=2+1)(2+1) 3
YT (-1+3)(-1-1)(-1-3) 16
R, - (-6 +1)(6+1) 35

T3+ 1)(—3-1)(-3-3) 48
It follows from residue calculus that the integral is

;- _3 /3 _13
~ 16 48 24
Another approach (Warning!) could be to directly calculate the integral in (1).
This has been seen to "work”, i.e. possible to do analytically by Maple’s int
function , for A(s) of lower degree than two. By the change of variable ¢ = is
equation (1) can be written as
1 > B(—it)B(it)

T=or | A(=iv)AGt)

Maple code to evaluate this is given below
> B:=2x%s+1:
> A:=s"2+4%s5+3:

> 1/(2*%Pi)*int (subs (s=-I*t,B)*subs(s=I*t,B)
/ (subs(s=-I*t,A)*subs(s=I*t,A)),t=-infinity..infinity);

You get the erroneous answer 35/24. The calculation goes wrong somewhere
in Maple’s int function. By changing the code a bit you get round this bug.

> B:=2%s+1:
> A:=s72+4%s+3:
> 1/(2%Pi)*int(collect (subs(s=-I*t,B)*subs(s=I*t,B),t)
/collect ((subs(s=-I%t,A)*subs(s=I*t,A)),t)
,t=—infinity..infinity);

This again gives you the correct answer. O

ExaAMPLE 2

Consider the setup in Figure 2 where u(t) is white noise with unit variance.
The filters are given by

A(z) =22+ a1’ + a2+ as

B(Z) = b022 + b]_Z + b2

C(z) = oz’ + c12+ ¢

E yy(t)y:(t) is calculated with the following Maple sequence.

> read ‘/home/johan/maple/var‘;
> A:=z"3+al*xz"2+a2*z+a3;

> B:=b0%z"2+b1%z+b2;

> C:=c0*z"2+cl*z+c2;

> vard(4,B,C);

The following result is obtained

— (=baaZcz + bacy — brazczay + boalc, — boaser + baaley + baascoay + boaiczas
— boajcoaz — biazascs — bicoas + biey + azbaasey + azbiczas — boaico — baascy
— byczay — bycial — a2bocy — a2byeo — bocaaz — baazco + boco + bociasaz

+ byagzazco + agbacs + azboco + azbicy)/(—a3 — aja; + aZa? + azal + 24}

2 2 3 2 3 2 2 2
+ azay + aza; — a1a3a; — 4asaia; + aza; — 1+ a; — a; — aza; + aj + az)

The answer is correct if the coefficients of A(z) is such that A(z) is stable.
Stability of the filters is a condition for the theorems to hold. Stability of the
polynomial A(z) can be checked with the following command in Maple.

> stabtestd(4);

This results in an expression that evaluate to true iff A(z) is stable. O

ExAMPLE 3

In [4] a table of integrals on a similar form to (1) is supplied in an appendix,
see Figure 3.

For instance we can try to reproduce the table value I3. Factor gs(z) as

ga(e) = boz* + bla® + b, =

= (v/boz? + \/2v/bobz — biz + vbs)(v/boz? — \/2v/bobz — biz + v/by) =

= B(z)B(-z)

and chose
A(z) = ha(z) = aoz® + a12® + azz + a3

The table value, or the Maple implementation if you want, is checked by the
following Maple sequence.

> read ‘/home/johan/maple/var‘;

> A:=al*s " 3+al¥*s"2+a2*s+a3;

> B:=sqrt(b0)*s~2+sqrt (2*sqrt(b0) *sqrt (b2)-b1)*s+sqrt(b2);
> MapleRes:=filtvarc(4,B);

> I3:=(-a2%b0+a0*bl-aO*al*b2/a3)/(2*a0*(a0*a3~al*a2));

> simplify(I3-MapleRes);

The result is 0, which of course means that we get the same answer by the
table in [4] and by the Maple procedure. The following expression evluates to
true iff the polynomial A(s) is stable.

> stabtestc(4); O

APPENDIX
TABLE OF INTEGRALS

The following is a table of integrals of the type

— 1 “ gn(z)

I = 2_76 /— L] i }a.,(:r:)h,.(—:t:)’
ha(z) = aoz™ + ai@z™ 1+ + * 4 an,
ga(z) = bo?? + bt + -+ bay,

and the roots of hn(z) all lie in the upper half plane. The table liststhe
integrals I, for values of n from 1 to 7 inclusive.!

where

b

I = 2a0ay

by + B
I = - 2

i 20001

—abo + acby — aoz:bz
I3 = 2(10((10(13 - alag) o

bo(—aias + A2G3) — aoasbs + @oaibs a{i—?s (aoas — a1az)
Iy =

2ao(@oal + aiaq — 01a203)

Figure 3. Table of integrals from [4]. Only table entries up to order four is
displayed. The whole table contains integrals up to order seven, which is an ex-
pression that covers just over a half page. A similar table for systems up to order
ten is given in [3].

Appendix A

This appendix contains a straightforward implementation of the algorithms
described in the previous sections. The maple functions are named

filtvard(A,B) Evaluate integrals on the form (2)
filtvarc(4,B) Evaluate integrals on the form (1)
vard(4,B,C) Evaluate integrals on the form (3)
varc(A,B,C) Evaluate integrals on the form (4)
stabtestd(A) Test stability of discrete time polynomial
stabtestc(A) Test stability of continuous time polynomial

The functions are stored in the file /home/johan/maple/var, and are included
in MapleV with the command >read ‘/home/johan/maple/var‘;.

#Functions to evaluate loss functions in continuous and discrete time.
#Author Johan Nilsson , Dept. of Aut. Control, LTH, SE, 930618
#Reference: Astrom Karl Johan, 1970.

Introduction to Stochastic Control Theory.
New York: Academic Press.
Page 115-142

LR i T S S D R R S S S S
FHEEFEASEEHERBRRE HELP TEXTS #4338 EREE RN RN
T S s SR R SR e s R R S

‘help/text/filtvarc’ := TEXT(
‘FUNCTION: filtvarc - calculate the variance of filtered white noise®,
¢ in continuous time. The polynomials A and B should’,

‘ be in the operator s.°,

¢ 4

‘CALLING SEQUENCE: filtvarc(4,B);°,

¢ ¢
»

‘SEE ALSO: varc,filtvard,vardstabtestc,):

‘help/text/filtvard® := TEXT(
‘FUNCTION: filtvard - calculate the variance of filtered white noise‘,
¢ in discrete time. The polynomials A and B should‘,

i be in the operator z.°,

¢ 4

*CALLING SEQUENCE: filtvard(4,B);°‘,

4 ¢

‘SEE ALSO: vard,filtvarc,varc,stabtestd’):

‘help/text/vard‘ := TEXT(
‘FUNCTION: vard - evaluate the integral’,

¢ 1 | B(z)*C(z"-1) dz‘,

The polynomials A,B and C should be in the operator z. ¢,

3 ¢

‘CALLING SEQUENCE: vard(A,B,C);°,

4 4
B}

‘SEE ALSO: filtvard,filtvarc,varc,stabtestd‘):

‘help/text/varc‘ := TEXT(
‘FUNCTION: varc - evaluate the integral’,

t / ¢

¢ 1 | B(s)#C(-s) °,
e | ds‘,
f 2piI | A(s)*A(-s) °,

11 / f’

! The polynomials A,B and C should be in the operator s.°,

[} 4

‘CALLING SEQUENCE: varc(A,B,C);°‘,

¢ [4
3

‘SEE ALSO: filtvarc,filtvard,vard,stabtestc‘):

‘help/text/stabtestc’ := TEXT(
‘FUNCTION: stabtestc — test stability of polynomial in continuous time°,

1 4
>

¢ The polynomial A should be in the operator s.°‘,

¢ ¢

‘CALLING SEQUENCE: stabtestc(A);*,

¢ ¢

‘SEE ALSD: stabtestd‘):

‘help/text/stabtestd’ := TEXT(
‘FUNCTION: stabtestd - test stability of polynomial in discrete time‘,

¢ ¢
>

¢ The polynomial A should be in the operator z.‘,

¢ «

‘CALLING SEQUENCE: stabtestd(A);‘,

4 ¢

‘SEE ALSO: stabtestc‘):

ERE SRS P D IS D DR S s s s e D I s S 2
BREBHBRBERERRANE CODE HHHEHHHRERHHRAR B HH R BRI A S8
RERHHBRH SRR SR R R R R

HHH R H R HR R Tiltvarc SHHEHSEHHHEEEEER SR RN
filtvarc := proc(4,B)
local k,Ak,Akt,Bk,V,alpha,beta,n:
if not type(A, ’polynom’) and type(B, ’polynom’) then
ERROR(‘A and B must be polynomials‘)
fi:

n:=degree(A,s):

alpha:=array(l..n):
beta:=array(l..n):

Ak:=array(1l..n):
Akt :=array(1l..n):
Bk:=array(l..n):

Ak[n]:=A:
Akt[n]:=1/2*(Ak[n]—(—1)“(degree(Ak[n],s))*subs(s=—s,Ak[n])):
Bk[n]:=B:

alpha[n] :=coeff(Ak[nl,s,n)/coeff(Ak[n],s,n-1}:

betaln] :=coeff (Bk[n],s,n-1)/coeff(Ak[nl,s,n-1):

for k from n-1 by -1 to 1 do
Ak[k] :=collect (Ak[k+1]-alpha[k+1]*s*Akt[k+1],s):
Bk[k] :=collect (Bk[k+1]-beta[k+1]*Akt[k+1],s):
Akt [k] :=collect (1/2% (Ak[k]1-(-1) " (degree (Ak[k],s))*subs(s=-s,Ak[k])) ,s):
alpha[k] :=coeff (Ak[k],s,k)/coeff (Ak[k]l,s,k-1):
betalk] :=coeff (Bk[k],s,k-1)/coeff (Ak[k],s ,k-1):
od:

V:=0:

for k from 1 to n do
V:=V+beta[k] "2/ (2*alphalk]):

od:

simplify(V):
end:

#HtHEHERERERBEREE Filtvard HESHEHEREEHEREREHH A RERRA RS L1 S
filtvard := proc(4,B)
local k,Ak,Aks,Bk,V,alpha,beta,n:
if not type(A,’polynom’) and type(B,’polynom’) then
ERROR(‘A and B must be polynomials‘)
fi:

n:=degree(A,z):

alpha:=array(0..n):
beta:=array(0..n):
Ak:=array(0..n):
Bk:=array(0..n):

Ak[n] :=collect(A,z):
Bk[n] :=collect(B,z):
alpha[n] :=coeff (Ak[n],z,0)/coeff (Ak[n],z,n):
betaln] :=coeff(Bk[nl,z,0)/coeff(Ak[n],z,n):

for k from n-1 by -1 to 0 do
Aks:=z" (k+1) *subs (z=z" (-1) , Ak[k+1]) :
Ak[k] :=collect (z" (-1) * (Ak [k+1] -alphal[k+i]*Aks) ,2z):
Bk[k] :=collect(z" (-1)* (Bk[k+1]-betal[k+1] *Aks) ,z):
alpha[k]:=coeff(Ak[k],z.O)/coeff(Ak[k],z,k):
betal[k] :=coeff (Bk[k],z,0)/coeff (Ak[k],z,k):

od:

V:=betal[0]"2:

for k from 1 to n do
V:=(1-alphal[k] “2)*#V+betal[k] "2:

od:

simplify(V):
end:

FREPEEHHERESERERE vard SHPEREHEHIH S SRR R
vard := proc(4,B,C)
local k,n,Ak,Bk,Ck,Aks,alpha,beta,gamma,V:
if not type(A,’polynom’) and type(B, ’polynom’) and type(C,’polynom’) then
ERROR(‘A,B and C must be polynomials‘)
fi:

n:=degree(4,z):

10

alpha:=array(0..n):
beta:=array(0..n):
gamma:=array(0..n):
Ak:=array(0..n):
Bk:=array(0..n):
Ck:=array(0..n):

Ak[n]:=collect(A,z):
Bk[n] :=collect(B,z):
Ck[n] :=collect(C,z):
alphaln] :=coeff(Ak([n],z,0)/coeff (Ak[n],z,n):
betal[n] :=coeff (Bk[nl,z,0)/coeff(Ak[n],z,n):
gamma [n] :=coeff (Ck[n],z,0)/coeff(Ak[n],z,n):

for k from n-1 by -1 to 0 do
Aks:=z" (k+1) #subs (z=z" (-1) ,Ak[k+1]):
Ak[k] :=collect (z" (~1)* (Ak [k+1]-alpha[k+1]*Aks) ,z):
Bk[k] :=collect(z"~ (-1)*(Bk[k+1]-betal[k+1]*Aks),z):
Ck[k]:=collect(z" (-1)*(Ck [k+1]-gamma[k+1]*Aks) ,z):
alpha[k] :=coeff (Ak[k],z,0)/coeff (Ak[k],z,k):
betal[k]:=coeff (Bk[k],z,0)/coeff(Ak[k],z,k):
gamma [k] :=coeff (Ck[k],z,0) /coetf (Ak[k],z,k):

od:

V:=beta[0]*gamma[0]:

for k from 1 to n do
V:=(1-alpha[k] "2) *V+beta[k] *gamma [k] :

od:

simplify(V):
end:

FHERARHEHERRHERRR varc BHHEHEREERESHEHEHEHHEHHE SR
varc := proc(A,B,C)
local k,Ak,Akt,Bk,Ck,V,alpha,beta,n,gamma,betal,gammal:
if not type(A,’polynom’) and type(B, 'polynom’) then
ERROR(‘A and B must be polynomials‘)
fi:
if not ((degree(C,s)<degree(A,s)) and degree(B,s)<degree(A,s)) then
ERROR(‘B and C must be polynomials of lower order than A‘)
fi:

n:=degree(A,s):

alpha:=array(l..n):
beta:=array(1l..n):
gamma:=array(l..n):
betal:=array(l..n):
gammal:=array(l..n):

Ak:=array(l..n):
Akt :=array(i..n):
Bk:=array(1l..n):
Ck:=array(i..n):

Ak[n] :=collect(A,s):

Akt [n] :=collect(1/2%(Ak[n]-(-1) " (degree(Ak[n],s))*subs(s=-s,Ak[n])),s):
Bk[n]:=collect(B,s):

Ck[n] :=collect(C,s):

alphaln] :=coeff(Ak[n],s,n)/coeff (Ak[nl,s,n-1):

11

betaln] :=coeff (Bk[n],s,n-1)/coeff(Ak[n],s,n-1):
betailn] :=coeff (Bk[n],s,n-1)/coeff(Ak[n],s,n):

gamma[n] :=coeff (Ck[n],s,n-1)/coeff (Ak[n],s,n-1):
gammai[n]:=coeff(Ck[n],s,n—l)/coeff(Ak[n],s,n):

for k from n-1 by -1 to 1 do
Ak[k]:=collect (Ak[k+1]-elpha[k+1]*s*Akt[k+1],s):
Bk[k] :=collect (Bk[k+1]-beta[k+1]*Akt[k+1],s):
Ck[k] :=collect (Ck[k+1]-gamma [k+1] Akt [k+1],s):
Akt [k] :=collect (1/2* (Ak[k]-(-1) " (degree (Ak[k],s))*subs(s=-s,Ak[k])),s):

alphalk] :=coeff (Ak[k],s,k)/coeff (Ak[k],s,k-1):
betalk] :=coeff (Bk[k],s,k-1)/coeff(Ak[k],s, k-1):
gamma[k]:=coeff(Ck[k],s,k—l)/coeff(Ak[k],s,k—i):
betall[k]:=coeff (Bk[k],s,k-1)/coeff(Ak[k],s,k):
gammai[k]:=coeff(Ck[k].s,k—i)/coeff(Ak[k],s,k):

od:

V:=0:

for k from 1 to n do
V:=V+1/2*(gamma[k]*beta1[k]+beta[k]*gammal[k]-beta[k]*gamma[k]/alpha[k]):

od:

simplify(V):
end:

HARRHRERBARRARANYE stabtestc HHEHHEREIRERRRRAFRBRHR RS A1
stabtestc := proc(d)
local k,Ak,Akt,alpha,n,V:
if not type(4,’polynom’) then
ERROR(‘A must be a polynomial‘)
fi:

n:=degree(d,s):
alpha:=array(i..n):

Ak:=array(1l..n):
Akt:=array(1..n):

Ak[n]:=A:

Akt [n] :=1/2%(Ak[n]-(-1) " (degree(Ak[n],s))*subs(s=-s,Ak[n])):
alphaln] :=coeff(Ak[n],s,n)/coeff (Ak[n],s,n-1):
V:=(coeff(Ak[nl,s,n)>0) and (coeff(Ak[n],s,n-1)>0);

for k from n-1 by -1 to 1 do
Ak[k] :=collect (Ak[k+1]-alphal[k+1]*s*Akt[k+1],s):
Akt [k] :=collect (1/2%(Ak[k]-(-1) " (degree(Ak[k],s))*subs(s=-s,Ak[k])),s):
alphalk] :=coeff (Ak[k],s,k)/coeff (Ak[k],s,k-1):
V:=V and coeff(Ak[k],s,k-1)>0;
od:

v:
end:

FHFHRARERAF AR stabtestd HHHHEREHERBRERIHRRERBRRSHERAHLH 2

stabtestd := proc(A)
local k,Ak,Aks,V,alpha,n:
if not type(4,’polynom’) then

12

ERROR(‘A must be a polynomial‘)
fi:

n:=degree(A,z):

alpha:=array(0..n):
Ak:=array(0..n):

Ak[n] :=collect(A,z):
alpha[n] :=coeff (Ak[n],z,0)/coeff (Ak[n],z,n):
V:=coeff(Ak[n],z,n)>0:

for k from n-1 by -1 to 0 do
Aks:=z" (k+1) #subs (z=z" (-1) ,Ak[k+1]):

Ak[k] :=collect (z" (-1)*(Ak[k+1]-alphalk+1]#Aks) ,z):

alphalk]:=coeff (Ak[k],z,0)/coeff (Ak[k],z,k):
V:=V and coeff (Ak([k],z,k)>0:
od:

v:

end:

13

References

[1] Karl J. Astrém. Introduction to Stochastic Control Theory. Academic
Press, Inc., 1970.

[2] Karl Johan Astrém. Evaluation of quadratic loss functions for linear sys-
tems. In Symposium on Fundamentals of Discrete-Time Systems, Chicago,
Ilinois, 1992. A meeting in honor of Professor Eliahu I. Jury.

[3] James F. Kaiser George C. Newton JR., Leonard A. Gould. Analytical
Design of Linear Feedback Controls. John Wiley & Sons, Inc., 1957.

[4] Ralph S. Phillips Hubert M. James, Nathaniel B. Nichols. Theory of Ser-
vomechanisms. McGraw-Hill Book Company, Inc., 1947.

14

