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Figure 1. The multi-input multi-output control system.

1. Introduction

Automatic start-up procedures for single-input single-output (SISO) control
systems are included in many industrial controllers. In this report, the multi-
input multi-output (MIMO) problem is considered. It is highly motivated since
MIMO processes are very common in practice, for instance in chemical pro-
cess control systems. Today much engineering knowledge is used to design
these control systems; knowledge that probably to some extent could be im-
plemented in an automatic procedure. A collection of ideas is given below on
how an automatic start-up procedure for multivariable control systems could
be planned.

The goal of the start-up procedure described in this report is to, under
secure conditions, estimate a process model good enough to be used for ini-
tiation of further experiments or controller design. A block diagram of the
control system is shown in Figure 1. The thick lines illustrate the fact that
there are several reference, control, and measured signals in the system. There
are m control signals collected in v = (uy,...,Un) and p measured signals
¥y = (¥1,...,Yp). In the following, the control signals are often called the in-
puts (to the process) and the measured signals the outputs (from the process).
It is required that as little prior information as possible about the process
should have to be added in the start-up procedure. The considered MIMO
processes are assumed to be well approximated by a linear system and stable;
for instance, no integrating processes are allowed. The number of inputs and
outputs are assumed to be between five and fifteen. To avoid problems with
initial states, the processes are assumed to be in steady-state at the beginning
of the start-up procedure.

The MIMO start-up procedure must be far more complex than a SISO
procedure. Possible cross couplings in the MIMO process cause one or more
control signals to affect several outputs. These cross couplings have to be
determined by the start-up procedure since they will highly influence the choice
of controller structure. Also, the cross couplings may affect the identification
experiments. An example of problems that can arise if SISO autotuning is
generalized in one particular way is showed in [Johansson, 1993].

We have chosen to divide the start-up procedure into three main steps.
They are

e Operator inputs,
e Step response experiments, and
e Interaction analysis.

These steps should then be followed by controller design or further modeling.
The schedule is summarized in Figure 2. The operator inputs are assumed
to be entered by a process engineer. Prior knowledge about the process can
be used to enhance the quality of the modeling by, for instance, suggesting
a relevant sample interval. Steps are used as excitation signals and through

1



Q
©
=
o+
[x]
o
=
]
L]

e Design

Ste s N
Operator g Interaction
Response .
Inputs . Analysis

Experiments i e |
. | |
i 1
. Q\: Further |
! Modeling \
\ I

Figure 2. A schematic view of the start-up procedure.

the step-response experiments data are collected, which are used in the
interaction analysis to produce a simple model of the process plant. Out of
this model, possible control structures are suggested.

Section 2, Section 3, and Section 4 are devoted to the three steps in the
MIMO start-up procedure, respectively. In Section 5, the procedure is applied
to a paper machine process. A short summary is given in Section 6, together
with ideas about future developments. Finally a number of MIMO processes,
useful as simple test examples, are listed in the appendix.

2. Operator Inputs

The reason for having an input phase in the start-up procedure is to allow the
user to include process knowledge in the procedure. This might, for instance,
shorten the experiment time or give experiment results with a higher accuracy.
But since all inputs have “intelligent” default values, it is also possible for the
operator to simply confirm the given values.

The operator inputs are

Sample interval,

Step amplitude,

Step time,

Maximum output deviation,

Degree of input and output criticality, and

o ot o

Known dynamics,

In Figure 3, an example is shown on an operator interface implemented in
Matlab [MathWorks, 1992]. This interface originates from the paper machine
example in Section 5.

In the main window “Operator Interface”, there is a block illustrating the
paper machine with its five inputs and five outputs. Above the block diagram,
the operator can confirm or reject the suggested sample interval.

Connected to process input three, an “Edit Input Characteristics” window
is opened. In this example, u; happened to be the slice opening control signal.
A step amplitude for the following step response experiment is suggested. The
amplitude is given in percent, which here is an absolute value. It is assumed
that the actuators signals are tuned such that the steady-state control signal
is in the approximate interval 10-90%. A good estimate of the required step
amplitude can be found by applying consecutively higher and higher steps to
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Figure 3. Operator interface used for the paper machine example in Section 5.

the input and stop when a sufficient change in the measured outputs is noticed.
The length of the step is given by the step time parameter. A too short step
may not let the step experiment reveal the dynamics of the coupling, and a too
long step gives a start-up procedure which takes unnecessarily long time. If
an input is specified to be critical, it can be used to suggest an overall sample
interval relevant for the dynamics connected to that input.

Connected to process output two an “Edit Output Characteristics” win-
dow is opened. In this example, the measured signal is the fibre concentration
in the wire pit. A mazimum deviation of the output signal is suggested. It is
given in percent in the same way as the input step amplitude. It can also be
specified, how critical an output is.

Related to each input—output pair is an “Edit Dynamics” window. If an
estimate of the dynamics is known, it can be entered here. It is specified as the
average residence time, which is a rough measure of the time it takes for the
step response to settle [Astrdm and Hagglund, 1994]. For instance, the known
dynamics can be used to improve the suggestion of step time. The static gain
is also important for the experiment set-up, thus it would be reasonable to
include it as a parameter to be specified if it is known.

3. Step-Response Experiments

To identify the model of the plant, it has to be affected by test signals. In
our approach, double step signals are consecutively applied to all inputs. This
gives the following scenario. A double step of the shape shown in Figure 4 is
applied to input 1 (u,). The time length of the positive part of the step (t;)
is equal to the length of the negative part, as shown in the figure. After all
measured outputs are settled, a double step of length ¢, is applied to u,, etc.
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Figure 4. The input signal for the identification experiments is a double step.

In this way there will be m double steps, equal to the number of inputs. The
amplitude @; of each step is determined in the way described in Section 2.

While doing step-experiments on a real process, it is important that the
process states do not move far away from the operating point. Being close to
the operating point is necessary because of safety reasons, but also since the
linear model to be estimated is only a good approximation in a neighborhood
of that point. There are often certain limits the measured outputs are not
allowed to exceed. In our start-up procedure, the specification of these limits
was described in Section 2. Upcrossings of the limits are avoided by a simple
linear prediction. In the case of no predicted upcrossings, the length of the
positive part of the step (¢; in Figure 4) is equal to the step time specified in
the operator input phase. However, this time is shortened if an upcrossing is
predicted in one of the outputs. The prediction is done in the following way.
Consider one of the outputs y;, see Figure 5. At time ¢; it has reached the
level marked with an asterisk. If we approximate y; at ¢; with a straight line,
it follows the equation

yi(t) = v (t— 1)+ y;(t:) (1)

where v is the slope of the line, that is, v = g;(t;). Assume the negative part
of the double step is applied at t; as shown in Figure 4. Since the process is
linear and the step response, without the negative step applied, follows (1), it
is possible to derive an approximate value of y;(2t;). This gives an equation
for the second straight line in the figure:

y; (t) = vt; + y;(t:) — 2y;(8) — v - (¢ — 24) = —vt + 3vt; — y;(t:) (2)

The intersection of the lines (1) and (2) is, for a broad class of systems, above
the true maximum for y;(¢),t € (¢;,2t;).! Hence, the intersection can be treated
as an estimate for the maximum of y;. The estimate is given by

U; = vt;

The upcrossing prediction described above is done in real-time. Thus,
whenever g; exceeds its maximum deviation limit (described in Section 2), the

1 Typically this holds for processes with step responses like the one in Figure 5. It is
also easy to handle non-minimum phase processes just by switching off the upcrossing
prediction for a short time interval in the beginning of the step experiment.
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Figure 5. Upcrossing is avoided by linear prediction. The positive step is inter-
rupted if §; exceeds the maximum deviation limit.

negative step is applied. Also, since the process is MIMO, the first upcrossing
predicted in any output j € {1,...,p} acts as a trigger. Data from the m
step-response experiments from the p outputs are logged. They are used in
the modeling described in the next section.

Notice that after a double step experiment, the process will ideally remain
in its initial state. This is the main reason for using double steps instead of
single steps. Also, notice that the upcrossing prediction described above is
quite a crude approximation. It is possible not only to use the derivative of
y; at each time instant #; to estimate an upcrossing, but also the whole range
of data collected from t € (0,¢;). These data can be used to identify a more
complex model in real-time and thus, give a better prediction of upcrossings.

4. Interaction Analysis

The interaction analysis is divided into two parts: derivation of a process model
and analysis of the model. The chosen class of process models is characterized
by transfer function matrices G with elements consisting of first-order transfer
functions with time delays, that is,

G11(8) ... Gim(s)
G(s)=| : E
Gpi(s) ... Gpm(s)
where K.
Gji(s) = T;Tﬁe_d” (3)

The estimation and analysis of this model are described below.

Modeling

The parameters of each transfer function G;; are determined from the data
collected in the way described in Section 3. The so called method of weighted
moments is used to estimate G,;. It was suggested in [Bernhardsson and Pers-
son, 1990], but is also thoroughly discussed in [Astrém and Hagglund, 1994].
The ideas are recalled here. Let Y¥; and U; be the Laplace transforms of y; and
u;, respectively. Then the relation Y;(s) = G,i(s)Us(s) holds. By taking the
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derivative of Y; and U;, at a certain real valued point s = a, we get from the
definition of the Laplace transform

YPa) = (-1 [ ety (4)
U™ (a) = (~1)" / " oty (f)dt (5)

Hence, the signals y; and u; can be seen as weighted by the function e~*%".
In this way, it is possible to derive an estimate of Gj;(a) and its derivatives
Gji(a) and GY;(a). We also derive these three quantities from (3), and thus
get three equations in Kj;, Lj;, and T};. The solution to these are

T =
S = aa;;
Gji(a)
L= - —aj;
" Gli(e) 7

Kji = (1 + aTy)Gji()e s

o \/G;-’.-(a) _ (Gl
! Gji(a) Gji(a)

which give the model estimate G;.

In practice, the infinite integral in (4) is approximated by a finite sum.
A nice feature is that the method is not sensitive to mean zero noise in y;.
Since the shape of u; is known, the expressions given by (5) can be calculated
in advance.

The choice of the parameter a is important for the behavior of the method
of weighted moments. The initial part of the response should be weighted
heavily to reveal the dynamic coupling between u; and y;. It is reasonable to
choose a as a guess from 1/(L,; + Tj;), that is, the reciprocal of the average
residence time. If no guesses are available, we choose a = 21n(20)/t;.

Analysis

The matrices

Kll Klm Lll le Tll Tlm

Ky ... Kpm L wev Tim ;R .

estimated above can be used to determine the interaction in the process and
to give a suggestion of control structure. It is interesting to know whether
the process could be divided into a number of subprocesses, which can be
controlled independently. The extreme, but often desirable, case is to control
an m X m process with m SISO controllers, for example PID controllers.

An obvious way to try to reveal the process structure is to compare the
sizes of the matrix elements in K, L, and T, respectively. In simple cases, it
is possible to permute the matrices so that independent subprocesses appear.
Triangular structures may arise. These can typically be treated by feedforward
together with ordinary control. We illustrate this in a simple example.



ExaMPLE 1—Feedforward
Assume the process has two inputs and two outputs, and the estimated model

has the form _ (Gul(s) Grals)
Gls) = [ 0 Gnls) ]

Then, it is often sufficient to use two PID controllers and one feedforward: one
PID controller in the u,—y; loop, the other in the u;—y, loop, and a feedforward
from u; to u; removing the second loop’s influence on the first one. O

Another standard case consists of processes which can be controlled by a
cascade control structure:

ExaMPLE 2—Cascade Control
Assume the process has two inputs and one output, and the estimated model
can be factorized as

Gi(s) ]

Gls) = [ Ga(5)Ga(s)

Then, cascade control is often preferable. u and y; can be connected by one PID
controller which has the control signal from a second PID controller connected
to y, as reference signal. O

Some of the searches for process structure described above can easily be
automated, while others present severe difficulties, since all structures are not
shown directly in the matrix elements. Next, we discuss another way of finding
a good control structure.

The pairing problem is to connect m SISO controllers to an m X m process
in a best possible way. The problem is in many cases solved by deriving the
relative gain array (RGA) [McAvoy, 1983]

A0 =K.xK T

where .% denotes the element-by-element (Schur) product and K~7 is the
transpose of the inverse of K. Permutation of A(0) following the criteria in
[McAvoy, 1983] gives a pairing suggestion. Basically, it tells us to put elements
of A(0) as close to unity as possible on the diagonal. RGA can also be used
for finding diagonal structures in the process where the size of the diagonal
blocks is larger than one. Then MIMO controllers should be used for these
blocks and SISO controllers for the size one blocks.

Since only the steady-state gains are present in the RGA, no adjustment
to dynamics in the process is done. One way to check, if the dynamics influence
the control structure, is to derive a dynamic RGA

A(iw) = G(iw). * G~ (iw)

at a number of frequencies w, and check whether the structure of A changes.
If the pairing suggestions are different for different frequencies, it implies that
the process may not be controlled by only SISO controllers.

Notice that the matrices K, L, and T can be used for tasks other than
determining the control structure. It is, of course, possible to design controllers
out of them, for instance, a first controller can be designed and used while more
sophisticated modeling is being done. In state-space MIMO identification, the
time delays are crucial for the accuracy of the model, in particular, they heavily
affect the model order. Then, the matrix L can be useful for initial guesses
regarding the true delays between the inputs and the outputs.
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Figure 6. The paper machine process with five inputs and five outputs.

5. Paper Machine Example

The MIMO start-up procedure is now applied to an example of a paper ma-
chine. The procedure has been implemented in Matlab [MathWorks, 1992].
The considered process is a linear model of a paper machine and was pre-
sented in [Astrém, 1973]. A sketch of the process is shown in Figure 6. Very
briefly, it can be described as follows: the stock flow comes in from the left,
enters the head box, and poors out on the wire. Some of the flow returns via
the wire box. The rest will become paper, and after pressuring and drying,
paper leaves the paper machine to the right. The process has five inputs and
five outputs:

u; thick stock flow [m3/s]

uy thick stock fibre concentration [kg/m?]
us slice opening [m)]

uy wire speed [m/s]

us water removal rate [kg/s]

¥, fibre concentration in headbox [kg/m?|
y. fibre concentration in wire pit [kg/m?]
ys wet line position [m)]

ys fibre weight [kg/m?]

ys water to fibre ratio

The process has two states and is given in the state-space form

. (-0.1250 0.1160 |  (0.3004 0.3004 —0.2958 —0.2955 0
=1 00002 -o0o0116) %" loooos 0  —00059 o0 0] =
(—2730 0 Yy (0 0 0 0 0
0 —2.1036 00 0 0 0
y=| 0.2154 0 |z+|0 o 1078 0 0 |u
0.3965 0 0 0 1.1449 0 0
| 0.1349 o J Lo o 03898 0.3303 0.3202

The time constants are 8 and 88 seconds. The inputs and outputs are normal-
ized to be 80% at steady-state.

Operator Inputs

In this example, we make a quite arbitrary choice of input parameters. Some
of them are shown in Figure 3. The input parameters are
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Figure 7. Input signals during the step-response experiments.

Sample interval

Step amplitude

Step time

Maximum output deviation
Degree of criticality
Known dynamics

1 [s]

2% for all inputs

400 [s] for all inputs

2% for y, and 20% for the others
Not specified

None

Step-Response Experiments

In Figures 7 and 8, the results from the step-response experiments are shown.
The whole experiment takes about an hour. We notice that the double step in
u3 is shorter than 2-400 = 800 seconds. This is due to an estimated upcrossing
in y,. We did not allow the fibre concentration in the wire pit to deviate more
than 2%. The spikes in y;, y;, and y; are due to the direct terms in the process.
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Figure 8. Measured output signals from the step-response experiment.

Interaction Analysis

The method of weighted moments, run on the data shown above, gives K, L,
and T'. All elements of the delay matrix L are zero except for one element,
but that one relates to a very low steady-state gain. Hence, the matrix L is
unnecessary for the interaction analysis of this process (which is not surprising
since the process does not contain any delays). The time constant matrix
T may include negative elements, since the basic version of the method of
weighted moments does not check for stability. If these elements are simply
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set to zero, the following process model will result

-68 —-66 73 6.6 —0.0 9 10 12 9 0
-02 00 12 01 -0.0 92 0 8 0 0
K=]05 05 06 -05 0.0 T=19 10 9 0
1.0 10 02 -10 0.0 9 10 9 0
03 03 01 0.0 0.3 9 10 0 0

A comparison of the step-responses between the process and the model, given
by K and T, shows a good accordance.

The RGA is

61.19 12.78 053 -73.32 -0.19

0.96 0.06 -0.00 -0.01 -0.00

A(0) = | 104.00 12.79 0.44 -115.87 -0.37
—164.61 —-24.64 0.01 190.23 0.0t

—0.53 0.01 -0.00 -0.03 1.55

Let us assume that we are restricted to control the paper machine process
with five SISO controllers. By permuting A(0) we get the following suggested
input—output pairing,

Uy — Y2
Uz — Y3
Uz — U1
Us — Ys
Us — Ys

This pairing seems intuitively reasonable, compare Figure 6.

6. Conclusions

We have discussed some topics that might be included in a start-up procedure
for multivariable control systems. This procedure consists of three main parts:
operator inputs, step-response experiments, and interaction analysis.

A start-up procedure to be used in industrial applications is inevitably
very complex. But if we restrict a discussion about future developments to the
three blocks discussed in this report, some specific remarks can be made.

The upcrossing estimation used during the step-response experiments can
easily be improved. By modeling simple processes recursively while the step is
applied, it is possible to get more reliable estimates if an upcrossing will occur
or not.

The model estimation in the interaction analysis can be done in a large
number of ways. If the model class is determined to be the one used in this
report, we can compare the method of weighted moments with, for instance,
a least-squares fit of the step-response to the given model.

RGA is a well-accepted tool in chemical process control. Its main draw-
back is that it does not contain any dynamic information about the process.
It would be beneficial to have interaction measures built upon all three of
the matrices K, L, and T. These should then give criteria as to when SISO
controllers are sufficient or when a MIMO controller has to be used.

11



One start-up procedure for SISO processes is based on the autotuner. Re-
lay feedback is used to tune the parameters of a PID controller. This start-up
procedure has been successfully used in practice, see [Astrém and Hagglund,
1984] and [Modén, 1994]. As mentioned in the introduction, a crude general-
ization of the relay method to the MIMO case is not possible, for example by
simply connecting m relays between the inputs and outputs for an m x m pro-
cess. However, if the number of inputs and outputs is small (less than 5-15 as in
our specifications), a number of SISO relay experiments can be performed on
the MIMO process. This approach has been described in for instance [Friman
and Waller, 1994].

7. References

AstroM, K. J. (1973): “Lectures on paper machine control.” Technical
Report TFRT-3102, Department of Automatic Control, Lund Institute of
Technology, Sweden.

AstroM, K. J. and T. HAGGLUND (1984): “Automatic tuning of simple reg-

ulators with specifications on phase and amplitude margins.” Automatica,
20:5, pp. 645-651.

AstroMm, K. J. and T. HicGLuND (1994): PID Control—Theory, design,
and tuning. Draft version.

BERNHARDSSON, B. and P. PERssoN (1990): “An improved moment method
for transfer function identification.” In Reglermdte 90.

FriMaN, M. and K. V. WALLER (1994): “Autotuning of multiloop control
systems.” Ind. Eng. Chem. Res., 33:7, pp. 1708-1717.

Jonansson, K. H. (1993): “Difficulties when applying SISO relay design
methods to a MIMO-system.” Technical Report TFRT-7506, Department
of Automatic Control, Lund Institute of Technology, Sweden.

THE MATHWORKS, INC. (1992): Matlab, Reference guide.

McAvoy, T. (1983): Interaction Analysis: Priciples and Applications. Instru-
ment Society of America.

MobpgN, P. E. (1994): “PIDCONA — en PID-regulator med fullstindig
autotuning.” In Reglerméte 94.

12



Appendix A. A Bunch of Textbook Processes

In the following, eleven process examples are presented. All are linear and
multi-input multi-output. Very brief comments are given together with refer-
ence notes.

ExAMPLE 1—Binary Distillation Column

This is a model of a binary distillation column where pressure variation is in-
cluded. The process has 4 inputs (including one disturbance u4) and 3 outputs.
It is given in state-space form.

2= [A1 Az]:c-{—Bu

y=Cz
where
( —0.0140 0.00430 0 0 0
0.00950 —0.0138 0.00460 0 0
0 0.00950 —0.0141 0.00630 0
0 0 0.00950 —0.0158 0.0110
0 ] 0 0.00950 —0.0312
A = 0 0 0 0 0.0202
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
L 0.0255 0 0 0 )
¢ 0 0 0 0 0 0 3
0 0 0 0 0 5.00
0 0 0 0 0 2.00
0 0 0 0 0 0
0.0150 0 0 0 0 0
A; = | —0.0352 —0.0220 0 0 0 0
0.0202 —0.0422 0.0280 0 0 0
0 0.0202 —0.0482 0.0370 0 2.00-10~*
0 0 0.0202 —0.0572 0.0420 5.00-107*
0 0 0 0.0202 —0.0483 5.00-107*
. 0 0 0 0 0.0255  —0.0185
( 0 0 0 0 )
5.00-10"% —4.00-10~° 0.00250 0
2.00-107% —2.00-10"% 0.00500 0
1.00-107® —1.00-10"% 0.00500 0
0 0.00500 0.0100
B= 0 0 0.00500 0
—5.00-10"% 1,00-107°  0.00500 0
—1.00-10"% 3.00.107% 0.00500 0
—4.00-10"° 5.00-10"% 0.00250 0
—2.00-10"° 2.00-10"% 0.00250 0
\ 4.60-10* 460-.10"* 0 o J
(0 0 00O OO ODOOT10O0
C=|10000000U0T0T0
L0 0 000OODOOTU OO 1
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Reference: “Benchmark problems for control system design,” IFAC 1990.

ExAMPLE 2—Drum Boiler

This is a model of a drum boiler which is unstable and non-minimum phase.
The process has 4 inputs (including one disturbance u4) and 2 outputs. The
state-space model is given by

¢ —3.93  —0.00315 0 0
368 —3.05 3.03 0
27.4 0.0787  —0.0596 0
~0.0647 —5.2-107° 0 —0.255
A = 3850 17.3 —12.8 —12600
22400 18.0 0 —35.6
0 0 0.00234 0
0 0 0 —1.27
\ —2.20  —0.00177 0 —8.44 J
( 0 4.03-1078 0 0 3
0 —0.00377 0 0
0 —2.81-107* 0 0
3.35.107° 3.6.10°7 6.33.107° 1.94.107* 0
Ay = —2.91 —0.105 12.7 43.1 0
—1.04-107* —0.414 90.0 56.9 0
0 2.22-107* —0.203 0 0
0.00100 7.86-107° 0 —0.0717 0
—-1.11-107* 1.38.107° 0.00149 0.00602 —1.00-1071° )
¢ 0 0 0 —0.0100
0 0 0 0
1.56 0 0 0
0 -5.13.10"° 0 0
B=|8.28 —~1.50 0.0395 52.0
0 1.78 0 0
2.33 0 0 0
0 —0.0245  0.00284 0
0  2.94-107% ] o/

.
0[000001000]
“lo o0 00O0UOT O 1

Reference: “Benchmark problems for control system design,” IFAC 1990.

ExAMPLE 3—The Shell Control Problem

This is a model of a heavy oil fractionator shown in Figure 9. The plant has
three product draws and three side circulating loops. The process has 5 inputs
(including two disturbances uy and us) and 7 outputs. The transfer function
matrix G of the model is given by the elements

Kii  _.i..
Gjl'(s) = T;’I‘J.ie Lsi
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Figure 9. The Shell process.

where

(4.06 1.77 5.88 1.20 1.44) (50 60 50 45 40)
539 5.72 6.90 1.52 1.83 50 60 40 25 20
3.66 1.65 5.53 1.16 1.27 9 30 40 11 6

K =592 254 810 1.73 1.79 T=112 27 20 5 19
413 238 6.23 1.31 1.26 8 19 10 2 22
4.06 4.18 6.53 1.19 1.17 13 33 9 19 24
(4.38 4.42 720 1.14 1.20) L33 44 19 27 32)
(27 28 27 27 27)
18 14 15 15 15
2 20 2 0 O

L=|11 12 2 0 0
5 7 2 0 0
8 4 1 0 O
L20 22 0 0 O)

Reference: “Benchmark problems for control system design,” IFAC 1990.

ExaMPLE 4—G@Gas-Fired Furnace
This is a model of a gas-fired furnace. The process has 4 inputs and 4 outputs.
The transfer function matrix G(s) of the model is given by the elements

K.

Gilo) = T o
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where

1.0 0.7 03 0.2 4 55 5
| 06 1.0 04 035 |5 45 5
1035 04 1.0 0.6 5 5 4 5

02 0.3 0.7 1.0 5 5 5 4

Reference: Munro, E. N., “Modern approaches to control system design,” In-
stitution of Electrical Engineers (1979), pp 83-.

ExaMPLE 5—Air Compressor
This is a model of an air compressor. The process has 2 inputs and 2 outputs.
The transfer function matrix is

0.1133 e—0.715s 0.9222
G(s) _ 1.7835744,485+1.0 2.071s4+1
- 0.3378 —0.299s —0.321 —0.945s

e e

0.36157+1.095+1.0 0.1045242.4635+1.0

Reference: Munro, E. N., “Modern approaches to control system design,” In-
stitution of Electrical Engineers (1979), pp 87-.

ExaMmprLE 6—Distillation Column
This is a model of a pilot-scale distillation column. The process has 2 inputs
and 2 outputs. The transfer function matrix is

12.8 e—" _—;_1_3_._9_6—31
G(S) _ 16.Ta+1 21s41
- 6.6 ,—T7s —19.4 ,—3s
10.9s+1 14.45+1

Reference: Wood, R. K., and M. W. Berry, “Terminal composition control of
a binary distillation column,” Chem. Eng. Sci. 28, 1707 (1973).

ExampLE 7—Distillation Column
This is a model of a distillation column. The process has 2 inputs and 2
outputs. The transfer function matrix is

—2.16 e’ 1.26 e—0.3a
G(S) _ 8.5s+1 T.05s41
- —2.75 e—l.Sa 4.28 6—0.355
8.25s541 9.0a4+1

Reference: Luyben, W. L. and C. Vinante, “Experimental studies of distillation
decoupling,” Kem. Teollisuus 29, 499 (1972).

ExampLE 8—Distillation Column
This is a model of a distillation column. The process has 4 inputs and 4
outputs. The transfer function matrix is

0= (6 o)

¢ 2.22 e—2-58 -2-945’?-9s+116—0.05.q
Ga(s) = (36s+1)(25s+1) (23.75+1)2
ns) = —2.33 5 3.46 _—1.01s
\ (35s+1)2 32s+1
¢ 0.017 o—0-2¢ —0.64 _,—20s
Ie | (316s+1)(Ta+1) (29s+1)2
2(8) = ~0.51_,—7.58 1.68 _,—2s
\ (32s+41)? (28s+1)2
¢ ~1.06 225 3.511 _,—13s
(17s+1)2 {1zs+1)2
Ga(s) = —5.73 —2.55 _4.32(25s+41) e—o.ou]
\ @a+1)(50s4+1) ¢ (50s+1)(58+1)
. 4.41 ,—1.01s —5.38 _—0.55
16.25+1 17s+1
G4(s) - —1.25 e—2-82 4.78 g~ 1150 ]
\ (43.65+1)(9s41) (48s+1)(5s+1)
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Figure 10. Drum boiler process,

Reference: Luyben, W. L., “Simple method for tuning SISO controllers in
multivariable systems,” Ind. Eng. Chem. Proc. Des. Dev., 1986, 25, pp. 654—
660.

ExaMmprLE 9—Packed Bed Chemical Reactor
This is a model of a packed bed chemical reactor. The process has 2 inputs
and 2 outputs. The transfer function matrix is

0.7865+1 0.092s5+1

1.841¢~0:411¢ —0.654¢~0-7%8¢
0.917s+1 0.870s+1

G(s) =

[ —2.265¢ 328 0.746¢—2-5%82 ]

Reference: Marino-Galarraga, McAvoy, Marlin, Ind. Eng. Chem, 26, pp 521-
531 (1987).

ExaMPLE 10—Lime-Kiln
This is a model of a lime-kiln process. The process has 2 inputs and 2 outputs.
The transfer function matrix is

1.66 -1.74 e—Za
. 39s+1 4.45+1
G(s) = [ 0.34 ,—s 1.4 _—s ]
B.9s+41 3.8s+1

Reference: Charos, G. N., Y. Arkun, and R. A. Taylor, “Model predictive
constrained control of an industrial lime kiln,” TAPPI J., 1991, pp. 203-211.

EXAMPLE 11—Drum Boiler Turbine Model
This is a 10th order state-space model of a drum boiler turbine, see Figure 10.
The process has 5 inputs and 7 outputs. It is given by

& = (Al Az]z-I—Bu
y= [01 Cz]m-{—Du

where
( —0.044 0 0 0.019 0.050
-10-100* 0 0 34-107* 23.107¢
—9.9-107 0 —0.2 0.015 0.017
0.011 0 o —0.023 2.5.107°
0.028 0 o0 0 —0.050
A = -5 —4 —4
-9.9:107°* 0 0 15.10 1.7-10
-0.013 0 0 0 0
-0.010 0 0 0 0
—95.10° 0 0 0 0
\-3.1-10% 0 o0 (] 0 J
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( —0.51 7.3.107°% 1.4.107* 5.1.107* 0 3
-0.25 -1.0-10"°* -1.9.107°% —6.9.107° 0
—86 —34-10"° —6.4-10"° -—-24.107* 0
-39 -11-10"® -2.1.107% —7.8.107° 0
G 0 0 7 0 7 0 . 0
—0.086 —3.4:1077 —6.4-10"7 —2.4-10" 0
0 -7.6-107% 1.4.107* 5.3.107* 0
0 0.016 —0.017 3.8.107* 0
0 45.107* 8.4.107° —0.012 0
L 0 2.1-107*  40-107* 15-107* -2.3.107%)
( 0 —-1.6-.1077 0 0 —0.17 Y
0 3.4.107°% 0 0 2.4-107°
0 -9.1-.-107* 0 0 0.080
0 -3.3-107° 0 0 —0.026
B 0.12 0 0 0 0
0 -—9.1.107" 0 0 8.0.107*
0.21 0 0.013 0.012 —0.18
0.23 0 —0.095 —8.5-107° —0.13
0.26 0 —0.027 -0.079 —0.12
\ 0.056 0 -1.4-107% -4.0.107* —4.9.107*)
¢ 1.1 0 0 0 0
0.11 0 0 0 0
1.0 0 0 00
Ci=| 0.79 0 0 00
0 1000 1000 O O
1 0 0 00
L —0.070 0 o o0 o0
¢ 0 1.7-107%  3.2.107* 0.012 0.098 Y
0 7.6-107° 0.014 0.053 0
0 —5.8-10"% —-0.011 —0.041 0.098
C.=| -5.4.1072 —0.010 —0.038 0
10000 0 0 0 0
0 0 0 0 0
L 0 0.10 0.19 0.72 0 J
(0 0 0.046 0.073 19
0 0 —0.040 —0.12 1.9
0 0 0.08 0.20 17
D=1]0 0 0.072 0.17 13
00 0 0 0
00 0 0 0
\0 0 -0.63 —1.8 —0.28/

Reference: Astrom, K. J., R. D. Bell, “A 10th order linear drum boiler turbine
model”, 1979, Technical report, Dept. of Automatic Control, Lund Institute

of Technology.
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