LUND UNIVERSITY

K2 Model Database - Tutorial and Reference Manual

Nilsson, Bernt; Eborn, Jonas

1994

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Nilsson, B., & Eborn, J. (1994). K2 Model Database - Tutorial and Reference Manual. (Technical Reports TFRT-
7528). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/db46963c-d1ee-4707-8a79-69889f5b99a0

ISSN 0280-5316
ISRN LUTFD2/TFRT--7528--SE

K2 Model Database -

Tutorial and Reference Manual

Bernt Nilsson
Jonas Eborn

Department of Automatic Control
Lund Institute of Technology
December 1994

Document name

Department of Automatic Control TECHNICAL REPORT

Lund Institute of Technology Date of issuc
P.O. Box 118 December 1994
S-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--7528--SE
Author(s) Supervisor

Bernt Nilsson and Jonas Eborn

Sponsoring organisation

Sydkraft AB and NUTEK, proj.nr. 9304688-2

Title and subtitle
K2 Model Database - Tutorial and Reference Manual

Abstract

The K2 model database is a set of Omola model libraries for modelling of thermal power plants. The models
describe mainly the dynamic behaviour in the water/steam cycle.

The libraries are decomposed into three groups, namely model component libraries, subunit libraries and unit
libraries. The model component libraries contain general functions, variables, terminals and super classes.
The subunits are models of different media, compartment and flow resistor subunits. Examples of media
are subcooled water, water/steam mixtures, superheated steam and flue gas. The compartment models are
control volumes containing different media and the flow resistors describe different relationships between flow
and pressure. The unit libraries contain models of typical physical objects, like pumps, valves, heat exchangers
and more complex units, like boiler and superheater systems.

The K2 model database is used to model a heat recovery steam generation plant, HRSG. The HRSG model
is used in a case study to simulate different operating conditions.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient's notes
English 82

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S-221 03 Lund, Sweden, Fax +46 46 110019, Telex: 33248 lubbis lund.

1. Introduction

The K2 model database is used to make dynamic models of thermal power
plants. The K2 model database consists of a number of Omola model 1i-
braries which contain model classes. The primary goal for the use of the model
database is to be able to simulate a small power plant. An application study
on a heat recovery steam generation plant, HRSG, has been done and is pre-
sented in a companion report, [Eborn and Nilsson, 1994]. The K2 project is
focused on the development of the model libraries but includes also a number
of side effects concerning large model databases, version control, static solver
and user interface.

The application study in the K2 project was focused on a heat recovery steam
generation plant. Flue gas from a gas turbine is used to boil water and the
steam is then used to run a steam turbine for power generation. The low
pressure steam after the turbine is condensed and recycled to the deaerator.
The K2 model database is used to describe the water and steam cycle of the
plant. Additional model databases are used for controller descriptions and
application dependent configurations. The application study is described in
the report ”Object-Oriented Modelling and Simulation of a Power Plant”, see
[Eborn and Nilsson, 1994].

(8] Modsl EdlftorS [5i] (@] Madlot Ecitor 7 [
Edit Insert Connect Edit Insert Connect

(8] Mocte! Edittor 1 ' '
‘Edit_Insert Connect

(@) Model Edil
(8] Miodel oy

Figure 1. The HRSG application study.

The K2 model database is composed of twelve (12) model libraries. The mod-
elling is supposed to be divided in three different levels. Model components
are reused together with the Omola language to describe subunits capturing a
certain phenomenon. Subunits can then be used to describe unit models char-
acterizing physical objects. These unit models are used to build up systems.
The K2 model database is composed of four model component libraries, four
subunit libraries and four unit libraries.

The K2 model database follows the guidelines presented in [Nilsson, 1993] and
in [Nilsson, 1994]. The guidelines discuss the decomposition of the structure
hierarchy and the class inheritance hierarchy.

Omola is the modelling language used to describe the models in the K2 model
database. Omola is an object-oriented modelling language developed at the
Department of Automatic Control. An interactive modelling and simulation
environment, called OmSim, can handle Omola models. A good overview of
Omola is found in [Mattsson and Andersson, 1992] and a tutorial in [An-
dersson, 1993]. Mats Andersson, the inventor of Omola, presents a detailed
description on the language and the idea behind it in [Andersson, 1994).
OmSim uses the file system to develop model databases. An OmSim library is
a directory with the library classes in one file each. A set of library directories
is grouped under another directory. This directory tree is called an Omola
model database. OmSim can load multiple model databases.

Acknowledgements

The authors would like to thank the ones behind OmSim, Sven Erik Mattsson,
Mats Andersson and Tomas Schénthal. We also must thank Jan Tuszynski and
Ola Bernersson at Sydkraft Konsult AB for many valuable discussions. The
K2 project has been financed in three different research programs, namely by
Sydkraft, NUTEK power system research program and by NUTEK complex
system research program.

References

ANDERSSON, M. (1993): “OmSim and Omola tutorial and user’s manual.” Re-
port ISRN LUTFD2/TFRT--7504--SE, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

ANDERSSON, M. (1994): Object-Oriented Modeling and Simulation of Hybrid
Systems. PhD thesis ISRN LUTFD2/TFRT--LUTFD2/TFRT-1043-SE--
SE, Lund Institute of Technology.

EBoRrN, J. and B. NiLssoN (1994): “Object-oriented modelling and simula-
tion of a thermal power plant.” Technical Report TFRT-7527, Department
of Automatic Control, Lund Institute of Technology, Lund, Sweden.

MaTTssoN, S. E. and M. ANDERSSON (1992): “The ideas behind Omola.”
In Proceedings of the 1992 IEEE Symposium on Computer-Aided Control
System Design, CADCS ’92, Napa, California.

NiLsson, B. (1993): Object-Oriented Modeling of Chemical Processes. PhD
thesis ISRN LUTFD2/TFRT--1041--SE, Dept. of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

NiLssoN, B. (1994): “Guidelines for Process Model Libraries using an Object-
Oriented Approach.” In European Simulation Multiconference, pp. 349-353.

PART I: Tutorial

2. How To Use K2

The basic idea is to separate model development into three main modelling
levels. These modelling levels are mapped into the class tree and model library
organization.

1. System modelling (units to system).
2. Unit modelling (subunits to unit).
3. Phenomena modelling (equations to subunit).

A K2 user of the first level develops system by using the unit models found
in the K2 unit libraries. The unit libraries contain flow units, heating units,
turbines and sensors.

A K2 user on the second level develops units using the subunit model libraries.
The basic idea in the subunit level is the separation into compartment and
flow resistors. The compartments are control volumes with dynamic mass and
energy balances. The flow resistors are flow descriptions as functions of a
driving force from surrounding compartments.

The third level is supported by the Omola language which allows the user to
develop his or her own models. There are also K2 model component libraries
that supports an expert with predefined classes, like heat resistance functions
and terminal class definitions.

The K2 libraries are therefore grouped into three categories, namely unit
libraries, subunit libraries and model component libraries. Each individual
model class can be found in respective library.

Unit Libraries

The unit models are categorized into three model libraries:

1. Flow units in K2FlowUnitLib:
o Valve
e Pump
e Junction
e Split
2. Heating units in K2HeatUnitLib:
Heat exchanger
e Economizer
e Superheater
e Superheater system
o Boiler system

3. Turbine unit in K2TurbineLib:
e Steam turbine

4. Sensor unit in K2SensorLib:
e Temperature sensor
Many of the units are available for different media, namely water, steam and
flue gas. Almost all of the unit models have an internal structure of subunits.
One example of a unit like this is the heat exchanger.

Heat ezchanger ezample: The heat exchanger model is composed of two
compartments describing the two sides of the unit. Each compartment model

3

describes the dynamics of the medium in it. The heat interaction is described in
a heat flow resistor connecting the two compartments. On each compartment
outflow there are flow resistors describing the relation between outflow and
pressure difference.

=]

Figure 2. The heat exchanger unit. The icon on the left and internal configu-
ration of compartments and flow resistors on the right.

System modelling: The units are intended to be used as submodels in
system descriptions. This system may be a subsystem of a larger system. An
example is to build a boiler section out of one heat exchanger, one boiler drum,
control valves and one circulation pump. This boiler section is then used in
a pan configuration which is used in a water and steam cycle plant. A small

Figure 3. The use of a heat exchanger unit in a system configuration.

system using some units is found in Figure 3.

To make proper connections between units is a problem that may occur. The
terminals must be of the same type. The unit models have control terminals
and flow terminals. The flow terminals can have different directions and repre-
sent different phases. The internal terminal variables are in SI units but there
is no guarantee that this means water or steam. Some units allow both and
some do not.

A second problem is to assign proper values to parameters and initial values
to variables. All parameters and variables are in SI units.

Subunit Libraries

The subunits can be divided into two major categories, namely compartments
and flow resistors. The flow resistors are divided into flow and heat flow re-
sistors. There is also a medium model library for medium descriptions, which
are used as submodels inside compartment and flow resistor subunits.

1. Compartment subunits in K2CompartmentLib.
e One phase compartments for water, steam and flue gas.
e Two phase compartment for water and steam.

2. Flow resistor subunits in K2FlowLib.
e One phase flow resistors for water, steam and gas.
e Critical expansion flow resistor for steam.
o Loss and friction factor functions for water, steam and gas.

3. Heat flow resistor subunits in K2HeatFlowLib.
o Heat flow resistors.
e Heat resistance functions.

4. Medium models are found in K2MediumLib.
¢ Compartment medium models for water, saturated water and steam,
steam and gas.
o Flow resistor medium models for water, saturated water and steam,
steam and gas.

Compartment models: The major dynamics are described in the compart-
ment models. Dynamic mass and energy balances are nonlinearly transformed
into pressure and enthalpy which are the dynamic states. The states, pres-
sure and enthalpy, are used to calculate other medium specific variables like
density, temperature, heat capacity etc. This is done by the use of medium
and machine decomposition. All medium specific calculations are described in
medium submodels inside the compartment. Inside the medium models the
states are used as input arguments to steam table functions which return the
desired value. Steam and gas compartments function like this. Water is as-
sumed to be incompressible which means that the water compartment can not
have a dynamic mass balance. Flash and drum compartments on the other
hand have an additional description of the mixture of water and steam.

]
T . -
[]
e
B es
»

Figure 4. The compartment subunit models for different media.

Flow resistor models: The flow resistors describe the static relation be-
tween a gradient and flow. For water, steam and gas flows the gradient is the
pressure drop and the medium flow is a nonlinear function of this gradient.
Critical expansion of steam describes the flow when the pressure drop is so big
that the flow velocity is near to the speed of sound. In the heat flow resistor the
heat flow is modelled as a function of the temperature gradient or logarithmic
temperature gradient.

Medium models: Medium models are used in both compartment and flow
resistor subunits. These models function as ordinary functions with input argu-
ments and output arguments. Compartment medium models need the states,

5

e D Lo LTy

Figure 5. The flow resistor subunit models for different media.

pressure and enthalpy, to calculate physical properties like density, tempera-
ture etc. Other physical properties are needed in flow calculations, like viscos-
ity, and therefore there are special medium models for flow resistors. These
calculations are done either by calling steam tables implemented in OmSim or
using fitted polynomial functions.

== no R [nC R
7 1A [Y
- ~) ~ :
I-— -l I A~ I [V |
O= =4 = =" o = ="a

Figure 6. The medium subunit models for different media.

The advantage with this decomposition into one machine dependent part and
one medium dependent part is that it makes it easy to change the medium
description. In this case it is possible to change the steam table function calls
because they are encapsulated in the medium model.

Unit modelling: Subunits are intended to be used in order to model a unit.
One example of how they are used is seen in Figure 2 which shows the internal
structure of an heat exchanger. One basic assumption is that compartments
and flow resistors must be connected to each other. Two compartments can
not be connected because there will be no flow description for this interaction.
On the other hand two flow resistors may be connected, but this will generate
an algebraic equation system.

K2 Model Component Libraries

There are four additional libraries containing model components. These model
components are used to build subunit and unit model classes but are also
necessary during system model building. Examples are terminal classes for
flowing media.

1. Functions and variables in K2BasicLib:
e Logarithmic mean function
o Heat resistance functions for tube geometry and different medium.

2. Terminals in K2TerminalLib:
e Basic terminal classes for physical quantities.
e Record terminals for flowing media.

3. End terminals in K2EndTerminalLib:
e Record terminals with a given experimental setup.

4. Super classes in K2ClassTreeLib:
e Super classes for the organization of the K2 model database class
tree.

The basic library contain function classes of general interest. There are a lot
of different heat resistance descriptions.

The terminal library is used at every modelling level, system, unit and sub-
unit modelling. The terminal classes are important because they contain the
interaction information.

Units and systems can often not be simulated directly. They lack a number of
surrounding conditions. The end terminal classes describe typical conditions
and are therefore used connecting to units. Units together with proper end
terminals can be simulated directly.

All classes in the K2 model database has super classes that are defined in the
class tree library.

PART II: Reference Manual

3. K2 Organization

The K2 model database is composed of twelve model libraries: four unit li-
braries, four subunit libraries and four model component libraries. In principle
the four model component libraries together with the predefined Omola model
classes are used to develop the subunit models. The subunit model libraries
are used to develop unit models. An application user uses the unit libraries
and sometimes the subunit libraries to develop systems in his or her own
application model library.

®1 Library Browser 1 R]

OModels COTerminals ®All classes

Libraries Classes

[+

Figure 7. The OmSim browser for the K2 library.

The unit libraries are the first four in Figure 7, K2SensorLib, K2HeatUnitLib,
K2TurbineLib and K2FlowUnit. The next four libraries contain the subunits,
K2HeatFlowLib, K2FlowLib, K2CompartmentLib and K2MediumLib. The last
four libraries are model components and they are called K2ClassTreeLib,
K2EndTerminalLib, K2TerminalLlib and K2BasicLib.

All K2 libraries are presented in detail in the following sections and they are
presented in the reversed order with K2BasicLib as the first one. Almost every
model class definition are listed in the report, almost 70 classes. Model classes
that are not found to be of general interest are not listed, less than 20 classes.

4. K2BasicLib

This K2 library contain variable, parameter and function classes of general
interest.

FunctionIC is a common super class for function classes.
LogMean is a function for logarithmic mean temperature calculations.

Th is a function that approximates the flue gas temperature as a function of
the enthalpy.

FlowVCH* is a flow variable class.

PressureVC?* is a pressure variable class.

PressureUpV C* is another pressure variable class.

HeatResistanceIC is the interface class for heat resistance function classes.
GasResistance calculates the convective resistance on the gas side of a tube.
SteamResistance calculates the convective resistance of steam inside a tube.
WaterResistance calculates the convective resistance of water inside a tube.

WallResistance calculates the conductive resistance of the metal wall of a
tube.

NoResistance has no heat resistance.

A class with a * is not listed in this report. It is not found to be of general
interest.

Function Super Class and LogMean

FunctionIC ISA Class WITH
%% This is a super class for other
%% functioms.
variable:
value TYPE Real;
END;

LogMean ISA FunctionIC WITH
%% This function calculate the
%% logarithmic mean difference.
%% For small differences an
%% approximation is used.
parameters:
Small ISA Parameter WITH default := 0.05;END;
variables:
x, y TYPE Real;
equations:
value = IF (abs(x)<Small) OR (abs(y)<Small)
THEN ©
ELSE
IF abs(x-y) < Small*max(x,y)

THEN (x+y)/2%(1 - (x-y)*(x-y)/(12*x*xy)* (1 - (x-y)*(x-y)/(2%x*y)))

ELSE (x-y)/1n(x/y);
END;

Th ISA K2BasicLib::FunctionIC WITH
%% This function calculates the fluegas temperature (K)
%% from enthalpy (J/kg). A polynomial fitted to data
%% between 350 and 900K is used.
%% The data was obtained by implicit use of the function
%% htp with the gas composition [.6911,.078,.1697,0,0,0,.0341]
variables:
h ISA Variable;
equations:
value = K2BasicLib::flueTpoly3+h*(K2BasicLib::flueTpoly2+
hxK2BasicLib: :flueTpolyl);
END;

10

Heat Resistance Classes

HeatResistanceIC ISA K2ClassTreeLib::HeatResistorCC WITH
%% This is an interface class for heat
%% resistance functions
terminal:
Rin ISA K2TerminalLib: :HeatMediumTC WITH
Graphic ISA Layout WITH

x_pos := 200;
y_pos := 150;
invisible := 1;
END;
END;
parameters:
C,n1,n2 ISA Parameter;
variables:
value TYPE Real;
END;

NoResistance ISA HeatResistanceIC WITH
%% NoResistance is a function class that
%% calculates no heat resistance.
W
%% Assumptions: no heat resistance.
%% Model Use: mnothing given
%% Medium: nothing
%% Model type: full.
%h
equations:
value := 0;
END;

11

GasResistance

GasResistance ISA HeatResistanceIC WITH
%% GasResistance is a function class that
%4 calculates the heat resistance on
%% the gas side of a haet exchanger

%% tube.

%h

%% Assumptions: constant area

Wi turbulent flow

%% Model Use: given log mean temperature
wh given gas flow and pressure
W4 given gas mix

%% Medium: fluegas

%% Model type: full.
Wi

icons:
Graphic ISA Base::Layout WITH
bitmap TYPE String := “GasResistance";
END;
parameters:
C := 0.33;
nl := 0.6;
n2 := 0.33;

d, 1 ISA Parameter;) diameter and length
Across ISA Parameter WITH
value := K2BasicLib::pi*sqr(d)/4;
END;
Aheat ISA Perameter WITH
value := K2BasicLib: :pi*d*l;
END;
variables:
Cp TYPE Real; % Sp. heat capacity [J/kgK]
mu TYPE Real; J, dynamic viscosity [Pas]
lambda TYPE Real; % thermal conduct. [W/Km]
Re, Pr, Nu TYPE Real; % Dimensionless numbers
Tm TYPE Real; % Mean temperature [degC]
equations:
% - medium calculations
Cp = cptp(Tm+K2BasicLib::T0,Rin.p,trans(Rin.Gmix));
mu = le-6%(22+0.035%(Tm~-100));
lambda = 1e-3%(31+0.05775%(Tm-100)) ;
Y e e e e dimensionless numbers
Re = abs(Rin.w)*d/Across/mu;
Pr = Cp*mu/lambda;
Nu = C*Re"ni*Pr~"n2;
% ——m————— Function evaluation
value = 1/(Nu*lambda*Aheat/d);
END;

SteamResistance

St
wh
wh
W
wh
wh
W
wh
wh
wh
wh
wh

ic

eamResistance ISA HeatResistanceIC WITH

SteamResistance is a function that calculates
the heat resistance on the steam side inside
heat exchanger tube.

Assumptions: constant area
turbulent flow

Model Use: given log mean temperature
given steam flow
Medium: Superheated steam

Model type: full.

ons:
Graphic ISA Base::Layout WITH

bitmap TYPE String := "SteamResistance";
END;

parameters:

C := 0.023;
ni := 0.8;
n2 := 0.4;
d, 1 ISA Parameter; % diameter and length
Across ISA Parameter WITH
value := K2BasicLib: :pi*sqr(d)/4;
END;
Aheat ISA Parameter WITH
value := K2BasicLib: :pi*d«1l;

END;
variables:
Cp TYPE Real; % Sp. heat capacity [J/kgK]
mu TYPE Real; % dynamic viscosity [Pas]
lambda TYPE Real; % thermal conduct. [W/Km]
Re, Pr, Nu TYPE Real; % Dimensionless numbers
Tm TYPE Real; % Mean temperature [degC]
equations:
% e ---- medium calculations

Cp = 2000; % Avoid chattering
mu = 1e-6%(12+0,0436%(Tm-100));
lambda = 1e-3*(24+0.13%(Tm-100));

% - dimensionless numbers
Re = abs(Rin.w)*d/Across/mu;

Pr = Cp*mu/lambda;

Nu = C¥Re"ni1*Pr"n2;

% e St e e i e Function evaluation

value = 1/(Nu*lambda*Aheat/d);

END;

13

WaterResistance

WaterResistance ISA HeatResistanceIC WITH

%% WaterResistance is a function class that

%% calculates the heat resistance on

%% the water side inside a of a haet exchanger
%% tube.

W

%% Assumptions: constant area

W turbulent flow

%% Model Use: given log mean temperature
W given water flow and pressure
%% Medium: water

%% Model type: full.
W

icons:
Graphic ISA Base::Layout WITH
bitmap TYPE String := "WaterResistance";
END;
parameters:

C.default := 0.023;
nl.default := 0.8;
n2.default := 0.4;
d, 1 ISA Parameter; % diameter and length
Across ISA Parameter WITH
value := K2BasicLib: :pi*sqr(d)/4;
END;
Aheat ISA Parameter WITH
value := K2BasicLib::pi*dxl;

END;
variables:
Cp TYPE Real; % Sp. heat capacity [J/kgK]
mu TYPE Real; % dynamic viscosity [Pas]
lambda TYPE Real; % thermal conduct. [W/Km]
Re, Pr, Nu TYPE Real; % Dimensionless numbers
Tm TYPE Real; % Mean temperature [degC]
equations:
h - = - medium calculations

Cp = cptp(Tm+::TO,Rin.p);

mu = le-3#(0.26+28%(1/Tm-0.009));

lambda = 16-3%(685-0.005%sqr (Tm-140));

% Appr. expressions for mu, lambda from ’Date och Diagram’ p72
% They are good in the temperature range 50-300 degC

% ——————————————— e e - dimensionless numbers
Re = abs(Rin.w)*d/Across/mu;
Pr = Cp*mu/lambda;
Nu = C#Re"ni*Pr"n2;
% -—— - - Function evaluation
value = d/Nu/lambda/Aheat;

END;

14

WallResistance

WallResistance ISA HeatResistanceIC WITH
%% WallResistance is a function class that
%% calculates the heat resistance in the
%% metalic wall of tube.

wh

%% Assumptions: constant area

W homogenouus metal

W tube geometry

%/ Model Use: given log mean temperature
%% Medium: stainless steal

%% Model type: full.
Wh
icon:
Graphic ISA Base::Layout WITH
bitmap TYPE String := "WallResistance";
END;
submodels:
Rin ISA Class; % Override medium terminal
paremeters:
d, 1 ISA Parameter; }. diameter and length
delta ISA Parameter; % wall thickness
variables:
lambda TYPE Real; % thermel conduct. [W/Km]
Tm TYPE Real; % Mean temperature [degC]
equations:
% medium calculations
lambda = 13.24+0.0012%Tm;
% Function evaluation
value = 1ln(1+2#delta/d)/2/::pi/lambda/1;
END;

15

5. K2TerminalLib

Terminals are important model components that are often defined globally.
In the K2 terminal library there are classes for medium flows and heat flows.
The terminal class corresponds to a physical variable. Simple terminals are so

Quality TC
TemperatureTC
PressureTC
PhaseTC
HeightTC
SimpleTerminal VectorTenm——GasCompositionTC
BasicTerminal EnthalpyTC
Simplelnput
impleOutput
iscreteTerminal

MassFowOutTC
MassFIanC<
roSumTenninaJ< MassFowInTC
HeatRateTC

Figure 8. The class hierarchy of basic terminal classes in the K2 terminal li-
brary.

called across variables where a connection is interpreted as an equality. The
zero sum terminals are so called through variables which are assumed to sum
to zero in a connection. They have an attribute describing the direction of a
positive value. The basic terminals shown in Figure 8 can be used as subclasses

HeatMediumTC—M
HeatTransferinTC
HeatRateOutTC
RecordTerminal HeatRateinTC—R
GenFlowTC
terMediumTC——M
FlowInTC AowOutTC

Figure 9. The record terminals in K2 terminal library.

in record terminals like FLowInTC below. The flow in terminal class has four
attributes describing mass flow, pressure, enthalpy and medium. The flow in
and flow out terminals are commonly used to describe medium flows in the
K2 models.

FlowInTC ISA RecordTerminal WITH
w ISA MassFlowInTC;
P ISA PressureTC;
h ISA EnthalpyTC;
M ISA WaterMediumTC;
END;

16

Record terminals that describe flows also contain a subterminal containing
information about the flowing medium. This information is defined in the
medium subterminal which is a record terminal. There are different medium

subterminals for different media as seen in Figure 10.

GasMediumTC
FlashMediumTC
SteamMediumTC
HeatMediumTC
VaterMediumTC
MediumTC

RecordTerminal

Figure 10. The record terminals describing medium properties in K2 terminal
library.

17

6. K2EndTerminalLib

The terminal classes in K2TerminalLib is used inside the model structure
hierarchy. To use a unit model from the K2 libraries one has to connect the
terminals to a given experimental setup. This setup is described by the end
terminals. The listed classes are the most common experimental setups used.
Other combinations are possible, but of limited use.

CompWinTC defines a mass flow into a compartment model.
GasCompWinTC defines a gas mass flow into a compartment model.
WaterCompWinTC defines a water mass flow into a compartment model.
SteamCompWinTC defines a steam mass flow into a compartment model.
GasFlowPoutTC defines a gas pressure out from a flow model.
WaterFlowPoutTC defines a steam pressure out from a flow model.
WaterFlowWoutTC defines a water mass flow out from a flow model.
WaterFlowWinTC defines a water mass flow into a flow model.
WaterFlowPinTC defines a water pressure into a flow model.

SteamFlowPinTC defines a steam pressure into a flow model.

18

7. K2ClassTreeLib

This library contains super classes that branch the class tree into a number
conceptual parts. There is almost no important information inherited in this
part of the class tree. The super class for all model classes developed in K2

UnitGC———SensorCC
FlowSheetGC
HeatResistorCC
ThenmodynamicAl Sub Unlth<Fianesismrcc
CompartmentCC
FlueGasCC
MediumGC
WaterSteamCC

Figure 11. The tree organization levels of the class tree.

model database are ThermodynamicAC. AC stands for application class and in
an application study there can be a number of different ACs, like ControlAC,
ElectricAC etc. The next level are the granularity class level, GC. It branches
the tree into medium, subunits, units and systems. The third level is the so
called conceptual class level. The classes on this level are super classes for
models that are conceptually related. Examples are heating units, vessels,
pumps, valves etc.

19

8. K2MediumLib

The K2 medium library contain model classes that describe medium subunits.
These subunits are used in compartment and flow resistor models. The medium
subunits are modules that encapsulate all access to medium functions and
calculations.

WaterSteamlIC is the interface class to medium models used inside com-
partment subunit models.

WaterConstMM is a subcooled water model with constant density.
WaterVarMM is a subcooled water model with variable density.
Saturated WaterSteamMM is saturated water/steam mixture.
SuperheatedSteammMM is a model describing superheated steam.
FlueGasMM is a flue gas medium model.

FlowMediumIC is the interface class for medium models that are used inside
flow resistor subunits.

SteamFlowMM for steam flow.
WaterFlowMM for water flow.
FlashFlowMM for water/steam mixture flow.
GasFlowMM for flue gas flow.

T Y BTty R X
P Al BEa el L 1
™A 1AL 1= i

S8

s

Figure 12. The compartment medium models for water, flash, superheated
steam and for flue gas.

20

WaterSteamIC

WaterSteamIC ISA WaterSteamCC WITH
%% A medium model interface class for water and steam.
wh
%% Assumptions: enthalpy and pressure are medium states.
%% Model Use: given interface with compartment models.
%% Model type: interface class
W

icon:
Graphic ISA super: :Graphic WITH
bitmap TYPE String := "WaterMedium";
END;
terminals:

Min ISA RecordTerminal WITH
p, hin, hout ISA SimpleTerminal;
END;
Mout ISA RecordTerminal WITH
ap, ah, rho, Tkin, Tkout ISA SimpleTerminal;
END;
Mout2 ISA RecordTerminal WITH
hw, hs, rhow, rhos, alpha ISA SimpleTerminal;
END;
END;

21

WaterConstMM

WaterConstMM IS

A WaterSteamIC WITH

%% A medium model describing the thermodynamic
%% properties of the processed medium.

Wh

%% Assumptions :

%

%% States

%% Model use
%% Model type
wh

medium states are pressure and enthalpy.
constant density.

: static

: inside compartment models

: medium model. (Subcooled Water)

parameters:
TO ISA Parameter WITH value:=273.16; END;
variabels:
Tc,Tbelow ISA Variable;
equations:
% constant density
Mout.rho = 1000;

%-- -

= not used in water models

-—= temperatures

Mout.ap := 0;

Mout.ah := 0;

Y—-

Mout.Tkin = THP(Min.hin,Min.p);

Mout . Tkout

THP (Min.hout ,Min.p);

2 temp in Celcius

Tbelow is temp below boiling
.Tkout - TP(Min.p);

=
o
[
ot
N
=
wn
[}

Mout2.rhow
Mout2.rhos
Mout2.alpha

————— Set Mout2 (Not used in Water)

s we wa

O O O © O

e

22

WaterVarMM

WaterVarMM ISA WaterSteamIC WITH

%% A medium model describing the thermodynamic
%% properties of the processed medium.

wh

%% Assumptions : medium states are pressure and enthalpy.

Wh variable density.
%% States : static
%% Model use : inside compartment models

%% Model type : medium model. (Subcooled Water)
W
parameters:
eps ISA Parameter WITH default:=0.001; END;
si, s2 ISA Parameter;
variables:
Tc, Tbelow ISA Variable;
dvdh, dvdp ISA Variable;

equations:
h==mmmmm e -- constant density
Mout.rho = 1/VHP(Min.hout,Min.p);
Y S --- thermal properties

% approximation of derivatives

dvdp = (VHP(Min.hout, (1+eps)*Min.p) - VHP(Min.hout, (1-eps)#*Min.p)) /
(2*eps*Min.p);

dvdh = (VHP((1+eps)#*Min.hout,Min.p) - VHP((1~eps)#*Min.hout,Min.p)) /
(2+eps*Min.hout) ;

% — partial derivatives

Mout.ap := IF s1<0.5 THEN -dvdp * Mout.rho*Mout.rho

ELSE 0.8115/(Min.p/1e5)~1.77;

IF s2<0.5 THEN -dvdh * Mout.rho*Mout.rho

ELSE -68860/Min.p;

% Approximate expressions valid for subcooled water in the

% pressure range 0.2-5bar, perhaps.

h=—— temperatures

Mout.Tkin = THP(Min.hin,Min.p);

Mout.Tkout = THP(Min.hout,Min.p);

Mout.ah :

e e e e temp in Celcius

Tc = Mout.Tkout - K2BasicLib::TO;

hmm———————= - Tbelow is temp below boiling
Tbelow = Mout.Tkout - TP(Min.p);

%4 . Set Mout2 (Not used in Water)
Mout2.hw = 0;

Mout2.hs = 0;

Mout2.rhow = 0;

Mout2.rhos = 0;

Mout2.alpha = 0;

END;

SaturatedWaterSteamMM

SaturatedWaterSteamMM ISA WaterSteamIC WITH

%% A medium model describing the thermodynamic

%4 properties of the processed medium.

W

%/ Assumptions : medium states are pressure and enthalpy.
4% States : static

%% Model use : inside compartment models

%% Model type : medium model. (Saturated Water/Steam)
wh

icon:
Graphic ISA super::Graphic WITH
bitmap TYPE String := "FlashMedium";
END;
parameters:

eps ISA Parameter WITH default:=0.001; END;

s1, s2 ISA Parameter;
variabels:

x, Tc, Ttest ISA Variable;

dvdh, dvdp, dvsdp, dvedp, dhsdp, dhwdp ISA Variable;
equations:

% saturation enthalpy

Mout2.hw = H1P(Min.p);

Mout2.hs = H2P(Min.p);

% === -— - steam ratio (0 -> 1)

x = MIN(1 , MAX(0 , (Min.hout - Mout2.hw)/(Mout2.hs - Mout2.hw)));
% —————- -— - density

Mout2.rhow = 1/ViP(Min.p);
Mout2.rhos = 1/V2P(Min.p);
Mout.rho = 1/((1-x)/Mout2.rhow + x/(Mout2.rhos));

% - —————————— - amount of water
Mout2.alpha = (Mout2.rhow-Mout.rho)/(Mout2.rhow-Mout2.rhos) ;
% - = ~ thermal properties

% approximation of derivatives
dvsdp = (V2P((i+eps)*Min.p) - V2P((i-eps)*Min.p))/(2*eps*Min.p);

dvedp = (VIP((1+eps)*Min.p) - ViP((1-eps)*Min.p))/(2*eps*Min.p);
dhsdp = (H2P((1+eps)#*Min.p) - H2P((1-eps)#*Min.p))/(2*eps*Min.p);
dhwdp = (H1P((i+eps)*Min.p) - H1P((1-eps)*Min.p))/(2*eps*Min.p);

% partial derivative under comstant h
dvdp = x*((dvsdp - dvwdp) - dvdh*(dhsdp - dhwdp))
- dvdh*dhwdp + dvwdp;

dvdh = (1/Mout2.rhos - 1/Mout2.rhow)/(Mout2.hs - Mout2.hw);

% alpha-koefficients

Mout.ap = IF s1<0.5 THEN -dvdp * Mout.rho*Mout.rho
ELSE Mout.rho/Min.p;

Mout.ah = IF s52<0.5 THEN -dvdh * Mout.rho*Mout.rho
ELSE -Mout.rho/Min.hout;

4 -- - temperature

Mout .Tkin THP (Min.hin,Min.p);

Mout.Tkout = THP(Min.hout,Min.p);

Tc = Mout.Tkout - K2BasicLib::TO;

Ttest = Mout.Tkout - TP(Min.p);

END;

24

SuperheatedSteamMM

SuperheatedSteamMM ISA WaterSteamIC WITH

%% A medium model describing the thermodynamic
%% properties of the processed medium.

W

%% Model type : medium model (Superheated Steam)
%4 Assumptions : ideal gas.

W medium states are pressure and enthalpy.
%% States ¢ static
%% Model use : inside compartment models
%4 Tests : check of superheated temperature.
W
icon:
Graphic ISA super: :Graphic WITH
bitmap TYPE String := "SteamMedium";
END;
variables:
Tc, Tbelow ISA Variable;
equations:
% - density
Mout.rho = 1/VHP(Min.hout,Min.p);
% - --- heat coefficients

Mout.ap = Mout.rho/Min.p;
Mout.ah = -Mout.rho/Min.hout;
% temperatures

Mout.Tkin = THP(Min.hin,Min.p);

Mout .Tkout = THP(Min.hout,Min.p);

4 -- -—- --—- temp in Celcius
Tc = Mout.Tkout - K2BasicLib::TO;

% == temp below boiling
Tbelow = Mout.Tkout - TP(Min.p);

Y e Set Mout2 (Not used in SuperheatedSteam)
Mout2.hw =0;

Mout2.hs =0;

Mout2.rhow = 0;

Mout2.rhos = 0;

Mout2.alpha = 0;

25

FlueGasMM

FlueGasMM ISA WaterSteamIC WITH

%% A medium model describing the thermodynamic
%4 properties of the flue gas medium.

wh

%% Model type : medium model (Flue Gas)

%% Assumptions : ideal gas.

wh medium states are pressure and enthalpy.
%% States : static
%% Model use : inside compartment models
WA
icon:

Graphic ISA super::Graphic WITH

bitmap TYPE String := "FlueGas";

END;

terminal:

Gin ISA GasCompositionTC;
Mout ISA super::Mout WITH
Tkin, Tkout ISA K2BasicLib::Th;
END;
parameters:
TO ISA Parameter WITH value:=273.16; END;
MW ISA Std::VectorPar WITH
% Mole Weight vector [N2, €02, 02, Ar, S02, NO, H20]
n:=7;
default TYPE Column[n] := [28.01;44.01;32.00;39.96;64.06;30.01;18.02];
END;

variables:
Tc ISA Variable;

equations:
A e DL e LB et St density
Mout.rho = Min.p/(Mout.Tkout#*(K2BasicLib: :R/(trans(MW)*Gin))) ;
% - ---- heat coefficients
Mout.ap = Mout.rho/Min.p;
Mout.ah = -Mout.rho/Min.hout;

4 - e temperatures

% NOTE: fitted equations

Mout.Tkin.h = Min.hin;

Mout .Tkout.h = Min.hout;

% ---- temp in Celcius

Tc = Mout.Tkout - TO;

A - Set Mout2 (Not used in Flue Gas)

Mout2.hw =

Mout2.hs

Mout2.xrhow

Mout2.rhos

Mout2.alpha
END;

]
-

il
©C O O OO

26

FlowMediumlIC

FlowMediumIC ISA WaterSteamCC WITH
terminals:
Min ISA RecordTerminal WITH
p, h ISA SimpleTerminal;
END;
Mout ISA RecordTerminal WITH
rho, my, Cp, lambda, kappa ISA SimpleTerminal;
END;
END;

27

SteamFlowMM

SteamFlowMM ISA FlowMediumIC WITH

%% A medium model describing the thermodynamic

%% properties of the processed medium.

W

%% Model type : medium model. (Superheated steam)

%% Assumptions : medium states are pressure and enthalpy.
%% States : static

%% Model use : inside flow and heat modules
wh
variables:
Tk,Tc,Test ISA Variable;
equations:

Mout.rho = 1/VHP(Min.h,Min.p); % kg/m3

Tk = THP(Min.h,Min.p); % K

Tc = Tk -~ K2BasicLib::TO0; % degC

Test = Tk - TP(Min.p); % K

Mout.my = (12+0.0436%(Tc-100))/1000; % Pa/s

% Approximate expression for my from ’'Data och Diagram’ p78

Mout.Cp = CPTP(Tk,Min.p); % J/kgK

Mout.lambda = 1e-3%(24+0.13%(Tc-100));%

Mout.kappa = 1/(1 - (K2BasicLib::R/K2BasicLib: :M)/Mout.Cp);
END;

WaterFlowMM

WaterFlowMM ISA FlowMediumIC WITH

%% A medium model describing the thermodynamic

%% properties of the processed medium.

W

%% Model type : medium model. (Subcooled Water)

%% Assumptions : medium states are pressure and enthalpy.

Wi constant density.
%% States : static
%% Model use : inside flow modules
W
perameters:
TO ISA Parameter WITH value:=273.15; END;
variabels:
Tk,Tc,Test ISA Variable;
equations:
Mout.rho = 1000; % kg/m"3 (water)
Tk = THP(Min.h,Min.p); % K (water)

Tc =Tk - TO; % C

Test = Tk — TP(Min.p); % K

Mout.my := 1e-3#%(0.26+28%(1/Tc-0.009));% Pa/s

Mout.lambda := 1e-3*(685-0.006*sqr(Tc-140));%

% Appr. expressions for mu, lambda from ’Data och Diagram’ p72

% They are good in the temperature range 50-300 degC

Mout.Cp := CPTP(Tk,Min.p);

Mout .kappa := 1/(1 - (K2BasicLib::R/K2BasicLib::M)/Mout.Cp);
END;

29

FlashFlowMM

FlashFlowMM ISA FlowMediumIC WITH

%% A medium model describing the thermodynamic

%% properties of the processed medium.

wh

%% Model type : medium model. (Saturated Water/Steam)
%% Assumptions : medium states are pressure and enthalpy.
%% States : static

%% Model use : in flow modules
wh
parameters:
eps ISA Parameter WITH default:=0.01; END;
variables:

x, Tk, Tc, Test ISA Variable;
hw, hs ISA Variable;
equations:
h e e saturation enthalpy
hw = H1P(Min.p);
hs = H2P(Min.p);

% -- - steam ratio (0 -> 1)
x = MIN(1 , MAX(0 , (Min.hout - hw)/(hs - hw)));

% density

Mout.rho = (1-x)/ViP(Min.p) + x/V2P(Min.p);

h mmmm e temperature

Tk = THP(Min.h,Min.p);

Tc = Tk - K2BasicLib::TO;

Test = Tk - TP(Min.p);

h mmmm e medium attributes

Mout.Cp := x#CPTP(Tk+eps,Min.p) + (1-x)*CPTP(Tk-eps,Min.p);

Mout .kappa := 1/(1 - K2BasicLib::R/Mout.Cp/K2BasicLib: :M);

Mout .my := 1e-3#(0.25+28%(1/Tc~0.009)) ;% Pa/s

Mout.lambda := 1e-3*(685-0.005+sqr(Tc-140));

% Expressions for mu, lambda from ’Data och Diagram’ p72

% Here the expressions for water are used as an approximation.
END;

30

G

asFlowMM

GasFlowMM ISA FlowMediumIC WITH

wh
wh
wh
i
i
W

A medium model describing the thermodynamic
properties of the processed medium.

Model type : medium model. (Heated flue gas)
Assumptions : medium states are pressure and enthalpy.
constant density.

%% States : static

%% Model use : inside flow modules
W

variables:

M TYPE Matrix[1,1];
Tk,Tc ISA Variable;
GasMix ISA Std::VectorPar WITH
% Composition description [N2, €02, 02, Ar, S02, NO, H20]

n:=17;
default TYPE Column[n] := [0.6911;0.078;0.1697;0;0;0;0.0341];
END;

MW ISA Std::VectorPar WITH

% Mole Weight vector [N2, €02, 02, Ar, S02, NO, H20]

n:=7;

default TYPE Column[n] := [28.01;44.01;32.00;39.95;64.06;30.01;18.02];
END;

equations:

h

%

M = trans(MW)*GasMix; J Moleweight

Mout.rho = Min.p/Tk/K2BasicLib: :R#M; % kg/m3

Min.h = HTP(Tk,Min.p,trans(GasMix)); % K, implicit equation
Tc = Tk - K2BasicLib::T0; % degC

Mout.my := 1e-6%(22+0.035%(Tc-100)); % Pa/s

Mout.lambda := 1e-3#%(31+0.05776%(Tc-100));

Mout.Cp := CPTP(Tk,Min.p,trans(GasMix));% J/kgK

Mout .kappa = 1/(1 - K2BasicLib: :R/Mout.Cp/M) ;

Assignment doesn’t work with 1x1 matrix.

END;

31

9. K2CompartmentLib

This library contains compartment classes. These models describe mass and
energy dynamics. The states are transformed into pressure and enthalpy.

CompartmentIC is an interface class with one inflow, one outflow and one
heat interaction terminal.

WaterCompartmentFM describes a water medium with a dynamic en-
thalpy balance and one static pressure balance. Uses a simplified medium
description.

WaterVarCompFM* describes a water medium with dynamic enthalpy and
pressure balances. Uses a variable water medium description.

SteamCompartmentFM is modelled with dynamic pressure and enthalpy
balances.

GasCompartmentFM is similar to SteamCompartmentFM but with addi-
tional gas composition description.

FlashCompartmentFM is similar to SteamCompartmentFM but with an
additional description of the mixture of water and steam.

OpenCompartmentFM is similar to WaterVarCompFM but with fixed pres-
sure (usually atmospheric) and variable water volume. This means that
the pressure dynamics are replaced by volume dynamics.

Compartment2IC* is an interface class to drum compartment.

DrumCompartmentFM describe the dynamic enthalpy and pressure bal-
ance for water and steam at saturation. The drum has a developed water
level and two outflows: steam and water.

Compartment3IC* is an interface class for water node models.
WaterNodell* is a water compartment with two flows.
WaterNodel2* is a water compartment with three flows.

A class with a * is not listed in this report. It is not found to be of general
interest. The compartment icons with terminals are seen in Figure 13. The

3 B3 R

Figure 13. The compartment subunit models for different media.

inflow terminal is usually at the left and the outflow at the right. The heat
terminal is hidden at the center of the icon. Note that variations occur.

32

CompartmentIC

CompartmentIC ISA CompartmentCC WITH
%% Interface class of a compartment model with
%% one inflow and one outflow.

wh

icon:
Graphic ISA super::Graphic WITH
bitmap TYPE String := "WaterCompartment";
END;
terminals:

Fin ISA FlowInTC WITH
Graphic ISA super::Graphic WITH

x_pos := 1;
y_pos := 1b1;
END;
END;

Fout ISA FlowOutTC WITH
Graphic ISA super::Graphic WITH

x_pos := 400;
y_pos := 1b1;
END;

END;
Qin ISA HeatTransferInTC WITH
Graphic ISA super::Graphic WITH

x_pos := 201;

y_pos := 151;

invisible := 1;
END;

END;
END;

WaterCompartmentFM

WaterCompartmentFM ISA CompartmentIC WITH
%% A control volume model of a liquid
%% medium (water) based on
%% dynamic energy and static mass balances.
wh

%% Assumptions: constant volume,

W homogenous mixed,

wh incompressible (static pressure balance),
W no momentum description,

W no heat interaction,

W no work interaction.

%% Model Use: given mass flow directionm,

W mass flows are described elsewhere.

%% States: enthalpy (h).

%% Medium: subcooled water (h < 4.1e5).

%% Model type: full.
wh
parameters:
V ISA Perameter;
height ISA Parameter;
variables:
% states: p = pressure, h = enthalpy
h ISA Variable;
p ISA Variable;
% balance derivitives
dm ISA Variable;
de ISA Variable;
equations:
% mmm e e mass balance (static)

% mmm——— - energy balance (dynamic)
de = Fin.w*Fin.h - Fout.w*Fout.h + Qin.R.q;
h mmmmm e - state equations (enthalpy)
Fin.p = p;
Fout.p = p;
h’ = 1/(M.Mout.rho*V)#*de;
Fout.h = h;
medium:
M ISA WaterConstMM;
medium_connections:
fmmm e medium state to medium model
M.Min.p =p;
M.Min.hout = Fout.h;
M.Min.hin = Fin.h;
e e medium temp to heat transfer
Qin.R.Tin = M.Mout.Tkin;

Qin.R.Tout = M.Mout.Tkout;
% phase to medium terminal
Fin.M.q = 'Water;
Fout.M.q = 'Water;
Fin.M.z = height;
Fout.M.z = height;
heat_medium_connections:
Qin.M.p = p;
Qin.M.w = Fout.w;

Qin.M.Gmix := [0;0;0;0;0;0;1.0];

END;

SteamCompartmentFM

SteamCompartmentFM ISA CompartmentIC WITH
%4 A control volume model of a
%% superheated steam medium based on
%% dynamic energy and mass balances.
wh

%% Assumptions: constant volume,

Wh homogenous mixed,

wh no momentum description,

W no work interaction.

%4 Model Use: given mass flow directioms,

Wh mass flows are described elsewhere.
%% States: pressure (p),

Wh enthalpy (h).

%% Medium: superheated steam.

%% Model type: full model.
wh
icon:
Graphic ISA super::Graphic WITH
bitmap TYPE String := "SteamCompartment';
END;
parameters:
V ISA Parameter;
submodels:
Fin ISA super::Fin WITH
M ISA SteamMediumTC;
END;
Fout ISA super::Fout WITH
M ISA SteamMediumTC;
END;
variables:
% states: p = pressure, h = enthalpy
p ISA Variable;
h ISA Variable;
% balance derivitives
dm, de ISA Variable;
dV ISA Variable;
% auxilary variables
K1, K2 ISA Variable;
Ti1, T12, T13 ISA Variable;
T21, T22, T23 ISA Variable;

equations:
% - e mass balance
dm = Fin.w - Fout.w;
% ESsSss======= ---- energy balance
de = Fin.w*Fin.h - Fout.w#Fout.h + Qin.R.q;
dv := 0;
4 -- -— auxiliary variables

K1 = M.Mout.ap*M.Mout.rho + M.Mout.ah;

K2 = M.Mout.rho*M.Mout.rho/p + M.Mout.ah;
Til1 = (M.Mout.rho + M.Mout.ah*h)/K1/V;
T12 = -M.Mout.ah/K1/V;

T13 = -p/K1/V*K2;

T21 = (Ti1 - h/V)/M.Mout.rho;

T22 = (1 - M.Mout.ah/K1)/M.Mout.rho/V;
T23 = (1 - K2/K1)*p/M.Mout.rho/V;

% - - - - - transform into pressure and enthalpy
p’ = Tiikdm + Ti2#%de + T13%dV;

Fin.p = p;

Fout.p = p;

h’ = T21*dm + T22*de + T23*dV;

35

Fout.h = h;
medium:
M ISA SuperheatedSteamlMM;
medium_connections:
% medium state to medium model
M.Min.p i= p;
M.Min.hout := Fout.h;
M.Min.hin := Fin.h;

% medium temp to heat transfer
Qin.R.Tin := M.Mout.Tkin;
Qin.R.Tout := M.Mout.Tkout;
h - phase to medium terminal
Fin.M.q = ’Steam;
Fout.M.q = 'Steam;
Fin.M.T = M.Mout.Tkin;
Fout.M.T = M.Mout.Tkout;
heat_medium_connections:
Qin.M.p = p;
Qin.M.w = Fout.w;
Qin.M.Gmix := [0;0;0;0;0;0;1.0];
END;

36

GasCompartmentFM

GasCompartmentFM ISA CompartmentIC WITH
%% A control volume model of a gas medium based
%% on dynamic energy and mass balances.
WA

%% Assumptions: constant volume,

W static gas composition

% homogenous mixed,

W no work interaction.

%h Model Use: given mass flow directions,

wh mass flows are described elsewhere.
%% States: pressure (p),

Wh enthalpy (h).

%% Medium: nonideal gas.

%% Model type : full model.
W

icon:
Graphic ISA super: :Graphic WITH
bitmap TYPE String := "GasCompartment";
END;
parameters:

V, height ISA Parameter;
GasMix ISA Std::VectorPar WITH
% Composition description [N2, C02, 02, Ar, S02, NO, H20]
n:=7;
default TYPE Column[n] := [0.6911;0.078;0.1697;0;0;0;0.0341];
END;
submodels:
Fin ISA super::Fin WITH
Graphic ISA super::Graphic WITH

x_pos := 400;
y_pos := 151;
END;
M ISA GasMediumTC;

END;
Fout ISA super::Fout WITH
Graphic ISA super::Graphic WITH

x_pos := 1;
y_pos := 15b1;
END;
M ISA GasMediumTC;
END;
variables:

p ISA Variable; % Pressure

h ISA Variable; % Enthalpy

dm, de ISA Variable; % Balance equation vars

dV, Ki, K2 ISA Variable; % aux variables
Tii, T12, T13 ISA Variable;

T21, T22, T23 ISA Variable;

equations:
% - mass balance
dm = Fin.w - Fout.w;
% -- energy balance
de = Fin.w*Fin.h - Fout.w*Fout.h + Qin.R.q;
dv := 0; % pressure-volume work
- auxiliary variables

Ki = M.Mout.ap#*M.Mout.rho + M.Mout.ah;
K2 = M.Mout.rho*M.Mout.rho/p + M.Mout.ah;

Tii = (M.Mout.rho + M.Mout.ah#h)/K1/V;
T12 = -M.Mout.ah/K1/V;
T13 = -p/K1/V*K2;

T21 = (Tii - h/V)/M.Mout.rho;
T22 = (1 - M.Mout.ah/K1)/M.Mout.rho/V;
T23 = (1 - K2/K1)*p/M.Mout.rho/V;
%h - ---~ pressure/enthalpy transformation
p’ = Til*dm + T12*de + T13*dV;
Fin.p = p;
Fout.p = p;
h’ = T21%dm + T22*de + T23%dV;
Fout.h = h;
medium:

M ISA FlueGasMM;
medium_connections:

% medium state to medium model
M.min.p = p;

M.min.hin = Fin.h;

M.min.hout = Fout.h;

M.Gin := GasMix;

e medium temp to heat transfer

Qin.R.Tin = M.Mout.Tkin;
Qin.R.Tout = M.Mout.Tkout;

% mm—mm e phase to medium terminal
Fin.M.q 1= 'Gas;
Fout.M.q = ’Gas;
Fin.M.T = M.Mout.Tkin;
Fout .M.T := M.Mout.Tkout;
heat_medium_connections:
Qin.M.p = p;
Qin.M.w® = Fout.w;
Qin.M.Gmix := GasMix;

END;

FlashCompartmentFM

FlashCompartmentFM ISA CompartmentIC WITH

%% A control volume model of a mixture
Wh
W
wh
%% Assumptions: constant volume,
W
W
%% Model Use:
W
Wh
wh
%% Medium:
%% Model type:
icons:
Graphic ISA Base::Layout WITH
bitmap TYPE String :=
END;
parameters:
V ISA Peremeter;
A ISA Parameter;
DH ISA Parameter;
height ISA Parameter;
parameter_propagation:

dynamic energy and mass balances.

homogenous mixed,
no work interaction.

States: pressure (p),

enthalpy (h).

full.

Fin.z := height;
Fout.z := height;
variables:

p ISA Variable; % state variables
h ISA Variable;

of

saturated water and steam described by

given mass flow directions,
mass flows are described elsewhere.

saturated water and steam.

"FlashCompartment";

dm ISA Variable; % balance equation variables

de ISA Variable;

dV ISA Variable; % terms in energy balance

w ISA Variable;

K1 ISA Variable; % auxil. variables

K2 ISA Variable;

T11 ISA Variable;

T12 ISA Variable;

T13 ISA Variable;

T21 ISA Variable;

T22 ISA Variable;

T23 ISA Variable;

level ISA Variable; % water level
equations:

% ———---

mass balance

- energy balance

auxiliary variables

dm = Fin.w - Fout.w;

Y% i
de = Fin.w#Fin.h - Fout.w*Wout.h + Qin.q - Qout.q + w;
w = 0;

dv := 0;

Y% O

Ki = M.Mout.ap*M.Mout.rho + M.Mout.ah;

K2 = M.Mout.rho*M.Mout.rho/p + M.Mout.ah;
Ti1 = (M.Mout.rho + M.Mout.ah*h)/K1/V;
Ti2 = -M.Mout.ah/K1/V;

T13 = -p/K1/V#K2;

T21 = (T11 - h/V)/M.Mout.rho;

T22 = (1 - M.Mout.ah/K1i)/M.Mout.rho/V;
T23 = (1 - K2/K1)#*p/M.Mout.rho/V;

p’ = Tlilxdm + Ti12#de + T13%*dV;

- pressure/enthalpy transformation

39

Fin.p = p;
Fout.p = p;
% Wout.p = p + M.Mout2.rhow*level;
h’ = T21%dm + T22%de + T23%dV;
Fout.h = if M.Mout2.alpha < (1 - K2BasicLib::eps) then M.Mout2.hs else h;
% water level description
level = DH*M.Mout2.alpha;
medium:
M ISA SaturatedWaterSteamMM;
medium_connections:

% -— -—— medium states
M.Min.p := p;

M.Min.hin := Fin.h;

M.Min.hout := h;

% medium temp to heat transfer
Qin.Tin = M.Mout.Tkin;
Qin.Tout = M.Mout.Tkout;

Qout.Tin = M.Mout.Tkin;

Qout.Tout := M.Mout.Tkout;
heat_medium_connections:

Ri.p = p;

Ri.w = Fout.w;

Ri.Gmix := [0;0;0;0;0;0;1.0];

R2.p = p;

R2.w = Fout.w;

R2.Gmix := [0;0;0;0;0;0;1.0];

END;

OpenCompartmentFM

OpenCompartmentFM ISA CompartmentIC WITH
%% A control volume model of water
%% in an open container, described by
%% dynamic energy and mass balances.
Wi

%% Assumptions: constant pressure,

W homogenous mixed,
Wi no work interaction.
%% Model Use: given mass flow directioms,
W mass flows are described elsewhere.
%% States: volume (V),
W enthalpy (h).
%% Medium: subcooled water.
%% Model type: full.
icons:
Graphic ISA Base::Layout WITH
bitmap TYPE String := "OpenCompartment";
END;
parameters:

p ISA Parameter WITH default := K2BasicLib::p0;END;
A ISA Parameter;
DH ISA Parameter;
height ISA Parameter;
terminals:
Fin ISA super::Fin WITH
Graphic ISA super::Graphic WITH

x_pos := 201;
y_pos := 300;
END;

END;
Fout ISA super::Fout WITH
Graphic ISA super: :Graphic WITH

x_pos := 201;
y_pos := 1;
END;
END;
variaebles:

V ISA Variable; % state variables

h ISA Variable;

dm ISA Veriable; % balance equation variables
de ISA Variable;

K1 ISA Variable; % auxil. variables

T11 ISA Variable;

T12 ISA Variable;

T21 ISA Variable;

T22 ISA Variable;

level ISA Variable; % water level

equations:
% — - mass balance
dm = Fin.w - Fout.w;
% - energy balance
de = Fin.w*Fin.h - Fout.w#Fout.h + Qin.R.q;
% - === === auxiliary variables

% there is a limiting fcn that takes care of division by zero
K1 = sqr(M.Mout.rho) + M.Mout.ah*Fin.p;
T11 = (p-M.Mout.rho*h)/K1/(V+exp(-sqr(V/K2BasicLib::eps)));

T12 = M.Mout.rho/K1/(V+exp(-sqr(V/K2BasicLib::eps)));
T21 = (M.Mout.rho + M.Mout.ah*h)/K1;
T22 = -M.Mout.ah/K1;

%4 e et i e enthalpy/volume transformation

h’ Tii%dm + Ti2*de;

V! = T21%dm + T22#de;
Fin.p = p;
Fout.p = p+M.Mout.rho*K2BasicLib: :g*level;
Fout.h = h;
h = water level description
level = V/A;
medium:

M ISA WaterVarMM;
medium_connections:
% medium states
M.Min.p := p;
M.Min.hin := Fin.h;
M.Min.hout := h;
% medium temp to heat transfer
Qin.R.Tin := M.Mout.Tkin;
Qin.R.Tout := M.Mout.Tkout;

% -= phase to medium terminal
Fin.M.q := ’Water;
Fout.M.q := 'Water;
Fin.M.z := height;
Fout.M.z := height;
heat_medium_connections:
Qin.M.p = p;
Qin.M.w := Fout.w;

Qin.M.Gmix :
END;

[0;0;0;0;0;0;1.0];

DrumCompartmentFM

DrumCompartmentFM ISA Compartment2IC WITH
% not ready
% no height description
%% A control volume model of a mixture of
%% saturated water and steam described by
%% dynamic energy and mass balances.
W

%% Assumptions: constant volums,

% homogenous mixed,
Wh no heat interaction,
W no work interaction.
%% Model Use: given mass flow directionms,
%% mass flows are described elsewhere.
%% States: pressure (p),
wh enthalpy (h).
%% Medium: nonideal gas, superheated steam (h > 7e6).
%% Model type: full.
parameters:

V ISA Parameter;

A ISA Parameter;

DH ISA Parameter;

height ISA Parameter;

submodels:

Sout ISA super::Sout WITH
M ISA SteamMediumTC;

END;

variables:

%*x+ state variabels

p ISA Variable;

h ISA Variable;

%**¥+ balance equation variables

dm ISA Variable;

de ISA Variable;

%*** pressure/volume work

dV ISA Variable;

%%*%x aux variables

K1 ISA Variable;

K2 ISA Variable;

T11 ISA Variable;

T12 ISA Variable;

T13 ISA Variabls;

T21 ISA Variable;

T22 ISA Variable;

T23 ISA Variable;

%**+% other variable

level ISA Variable;

equations:
% = mass balance
dm = Fin.w + Fin2.w - Wout.w - Sout.w;
% - - - energy balance
de = Fin.w#Fin.h + Fin2.w*Fin2.h - Wout.w*Wout.h - Sout.w*Sout.h;
dv := 0;
% - -—-- auxiliary variables

Ki = M.Mout.ap*M.Mout.rho + M.Mout.ah;
M.Mout .rho*M.Mout.rho/p + M.Mout.ah;
Ti1 = (M.Mout.rho + M.Mout.ah*h)/K1/V;
T12 = -M.Mout.ah/K1/V;

T13 = -p/K1/V+K2;

T21 = (T11 - h/V)/M.Mout.rho;

T22 = (1 - M.Mout.ah/K1)/M.Mout.rho/V;

=
N
]

43

T23 = (1 - K2/K1)#*p/M.Mout.rho/V;

% state equations (pressure and enthalpy)
p’ = Tii*dm + Ti2%de + T13*dV;

Fin.p = p;

Fin2.p = p;

Sout.p = p;

Wout.p = p + M.Mout2.rhow*K2BasicLib::g#level;

h’ = T21%dm + T22%de + T23%dV;

Sout.h = if M.Mout2.alpha < (1-K2BasicLib::eps) then M.Mout2.hs else h;
Wout.h = if M.Mout2.alpha > K2BasicLib::eps then M.Mout2.hw else h;

h—————- -—- water level description

level = DH*(1-M.Mout2.alpha);

fmmmm— medium description
medium:

M ISA SaturatedWaterSteamMM;
medium_connections:

A medium state to medium model
M.min.p = p;

M.min.hin = Fin.h;

M.min.hout = h;

% phase to medium terminal

Fin.M.q := ’Water;
Fin2.M.q := ’Water;
Wout.M.q := ’Water;
Sout.M.q := ’Steam;
Sout.M.T := M.Mout.Tkout;
Fin.M.z := height;
Fin2.M.z := height;
Wout.M.z := height;
END;

10. K2FlowLib

This library contains flow resistor classes. These models describe medium flow
as a function of the pressure on the different sides of the subunit. The physical
properties that are needed are calculated in a medium model using the medium
states: pressure and enthalpy. There are also loss and friction factor classes
which are used as submodels inside the flow resistors.

FlowResistorIC is an interface class with one inflow, one outflow (horizontal
layout).

FlowVerticallC* is similar to FlowResistorIC but with another graphical
layout (vertical).

WaterFlowResistorFM describes a water medium flow. It has two submod-
els, the medium model and a loss factor model.

SteamFlowResistorFM is similar to the previous but with another medium
model.

SteamFlowResistorFM2* is identical with the previous but with a variable
valve loss factor.

GasFlowResistorFM is similar to the two previous ones but with other
medium and loss factor models.

CriticalExpansionM is similar to SteamFlowResistorFM but with a de-
scription of critical expansion flow.

LaminarFlowResistorFM?¥* is similar to WaterFlowResistorFM but with a
flow description that is solved and simplified for laminar flow losses.

TurbulentFlowResistorFM* is similar to WaterFlowResistorFM but with
a flow description that is solved and simplified for turbulent flow losses.

GenFlowResistorIC* is an interface class to a flow resistor where the flow
direction may change.

GenFlowResistorFM¥* is a variable direction flow resistor.

ValveLossFactorFunction* is a constant loss factor used in flow resistor
models.

ValveLossFactorFunction2* is a variable loss factor.

TubeLossFactor is a super class to the following one. Contains a subclass
of FrictionFactor.

TubelossFactorFunction contains a model of laminar flow in a tube.
FrictionFactor is a super class to the two following ones.

LaminarFrictionFactor is a description of the friction losses in laminar
flows.

TurbulentFrictionFactor is a description of the friction losses in turbulent
flows.

A class with a * is not listed in this report. It is not found to be of general
interest. The flow resistor icons with terminals are seen in Figure 14 The inflow

= o o <Bp

Figure 14. The flow resistor subunit models for different media.
terminal is at the left and the outflow at the right. Note that variations occur.

45

FlowResistorIC

FlowResistorIC ISA FlowResistorCC WITH
%% This is an interface class for
%% flow resistor subunit classes.
icon:
Graphic ISA super::Graphic WITH
bitmap TYPE String := "WaterFlowResistor";
END;
terminals:
Fin ISA FlowInTC WITH
Graphic ISA super::Graphic WITH

x_pos := 0;
y-pos := 150;
END;

END;
Fout ISA FlowQutTC WITH
Graphic ISA super::Graphic WITH

x_pos := 400;
y_pos := 1B60;
END;
END;

END;

46

WaterFlowResistorFM

WaterFlowResistorFM ISA FlowResistorIC WITH
%% A resistor model of a liquid based on
%% static energy and mass balances.

wh

%% Assumptions: constant enthalpy

%h no heat interaction,
W no work interaction.
%% Medium: water (subcooled).

%% Model type: full.
wh
parameters:
length, diameter ISA Parameter;
Area ISA Parameter WITH
value := sqr(diameter)+*K2BasicLib::pi/4;
END;
Zero ISA Parameter; % Always zero
variables:
w ISA K2BasicLib::FlowVC;
zloss ISA Variable;
rho ISA Variable;
my ISA Variable;
DeltaP ISA K2BasiclLib: :PressureVC;

equations:

% - . === - mass balance
Fin.w = w;
Fout.w = w;

A e e - -— enthalpy balance
Fout.h = Fin.h;

% - - mechanical energy balance
% 0 = (Fin.p/rho + vin#ABS(vin)/2) -
% (Fout.p/rho + (1 + zloss)*vout*ABS(vout)/2);
w = Area*sqrt (2#rho*DeltaP/zloss);

% auxiliary variables

DeltaP = Fin.p-Fout.p;
zloss = zv; J, unnecessary
loss_factors:
zv ISA TubeLossFactor WITH
Fi ISA TurbulentFrictionFactor;

diameter := outer::diameter;
length := outer::length;
END;
medium:

M ISA WaterFlowMM;
medium_connections:

M.min.p := Fin.p;

M.min.h := Fin.h;

rho := M.Mout.rho;

my := M.Mout.my;
END;

47

SteamFlowResistorFM

SteamFlowResistorFM ISA WaterFlowResistorFM WITH

%% A resistor model of a liquid based on
%% static energy and mass balances.
Wh

%% Assumptions: constant enthalpy

% no heat interaction,
% no work interaction.
wh constant valve loss
%% Medium: steam (superheated).

%% Model type: full.
W

icon:
Graphic ISA super::Graphic WITH
bitmap TYPE String := "SteamFlowResistor";
END;
submodels:

Fin ISA super::Fin WITH
M ISA SteamMediumTC;
END;
Fout ISA super::Fout WITH
M ISA SteamMediumTC;
END;
loss_factors:
zv ISA ValvelossFactorFunction;
medium:
M ISA SteamFlowMM;
END;

48

GasFlowResistorFM

GasFlowResistorFM ISA WaterFlowResistorFM WITH

%% A resistor model of a liquid based on
%% static energy and mass balances.
Wh

%% Assumptions: constant enthalpy

% no heat interaction,
% no work interaction.
%% constant valve loss
4% Medium: flue gas

%% Model type: full.
W4

icon:
Graphic ISA super::Graphic WITH
bitmap TYPE String := "GasFlowResistor";
END;
terminals:

Fin ISA FlowInTC WITH
Graphic ISA super::Graphic WITH
x_pos := 400;

y_pos := 151;
END;
M ISA GasMediumTC;

END;
Fout ISA FlowOutTC WITH
Graphic ISA super::Graphic WITH

x_pos := 1;
y_pos := 1B1;
END;
M ISA GasMediumTC;

END;
loss_factors:

zv ISA ValvelLossFactorFunction;
medium:

M ISA GasFlowMM;

M.Tk := Fin.M.T;
END;

49

CriticalExpansionM

CriticalExpansionM ISA FlowResistorIC WITH

%% A resistor model of flowing steam
%% under critical expansion.

%% Velocity becomes independent on
%% the back pressure.

wh

%% Assumptions: constant enthalpy

W no heat interaction
W no work interaction
W constant valve loss
%% Medium: superheated steam
%% Model type: full.
W
icon:
Graphic ISA super: :Graphic WITH
bitmap TYPE String := "CriticalExpansion";
END;
parameters:

length, diameter ISA Parameter;
Area ISA Parameter WITH

value := sqr(diameter)*K2BasicLib::pi/4;

END;

Cd ISA Parameter;) Valve loss coefficcient

submodels:
Fin ISA super::Fin WITH
M ISA SteamMediumTC;
END;
Fout ISA super::Fout WITH
M ISA SteamMediumTC;
END;
variables:
y ISA Variable; % Valve opening
k ISA Variable; % Kappa (gamma)
Fi ISA Variable;
pratio ISA Variabls;
e, emin ISA Variable;
krit, dir TYPE DISCRETE Integer;
event:
Init ISAN Event;
equations:

Fin.w = Fout.w;

|
H-
=]
=

]
el
o
<]
ot
L4

e = Fout.p/Fin.p;

emin = (2/(k + 1))~ (k/(k - 1));

ONEVENT Init DO

% new(krit) := 0;

new(dir) := 1;

END;

ONEVENT (e>emin) OR (e<1/emin) DO
new (krit) := 0;

END;

ONEVENT (e<emin) OR (e>1/emin) DO
new(krit) := 1;

END;

ONEVENT e>1 DO
new(dir) := -1;

END;

-——— Mass balance

---=- Energy balance

---- Fluid character

50

ONEVENT e<1 DO
new(dir) := 1;
END;
pratio = ((1 - krit)*(i+dir)*e + krit*(1+dir)+*emin +
(1 - krit)*(1-dir)/e + krit*(1~dir)/emin)/2;
h ——————— - Fluid dynamics
Fi = sqrt(pratio”(2/k) - pratio~((1 + k)/k));
Fout.w = dir*Cd*Area*y*sqrt(2+k/(k-1)*Fin.p*M.Mout.rho)#*Fi;
% Media model
medium:
M ISA SteamFlowlMM;
medium_connections:
M.min.p = Fin.p;
M.min.h = Fin.h;
k = M.Mout.kappa;
END;

51

Loss Factors and Friction Factors

TubeLossFactor ISA Variable WITH
%% This is a model component describing
%4 a flow loss factor.
%% The friction factor is unspecified.
submodels:

Fi ISA FrictionFactor;
parameters:

length ISA Base::Parameter;

diameter ISA Base::Parameter;

assignments:

Fi.diameter := diameter;
equations:

value = Fi*length/diameter;
END;

TubeLossFactorFunction ISA TubeLossFactor WITH

%% A Tube loss factor based on laminar flow.
Fi ISA LaminerFrictionFactor;

END;

FrictionFactor ISA Variable WITH
%4 An interface class for friction factor descriptionms.
parameters:
diameter ISA Base::Parameter;
END;

LaminarFrictionFactor ISA FrictionFactor WITH
%% This is a friction factor that can be
%% used inside loss factor calculations.
%% Laminar flow description.
variables:
Re ISA Variable;
w ISA Variable;
my ISA Variable;
equations:
Re = 4+w/diameter/K2BasicLib::pi/my;
value = 64/Re;
END;

TurbulentFrictionFactor ISA FrictionFactor WITH
%% This is a friction factor that can be

%% used inside loss factor calculations.

%% Turbulent flow description.

parameters:

roughness ISA Base::Parameter WITH default := 0.0003; END;

% absolute roughness of cast iron
equations:

value = 1/sqr(3.2 - 2.5*1ln(roughness/diameter));
END;

52

11. K2HeatFlowLib

Heat transfer models are grouped together in this library. They are closely
related to flow resistors and are therefore called heat flow resistors in the K2
model database. The heat flow resistors have a number of submodels describing
different resistance factors, like wall and boundary layer resistances.

HeatTransferIC is an interface class.

HeatTransferFM is a simple model where heat flow is proportional to the
temperature gradient.

HeatTransfer2FM is similar to the previous but with logarithmic mean
temperature gradient for parallel flows

HeatTransfer3FM* is the same as the previous but for counter current
flows.

HeatResistorIC is the interface class to the more complex heat resistor
model.

HeatResistorFM is a heat transfer model using logarithmic mean temper-
ature description, wall and boundary layer resistance calculation.

A class with a * is not listed in this report. It is not found to be of general
interest.
There are additional descriptions of individual heat resistance in the basic
library.

53

Heat Transfer Classes

HeatTransferIC ISA HeatResistorCC WITH
%% This is a interface class for heat
%% transfer models.

icon:
Graphic ISA super: :Graphic WITH
bitmap TYPE String := "HeatResistor";
END;
terminals:

Hin ISA HeatRateTC WITH
Graphic ISA super::Graphic WITH

x_pos := 201;
y_pos := 1;
END;

END;
Hout ISA HeatRateTC WITH
Graphic ISA super: :Graphic WITH
x_pos := 201;

y_pos := 300;
END;
direction := ’out;
END;
END;

HeatTransferFM ISA HeatTransferIC WITH
%% A simple heat transfer model where
%% the heat flow is propotional to
%% the temperature difference.
Wh
parameters:

k, Area ISA Parameter;
equations:

Hout.q = Hin.q;

Hin.q = k#Area*(Hin.Tout - Hout.Tout);
END;

HeatTransfer2FM ISA HeatTransferIC WITH
4% A simple heat transfer model for cocurrent
%% flows where the heat flow is propotional to

%% the mean logarithmic temperature difference.

parameters:

k, Area ISA Parameter;
equations:

Hout.q = Hin.q;

Hin.q = k*Area*dTm;

submodel:
dTm ISA LogMean WITH
x = Hin.Tin - Hout.Tin;
y = Hin.Tout - Hout.Tout;
END;
END;

54

HeatResistorIC and HeatResistorFM

HeatResistorIC ISA HeatResistorCC WITH
%% This is an interface class for
%% heat resistor models.

icon:
Graphic ISA super::Graphic WITH
bitmap TYPE String := "HeatResistor";
END;
terminals:

Hin ISA HeatTransferInTC WITH
Graphic ISA super::Graphic WITH
x_pos := 201;
y_pos := 1;
END;
END;
Hout ISA HeatTransferOutTC WITH
Graphic ISA super::Graphic WITH
x_pos := 201;
y_pos := 300;
END;
END;
END;

HeatResistorFM ISA HeatResistorIC WITH
%% A complex heat transfer model with
%% separate submodels for convective
%% and conductive heat resistance.
submodels:
U1 ISA K2BasicLib::GasResistance WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 75.0;
END;
END;
U2 ISA K2BasicLib::WallResistance WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 150.0;
END;
END;
U3 ISA K2BasicLib::SteamResistance WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 22b.0;
END;
END;
terminals:
dTm ISA LogMean WITH
x = Hin.R.Tin - Hout.R.Tout;
y = Hin.R.Tout - Hout.R.Tin;
END;
parameters:
length ISA Parameter;
diameter ISA Paremeter;
delta ISA Parameter;
parameter_propagation:
Ul.1 := length;
U2.1 := length;
U3.1 := length;

u

55

Ul.d := diameter;
U2.d := diameter;
U3.d := diameter;
U2.delta := delta;
variables:
Tm TYPE Real;
Tm1i TYPE Real;
Tm2 TYPE Real;
equations:
Hout.R.q = Hin.R.q;
Hin.R.q = dTm/(U1 + U2 + U3);
Tml = (Hin.R.Tin + Hin.R.Tout)/2 - K2BasicLib::TO;
Tm2 = (Hout.R.Tin + Hout.R.Tout)/2 - K2BasicLib::TO;
Tm = (Tml + Tm2)/2;

connections:
Ul.Tm = Tmi;
U2.Tm = Tm;
U3.Tm = Tm2;

Hin.M AT U1l.Rin;
Hout .M AT U3.Rin;
END;

56

12. K2FlowUnitLib

The subunit models are used to describe typical units. Units are objects that
have a physical interpretation, like pumps and valves.

WaterPumpFM is a pump model based on a relationship between pressure
and pumping power.

WaterValveFM is a valve model with incompressible water flow and a con-
stant loss factor.

CritValveFM is a valve model for steam with large pressure drops.

TurbulentTubeFM* is a tube model with variable flow direction and tur-
bulent losses.

FlowSplitFM describes a split of one water flow in two flows with equal
enthalpy.

FlowSplitSteamFM is the same as the previous but for steam flows.
FlowJunctionFM describes a mixing of two water flows.

SprayTempFM describes a mixing of a water flow into a greater steam flow.
GenPumpFM* can have flow that changes direction.

GenValveFM™ can have flow that changes direction.

57

WaterPumpFM

WaterPumpFM ISA FlowVerticalIC WITH
%% A pump model for a liquid based on
%% static energy and mass balances.
Wi

%% Assumptions: constant enthalpy

W no heat interaction,

YAA no losses,

W work interaction through effective input power
%% Medium: water (subcooled).

%% Model type: full.
W

icons:
Graphic ISA Base::Layout WITH
bitmap TYPE String := "WaterPump";
END;
variables:

w ISA K2BasicLib: :FlowVC;

Pe ISA Variable;), Effective input power
rho ISA Variable;

DeltaP ISA K2BasicLib: :PressureUpVC;

equations:
% mass balance
Fin.w = w;
Fout.w = w;
% enthalpy balance
Fout.h = Fin.h;
% - —_— mechanical energy balance

% 0 = Fin.p/rho - Pe/w + zloss*sqr(w/rho/d);
w = -Pe*rho/DeltaP;
% auxiliary variables
DeltaP = Fin.p-Fout.p;
medium:
M ISA WaterFlowMM;
medium_connections:
M.min.p := Fin.p;
M.min.h := Fin.h;
rho := M.Mout.rho;
END;

58

Valves

WaterValveFM ISA WaterFlowResistorFM WITH
%% A valve model for a liquid
wh
%% Assumptions: constant valve loss
W
%% Medium: water (subcooled)
%% Model type: full.
W
icons:
Graphic ISA super: :Graphic WITH
bitmap TYPE String := "WaterValve";
END;
variables:
Area, y ISA Variable; % Valve opening, 0..1
Area := AO*y;
parameters:
A0 ISA Parameter WITH
value := sqr(diameter)#*K2BasicLib::pi/4;
END;
submodels:
zv ISA ValvelossFactorFunction;
END;

CritValveFM ISA K2FlowLib::CriticalExpansionM WITH
%4 A valve model for steam, only a graphical specialization

%% since the critical flow model also can function as a valve.

w4

%/ Assumptions:

%h

%% Medium: steam (superheated)
%% Model type: full.

W

icons:
Graphic ISA Layout WITH
bitmap TYPE String := "Valve";
END;
END;

59

Flow Split

FlowSplitFM ISA K2ClassTreeLib::UnitGC WITH

% A splitting of one flow in two separate flows.

% Pressure and height is propagated forward.
icon:
Graphic ISA super::Graphic WITH
bitmap TYPE String := "FlowSplit";
END;
terminals:
Fin ISA K2TerminallLib: :FlowInTC WITH
Graphic ISA super::Graphic WITH

x_pos := 0;
y_pos := 151;
invisible := 1;
END;
END;

Foutl ISA K2TerminalLib::FlowOutTC WITH
Graphic ISA super::Graphic WITH

x_pos := 400;

y_pos := 1b1;

invisible := 1;
END;

END;
Fout2 ISA K2Terminallib::FlowOutTC WITH
Graphic ISA super::Graphic WITH
x_pos := 201;

y_pos := 0;
invisible := 1;
END;
END;
Fin.w = Foutl.w + Fout2.w;
Foutl.h = Fin.h;
Fout2.h = Fin.h;
Fin.p = Foutl.p;

Fout2.p = Fin.p;

Fin.M AT Fouti.M;

Fin.M AT Fout2.M;
END;

FlowSplitSteamFM ISA FlowSplitFM WITH

% A splitting of one flow in two separate flows.

% Pressure and height is propagated forward.
% Specialized model for steam
terminals:
Fin ISA super::Fin WITH
M ISA K2Terminallib: :SteamMediumTC;
END;
Foutl ISA super::Foutl WITH
M ISA K2TerminalLib: :SteamMediumTC;
END;
Fout2 ISA super::Fout2 WITH
M ISA K2TerminalLib: :SteamMediumTC;
END;
END;

60

FlowJunctionFM

FlowJunctionFM ISA K2ClassTreeLib::UnitGC WITH
% A junction of two flows that are mixed into ome.
% Pressure and height is propagated backwards.
icon:
Graphic ISA super: :Graphic WITH
bitmap TYPE String := "FlowJunction";
END;
terminals:
Fin ISA K2TerminalLib: :FlowInTC WITH
Graphic ISA super::Graphic WITH

x_pos := 0;
y_pos := 151;
invisible := 1;
END;
END;

Fin2 ISA K2TerminalLib: :FlowInTC WITH
Graphic ISA super::Graphic WITH

x_pos := 201;
y_pos := 300;
invisible := 1;
END;
END;

Fout ISA K2TerminalLib::FlowOutTC WITH
Graphic ISA super::Graphic WITH

x_pos := 400;
y_pos := 1b1;
invisible := 1;
END;
END;

Fout.w = Fin.w + Fin2.w;
Fout.h = (Fin.h*Fin.w + Fin2.h*Fin2.w)/Fout.w;
Fin.p = Fout.p;
Fin2.p = Fout.p;
Fin.M AT Fout.M;
Fin2.M AT Fout.M;
END;

61

SprayTempFM

SprayTempFM ISA K2ClassTreeLib::UnitGC WITH
%% A model of a spray attemperator described as
%% perfect mixing of steam and spray. No dynamics.
WA
%% Model type : full
%% Assumptions: none

%% Model Use: given mass flow direction
%% States: none
%% Medium: none
Wh
icons:

Graphic ISA Base::Layout WITH bitmap TYPE String := "SprayTemp"; END;
parameters:
height ISA Parameter;
terminals:
Fin ISA K2TerminalLib::FlowInTC WITH
Graphic ISA super::Graphic WITH

x_pos := 0.0;
y_pos := 150.0;
END;
M ISA K2Terminallib: :SteamMediumTC;
END;

Fout ISA K2TerminalLib::FlowOutTC WITH
Graphic ISA super::Graphic WITH
x_pos := 400.0;
y_pos := 150.0;
END;
M ISA K2TerminalLib: :SteamMediumTC;
END;
Win ISA K2TerminalLib: :FlowInTC WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 300.0;
END;
END;
equations:
Fout.w = Fin.w + Win.w;
Fout.h = (Fin.h#Fin.w + Win.h#Win.w)/Fout.w;
Fin.p = Fout.p;
Win.p = Fout.p;
Fin.M AT Fout.M;
Win.M.q := ’Water;
Win.M.z := height;
END;

62

13. K2TurbineLib

Contains models describing turbine unit models. Currently one one turbine

unit model is available.
SteamTurbineFM is a steam turbine unit model.

SteamTurbineFM
SteamTurbineFM ISA K2ClassTreeLib: :UnitGC WITH
icon:
Graphic ISA Layout WITH bitmap TYPE String := "SteamTurbine"; END;
parameters:
etat, etam ISA Parameter WITH % Thermal and mechanical
default := 1; % efficiency
END;

length ISA Parameter;
diameter ISA Parameter;
parameter_propagation:

Flow.diameter := diameter;
Comp.V := length#sqr(diameter)*K2BasicLib::Pi/4;
terminals:

sin ISA K2TerminalLib::FlowInTC WITH
Graphic ISA super::Graphic WITH

x_pos := 0.0;
y_pos := 151.0;
END;
M ISA K2TerminalLib: :SteamMediumTC;

END;
Sout ISA K2TerminalLib: :FlowOutTC WITH
Graphic ISA super::Graphic WITH
x_pos := 400.0;
y_pos := 151.0;
END;
END;
submodels:
Comp ISA K2CompartmentLib: :SteamCompartmentFM WITH
Graphic ISA super::Graphic WITH
x_pos := 161.0;
y_pos := 150.0;
END;
END;
Flow ISA K2FlowLib::CriticalExpansionM WITH
Graphic ISA super::Graphic WITH
x_pos := 275.0;

y_pos := 150.0;
END;

END;
variables:

Po ISA Variable; % Output power
equations:

Po := sin.w*etam*(Comp.h - Sout.h);
connections:

Sout.h = Comp.h*{(Sout.p/Comp.p) "(etat*(1 - 1/Flow.k));
Sout.p = Flow.Fout.p;
Sout.w = Flow.Fout.w;
Flow.Fout.M.T := 0;
Flow.Fout.M.q := Flow.Fin.M.q;
sin AT Comp.Fin;
Comp.Fout AT Flow.Fin;
END;

63

14. K2HeatUnitLib

This library contains units that transfer heat in one way or another. There are
typical unit models like the heat exchanger but there are also more complicated
units that consist of other units like the boiler.

HeatExchangerFM is a water/water heat exchanger.
EconomizerFM is a water/gas heat exchanger.
SuperHeaterFM is a steam/gas heat exchanger.

SuperHeaterSystemFM contains two super heaters with a steam cooler
and a temperature controller.

BoilerFM contains a drum, evaporator with recycled water and a drum level
controller.

64

HeatExchangerFM

Lo

Figure 15. The (water/water) heat exchanger unit model.

HeatExchangerFM ISA K2ClassTreeLib: :UnitGC WITH

%% A model of a heat exchanger with only one section
%4 water/water interaction.

W

%/ Assumptions: constant volume,

Wi homogenous mixed,
W no work interaction.
%% Model Use: given mass flow directions.
%% States: enthalpy (h) on primary side.
% enthalpy (h) on secondary side.
%% Medium: Water and water.
%% Model type: full.
W
icons:
Graphic ISA Layout WITH
bitmap TYPE String := "HeatExchanger";
END;
parameters:

length ISA Parameter;

diameter ISA Parameter;

delta ISA Parameter;

V ISA Parameter WITH value := length¥sqr(diameter)/4; END;
parameter_propagation:

HotF.diemeter := diameter;
ColdF.length := length;
ColdF.diameter := diameter;
HeatF.length := length;
HeatF.diameter := diameter;
HeatF.delta := delta;
HotC.V := V;
ColdC.V := V;

terminals:

InH ISA K2TerminalLib: :FlowInTC WITH
Graphic ISA super::Graphic WITH
x_pos := 326.0;
y_pos := 300.0;
END;

END;
InC ISA K2TerminalLib: :FlowInTC WITH
Graphic ISA super::Graphic WITH
x_pos := 75.0;
y_pos := 0.0;
END;
END;
OutC ISA K2TerminalLib: :FlowOutTC WITH
Graphic ISA super: :Graphic WITH
x_pos := 325.0;
y_pos := 0.0;
END;
END;
OutH ISA K2TerminalLib: :FlowOutTC WITH
Graphic ISA super::Graphic WITH
x_pos := 75.0;
y_pos := 300.0;
END;
END;
submodels:
HotC ISA K2CompartmentLib: :WaterCompartmentFM WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 225.0;
END;
END;
ColdC ISA K2CompartmentLib::WaterCompartmentFM WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 75.0;
END;
END;
HoatF ISA K2HeatFlowLib::HeatResistorFM WITH
Graphic ISA super::Graphic WITH
x_pos := 201.0;
y_pos := 151.0;
END;
U1 ISA K2BasicLib::WaterResistance WITH
Graphic ISA super::Graphic WITH
x_pos := 101.0;
y_pos := 101.0;
END;
END;
U3 ISA K2BasicLib::WaterResistance WITH
Graphic ISA super: :Graphic WITH
x_pos := 301.0;
y_pos := 101.0;
END;
END;
END;
ColdF ISA K2FlowLib::WaterFlowResistorFM WITH
Graphic ISA super::Graphic WITH
x_pos := 275.0;
y_pos := 75.0;
END;
zv ISA K2FlowLib::ValveLossFactorFunction;
END;
HotF ISA K2FlowLib::WaterFlowResistorFM WITH
Graphic ISA super::Graphic WITH
x_pos := 125.0;
y._pos := 225.0;
END;

66

zv ISA K2FlowLib::ValveLossFactorFunction;
END;
connections:

ColdC.Qin AT HeatF.Hout;

C2 ISA Base::Connection WITH
InH AT HotC.Fin;
bpoints TYPE STATIC Matrix[3, 2] :=

[326.0, 300.0; 325.0, 224.0; 175.0, 224.0];

END;

C3 ISA Base::Connection WITH
HotC.Fout AT HotF.Fin;
bpoints TYPE STATIC Matrix[2, 2] :=

[224.0, 224.0; 100.0, 224.0];

END;

C4 ISA Base::Connection WITH
HotF.Fout AT OutH;
bpoints TYPE STATIC Matrix[3, 2] :=

[149.0, 224.0; 75.0, 224.0; 76.0, 300.0];

END;

Cb ISA Base::Comnection WITH
InC AT ColdC.Fin;
bpoints TYPE STATIC Matrix([3, 2] :=

[76.0, -1.0; 75.0, 74.0; 175.0, 74.0];

END;

C6 ISA Base::Connection WITH
ColdC.Fout AT ColdF.Fin;
bpoints TYPE STATIC Matrix[2, 2]

[224.0, 74.0; 250.0, 74.0];

END;

C7 ISA Base::Connection WITH
ColdF.Fout AT QOutC;
bpoints TYPE STATIC Matrix[3, 2]

[299.0, 74.0; 326.0, 74.0; 325.0, -1.0];

END;

C8 ISA Base::Connection WITH
HotC.Qin AT HeatF.hin;
bpoints TYPE STATIC Matrix[2, 2] :=

[199.0, 224.0; 201.0, 126.0];

END;

END;

EconomizerFM

Figure 16. The economizer (water/gas heat exchanger) unit model.

EconomizerFM ISA K2ClassTreeLib::UnitGC WITH

%% A unit model of an economizer, basicly a heat

%4 exchanger with one gas and one water compartment.
wh

4% Assumptions: constant volume,

Wh homogenous mixed,
W no work interaction.
%% Model Use: given mass flow directioms.
4% States: pressure (p) and enthalpy (h) on gas side,
wh enthalpy on water side.
%4 Medium: Subcooled water and flue gas.
%% Model type: full.
icon:

Graphic ISA Base::Layout WITH

bitmap TYPE String := "Economizer";

END;

parameters:

length, diameter, delta ISA Parameter;

height, zeta ISA Parameter;

V ISA Parameter WITH value := length*sqr(diameter)/4; END;
parameter_propagation:

GasFlow.length := length;

GasFlow.diameter := 2*diameter;
WaterFlow.length := length;
WaterFlow.diemeter := diemeter;
HeatRes.length := length;
HeatRes.diameter := diameter;

HeatRes.delta := delta;
GasComp.V := 4%V;
WaterComp.V := V;
WaterComp.height := height;
submodels:
GasComp ISA K2CompartmentLib::GasCompartmentFM WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 100.0;
END;
END;

68

WaterComp ISA K2CompartmentLib: :WaterCompartmentFM WITH
Graphic ISA super::Graphic WITH

X_pos :
y_pos :

END;
END;

200.0;
250.0;

GasFlow ISA K2FlowLib::GasFlowResistorFM WITH
Graphic ISA super: :Graphic WITH

X_pos

y_pos :

END;

zv.zeta

END;
WaterFlow
Graphic
x_pos

y_pos :

END;

125.0;
100.0;

outer:

:zeta/100;

ISA K2FlowLib::WaterFlowResistorFM WITH
ISA super: :Graphic WITH

275.0;
250.0;

zv ISA K2FlowLib::ValveLossFactorFunction;

zv.zeta :

END;

outer:

:zeta;

HeatRes ISA K2HeatFlowLib: :HeatResistorFM WITH

Graphic ISA super
X_pos :
y_pos :

END;

U3 ISA K2BasicLib

END;
terminals:

200.0;
175.0;

: :Graphic WITH

: :WaterResistance;

Win ISA K2TerminalLib: :FlowInTC WITH
Graphic ISA super::Graphic WITH

X_pos :
y_pos :

END;
END;

75.0;
300.0;

Wout ISA K2TerminalLib::FlowOutTC WITH
Graphic ISA super::Graphic WITH

X_pos

y_pos :

END;
END;

325.0;
300.0;

Gin ISA K2TerminallLib: :FlowInTC WITH
Graphic ISA super::Graphic WITH

X_pos

y_pos :

END;

400.0;
150.0;

M ISA GasMediumTC;

END;

Gout ISA K2TerminalLib: :FlowOutTC WITH
Graphic ISA super::Graphic WITH

X_pos
y_pos :

END;

0.0;
150.0;

M ISA GasMediumTC;

END;
connections:

C6 ISA Base::Connection WITH
GasFlow.Fin AT GasComp.Fout;
bpoints TYPE STATIC Matrix[2, 2] := [149.0, 99.0; 175.0, 99.0];

END;

C1 ISA Base::Connection WITH
WaterComp.Fout AT WaterFlow.Fin;

69

bpoints TYPE STATIC Matrix[2, 2]
END;
C2 ISA Base::Connection WITH
WaterFlow.Fout AT Wout;
bpoints TYPE STATIC Matrix[3, 2]

[199.0, 225.0; 250.0, 249.0];

[299.0, 249.0; 326.0, 249.0; 325.0, 300.0];

END;

C3 ISA Base::Connection WITH
WatexrComp.Fin AT Win;
bpoints TYPE STATIC Matrix[3, 2]

[199.0, 274.0; 76.0, 274.0; 75.0, 300.0];

END;
C4 ISA Base::Connection WITH

Gin AT GasComp.Fin;

bpoints TYPE STATIC Matrix[4, 2]

[399.0, 150.0; 326.0, 150.0; 326.0, 99.0; 224.0, 99.0];

END;

C5 ISA Base::Comnection WITH
WaterComp.Qin AT HeatRes.hout;
bpoints TYPE STATIC Matrix[2, 2]

END;

C7 ISA Base::Comnection WITH
GasFlow.Fout AT Gout;
bpoints TYPE STATIC Matrix[4, 2]

[100.0, 99.0; 76.0, 99.0; 76.0,

END;

C8 ISA Base::Comnection WITH
HeatRes.hin AT GasComp.Qin;
bpoints TYPE STATIC Matrix[2, 2]

END;

END;

[200.0, 250.0; 199.0, 199.0];

160.0; 0.0, 1560.0];

:= [199.0, 160.0; 199.0, 99.0];

70

SuperHeaterFM

Figure 17. The super heater (steam/gas heat exchanger) unit model.

SuperHeaterFM ISA K2ClassTreeLib::UnitGC WITH
%% A unit model of a superheater, basicly a heat
%% exchanger with one gas and one steam compartment.
%

%% Assumptions: constant volume,

W homogenous mixed,

W no work interaction.

%% Model Use: given mass flow directions.

%% States: pressure (p),

wh enthalpy (h) on both sides.

%4 Medium: superheated steam and flue gas.

4% Model type: full.
icon:

Graphic ISA Base::Layout WITH bitmap TYPE String := "Economizer'; END;
parameters:

length ISA Parameter;

diameter ISA Pareameter;

delta ISA Parameter;

zeta ISA Parameter;

V ISA Parameter WITH value := length*sqr(diameter)/4; END;
parameter_propagation:

GasFlow.length := length;

GasFlow.diameter := 2*%diameter;
SteamFlow.length := length;
SteamFlow.diameter := diameter;
HeatRes.length := length;
HeatRes.diameter := diameter;

HeatRes.delta := delta;
GasComp.V := 4#%V;
SteamComp.V := V;
terminals:
sin ISA K2TerminalLib: :FlowInTC WITH
Graphic ISA super::Graphic WITH
x_pos := 75.0;
y_pos := 300.0;
END;
M ISA K2TerminalLib: :SteamMediumTC;
END;
Sout ISA K2Terminallib: :FlowOutTC WITH

71

Graphic ISA super::Graphic WITH
x_pos := 325.0;
y_pos := 300.0;
END;
M ISA K2TerminalLib: :SteamMediumTC;
END;
Gin ISA K2TerminalLib: :FlowInTC WITH
Graphic ISA super::Graphic WITH
x_pos := 400.0;
y_pos := 150.0;
END;
M ISA K2TerminalLib: :GasMediumTC;
END;
Gout ISA K2TerminalLib::FlowOutTC WITH
Graphic ISA super: :Graphic WITH
x_pos := 0.0;
y_pos := 150.0;
END;
M ISA K2TerminalLib: : GasMediumTC;
END;
submodels:
GasComp ISA K2CompartmentLib::GasCompartmentFM WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 100.0;
END;
END;
SteamComp ISA K2CompartmentLib: :SteamCompartmentFM WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 250.0;
END;
END;
GasFlow ISA K2FlowLib: :GasFlowResistorFM WITH
Graphic ISA super::Graphic WITH
x_pos := 125.0;

y_pos := 100.0;
END;
zv.zeta := outer::zeta/100;
END;

SteamFlow ISA K2FlowLib::SteamFlowResistorFM WITH
Graphic ISA super::Graphic WITH
x_pos := 275.0;
y_pos := 250.0;

END;
zv ISA K2FlowLib::ValveLossFactorFunction;
zv.zeta := outer::zeta/50;

END;

HeatRes ISA K2HeatFlowLib: :HeatResistorFM WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 175.0;
END;
END;
connections:
HeatRes.Hout AT SteamComp.Qin;
C6 ISA Base::Connection WITH
GasFlow.Fin AT GasComp.Fout;
bpoints TYPE STATIC Metrix[2, 2] := [149.0, 99.0; 175.0, 99.0];
END;
C1 ISA Base::Connection WITH
SteamComp.Fout AT SteamFlow.Fin;

bpoints TYPE STATIC Matrix[2, 2] := [199.0, 226.0; 260.0, 249.0];
END;
C2 ISA Base::Connection WITH
SteamFlow.Fout AT Sout;
bpoints TYPE STATIC Matrix[3, 2] :=
[299.0, 249.0; 325.0, 249.0; 325.0, 300.0];
END;
C3 ISA Base::Connection WITH
SteamComp.Fin AT sin;
bpoints TYPE STATIC Matrix[3, 2] :=
[199.0, 274.0; 75.0, 274.0; 75.0, 300.0];
END;
C9 ISA Base::Connection WITH
Gin AT GasComp.Fin;
bpoints TYPE STATIC Matrix[4, 2] :=
[399.0, 1560.0; 326.0, 160.0; 326.0, 99.0; 224.0, 99.0];
END;
C10 ISA Base::Connection WITH
GasFlow.Fout AT Gout;
bpoints TYPE STATIC Matrix[4, 2] :=
[100.0, 99.0; 76.0, 99.0; 76.0, 150.0; 0.0, 150.0];
END;
C11 ISA Base::Connection WITH
HeatRes.hin AT GasComp.Qin;
bpoints TYPE STATIC Matrix[2, 2] := [199.0, 150.0; 199.0, 99.0];
END;
END;

SuperHeaterSystemFM

perHesterSystemFM
|ﬂnF————————— :

Figure 18. The super heater system with two super heaters and spray.

SuperHeaterSystemFM ISA K2ClassTreeLib::UnitGC WITH
%% A unit model of a complex superheater with spray
W temperature control.
wh

%% Assumptions: constant volume,

wh homogenous mixed,
W no work interaction.
%% Model Use: given mass flow directioms.
%/ States: pressure (p),
wh enthalpy (h).
%% Medium: superheated steam and flue gas.
%% Model type: full.
icon:
Graphic ISA Base::Layout WITH
bitmap TYPE String := "SuperHeater";
END;
parameters:

diameter, zeta, delta ISA Parameter;
T, Ref, uMan, Manual ISA Parameter;
parameter_propagation:

Heatl.diameter := diameter;
Heatl.zeta := zeta;
Heatl.delta := delta;
Heat2.diameter := diameter;
Heat2.zeta := zeta;
Heat2.delta := delta;
Valve.diameter := diameter;
terminals:

sin ISA K2TerminalLib: :FlowInTC WITH
Graphic ISA super::Graphic WITH
x_pos := 1.0;
y_pos := 276.0;
END;
M ISA K2TerminalLib: :SteamMediumTC;
END;
Sout ISA K2TerminalLib: :FlowOutTC WITH
Graphic ISA super::Graphic WITH
x_pos := 376.0;
y_pos := 301.0;
END;
M ISA K2TerminalLib: :SteamMediumTC;

74

END;
Win ISA K2TerminalLib: :FlowInTC WITH
Graphic ISA super::Graphic WITH
x_pos := 201.0;
y_pos := 301.0;
END;
END;
Gin ISA K2TerminalLib: :FlowInTC WITH
Graphic ISA super::Graphic WITH
x_pos := 401.0;

y_pos := 75.0;
END;
M ISA K2TerminallLib: :GasMediumTC;

END;
Gout ISA K2TerminalLib::FlowOutTC WITH
Graphic ISA super::Graphic WITH

x_pos := 1.0;
y_pos := 756.0;
END;
M ISA K2TerminalLib; :GasMediumTC;
END;
submodels:

Heat1l ISA K2HeatUnitLib::SuperHeaterFM WITH
Graphic ISA super::Graphic WITH
x_pos := 126.0;
y_pos := 75.0;
END;
END;
Heat2 ISA K2HeatUnitLib::SuperHeaterFM WITH
Graphic ISA super::Graphic WITH
x_pos := 275.0;
y_pos := 75.0;
END;
END;
Spray ISA K2FlowUnitLib::SprayTempFM WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 1560.0;
END;
END;
Temp ISA K2SensorLib::TempSensorFM WITH
Graphic ISA super::Graphic WITH
x_pos := 150.0;
y_pos := 25.0;
END;
END;
Valve ISA K2FlowUnitLib::WaterValveFM WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 225.0;
bitmap TYPE String := "ValveV";
END;
Fin ISA super::Fin WITH
Graphic ISA super::Graphic WITH
x_pos := 201;
y_pos := 300;
END;
END;
Fout ISA super::Fout WITH
Graphic ISA super: :Graphic WITH
x_pos := 201;
y_pos := 1;

1

75

END;
END;
END;

PID ISA ControlSystemlLib: :PIDControllerFM WITH

Graphic ISA super::Graphic WITH
x_pos := 225.0;

y_pos := 2b6.0;
END;
END;
equations:
T+#PID.SetPoint’ + PID.SetPoint = Ref;
connections:

PID.AutoMan.Uman := Uman;
PID.AutoMan.Manual := Manual;
Temp.in = Heat2.SteamFlow.M.Tc;
Valve.y = PID.Control;

C1 ISA Base::Connection WITH
Heat2.Gout AT Heatl.Gin;
bpoints TYPE STATIC Matrix[2, 2]

END;

C6 ISA Base::Connection WITH
Temp.out AT PID.Measurs;
bpoints TYPE STATIC Matrix[2, 2]

END;

C6 ISA Base::Connection WITH
Spray.Win AT Valve.Fout;
bpoints TYPE STATIC Matrix[2, 2]

END;

C2 ISA Base::Connection WITH
sin AT Heatl.sin;
bpoints TYPE STATIC Matrix[3, 2] :=

[0.0, 275.0; 109.0, 275.0; 109.0,

END;

C3 ISA Base::Connection WITH
Heat2.Sout AT Sout;
bpoints TYPE STATIC Matrix[4, 2]

[289.0, 99.0; 289.0, 226.0; 375.0

END;

C4 ISA Base::Connection WITH
Gin AT Heat2.Gin;
bpoints TYPE STATIC Matrix[2,

END;

C7 1SA Base::Connection WITH
Heatl.Gout AT Gout;
bpoints TYPE STATIC Matrix[2,

END;

C8 ISA Base::Connection WITH
Heatl.Sout AT Spray.Fin;
bpoints TYPE STATIC Matrix[3, 2]

[139.0, 99.0; 139.0, 161.0; 199.0

END;

C9 ISA Base::Connection WITH
Heat2.sin AT Spray.Fout;
bpoints TYPE STATIC Matrix[3, 2]

[269.0, 99.0; 259.0, 137.0; 199.0

END;

C10 ISA Base::Connection WITH
Win AT Valve.Fin;
bpoints TYPE STATIC Matrix[2, 2]

END;

END;

N
—
[}

N
(]
[}

[260.0, 74.0; 149.0, 74.0];

[161.0, 24.0; 207.0, 24.0];

[211.0, 149.0; 211.0, 224.0];

99.0];

.0; 375.0, 300.0];

.0, 75.0; 299.0, 74.0];

.0, 74.0; 0.0, 75.0];

.01;

.01;

.0, 300.0; 187.0, 224.0];

76

BoilerFM

ilerFM
Win

Figure 19. The boiler system with drum and evaporator.

BoilerFM ISA K2ClassTreeLib: :UnitGC WITH

%% A unit model of a boiler consisting of a

%4 drum containing water and steam and a heat
4% exchanger.

W

%/ Assumptions: constant volume,

wh homogenous mixed,
Wi no work interaction.
%% Model Use: given mass flow directioms.
%% States: pressure (p),
wh enthalpy (h).
%% Medium: saturated water and steam.
wh flue gas.
%% Model type: full.
icon:

Graphic ISA Base::Layout WITH

bitmap TYPE String := "Boiler";

END;

parameters:

length, diameter, delta ISA Parameter;
height, zeta ISA Parameter;

TubeV ISA Parameter WITH value := length#sqr(diameter)/4; END;

V, DH ISA Parameter;

T, Ref, Manual, uMan ISA Parameter;
parameter_propagation:

Hex.length := length;

Hex.diameter := diameter;
Hex.delta := delta;

Hex.zeta := zeta;
SteamFlow.length := length;
SteamFlow.diameter := diameter;
Valve.diameter := diameter;

DrumComp.V := V;

DrumComp.DH := DH;

DrumComp.height := height;

Control.AutoMan.uMan := uMan;

Control.AutoMan.Manual := Manual;
terminals:

Win ISA K2TerminalLib: :FlowInTC WITH

7

Graphic ISA super::Graphic WITH
x_pos := 0.0;
y_pos := 275.0;
END;
END;
Gin ISA K2TerminallLib::FlowInTC WITH
Graphic ISA super::Graphic WITH
x_pos := 400.0;

y_pos := 75.0;
END;
M ISA K2TerminalLib: :GasMediumTC;

END;
Sout ISA K2TerminalLib: :FlowOutTC WITH
Graphic ISA super::Graphic WITH
x_pos := 400.0;
y_pos := 275.0;
END;
M ISA K2TerminalLib: :SteamMediumTC;
END;
Sout2 ISA K2Terminallib::FlowOutTC WITH
Graphic ISA super::Graphic WITH
x_pos := 205.0;
y_pos := 300.0;
END;
M ISA K2Terminallib::SteamMediumTC;
END;
Gout ISA K2TerminalLib: :FlowOutTC WITH
Graphic ISA super::Graphic WITH

x_pos := 0.0;
y_pos := 75.0;
END;
M ISA K2TerminalLib: :GasMediumTC;
END;
submodules:

DrumComp ISA K2CompartmentLib: :DrumCompartmentFM WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 234.0;
END;
level ISA SimpleOutput WITH
Graphic ISA super: :Graphic WITH

x_pos := 201;
y_pos := 1B1;
invisible := 1;
END;
END;
END;

Valve ISA K2FlowUnitLib::WaterValveFM WITH
Graphic ISA super::Graphic WITH
x_pos := 100.0;
y_pos := 250.0;
END;
zv.zeta := outer::zeta;
y ISA SimpleInput WITH
Graphic ISA super: :Graphic WITH
x_pos := 201;
y_pos := 300;
END;
END;
END;
Split ISA K2FlowUnitLib::FlowSplitSteamFM WITH
Graphic ISA super::Graphic WITH

78

x_pos := 275.0;
y_pos := 250.0;

bitmap TYPE String := "FlowSplitUp";

END;
Fout2 ISA super::Fout2 WITH

Graphic ISA super::Graphic WITH

x_pos := 201;
y_pos := 300;
END;
END;
END;

SteamFlow ISA K2FlowLib::SteamFlowResistorFM WITH

Graphic ISA super::Graphic WITH
x_pos := 350.0;
y_pos := 275.0;

END;
zv ISA K2FlowLib::ValveLossFactorFunction;
zv.zeta := outer::zeta/50;

END;

Pump ISA K2FlowUnitLib::WaterPumpFM WITH

Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 150.0;
END;
END;

Control ISA ControlSystemLib::PIDControllerFM WITH

Graphic ISA super::Graphic WITH
x_pos := 100.0;
y_pos := 200.0;
END;
END;

Hex ISA K2HeatUnitLib: :EconomizerFM WITH

Graphic ISA super::Graphic WITH
x_pos := 216.0;
y_pos := 75.0;
END;
END;

equations:

T*Control.SetPoint’ + Control.SetPoint = Ref;

connections:

Control.Measure = DrumComp.level;
Valve.y = Control.Control;
DrumComp.Wout AT Pump.Fin;
Pump.Fout AT Hex.Win;
Valve.Fout AT DrumComp.Fin;
DrumComp.Sout AT Split.Fin;
C24 ISA Base::Connection WITH

SteamFlow.Fout AT Sout;

bpoints TYPE STATIC Matrix[2, 2]
END;
C4 ISA Base::Comnnection WITH

Gin AT Hex.Gin;

bpoints TYPE STATIC Matrix[2, 2]
END;
C5 ISA Base::Connection WITH

Gout AT Hex.Gout;

bpoints TYPE STATIC Matrix[2, 2]
END;
C1 ISA Base::Comnection WITH

Win AT Valve.Fin;

bpoints TYPE STATIC Matrix[4, 2]

[0.0, 274.0; 49.0, 274.0; 49.0,

[374.0, 274.0; 400.0, 276.0];

[399.0, 75.0; 249.0, 74.0];

[0.0, 76.0; 200.0, 74.0];

249.0; 87.0, 249.0];

79

END;
C3 ISA Base::Connection WITH
Split.Foutl AT SteamFlow.Fin;
bpoints TYPE STATIC Matrix[4, 2] :=
[286.0, 249.0; 301.0, 249.0; 301.0, 275.0; 326.0, 276.0];
END;
C8 ISA Base::Comnection WITH
Split.Fout2 AT Sout2;
bpoints TYPE STATIC Matrix[4, 2] :=
[274.0, 261.0; 274.0, 275.0; 204.0, 275.0; 204.0, 299.0];
END;
C10 ISA Base::Connection WITH
Hex.Wout AT DrumComp.Fin2;
bpoints TYPE STATIC Matrix[3, 2] :=
[230.0, 99.0; 230.0, 233.0; 224.0, 233.0];
END;
END;

80

15. K2SensorLib

Sensor library for measurement classes. Currently only a temperature sensor

model.
TempSensorFM contains a first order model of the temperature.

TempSensorFM

TempSensorFM ISA K2ClassTreeLib: :SensorCC WITH
%% A model of a temperature sensor with first
%% order dynamics.

W

%% Model type : full

%% Assumptions: none

%% Model Use : connecting to controllers
%% States : none
%% Medium : none
wh
icons:

Graphic ISA Base::Layout WITH bitmap TYPE String := "TempSensor'; END;
parameters:

T ISA Parameter WITH default := 1;END;
terminals:

In ISA K2TerminalLib::TemperatureTC WITH

Graphic ISA super::Graphic WITH .

x_pos := 0.0;
y_pos := 151.0;
END;
END;
Out ISA Base::SimpleTerminal WITH
Graphic ISA super::Graphic WITH
x_pos := 400.0;
y_pos := 151.0;
END;
END;
connections:
T#0ut ’+0ut
END;

In;

81

