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Abstract
Developmental dyslexia (DD) is a neurodevelopmental condition with complex genetic mechanisms. A number of candidate
genes have been identified, some of which are linked to neuronal development and migration and to ciliary functions. However,
expression and regulation of these genes in human brain development and neuronal differentiation remain uncharted. Here, we
used human long-term self-renewing neuroepithelial stem (lt-NES, here termed NES) cells derived from human induced pluri-
potent stem cells to study neuronal differentiation in vitro. We characterized gene expression changes during differentiation by
using RNA sequencing and validated dynamics for selected genes by qRT-PCR. Interestingly, we found that genes related to cilia
were significantly enriched among upregulated genes during differentiation, including genes linked to ciliopathies with
neurodevelopmental phenotypes. We confirmed the presence of primary cilia throughout neuronal differentiation. Focusing on
dyslexia candidate genes, 33 out of 50 DD candidate genes were detected in NES cells by RNA sequencing, and seven candidate
genes were upregulated during differentiation to neurons, includingDYX1C1 (DNAAF4), a highly replicated DD candidate gene.
Our results suggest a role of ciliary genes in differentiating neuronal cells and show that NES cells provide a relevant human
neuronal model to study ciliary and DD candidate genes.
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GO Gene ontology
GPCR G protein coupled receptor
GSEA Gene set enrichment analysis
hESC Human embryonic stem cell
hiPSC Human induced pluripotent stem cell
IFT57 Intraflagellar transport 57
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MAP2 Microtubule-associated protein 2
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NES cells Long-term self-renewing
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TMEM231 Transmembrane protein 231
TUBA1A Tubulin α1α
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Introduction

Developmental dyslexia (DD) is a learning disorder with a
neurodevelopmental origin. It is the most common learning
disorder present in about 5–10% of the population. Early stud-
ies in postmortem human brains have suggested underlying
neuronal migration anomalies [1]. DD is highly heritable and
many candidate genes have been proposed [2] (Suppl.
Table 1). Some of the most genetically replicated DD candi-
date genes (DCGs), namely DYX1C1, DCDC2, and
KIAA0319, have been implied in neuronal development and
migration in rodents, supporting the early studies in human
brains [3–5]. Interestingly, the same genes have been shown
independently to have a role in ciliary biology [6–11]. Cilia
are present on mammalian neuronal cells at different stages of
development—in progenitor cells and post-mitotic neurons
[12]. At present, little is known about their function in neuro-
nal development and homeostasis, and their roles in neuronal
proliferation, migration, and maturation are just beginning to
be elucidated [13]. Many ciliopathies show neurologic symp-
toms, and cilia have been linked to neuropsychiatric disorders
[14–18].

In contrast to the vast literature on genetic studies of DCGs,
few functional studies have been carried out. Some studies in
animal model systems and cell lines have addressed the regu-
lation and functions of DYX1C1, DCDC2, and KIAA0319
(reviewed in [19]). However, their function in human neuro-
nal cells and cilia is still unsettled. While studies in model
systems provide valuable insights, given the human-specific

phenotype of DD, it is important to address DCG regulation in
a human neuronal system. However, a systematic assessment
of DCGs in human neuronal development is so far lacking. To
study human-specific gene regulatory events and
neurodevelopmental disorders, modeling human brain devel-
opment in vitro derived from induced pluripotent stem cells
(iPSCs)/embryonic stem cells (ESCs) combined with
transcriptomic characterization has become a crucial tool
[20]. Human long-term self-renewing neuroepithelial stem
(lt-NES, here termed NES) cells derived from human iPSCs
(hiPSCs) can mimic human neuronal development in vitro.
They resemble neuroepithelial cells in vivo, self-renew in
the presence of fibroblast growth factor (FGF) and epidermal
growth factor (EGF), and can differentiate into neuronal and
glial cells [21–23]. They have been used as a model for
neurodevelopmental processes and disorders [24, 25].

Here, we sought to map gene expression changes during
early human neuronal development in vitro with a focus on
DCG regulation. We monitored gene expression throughout
differentiation from NES cells to neuronal cells by RNA-
sequencing (RNA-seq) on bulk RNA samples. In addition,
we characterized specifically the dynamics of DCG
expression.

Materials and Methods

Cell Culture

The ethical guidelines for derivation of cell line AF22
were described previously [21]. Reprogramming of hu-
man cells was permitted by Regional ethical committee
Stockholm (Dnr 2012/208–31/3). The derivation and cul-
turing of NES cells (line AF22, derived from a healthy
female person) were described previously [21, 25].
Briefly, NES cells were cultured in DMEM/F12+
Glutamax supplemented with penicillin (100 U/ml), strep-
tomycin (100 μg/ml), N2 (1:100), B27 (1:1000), FGF
(10 ng/ml) (all from Life Technologies, Thermo Fisher
Scientific, Carlsbad, CA, USA), and EGF (10 ng/ml;
Peprotech, Rocky Hill, NJ, USA) in a 5% CO2 incubator.
Half of the medium was changed daily, and cells were
passaged at a ratio of 1:3 upon confluency. Plates were
pre-coated using poly-ornithine (0.1 mg/ml; Sigma-
Aldrich, St. Louis, MO, USA) and laminin (2 μg/ml;
Sigma-Aldrich, L2020). For differentiation, cells were
plated in complete medium for 2 days, then medium was
changed to medium without growth factors FGF and EGF.
After 1 week, medium was changed to a 1:1 mixture of
DMEM/F12+G l u t amax and Neu r ob a s a l ( L i f e
Technologies) containing N2 (1:200) and B27 (1:100).
During differentiation, half of the medium was changed
every 2 to 3 days containing laminin (1:1000).
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RNA Sequencing

Total RNA was extracted using NucleoSpin RNA kit or
NucleoSpin Triprep kit (Macherey-Nagel, Düren, Germany)
according to the supplier’s instructions. RNA concentration
was measured using Nanodrop ND-1000 and Qubit (Thermo
Fisher Scientific). RNA integrity was analyzed by
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
Three biological replicates were collected for each time point
in two independent experiments (except for day 14 in exper-
iment 1). We applied the STRT (single-cell tagged reverse
transcription) RNA-seq protocol [26, 27] on total bulk RNA
samples with the following modifications: 10 ng of high-
quality total RNA was converted into cDNA, amplified and
converted to form an Illumina-compatible library. ERCC92
spike-in was used for quality control of sequenced samples
and normalization of all the endogenous genes [28]. ERCC
spike-in mixture was diluted 1000× with water, and 1 μl was
added to reverse transcriptase cDNA master mix. In total, 25
PCR cycles were used: 15 for the first, full cDNA amplifica-
tion and additional 10 to amplify and introduce sequencing-
required motifs. Ready library was sequenced on three lanes
of Illumina HiSeq 2000 instrument using 60 bp single reads.

RNA-seq data have been deposited in the ArrayExpress
database at EMBL-EBI (https://www.ebi.ac.uk/arrayexpress)
under accession number E-MTAB-7128.

RNA-Seq Data Analysis

Data processing of the RNA-seq STRT library was performed
using the STRTprep pipeline (https://github.com/shka/
STRTprep/tree/v3dev [27]). Total raw reads were filtered
and demultiplexed into individual samples based on the
sample-specific barcodes, and redundant reads were filtered
out based on UMI (unique molecular identifier) sequences.
After barcodes were trimmed, processed reads were aligned
to the hg19 human reference genome, synthetic ERCC92
spike-in sequences, and human ribosomal DNA unit
(GenBank: U13369) using TopHat v2.0.12 [29]. Uniquely
mapped reads within the 5′-UTR or 500 bp upstream of
Refseq protein-coding genes were counted, and read counts
were normalized by the sum of spike-in reads in each sample.
Differential expression was analyzed using the R package
SAMstrt [28] based on the combination of false discovery rate
(FDR) < 0.01 and Benjamini-Hochberg-adjusted p value of
the degree of variation < 0.05 [27]. The heatmap was gener-
ated using the Ward clustering method with the Spearman
correlation distance matrix based on the log10-normalized
expression levels of the 2516 differentially expressed genes
between day 0 and day 35. The minimum value but non-zero
(4.30e-05) was added to all the normalized expression levels
to avoid the logarithm of zero. For the RNA-seq vs. qRT-PCR
correlation plots, a constant of 0.00001 was added to all the

mean values of DCX to avoid the logarithm of zero.
Enrichment analysis of tissue-specific expression (UniProt
UP_TISSUE) and gene ontology (GO) terms were performed
using the DAVID web tool (http://david.abcc.ncifcrf.gov/)
[30, 31]. GO graphs were displayed using GraphPad Prism 7
software. The gene set enrichment analysis (GSEA) was per-
formed with GSEA v3.0 (http://software.broadinstitute.org/
gsea/) using GSEAPreranked tool [32]. A total of 11,180
genes, which were expressed in at least three of the day 0
and day 35 samples, except spike-ins, were preranked
according to the combination of FDR and fold change of
their expression level. This gene list was then compared
with the gene sets of ciliary genes and dyslexia-candidate
genes. The gene set of ciliary genes was composed of 302
genes obtained from The SYSCILIA Gold Standard v1 [33].
The gene set of DCGs is shown in Suppl. Table 1. The gene
set of DCGswas generated with a literature search in PubMed,
including linkage and association studies and translocations
and deletions co-segregating with DD, excluding CNVs (ac-
cession date: 29/5/2018). Since we chose an inclusive, explor-
atory approach, non-replicated genes were also included.
GSEA plots were generated using ReplotGSEA.R (https://
g i thub .com/PeeperLab/Rtoolbox/b lob/mas te r /R/
ReplotGSEA.R) with somemodifications. For the time course
analysis, 5976 genes with adjusted p value of the degree of
variation < 0.05 were analyzed. Among them, a total of 2303
genes highly correlated between independent experiments
(Pearson’s correlation coefficient > 0.7) were classified into
4 clusters, based on k-means clustering determined by X-
Means algorithm using the R package Weka [34].

Publicly Available Transcriptome Data Analysis

Two publicly available cap analysis of gene expression
(CAGE) datasets were downloaded from the FANTOM
(Functional annotation of the mammalian genome) 5 database
(http://fantom.gsc.riken.jp/5/data/; [35]), and an RNA-seq
dataset was downloaded from Gene Expression Omnibus
(GEO) database [36] under the accession number GSE99469
[37]. (1) Human iPSCs to neurons by CAGE: six replicates of
day 0 and six replicates of day 18 samples from 2 iPS cell lines
(one from newborn male fibroblasts and another from 12-
week gestation female fibroblasts) were analyzed. Promoters
with over 3 counts per million (cpm) in at least 6 samples were
selected. (2) Human ESCs (hESCs) to cardiomyocytes by
CAGE: three replicates of day 0 and three replicates of day
12 samples from hESCs were analyzed. Promoters with over
3 cpm in at least 3 samples were selected. (3) Human iPSCs to
kidney organoids by RNA-seq: three replicates of day 0 and
six replicates of day 18 samples from a healthy female human
iPSC line were analyzed. Genes with over 3 cpm in at least 3
samples were selected.
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The read counts were normalized using the RLE method,
and significantly upregulated genes or promoters were identi-
fied using the R (version 3.6.0) package “edgeR” (version
3.26.5) based on Benjamini-Hochberg-adjusted p value <
0.01 along with the log2-fold change > 1 in the differentiated
samples against the day 0 samples. Significantly upregulated
genes or official gene symbols extracted from the significantly
upregulated promoters were then annotated with DAVID web
tool (http://david.abcc.ncifcrf.gov/) for the GO term
enrichment analysis. GO graphs were displayed using
GraphPad Prism 7 software.

Quantitative Real-Time PCR

cDNA was synthesized with Maxima First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific) using 500 ng of
RNA. cDNA was diluted 1:5 and 2 μl of diluted cDNA was
used per reaction. The analysis was performed on a 7500 Fast
Real-Time PCR system (Applied Biosystems, Thermo Fisher
Scientific). The reagents used for RT-qPCRwere TaqMan fast
Universal PCR Master Mix (Thermo Fisher Scientific) and
Taqman probes (BBS2: Hs00230400_m1; DCDC2:
Hs00393203_m1; DYX1C1: Hs00370049_m1; GAPDH:
Hs02758991_g1; IFT57 (ESRRBL1): Hs00215973_m1;
KIAA0319: Hs00207788_m1; TCTN2: Hs00430714_m1;
TMEM231: Hs00226008_m1; TUBA1A: Hs00362387_m1)
or FastStart Universal SYBR Green Master (Roche
Diagnostics, Mannheim, Germany) and SYBR green primers
(DCX_F: TTG CTG GCT GAC CTG ACG CG; DCX_R:
GCT GCT AGC CAA GGA CTG GGG; GAPDH_F: CCA
CAT CGC TCA GAC ACC AT; GAPDH_R: GCG CCC
AAT ACG ACC AAA T; MAP2_F: AGG CAG AGA CAC
AGG TGC TT; MAP2_R: GGG TTT GCT CCT AGG GTT
TC; TUBB3_F: CCT ACT GCA TCG ACA ACG AG;
TUBB3_R: CGA TAC CAG GTG GTT GAG GT).
GAPDH was used as a control to normalize expression levels
[21, 24]. Expression was compared relative to day 0 using the
ΔΔCt method and relative expression levels were displayed
as 2^- ΔΔCt [38]. The data were analyzed and displayed using
Microsoft Excel and GraphPad Prism 7 softwares.

Immunocytochemistry

Immunocytochemistry was performed as described before [9,
25]. Cells were grown on glass coverslips and differentiated
during 0, 7, 14, 21, 28, or 35 days as described above. Cells
were fixed either with ice-cold methanol after 45 min incuba-
tion on ice or with 4% formaldehyde (Sigma-Aldrich) at room
temperature, permeabilized and blocked with 0.05% PBST
with 5% horse serum. Samples were incubated with primary
antibody (mouse anti-acetylated alpha-tubulin, 1:5000,
T7451, Sigma-Aldrich, RRID:AB_609894; rabbit anti-
PCNT, 1:1000, HPA019887, Atlas antibodies, RRID:

AB_1855080) overnight at 4 °C and with secondary antibody
(donkey anti-rabbit Alexa 488, 1:1000, Thermo Fisher
Scientific, RRID:AB_2535792; donkey anti-mouse Alexa
568, 1:1000, Thermo Fisher Scientific, RRID:AB_2534013)
for 1 h at room temperature, then counterstained with DRAQ5
(1:1000, Cell Signaling Technology, Cambridge, UK) for
10 min at room temperature or with DAPI (1:1000, Sigma-
Aldrich) for 1 min at room temperature. Samples were em-
bedded in Prolong Gold antifade reagent (Thermo Fisher
Scientific). Images were acquired with a Nikon A1R Ti con-
focal (Nikon Instruments, Inc., Melville, NY, USA) with a
Plan Apo λ 60 × NA 1.4 objective with z-stack imaging mode.
Images were processed using Nikon NIS-elements version
4.51 (Labora tory Imaging/Nikon) , DRAQ5 was
pseudocolored in blue, LUT were applied, and z-stacks were
collapsed to maximum intensity projections. Images were
converted to 8-bit RGB and subsequently arranged using
Adobe Illustrator CS6.

Results

NES Cell Differentiation, Quality Control, and Global
Transcriptomics Analysis

In order to model early human neuronal development, we
used established protocols for NES cells (cell line AF22)
[21]. We differentiated NES cells in two independent experi-
ments towards neuronal cells during 35 days by undirected
differentiation via removal of the growth factors EGF and
FGF. To monitor gene expression at different stages of devel-
opment, we sampled RNA at 0, 7, 14, 21, 28, and 35 days
using three separately cultured replicates at each timepoint
(Fig. 1a). We applied STRT RNA-seq on bulk RNA samples
as a transcriptomics approach. On average, we obtained 3.7
million reads per sample, 90.6% of which were mapped to the
human genome hg19 (Suppl. Table 2). First, we asked how
similar the samples were according to their timepoints and
experiment numbers to assess the robustness of our differen-
tiation protocol. Sample classification by principal component
analysis (PCA) of all detected genes showed that samples
clustered together according to timepoints and across the
two differentiation experiments (Fig. 1b).

To monitor neuronal differentiation, we tested the expres-
sion of neuronal markers. Indeed, we observed an upregula-
tion of the established neuronal markersDCX,MAP2, TUBB3
[39], and TUBA1A (Fig. 1c). We confirmed the significant
upregulation of these marker genes by using qRT-PCR (Fig.
1d, Suppl. Fig. 2). Comparison of the results revealed a high
concordance between RNA-seq and qRT-PCR results (Fig.
1e). In summary, these results show that the experiment was
reproducible and confirm the successful differentiation of
NES cells to neuronal cells.
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Characterization of Differentially Expressed Genes
During Neuronal Differentiation

Next, we asked which genes were expressed in NES cells and
which genes were differentially regulated by the maturation
from NES cells to neurons. Based on the results of PCA anal-
ysis, we performed differential expression analysis between
the extreme timepoints day 0 and day 35 to compare the most
different expression profiles. We observed that 817 genes
were significantly downregulated and 1699 genes were signif-
icantly upregulated between day 0 and day 35. Unsupervised
hierarchical clustering revealed that day 0 samples clustered
separately from day 35 samples and that samples clustered
together depending on their respective experiment number
(Fig. 2a). Enrichment analysis of the 1699 upregulated genes
using UniProt tissue expression categories (UP_TISSUE) re-
vealed that 873 genes overlapped with the brain category, 130
genes with the fetal brain category, 55 genes with the fetal
brain cortex category, and 94 genes with the amygdala cate-
gory, confirming the neuronal identity of the differentiated
cell samples (Fig. 2b).

To explore the function of the differentially regulated
genes, we performed GO term enrichment analysis using the
DAVID web tool [30, 31]. The six most significantly upreg-
ulated and downregulated GO terms are shown in Fig. 2c. As
expected, we found neuronal development–related terms in
the upregulated category and cell cycle–related terms in the
downregulated category. Interestingly, we found cilia-related
terms as the most significantly enriched upregulated terms
(Fig. 2c). To make sure that the enrichment of ciliary genes
is not a false positive signal due to a high number of tubulin
genes upregulated in neurons, we examined the genes
enriched in the cilium morphogenesis and cilium assembly
categories. None of the genes in these categories were tubulin
genes (Suppl. Table 3).

We then asked if the upregulation of cilia-related terms
could also be observed in other neuronal cell lines. We per-
formed GO analysis of the upregulated genes of iPSCs differ-
entiated to neurons during 18 days using a publicly available
cap analysis of gene expression (CAGE) dataset [35]. Indeed,
we observed a strong enrichment of cilia-related GO terms,
along with neuronal development-related GO terms (Suppl.
Fig. 1a). Next, we asked if cilia gene upregulation can be
observed as a general phenomenon in all cell types differenti-
ating from PSCs and exiting the cell cycle. We therefore an-
alyzed datasets from two other cell types differentiated from
hESCs or hiPSCs during 12 and 18 days, respectively:
cardiomyocytes [35] and kidney cells [37].We observed some
enrichment of cilia-related terms in kidney cells but not in
cardiomyocytes (Suppl. Fig. 1b, c). In none of these tissues,
the enrichment was as strong as for neurons. These results
indicate that enrichment of cilia-related GO terms during dif-
ferentiation could be specifically observed in neurons.

To further dissect the regulated gene classes, we performed
clustering by time-course expression pattern analysis, reveal-
ing four different gene expression clusters (Fig. 3). Cluster 1
consisted of 760 genes, which are decreasing between day 7
and day 28 and cluster 2 comprised 327 monotonically de-
creasing genes. Cluster 3 contained 509 genes, which increase
drastically in the beginning of differentiation, and cluster 4
consisted of 707 monotonically increasing genes (Fig. 3a).
To determine the biological processes associated with the
clusters, we performed GO term enrichment analysis.
Cluster 1 was significantly enriched with cell cycle–related
genes, further confirming the cell cycle exit of the cells after
day 7 (Fig. 3b). Interestingly, cilia-related genes and nervous
system development–related genes are in the same cluster
(cluster 4), further indicating that they are correlated during
neuronal differentiation (Fig. 3b). These results again suggest
that ciliary genes might play a role during neuronal
differentiation.

Genes Associated with Ciliopathies
with Neurodevelopmental Phenotypes Are
Upregulated During Neuronal Differentiation

The occurrence of significant GO terms related to cilia incited
us to investigate the ciliary genes more in detail. We used a
conservative list of 302 bona fide ciliary genes (The
SYSCILIA Gold Standard v1 [33]); the full list of ciliary
genes is provided in Suppl. Table 4. We found that 234 of
those ciliary genes were expressed either at day 0 or at day 35.
By comparing day 0 to day 35, we observed that 57 ciliary
genes out of 234 were among the 1699 short-listed upregulat-
ed genes at day 35 showing a significant enrichment of ciliary
genes (p value = 0.0002; Fisher’s exact test) (Fig. 4a).
Similarly, GSEA analysis ranking all 11,180 detected genes
and comparing them to the 234 detected ciliary genes revealed
a significant enrichment (FDR < 0.01) (Fig. 4b).

Many ciliopathies display neurodevelopmental phenotypes
[40]. We therefore compared all the 57 upregulated ciliary
genes to the known phenotypes in ciliopathies. Of the 57
upregulated ciliary genes between day 0 and day 35, 32 genes
were associated with ciliopathies of which 15 display
neurodevelopmental symptoms (Suppl. Table 5). Overall,
these results point to a role of ciliary genes in neuronal
differentiation.

The neurodevelopmental phenotypes present in many
ciliopathies [14] and the enrichment in ciliary genes observed
at day 35 prompted us to characterize the time course expres-
sion pattern of examples of upregulated ciliary genes that are
mutated in ciliopathies with neurocognitive phenotypes. We
examined the genes IFT57 (mutated in orofaciodigital syn-
drome (OFD, OMIM #311200)), BBS2 (Bardet-Biedl syn-
drome (BBS, OMIM #209900)), (TMEM231 (Meckel-
Gruber syndrome (MKS, OMIM #249000)), TCTN2
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(Joubert syndrome, (JBTS, OMIM #213300)) (Fig. 4c–e).
Those genes were upregulated in the RNA-seq data (Fig. 4c)
and qRT-PCR data (ΔΔCt day 0 vs day 35: p values IFT57,
BBS2, TCTN2 < 0.0001; p value TMEM231 < 0.001
(Student’s t test) (Fig. 4d; Suppl. Fig. 2)). Correlation plots
revealed a high concordance between RNA-seq and qRT-
PCR results (Fig. 4e). These findings indicate that ciliopathy
genes producing brain phenotypes when mutated are upregu-
lated during human neuronal differentiation in vitro, suggest-
ing human NES cells as a good model to study ciliopathies.

Individual Dyslexia Candidate Genes Are Upregulated
During Neuronal Differentiation

Next, we addressed the expression of DCGs. A number of
DCGs have been shown to have a role in neuronal develop-
ment and/or in cilia prompting us to ask whether they might
have a role in NES cell differentiation [41, 42]. We therefore
asked whether DCGs are expressed and differentially regulat-
ed during the differentiation fromNES cells to neurons.While
there is an abundant literature on genomic studies on DCGs,
little is known on expression and function of these genes in
human neuronal development. As our approach is explorato-
ry, we chose to use an inclusive approach towards what con-
stitutes a DCGs rather than focusing only on replicated genes
that are few. We therefore used an inclusive list of 50 DCGs
containing genes identified in families with dyslexia history as
well as in specific population cohorts (Suppl. Table 1). Here,
we found that thirty-three of these genes were expressed either
at day 0 or at day 35 or both. Of those, seven DCGs were
among the 1699 short-listed genes upregulated between day 0
and day 35 (CCDC136, COMT, DYX1C1, PRMT2, CCPG1,
ZNF385D, GRIN2B) (Fig. 5a), indicating that there was no
significant enrichment overall among the short-listed upregu-
lated genes (p value = 0.33, Fisher’s exact test). Similarly,
GSEA analysis ranking all 11,180 detected genes and com-
paring them to the 33 detected DCGs showed no significant
enrichment (FDR = 0.08) (Fig. 5b). These findings lead to

conclude that (1) many DCGs are expressed at some point
during human neuronal differentiation; however, (2) there is
no significant upregulation of DCGs as a group.

Next, we examined the time course expression pattern of
DCGs more in detail. For this purpose, we focused on a set of
DCGs that has been highly replicated in genomic studies,
namely DYX1C1 , DCDC2 , and KIAA0319 [43] .
Interestingly, one of the most replicated DCGs—DYX1C1—
was one of the most highly upregulated ciliary genes (Fig. 5c),
which was confirmed by qRT-PCR (Fig. 5c; Suppl. Fig. 2) (p
value ΔΔCt day 0 vs day 35 < 0.0001; Student’s t test).
Expression of the two other highly replicated DCGs,
DCDC2 and KIAA0319, was not detected by RNA-seq, but
their low-level expression was observed by qRT-PCR.
Comparing their expression between day 0 and 35 by qRT-
PCR revealed that they, too, were significantly upregulated
during differentiation (p value ΔΔCt day 0 vs day 35 <
0.0001; Student’s t test) (Fig. 5d; Suppl. Fig. 2). The Ct values
for DCDC2 and KIAA0319 were much higher than the Ct
values for DYX1C1 (Fig. 5e). These results underscore the
importance of DYX1C1 in neuronal differentiation, whereas
DCDC2 and KIAA0319 are expressed at a lower level or per-
haps in specific cell types.

Primary Cilia Are Present Throughout Differentiation
of NES Cells

Based on our transcriptomics results and on earlier studies
describing the presence of cilia on neural progenitor cells,
we asked whether primary cilia are present on the cell surface
during differentiation from NES cells to neuronal cells. We
therefore stained NES cells and differentiating neurons for the
ciliary marker acetylated-α-tubulin [44], in combination with
the centrosomal marker pericentrin (PCNT) (Fig. 6).
Interestingly, cilia were present on the cell surface during all
examined differentiation stages. The cilia were located on the
cell body. This finding confirms that NES cells display cilia
throughout development.

Discussion

Cilia are present on the surface of most mammalian cells and
have important roles in processes such as cell to cell commu-
nication [45]. However, little is known about distribution and
function of primary cilia in human neuronal cells and the
mechanisms by which ciliary dysfunctions lead to
neurodevelopmental defects are just beginning to emerge
[46]. DD is a neuropsychiatric disorder frequently associated
with ciliary genes [47].

Here, we studied gene expression changes in general and of
DCGs in particular during human neuronal differentiation by
combining long-term self-renewing NES cells with a

�Fig. 1 Neuronal differentiation and quality control. a Two independent
batches (Experiment 1 + Experiment 2) of NES cells were differentiated
for 35 days, and RNA samples were collected at 0, 7, 14, 21, 28, and
35 days. b Principal component analysis of all the samples analyzed by
RNA-seq. Dot colors represent differentiation days and dot shapes
represent independent experiments. PC1: principal component 1, PC2:
principal component 2. c Time course expression pattern of the
neuronal markers DCX, MAP2, TUBB3, and TUBA1A measured by
RNA-seq (red: Experiment1, blue: Experiment 2). Number of molecules
calculated by multiplying the normalized read counts and spike-ins are
shown.Mean ± SEM are displayed. d qRT-PCR showing upregulation of
neuronal markers DCX, MAP2, TUBB3, and TUBA1A during differen-
tiation. Mean ± SEM are displayed, red: Experiment 1, blue: Experiment
2. eCorrelation plots of log2 fold change in RNA-seq vs. log2 fold change
in qRT-PCR. r denotes Pearson correlation coefficient
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transcriptomics approach. Surprisingly, we found that some of
the most highly upregulated GO terms were related to cilia
growth. The pronounced upregulation of ciliary genes ob-
served may be explained by more cells exiting the cell cycle,
entering G0, and undergoing ciliogenesis upon removal of
growth factors. However, the specific enrichment of ciliary
GO terms in neurons compared with other cell types suggests
that ciliary genes have a more prominent role during neuronal
differentiation in particular. The upregulation of ciliary genes
during human neuronal differentiation in vitro has not been
widely reported yet, but Van de Leemput et al. have observed
a high enrichment of cilia-related GO terms in a human ESC
neuronal differentiation model consistent with our results
[48]. It is known that cilia play a role in neuronal

development: In early brain development, the action of path-
ways such as SHH, WNT, PCP, and PDGF via the primary
cilium are central to brain patterning and forebrain develop-
ment [13]. Signaling via the cilium also plays a role in neuro-
nal maturation [13]. Likely, cilia regulate the balance of
neurogenesis via providing access to different signaling mol-
ecules in early and later stages of neuronal development [49].
In mouse ESCs, the ciliary genes Tmem67, Ahi1, andOfd1 are
crucial for neuronal differentiation [44, 50]. It is likely that
cilia assume similar roles in the human brain.

We describe the presence of cilia on human NES and dif-
ferentiating neuronal cells. This is in accordancewith previous
studies describing the occurrence of cilia in human neural
progenitor cells (NPCs), differentiating cells in rosettes and
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organoids [51–53], hiPSC-derived neurons [54], and in the
adult brain [55]. The hedgehog effector smoothened localizes
to primary cilia in NPCs in maturing rosettes indicating that
similar processes might be active in human neural cells as in
rodents [51]. Cilia trigger differentiation of NPCs and
might play a role in asymmetric cell division associated
with neuronal differentiation [53]. The location of the
cilium at the cell soma in our study is in accordance
with previous observations, and it has been suggested

that this localization optimizes the concentration of sig-
naling molecules [56]. It remains to be determined
whether ciliary length or number increases during
differentiation.

For our study, we focused on the early neuronal develop-
ment and therefore analyzed days 0 to 35. However, our data
showed that the expression of most cilia genes did not yet
plateau at 35 days. It would be highly interesting to analyze
later timepoints, especially bearing in mind the late embryonic
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and postnatal growth and maturation of neuronal cilia de-
scribed in rodents by Arellano and colleagues [57].

Many ciliopathies display neurodevelopmental symp-
toms such as mental retardation in JBTS, BBS, MKS,
and OFD. More generally, 77 ciliary genes have been
associated with neurodevelopmental or neurobehavioral
defects [58]. In addition to their relevance in ciliopathies,
ciliary genes have been associated with neuropsychiatric
disorders [15–18]. One of the neurodevelopmental disor-
ders frequently associated to ciliary genes is DD [42, 47].
It is remarkable that 33 genes out of an inclusive list of 50
DCGs were detected at day 0, day 35, or both, while
seven genes were significantly upregulated during differ-
entiation. The list of candidate genes was however not
significantly enriched during neuronal differentiation

using the stringent FDR cutoff of 0.05 in GSEA—yet,
this does not exclude their possible roles as dyslexia can-
didates. As our approach was very inclusive, false-
positive genes might dilute the result. It is also conceiv-
able that these genes might function in different tissues—
for example glial cells—or exert their impact on the brain
in a paracrine mode. Indeed, we previously observed
strong expression of DYX1C1 in glial cells, especially
astrocytes, in the FANTOM5 expression database [35].
In addition, other lines of research have pointed into the
direction that glial cells might play a role in DD. For
example, certain polymorphisms in the dyslexia candidate
genes DYX1C1, DCDC2, and KIAA0319 correlate with
white matter density in the brain of children [59].
Recently, protocols to differentiate NES cells into the
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glial lineage have been developed, offering a way to ad-
dress this question in the future [23, 60]. We further fo-
cused our analysis on a group of DCGs highly replicated
in genetic studies and previously linked to neuronal de-
velopment and cilia. Our results might facilitate to prior-
itize the candidates involved in neuronal differentiation.
DYX1C1, the first identified DCG, has been replicated in
many but not in all studies [61, 62]. It has previously been
shown to act in neuronal migration [3, 63], learning,
memory, and behavior [64] and later has been character-
ized as an axonemal dynein assembly factor [7].
Interestingly, the expression of DYX1C1 is highly upreg-
ulated during neuronal differentiation thereby differing
strongly from the expression patterns of DNAAF1–3 that
are absent or weakly expressed. These results suggest that

DYX1C1 indeed has functions other than axonemal dynein
assembly, consistent with previous reports on neuronal
migration and development.

DCDC2 and KIAA0319—two DCGs replicated in many but
not all studies—were previously associated with neuronal migra-
tion and cilia. Those genes were not detected in our RNA-seq
approach, suggesting a low expression level. ForDCDC2, this is
consistent with human brain expression data from FANTOM5
and Allen Brain Atlas [35, 65]. Dcdc2 has been shown to have a
role in neuronal migration and in behavior and learning [66] and
localizes to rat hippocampal neuronal cilia [4, 8]. Certain variants
in DCDC2 have been associated with gray and white matter
changes [59, 67, 68]. Most likely, DCDC2 plays a role in neural
development but may have a more restricted role than, e.g.,
DYX1C1, deserving further study.
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Interestingly, while KIAA0319 is highly expressed in
developing brain tissue [5, 65], it is lowly expressed in

iPSC-derived neuronal cells in vitro [35], consistent with
the observation in our in vitro model, implying that iPSC-

Fig. 6 Cilia are present
throughout neuronal
differentiation. NES cells were
plated on glass coverslips and
differentiated for the indicated
number of days, then fixed and
stained for the ciliary marker
acetylated-α-Tubulin and the
centrosomal marker pericentrin
(PCNT). Scale bars = 10 μm,
scale bars insets = 1 μm. Nuclei
were counterstained with DAPI or
DRAQ5
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derived neural cells might not be an ideal model to study
KIAA0319. In vivo, KIAA0319 has been implicated in
neurona l migra t ion and axon regene ra t ion [5 ,
69].Whether it is involved in cilia remains unclear—it
has been detected as upregulated in ciliated tissues, and
it is interesting to note that its protein possesses five PKD
domains [11, 70, 71].

We here described the regulation of ciliary genes and
investigated the expression of DCGs in a human neuronal
in vitro model. The present findings should have implica-
tions for future work on ciliopathies and DD and prompt
more studies on the neurodevelopmental roles of ciliary
genes in human. Due to the immediate clinical relevance,
a more thorough understanding of the functions of ciliary
genes in human neurons is highly relevant. While our
work provides a resource using a transcriptomics ap-
proach, it also sets the stage for future studies on
pat ient-der ived iPS/NES cel ls and model ing of
neurodevelopmental disorders connected to cilia. While
we do not provide evidence for a direct causal connection
of ciliary genes and DCGs, we for the first time provide a
systematic approach of their expression patterns in a hu-
man neuronal in vitro model and show that human NES
cells provide a valid model to study ciliopathies or DCGs.
Future functional studies should address the molecular
mechanisms underlying the involvement of ciliary genes
and DCGs in human brain development.
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