
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Faster enclave transitions for IO-intensive network applications

Svenningsson, Jakob; Paladi, Nicolae; Vahidi, Arash

Published in:
SPIN'21

2021

Link to publication

Citation for published version (APA):
Svenningsson, J., Paladi, N., & Vahidi, A. (in press). Faster enclave transitions for IO-intensive network
applications. In SPIN'21: Proceedings of the Workshop on Secure Programmable Network Infrastructure
Association for Computing Machinery (ACM).

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/3597567f-663b-42ff-b0a7-91704a84eb0d

Faster enclave transitions for IO-intensive network applications
Jakob Svenningsson

jaksve@kth.se
KTH Royal Institute of Technology

Sweden

Nicolae Paladi
nicolae.paladi@eit.lth.se
Lund University and RISE

Cybersecurity
Sweden

Arash Vahidi
arash.vahidi@ri.se
RISE Cybersecurity

Sweden

ABSTRACT
Process-based confidential computing enclaves such as Intel SGX
have been proposed for protecting the confidentiality and integrity
of network applications, without the overhead of virtualization.
However, these solutions introduce other types of overhead, par-
ticularly the cost transitioning in and out of an enclave context.
This makes the use of enclaves impractical for running IO-intensive
applications, such as network packet processing. We build on ear-
lier approaches to improve the IO performance of workloads in
Intel SGX enclaves and propose the HotCall-Bundler library that
helps reduce the cost of individual single enclave transitions and
the total number of enclave transitions in trusted applications run-
ning in Intel SGX enclaves. We describe the implementation of the
HotCall-Bundler library, evaluate its performance and demonstrate
its practicality using the case study of Open vSwitch, a widely used
software switch implementation.

CCS CONCEPTS
• Security andprivacy→Network security; Systems security;
Security in hardware; Systems security; •Networks→ Bridges
and switches.

KEYWORDS
Open vSwitch, SGX, Hardware security, Performance optimization
ACM Reference Format:
Jakob Svenningsson, Nicolae Paladi, and Arash Vahidi. 2021. Faster en-
clave transitions for IO-intensive network applications. In ACM SIGCOMM
Workshop on Secure Programmable network INfrastructure (SPIN ’21), Au-
gust 23, 2021, Virtual Event, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3472873.3472879

1 INTRODUCTION
Confidentiality and integrity are important topics when network
computation moves from dedicated hardware to software deployed
on shared commodity platforms. Addressing these topics should
not offset the two core advantages of software network compo-
nents: cost reduction and flexibility. Confidential computing is an
increasingly popular approach to achieving this [34]. It relies on
using a Trusted Execution Environment (TEE) backed by certified

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPIN ’21, August 23, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8637-1/21/08. . . $15.00
https://doi.org/10.1145/3472873.3472879

hardware, such that critical operations of Trusted Applications
running inside the TEE cannot be manipulated by the platform op-
erator or malicious entities (with the notable exception of the CPU
manufacturer). For example, AMD SEV, Intel SGX, and IBM SVM
provide mechanisms to achieve this in different ways [11, 20, 33].
The variety of vendor TEE implementations highlights the trade-
offs between security guarantees, portability of legacy applications,
ease of deployment, and run-time performance. VM-based TEE
implementations (e.g. AMD SEV, IBM SVM, and Intel TDX) support
portability of legacy applications with a modest performance over-
head [6], but have a larger attack surface and are vulnerable to sev-
eral classes of attacks [17]. Process-based TEEs (e.g. Intel SGX and
ARM TrustZone) on the other hand have a smaller attack surface
and improved security and were proposed for protecting network
applications [12, 13, 24, 30]. Unfortunately, the additional security
checks together with memory access limitations negatively affect
the performance of process-based TEEs [6]. Furthermore, these
have shown to be particularly vulnerable to microarchitectural at-
tacks [26] and platform vendors have repeatedly issued microcode
patches to alleviate security problems [5]. As illustrated in Figure 1,
recent microcode updates for Intel SGX have further degraded TEE
performance.

10000 15000 20000 25000 30000 35000 40000
Execution time (clock cycles)

0.00

0.25

0.50

0.75

1.00
Cumulative distribution function

20171117 warm

20180312 warm

20180807 warm

20190312 warm

(a) warm cache

15000 20000 25000 30000 35000 40000 45000 50000
Execution time (clock cycles)

0.00

0.25

0.50

0.75

1.00
Cumulative distribution function

20171117 cold

20180312 cold

20180807 cold

20190312 cold

(b) cold cache

Figure 1: Evolution of the SGX enclave transition time
through Intel microcode updates.

Considering the performance effects described above, it is imper-
ative to identify and implement new approaches that to maintain
or improve TEE performance despite the latest countermeasures to
microarchitectural attacks. This however should not significantly

https://doi.org/10.1145/3472873.3472879
https://doi.org/10.1145/3472873.3472879
https://doi.org/10.1145/3472873.3472879

SPIN ’21, August 23, 2021, Virtual Event, USA Svenningsson et al.

increase the efforts required from network application developers.
In this paper, we address a crucial limitation on the intersection
between the portability of legacy network applications and the
performance overhead introduced by the transition between the
TEE and the Rich Execution Environment (REE) that comprises the
platform operating system.

Our results show that while a tailor-made refactoring of legacy
Trusted Applications for Intel SGX yields the best performance, it
is work-intensive, application-specific, and often impractical. This
insight led us to develop the HotCalls-Bundler software library as
a generic approach for speeding up enclave transitions in legacy
Trusted Applications, while maintaining the security benefits of
SGX. This solution is particularly beneficial in IO-intensive appli-
cations such as network packet processing, as well as non-network
applications such as remote sensing applications, biological se-
quence analysis, and long-running simulations [25]. We demon-
strate the practical applicability and performance improvements
of our approach using Open vSwitch, a popular software switch
implementation.

The main contributions of our work are summarized as follows:

• We describe a generic approach to speed up transitions be-
tween the rich execution environment and SGX enclaves
(section 3);

• We introduce enclave execution graphs, that allow execut-
ing arbitrary sequences of enclave functions using a single
enclave transition (section 4);

• We implement a library to assist refactoring of legacy appli-
cations and introduce efficient transitions in and out of SGX
enclaves;

• We demonstrate the applicability of our approach with the
case study of Open vSwitch, a widely used IO-intensive net-
work application;

• The implementation source code is openly available1.

The rest of the paper is structured as follows. We introduce
the required background and motivate the problem in Section 2,
introduce the HotCall-Bundler library in Section 3 and describe the
implementation of the library in Section 4. Next, we evaluate the
performance of the HotCalls-Bundler library and its application
in a case study in Section 5, present the related work in Section 6
followed by conclusion and future work in Section 7.

2 BACKGROUND
We next introduce several key concepts used in the paper.

2.1 Intel SGX
Intel Software Guard Extensions (SGX) are CPU security exten-
sions that allow execution of unprivileged trusted applications in
the presence of possibly malicious privileged software such as a
compromised OS or hypervisor [20]. An SGX-enabled CPU main-
tains an isolated memory region, the Enclave Page Cache (EPC),
within which security enclaves can execute isolated from the rest
of the system. SGX provides mechanisms to verify the integrity
of an enclave (using local and remote attestation) and binding of

1Source code repository: https://anonymous.4open.science/r/hotcall-bundler

information to specific configurations (sealing), which allows one
to validate an enclave without direct access to its content.

Enclaves communicate with applications running in the Rich
Execution Environment (REE) using the ECALL and OCALL (entry
and out call) instructions. However, these instructions introduce
a performance overhead that often makes SGX unsuitable for IO-
intensive applications. Weisse proposed "HotCall", which utilizes
a shared memory region outside the enclave for communication,
resulting in significant performance improvements in real-world
applications [32]. In response to published security vulnerabilities
affecting Intel SGX [31], [18], [15], Intel issued a number of mi-
crocode updates. However, along with addressing software vulnera-
bilities this further degraded the performance of enclave transitions
(see Figure 1). While the HotCalls approach [32] produces a tangi-
ble performance improvement, we note the importance of further
efforts to offset the overhead introduced by subsequent microcode
updates.

2.2 Memoization
Memoization is an optimization technique for reducing the exe-
cution time of computationally expensive functions [14]. Given a
function with no side effects, memoization uses a cache to remem-
ber some input-output pairs. If an input used in a subsequent call
is found in the cache, the recorded output value is returned, oth-
erwise, the (expensive) function is called. Memoization is a simple
way of trading execution time for space and is commonly used
to optimize recursive algorithms. We use memoization to reduce
enclave transitions between applications running in the TEE and
the REE.

2.3 Open vSwitch
The motivating use case for this work is Open vSwitch (OvS), a
software network switch for connecting physical and virtual net-
work interfaces in a virtualized environment [16]. This is a critical
component for providing network isolation in cloud infrastructure
and other multi-tenant environment [23].

Figure 2: Overview of OvS main components.

Among the OvS components (Figure 2), the flow tables (1) are of
special interest to us as they contain the rules that define the rout-
ing behavior of a switch. While these tables are critical OvS assets,

https://anonymous.4open.science/r/hotcall-bundler

Faster enclave transitions for IO-intensive network applications SPIN ’21, August 23, 2021, Virtual Event, USA

they are often stored without sufficient confidentiality and integrity
protection, leading to serious security vulnerabilities. For example,
an attacker with access to flow tables could map the network struc-
ture [4], modify routing behavior to perform man-in-the-middle
attacks, or bypass firewalls and intrusion-detection systems [3].
Furthermore, an attacker could inject malicious data into flow ta-
bles to propagate deeper into the network and compromise systems
otherwise not reachable [8]. Proposed solutions to address flow
table security issues include auditing flow table to detect discrepan-
cies between the configured and current behavior [19], validating
both executables and flow tables with a TPM [10], or moving criti-
cal components (the OpenFlow flow tables and forwarding logic)
into Intel SGX enclaves [21]. The latter, while promising from a
security point of view, is a very labor-intensive task and introduces
additional overhead. We address both shortcomings in this work.

3 SPEEDING UP ENCLAVE TRANSITIONS
We next describe the HotCall-Bundler mechanism to address the
performance penalty introduced by transitions into and out of
SGX enclaves. To facilitate adoption and usability, we designed and
implemented this mechanism as a software library.

3.1 Overview
TheHotCall-Bundler library offers functionality to reduce the cost of
individual enclave transition as well as the total number of enclave
transitions for trusted applications (TAs) deployed in Intel SGX
enclaves. This library extends work conducted in HotCalls [32]
with novel ideas and is the core contribution of this paper. The
library leverages three main features: switchless enclave function
calls, execution graphs, and enclave function memoization.

Switchless enclave function calls are used to reduce the cost
of a single enclave transition. Execution graphs and enclave func-
tion memoization are used to reduce the total number of enclave
function calls in Intel SGX applications.

3.2 Functional Requirements
We consider the following functional requirements for the HotCall-
Bundler library:

(1) Switchless calls: execute enclave functionswithout context-
switching to enclave mode;

(2) Merging: execute an arbitrary number of enclave functions
over a single enclave transition;

(3) Batching: apply an arbitrary number of enclave functions to
each element of an input list over a single enclave transition;

(4) Branching: conditional execution of enclave functions over
a single enclave transition;

(5) Memoization: cache enclave data in untrusted memory
when only integrity is necessary. Caches allow untrusted
applications to access data without transitioning into the
enclave. Moreover, we implement a mechanism to verify the
integrity of enclave data stored in untrusted memory.

The switchless enclave function call component presented in 4.1
fulfills requirement 1; the execution graph component in section
4.2 fulfills requirements 2-4, and the memoization component in
section 4.4 fulfills requirement 5.

3.3 Architecture
In the case of SGX enclaves, implementing a shared memory switch-
less enclave communication library requires source code modifica-
tions in both the trusted application running in the TEE and the
untrusted application running in the REE. Enclaves do not share
source code (and libraries) with the untrusted application; therefore,
the HotCall-Bundler library consists of two separate libraries. The
first library is a static C library that needs to be linked with the
untrusted application, and the second is a trusted enclave library
which needs to be linked with the enclave binary [1].

Intel SGX Application

Untrusted Component
(Untrusted Application)

Untrusted Application Code

Invokes switchless
enclave function

Untrusted Library Component

Write execution
graph

Shared Memory Region

Trusted Component
(Enclave Component)

Enclave Code & Data

Invokes enclave
functions

Trusted Library Component

Polls

Figure 3: High-level overview of an Intel SGX application
using the HotCall-Bundler library.

Figure 3 illustrates the untrusted and trusted part of the HotCall-
Bundler library when integrated into an arbitrary Intel SGX applica-
tion and the interactions between the different parts. The untrusted
application invokes switchless enclave functions through an API
exposed by the untrusted library. Next, the untrusted library writes
the job to a shared memory region in the form of an execution
graph (execution graphs are discussed later in section 4.2). Finally,
the job is processed by an enclave worker thread which calls the
associated enclave function and writes back potential return values
to the shared memory region.

4 HOTCALL-BUNDLER IMPLEMENTATION
We next describe the HotCall-Bundler implementation.

4.1 Switchless Enclave Function Calls
HotCall-Bundler protocol for switchless enclave function calls builds
on HotCalls [32] and is presented in Figure 4. This component
fulfills functional requirement (1) listed above in 3.2. The shared
memory region contains a spinlock primitive that must be acquired
by either the untrusted application or the TA before accessing the
shared memory region to avoid data races. While Intel SGX SDK
supports condition variables, this synchronization primitive is im-
plemented with OCALLS, which is a context switch operation and
conflicts with our goal of a switchless communication protocol.
Spinlock is the only synchronization primitive that can be used by
the enclave worker threads without leaving the enclave.

SPIN ’21, August 23, 2021, Virtual Event, USA Svenningsson et al.

Figure 4: Switchless enclave function call protocol

The untrusted application invokes switchless enclave functions
by acquiring the lock and writing the enclave function call, repre-
sented by a (function_id, function_data) tuple, to shared memory.
An enclave worker thread initiated through an API exposed by
the trusted part of the library is continuously polling the shared
memory region for scheduled jobs to execute. The enclave worker
thread uses a busy-waiting scheme where it repeatedly checks for
pending jobs inside of an infinite loop. We use Intel’s pause instruc-
tion inside of the spinlock loop to improve the efficiency of the
busy-waiting scheme. The pause instruction provides a hint to the
processor that it is executing inside a spinlock loop, enabling the
processor to perform memory optimizations [9]. In Section 4.2) we
replace this tuple with a data structure representing an execution
graph to create a more efficient enclave communication scheme
able to execute multiple enclave functions using a single enclave
transition.

4.1.1 Translation Functions. Input and output parameters are treated
as generic elements, which simplifies the implementation but must
be translated to correct data types before an enclave worker thread
can be invoked. This is done by defining a translation function for
each function exposed to the untrusted application, see Listing 1
for an example. Note that translation functions are constructed to
accept an array of parameters, which will enable the use of batching
(see section 4.2.1).

Listing 1: A translation function for an enclave summation.

void t r a n s l a t i o n _ e c a l l _ p l u s (
unsigned int i t r s , unsigned int params , void ∗ a rg s [] []) {
for (in t i = 0 ; i < i t e r s ; ++ i) {

∗ (in t ∗) a r g s [2] [i] = h o t c a l l _ p l u s (
∗ (in t ∗) a r g s [0] [i] , ∗ (in t ∗) a r g s [1] [i]) ;

}
}

4.2 Execution Graphs
A limitation of the HotCall switchless enclave communication im-
plementation [32] is that it only allows executing a single enclave
function call per enclave transition. Each enclave transition intro-
duces an overhead, estimated to be around ∼600 to ∼1400 clock
cycles for warm and cold caches respectively [32].

This paper introduces execution graphs in the context of enclave
transitions. An enclave execution graph is an arbitrary sequence of
dependent or independent enclave functions, control statements,
and iterators that can be executed with a single enclave transition.
This provides a significant improvement over the original HotCall
implementation and is to best of our knowledge a novel concept
that has not been explored in previous studies. Figure 5 illustrates
how two enclave function calls can be executed using only a single
enclave transition using execution graphs. Execution graphs are

Untrusted
Application

Shared
Memory Enclave

Enclave
transition

Execute
function 1

Execute
function 2

[(ID_1, DATA_1), (ID_2, DATA_2)]

READ_DATA

WRITE_DATA

READ_DATA

WRITE_DATA

READ RETURN VALUES

Figure 5: Sequence diagram illustrating the enclave and un-
trusted application interaction when invoking two enclave
function calls using execution graphs.

represented as an array of items where each entry is either an en-
clave function, a control statement, or an iterator. In its simplest
form, an execution graph is only a list of enclave functions that
are executed sequentially. This enables arbitrary merging of en-
clave function calls and fulfills functional requirement (2) listed
in section 3.2. Figure 6 illustrates a simple execution graph with
three enclave function calls. Each function call is represented by
a tuple (function_id, function_data), where function_data is a list
of pointers. By convention, the last element in the function_data
list is the address where potential return values are written. We

Figure 6: A simple execution graph consisting of three en-
clave function calls.

next describe other node types that can be used to construct execu-
tion graphs. These enable batching and branching and fulfill the
functional requirements 3 and 4 of section 3.2.

4.2.1 Iterator. Iterator-nodes allow multiple invocations of an en-
clave function with different parameters in a single enclave tran-
sition. Iterators can be used for functional style operators such
as map and for-each. Figure 7 illustrates the overview of iterator
implementation. Note that input parameters are now represented

Faster enclave transitions for IO-intensive network applications SPIN ’21, August 23, 2021, Virtual Event, USA

as a matrix which will be processed by a translation function before
each row is used for one invocation of the target function.

Figure 7: Iterator implementation.

4.2.2 If. If-nodes choose between two possible execution paths,
possibly depending on the result of a previous enclave operations.
An example is shown in Figure 8 where the choice between two
enclave functions depends on value of arg2, which may have been
modified in the previous enclave function call. The implementa-
tion allows use of complex conditions in postfix notation [7] and
automatically handles required type conversions.

Figure 8: Execution graph containing an if-node.

4.2.3 For. A for-node allows to execute a subset of the execution
graph repeatedly for 𝑛 iterations. This is an alternative to iterators
presented in section 4.2.1. However, for-loops can execute an ar-
bitrary subset of the execution graph in each iteration while an
iterator can only execute a single enclave function. Figure 9 illus-
trates a execution graph containing a for-node. Note that a for-loop
requires two additional nodes to be inserted in the execution graph.
One node in the front and one in the end. All parameters of enclave
functions in the for-loop body which are marked as list parameters
are automatically incremented in each loop iteration.

Figure 9: Execution graph containing a for-node.

4.2.4 While. A while-node allows to execute a subset of the exe-
cution graph repeatedly conditioned on a boolean expression. A
while-node is implemented in the same way as the for-node pre-
sented in section 4.2.3. The difference between for and while-nodes
is the loop condition. While-nodes use a boolean loop condition,
which is implemented in the same way as boolean conditions in
if-nodes, discussed in section 4.2.2.

4.3 Construction of Execution Graphs
Each node of the execution graph requires 5−10 lines of boilerplate
code, which can make construction of graphs a tedious task and
result in a less readable code. To simplify this process the untrusted
part of the library exposes a user-friendly API based on C preproces-
sor macros for building execution graphs using both an imperative
and functional-style syntax.

4.4 Enclave Function Memoization
Memoization enables caching of enclave data in untrusted mem-
ory, which is accessible by the untrusted application without any
enclave interaction. This approach is widely applicable for many
IO-intensive application use cases (see Section 1). Integrity of mem-
oization caches in untrusted memory is guaranteed by storing a
hash of each memoization cache in the enclave. The enclave worker
thread, responsible for populating memoization caches, updates
the corresponding memoization hash each time a cache entry is
inserted or deleted. The enclave worker thread periodically ver-
ifies the caches by recalculating the hashes of the memoization
caches in untrusted memory and compares them with the hashes
stored in enclave memory. In our implementation, we clear the
cache whenever an unauthorized modification is detected; however,
other actions may be appropriate depending on the application.
For example, appropriate actions in a production system may be
clearing the cache and notifying the system administrator.

System time is not accessible inside of enclaves and hence cannot
be used to implement periodic recalculation of memoization cache
hashes. Instead, the periodic triggering of the recalculation mecha-
nism is implemented using the spinlock loop used in the switchless
enclave function call protocol described in section 4.1. The enclave
worker thread decrements an integer value in each spinlock loop
iteration, and the recalculation of memoization caches is triggered
when the integer reaches zero. Later, the counter is reset to its
original value and a new countdown begins.

5 PRELIMINARY RESULTS
We examined the performance impact of the proposed solutions in
a complex network application (Open vSwitch commit 53cc4b0).

We studied four Open vSwitch flow table operations: add flow
rule, delete flow rule, modify flow rule, and evict flow rule. The
performance of each operation has been compared across five dif-
ferent versions: baseline is the original version, SGX vanilla is the
OFTinSGX from [21], Switchless uses hotcalls instead of ECALLs as
described in [32] while Bundler uses all optimization described in
this paper. Finally SGX refactored is the authors heavily modified
version tailored specifically for SGX and will be used to compare the

SPIN ’21, August 23, 2021, Virtual Event, USA Svenningsson et al.

trade-offs between performance and development effort. Evaluation
scripts are openly available2.

Add Flow Rule. Figure 10 illustrates CDFs of add flow execution
times for all evaluated versions. We observe a relatively similar
performance for SGX refactored, Bundler and Switchless while SGX
vanillia is significantly slower.

50000 100000 150000 200000 250000
Execution time (clock cycles)

0.0

0.2

0.4

0.6

0.8

1.0
Add Flow (CDF)

Baseline
SGX vanilla
SGX refactored
Switchless
Bundler

Figure 10: Add flow execution times.

Delete & Modify Flow Rule. The execution time for the delete and
modify flow operations is presented in Figures 11 and 12. Here
we see a similar pattern: SGX refactored has the best performance
after baseline, followed by Bundler and Switchless. Note that unlike
add flow, delete and modify often target multiple table entries. We
intend to examine the effect of batching in these operations in a
follow-up paper.

50000 100000 150000 200000 250000
Execution time (clock cycles)

0.0

0.2

0.4

0.6

0.8

1.0
Delete Flow (CDF)

Baseline
SGX vanilla
SGX refactored
Switchless
Bundler

Figure 11: Delete flow execution times.

Evict Flow Rule. The eviction operation requires a very high number
of enclave transitions, which as seen in Figure 13 favors solutions
optimized to minimize transition cost. Given these results, while
Bundler introduces a measurable performance overhead it does not
drastically increase execution time even in corner cases.

6 RELATEDWORK
Software-Defined Networking (SDN) and in particular the SDN
control plane has been extensively scrutinized by the security re-
search community [28],[2]. Some researchers considered the use
2Source code repository: https://anonymous.4open.science/r/ovs-sgx/

50000 100000 150000 200000 250000 300000
Execution time (clock cycles)

0.0

0.2

0.4

0.6

0.8

1.0
Modify Flow (CDF)

Baseline
SGX vanilla
SGX refactored
Switchless
Bundler

Figure 12: Modify flow execution times.

0.2 0.4 0.6 0.8 1.0
Execution time (clock cycles) 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Evict Flow (CDF)

Baseline
SGX vanilla
SGX refactored
Switchless
Bundler

Figure 13: Evict flow execution times.

of Trusted Computing and trusted execution to address security
issues. For example, Jacquin et al. proposed using TPM to ensure a
trusted boot and use of attestation to monitor the integrity of flow
tables [10], while Paladi et al. suggested using Intel SGX to ensure
a secure boot and to provide secure communication channels [22].
Similarly, Shih et al. proposed executing parts of a virtual network
function inside an Intel SGX enclave [27].

Medina et al. proposedOFTinSGX, an OvS implementation where
OpenFlow flow tables are placed inside an SGX enclave [21]. While
this provided confidentiality and integrity guarantees to flow tables,
it introduced a significant performance degradation to OvS.

Performance issues in SGX applications can sometimes be attrib-
uted to the high cost of entering and exiting enclaves. Weisse et
al. introduced "HotCalls" for communicating with enclaves using
shared untrusted memory [32]. This approach can be orders of
magnitude faster than ECALLs, although the use of untrusted mem-
ory increases the enclave attack surface. The switchless enclave
function call component of the HotCall-Bundler library developed
in this paper is heavily inspired by this work.

The HotCalls protocol requires an enclave worker thread that
communicates with the main thread through a shared memory
region. This thread will occupy one CPU core, which is economical
only when the SGX enclave is under some load. Tian et al. suggested
using an adaptive approach where ECALLs are used when the
device is mostly idle and switchless calls are used when it is under
some load [29]. This scheme has been included in recent versions
of the Intel SGX SDK as a mainline feature. We chose to not use

https://anonymous.4open.science/r/ovs-sgx/

Faster enclave transitions for IO-intensive network applications SPIN ’21, August 23, 2021, Virtual Event, USA

this scheme in our paper as it lacked the flexibility and control
granularity of a custom solution.

7 CONCLUSIONS
In this paper, we described HotCall-Bundler, a mechanism to help
improve the performance of IO-intensive applications in Intel SGX
enclaves. HotCall-Bundler combines switchless SGX communica-
tion and novel optimization using execution graphs and function
memoization. We extended earlier work and developed two pro-
totypes using switchless communication both with and without
execution graphs and memoization. We evaluated the performance
improvements introduced by the HotCall-Bundler library in Open
vSwitch, a widely used network switch implementation.

The HotCall-Bundler library can be used for other IO-intensive
applications that can benefit from the security guarantees of isolated
execution in SGX, such as in-network packet processing, biological
sequence analysis or long-running simulations. Considering the
many parameters that each evaluation entails, we will explore in
future work the performance effects of the HotCall-Bundler library
in other IO-intensive applications, as well as evaluate the required
programming efforts across several case studies.

8 ACKNOWLEDGEMENTS
This work was financially supported by the Swedish Foundation
for Strategic Research, grant RIT17-0035.

REFERENCES
[1] [n.d.]. Intel Software Guard Extensions Programming Reference. Technical Re-

port. https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_
reference_for_linux_os_pdf.pdf

[2] A. Abdou, P. C. van Oorschot, and T. Wan. 2018. Comparative Analysis of
Control Plane Security of SDN andConventional Networks. IEEE Communications
Surveys&Tutorials 20, 4 (2018), 3542–3559. https://doi.org/10.1109/COMST.2018.
2839348

[3] Markku Antikainen, Tuomas Aura, and Mikko Särelä. 2014. Spook in your
network: Attacking an SDN with a compromised openflow switch. In Nordic
Conference on Secure IT Systems. Springer, 229–244.

[4] Roberto Bifulco, Heng Cui, Ghassan O Karame, and Felix Klaedtke. 2015. Finger-
printing software-defined networks. In 2015 IEEE 23rd International Conference
on Network Protocols (ICNP). IEEE, 453–459.

[5] Daniel Genkin and Yuval Yarom. 2021. Whack-a-Meltdown: Microarchitectural
Security Games [Systems Attacks and Defenses]. IEEE Security & Privacy 19, 1
(2021), 95–98.

[6] C. Göttel, R. Pires, I. Rocha, S. Vaucher, P. Felber, M. Pasin, and V. Schiavoni. 2018.
Security, Performance and Energy Trade-Offs of Hardware-Assisted Memory
Protection Mechanisms. In 2018 IEEE 37th Symposium on Reliable Distributed
Systems (SRDS). 133–142. https://doi.org/10.1109/SRDS.2018.00024

[7] C. L. Hamblin. 1962. Translation to and from Polish Notation. Com-
put. J. 5, 3 (11 1962), 210–213. https://doi.org/10.1093/comjnl/5.3.210
arXiv:http://oup.prod.sis.lan/comjnl/article-pdf/5/3/210/1172943/5-3-210.pdf

[8] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. 2015. Poisoning Network
Visibility in Software-Defined Networks: New Attacks and Countermeasures. In
Proceedings 2015 Network and Distributed System Security Symposium. Internet
Society. https://doi.org/10.14722/ndss.2015.23283

[9] Intel. 2015. Benefitting Power and Performance Sleep Loops. https://software.intel.
com/en-us/articles/benefitting-power-and-performance-sleep-loops

[10] Ludovic Jacquin, Adrian Shaw, and Chris Dalton. 2015. Towards trusted software-
defined networks using a hardware-based Integrity Measurement Architecture.
In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft).
https://doi.org/10.1109/NETSOFT.2015.7116186

[11] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory encryption.
White paper. Advanced Micro Devices, Inc.

[12] Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo Kim, and Dongsu Han. 2017.
Enhancing Security and Privacy of Tor’s Ecosystem by Using Trusted Execution
Environments. In 14th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 17). USENIX Association, Boston, MA, 145–161. https://www.
usenix.org/conference/nsdi17/technical-sessions/presentation/kim-seongmin

[13] Seongmin Kim, Youjung Shin, Jaehyung Ha, Taesoo Kim, and Dongsu Han. 2015.
A First Step Towards Leveraging Commodity Trusted Execution Environments
for Network Applications. In Proceedings of the 14th ACMWorkshop on Hot Topics
in Networks (Philadelphia, PA, USA) (HotNets-XIV). Association for Computing
Machinery, New York, NY, USA, Article 7, 7 pages. https://doi.org/10.1145/
2834050.2834100

[14] Jon Kleinberg and Eva Tardos. 2005. Algorithm Design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[15] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1–19.

[16] Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anupam Chanda,
Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson, Andrew
Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben
Pfaff, Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj
Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua Zhang. 2014. Network
Virtualization in Multi-tenant Datacenters. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14). USENIX Association,
Seattle, WA, 203–216. https://www.usenix.org/conference/nsdi14/technical-
sessions/presentation/koponen

[17] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. 2019. Exploiting
Unprotected I/O Operations in AMD’s Secure Encrypted Virtualization. In 28th
USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa
Clara, CA, 1257–1272. https://www.usenix.org/conference/usenixsecurity19/
presentation/li-mengyuan

[18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. 2018.
Meltdown: Reading kernel memory from user space. In 27th USENIX Security
Symposium (USENIX Security 18). 973–990.

[19] TaousMadi, SuryadiptaMajumdar, YushunWang, Yosr Jarraya, Makan Pourzandi,
and Lingyu Wang. 2016. Auditing Security Compliance of the Virtualized In-
frastructure in the Cloud: Application to OpenStack. In Proceedings of the Sixth
ACM Conference on Data and Application Security and Privacy (New Orleans,
Louisiana, USA) (CODASPY ’16). Association for Computing Machinery, New
York, NY, USA, 195–206. https://doi.org/10.1145/2857705.2857721

[20] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. In Proceedings of the 2Nd International
Workshop on Hardware and Architectural Support for Security and Privacy (Tel-
Aviv, Israel) (HASP ’13). ACM, New York, NY, USA, Article 10, 1 pages. https:
//doi.org/10.1145/2487726.2488368

[21] J. Medina, N. Paladi, and P. Arlos. 2019. Protecting OpenFlow using Intel SGX.
In 2019 IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN). 1–6. https://doi.org/10.1109/NFV-SDN47374.2019.9039980

[22] Nicolae Paladi and Christian Gehrmann. 2017. Bootstrapping trust in software
defined networks. ICST Transactions on Security and Safety 4 (12 2017), 153397.
https://doi.org/10.4108/eai.7-12-2017.153397

[23] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and Scott
Shenker. 2009. Extending networking into the virtualization layer.. In Hotnets.

[24] Rafael Pires, Marcelo Pasin, Pascal Felber, and Christof Fetzer. 2016. Secure
Content-Based Routing Using Intel Software Guard Extensions. In Proceedings
of the 17th International Middleware Conference (Trento, Italy) (Middleware ’16).
Association for Computing Machinery, New York, NY, USA, Article 10, 10 pages.
https://doi.org/10.1145/2988336.2988346

[25] Xiao Qin, Hong Jiang, Adam Manzanares, Xiaojun Ruan, and Shu Yin. 2009. Dy-
namic load balancing for I/O-intensive applications on clusters. ACMTransactions
on Storage (TOS) 5, 3 (2009), 1–38.

[26] M. Schwarz and D. Gruss. 2020. How Trusted Execution Environments Fuel
Research on Microarchitectural Attacks. IEEE Security Privacy 18, 5 (2020), 18–27.
https://doi.org/10.1109/MSEC.2020.2993896

[27] Ming-Wei Shih, Mohan Kumar, Taesoo Kim, and Ada Gavrilovska. 2016. S-
NFV: Securing NFV States by Using SGX. In Proceedings of the 2016 ACM In-
ternational Workshop on Security in Software Defined Networks and Network
Function Virtualization (New Orleans, Louisiana, USA) (SDN-NFV Security ’16).
Association for Computing Machinery, New York, NY, USA, 45–48. https:
//doi.org/10.1145/2876019.2876032

[28] Zhaogang Shu, Jiafu Wan, Di Li, Jiaxiang Lin, Athanasios V. Vasilakos, and
Muhammad Imran. 2016. Security in Software-Defined Networking: Threats and
Countermeasures. Mobile Networks and Applications 21, 5 (01 Oct 2016), 764–776.
https://doi.org/10.1007/s11036-016-0676-x

[29] Hongliang Tian, Qiong Zhang, Shoumeng Yan, Alex Rudnitsky, Liron Shacham,
Ron Yariv, and Noam Milshten. 2018. Switchless Calls Made Practical in Intel
SGX. In Proceedings of the 3rd Workshop on System Software for Trusted Execution
(Toronto, Canada) (SysTEX ’18). ACM, New York, NY, USA, 22–27. https://doi.
org/10.1145/3268935.3268942

https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://doi.org/10.1109/COMST.2018.2839348
https://doi.org/10.1109/COMST.2018.2839348
https://doi.org/10.1109/SRDS.2018.00024
https://doi.org/10.1093/comjnl/5.3.210
https://arxiv.org/abs/http://oup.prod.sis.lan/comjnl/article-pdf/5/3/210/1172943/5-3-210.pdf
https://doi.org/10.14722/ndss.2015.23283
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://doi.org/10.1109/NETSOFT.2015.7116186
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kim-seongmin
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kim-seongmin
https://doi.org/10.1145/2834050.2834100
https://doi.org/10.1145/2834050.2834100
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://doi.org/10.1145/2857705.2857721
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1109/NFV-SDN47374.2019.9039980
https://doi.org/10.4108/eai.7-12-2017.153397
https://doi.org/10.1145/2988336.2988346
https://doi.org/10.1109/MSEC.2020.2993896
https://doi.org/10.1145/2876019.2876032
https://doi.org/10.1145/2876019.2876032
https://doi.org/10.1007/s11036-016-0676-x
https://doi.org/10.1145/3268935.3268942
https://doi.org/10.1145/3268935.3268942

SPIN ’21, August 23, 2021, Virtual Event, USA Svenningsson et al.

[30] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhatotia,
and Christof Fetzer. 2018. ShieldBox: Secure Middleboxes Using Shielded Execu-
tion. In Proceedings of the Symposium on SDN Research (Los Angeles, CA, USA)
(SOSR ’18). Association for Computing Machinery, New York, NY, USA, Article 2,
14 pages. https://doi.org/10.1145/3185467.3185469

[31] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron
on the dark land: Understanding memory side-channel hazards in SGX. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2421–2434.

[32] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves. SIGARCH Comput. Archit.
News 45, 2 (June 2017), 81–93. https://doi.org/10.1145/3140659.3080208

[33] Jiewen Yao and Vincent Zimmer. 2020. Virtual Firmware. Apress, Berkeley, CA,
459–491. https://doi.org/10.1007/978-1-4842-6106-4_13

[34] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao, Z. Wang, Y. Zhang, J. Ying, L.
Zhang, and D. Meng. 2020. Enabling Rack-scale Confidential Computing using
Heterogeneous Trusted Execution Environment. In 2020 IEEE Symposium on
Security and Privacy (SP). 1450–1465. https://doi.org/10.1109/SP40000.2020.00054

https://doi.org/10.1145/3185467.3185469
https://doi.org/10.1145/3140659.3080208
https://doi.org/10.1007/978-1-4842-6106-4_13
https://doi.org/10.1109/SP40000.2020.00054

	Abstract
	1 Introduction
	2 Background
	2.1 Intel SGX
	2.2 Memoization
	2.3 Open vSwitch

	3 Speeding up Enclave Transitions
	3.1 Overview
	3.2 Functional Requirements
	3.3 Architecture

	4 HotCall-Bundler Implementation
	4.1 Switchless Enclave Function Calls
	4.2 Execution Graphs
	4.3 Construction of Execution Graphs
	4.4 Enclave Function Memoization

	5 Preliminary Results
	6 Related Work
	7 Conclusions
	8 Acknowledgements
	References

