
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Experiences from Monitoring Effects of Architectural Changes

Asklund, Ulf; Höst, Martin; Wnuk, Krzysztof

Published in:
ter Software Quality. The Future of Systems- and Software Development

DOI:
10.1007/978-3-319-27033-3_7

2016

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Asklund, U., Höst, M., & Wnuk, K. (2016). Experiences from Monitoring Effects of Architectural Changes. In ter
Software Quality. The Future of Systems- and Software Development (Vol. 238, pp. 97-108). (Lecture Notes in
Business Information Processing; Vol. 238). Springer. https://doi.org/10.1007/978-3-319-27033-3_7

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1007/978-3-319-27033-3_7
https://portal.research.lu.se/en/publications/b97bb50b-8b67-4efb-938a-050e91f981f0
https://doi.org/10.1007/978-3-319-27033-3_7


Experiences from Monitoring Effects of
Architectural Changes

Ulf Asklund, Martin Höst, Krzysztof Wnuk

Department of Computer Science
Lund University, Sweden

{ulf.asklund, krzysztof.wnuk, martin.host}@cs.lth.se

Abstract. A common situation is that an initial architecture has been
sufficient in the initial phases of a project, but when the size and com-
plexity of the product increases the architecture must be changed. In
this paper experiences are presented from changing an architecture into
independent units, providing basic reuse of main functionality although
giving higher priority to independence than reuse. An objective was also
to introduce metrics in order to monitor the architectural changes. The
change was studied in a case-study through weekly meetings with the
team, collected metrics, and questionnaires. The new architecture was
well received by the development team, who found it to be less frag-
ile. Concerning the metrics for monitoring it was concluded that a high
abstraction level was useful for the purpose.

Keywords: software architecture, software metrics

1 Introduction

Architectural changes are often introduced to improve some aspects of a software
product or a software development project. The selection of changes and their
introduction need to be systematic and well planned [1], followed by a follow-up
analysis if the applied changes resulted in the desired improvements. Software
metrics can support both change planning and evaluation [2]. These metrics need
to accurately describe the principles behind the changes and the main objects
of these changes.

Developing software products via prototyping is nowadays widely used. The
first prototype version is usually rather small, and then the product and the num-
ber of included functions grow. However, during such incremental development
a problem can occur that the changes made to the product affect many parts of
the product, resulting in that changes can result in unpredictable software faults.
This is typically the effect of an immature architecture for the purpose and/or
because of a development process with insufficient quality assurance practices.
The result is a suboptimal architecture that needs refactoring to bring its quality
to an acceptable level. However, architecture changes can not be be carried out
in isolation. There is a relationship between the business, the architecture, the
process, and the organization, as described by the BAPO model, e.g. [3], and

Published in proceedings of Software Quality Days, Vienna, Austria, 2016.
The final publication is available at link.springer.com



currently further analyzed in the ITEA project SCALARE1. This means that,
for example, the development process and the organization also might need to
be changed at the same time as the architecture.

This paper presents a case study where requirements changes and a more
large scale usage of the product triggered an architectural change. The introduc-
tion of the architecture change and a related process change is monitored with
a set of object oriented design metrics, inspired by Martin [4]. Versions of these
metrics are available in several metrics collection tools, and the objectives of this
study include evaluating to what extent they can be useful in the context of an
architectural change.

2 Related work

Software refactoring is an integral and important part of software maintenance
and evolution and often associated with restructuring [5]. It is a way to restore
quality after frequent changes [6], improve extensibility, modularity, reusability,
complexity, maintainability and efficiency [6] or transform centralized software
components into distributed [7]. Software restructuring is a form of “perfective
maintenance” with the goal to modify the structure of the source code and facili-
tate correctly previously undetected errors [8]. Moreover, it is rather straightfor-
ward to estimate the payoffs of restructuring in terms of time and money saved,
and shorter development cycles [9]. Refactoring can be achieved with the help
of assertions (pre-conditions, post-conditions and invariants), graph transforma-
tions, model transformations with semantic annotations [10], aspect oriented
concepts [11]. However, these methods are rarely empirically evaluated.

Several authors focused on software architecture stability. Among them,
Aversano et al. proposed a set of instability metrics combined with thresholds
when the architecture can be considered fully stable, leveling, improving, fully
unstable [12]. Tony et al. suggested a metric-based approach for evaluating ar-
chitecture stability based on: growth rate, change rate, cohesion and coupling
and evaluated them on several open source projects [13]. Interestingly, Bahsoon
and Wolfgand suggested using real options theory for evaluating architectural
stability and estimating volatility, exemplified on ten architectural changes [14].
Figueiredo et al. focused on design stability of software product lines in terms of
modularity, change propagation and feature dependency identifying a number of
positive and negative scenarios [15]. However, they analyzed two small product
lines with 10 KLOC and 3 KLOC.

3 Case description

3.1 Overall architecture

The case system is a client system for server software, intermediate software,
specifically developed hardware, and other units. The system architecture is
depicted in Figure 1.

1 http://scalare.org



Users

Company 
Information 
System(s)

(A)

Layer(s) 
provided 
by other 

companies 
(B)

Developed 
system, 
Android

(C)

Developed 
system, 

iOS

Developed 
system, 

web

Fig. 1. High level architecture of the whole system

The overall project is managed by Company A and includes a large customer
base. Company A has a number of Information Systems (marked A in Figure 2)
in order to manage the customer and user data. Other companies, marked as B
in Figure 2 access this data in different ways in their applications. The customers
receive a number of functions for observing, and taking actions upon the data
in the Company Information System (A). The application is developed in three
versions, one for iOS, one for the web and one for Android. We studied the An-
droid application in this paper, further called “developed system” in this paper
(C). Other companies (B) can influence and extend the functionality provided by
the system using the benefits of the layered design. Often, the new functionality
development is done in both layers.

The layered design combined with the interaction between the development
company and other companies impose several requirements and constraints.
Firstly, many companies are involved in the project with some significantly in-
fluencing the project scope (Company A). Secondly, the division of the work to
be done between the layers is not always straightforward. Thirdly, development
cycles should be short since users expect new functionality frequently deliv-
ered. Fourthly, reliability requirements are high due to a large amount of users.
Finally, the company wants to keep the current maintainability and lead-time
levels. The result of high release frequency is limited functionality and complex-
ity of the early versions. Therefore, the case company does not see the initial
architecture of the developed system as good as it should be and they are trying
to obtain a better architecture which will provide better maintainability.

3.2 Organization and process at the case company

On average, 2-3 developers work full time on the system. About the same number
of developers work on the web version and the iOS version of the developed
system, and the development must of course be synchronized. Since the project
has existed for rather long time there has been some change of personnel, which
also puts requirements on maintainability.



core core

a) b) c)

app

Fig. 2. Architecture change of application

The project followed an agile approach, mainly based on Scrum with collec-
tive code ownership where the developers assign the tasks to themselves to the
next task independent of what it is and what part of the system it affects.

There were two main reasons for the company to make a change. There was
a negative trend of quality issues like old bugs being re-introduced and too many
errors found late in testing. There were also several future development activities
planned in a near future, including new usage scenarios, targeting new market
segments, and developing new business models.

Based on the overall system architecture, the development time requirements
remained high and considered together with the business drivers (Extended func-
tionality). The detailed analysis of the change drivers revealed that the develop-
ers spend too much time browsing, for them uninteresting, files and documents.
Moreover, the developers struggled to find the relevant parts of the system to add
new functionality. Finally, extensive dependencies make the developed product
quite fragile, i.e. a change to one part of the system has non intuitive dependen-
cies to other parts, which are not always considered by the developers.

3.3 Introduced architectural changes to the developed system

The architecture was designed with focus on reuse, i.e. when new functionality is
added, existing classes are reused as much as possible. Extensive reuse may lead
to an architecture with many dependencies resulting in a, more or less, monolithic
system. This was identified as the major reason to the problems mentioned above,
and in order to better structure the dependencies and make the design less
fragile, the architecture was divided into modules. Each module implemented
one specific function provided to the user, implemented as separate projects
in the development environment (Eclipse). Functional decoupling allowed the
developers to make corrections or updates of existing functions, e.g. only the code
valid for the function was browsed, understood, and updated, which makes the
change fast and with high quality. It also allowed for parallel updates of different
functions, and new functionality can be added independent of the existing.

The architecture guidelines were changed to focus on independent modules
and how to manage them individually. Previously, all developers worked on the



whole code base when changes were implemented, which often required changes
to a large part of the system. The new process allows developers to avoid change
request in modules they have not yet know - but also to deliberately choose to
work in a module for the first time in order to increase system knowledge. From
an organizational perspective, the new architecture makes it is easier to scale,
letting new developers joining the project to start work on one function in one
module, learning the system function-by-function.

The drawback of the new architecture is less reuse and more double-maintenance
of “similar” code in different modules. However, the case company believed that
changes in the new architecture can be limited to one module and therefore bet-
ter fulfill the architecture maintainability requirements. Both architectural and
process changes were gradually introduced by the case company. This was done
by adding one module after another to the initial codebase. This means that
there were different versions of the system during the research project.

The gradual changes that were made to the application architecture are
sketched in Figure 2. In the beginning, there was a monolithic architecture (Fig-
ure 2.a). The objective of the changes was to achieve an architecture with sep-
arate modules and a limited of common functionality, as shown in Figure 2.c.
The main common layer in Figure 2.c is marked “core” and handles parts of the
product that is common to all modules. It also serves as the interface to layers
provided by other companies (B). There is also a small common part marked
“app” which is the Android application, which, for example, is responsible for
configuring and launching the modules. The other parts of the architecture is
made up of separate and independent modules. The current situation is that a
bottom layer has been formed, and a few independent modules introduced as
described above (Figure 2.b). In the current version of the architecture there are
still parts of the old architecture remaining.

3.4 Selected metrics for monitoring the changes

Several metrics are available in the literature for monitoring stability and ab-
stractness of a design. Martin has presented a number of metrics based on the
coupling between classes and packages (code categories) (e.g. [16, 4]) as described
below. One aspect that is of interest for a package is to what extent it depends
on other packages. The fewer other packages it depends on, the more stable it
is (does not break due to changes outside the package). Martin [16, 4] defines
a metric for efferent coupling (Ce) as the number of classes in a package that
depend on classes outside the package. We make an alternative definition of ef-
ferent coupling of a code segment as the number of other code segments that
it depends on, where a code segment can be a package or a project. This level
we found sufficient for our purpose in order to measure how dependent a code
segment is of other code segments. It can also be noticed that it is the same def-
inition of efferent coupling as is used in the JDepend metrics tool2 for analysis
of coupling between java packages.

2 http://clarkware.com/software/JDepend.html



Another aspect that is of interest for a package is its responsibility. The
more other packages are dependent on it the more responsible it is, and the
more responsible it is the more stable it is forced to be. Martin [16, 4] defines a
measure of afferent coupling (Ca) as the number of classes outside the package
that depend on classes inside the package. In this study we define this metric as
the number of code segments outside a code segment that depend on the code
segment, where a code segment can be a java package or a project in Eclipse.

We use Martin’s [16, 4] definition of instability I = Ce/(Ca + Ce), but with
our definition of Ce and Ca. I = 0 indicates a maximally stable segment, and
I=1 indicates a maximally unstable segment. I.e. instability, I, can be seen as
a measure of to what extent changes that are made in other parts of the code
affects the code and to what extent it is likely to be changed based on new
requirements, etc.

An interesting question to discuss is on what abstraction level the metrics
for coupling and instability should be collected on. This can either be between
classes, between packages, or between projects in Eclipse. Since the goal of the
organization in the study was to get independent “pipes”, which are implemented
as projects in Eclipse we choose to measure the coupling between projects. How-
ever, this means that the metrics can only be collected for the latest version
where a division into different projects has been made.

4 Research methodology

The research methodology follows a case study approach (e.g [17]), i.e. it is a
flexible research approach [18] where some detailed are left undecided before all
data collection is performed. The high-level goal of the research was to under-
stand how to monitor the architectural transformation and to be able to provide
objective evidence regarding the positive impact of the suggested changes. The
main research questions are:

1. What are the motivations for introducing the changes described in Sec-
tion 3.3, and what are the experiences of introducing them?

2. What are the experiences of using the set of metrics as described in Sec-
tion 3.4 for the purpose of monitoring (and keeping) this kind of change?

4.1 Data collection

The data collection steps are outlined in Figure 3. The data was continuously
collected during the architectural changes. To the left of Figure 3, the “normal
improvement work” of the case company is shown, i.e. how the company goes
from an initial version of the architecture to a “final version”, i.e. the last version
during this case study. The data collection started when the change process had
been initiated and some changes were already introduced. Thus, the authors
were not involved in the decisions or selecting the goals of the architectural
transformations. During the data collection, information that is the basis for



Work in case company Data collection in research Data analysis

C
hange process

Architecture,
initial version

Architecture,
final version

Weekly 
meetings

Metrics collection

Questionnaire:
- about difference 
between versions 
and the changes

- Identification of important 
issues
- Understanding of change
process
- Experience collection

Comparison

Fig. 3. Main steps of data collection and analysis

understanding the background, the type of changes and the introduced changes
as presented in Section 3.1 – Section 3.3 were gathered.

Weekly meetings. The researchers held approximately every week, or at
least bi-weekly, meetings with a case company contact person of the project. The
objectives of the meetings were to understand what happened in the project and
what decisions are taken at different points in time. The meetings were also held
in order to understand more about why different decisions were taken. During the
meetings questions about the business, architecture, process, and organization
were asked. The meetings were informal and held either in the company premises
or over skype/telephone. The following list of questions were used to guide the
meetings:

– What has happened since the last meeting?

– What important events or decisions have been taken, with respect to i)
business, ii) architecture, iii) process, iv) organization?

– What are your plans, with respect to i) business, ii) architecture, iii) process,
iv) organization?

Since the meetings were held informal, not all questions were asked every
time. However, they were used to ensure that no important dimension was missed
but the discussions always covered these aspects. During the meetings, notes were
taken by the researchers. No audio recordings were carried out. There were also a
few meetings with the person in charge of collecting the metrics at the company
where different metrics were discussed. This is further discussed in Section 3.4.



Metrics collection. Metrics were collected using the Eclipse plugin CodePro
AnalytiX3. After some initial analysis, it became clear that collecting metrics on
the class and package levels is unfeasible. Firstly, the main objective of the case
company was to have a clear separation between the projects (i.e. the “pipes” in
Figure 2). Therefore, package separation was not necessary since this would not
show the difference between the projects. Secondly, the metrics are only collected
for the latest version, since in the previous versions there was no division into
projects in this way.

Questionnaires. A questionnaire was also sent to developers in the Android
project. The questions were in most cases formulated as open questions where
the participants answers in free-text, while in a few pre-decided answer questions.
The questionnaire included the following questions:

1. General questions, e.g. name, experience, and role

2. Characteristics about the team, e.g. collaboration approach, division of tasks

3. Questions concerning the architecture changes, e.g. perceived motivation for
change, and observed benefits and drawbacks

4. Questions concerning the development process, with sub-questions about
noticed change in product quality, noticed change in how easily the code can
be browsed and searched, and perceived change regarding how much code a
developer must be able to work with

5. Questions about testing, e.g. how the architectural change affected test-case
selection and the number of faults found

6. Question about how changes negatively affect other parts of the system,
before and after the architectural change

7. Question about how the amount of duplicate code has changed after the
architectural change

Analysis. The metrics analysis was carried out by collecting the metrics on
the last available version of the system and analyzing them, see Section 5.1. Qual-
itative data analysis included summarizing the answers to each major question
category.

5 Results

5.1 Metrics collection

Since the study focused on the relations between the different projects, the met-
rics were collected on the higher abstraction looking at the separation of projects.
The results are presented in Table 1. The calculation of Ce was based on the
number of the referenced projects. Figure 4 extends the general sketch in Fig-
ure 2.b with some more details. The figure consists of a number of parts:

3 https://marketplace.eclipse.org/content/codepro-analytix



Table 1. Metrics results

Project Referenced Ce Referencing Ca I
projects projects

P1 P2, P4, P6 33 P2, P4, P6 3 0.5
P2 P1, P3 2 P1 1 0.67
P3 – 0 P2, P4, P5, P6 4 0
P4 P1, P3 2 P1 2 0.5
P5 P3 1 – 0 1
P6 P1, P3 2 P1 1 0.67

– P1: This part denotes the “original project”, i.e. the architecture according
to Figure 2.a. This part has evolved by breaking out some of the functionality
of the large architecture in Figure 2.a when developing other parts, and it
has been improved in general.

– P3: This part denotes the “core” functionality that is intended to be used
by the other projects. It is intended to be stable, which is also reflected in
the value of I = 0.

– P2, P4, P5, P6: These parts are individual “pipes” which are dependent on
P3, but not on each other. Since they are dependent on P3 they are not
stable in respect to I.

P3

P1

P2 P4 P5 P6

Fig. 4. Architecture of the current version

5.2 Interviews/questionnaires

The questionnaire was answered by five persons with different types of roles.
The answers to the questions can be summarized as follows:

1. Two developers, one architect, are customer representative and one manager
(core reviewer) answered the survey. Their experience in the project was
between 4 and 19 months (median 8) and industrial experience between 1
and 10 years (median 9).



2. The team consisted of 6-7 persons working as a cohesive team and physically
in the same location. The development methodology is agile and based on
Scrum with work allocation performed by the developers. Developers worked
together with the same feature, i.e. they take a feature “together” and work
with that until it was done. The feature work is divided into tasks that take
1-8 hours to develop. Sometimes, front-end and back-end development efforts
are split.

3. The studied architectural change is considered as an improvement. The un-
derstanding of the necessity and the detailed of the changes among the par-
ticipants is high. The benefits of the changes include that changes will not
spread to other parts of the code, it is easier to get an overview, which means
that the maintainability is better, and unit test is easier. One participant also
highlighted better discussions about the code and the architecture as a ben-
efit. The drawbacks that are seen include that some code may be duplicated
since the focus is so much on independent architectural parts. One person
also thought that the setup process of the projects were more complicated.

4. The developed code consists fewer faults and it is easier to find what changes
have been made to the code.

5. The participants think that it is easier to formulate the right tests. This may
however be due to an overall code improvements.

6. Some of the introduced changes may actually negatively impact other parts
of the software. The participants think that this problem has decreased in
the current version.

7. The participants admitted that the amount of duplicate code has increased,
however they found it challenging to accurately estimate the amount of it
due to the lack of reliable estimates.

6 Discussion

The architectural changes were considered positive since no participant was
clearly negative to the changes, despite additional duplicate code. One expla-
nation could be that the potential negative effects are yet to be discovered. It
can also be that this type of project is suitable for this kind of architectural
changes and therefore no negative effects occur. The studied code focuses on
providing outputs based on input without complicated algorithms, which may
be one reason the solution is suitable.

The organizational set up in this case made it possible to move the logic
to the server (implemented in decoupled “modules”) and focus on thin clients,
allowing for decoupled implementation of new features. The clients got thicker
than needed, which also may be the reason there is still different teams for iOS
and Android, something that can be avoided by having a pure feature oriented
organization cross different OS. This fits well the studied context, see B in Fig-
ure 1, since different companies are responsible for client applications and the
server layers. Moreover, canonical data forced the client code to process data not
valid for them. To summarize, other contexts can also benefit from this type of



architectural changes, e.g. in a telecom service provider (corresponding to com-
pany A) with customers who have outsourced information systems management
to other companies (corresponding to layers here).

The used metrics were suitable for a rather high level of abstraction (between
Eclipse projects and not on one specific project). They successfully measured if
the architectural changes were achieved. Once in place, these metrics can also
serve as continuous verification of the quality of the architecture.

Validity can, for example, be discussed with the respect to construct validity,
internal validity, external validity, and reliability, e.g. [17]. Construct validity
was strengthened by having a long time contact with weekly meetings, which
can reduce the risk of misunderstandings. Internal validity threats in terms of
other factors affecting the values of the architectural measures were minimized by
studying the whole change and trying to understand what was actually changed,
e.g. the way of working was changed somewhat at the same time. However, a
risk remains that the changes were made as a result of positive attitude and just
because the participants were not happy with the old architecture. Moreover,
the study was conducted with a rather small team for an Android application
threatening external validity. Thus, further replications are needed for this type
of projects, and if other types of projects are consider additional research is prob-
ably needed. Finally, we address reliability threats by having regular meetings
with the team and recording all research steps in the case study protocol.

7 Conclusions

Concerning the motivation for introducing the changes described in Section 3.3,
the main motivations are that it can decrease the risk of making changes that
negatively affect other parts of the system, and that it makes it possible to
divide the work between different people in natural way. There was also a need
to refactor the architecture since the software has grown and future anticipated
requirements include further growth of the software and increased differentiation
between customer segments. The experiences of introducing the changes are in
general positive, which indicates that it in this case was correct to prioritize
modularization over the avoidance of code duplication. If the same change is
made in another project, conclusions from this study may be relevant if the
project is similar in e.g. size and the type of code (e.g. with respect to how
complicated algorithms etc. it involves).

One conclusion that can be drawn concerns the level of abstraction of the
metrics. Even if this is only one study it seems like it is reasonable to study the
metric on a high level of abstraction, since the focus is on the whole project and
not on a specific part when this change is made.

Acknowledgement

This work was funded by Vinnova in the ITEA2 project 12018 SCALARE.



References

1. Bergman, B., Klevsjö, B.: Quality, from Customer Needs to Customer Satisfaction.
third edn. Studentlitteratur (2010)

2. Fenton, N., Pfleeger, S.L.: Software Metrics, a Rigorous and Practical Approach.
second edn. PWS Publishing Company (1997)

3. Betz, S., Wohlin, C.: Alignment of business, architecture, process, and organisation
in a software development context. In: Proceedings of the International Symposium
on Empirical Software Engineering and Measurement (ESEM). (2012) 239–242

4. Martin, R.C.: Agile Software Development Principles, Patterns, and Practices.
second edn. Prentice-Hall (2003)

5. Chikofsky, E., Cross, J.H., I.: Reverse engineering and design recovery: a taxonomy.
IEEE Software 7(1) (Jan 1990) 13–17

6. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Transactions on
Software Engineering 30(2) (2004) 126–139

7. Seriai, A., Bastide, G., Oussalah, M.: Transformation of centralized software com-
ponents into distributed ones by code refactoring. In: 6th Int. Conf. on Distributed
Applications and Interoperable Systems. (2006) 332 – 346

8. Eloff, J.: Software restructuring: Implementing a code abstraction transformation.
In: Proceedings of the 2002 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists on Enablement
Through Technology. SAICSIT ’02, Republic of South Africa (2002) 83–92

9. Arnold, R.: Software restructuring. IEEE Software 77(4) (Apr 1989) 607–617
10. Ivkovic, I., Kontogiannis, K.: A framework for software architecture refactoring

using model transformations and semantic annotations. In: 10th European Conf.
on Software Maintenance and Reengineering (CSMR). (March 2006)

11. Rizvi, S., Khanam, Z.: A methodology for refactoring legacy code. In: International
Conference on Electronics Computer Technology (ICECT 2011). (2011) 198 – 200

12. Aversano, L., Molfetta, M., Tortorella, M.: Evaluating architecture stability of
software projects. In: Working Conf. on Reverse Eng. (2013) 417 – 424

13. Tonu, S.A., Ashkan, A., Tahvildari, L.: Evaluating architectural stability using a
metric-based approach. In: Proceedings of the European Conference on Software
Maintenance and Reengineering, (CSMR), Bari, Italy (2006) 261 – 270

14. Bahsoon, R., Emmerich, W.: Evaluating architectural stability with real op-
tions theory. In: IEEE International Conference on Software Maintenance, ICSM,
Chicago, IL, United states (2004) 443 – 447

15. Figueiredo, E., Cacho, N., Garcia, A., Ferrari, F., Khan, S., Sant’Anna, C., Mon-
teiro, M., Soares, S., Filho, F.C., Kulesza, U., Dantas, F.: Evolving software prod-
uct lines with aspects: An empirical study on design stability. In: Int. Conference
on Software Engineering, Leipzig, Germany (2008) 261 – 270

16. Martin, R.C.: OO design quality metrics. Technical report, Object Mentor (1994)
17. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software

Engineering - Guidelines and Examples. Wiley (2012)
18. Robson, C.: Real World Research. second edn. Blackwell (2002)


