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Nuclear technology and the use of radiation sources have been extensively adopted in the modern world. Despite
that, a number of radiological accidents, significantly affecting population and the environment, has happened. Few
of the most known are accidents in Chernobyl and Fukushima nuclear power plants. As a result, significant areas
are still contaminated with some residential areas evacuated. To estimate the possibility to return to an affected
area, the spatial distribution of deposition density of the radionuclides within the area has to be evaluated using
mobile gamma spectrometry. In radiological emergencies involving lost radioactive sources, mobile gamma
spectrometry equipment is used to survey the area where the source is suspected to be, trying to localize and
identify the radioactive source. For both: radionuclide spatial distribution estimation and localization of a source
problems, the most prominent methods of data analysis were established decades ago and are robust and easy to
utilise. Despite that, the usual methods, like interpolation or setting an alarm threshold level, do not use all of the
available data in the measurement time-series to produce an estimation of the situation.

Using Bayesian statistics it is possible to combine the prior knowledge about the situation with the data, to obtain
predictions about the situation. Thus, the aim of this thesis was to investigate the feasibility of a Bayesian-based
approach for mobile gamma spectrometry applications in radiological emergencies. A Bayesian algorithm was
developed for analysing measurement time-series to extract the physical location and source strength in an orphan
source search and to map radionuclide deposition in an area of interest. It was found that the Bayesian methods
could be successfully applied to obtain the predicted position and activity of the source or the spatial deposition of
the radionuclide within an area. It was also found that the accuracy of the Bayesian estimations is heavily
dependent on the quality and quantity of the data, the more and the better quality data — the better the
assessments. A comparison of the most prominent method for an orphan source detection using alarm threshold
levels with the Bayesian method, in terms of detection probability of orphan sources using simulated data, has
shown that the Bayesian algorithm can potentially detect the radioactive sources more reliably than the usual alarm
threshold method due to the inclusion of all of the data in the measurement time-series.

The overall conclusion of the thesis is that Bayesian methods can be successfully applied to mobile spectrometry
data. The mapping and positioning of gamma emitting radionuclides can be done more precisely and provide more
information about the radiation in the environment during radiological accident scenarios. Despite the shown
potential of Bayesian methods in mobile gamma spectrometry within this thesis, further investigations are needed to
validate the findings discussed.
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Abstract

Nuclear technology and the use of radiation sources have been extensively
adopted in the modern world. Despite that, a number of radiological accidents,
significantly affecting population and the environment, has happened. Few of the
most known are accidents in Chernobyl and Fukushima nuclear power plants. As a
result, significant areas are still contaminated with some residential areas
evacuated. To estimate the possibility to return to an affected area, the spatial
distribution of deposition density of the radionuclides within the area has to be
evaluated using mobile gamma spectrometry. In radiological emergencies
involving lost radioactive sources, mobile gamma spectrometry equipment is used
to survey the area where the source is suspected to be, trying to localize and
identify the radioactive source. For both: radionuclide spatial distribution
estimation and source localization problems, the most prominent methods of data
analysis were established decades ago and are robust and easy to utilise. Despite
that, the usual methods, like interpolation or using an alarm threshold level, do not
use all of the available data in the measurement time-series to produce an
estimation of the situation.

Using Bayesian statistics it is possible to combine the prior knowledge about the
situation with the data, to obtain predictions about the situation. Thus, the aim of
this thesis was to investigate the feasibility of a Bayesian-based approach for
mobile gamma spectrometry applications in radiological emergencies. A Bayesian
algorithm was developed for analysing measurement time-series to extract the
physical location and source strength in an orphan source search and to map
radionuclide deposition in an area of interest. It was found that the Bayesian
methods could be successfully applied to obtain the predicted position and activity
of the source or the spatial deposition of the radionuclide within an area. It was also
found that the accuracy of the Bayesian estimations is heavily dependent on the
quality and quantity of the data, the more and the better quality data — the better the
assessments. A comparison of the most prominent method for an orphan source
detection using alarm threshold levels with the Bayesian method, in terms of
detection probability of orphan sources using simulated data, has shown that the
Bayesian algorithm can potentially detect the radioactive sources more reliably
than the usual alarm threshold method due to the inclusion of all of the data in the
measurement time-series.

The overall conclusion of the thesis is that Bayesian methods can be successfully
applied to mobile spectrometry data. The mapping and positioning of gamma
emitting radionuclides can be done more precisely and provide more information
about the radiation in the environment during radiological accident scenarios.
Despite the shown potential of Bayesian methods in mobile gamma spectrometry
within this thesis, further investigations are needed to validate the findings
discussed.
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Popular Scientific Summary

Radioactivity for many is a frightening word. Even though in 2020 there were
around 500 operational nuclear reactors throughout the world with more being built
and millions of radioactive sources being used in industry, agriculture and
medicine, radioactivity will for many always be associated with the history of
Chernobyl, Fukushima accidents alongside the horrors of Hiroshima and Nagasaki.
In some sense, these fears may be warranted. In the hands of unaware persons,
radioactive sources can become lethal, especially for those unaware of how
ionising radiation can cause biological effects when in near contact with a
radioactive object. Experience has shown that warning signs can be blatantly
ignored, and that peculiar features of highly radioactive sources, such as
phosphorescence of CsCl powder, can be misconceived as amazing curiosity
objects, causing inadvertent exposure of even more persons. These examples are
snapshots of real accidents, where several people died due to excess exposures to
radioactive sources which were lost or abandoned. It is furthermore possible that
such sources might be dispersed on purpose as a malevolent act of perpetrators or
left behind due to plain negligence of people handling the sources, but many times
it is just an unexpected accident.

Furthermore, accidental releases from nuclear facilities can cause widespread
dispersion of radioactive fallout over rural and urban areas, where long-lived
gamma emitting radionuclides will cause excess exposure of humans. In such
situations protecting public and the environment is of greatest priority. Fast and
efficient methods of either localising a lost radioactive source or obtaining a
radioactivity map of a contaminated residential area is therefore key to correctly
evaluate the emergency situation and deal with it an appropriate manner.

Measurement methods to locate and determine the magnitude of the radioactive
sources are well known and have been established decades ago. One of these
methods include using mobile units equipped with gamma radiation sensitive
detectors that are used to search areas to locate lost sources. This technique is
usually referred to as mobile radiometry or mobile spectrometry and has proven to
work relatively fast and reliably, warranting their use in radiological emergency
situations. Despite that, not all information within these mobile measurements is
used to draw the full conclusions about the situation.

Bayesian statistics is an old statistical data analysis toolset which saw a modern
revival due to outstanding increases in computational power of modern computers.
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It allows to combine prior information about the situation with data to obtain
predictions about the situation.

In this thesis, Bayesian statistical data analysis methods were used to develop
and test a set of algorithms. The first one presented here estimates the position and
activity of a lost radioactive source from the measurements made by mobile
detectors, while passing a gamma radiation source at certain distances. The second
algorithm can be used to map a surface deposition of fallout of gamma emitting
radionuclides within a limited area.

The overall conclusion of the thesis is that Bayesian methods can successfully be
applied to mobile spectrometry data, so that positioning and mapping of gamma
emitting radionuclides can be done more precisely and provide more information
about the radiation environment in radiological accident scenarios. Despite that,
further investigations should be performed in the applicability and validity of the
method to fully exploit the potential of the Bayesian methods.
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ROI - Region of Interest
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UAV — Unmanned Aerial Vehicle
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Introduction and objectives

Nuclear technology and use of radiation sources have been extensively adopted
in the modern world, ranging from the energy industry to widely known
applications in medical physics. Despite the rigorous safety rules developed,
radiological accidents still happen and have, in some situations, previously affected
the population significantly, with the most notable examples being accidents in the
Fukushima and Chernobyl nuclear power plants [1], [2]. During a severe accident
in a nuclear power plant of such scale, significant areas can be contaminated by the
fallout of atmospherically dispersed radionuclides. As a result, significant portions
of the population in highly contaminated residential areas might need to be
relocated to avoid the adverse effects of ionising radiation. The spatial distribution
of deposited radionuclides has to be evaluated to possibly decide on remediation
actions to be able to return to the area [3].

The use of radioactive sources is governed by rigorous safety rules to avoid
accidents, theft or intentional malicious use [4]. Nevertheless, sources can be
misplaced or lost out of regulatory control [5]-[7]. One example of such an
accident was in Goiania, Brazil when a "“’Cs teletherapy source was left behind
when a private radiotherapy clinic moved to new premises and did not inform the
regulatory bodies accordingly [6]. During the demolition of the hospital premises,
two persons looking for scrap metal found the source. Not knowing what it was,
they took it home and tried to open it, assuming it could have some scrap value.
Consequently, four persons died, 249 persons were contaminated, 42 buildings
were decontaminated, and five buildings were demolished. It was necessary to
remove 3500 m® of radioactive waste from the premises of the village. In 2001
another similar incident happened in Georgia, when three persons collecting
firewood found two lost and unmarked *’Sr sources, which they used as heaters
throughout the cold winter night. One person died due to the received radiation
dose [5].

Another potential radiological threat is during launch or re-entry into the
atmosphere of space vehicles carrying nuclear reactors or radioisotope
thermoelectric generators, which in some missions are used to produce electric
power in space. On 11-th of July, 1970, as a part of a routine testing program, the
U.S. Air Force launched an Athena missile from Green River, Utah. There were
two *’Co sources of approximately 17.4 GBq each in the nose cone of the missile.
The missile malfunctioned resulting in an impact in Mexico [8]. In 1978, control of
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satellite Kosmos 954 was lost, resulting in erratic changes of the orbit due to
malfunctioning control systems. Later, the satellite re-entered the atmosphere and
was torn into many pieces. The debris was deposited in Canadian territory along a
600 km path. An extensive effort called “Operation Morning Light” was initiated
to recover as much of the radioactive material as possible to avoid harm to the
public [9], [10].

Regardless of the particularities of the radiological accident, the main challenge
is to obtain as much information about the situation as possible in the shortest
amount of time, utilising the least resources possible to provide the necessary
information for the decision-makers managing the radiological accident. Relatively
simple and robust data analysis methods established decades ago using mobile
gamma spectrometry are prevalent in such circumstances where there is a
significant possibility for the lack of time, equipment and staff [11]. Despite the
straightforwardness of the well-established methods, they do not utilise all of the
information present in the obtained measurement time-series of the mobile gamma
spectrometry systems. By using, e.g. Bayesian methods for combining measured
data with the physical laws of radiation transport, it is possible to obtain more
exhaustive information of a radiation situation [12]-[17]. In mobile searching for
lost gamma-ray sources, conventional methods can indicate the presence of a
source, but Bayesian methods will also have the potential to provide information of
its activity and distance from the detection equipment, as shown in this work.

Thus, the specific aim of this thesis was to investigate the feasibility of a
Bayesian-based approach for mobile gamma spectrometry applications in
radiological emergencies, by developing a Bayesian algorithm for analysing
measurement series to extract the physical location and source strength in orphan
source search and mapping of radionuclide deposition in an area of interest.

17



Theory

Bayesian inference

In most of this thesis, Bayesian methods are applied to perform Bayesian
inference and obtain helpful information in orphan source search missions or
reconstruction of the distribution of radionuclide deposition. Bayesian inference is
a statistical method employing the Bayes theorem for combining prior knowledge
with new information, resulting in posterior probability distributions of the
parameters of interest [18]. The basis for the formulation of the Bayesian equation
stems from the formulation of conditional probability. It is well-known that the
conditional probability, p (A |B |, can be expressed as:

_p(ANB)

p(A|B) p(B)

. 1

Because p(ANB)=p(BNA), itis possible to obtain an expression:

_p(BIA)p(A)
P(A|B)— p(B) .

This equation is called the Bayesian equation and is the cornerstone of the
Bayesian inference utilised in papers I-III and V presented in this thesis. Because it
may be difficult to calculate, p(B], in practice, and that, p(ﬁB), only functions as a
normalising factor, the posterior distribution p(A|B) is usually evaluated using
expression:

p(A|B)ep(BJA)p(A), 3

where p(A) is the prior and p(B|A) is the likelihood. The sign oc in the
Eq. 3, denotes proportionality up to a normalising constant.

Thus, to perform the Bayesian inference, a Bayesian model must be constructed,
comprising of two constituents: a prior and a likelihood. Before performing the

18



measurements, the available information constitutes the prior, describing the
knowledge about the parameters of interest by assigning them selected probability
distributions. The likelihood describes how well the data is supported by the
chosen model and selected values of parameters of interest. An example of a
Bayesian calculation for an arbitrary parameter of interest is displayed in Fig. 1.

Bayesian calculation example

o]
—— Prior
---- Likelihood

o< | - Posterior

2o

':: -~

"g 2R

£ I

£ \

=]

-

I I I I
0.0 0.2 0.4 0.6 0.8 1.0
Values of an arbitrary parameter of interest

Fig. 1. An example of a Bayesian calculation. A prior distribution is displayed as the black curve, the likelihood is
represented by the red dashed curve and the product of those two distributions, denoted the posterior distribution, is
given by the green dot-dashed curve. The posterior can be updated again using new knowledge.

Further in this work, after introducing the physics of gamma-ray transport and
interaction in matter required to formulate the Bayesian models, two specific
Bayesian models will be built for two different purposes. One that localises and
estimates the activity of gamma-ray point source from mobile gamma spectrometry
data collected along a road and another that reconstructs the spatial distribution of
radionuclide distribution of an area of interest on the ground from aerial gamma

spectrometry data.
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Performing Bayesian inference on position and activity
of an unshielded gamma-ray point source

Count-rate in a radiation detector

Let us consider an unshielded, gamma-ray point source of activity A positioned
at a distance d from a road (Fig. 2). The primary photon fluence rate (expressed in
units of s'm™) at any position along the road with the distance r to the radioactive
source (Fig. 2) during an acquisition time interval can be expressed as:

An e "'
: _ y
(p( r ) - 2 ) 4
47r
Source position relative to
the trajectory of the detector
2
E
ja=]
g
8
-

X coordinate

Fig. 2. An illustration of the position of the source (black dot) relative to the trajectory of the detector (black line). The
distance between the source and the trajectory of the detector d is displayed by a dotted arrow. The source-detector
distance r for a chosen point (black circle) along the trajectory of the detector is marked by a thick red line.

where n, is the branching ratio for the particular photon energy, E,, of the
radionuclide in the source, denoting the number of photons of energy £, emitted
per decay, i is the linear photon attenuation coefficient in air for photon energy
E,. It has to be noted that the linear photon attenuation coefficient u.; is calculated
from the mass attenuation coefficient p.irmss and the density of the attenuating
material (in this case air) pair, yielding ftair —ttairmass'Paic [19].

The counting efficiency of the detector has to be determined to convert between
measured detector count-rate N and photon fluence rate ¢. The counting efficiency

20



depends on i) the geometric efficiency &qom, Which is the ratio between the total
number of emitted photons to the number of photons arriving at the detector, and
i) the intrinsic efficiency &, Wwhich is the ratio between the number of photons
arriving at the detector and the number of photons detected in the detector:

E=¢ 5

geom

gintr °

The geometric efficiency of the detector depends on the distance between the
radioactive source and the detector. The farther the source is from the detector, the
smaller the solid angle subtended by the detector from the perspective of the
radioactive source, and hence the smaller the geometric efficiency leading to a
lower number of photons impinging at the detector. Because the typical
source-detector distances, r, in orphan source search scenarios are much larger than
the dimensions of the active medium of the detectors, the incoming photons can be
regarded as parallel.

For an ideal detector the intrinsic efficiency does not depend on the geometrical
configuration, thus utilising parallel photon approximation counting efficiency of a
radiation detector, ¢, can instead be expressed as a ratio between the count-rate in
the detector, N, and the fluence rate of photons at the detector, ¢. The counting
efficiency of a detector can, expressed in this way, be regarded as a virtual
“effective detector area”:

where N (E y) is the count-rate in a spectral energy window (or Region-of-Interest,
ROI) centred around energy FE,, and (p(E y)is the fluence rate at the detector of

photons of energy E,. Then, if the detector is stationary relative to the unshielded
gamma-ray point source, emitting a number An, photons of energy £, isotropically,
the expected count-rate value, N, will be constant and proportional to the
counting efficiency of the detector ¢ throughout the measurement:

Anys(Ey) ot Bl

N1 )= 471

source

Considering a stationary measurement at a distance 7 from the radioactive
source, the average value of the count-rate due to background radiation will be
constant. Thus, the total number of counts in the detector N, can be calculated as
a linear combination of the average count-rate due to the presence of the source
N> and the average background count-rate in the spectral window of the
primary photons, c:
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Nsum: Nsource+c ° 8
The complete equation, describing the count-rate in a detector for a stationary
measurement in an environment with a constant background radiation can then be
written as:

71Llﬂll'r
An e
r,E )=—+c. 9
Y 41’

N

sum (

Peak in the count-rate function

In a situation, where a detector moves in a straight line at a constant velocity v
past a radioactive source positioned at a distance d from the detector’s trajectory
(Fig. 2), the detector’s count-rate will change while passing the source. Starting at a
distance r very far away from the radioactive source, the * term and the
exponential e “*" terms in the count-rate function (Eq.9) will yield
infinitesimally small count-rate values regardless of the source activity. While the
distance between the detector and the source » is decreasing, the count-rate will
increase until the shortest source-detector distance rni, is reached, which is equal to
the distance from the source to the trajectory of the detector rmn=d. At this point,
the count-rate will be the highest, as illustrated in Fig. 3. Continuing along the
straight trajectory past the radioactive source will increase the source-detector

distance » and decrease the count-rate, N , in the detector. The varying count-

rate while passing a radioactive source will form a visible peak as illustrated in
Fig. 3, provided that the number of photons emitted by the source is sufficient and
it is close enough to the mobile detector pathway. In essence, such a count-rate
function displays the average count-rate values for many one-second stationary
measurements with infinitesimally small distances between the measurement
points. A change in the number of photons emitted by the source An,, will change
the height of the peak in the count-rate function. A change in the position of the
source, resulting in a different distance from the source to the trajectory of the
detector, d, will alter both the width and height of the peak.
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Peak in the count-rate function

Count-rate (1/s)

e ———
|
|
- S

Coordinate perpendicular
to the trajectory

Coordinate along the trajectory

Fig. 3. An illustration of the arising peak in the count-rate function (top) due to changing source-detector distance r
while passing a source (bottom). The source is marked with a black dot, and the trajectory of the detector — red dashed
line (bottom). Some values in the count-rate function graph are marked with black circles. The corresponding positions
at which these values were evaluated are marked on the trajectory in the same way, and connected with vertical
dashed lines across the count-rate (top) and geographical coordinate (bottom) graph boundary. Distance to one of the
points is marked r;, and the adjacent one — ri.1. Passing the minimal source-detector distance rwin, which is equal to the
distance from the source to the trajectory of the detector d, yields the highest count-rate.

In most cases, during orphan source search missions the radiation detection
system is configured to provide counts integrated over a specific acquisition time
[20]-[23]. During that acquisition time interval, the detector and source can be
varyingly aligned. Therefore, the maximum count-rate value can occur anywhere
within an acquisition interval. Fig. 4 illustrates two extremes of such relative
alignment with the maximum count-rate function in the centre and at the edge of
the interval.
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Relative alignment of the acquisition
interval and the count-rate function
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Fig. 4. Relative alignment of the acquisition time slots to the count-rate function. Borders between adjacent acquisition
time slots is marked by vertical lines. Theoretically, the graph on the left denotes the best alignment resulting in the
highest count-rate in a single acquisition time slot. The graph on the right illustrates the worst alignment when the
portion of the peak in the measurement time-series with the highest number of counts is divided between two adjacent
measurement time-slots.

Different relative alignments will thus result in different maximum attainable
counts within an acquisition time interval during a passage of the radioactive
source. In the best-alignment situation, the maximum attainable counts in an
acquisition time interval at the shortest source-detector distance will be the highest.
In the worst alignment situation, the maximum attainable counts will be the lowest.
However, the total number of counts for the entire passage of the source will be the
same for best and worst alignments. The misalignment illustrated in Fig. 4 will
depend on the distance to the source and the length of the acquisition time interval.

Angular variations in counting efficiency

The detector’s medium in a gamma spectrometer is always surrounded by
material that, to some extent, shields and scatters photons. It can be a cooling
dewar for an HPGe detector, photomultiplier tube with electronics for a Nal(Tl)
detector, or even some vehicle's structural components, inside which the detector
system is mounted. Probably there will be different amounts of shielding between
the source and the detector’s medium for different angles of incidence as a detector
is moving past a radioactive source. Thus, the counting efficiency of the detector
will depend on the photon angle of incidence. These angular efficiency variations
can be expressed as a relative detector efficiency, &., which is a dimensionless
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number, that multiplied by the counting efficiency for the reference direction, &,
gives the counting efficiency for any other selected incident direction 6:

g(ny e)zgrel(Ey: 6>gref(Ey)' 10

The expression for the incident direction & of the photon fluence must be
formulated to obtain the angular efficiency correction for the analytical expression
of the count-rate function. It is possible to do so using a difference between
two-parameter arctangent functions calculated for the vehicle velocity, v, and
detector-to-source, r, vectors. The velocity vector is evaluated from the
geographical coordinates in two spatial dimensions retrieved from a global
navigation satellite system (GNSS) receiver at a set rate while the detector was
moving past the source:

X=X,Xy5 000 X 5000y X, 11
where x; is the i-th measured coordinate in two dimensions (x'is the x geographical
coordinate and x" is the y geographical coordinate). The velocity vector v; of the
i-th measurement can then be expressed as a difference between the current (i) and
previous (i-1) geographical coordinates in two spatial dimensions:

XX

r rr

X i

12

X

Then, for an arbitrary position of the source p, we can estimate a detector-to-source
vector r:

) 13

where p'is the first and p” is the second spatial coordinate of the source position p.
It is then possible to calculate the angle of incidence for any combination of
measurement coordinate x; and chosen source position p by subtracting the values
yielded by a two-parameter arctangent function for the detector-to-source vector r;
from a two-parameter arctangent function for the velocity vector v; for the
measurement i:

6,(v;,r;)=atan2(v,"",v,")—atan2(r,'",r,'), 14

where the v' and ' denote the first spatial coordinate and v and »" — the second
spatial coordinate of the respective vectors. Here, the relative angle of incidence 6
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can obtain values 8 €[0;360) degrees. Angle of 0 degrees is the driving direction
of the vehicle. Because this angle of incidence, 6, in principle only depends on the
position of the source p, the current measurement position x; and the previous
measurement position x;;, it is possible to redefine the previous equation by
denoting the difference in two-parameter arctangent functions as a function fuge:

T T
X;—p
r rr

X ;=P

T T
X i—X i
r r

b
X imX i

1

fangle,i(P:Xi:xi—l):H(Vi:ri):8 15

Then, using this function, count-rate in the detector (Eq. 9) with angular variations
in the counting efficiency can be expressed for an angle of incidence resulting from
any two subsequent measurement coordinates, X;, X;_;€X , and source position p:

_ AN & (E)) 6 (E o angel P, XX, ,))e el
4 7lx,— plI

Nsum,i(p’xi’xifl!Ey) +c. 16

Returning to the discussions about the shape of the peak in the count-rate
function from the previous section, it is now evident how the geometrical
configuration of the sensitive medium of the detector, the way the radiation
detector is mounted, the additional shielding provided by the vehicle surrounding
the detector will alter the shape of the peak in the count-rate function. As additional
shielding in any direction will only decrease the number of detected photons, it is
desirable to mount the detector in a way which minimises this shielding effect. A
coaxial HPGe detector can, for example, be installed in the vehicle with the crystal
facing upwards and the dewar downwards.

Point-kernel approximation of mobile measurements

When a gamma spectrometer is moving past an unshielded gamma-ray point
source in a straight trajectory, the number of counts acquired during an acquisition
time interval, f.q, Will depend on the length of the interval, the detector's speed, the
angle of incidence and the distance between the source and the trajectory of the
detector. The longer the acquisition time interval, the lower the speed and the
closer the distance between the source and the detector, the more counts are
acquired. An illustration of acquisition time interval, f.q, during a passage of a
source is displayed in Fig. 5, with the green area representing the acquired number
of counts.
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Count-rate integration during acquisition
time interval

t + tacq

Count-rate (1/s)

Distance along the trajectory (m)

Fig. 5. An illustration of the integration of the count-rate function during an acquisition time interval. The vertical dashed
lines mark the beginning and the end of the interval. The shaded green area under the count-rate function and
between the vertical dashed lines is the integrated area of the count-rate function.

These counts represent an average of the count-rate function during the
acquisition time interval. For simplicity, assuming an ideal detector with no
angular variations in counting efficiency, the count-rate during an acquisition time
interval would become:

. i, An, ge
N(t):_l.[ :T(t)zdt 17

In a typical orphan source search scenario using car-borne gamma spectrometry,
the usual speed of the vehicle would be about 50 km/h combined with acquisition
time intervals of 1 s [11], [24], [25]. In such circumstances, a slight difference in
the expected number of counts during an acquisition interval could occur when the
detector is moving compared to a stationary, single measurement in the middle of
the interval. The count-rate of the stationary measurement can be calculated using
point-kernel approximation as the total number of counts in the detector, N ,

during the same acquisition time. A comparison of simulated measurement time-
series obtained while passing a source positioned at 10 m from the trajectory of the
detector at a speed of 50 km/h using 1 s acquisition time intervals for the point-
kernel approximation and the integrated estimates of the count-rate function are
illustrated in Fig. 6.
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Integrated and point estimate comparison

Vehicle speed 50 km/h (13.9 m/s), distance to source 10 m
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Fig. 6. Comparison of point vs integrated estimates of measurement values of mobile gamma spectrometry data when
the source is positioned at 10 m distance from the trajectory of the detector. The red line denotes the count-rate
function in the detector; black circles mark the point estimates, and green squares mark integrated estimates. The
relative difference of the areas under the point and integrated estimate peaks is 2.79 %. Figure from paper lIl.

The relative difference of the areas under the point and integrated count-rate
estimates, from the example in Fig. 6, yields a value of 2.79 %. Point-by-point
differences of the count-rate function estimates can be considerably more
significant, reaching 15 %. Examples of point-by-point differences are shown in
Fig. 7, for the “best” and “worst” relative alignments of the measurement
acquisition intervals and the count-rate function for source distances of 10, 20 and
30 m. As discussed in the section “Peak in the count-rate function”, the best
alignment occurs when the highest value in the count-rate function coincides with
the middle of the measurement time slot, yielding the maximum possible counts in
the detector (see Fig. 4). On the other hand, the worst alignment occurs when the
highest value of the count-rate function coincides with an edge between two
measurement time slots. As can be seen in Fig. 7 this has a significant effect on the
point-by-point differences. The greatest deviations being seen for the closest
(10 m) sources in the best alignment situation. At 20 m, the maximum absolute
point-by-point difference for the best alignment situation has decreased by about
three times, from 15 % to less than 5 %, while the reduction for the worst
alignment was more minor (from 7 % to 3 %). The discrepancy between the
point-by-point differences for varying relative alignments arises from the distance
difference between the source and the detector at the start and the end of the
acquisition time interval. Because more time during the acquisition time interval in
the best alignment situation is spent closer to the source than in the worst
alignment situation, a more significant difference in the point-by-point variation
occurs.

As the differences are significant only for short distances (smaller than the
distance the detector has travelled during the acquisition time interval at a speed of
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14m/s or 50 km/h past the source), point-kernel approximation was used
throughout papers I-1II for estimating count-rate functions in the detectors. More
detailed investigation regarding the effects of approximation on Bayesian
estimations is performed in paper II1.

Point-by-point differences between point and integrated estimates

of count-rate function
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Fig. 7. Comparison of relative point-by-point differences between integrated and point estimates of the count-rate
function for best and worst relative alignments. Distance of 10 metres to the source is displayed by black dotted line,
20 metres — red dashed line and 30 metres — green solid line, as indicated in the legends. The speed of the vehicle for
this example is 50 km/h. Figure from paper lIl.

Statistics of radioactive source detection

Usually, to estimate the activity of a radionuclide in mobile gamma
spectrometry, registered photons are counted in a full energy peak of the pulse
height distribution. A peak in the pulse height distribution is identified, and then
the shape of the peak is fitted (usually with a Gaussian distribution) to obtain the
net counts in the area of the peak. When searching for lost sources positioned tens
of metres away, the number of counts in the full energy peaks is low due to the
relatively short amount of time spent in the vicinity of the source. There may be too
few counts to enable the gamma spectrometry software to fit the peak with the
Gaussian distribution to obtain the peak area. A more straightforward method is
often used when the number of counts within a specific photon energy interval (a
region of interest, ROI) is small. The total number of counts within the ROI is
summed and compared with the background counts in the same ROI. If the number
of counts in the ROI is significantly higher than the background counts, ¢ in Eq 16,
then a photon source is likely to be in the vicinity of the radiation detection system.
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Such a calculation method is fast and reliable and works even if there is no full
energy peak in the pulse height distribution [26].

As radioactive decay is a Poisson distributed process, the number of counts
detected in a ROI of the pulse height distribution in a specific time interval will
follow a Poisson distribution. Thus, the probability for detecting & number of
counts when the average number of counts in the detector is denoted by A can be
calculated using the probability mass function of the Poisson distribution:

B _Ake—/l
P(X=k)= o 18

The variance, o°, of the Poisson distribution is the same as the mean A, therefore
the standard deviation is the square root of variance ¢ = A*. An illustration of the
estimated probabilities of the number of counts in the detector during the selected
acquisition time interval for three mean count-rates in the detector (10,20, and 30)

is given in Fig. 8.
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Fig. 8. An illustration visualising the probabilities to register a set number of counts for a given mean number of counts
in the detector, denoted by several values of the A of the Poisson function — 10 (black), 20 (red) and 30 (green).

Because the number of counts in the detector due to the natural background
radiation is also Poisson distributed, it is possible to leverage this knowledge and
obtain an indication of whether there may be an additional radioactive source
nearby. A prevalent method to achieve this is to set a so-called alarm threshold
level, visualised in Fig. 9 [20]. This level can be set in many ways, one of which is
based on a pre-set number of expected false-positives in a chosen amount of time.
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The probability of obtaining not more than k counts in the detector with the mean
count-rate denoted by A can be evaluated using the cumulative distribution
function, denoted CDF"

CDF (k, A)= ‘AZ A, 19

Alarm threshold level and false
positives in count-rate distribution
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Fig. 9. lllustration of detected false positives due to a mean background count of 10 in the detector and alarm threshold
value of 17, displayed by a vertical dotted line. The false positives are to the right of the alarm threshold value.

Thus, the probability of obtaining number of counts greater than &, with A mean
counts in the detector can be written:

P, ek, A)=1—CDF (k,A). 20

If the alarm level is set low, the probability of detecting a source will increase, but
so will also the number of false positives. If, on the other hand, a higher alarm level
value is chosen to produce few false positives, the likelihood of detecting a source
is reduced. The alarm level setting is thus a compromise between the likelihood of
detecting a source and the number of tolerated false positives. For example, by
finding such k value that Pyexe=3600", an alarm threshold level for one false alarm
per hour is set. Additionally, if there is a varying radiation background, the actual
number of false positives within a time interval will change. This might further
complicate the choice of a suitable alarm threshold level and affect the results of
the orphan source search.
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In a scenario, where the source is located close enough to the path of the
detector, and the number of photons emitted by the source is adequately elevated
above the variation of the background count-rate, ¢, the count-rate distribution
should shift above the alarm threshold level during the passage of the source,
indicating a possible presence of a photon source. This is illustrated in Fig. 10.
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Fig. 10. lllustration of a situation, where the distribution of count-rates shift above the alarm threshold while passing the
source.

Bayesian model for estimation of source position and activity

When searching for an orphan source, the parameters of interest are the position,
P, and the activity, 4, of the source. In this case, the result of the Bayesian
inference would be the posterior probability distributions of the position and the
activity of the source. Let 7(P,4) be the prior distribution for those parameters
representing the prior knowledge of position and activity in a distributional form.
The information to formulate the priors for these parameters (P and A) cannot be
obtained from radiation theory, so instead, the information stems from the specific
situation. This information could subsequently be the probability of the source
being in the area, the number of possible sources, what kind of radiation source it is
and where it could be situated. If there is no prior information regarding the
position of the radioactive source, an assumption can be made that every position
in the two-dimensional area of interest, S, is equally likely. Thus, a uniform
distribution over the area of interest S can be chosen, expressing a lack of
information regarding the position of the source, P. Similarly, if there is limited
information regarding the activity of the source A, a uniform prior for the activity
could also be used:
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A~Uniform(A A 21

min?* “max | *
However, such a prior sets bounds on the source activity Amin and Amax, which might
be undesirable. Additionally, if there is no knowledge about the activity of the
source and every value of the activity is possible, uniform distribution is not a good
choice because it cannot span through the interval [0,00) and be integrated to 1, for
it to be a proper distribution. Substituting the prior activity of the source to a
Gamma distribution, it is possible to overcome the limitations mentioned above.
By choosing appropriate values of shape x and scale 6, a density of Gamma
distribution at a point a can be obtained using the expression:

1 Kk—1 -4
Gammal(a,x,0)=————a e Y, 22
( ) I'(x)6"
where I'(x) is the value of gamma function for the shape parameter value x. The
domain of the gamma function is Gamma(a,K,H)E[O,oo]. Thus, the prior
distribution for activity of the source can be written:

A~Gamma |, 6. 23

Because the shape x and scale 6 parameters greatly influence the shape of the
distribution, they have to be chosen to have little effect on the posterior distribution
— i.e. the posterior is dominated by the likelihood — for the Bayesian model to
function correctly. Prior distributions set up in such a way are called “vague priors”
and are commonly used in Bayesian statistics when little or no information is
known about the parameters of interest [18]. A robustness check must be
performed with different sets of parameters to verify that this is the case.

The second component left to complete the Bayesian model is the likelihood,
which depicts how well the selected model is supported by the data and the values
of parameters of interest in the context of orphan source search. While setting the
mathematical model for the likelihood, it is possible to utilise gamma radiation
detection knowledge, which is not usually included in the traditional methods of
orphan source search. After a detector has passed a radioactive source of activity 4,
positioned at position P close enough to a number » of measurement coordinates
X=X,,X,,...,X, , there will be a visible peak in the measurement time-series of
the detector Z=2,,2,,...,z, . If all of the measurement positions X, the source
activity 4 and position P are known, then by utilising Eq. 16 it is possible to
estimate the likelihood distribution of the data 7(Z|X,A ,P), given the selected
values of the parameters of interest for the number m of possible detectors:
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where m 1s the number of detectors used and 7 is the number of measurements.

One can then combine the information of the likelihood (the observations) and the
prior (initial knowledge about the parameters) using Bayes formula (Eq. 3):

7(A,P|Z,X)cn(Z|X,A,P)x(A,P), 25

The distribution 7T (A ,P|Z,X ) is known as the posterior distribution. In essence,
Bayesian inference utilises the likelihood to produce probability values of the
parameters of interest, according to the selected model and input data, and then
“filters” the resulting probability distribution using the prior.

Reconstructing the deposited activity on the ground from
air-borne gamma spectrometry data

Count-rate in the detector due to fresh fallout

Considering an unshielded gamma-ray point source positioned at some distance
r from the detector. The fluence rate at the detector, ¢, can be estimated using
Eq. 4. Expressing the distance between the source and the detector » in three spatial
dimensions, with z denoting the altitude coordinate, yields:

r:\/<X0_x)2+(YO_y)2+<Zo_z)2’ 26

where coordinates x, y, and z denote the position of the photon source and xo, yo,
and z, — the position of the detector. It is possible to estimate the fluence at the
detector due to fresh fallout by integrating over the coordinates x and y, assuming a
contaminated surface with a uniform spatial activity distribution of a [Bg/m’]
spanning along the coordinates x and y. Denoting the number of photon emission
from an area adxdy within the surface, it can be written:
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In reality, atmospherically dispersed radioactive material may be more or less
uniformly deposited on the ground depending on weather conditions and the type
of ground surface [27], [28].

Discrete approximation of the area of interest

Utilising point-kernel integration (PKI) it is possible to approximate an area S,
which is a part of the infinite, flat surface area with uniform contamination, with a
number n of discrete gamma-ray point sources. Then, the fluence at the detector
positioned above the area of interest S can be written:

Ui T,

Hairl i

, n o o;qn,e
(pPKI:Zizl 4:”2 ) 28

where 7 is the number of point sources, a; is the activity per unit area of the i-th
point source, ¢ is the area the point source is representing, and »; — distance to the
i-th point source. In PKI approximation using square grid, the area represented by
the source ¢ is proportional (q=l§) to the distance between the points /. An
illustration of such approximation of a surface area using 100 points with distance
I, between the points is displayed in Fig. 11. By setting an arbitrary area spanning
XE[X s Xae)s YEL Yiins Ymax) » Makes it possible to calculate the fluence at the
detector positioned within the area at the altitude %, while changing the distance /.
If the size of the area is significantly larger than the mean free path of the photons
in the air, the area can then be approximated as an infinite surface. Then, by
calculating the fluence at the detector as a function of distance parameter /,, it is
possible to obtain the smallest distance /, for which the fluence from the infinite
surface calculated using PKI method will not differ more than minimal from the
fluence evaluated using an integration of infinitesimally small volumetric sources.
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Surface approximation using PKI
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Fig. 11. An illustration of a surface approximated with discrete point sources using PKI method. The discrete sources
with distance /; between them are marked with black circles. The measurement position is marked with a red triangle.
Path of primary photons are shown using grey dotted lines to display the effect of all of the sources.

This is visualised in Fig. 12 for altitudes 4=1, 5, 10, 15, 30, 50 and 100 m. It can be
seen that the PKI approximation is valid even for distances /, slightly larger than
the altitude of the detector 4.
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Fig. 12. Fluence variations in a detector above an infinite, plane surface source approximated using PKI for different
distances between the grid points /; and altitudes above the surface h. The diverging lines for a particular height
denotes a point at which the calculated fluence will start to vary depending on the relative alignment of the detector and
point sources. If a point source happens to be directly below the detector, an increase in the fluence is observed
displayed with the upward tending curves. If the detector is above a point between the sources, a decrease in the
fluence can be observed. The distance /;, at which these lines diverge denotes the biggest /; value which can be used
in PKI approximation of a contaminated surface with very little deviations for a given altitude of the detector.
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If the survey is being performed with an airborne detector, most probably the
lowest practical altitude s of the detector will reach tens of metres to avoid
manufactured structures, ground features or foliage. In such circumstances setting
the distance /, to a much shorter length than the minimum altitude of the detector
during the survey will not increase the accuracy or the spatial resolution of the
measurements.

Detector response function when reconstructing the deposited surface activity

Let us now consider an infinite surface with uneven distribution of a
radionuclide on the surface. We are interested in the activity deposited per unit area
in a selected area of interest S. Using the PKI it is possible to approximate the area
of interest S using a number » of equally distributed point sources of activity per
unit area o, =, ,,..., o, , being a discrete representation of a continuous

distribution of the deposition density, aq, (Bq/m2). In such a situation, the fluence
at the detector at some position above the surface S with distance 7; to the i-th
source point can be obtained using Eq. 28. The fluence can then be expanded for a
number m of measurement points, which for the j-th measurement can be written:

Wi T j

. N\ oginyqe
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When performing measurements using an unmanned aerial vehicle (UAV) or
any other airborne gamma spectrometry (AGS) vehicle, successive measurements
are made while the spectrometry system is moving around the survey area, usually
in a predetermined path reminiscent of a grid [29]-[32]. The outer bounds of the
grid usually coincide with the edges of the area of interest, and often the measured
count-rate values are interpolated to obtain a “radiation map” of the area of interest,
depicting count-rate at the altitude of the detector [28], [33], [34]. Thus, it can be
assumed that the extent of the area of interest is known when the measurement
itinerary throughout the area is planned, with the outer edges of the measurement
grid delineating the area of interest. An example of such trajectory is shown in
Fig. 13. Then, by populating the area of interest with point sources arranged so that
the distance between the point sources is not greater than the altitude of the
detector, it is possible to obtain the positions of the point sources in relation to the
measurement points. The distances r;; between each point source i and each
measurement point j can be calculated. Then, for the point sources inside the area
of interest a detector response function Riwsig¢e for a given photon energy E, can be
quantified, using the counting efficiency of the detector; that will express the
influence of each point source on the detector count-rate:
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which is a dimensionless function. The response function can also be expressed in
a matrix form for number # of point sources and number m of measurements:

Rl,l R1,2 Rl,n
Rinside = R2,1 R2’2 ' RZ’ s 31
Rm, 1 Rm,Z Rm,n

where each element of the matrix represents the count-rate in j-th measurement
point due to the i-th point source per decay.

Example of a measurement grid
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Fig. 13. lllustration of a square measurement grid, with arrows displaying the path through the area. Point sources are
marked by red x symbols, and the measurement points are denoted by black circles.

Then, by linearly multiplying the inside response matrix by an activity vector a,
denoting the activity per unit area of each point source, the count-rate in the
detector at each position j can be evaluated:

38



\ .. o
Nz = R2,1 Rz,z Rz,n 0_‘2 . 32
Nm Rm,l Rm,Z m,n Oln
Or more simply:
N inside :Rinside «. 33

Having the detector response function available makes it very easy to evaluate the
count-rate in the detector at the measurement points. Although this is trivial for the
geometry considered in this section, in practice it may be difficult to evaluate the
response function for an area due to e.g. uneven terrain, shrubs, trees or man-made
structures. It might be that it is sufficient to use geographical coordinates obtained
from the GNSS receiver to obtain a rough approximation of the response function
for cases where great accuracy of the predicted deposition density is not needed. In
situations where spatial accuracy and resolution is required, especially for
non-horizontal surfaces, additional methods to obtain information about the
environment is needed, such as light detection and ranging (LIDAR) [35], [36].
After evaluation of the response function, plotting the individual count-rate values

N in a “heat-map” results in a fallout map for the area. Further in this thesis, the

detector response function discussed previously will be denoted “inside detector
response function”.

It has to be noted, that the detector response function in Eq. 30 describes a
situation when the surface contamination is only inside the area of interest. If the
area of interest is a small part of a greater area, which subsequently has surface
contamination throughout this greater area, the detector response function
represents the situation incorrectly. It is visualised in Fig. 14 — when calculating the
count-rates due to a uniform surface contamination a drop in the count-rate when
approaching the edges, or even more so — in the corners, can be observed.
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Count-rate calculated using
detector response matrix

y coordinate
=
Count-rate s

X coordinate

Fig. 14. An example of count-rate values calculated for a square area of interest using only detector response function.
The count-rate scale is displayed on the right

This happens because per unit angle of photon incidence, the count-rate from the
surfaces right below the detector makes up only a small part of the total count-rate
[37]. This is visualised in Fig. 15, where fluence (proportional to count-rate) is
displayed per vertical angle (angle of 0 degrees points directly downwards), for
altitudes of the detector 4=1, 10, 30, 100 and 200 m [37]. To obtain count-rate
values representing a situation, where the area of interest is only a small part of a
larger area that is contaminated by surface deposition, an additional detector
response matrix for point sources outside the area of interest has to be estimated.

Fluence per vertical angle

— h=1m

—— h=10m
—— h=30m
h=100m
h =200 m

Fluence normalised to area
0.00 0.02 0.04 006 0.08 0.10

T I I T T
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Angle from the vertical (deg)

Fig. 15. Fluence per vertical angle for different altitudes of the detector [37]. Angle of 0 degrees points directly
downwards, angle of 90 degrees — to the horizon, parallel to the surface.
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Detector response for point sources outside the area of interest

To be able to correctly estimate the count-rate due to a surface source inside an
area of interest, which is a part of a larger area with surface contamination, detector
response function for point sources outside of the area of interest must be
evaluated. To evaluate this “outside detector response function”, the source
approximation grid is expanded by several hundred metres, away from the edges of
the area of interest S, as displayed in an example in Fig. 17. Then, the outside
detector response function can be evaluated using similar methodology as
discussed in the previous section “Detector response function when reconstructing
the deposited surface activity”. If there is a number u of such outside point sources,
then applying Eq. 30 for the outside point sources it is possible to obtain the
outside detector response function:

R, R, .. R,
—| R R ... R
Routside_ 2,1 2,2 . 2.u |, 34
Rm,l m,2 Rm,u

The matrix elements of the Rousice describe the count-rate in all of the measurement
points due to all of the point sources outside of the area of interest per decay.

Expansion of point sources
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Fig. 16. Expansion of the point sources towards the outside of the area of interest.

Then, assuming that the surface deposition outside of the surface area is uniform,
the total count-rate in the detector due to a fresh surface fallout can be
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approximated by summing the count-rate due to the sources inside the area of
interest S and the count-rate due to the sources outside the area. Assuming that an
average activity per unit area value & throughout the area of interest represents the
activity per unit area of the outside area, it can then be written:

N._.=R,

total — ~ “inside

ata Routside . 35

Adjustment in the model due to the radionuclide deposition depth

When contaminated areas are surveyed sometime after the initial fallout, a
gradual depth migration of the fallout may have occurred [38]. If the time since the
deposition and the type of material onto which the radionuclides were deposited
can be estimated, then the deposition depth can also be roughly evaluated [37]. To
estimate the fluence at the detector in such circumstances correctly, the path that
the photon has travelled in the material onto which radionuclides had been
deposited has to be evaluated. A simple depth profile model was chosen, consisting
of a radioactive plane covered with an inactive slab of material of thickness dag
(Fig. 17).

Geometrical representation of the deposition model

detector
air
-
A, detector

altitude

dd% inactive material

source

height

Fig. 17. A graphical representation of the deposition model used.

Then, considering a uniform planar surface deposition on the ground covered
with an inactive layer of thickness dq4, having a mass attenuation coefficient for
photons pms and density pma, the fluence at the detector can be estimated using:
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where 74 ;; 1s the distance in air and 7., is the distance in the material the emitted
photon has travelled from the i-th “surface deposition point” to the j-th
measurement point due to the deposition depth dy,. By substituting this fluence
formulation while estimating Riusiee and Rousise Of the UAV borne detector, possible
penetration depths of the deposition of the radionuclides in to the soil or other
surfaces can be taken in to account.

Bayesian model for estimating the surface radionuclide distribution

Suppose we want to obtain the spatial radionuclide distribution on the ground
per unit area a. In that case, the posterior distribution 7 (0{|Z) is then composed of
probability distributions of activity per unit area of each of the surface deposition
elements in the area of interest S, given the measurements Z:

7(az)oca(Z|a) (o). 37

The prior i) describes the information that is available before performing the
measurements in a distributional form. In a radiological emergency, it could be set
according to the expected levels of contamination in that particular emergency
situation. Stemming from the Eq. 35, the likelihood is set as:

p(zla)=]T _, Pois|z|A=R, . a+aR 38

outside | *

Then, the prior and the likelihood are combined using Eq. 37.

A brief introduction to Markov chain Monte-Carlo

Trying to evaluate a posterior distribution either for an orphan source situation
described in section “Bayesian model for estimation of source position and
activity” or for estimation of radionuclide distribution within an area of interest
described in “Bayesian model for estimating the surface radionuclide distribution”
is not straightforward. In both situations the posterior distribution is a complex and
explicit, thus it is not possible to make any direct inferences from it. To obtain
samples representing the posterior target distribution an indirect sampling using
Markov chain Monte-Carlo (MCMC) was used [39]. The MCMC algorithm was
written in a language and environment for statistical computing R [40].
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MCMC is a method generating theoretically independent samples from the
target distribution. Throughout the thesis, a particular variant of the MCMC
methods is utilised, referred to as the Metropolis-Hastings (MH) algorithm [18].
This MH method can be applied to a broad spectrum of problems [41]-[48]. Due to
the universality of the Metropolis-Hastings algorithm, it is relatively slow
compared to other, more specialised variations of the MCMC methods like
Hamiltonian Monte-Carlo [49]. In the basic form, the MH algorithm is as follows:

1. Let f{x) be a function that is proportional to the desired probability
distribution P(x).

2. Choose an arbitrary point x, to be the first sample and choose an arbitrary
probability density g(x|y) that serves as a proposal distribution, suggesting
a candidate for the next sample value x, given the previous sample value y.

For each iteration ¢:

3. Generate a candidate x' for the next sample by picking from the
distribution g(x'lx,).

4. If g is symmetric: i.e g(ylx) = g(x|v), then calculate the acceptance ratio
o = fix"/f(x,). Otherwise, a=f(x") g(xx")/fix)) g(x']x.).

5. Generate a uniform random number u ~ Uniform[0;1]

6. Ifu<a,then accept the proposal by setting x;1 = x'

7. If u> a, then reject the proposed value and set x.1 = x;

This algorithm provides a framework to more efficiently sample multivariate
posterior distributions for multiple parameters of interest. Each additional
parameter of interest adds another dimension in the posterior distribution, from
which then samples have to be correctly drawn.

For each parameter of interest, the sequence of MCMC samples throughout the
selected number of iterations #m. is called an MCMC “chain”. Each individual
chain has to be started with an initial parameter. Then, starting from this initial
parameter the chain will start to move towards an area in the posterior distribution
which has a higher probability, further converging to the point of the highest local
probability. An illustration of an MCMC chain is displayed in Fig. 18.
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Example MCMC chain Posterior distribution

[T =) Q

28 E3

5 | 5

Q : o

ER : EQ

g | g

2.0 ! =%

= ! =

g2 l S

2 ' :

<0 : <"
|

Sy : = ----  With burn-in
[ == Burn-in point —— All samples
I
I I I T T T T T
0 200 400 600 800 1000 0.00 0.15 0.30

Number of MCMC iterations Density

Fig. 18. An example of a trace plot of an MCMC chain (left) with the resulting posterior distribution (right). A
hypothetical burn-in point denoting when the MCMC chain has arrived at the maximum probability point is marked by a
vertical dashed red line. The posterior distribution made up of all the samples in the posterior is marked by a black
curve. The posterior distribution with the burn-in (discarding the first samples not representative of the distribution) is
marked by a red dotted curve.

The number of iterations required for the chain to converge depends on the
variance of the proposal distribution. The smaller the variance, the more iterations
are needed. Increasing the variance of the proposal distribution increases the
convergence speed. If the variance of the proposal distribution is increased too
much, the proposed values might jump over the highest probability point in the
posterior distribution and thus subsequently get rejected. Thus, over-increasing the
variance of the proposal distribution will drastically increase the number of
iterations needed for the chain to converge. This is reflected in acceptance rate AR,
denoting the ratio of the number of accepted proposals N.. to the number of
MCMC iterations Nim:

Nacc
AR= . 39
Nsim

Too low or too high an acceptance rate will lead to an inefficient sampling of the
posterior distribution. For problems with a high number of dimensions (>5), an
acceptance rate of 0.24 is considered the most efficient [39], [50]. Regardless of the
acceptance rate, it will still take a finite number of iterations for the chain to reach
the maximum probability point as illustrated in Fig. 18. Because of this, the first
samples in the posterior are not representative of the posterior distribution and are
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usually discarded. The number of discarded samples is denoted by burn-in [18].
Usually, it is the first few thousands of the samples.

After a sufficient number of iterations, the obtained samples should represent the
target distribution sufficiently well. The number of iterations required depends on
the variance of the proposal distribution, as that will dictate how fast the chain
arrives at the point of highest probability and how efficient will the sampling of the
posterior be. Generally, if the chain becomes stationary as in Fig. 18, it can be said
that the chain has converged. The more samples the chain will obtain after
convergence, the more accurate the representation of the target distribution will be.

Usually, efficient MCMC algorithms are tailored to a specific problem. This
might potentially lead to a poor performance of the MCMC algorithm if the input
data has changed considerably. It is possible to change the dynamics of the MCMC
chain by altering the size of the proposal distribution while the MCMC is running.
Such self-regulating algorithms are called adaptive MCMC algorithms, utilised to
speed up the convergence of the MCMC chains [51], [52].
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Material and methods

Mobile gamma spectrometry vehicle — Papers I-IV

A gamma spectrometry system was set up in a service bed compartment of a
customised Chevrolet Silverado pickup truck, illustrated in Fig. 19. The system
consisted of three ionising radiation detectors: one HPGe-detector with a relative
efficiency of 123%' mounted in a special holder in the centre of the back portion of
the service bed at the height of 1.5 m above the ground, and two 4-1 Nal(TI)
detectors mounted to a suspended rail system attached to the roof of the service bed
compartment on the right side of the truck. The Nal(TI) detectors were mounted
one in front of the other, and will subsequently be referred to as the front Nal(TI)
detector (Nal F) and the rear detector (Nal R). The HPGe-detector was connected
to a DigiDART multichannel analyser (MCA), which was set up with 2048
channels. The Nal(Tl) detectors had DigiBASE MCAs mounted directly to the
photomultiplier tubes inside the detector casing, using 1024 channels. All of the
MCAs and a G-STAR IV GNSS receiver (BU-353S4) were connected to a
computer using the Nugget software [53].

Fig. 19. An image of the open service bed portion of the mobile gamma spectrometry vehicle used throughout the
thesis. The 123% HPGe detector with a cryostat can be seen in the back of the service bed, with the sensitive medium
of the detector pointing to the back of the vehicle. The two blue boxes in the top of the right side of the service bed are
the 41 Nal(TI) detectors. The GNSS receiver is mounted on the roof of the cabin of the car. Figure from paper II.

' Counting efficiency relative to a 76x76mm Nal(TI) crystal at 1.332 MeV
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Measurement data from gamma spectrometers in this vehicle is used in
manuscripts I, III and I'V. The theoretical model describing the angular variations
of counting efficiency of the detectors present in the vehicle alongside their offsets
relative to the GNSS receiver is documented in manuscript II and also described
below.

Measurement of angular variations of detector efficiency

The angular efficiency response of the mobile gamma spectrometry system was
measured on a patch of pavement near the village Loddekopinge in Sweden. A
rectangular coordinate system (18 m X 11 m) was defined (Fig 20). Along the
edges of the defined rectangular coordinate system, 40 points for placing sources
were chosen, with distances between the points of 1.5 m, except for the distance
between the last step along the shorter axis that was 0.5 m. The measurement set-
up resulted in an angular resolution of roughly 10 degrees.

Overview of the callbration site
Calibration coordinate system

Fig. 20. An overview of the positioning of the vehicle inside the defined coordinate system. Figure from paper II.
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The vehicle was positioned in the centre of the patch so that the detectors inside
the service bed of the vehicle were reasonably close to the centre of the coordinate
system. During the measurements, the vehicle was fully operational, with lid and
cabin doors closed and operators present in the cabin. The calibration was
performed for two radionuclides separately — “Co and "“’Cs, using calibration
sources of activity 34.1 = 1.2 and 66.5 + 2.1 MBq respectively. One at a time, the
calibration sources were situated in each measurement position for 2-3 minutes.
Pulse height distributions in the three individual detectors (123% HPGe, 2x4l
Nal(Tl)) were then collected simultaneously. Full energy peak areas in the pulse
height distribution obtained from each detector were evaluated manually. Then,
using the areas of the full energy peaks N in the pulse height distributions, the
counting efficiency for every measurement position and radionuclide was
calculated using the equation:

2
NFEP4JTI"
E=—————

— 40

An e Harl ¢
where r is the distance between the detector and the source and ¢ is the
measurement time. Individual positions of the sensitive medium of the detectors in
the coordinate system were used when calculating the actual distance between the
source and the detector. The resulting angular variations of counting efficiency for
the [0;360) degree interval were then interpolated for every 10 degrees.

Because both Nal(TIl) detectors had no structural components hindering their
performance at 90 degrees relative to the driving direction of the vehicle, the
relative angular efficiencies were normalised to their 90-degree values. As
structural pillars at the back of the service bed were obstructing the HPGe detector
in the regions of 90 and 270 degrees (Fig. 19), it was chosen to normalise the
relative efficiency of the HPGe-detector to the 80-degree value. The resulting
normalised relative angular variations of counting efficiencies are displayed in
Fig 21 for ®°Co and "*’Cs. Reference efficiency values measured at 90 degrees from

the detectors are given in Table 1.
Table. 1. Selected ROIs in the gamma spectra and their respective reference efficiencies for the '¥Cs and *Co
radionuclides for different detectors used in the mobile gamma spectrometry vehicle. Adapted from paper II.

137Cs SOCO
Detector
ROI (keV) Ref. Eff. (m?) | ROI (keV) Ref. Eff. (m?)

123 % HPGe | 658-665 0.0021 1327-1337 0.0015
Front Nal(Tl) | 600-750 0.254 1247-1470 0.0166

Rear Nal(Tl) | 600-750 0.0261 1247-1470 0.0172
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Fig. 21. Angular variations in counting efficiency of the HPGe (blue dotted curve), front Nal(Tl) (red solid curve) and
rear Nal(Tl) detectors (green dashed curve) for *’Cs (left) and ®°Co (right). The angle of 0 degrees is the driving
direction of the vehicle. A slight dip in the counting efficiency of the HPGe detector at 90 and 270 degrees can be seen
due to the structural pillars of the service bed. Figure from paper II.

Nugget software

The data in the experiment was recorded using Nugget software, created by
Swedish Radiation Safety Authority [53]. The program was designed to aid in
mobile gamma spectrometry tasks — recording the measurement data to the
computer, analysing the data with possibilities of using various background
stripping, alarm threshold values, visualising of the data using waterfall plots, pulse
height distributions, measurement time-series in a set ROI or plotting a set
parameter on a map. An illustration of the main window of the software is
displayed in Fig. 22 below. Because Nugget was written in Visual Basic, there are
some limitations regarding the real-time functionality of the software, which will
be briefly mentioned here.

50



Fig. 22. The main window of Nugget software. The geographical overview of the situation with previous measurement
coordinates is displayed in the top-left. The waterfall plots for HPGe (top) and combined Nal(Tl) (bottom) detectors are
displayed in the middle, with their corresponding most recent spectra on the right. The measurement time-series for the
count-rate values in the selected ROI's is displayed below the waterfall plot.

The main program sequence when Nugget works in acquisition mode is made up
of a repeated action set which initiates 1) a new measurement acquisition interval in
each detector, ii) a reading of the geographical coordinate from a GNSS receiver,
after the chosen acquisition time has passed, iii) an ending of the measurement
acquisition interval in each detector and iv) a reading of the data from the
detectors, v) saving the measurement data to the computer storage, vi) analysing
the data based on the settings of the program and vii) visualising the data on the
screen. Each of these actions, except waiting for the selected acquisition time to
pass, takes a finite, but comparatively small amount of time. A software clock
regulates when these actions are performed. If the clock is working as expected the
program flow and its subsequent result will be as intended. However, in a case
where this clock is not functioning correctly, the relative timing of the events of the
program can be altered and thus lead to discrepancies between the actual
measurement coordinate and the recorded GNSS coordinate.

If a GNSS receiver is updating the geographical coordinate at a stable time
interval and Nugget then is reading this coordinate at varying intervals which might
be slightly longer or shorter, the GNSS receiver might not have updated or
alternatively — has already updated the coordinate. In such situation it might
happen that some measurement coordinates are reported twice and some are
jumped over, as displayed in Fig. 23. The authors of the software had been
informed about the behaviour and there is now an algorithm in the software slightly
compensating for this behaviour, but a solution that completely eliminates the
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problem has not been found yet. The potential effect of this mismatch will be
discussed more in Paper II1.

GNSS receiver and Nugget
main clock synchronisation

geographical | geographical ;| geographical
coordinate | : coordinate 2 : coordinate 3

Stable
Unstable + J }

I
window 1 window 2 window 3
Time

Fig. 23. Relative alignment of the GNSS update interval, displayed by vertical dashed lines, and the Nugget
geographical coordinate readout during the acquisition mode, displayed by a short vertical bar on the line. At the top of
the graph, a stable situation is displayed, when the Nugget read-out happens regularly and each measurement
corresponds to a new geographical coordinate — reported coordinates are 1,2,3,4 and so on. In the bottom of the
graph, an unstable situation is displayed, leading to reporting coordinates 1,1,3,3, etc.

Position and activity estimates from a posterior
distribution

After the MCMC algorithm has ran for enough iterations, the obtained samples
should represent the target probability distribution for the parameter of interest.
When utilising Bayesian methods throughout the rest of this thesis and in the
papers, the following method was used to define the “estimated” or “predicted”
value: a maximum a posteriori (MAP) point within the obtained probability
distribution (posterior) is chosen, such that the point has the largest probability
within the probability distribution. This is visualised in Fig. 24 below.

Maximum Aposteriori (MAP) value

; —— Posterior
o0 H

S P || e MAP
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10 20 30 40
Values of arbitrary parameter of interest

Fig. 24. An example of a posterior distribution (black) and a maximum aposteriori (MAP) value of the posterior
distribution (red dotted line).
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Paper I

In this paper, a feasibility test for using Bayesian inference on the mobile
gamma spectrometry data was performed. An experiment was conducted on a
10.4 km closed road loop near the shut-down Barsebick nuclear power plant, about
20 km north of Malmo city in southern Sweden. Gamma-ray point sources were set
up at different places and distances from the side of the road. The sources were
Ba, "'Cs and "'l with corresponding activities 183+48, 468+57 and
298463 MBq, respectively. The distances from the sources to the roadside were
32+1, 3241 and 6241 m, respectively.

The mobile gamma spectrometry vehicle was then driven along the road loop
past the sources five times at 50 km/h. The pulse acquisition time was set to 1 s, so
that each second, a pulse height distribution and a geographical coordinate of the
vehicle position was collected. Counts in the ROIs for *’Cs (661.6 keV), "*'I (364.5
keV) and 'Ba (356.0 keV) were obtained. The background level, ¢, was estimated
as a mean of selected count-rates obtained in a particular run during the
experiment, to imitate online usage of the method. In the first paper no correction
was done for the varying angular efficiency of the detectors &(E£,) (Eq. 10). Only
measurements made at distances greater than 200 m from the positions of other
sources were considered to minimise the influence of other sources on the
estimations. The likelihood equation used in the Bayesian model for paper I is:

~ttar| p= x|
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where z; is the i-th measurement of counts in the selected ROI, p and x; are two-
dimensional predicted source and i-th measurement coordinates respectively.

The Bayesian algorithm was run for 30 000 iterations with a burn-in of 10 000
iterations. After a successful run, the algorithm outputs posterior distributions for
source position and activity. The predicted distance, D, to the source was defined
as the distance between the position with the largest probability and the
measurement position of the maximum number of counts in the measurement
time-series. Predicted activity values were obtained by calculating the maximum a
posteriori (MAP) values of the posterior distributions for source activity. The
predicted distance and activity values were compared to the actual values.

AUTOMORC experiment set-up — Papers II-1V

An experiment studying the detection limits of various detection systems was
performed by positioning “°Co (emitting two gamma photons of energy 1.1732 and
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1.3325 MeV per decay) and "*’Cs (emitting one gamma photon of 0.6617 MeV per
decay) sources at two positions along the road in a designated experiment area. At
each position, the sources were placed at various distances from the road. The
experiment was carried out on a relatively straight stretch of one-lane road
(approximately 1.7 km long), at the same site as in the experimental study for
Paper 1. It involved 20 different experimental set-ups, at which point sources of
B7Cs and “Co with five different activities for each radionuclide were used. The
experimental set-ups were divided into groups of four. In each group, the sources
had the same activity but were gradually moved further away from the road side.
The vehicle was then driven along the road past the two source positions.

The exact distances from the roadside and the activities of the sources in all the
experimental set-ups are shown in Fig. 25. Actual distances from the sources to the
detectors when the vehicle was closest to the detectors was about two metres
longer due to the additional distance from the road side to the centre of the lane of
the road the vehicle was driving in.

Activities and distances of the '¥'Cs source
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Fig. 25. Distances from the roadside to the *’Cs and ®°Co sources and activities of the sources used in the experiment
for each set-up. The numbers in the graphs represent the experimental set-up number. The actual distance from the
sources to the detectors was about two metres longer. Figure taken from paper IIl.

The sources were placed in the defined positions for about 10 minutes for each
experimental set-up. During this time, the gamma spectrometry vehicle was driven
back and forth along the road, passing the gamma-ray sources several times.
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Evaluation of accuracy and precision of the Bayesian
estimations in papers II and III

In the following papers II and 111, posterior distributions of position and activity
of the source were obtained after 30 000 MCMC iterations with a burn-in of 10 000
iterations. Then, the estimated positions and activities were analysed in groups
according to the radionuclide, detector combination and experimental set-up.
Estimated values were extracted from the posterior distributions as described in
section “Position and activity estimates from a posterior distribution”. Relative
deviations RD of the estimated positions and activities of the sources were
calculated for each pass of the source individually. The relative deviations, RD,
were calculated as below, where EST is the estimated value, and the REF — selected
reference value:

(EST — REF)
REF

RD= 42

In the Eq. 42 above, the REF values for position and activity were the actual
position and activity values. This is common for both Papers II and III, although in
paper II, the relative deviations were denoted differently: Activity relative
deviation (ARD), position relative deviation (PRD), etc., despite the underlying
formula being the same. In paper III the notation was simplified, where the relative
deviation of source position was also divided in to lateral (perpendicular to the
road) and longitudinal (along the road) deviations, in order to get more detailed
information about the estimated positions of the sources. The notation across
papers II and III is clarified in Table 2.

Table. 2. Clarification of the notation across papers Il and IIl.

Notation in Paper II Notation in Paper Il Meaning

ARD Relative deviation of source | Relative deviation of median value of estimated source activity
activity values for a given experimental set-up.

PRD Relative deviation of source | Relative deviation of median value of estimated source position

position values for a given experimental set-up.
ARDD - Distribution of ARD values throughout the experimental set-ups
PRDD - Distribution of PRD values throughout the experimental set-ups
Relative deviation of Relative deviation of median value of estimated source position

longitudinal source position | values along the road throughout a given experimental set-up.

Relative deviation of lateral | Relative deviation of median value of estimated source position
source position values across the road throughout a given experimental set-up.
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These values were then used in the analysis of the performance of the algorithm by
plotting the relative deviations as a function of SNR of the data.

Paper 11

The second paper aimed to theoretically test the Bayesian algorithm’s
capabilities, using synthetic data free from the possible experimental uncertainties
affecting experimental data. Angular variations of efficiency and the possibility to
utilise data from multiple detectors were introduced into the Bayesian model
according to Eq. 24. To obtain a measure of the variation in the performance of the
algorithm, it was chosen to perform estimations of activity and position of the
sources using six different variations of the algorithm and then comparing the
estimated values to the actual ones. The six variations of the algorithm tested in
paper Il are as follows:

1. using simulated data (z; Eq. 24) only from the HPGe detector with a fixed
counting efficiency (€. in Eq. 24 is set to a fixed value);

2. using data only from the HPGe detector using angular variations in
counting efficiency (&« in Eq. 24 represents the relative angular efficiency
of the detector);

3. using data only from the front 41 Nal(Tl) detector with a fixed counting
efficiency;

4. using data only from the front 41 Nal(TIl) detector using angular variations
in counting efficiency;

5. wusing data from all of the detectors present in the vehicle (123% HPGe,
2x41 Nal(Tl)) with a fixed counting efficiency for all individual detectors;

6. using data from all of the detectors present in the vehicle using individual
angular variations in counting efficiency for all of the detectors

Synthetic data

The synthetic data was simulated by taking a random sample from a Poisson
distribution, with 4; of the Poisson distribution representing the mean number of
counts (Eq. 18) in a detector at a measurement point i per unit of time ¢.
Geographical coordinates obtained using a GNSS system of one complete pass
from the AUTOMORC experiment were chosen as the central coordinates in the
successive simulated time-slots of the pulse acquisition. The background count-rate
¢ for each ROI of the selected radionuclides and individual detector was evaluated
as a mean value of counts in these selected ROI obtained from the pulse height
distribution recorded in the AUTOMORC experiment while driving along the
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predetermined path in the absence of any radioactive sources. The mean number of
counts at every measurement position i were calculated by applying the activity
and position of the source corresponding to a selected experimental set-up (Fig. 25)
and average background level ¢ using the equation Eq 16. Angular variations in the
counting efficiencies of primary gamma photons for all three detectors were
included in the calculation of the synthetic data alongside the individual offset of
each detector from the position of the GNSS receiver antenna on the vehicle.

A total number of 10 Poisson distributed synthetic Nym time-series in the
detectors for each type of source in source set-ups were calculated to evaluate the
algorithm’s average performance. The modelled data series were then used as an
input into the Bayesian algorithm. To compare the discrepancies in the results more
accessibly, signal-to-noise ratios (SNR) were calculated for all individual set-up
and source combinations. SNRs were calculated as a ratio between the maximum
amplitude of N and the standard deviation of the background count per

second, c. Henceforth, the following formula was used in the calculations:

source

max (N source)

SNR= ,
Ve
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Bayesian algorithm
The Bayesian algorithm described in paper I was further developed in four aspects:
e Angular variations in counting efficiency were added;

* Individual positional shift depending on how the specific detector was
mounted in car relative to the position of the GNSS receiver was
implemented;

*  Ability to utilise data from multiple detectors at the same time introduced;

* Improved proposal generation mechanism, to more accurately sample the
bimodal posterior probability distribution of the position of the source,
covered in section “Improvement of bimodal distribution sampling”.

Each of these aspects improved the Bayesian estimations by altering the Bayesian
model to reflect the actual situation more closely or improving the MCMC
algorithm to obtain a correct posterior distribution.

The first three points were achieved by modifying the likelihood equation for the
Bayesian model. The resulting likelihood was:
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where i is the measurement number and j is the detector number (number m of
detectors and n of measurements). Setting the likelihood as in Eq. 44 allows to
have as many detectors as needed and takes in to account individual angular
variations of counting efficiency and individual offset for each detector ;.

Improvement of bimodal distribution sampling

Because detectors used in the vehicle do not register the angle of incidence of
the incident photon, the correct general solution to the source localization problem
given measurements obtained while travelling past a source is therefore a bimodal
distribution, with possible position on either side of the road/vehicle direction. The
fact that the starting coordinate for the MCMC chain is in the middle of the two
local maxima of the posterior distribution for the source position, there is a
tendency of the MCMC algorithm to stay within the side of the road towards which
the first jump was made. Irrespective of whether there is additional information
(arising due to angular variations of the counting efficiency, detector position
offsets, etc.) or not, the algorithm will most probably stay on the side of the
road/vehicle direction chosen with the first step if the proposal distribution is only
generating proposals on one side of the road. This limits the ability of the algorithm
to sample the full bimodal distribution correctly. Thus, the position of the proposal
coordinate is mirrored to the opposite side of the road each 1 000 MCMC iterations
as a possible solution.

Paper III

Continuing with the studies of the limits of the Bayesian algorithm for orphan
source search, in the following article it was logical to test the modified algorithm
on experimental data. The data used were obtained in the experiment
AUTOMORC, which is described in section “AUTOMORC experiment set-up —
Papers II-IV” above.

Because it was found that incorporation of the angular variations in the counting
efficiency of the detectors did improve the estimates, however slightly, it was
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decided to test only three variations of the algorithm, all including the angular
variations of counting efficiency:
* using data (z; in Eq.24) only from the HPGe detector using angular
variations in counting efficiency (&. in Eq. 24);
* using data only from the front 41 Nal(TI) detector using angular variations
in counting efficiency;
* using data from all of the detectors present in the vehicle using individual
angular variations in counting efficiency for all of the detectors.

Uncertainty in the measurement coordinates

As mentioned previously the Nugget software has consistently been used in the
studies of this thesis for reading the data from the GNSS receiver and the detectors,
and then analysing and visualising the results for each new measurement. Due to
peculiarities mentioned earlier in how Nugget is programmed in the section
“Nugget software”, the timing of the read-out of the coordinates from the
navigation system is affected, manifesting as discrepancies between the recorded
and the actual coordinates of the measurement. Intercoordinate distance analysis
(distance between adjacent measurements) for experimental set-up 5 in Fig. 26
visualises these discrepancies. During the experiment, the vehicle was driven back
and forth along the road past the sources at a constant speed of about 50 km/h
(13.9 m/s) using automatic speed control system in the vehicle. At the end of a
complete pass, the vehicle was then turned around, and another pass of the sources
was made. As can be seen in Fig. 26, the fluctuations in the intercoordinate
distances are implying that the speed of the vehicle was sometimes erratically
increasing or decreasing, despite the fact that the speed of the vehicle was constant.
All of this translates to longitudinal (along the path of the vehicle) shifts of the
measured coordinate, as seen in Fig. 26. If such discrepancies in longitudinal
position were to occur in a vicinity of a radioactive source, recorded values of the
count-rate would be assigned incorrect coordinates, distorting the shape of the peak
in the measurement time-series exemplified in Figs. 5-6.
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Fig. 26. Intercoordinate distance analysis of the geographical coordinates recorded and processed by the Nugget
software for experimental set-up 5 of AUTOMORC experiment. The graph in the upper-left shows a histogram of the
length of intercoordinate distances. The lower-left graph shows the intercoordinate distance values for each
measurement. The average speed of the vehicle during the experiment was 50 km/h (13.9 m/s), indicated by the red
dashed lines. The longitude-latitude graph on the right illustrates a small portion of one of the many passes of the
sources recorded in the data displayed on the left, where fluctuations in the recorded coordinate position along the
path of the vehicle are clearly visible. Figure from paper Ill.

It was decided to roughly estimate how much such discrepancies would affect
the Bayesian estimates. A method for approximately simulating the discrepancies
was reverse-engineered using the experimental data. A function modifying
coordinates based on the observed coordinate discrepancy patterns in experimental
data was developed, which is explained in more detail in paper III. Coordinates
along a 2 km line with 13.9 m/s distance between the coordinates, corresponding to
1 s pulse acquisition time, were calculated. For every coordinate a synthetic count-
rate value due to a source positioned at =30 m away from the nearest point of the
trajectory of the detector was calculated. Then, the coordinates, for which the
count-rates were calculated, were altered using the reverse-engineered method.
Bayesian estimates were then evaluated for the synthetic data with unaltered,
correct coordinates and with the altered coordinates with injected discrepancies.

Paper IV

A widely adopted methodology for orphan source detection using mobile
measuring equipment and alarm threshold values is based on previously described
detection statistics in section “Statistics of radioactive source detection”.
Combinations of particular detectors, vehicle speed and detection statistics yield a
maximal distance at which an unshielded photon point source can be detected at a
certain probability. The fourth paper describes a computational model (the MDD
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algorithm) for calculating these maximum detection distances and the knowledge
stemming from the model. The model can estimate the maximum detection
distance for a single stationary measurement and a mobile pass of a source in a
straight trajectory. Calculated results were validated using the experiments
described in the section “AUTOMORC experiment set-up — Papers II-IV”.

The MDD algorithm was programmed in Fortran 90. The calculation routine is
described in paper IV. To check the correctness of the code, two programmers
independently wrote the core functions of the algorithm in R-script. Calculated
results from the three versions showed agreements within about one percent. The
deviations can be attributed to differences in the numerical precision, such as
calculation step lengths and the number of iterations.

Paper V

Moving from the orphan source detection problem to that of two-dimensional
mapping of radioactive deposition over surfaces, the aim of the fifth paper was to
explore the applicability of Bayesian methods for reconstruction of spatial
distribution of radionuclides within an area using gamma spectrometry
measurements made with an UAV-borne spectrometry system. A contaminated
area representing a typical Swedish neighbourhood was modelled using a Monte-
Carlo particle transport simulation code SERPENT 2 [54], [55].

SERPENT model of a typical Swedish neighbourhood

The model consisted of 15 houses and a street, spanning 140 x 140 m, as
visualised in Fig. 27, left. The houses were single-floor buildings 10 x 15 m in size.
The wall heights were 2.95 m high, with the apex of gable roofs reaching 4.95 m
height (Fig. 27, right). The rest of the model area was soil.

Fig. 27. A top-down schematic view of the model of the neighbourhood based on work by Hinrichsen et al. [56]. The
houses are displayed in light-yellow colour, the street — dark grey and the soil — light-green (left). A cross section of a
house with the gable roof visible (right). Images adapted from [55].
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A ground deposition of 100 kBg/m* of *’Cs in the soil was modelled in the
neighbourhood, with the ground contamination being distributed uniformly over a
5 cm soil depth. The contamination level for the streets was set lower — 50 kBg/m?
with a deposition depth of 0.5 cm. The roofs of the houses had the lowest
contamination level of 40 kBq/m* with 0.1 cm deposition depth. For all of the
materials (soil, streets and roofs) the depth distribution of radionuclides was
uniform within the deposition depth. This set-up corresponds to the reference
deposition scenario, referred to as the clean-up scenario 0 in the Table 3. Three
other clean-up scenarios were defined, depicting different extents of
decontamination for different surfaces of soil, street and roofs of the buildings
(Table 3). Then, primary photon fluence rate in 30 x 30 x 30 cm voxels spanning
the whole 140 x 140 m area was calculated for altitudes of # = 6, 10 and 15 m
using 10° simulated particles in Serpent.

Photons that managed to reach the spatial limits of the 140 x 140 m area were
transported to the opposite side of model. The direction and the energy of such
photons was not altered, only the position. This corresponds a situation where the
neighbourhood is surrounded by exact copies in all directions.

The calculations resulted in fluence matrices of 460 x 460 elements for each
altitude of the voxels 4. Due to computational limitations, the resolution of these
fluence matrices was reduced to 10 x 10 elements yielding 100 surface deposition
points, which is enough for a proof-of-concept study. An example of a full
resolution 460 x 460 “heat-map” of fluence matrix obtained in the voxels at 6 m
altitude of the detector for cleanup scenario 0 is displayed in Fig. 28. The reduced
fluence matrix was then regarded as the measurement values obtained using a
fictive sensor, that has a proportional response to the fluence of 662 keV photons in
the voxels.

Then, the activity per unit area of these surface deposition points were estimated
with the Bayesian algorithm using the reduced fluence matrix as the input data.

Table. 3. Descriptions of different clean-up (or decontamination) scenarios with amount of relative reduced surface
deposition of ¥’Cs for particular surfaces.

Cleanup scenario | Ground | Street | Roof
0 0 % 0 % 0%

1 0% 0% 100 %
2 0% 100 % | 0 %

3 50 % 100 % | 100 %
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Fluence at h=6, cleanup scenario 0
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Fig. 28. Fluence of '*Cs primary photons in 30 x 30 x 30 cm voxels at 6 m altitude obtained in the SERPENT 2 model.
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Results

Paper I. A Bayesian method to localize lost gamma
sources

Paper I was essentially a feasibility test, verifying whether it is possible to obtain
information regarding the position and activity of the source from experimental
data using Bayesian statistics. The experimental data used in the paper covers only
three radionuclides; *’Ba, "'l and "“’Cs positioned at 30 to 60 m away from the
roadside and having activities of 183448, 468+57 and 298+63 MBq respectively.
Only measurement data from a mobile HPGe detector was used as input to the
Bayesian algorithm. The vehicle passed the sources five times. The posterior
distributions of source activity and position were evaluated for each source. An

example of posterior distributions for source position and activity is displayed in
Fig. 29.
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Fig. 29. Example posterior distributions of source position (left) and activity (right). The darker the shade of the colour
in the posterior for source position, the higher the probability for source being there. Red line marks the distance from
the point in the posterior distribution with the highest probability to the position where maximum number of counts
during the passage of the source was detected. The estimated value of activity of the source is marked by a dashed
red line. Figure from paper I.
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Estimated activity and source distance values were compared to the actual
values. It was found that, on average, the algorithm was underestimating the
activities of *’Cs, '’Ba and "'I sources by 51%, 15% and 8% respectively. The
mean values of predicted source distances were 23, 30 and 63 metres, compared to
the actual distances of 32+1, 32+1 and 62+1 metres respectively. It was noticed,
that the algorithm was especially sensitive to the shape of the peak in measurement
time-series. When performing multiple passes of the source, the recorded number
of counts might differ due to statistics, leading to different shapes in measurement
time-series (an example is displayed in Fig. 30.)
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Fig. 30. An example of the influence of counting statistics on the results of the Bayesian method. Measurement
time-series of the data recorded by 123% HPGe detector used in the study from two passes (left, right) of the **'|
source is displayed with a black line (top). Differences between the measured data is purely statistical. Calculated
count-rate function for the measurement positions given the actual source position and activity is displayed with a red
dotted line, denoted “Sim. Truth” in the legend, which is the same for both figures — left and right. Green lines
represents different predictions of the Bayesian algorithm at different MCMC iterations. Posterior distributions for
source position are displayed in bottom left and right from the same runs accordingly. It is obvious, that inferring the

position of the source from the wider peak in the measurement time-series results in estimations further away from the
road. Figure from paper .
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The main limitations of the Bayesian model used in the first paper were that it
was based on three assumptions: there is only one gamma-ray point source of a
given radionuclide, the background radiation is constant in the survey area, and that
there are no angular variations of the counting efficiency of the detector.
Regardless of the limitations, the presented Bayesian method could be utilised for
orphan source search as-is, providing predictions of activity and position of the
probable source. As the method only requires post-processing of the data, it could
potentially be used for analysis of data obtained with other mobile gamma
spectrometry systems.

Further work on the influence of angular variations in the counting efficiency of
the vehicle detector system, the actual uncertainties resulting from the GNSS unit,
and the performance of the algorithm in situations involving more sources at
different distances in higher and variable levels of background was considered.

Paper II. Bayesian algorithm to estimate position and
activity of an orphan gamma source utilizing multiple
detectors in a mobile gamma spectrometry system

The aim of paper II was to theoretically investigate the improvements in the
Bayesian estimations of the position and activity of a gamma-ray point source due
to the introduction of data from multiple detectors with angular counting efficiency
variations.

Based on the simulated data, it appears that the performance of all six individual
variants of the algorithm (described in the section “Paper II”) in terms of
estimating the activity and position of the source, is acceptable for use for one-pass
orphan source search situations. It was found that the variant of the algorithm
where data from all three detectors were used, and where the angular variations in
the counting efficiency of individual detectors was accounted for, could, on
average, predict the position and activity of the sources with less than 20 % and
10 % deviations respectively. It became evident that the precision and reliability of
the Bayesian estimations depend mainly on the SNR of the data, as illustrated in
Fig. 31 below.

Unsurprisingly, the larger the combined efficiency of the detectors present in the
mobile gamma spectrometry system, the lower the SNR threshold of the system
below which the estimations start to deviate strongly. Threshold SNR levels, at
below which significant deviations start to occur were 8, 5 and 3 for variations of
the algorithm using data from only HPGE, only Nal(Tl) and all of the detectors
correspondingly. Thus, to obtain more reliable and precise position and activity
estimations in cases where the activity of the source is near the detection limit, a
detector system with better efficiency is required. Alternatively, if there is no time
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constraint on the survey but the counting efficiency of the equipment (or sensitivity
of the detection systems) is severely limited, additional passes could be performed
to increase the amount of information collected for the same SNR level of the data
and using the same equipment.
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Fig. 31. Medians of activity (ARD, left) and position (PRD, right) relative deviation distributions plotted against SNR
values for respective experimental set-ups and radionuclides. Variations of the algorithm using different data were
separated into different graphs (HPGe, Nal, Multiple), with and without the use of angular variations of counting

efficiency. Horizontal line in ARD graphs marks the 0% relative deviation—actual source activity. Vertical line in all of
the graphs marks the approximate individual threshold level for the variations of the algorithm using specific type of the
data. Figure taken from paper Il. For definitions of ADR and PDR refer to Paper Il and Table 2.

From the figure above (Fig. 31), it is evident that inclusion of the angular
variations in the counting efficiency of the detectors in the Bayesian model
partially corrects the underestimation of the activities as visible in Fig. 21. For
example, for the variant of the algorithm utilizing data from all of the detectors, the
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50 % underestimation of activity values activity in SNR region 5-50 is corrected
(bottom left, Fig. 21).

In emergency situations where such extensive calibration of detector efficiency
is not feasible, single values for counting efficiency of the detectors can yield
similar results if calibrated properly. Exclusion of the angular variations of
counting efficiency from the Bayesian inference would lead to faster performance
due to less code in the MCMC part of the algorithm.

Paper III. Accuracy of a Bayesian technique to estimate
position and activity of orphan gamma-ray sources by
mobile gamma spectrometry: Influence of imprecisions
in positioning systems and computational
approximations

After the theoretical study in paper II, one of immediate follow-up questions
regarding the performance of the Bayesian algorithm is how sensitive the algorithm
is to the uncertainties arising in the experimental data. The aim was thus to
evaluate the effects of uncertainties present in the experimental data on the
accuracy and precision of the estimates obtained using the Bayesian algorithm
developed in papers I and II.

If the summed counting efficiency of the detector combination (123 % HPGe,
2x41 Nal(TI)) is taken into account by linearly combining the SNR values of the
data for the 3 detector variant of the algorithm, there is very little difference
between the performance of the three algorithms in terms of the dependence of size
of the deviations as a function of SNR of the data. This suggests that the
performance of the algorithm per efficiency of the detector is very similar.

It is evident, that decreasing SNR of the data (particularly around SNR 3-5)
yields in an increase of deviations to 50 — 100 % or more, similar to the Fig. 31
from paper II, where synthetic data was used. For well-detected sources with
signal-to-noise ratios (SNR) exceeding 20, activity (Fig. 32) and position (Fig. 33)
deviations from actual values were around 30 %. A higher SNR of the data did not
significantly improve precision or accuracy of the estimations.

Roughly half of the uncertainty in the position estimation is expected to be due
to to the uncertainty in the longitudinal coordinate (distance along the road) and the
other half due to the deviations in the lateral coordinate (distance perpendicular to
the road).
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Fig. 32. Relative deviation of source activity for every experimental set-up, detector and source combination plotted
against the respective SNR values. Black dashed curve denotes the 5%, solid curve — 50% and dotted curve — 95%
(from top to bottom) curves denoting corresponding quantile dependencies on SNR of the data, obtained using non-
curvear quantile regression. Fitted parameters a and b of the curves are displayed in a legend on the right. Figure from

paper Il
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If the GNSS receiver cannot provide geographical coordinates at a better
resolution than the distance the vehicle has travelled during the acquisition time
(14 m here), the uncertainty in the Bayesian predictions will increase. Also, as
predicted theoretically in section ‘“Point-kernel approximation of mobile
measurements” (Fig. 6), the effects of using point-kernel approximation for the
count-rate estimation, Ns.u, resulted in notable deviations only at source-detector
distance smaller than the distance travelled during one acquisition time interval.

Although the developed Bayesian algorithm used in this study was designed to
estimate the position and activity of a single gamma-ray point source in two spatial
dimensions, the approach can potentially be applied for multiple three-dimensional
sources as long as there is sufficient spatial resolution in the measuring positions.
Possibly, it may be developed to map spatial variability of the surface deposition of
radionuclides in radiological emergency situations.

From the investigations of the developed Bayesian algorithm for car-borne
orphan source search in papers I-III, it is possible to conclude that Bayesian
methods are beneficial for estimation of position and activity of a single gamma-
ray source in orphan source search applications in mobile gamma spectrometry.

Paper IV. Maximum detection distances for gamma
emitting point sources in mobile gamma spectrometry

While deviating from the Bayesian methodology, the fourth manuscript is
significant for the field of mobile gamma spectrometry, as it delves into the depths
of the physics behind source detection during mobile measurements. At the heart of
the fourth paper there is a maximal detection distance (MDD) algorithm, which
calculates the MDD for gamma-ray point source of set activity, positioned some
distance from the trajectory of the detector, while the detector passes the source in
a straight line at a set speed. It depends on a number of parameters such as detector
efficiency, vehicle speed, measuring time interval, natural radiation background
level, accepted frequency of false alarms, etc. The algorithm was validated using
experimental data from the AUTOMORC experiment described in section
“AUTOMORC experiment set-up — Papers II-1V”.

The results showed that by using the MDD algorithm it is possible to calculate
the most advantageous combinations of vehicle speed, measurement time interval
length (pulse acquisition time) and other search parameters for a range of source
activities between 50 MBq and 1.2 GBq. Since the algorithm is based on physical
laws for radiation transport, there is reason to believe that the MDD algorithm also
describes maximum detection distances correctly for radiation sources up to at least
TBq level, assuming a linear detector response. The MDD algorithm in its current
form is based on fluences from an unshielded gamma source. If a radiation source
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is shielded, its activity from the detector point of view becomes apparently lower.
The calculations then apply to this lower apparent activity.

In order to achieve the longest possible detection distance to identify a photon
source with a certain activity by mobile measurement, the best combination of
measurement time interval and vehicle speed must be selected. This combination is
independent of the detector type and efficiency. It depends on how the photon
fluence is distributed along the vehicle's path past the source and therefore on the
source's activity. The MDD algorithm gives for example at hand that at a vehicle
speed of 50 km/h, the most advantageous measuring time interval is 5 seconds
when searching for unshielded sources with activity in the order of 100 MBq. To
detect higher activity sources at the same speed, longer measurement time intervals
(10-20 seconds) are better. However, if the speed of the vehicle is increased,
shorter time intervals should be selected. At the same time the maximum detection
distance will be reduced. MDD values for 2 x 41 Nal(Tl) detector using different
lengths of acquisition interval passing a “’Cs source at 50 km/h is displayed in
Fig. 34.
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Fig. 34. Maximum detection distance for different acquisition time intervals for 4 litre Nal(Tl) detector. Figure from
paper IV.

Summing the results of the fourth manuscript, it is evident that there are many
parameters which influence the MDD, such as detector efficiency, vehicle speed,
measuring time interval length, natural radiation background level, accepted
frequency of false alarms, etc. One of the most straightforward conclusions is that
MDD is directly dependent on the counting efficiency of the detector — the higher
the efficiency the larger the MDD. However, environments with high levels of
background radiation will reduce the MDD regardless of the counting efficiency of
the detector. For a particular detector system in a specific situation it is still
possible to increase the MDD by choosing the best combination of the vehicle
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speed and acquisition time interval, depending on the presumed activity of the
source. If this information about the source is unknown beforehand, then the best
strategy is to drive past the source at the lowest speed possible combined with the
shortest acquisition time available. Then, the data should be after-processed,
combining the acquisition time intervals in various ways to obtain the best MDD
for the source.

Calculations using the MDD algorithm provides an understanding on how
different parameter settings such as detection probability, false alarm rates,
background level, vehicle speed, acquisition time intervals and source activities
will influence the MDD in mobile search of lost sources. The MDD algorithm may
thus be able to present the most favourable acquisition time interval for any
combination of vehicle speed and source activity, thus aiding an emergency search
team in choosing the best parameter set-up for a specific mission.

Paper V. Applicability of a Bayesian method for
reconstruction of ground activity deposition based on
synthetic airborne gamma spectrometric data

Reconstruction of radionuclide spatial distribution in the area was performed
using data from a fictitious UAV-borne detector, with sensitivity only a scalar to
the primary photon flux in the voxels, for several altitudes of the detector — 4=6, 10
and 15 m. Fluence of 662 keV primary photons, and reconstructed surface
deposition densities of *’Cs were compared for each altitude in Figs. 35-37. It can
be seen that the quality of the reconstructed activity distribution is severely affected
by the altitude of the detector. The higher the detector altitude, the lower the
quality (in terms of spatial resolution and agreement with simulated true values) of
the reconstruction. This is expected, because the angular distribution of the primary
photons changes, which reduces the resolution of the data [37]. At altitude #=6 m,
the resolution of the reconstruction is the best, and the pattern of the street around
the neighbourhood can be identified.

Mean values of reconstructed spatial activity throughout the areas were
calculated for each altitude of the detector (2 = 6, 10 and 15) and cleanup scenario
0-3. Ratios of calculated mean spatial activity values were calculated by dividing
the obtained mean spatial activity value for any cleanup scenario by the value for
cleanup scenario 0 for all altitudes of the detector. Resulting table of average
activity density ratio values is displayed in Table 4. This table displays the relative
change in average spatial activity for a certain cleanup scenario. It can be seen, that
cleanup scenarios 1-2 where either streets or the roofs or the streets were
decontaminated, yielded in very similar reduction in average activity — 7-10 %.
Decontamination of soil resulted in the biggest difference of about 58 %.
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Reconstructed activity distribution, h=6, cleanup scenario 0
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Fig. 35. Reconstructed spatial distribution of deposited activity per square metre in the area for altitude of the detector
6 m and cleanup scenario 0 (left). The fluence data used to obtain the reconstruction (right). The street and the houses

are visible as low activity spots in reconstruction.

Reconstructed activity distribution, h=10, cleanup scenario 0
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Fig. 36. Reconstructed spatial distribution of deposited activity per square metre in the area for altitude of the detector

10 m and cleanup scenario 0 (left). The fluence data used to obtain the reconstruction (right). The street can still be

barely identified in the reconstruction.

Table. 4. Ratios of reconstructed spatial activity values.

Cleanup scenario | Ratio of mean activities throughout
the area for detector altitude
h=6 h=10 h=15

0 1 1 1

1 0.9 0.9 0.9
2 0.93 0.93 0.93
3 0.42 0.41 0.42
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Reconstructed activity distribution, h=15, cleanup scenario 0 Fluence at h=15, cleanup scenario 0
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Fig. 37. Reconstructed spatial distribution of deposited activity per square metre in the area for altitude of the detector
15 m and cleanup scenario O (left). The fluence data used to obtain the reconstruction (right). Neither houses nor the
street can be identified in the reconstruction.

The results indicate that spatial distribution of radionuclides can be estimated
using Bayesian methods, despite the fact that the spatial resolution of the
reconstructions is only 14 m, which is greater than the altitude of the detector for
the two smaller values of (2 =6 and 10 m). The resolution was set so low due to
the computational limitations of the relatively simple Metropolis-Hastings
algorithm utilised.

When the number of dimensions in the posterior distribution increase
significantly, efficient computation methods are needed. Even for a 10 x 10 surface
deposition point matrix the algorithm has to evaluate activities of 10? points.
Furthermore, the inside detector response matrix, Rinsice, described in Eq. 31, can
start to take up significant memory size for a larger number of surface deposition
and measurement points. For 23 x 23 surface deposition points and 23 x 23
measurement points, the size of this response matrix is 1.3 MB. Increasing the size
of both matrices to 113 x 113 yields a response matrix of 1.4 GB. For such
resolution the algorithm would need to solve activities for 113’=12769 surface
deposition points. Some computational “short-cuts” like sparse matrices or other
MCMC methods, like Hamiltonian Monte-Carlo might be the solution. That is out
of the scope of this feasibility test but important for future investigation and
method optimization.
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General discussion

Why Bayesian?

There are many approaches to solving source localization and radionuclide
spatial distribution estimation problems discussed in this thesis. One of such
approaches could be likelihood function optimization to obtain values of
parameters yielding the highest probability [57], [58]. In terms of finding the most
probable solution — the Bayesian approach and optimization methods should
technically obtain the same values of parameters of interest. For more complicated,
multidimensional problems, like discussed in paper V, it might be even easier to
utilise the optimization technique, as suggested by Zhang et al. [59]. Despite that,
the most significant difference between the methods is that function optimization
finds the value of the parameter(-s) of interest with the highest probability, and
MCMC in Bayesian methods integrates the posterior distribution. Taking an
example where optimisation and MCMC are used for estimating the activity of a
radioactive source the optimization will yield only one value of activity (that is, the
activity value with the highest probability). In contrast, MCMC will provide the
probability distribution of this activity. Depending on the parameters of MCMC
algorithm, the resulting posterior distribution should tell the uncertainty of the
activity value given the model and the data. Although, MCMC is more
computationally intensive, evaluated uncertainties of the parameters of interest in
mobile gamma spectrometry may provide the decision-makers in emergency
situations with more helpful information than using single values.

Due to advancements in computational resources, it is now possible to run
parallel tasks efficiently in computers. Despite that, it is hard to directly employ
efficient parallelization within one MCMC chain due to the dependence of the new
proposed sample on the previous sample. However, it is possible to run multiple
MCMC chains simultaneously with different initial starting parameters and random
seeds. This would result in an increased number of obtained posterior samples per
computation time, and thus more accurate posterior distributions. Despite the
increased number of parallel chains, the number of MCMC iterations needed for
any given chain to reach the target distribution will probably not change much if
the MCMC algorithm is well-tuned.
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Applicability of Bayesian methods to mobile gamma
spectrometry data: the importance of data quality

The broad applicability of Bayesian and MCMC methods is well known [42],
[45], [60], and it is no surprise that this versatility is reflected in the results of this
thesis. Investigations of the applicability of Bayesian methods in mobile gamma
spectrometry covered in papers I-III (carborne systems for orphan source search)
and V (UAV-borne systems for the spatial distribution of ground deposition), in an
area of interest, show that it is possible to utilise the Bayesian approach in mobile
gamma spectrometry data. However, it has to be stressed that the accuracy of a
particular Bayesian model is heavily dependent on the quantity of spatial data and
on the quality of the sampled data, as the Bayesian theorem inherently implies that
more data collection (information) will result in better quality predicted values in
terms of estimated posterior distribution of parameter values.

Despite the effort put in to increasing the quality of the data and decrease the
influence of e.g. background radiation [25], [61]-[65], or uncertainties in the
geographical coordinates of the measurements perturbing the data [66], the reality
is that there will always be some uncertainties in measurements performed with
equipment. Some of these uncertainties can be taken into account while performing
the data analysis, while some others are inherently governed by randomness. One
of such random uncertainties is displayed in Fig. 23, when the clock controlling the
time-tagging of sampled gamma spectra and geographical coordinate read-out is
not stable enough, leading to erroneous geographical coordinates for single
measurement points that varies during the collection of data-series. Because both of
the developed algorithms are statistical data analysis methods primarily, such
uncertainties can have significant effect on the uncertainties in the estimations.
This is visible by comparing Fig. 23 with Fig. 32 and Fig. 33, where relative
deviations of position and activity for estimations obtained using data from all
detectors are visualised as a function of SNR. It can be seen, that the uncertainties
for theoretical data (Fig. 23) is significantly smaller compared to the experimental
data (Fig. 32 and Fig. 33).

Stemming from the evaluation of angular variations in counting efficiency of the
detectors in paper II, one of the essential improvements is ensuring that the
detectors are mounted in the vehicle so that the shielding in the plane of interest
around the detector is such that the efficiency variations are as slight as possible,
trying to avoiding dead spots as can be seen in Fig. 21 for the HPGe detector.
Probably, it would be best to position the HPGe detector vertically above the roof,
to obtain the most uniform efficiency for all angles of incidence in the plane of
vehicle movement. For Nal(TIl) detectors, it could be argued that the best
arrangement would be to position the two detectors vertically on the opposite sides
of the vehicle, so that they would shield each other from the photons coming from
the opposite side of the vehicle. In this way it would be possible to determine
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which side of the road/vehicle trajectory the photons are coming from, while
minimising the angular variations in the counting efficiency (illustrated in Fig. 21).

The uncertainties pertaining to the estimation of geographical coordinates of the
measurements should be approached similarly. In principle, if the resolution of the
obtained geographical coordinates is worse than the detector sampling interval
(14 m throughout the papers I-1II), the uncertainty in the data and subsequently in
the Bayesian predictions, will therefore increase. In a particular case of the
measurement vehicle used throughout the thesis (described in Fig. 19) with Nugget
system and 123 % HPGe and 2x4 [ Nal(TI) detectors, the uncertainties manifested
themselves in random coordinate shifts along the trajectory of the vehicle. These
deviations can potentially affect the localization of the source along the road, and
even reduce the estimated activity, as displayed in paper III. To alleviate these
particular uncertainties several things can be done: i) reading of the geographical
coordinates produced by the GNSS receiver using a different clock than the main
program sequence and then correct the time-tagging afterwards, ii) setting the clock
of the GNSS receiver as the main clock controlling the measurement interval which
would require much change in the software iii) utilization dual frequency GNSS
units, and/or iv) implementation of an inertial navigation system [67]-[69] to
accurately calculate the position, velocity and attitude of the vehicle at any given
moment.

Furthermore, the same argument can be made for the selection of the acquisition
time interval. Theoretically, any finite length of acquisition time interval results in
a loss of spatial data (merging of events into a single time-interval), thus using
list-mode operation of detection equipment would offer the most detailed
information about the radiation field [70], [71]. Using the gamma spectrometry
equipment in this mode would increase the computational resources significantly
(especially in areas of higher activity), due to individual registration of each
photon.

Comparison of source detection rates using Bayesian
methods with alarm threshold levels

At this point it becomes very interesting to compare the two methodologies
discussed throughout the thesis in terms of source detection rates. Detection
probabilities using Bayesian and alarm threshold methodologies for the
AUTOMORC experiment data from set-ups 16 and 20 for '*’Cs and “’Co sources
were compared. Both methods were using combined data from two 41 Nal(Tl)
spectrometers in the vehicle.

The MDD values predicted using the MDD algorithm developed in paper IV are
within good agreement with the experimental data. For set-ups 16 and 20, the
experimental probabilities of detecting the *’Cs and “Co sources are displayed in
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Table 5. Alongside, the calculated MDD values for 50 % probability of detection
for the same source activity, vehicle speed and acquisition interval length are also
displayed in Table 5. It can be seen, that for both set-ups the distance from the
source to the road was higher than the MDD value for 50 % probability, which is is
in agreement with the experimental source detection probabilities Pexperimental-

Table. 5. Comparison of detection probabilities for alarm threshold (Pexperimenta) and Bayesian (Poayes) methods. The
calculated MDD distance is the average of the calculated left and right MDD (the right distance is longer than the left by
about 5 m) for 50% probability of detection. The probability observed for source detection in the experiment is the
average for sources to the left and the right.

Set-up number | Source Activity Distance MDD for activity Psos,  Pexperimental P Bayes
(MBq) (m) (m) (%) (%)
¥Cs 802 164 132 25 100
1 “Co 583 164 128 17 100
¥Cs 1215 164 151 84 100
2 “Co 1119 194 161 0 100

For the same experimental data from set-ups 16 and 20 Bayesian estimations
were made using data from 2x41 Nal(TI) detectors only. If the algorithm provided
a clear indication that there is a source, it was regarded as a detection of the source
despite the discrepancy between the estimated and actual values of source activity
and position, displayed in Table 6. Due to the low SNR of the data for these
experimental set-ups, the estimated positions and activities of the sources were not
accurate. Maximum value of calculated relative deviation of estimated position
were not greater than 0.77 throughout all of the results. This indicates that the
estimated position of the source was within about 80% of the position of the source

in terms of the distance from the source to the road (Table 6).

Table. 6. Relative deviations of estimated positions in terms of distance from the source to the road side for every pass
of the sources in experimental set-ups 16 and 20. It can be seen, that the maximum value of relative deviation of
position is lower than 1, indicating that although the estimated position of the source was not accurate, the source was
detected.

Set-up number Source Relative deviation of estimated position Maximum value
¥Cs |0.16 0.07 0.47 0.35 0.07 0.07 0.65 0.65
1 ®Co |0.38 0.22 0.07 046 0.16 0.77 0.21 0.77
¥Cs |0.67 0.29 0.29 0.21 0.25 0.07 0.47 0.67
20 ®Co |0.37 044 043 038 0.57 0.32 0.07 0.57

Furthermore, the Bayesian algorithm correctly found the peak in the measurement
time-series for every single estimation (illustrated in Fig. 38).
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Fig. 38. Measurement time-series data for both of the Nal(Tl) detectors (front — top, rear — bottom) is displayed by
black circles while passing a ®°Co source in set-up 20. Calculated count-rate function for the measurement positions
given the actual source position and activity is displayed with a red line, which is slightly different for the two detectors
due to the different angular variations in counting efficiency. Green lines represents predictions of the Bayesian
algorithm throughout the MCMC iterations.

This leads to 100 % detection rate Pgayes for all of the sources and set-ups, as
displayed in Table 5. The explanation why the Bayesian method is better than the
alarm method, is that when the alarm threshold is set so high for one-second
acquisition intervals to have only one false alarm per 1 hour, then only one (best
alignment) or two (worst alignment) one-second acquisition intervals will in
practice produce an alarm when the source is at or beyond the MDD. If acquisition
time intervals of 10 - 20 seconds had been used instead, with a speed of 50 km/h
and with source activities ranging between 100 - 1000 MBq, the MDD would
increase by about 20% for "’Cs and 25% for “Co. The Bayesian method can
directly use more acquisition intervals for an extensive range of source activities
with counts below the alarm level without choosing an optimal acquisition time
interval.

If such Bayesian method would be implemented in a way, that estimations of
source position and activity could be obtained in real time, it would be possible to
utilize the lower detection limit in orphan source search missions to extend the
MDD of the system. Then, when the Bayesian algorithm provides a rough real time
solution of the position and activity of the source, either another mobile pass of the
source or some additional stationary measurements could be performed to collect
more data and to obtain more accurate source and activity estimations. To visualise
this, posterior distributions for position and activity of a "“'Cs source were
evaluated for two situations using simulated data:
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1. A single pass of the source performed at a 50 km/h with 1 s acquisition
time using the two 41 Nal(Tl) detectors;

2. A single pass of the source as described above, with additional 3 stationary
measurements of 30 seconds performed at the point with closest source-
detector distance and two additional points, with source-detector distance
set to around 1.5 the smallest source-detector distance.

The distance to the source was set to 100 m and activity of the source —
150 MBgq, so that it was barely noticeable in the synthetic measurement time-series
for the detectors, as illustrated in Fig. 39. After running the Bayesian algorithm for
30 000 iterations, the obtained posterior distributions for the first situation are
displayed in Fig. 40. It is evident, that the uncertainty in the posterior distributions
is very high, and the discrepancy between the actual position and activity of the
source is significant. For the second situation, the results are relatively different, as
displayed by Fig. 41. It can easily be seen, that the uncertainty in the posterior
distributions is greatly reduced by adding only 1.5 minutes worth of data.

Such methodology in orphan source detection could increase the maximal
distance at which sources could be detected at the same time providing with
estimated position and activity of the source. Given that enough data is collected,
the accuracy of the estimations might be such, that additional survey using hand-
held equipment might be not needed.
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Fig. 39. The resulting simulated count-rate time-series for the two 41 Nal(Tl) detectors. Calculated count-rate function
for the measurement positions given the actual source position and activity is displayed with a red line. Green lines
represents predictions of the Bayesian algorithm throughout the MCMC iterations.
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Fig. 41. Posterior distributions for source position (left) and activity (right) obtained using the additional data with the
data obtained during the pass. The distance between the actual position of the source marked by a cross of dashed
lines to the position of maximum probability is displayed by D in the graph. For this estimation, the distance is 2.3 m.
The estimated activity was 112 MBq, while the actual activity was 150 MBq.

Outlook and limitations

The work discussed in this thesis barely scratches the surface of the use of
Bayesian applications in mobile gamma spectrometry, only showcasing its
potential use in the field. The developed Bayesian algorithm is still very
fundamental and requires a significant amount of knowledge in Bayesian methods
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and programming skills to use at this point. The whole data reading, preparation,
inference and plotting algorithm developed throughout the thesis is made up of R
scripts, totalling to thousands of lines of code, which require hands-on
programming to alter/modify the behaviour of the algorithm. The most advanced
version of the orphan source algorithm can currently solve the localisation and
activity for multiple gamma-ray point sources (tested for 3 sources using
experimental data). The algorithm designed to map the spatial distribution of the
radionuclides in the area from UAV-borne measurements is currently limited to
20 x 20 surface deposition point and measurement grids due to computational
limitations, which is sufficient for a proof-of-concept study. Source code of the
algorithms is available on GitHub [72], [73].

These algorithms can be developed further, by introducing a graphical user
interface which will allow people with less technical prowess to utilise the power
of Bayesian methods for mobile gamma spectrometry data. Additionally, a
methodology for detector data read-out might be considered, to develop and test
the applicability of these methods in real-time.

Further studies might combine LIDAR technology, UAV-borne gamma
spectrometry and Bayesian methods for highly accurate estimations of spatial
distribution of deposited radionuclide in a three-dimensional space, which could be
large-scale fallout areas with vegetations (shrubberies and trees) and houses, or on
building structures in nuclear energy facilities. Additionally, it would be interesting
to test how to combine mobile gamma spectrometric data from car-borne and
UAV-borne measurements and measurements on foot to obtain a more
comprehensive and accurate estimation of the spatial distribution of gamma
emitters on contaminated surfaces and structures.
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Conclusions

In this thesis, the applicability of Bayesian statistical methods to analyse mobile
radiometry data in radiological emergencies has been investigated, as a prospective
toolset to obtain additional information for decision-makers in emergency
situations, which may be understaffed, and may sometimes lack time and sensitive
equipment. As a result, two Bayesian algorithms were subsequently developed, one
for orphan source search and the other for estimation of the spatial distribution of
radionuclides within an area using gamma spectrometric data obtained by a
fictitious unmanned aerial vehicle borne detector. It can be concluded, that:

* Bayesian methods can be successfully applied to mobile spectrometry data,
yielding additional information for the decision makers in radiological
emergency situations.

* The developed algorithm for orphan source search could be utilised in its
current form for real emergency situations.

* Application of Bayesian methods in orphan source search can probably
offer better detection probability as the method utilises all of the data.
However, further investigations are needed to demonstrate this.

*  The algorithm for mapping the spatial distribution of a radionuclide surface
deposition in an area can be used as it is, if rough estimates of the
radionuclide distribution are needed. If significant spatial resolution over
larger areas (>10,000 m?) is required, the algorithm must be developed
further.

* Because Bayesian methods is a statistical data analysis method, the quality
of the data is crucial, and will be the determining factor in the accuracy of
the estimates. All of the factors discussed throughout the thesis;
signal-to-noise ratio of the data, angular variations of counting efficiency
and uncertainties of geographical coordinate will have a cumulative effect
on the estimations. Some of these factors, such as angular response of the
detector, might be omitted with a respective calibration, while others, like
signal-to-noise ratio of the data, should be maximised.
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