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Abstract

The core of this Doctoral thesis is mainly based in the studies of one-dimensional
initial-boundary value problems, which are given by a single non-linear hyperbolic
partial differential equation (PDE) with non-convex flux function, or by a system of
strongly degenerate parabolic PDEs, for the simulation of sedimentation processes
of solid particles immersed in a fluid. Particular attention is paid to the case of
settling in vessels with varying cross-sectional area. Sedimentation processes are
widely used in wastewater treatment (WWT) and mineral processing, where accu-
rate model calibration and reliable simulators are needed. Among the topics covered
in the research presented in this thesis are the construction of entropy solutions,
the development and implementation of reliable numerical schemes for hyperbolic
PDEs (and systems of PDEs), the solution of inverse problems of flux identification,
and the dissemination of results to the applied sciences.

The outputs of this thesis can be divided into three parts. The first part (Papers I
to III) contains the construction of the entropy solutions for the PDE modeling the
batch sedimentation in vessels with non-constant cross-sectional area (Paper I and II)
and for the PDE modeling centrifugal sedimentation (Paper III). The problem is in
both cases solved by the method of characteristics and the types of solutions are dis-
tinguished mainly depending on the initial value. Paper II contains the description
and solution of the inverse problem of flux identification for the model of sedimen-
tation in conical vessels due to gravity, and Paper III the inverse problem for the
model of centrifugal settling. In both cases, the solution of the inverse problem has
the advantage that almost the entire flux function can be identified from only one
experiment. These identification methods mean a significant advantage in compar-
ison with the classic one, made by standard tests in cylindrical vessels, in terms of
the portion of flux identified. An algorithm necessary for the identification from dis-
crete data is also presented in each problem (Papers II and III).

The second part (Papers IV to VI) includes the development of numerical methods
for the simulation of sedimentation in WWT. In Paper IV, a numerical scheme for the
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case of continuous and batch sedimentation in vessels with varying cross-sectional
area is studied. An advantageous CFL condition is derived as an improvement over
other numerical methods for the same kind of application. Simulations of continu-
ous and batch settling are also included. Papers V and VI consider reactive settling,
where the unknown is a vector of solid and liquid components, and each model is
described by a coupled system of convection-diffusion-reaction PDEs. In Paper V, a
method-of-lines formulation for the approximation of the model equations is intro-
duced. This formulation has the advantage that it can be solved by any time step-
ping solver, such as those commonly used in the WWT community where ordinary
differential equations (ODEs) should be solved simultaneously with the PDE sys-
tem. Additionally, an invariant-region property is proved for the scheme and simu-
lations of interesting scenarios are presented. In Paper VI, sequencing batch reactors
(SBRs) are studied. The model equations for the SBRs are derived following Paper V,
but with the addition that in this case, the extraction and filling of mixture lead to a
moving-boundary problem. The movement of the boundary is described by an ODE
which can be precomputed. A reliable numerical scheme that preserves the mass is
proposed and numerical simulations for the case of denitrification are shown.

The third part (Papers VII and VIII) is related to applications and dissemination of
the flux identification methods to the applied sciences. The validation of the inverse
problem for batch settling in conical vessels is presented in Paper VII. The validation
was carried out with data taken from activated sludge collected from the WWT plant
in Västerås, Sweden. Paper VIII contains a review of flux identification methods re-
lated to PDE models for sedimentation processes. Advantages and disadvantages
are discussed, and simulations of identified fluxes with the methods under study are
presented.

In Chapter 4 the numerical simulation of multidimensional batch sedimentation is
discussed and two-dimensional simulations are presented.
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Popular Science Summary

The separation of solid particles from a mixture in a fluid due to a specific force
(gravity or centrifugal) is called sedimentation or settling, and is present in many
natural processes, for example in alluvium, moraines (accumulation of unconsoli-
dated debris in glaciers), the formation of rocks or in reefs at the bottom of the ocean,
but it can also be seen in daylife, for instance, in a bottle of juice at the supermarket
or in a forgotten cup of coffee that with the past of days the particles of coffee slowly
tend to separate from the water.

This process is exploited in many industries. In mineral processing, the separation
is carried out in so-called thickeners, which are huge tanks where the main purpose
is to separate solid mineral from ore and water. Another application that widely uti-
lizes sedimentation is wastewater treatment, where in the Secondary Settling Tanks
the sedimentation due to gravity is applied to separate solid biomass from clean wa-
ter. In both cases sedimentation is carried out on a large scale, and driven mainly
by gravity. But not only big scale processes utilize this principle, blood fractionation
due to centrifugation is a common separation process in blood tests. These applica-
tions motivate the study of mathematical models for simulation which is one main
motivation of this thesis.

The first step in mathematical modeling is the introduction of variables (physical
quantities of interest) and equations, but also the assumptions and restrictions to be
considered in the model. In the case of modeling sedimentation processes the set of
equations are obtained from physical laws: these are partial differential equations
(PDEs), which are equations that measure the variations of physical quantities with
respect to time and space. The PDEs represent a rich source of interesting math-
ematical problems, such as the ones treated in this thesis. Some of the questions
related to PDE models are, for example, the existence and uniqueness of solutions.
For most of the PDEs, as in the case of models for settling processes, solutions are
practically impossible to obtain by pen and paper, hence approximate solutions are
desirable. The computational approximations of PDEs are carried out by iterative
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algorithms called numerical schemes. This thesis is also dedicated to develop reli-
able numerical schemes, which means that proofs of mathematical properties and
theorems about the schemes have to be carried out. Furthermore, computational
simulations of scenarios of interest made with the developed mathematical models
are included.

Another topic included in this thesis is the inverse problem of “finding” the flux func-
tion in the model of sedimentation which describes the flux of the solid particles de-
pending on its local concentration. Inverse problems, as its name says, are problems
defined contrariwise; given a part of the solution, for example, experimental data
from a laboratory, identify one or more functions that are part of the model. The in-
verse problems presented in this thesis play an important role as a bridge between
the mathematical models (theory) and the concrete applications (reality). They are
needed in the calibration step of the modeling. By calibration is here not only meant
parameter estimation, but finding an entire unknown function.

Dissemination of mathematical results to the scientific community other than math-
ematics is an important task when working with applied problems. This has been
done via conferences and publications in journals of water and chemical engineer-
ing with validation of the inverse problem with real data and simulations of different
schenarios.
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Chapter 1

Introduction

1.1 The sedimentation process

Sedimentation processes play an important role in many industrial operations and
nature. Some of the applications are related to chemical industry, food industry,
blood tests (medicine, biomedical tests), brewing, paper manufacturing, rock for-
mation, petroleum industry, oil industry, mineral processing and wastewater treat-
ment plants [25, 31, 66]. Sedimentation processes are commonly used to separate
clean water from solid particles forming sediment with two purposes: to recover
and reuse the water resource, and to thicken suspensions. In mineral processing of
copper the sedimentation is carried out after the flotation process, where the finely
divided mineral is mixed with a huge quantity of water. Thickening occurs in large
tanks called thickeners, see Figure 1.1, and the main purpose is the recovery of a
big part of the water, essential for the economical and environmental sustainabil-
ity of the industry. Sedimentation in wastewater treatments plants is performed in
two sorts of tanks called clarifiers, the primary clarifier and the secondary clarifier or
secondary settling tank (SST). An SST has a similar structure as the thickeners used
in mining where in the later, the main purpose is to recover clean water and reuse
biomass. In both applications the process is called continuous sedimentation, be-
cause there is a continuous feed flow to the vessel, and clean water and sediment are
also removed continuously.

The applications of this work focuses on the sedimentation process of small mono-
sized solid particles dispersed in a fluid settling to the bottom by gravitational or
centrifugal force, and part of it is dedicated to the study the reactive settling. The
aim is to study the batch and continuous sedimentation problem under different
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Figure 1.1: Illustration of a secondary settling tank (SST), the height x point-
ing upward is displayed to the left of the SST showing the bottom
x = 0, the feed level x = xf and the top x = H of the vessel.

vessel geometries. The main application is the simulation of the SST in wastewater
treatment plants. Numerical simulations of the SST can be used to test different op-
erational conditions, get an approximation of the solid concentration profile inside
the vessel, the quantity of clean water recovered and the concentration of the un-
derflow with respect time, and predict the possibility of overflows and unfavorable
conditions.

1.2 Motivation for modeling

The sedimentation processes studied here represent a rich problem class from both
a physical and mathematical point of view. From a physical point of view, the goal is
to find a model that accurately describes the phenomenon and the constitutive rela-
tions between variables. From a macroscopic approach the process can be modeled
using the theory of continuum mechanics. From this theory, models expressed by
partial differential equations (PDEs) can be derived considering the physical quan-
tities and constitutive relations involved. This approach is opposed, for instance, to
particle-based descriptions. The main model in this work is a quasi-one-dimensional
approximation of a more general one in several dimensions. Modeled by a single
PDE, the unknown solid volume fractionφ as a function of the height x ∈R and time
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t > 0 is described by

∂t
(

A(x)φ
)−∂x

(
Q(x, t )φ+γ(x)A(x) f (φ)

)= ∂x
(
γ(x)A(x)a(φ)∂xφ

)+ sf(x, t ), (1.1)

where the vessel is located between x = 0 (bottom) and x = H (top), here x < 0 and
x > H represent the pipes (outside the vessel), see Figure 1.1, A represents the cross-
sectional area as a function of x, f and a are non-linear functions of the unknownφ,
Q is the volumetric flow, discontiunous at one point of x (the feed inlet), and varies
with respect to t , γ is the indicator function which is γ(x) = 1 if x ∈ [0, H ] and γ(x) = 0
otherwise, and sf is a source term singular in x. The main assumption of this model
is that the solid volume fraction is a function of height and time only. This model can
be used for both, batch and continuous sedimentation, and is presented in detail in
Chapter 2. Equation (1.1) has ingredients that make it difficult to analyze. Since
Q is discontinuous and f is non-linear, (1.1) has a non-linear discontinuous flux.
Furthermore, the function a is zero for an interval of values of φ, hence (1.1) is a
second-order parabolic strongly degenerate PDE.

The analysis of this model from a mathematical point of view gives rise to various
challenges that can be studied separately as independent problems. One of the
problems connected to this type of PDEs is the study of existence and uniqueness
of solutions, which is related to the search of so-called entropy solutions, or physi-
cally relevant solutions. Also, the qualitative study of solutions of (1.1) is of interest
in, for example, operational control, see [40, 41, 42, 44] for the case of constant cross-
sectional area function. Another branch of study is the inverse problem to identify
the constitutive functions f and a, which is needed for calibration of the model. On
the numerical approximation of solutions, there are several aspects to consider. In
the search of reliable numerical methods, it is important to investigate convergence,
stability and consistency, and to study orders of convergence, error bounds and effi-
ciency, among others.

1.3 Research questions

The formulation of the mathematical problems treated in this thesis come from
physical processes, which are difficult to anticipate and control because of nonlin-
earities. These physical processes are: Continuous and batch sedimentation with
reactions in vessels with varying cross-sectional area; separation by centrifugation;
wastewater treatment in sequencing batch reactors. Some of the basic questions
related to the construction of the mathematical models are:

i) How general would the considerations be for the model in terms of number of
variables involved and approximations of the reality made?

3



ii) What are the physical laws that govern the process? Which constitutive as-
sumptions are needed to be imposed?

Physical laws can be written in terms of nonlinear PDEs, which give rise to general
and mathematical research questions:

iii) How should the initial PDEs obtained from physical laws be reformulated to
include suitable constitutive relationships and form a well-posed problem?

iv) Can one construct a numerical method that gives reliable simulations, which
do not take too long to simulate? Do the numerical solutions approximate
those of the PDEs? Are discontinuities resolved correctly? Are the simulated
concentrations non-negative and the volume fractions between zero and one?

v) How does one determine the constitutive functions in the PDE? Using data
from a large plant or performing tailored experiments in a laboratory? Is it
possible to construct new more efficient identification methods than the tra-
ditional ones by utilizing the knowledge of the PDE solution?

To answer the latter question and the one under iii) “Are discontinuities resolved cor-
rectly by a numerical method?”, further knowledge of the PDE solutions are needed.
This leads to the following research questions:

vi) Is it possible to construct solutions accurately? What are the main structures
of the qualitatively different solutions?

vii) When new simulation and identification methods have been obtained, how
do they perform with real data and do they compare to the existing ones?

This thesis means a contribution to the answers of these questions.

1.4 Previous works

One of the first models for sedimentation processes of ideal suspensions was done
by Steinour in 1944 [100, 101, 102]. In his work, he introduced a model for the one-
dimensional batch sedimentation under the assumption that the velocity of the par-
ticles depends only on the local solid volume fraction. Kynch in 1952 [84] showed
that the idealized problem in cylindrical vessels can be modeled by a single non-
linear conservation law, and built the solution of the problem by using the method
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of characteristics. One of the extensions of Kynch’s model to continuous sedimenta-
tion was done by Petty in 1975 [92]. In that work he constructed solutions by using
the method of characteristics, besides, he analyzed the possible steady state solu-
tions and boundary concentrations.

In 1990, Bustos, Concha and Paiva [27] treated continuous sedimentation as a con-
trol problem by an initial boundary value problem. Their model equation neither
included the effective solid stress function nor any source term. They built solutions
of their problem by subdividing the regions of smoothness and identifying lines of
continuity and discontinuity. The main result is the proof that the solution satisfies
the Kružkov-type entropy condition. In the same year, Bustos, Concha and Wend-
land [26] continued exploring the continuous sedimentation problem given in [27]
by constructing the corresponding global weak solutions and studying control op-
erations. Bustos and Concha in 1992 [24] showed that in the continuous sedimenta-
tion of ideal suspensions the values assumed by the concentration at the boundaries
are more restricted than those established by Petty [92]. Gimse and Risebro in 1992
[68] solved a Cauchy problem arising in oil reservoir simulations. The PDE model
has a similarity to that for models of continuous sedimentation: the flux function
may have discontinuities in the space variable.

One of the first models in one-dimensional sedimentation in vessels with varying
cross-sectional area was presented by Chancelier, De Lara and Pacard in 1994 [29],
where a complete description of the continuous sedimentation model is given. The
model includes a discontinuous flux and singular source term, and the cross-sectional
area is added as a weight function to the PDE. Concerning well-posedness (existence
and uniqueness), they smoothed the spatial discontinuities and referred to classical
results. Furthermore, they also presented an extension of the model to include two
types of particles.

Diehl in 1995 [36] elaborated a theoretical framework for non-linear conservation
laws with discontinuous flux and singular source term. That work included a unique-
ness result based on the so-called condition Γ, which represents a generalization of
the classical entropy condition for scalar conservation laws. He also applied this to
the problem of continuous sedimentation [37]. Later in 1996 [51], the same author
showed that the condition Γ is equivalent to the so-called viscous profile entropy
condition. Jeppsson and Diehl in 1996 [78] compared two numerical methods in the
simulation of the one-dimensional sedimentation process in cylindrical SSTs and
without compression. The first one was based on Godunov’s numerical flux and
the second on the method by Takács et al. [103]. They concluded that the solutions
obtained with the first method are realistic and seemed to converge to the entropic
solution unlike the method of Takács which is defined only for 10 fixed layers. A one-
dimensional model of continuous sedimentation without compression effect but

5



including varying cross-sectional area was presented by Diehl in 1997 [38]. In that
work a complete description of the steady-state solutions of continuous sedimenta-
tion is given. The model has a similar structure as the one presented by Chancelier
et al. in [29], and the results obtained can be considered as an extension of [29] for
the mono-sized sedimentation case.

Bürger and Wendland in 1998 [21, 22] presented a comprehensive study on entropy
solutions of the strongly degenerate parabolic equation with continuous flux mod-
eling sedimentation as an initial–boundary value problem for the thickening zone
(0 < x < xf). A contribution about the phenomenological foundation and mathe-
matical theory of sedimentation was published in a book by Bustos and colleagues
in 1999 [25].

In 2000, many remarkable contributions to improve the mathematical modelling of
batch and continuous sedimentation processes were made [13, 14, 23, 39, 56, 70].
Evje and Karlsen in [56] delved into the entropy solutions of a class of strongly de-
generate PDE, which one particular application is the settling and consolidation of
suspensions. They also proposed a finite-difference numerical scheme and proved
monotonicity and convergence to the entropy solution. Bürger, Evje and Karlsen
in [13] studied the quasilinear strongly degenerate parabolic equation with a dis-
continuous diffusion coefficient arising in mathematical modeling of sedimentation
consolidation processes. The same authors together with Lie proposed a conser-
vative numerical scheme satisfying a discrete entropy principle for the simulation
of sedimentation processes [14]. The work by Diehl in [39] demonstrated the im-
pact of a converging cross-sectional area on the concentrations at the bottom for in-
compressible suspensions. He also showed the special treatment needed to define
proper boundary conditions satisfying a generalized entropy condition. A detailed
derivation of a multi-dimensional model for batch sedimentation is presented by
Bürger, Wendland and Concha in [23]. They derived a constitutive relation between
the solid-fluid relative velocity and the volume fraction of the solids, and obtained
a one-dimensional model in the case of vessels with constant cross-sectional area.
Gustavsson and Oppelstrup in [70] studied the batch sedimentation process in two
spatial dimensions including a continuous movement of the bottom wall. A function
that simulates the irreversibility of the compression effect is included in the model,
and the latter is finally described by a system of coupled PDE and solved numerically
using a finite volume scheme.

A one-dimensional model and numerical method for batch and continuous sedi-
mentation that considers vessels with non-constant cross-sectional area is proposed
by Bürger, Damasceno and Karlsen in 2004 [7]. The model includes the compression
effect and the numerical method developed uses the Engquist-Osher numerical flux,
see [54]. The method of characteristics is used to dermine the solution without com-
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pression considering (only) cylindrical and conical vessels. Solutions for different
stationary states with several values of underflow concentrations and some of the
solutions obtained with the numerical method for the transient case are shown.

In the work by Bürger, Karlsen, Risebro and Towers in 2004 [17] a model for contin-
uous sedimentation in vessels with constant cross-sectional area is analyzed. They
present the notion of entropy condition for the continuous sedimentation model
based on the Kružkov entropy condition, together with a series of technical lemmas
and essential results to prove the uniqueness of the entropy solution in a particu-
lar class of discontinuous functions. They defined a numerical method based on
the numerical flux of Engquist-Osher and proved its convergence to the entropy so-
lution. On the other hand, Bürger, Karlsen and Towers in 2005 [18] extended the
entropy condition given in [17] which for the case of vessels with constant inner
cross-sectional area that has different values for the pipes. Two models are defined,
one with constant inner cross-sectional area and the other with a general varying
cross-sectional area as function of depth. They define a numerical scheme based on
finite differences for the first model and prove convergence of the numerical solu-
tions to the BVt -entropy solution. Furthermore, the stationary case is studied and
some stationary solutions under different feed conditions are obtained. An extended
notion of the entropy condition and uniqueness results given in [18] was developed
by Diehl in 2009 [46].

An upwind scheme is used by Bürger, Coronel and Sepúlveda in 2006 [6] for the
numerical approximation of an initial and boundary value problem of a parabolic
strongly degenerate PDE that models different types of sedimentation; gravity set-
tling in a closed vessel, centrifugal settling in a rotating tube and a rotating basket
centrifuge. They make a change of variable to simplify the analysis and determine a
series of bounds needed to show that the method converges to the entropy solution.
In addition, some numerical results for different vessels are shown.

To launch a model framework for continuous sedimentation with compression ef-
fects to the wastewater treatment community, a model of continuous sedimenta-
tion for SSTs with constant cross-sectional area was introduced by Bürger, Diehl and
Nopens in 2011 [12]. This model was later called the Bürger-Diehl model. This ap-
proach considers a spatially discontinous flux function, a singular source term due
the feed inlet, a degenerate term for the compression effect, and also a function that
describes the turbulence near the feed inlet produced by the feed inlet mechanism.
This thesis is a continuation of the research about the mathematical modeling of
sedimentation processes such as the ones presented above.

Other models have been reported by various authors. In [108], the authors present a
set of equations to compute the sludge blanket level of batch settling tests in cylin-
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drical and conical vessels, they also validated this approach with experimental data.
In [53], the one-dimensional idealized flux theory is compared with two-dimensional
simulations obtained from a CFD program. An approach from the kinematic wave
theory applied to sedimentation in vessels with cross-sectional area increasing down-
ward can be found in the works by Schneider [98, 99] and Schaflinger [97]. Schaflinger
also worked with experiments on the same problem [96]. An interesting construc-
tion of analytical solutions of the model of continuous sedimentation without com-
pression was made by Li and Stenstrom in [86].

For a historical perspective and concise review of the contributions to the research
in modeling sedimentation processes during the 20th century, see [30, 31]. For an
overview of mathematical problems that emerge from the study of sedimentation
processes, see [47] and references therein. For a review of computational fluid dy-
namics modeling SST over the last three decades, see [62].

One of the aspects studied in this thesis is the inverse problem of flux identification.
One of the first methods of flux identification was the graphical method discussed by
Kynch in 1952 [84]. The method utilized the construction of the solution the partial
differential equation to determine the tail of the flux function.

The modeling and simulation of the reactive settling taking place in the SST takes
into account the sedimentation process of multiple solid and liquid phases and also
the reactions between them. In wastewater treatment plants, the main reactions of
the activated sludge occur in the so-called biological reactor, which is often simu-
lated by ordinary differential equations (ODEs) by assuming a completely homoge-
neous mixture. Attir and Denn in 1978 [2] introduced one of the first models and
numerical algorithm for the simulation of activated sludge in the biological reac-
tor. The model was composed of two ODEs, one for the substrate and one for the
biomass component. Henze et al. in 1987 [71] introduced one of the most widely
used models (in the recent years) for activated sludge, the activated sludge model
number one or ASM1. Detailed treatments of the modeling of biological reactors by
systems of ODEs are provided in the books [69, 72]. Further studies about differ-
ent ODE–based models of activated sludge can be found in [91, 65, 60]. Simulation
models and control of activated sludge in the biological reactor and SST combining
ODEs and PDEs can be found in [50, 49, 48]. The work presented in Paper IX [4]
contains one of the first PDE based models for the simulation of the reactive settling
produced in the SST in batch condition. Later, in [11] this model was extended to a
general multicomponent model for the reactive settling in the SST under continuous
operation.

A combination of biological reactions including settling process is carried out in
the so-called sequencing batch reactors (SBRs). The modeling and simulation of
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SBRs in the literature is often accomplished without PDE–based models. Irvine, Fox
and Richter et al. in 1977 [77] described the SBR process and proposed an ODE–
based model in balance laws and chemical reaction of the concentration of waste,
organisms and oxigen. He incorporates the fill and draw, and aereation rates in
his model equations. A time dependent model which incorporates the concentra-
tion of particulate organisms, biomass, inert particulate organics, soluble substrate,
soluble intermediate product and soluble inert substrate was proposed by Ibrahim
and Abasaeed in 1995 [74]. Gao, Peng and Wu in 2010 [61] presented a nitrification-
denitrification model for the SBR process. The model is mainly based in the time-
dependent differential equations for the ammonium and nitrite concentration. In
[107] the authors utilize a mathematical model based on four substrates and two
biomass components developed earlier in [55] for the simulation of the SBR describ-
ing three phases, the anoxic filling, aerobic filling and react phase. In [76] the authors
utilize mathematical models of SBR to study the optimal design and operation of the
SBRs. Extended models of SBR to the sequencing batch anaerobic reactors can be
found in [57, 89]. Other ODE based models for the simulation of SBR process have
been studied in [80, 81, 82, 83].

The inverse problem of flux identification has been studied by utilizing a variety
of different techniques. A commonly used method of identification in wastewater
treatment community is by the fitting of a prescribed functional flux given a se-
quence of batch experiments in cylinders [33, 35, 75, 87]. In [32], the authors ad-
dress the flux identification problem by utilizing functional analysis techniques in
the minimization of a non-standard cost functional. In [79], a reconstruction of the
unknown flux is carried out from the assumption of a convex flux function and that
a single shock wave is formed. A least squares technique in functional spaces is uti-
lized in [58]. And in [28], the inverse problem is formulated as an optimal control
problem. The line followed in this thesis is focused in the knowledge of the con-
structed entropy solutions of the direct problem due to the method of characteris-
tics [8, 43]. For further references about flux identification methods see Paper VIII
and references therein.

1.5 Overview of the new results of this thesis

In this work, the solutions are constructed and established results for existence and
uniqueness are used, and a qualitative description of the solutions for the case of
batch sedimentation is given. Furthermore, we solve the inverse problem of the
identification of the flux function f , and validate the identification method with ex-
perimental information. In addition, numerical methods for the batch and contin-
uous sedimentation are studied. Models of reactive settling, including suitable nu-
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merical schemes are also outputs of this thesis. Proofs of monotonicity and invariant
region properties under CFL conditions (mathematical relations between the space
and time steps) are included. One of the benefits of having a numerical scheme sat-
isfying an invariant region property is that the approximated solutions will remain
in a bounded region where physical quantities are relevant. The monotonicity of
the numerical scheme under a CFL condition ensures the stability of the numerical
scheme.
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Chapter 2

Model equations for sedimentation

The model is based on the continuum mechanics approach of the theory of mix-
tures. This theory considers the mixture as a superposition of interacting continuous
media, in this case the solid particles and fluid, see [25, 52, 106]. Each of these two
phases satisfies the conservation of mass and linear momentum PDEs plus bound-
ary and initial conditions.

2.1 Model equations in 3D

Assume that the sedimentation process occurs in a fixed domain Ω⊆ R3 away from
sources. Here the domainΩ represents the vessel. We define the volume fraction of
solid particles by φ := φ(x , t ) which depends on position x ∈ Ω and time t ∈ (0,T ],
where T ∈ R+ is the end time. The function φ is a scalar quantity and represents
the fraction of volume occupied by the solid phase immersed in the fluid, and φmax

represents the maximum volume fraction. The conservation of mass for the solid
and fluid phases is expressed by

∂tφ+∇· (φu
)= 0, (2.1)

∂t (1−φ)+∇· ((1−φ)v
)= 0, (2.2)

where u := u(x , t ) and v := v (x , t ) are the solid and fluid velocity fields, respectively,
vectorial quantities. The equations for conservation of momentum for both phases,
solid and fluid, are obtained considering gravity, viscous and interaction forces, in-
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cluding also pressure gradients. The momentum equations are

ρsφDt u =−∇ps +∇·T E
s −ρsφg k +m, (2.3)

ρf
(
1−φ)

Dt v =−∇pf +∇·T E
f −ρf

(
1−φ)

g k −m, (2.4)

where ps := ps(x , t ) and pf := pf(x , t ) are the pressures of solid and fluid, respectively,
T E

s and T E
f are the solid and fluid viscous stress tensors, respectively, g is the acceler-

ation of gravity, k is the upward unit vector and m is the solid-fluid interaction force
per unit volume. The operator Dt (·) denotes material derivative, that for solid and
fluid velocity is defined as

Dt u := ∂t u + (u ·∇)u,
(
Dt v := ∂t v + (v ·∇) v .

)
Under the constitutive assumptions that the viscous stress tensors T E

s , T E
f and the

interaction force m depend only on φ, u and v , the PDE system (2.1)–(2.4) has five
unknown functions φ, u, v , ps and pf. By components there are nine unknowns and
eight equations, i.e. the system is underdetermined, and an extra relation between
the unknowns is needed. The multi-dimensional model by Bürger et al. [23] is the
fundamental pillar from which the one-dimensional model studied in this work is
derived. The authors consider the viscous term with a similar form as in the Navier-
Stokes equations for the solid and fluid phase, i.e.

T E
s = T E

s (φ,u) :=µs(φ)
(
2ε (u)+η(φ) (∇·u) I

)
,

T E
f = T E

f (φ, v ) :=µf(φ)
(
2ε (v )+η(φ) (∇·v ) I

)
,

where ε (·) = (1/2)(∇(·)+∇(·)T ), the symmetric part of the gradient operator on a vec-
tor, I is the identity matrix,µs andµf are the viscosity functions for the fluid and solid
phase, respectively, and η is a function of φ. They also consider that m is function of
φ and introduce the relative velocity v r := u−v . Furthermore, they introduce a con-
stitutive relation between the solid and fluid pressures and two new variables, the
excess pore pressure p and the extra solid stressσe :=σe(φ), reducing the number of
unknowns by one. The extra solid stress function satisfies that σ′

e(φ) = 0 for φ ≤ φc

and σ′
e(φ) ≥ 0 for φc <φ≤φmax where φc ∈ (0,φmax] is the critical concentration. Af-

ter adding the momentum equations and making a dimensional analysis to neglect
smaller terms they obtain one of the main results for the relative velocity:

v r = v r(φ,∇φ) = − f (φ)

∆ρgφ2(1−φ)

(
σ′

e(φ)∇φ+∆ρgφk
)

, (2.5)

where ∆ρ = ρs −ρf and f := f (φ) is a non-linear function that comes from the in-
teraction force m. This function is called the batch flux density, that in some pa-
pers is denoted by fb or fbk, introduced in [84]. The flux function f can be writ-
ten in terms of the hindered settling function vhs by f (φ) =φvhs(φ), and it satisfies:
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f (0) = f (φmax) = 0, f (φ) > 0 for 0 <φ<φmax, f ′(0) > 0 and f ′(φmax) ≤ 0. The equal-
ity (2.5) means that the relative velocity has only functional dependence on φ and
∇φ. Then, grouping terms and introducing a new variable, the volume-average flow
velocity of the mixture q :=φu + (1−φ)v = u − (1−φ)v r, the PDE system (2.1)–(2.4)
is reduced to the three PDEs

∂tφ+∇· (φq +φ(1−φ)v r
)= 0,

∇·q = 0,

∇p +∇σe −∇· (2µ(φ)ε
(
q

))=−∆ρφg k +∇·R
(
φ, v r

)
,

where the definition of the operator R involves the gradient and divergence of v r

and gradient of φ. Replacing (2.5), the operator R can be considered as a function of
φ and ∇φ only, i.e. R = R(φ,∇φ), then the final system is written in the unknowns φ,
p and q and given by

∂tφ+∇· (φq − f (φ)k
)=∇·

(
f (φ)σ′

e(φ)

∆ρgφ
∇φ

)
, (2.6)

∇·q = 0, (2.7)

∇p +σ′
e(φ)∇φ−∇· (2µ(φ)ε

(
q

))=−∆ρφg k +∇·R
(
φ

)
, (2.8)

Equations (2.6)–(2.8) define Model 1 which has been widely used in one-dimensional
approximations of sedimentation in vessels with constant cross-sectional area, for
example [9, 10, 12, 14, 15, 45, 64], especially for the case of batch sedimentation
where the volume-average flow velocity of the mixture is zero, and the problem can
be reduced to a one-dimensional second-order parabolic strongly-degenerate non-
linear PDE. Also, there are articles dealing with the multi-dimensional case based on
this model [19, 20, 22, 93, 94].

The model derived by Gustavsson and Oppelstrup in [70] has the same starting point
with the conservation of mass and momentum for the solid and fluid phases. One
of the main differences with Model 1 is that the model in [70] is made for the prob-
lem of sedimentation that contemplate the possibility to have horizontal movement
of the bottom of the vessel. Nevertheless, there are more differences between the
two approaches than the inclusion of a horizontal movement. The treatment of the
pressures is given in a slightly different way. In [70], the authors have introdued the
so-called “memory function”φ∗ to the definition of the solid pressure, and this term
can be compared with the function σe with a variable critical concentration. Be-
sides, the fluid stress tensor is neglected. The definition of the interacting force m
is also slightly different in both cases. In the derivation of a reduced PDE system, a
dimensional analysis is carried out with the same purpose as in Model 1, but in this
case this is made separately for both momentum equations, and a different relation
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for v r was defined. Considering the variables defined in Model 1 this relation is given
by

v r = f (φ)

∆ρgφ2(1−φ)
∇p. (2.9)

In this case v r is function of φ and the gradient of the reduced pressure p. We can
observe that the relative velocity follows a Darcy-type equation. In [70], this relation
is written in terms of the permeability function K (φ) = f (φ)/

(
∆ρgφ2

)
. The PDE

system derived when following the same idea as in [70] but with the notation and
variables defined for Model 1, including the pressure treatment, and without the
“memory function”, is

∂tφ+∇· (φu) = 0, (2.10)

∇·
(

u − f (φ)

∆ρgφ2 ∇p

)
= 0, (2.11)

∇p +σ′
e(φ)∇φ−∇·T E

s (φ,u) =−∆ρ gφk . (2.12)

The system (2.10)–(2.12) can be solved for the unknowns φ, p and u, and we will re-
fer to it as Model 2. In Model 1 the first two equations (2.6)–(2.7) are decoupled from
p. Conversely, in Model 2 this is not satisfied; instead the second equation (2.11)
is coupled with the pressure, and the equation can be interpreted as the compress-
ibility of the solid phase. This model is an example of a different approach for the
problem, that can be used to simulate the process in the multi-dimensional case.
The relations (2.5) and (2.9) are equivalent if ∇p = −σ′

e(φ)∇φ−∆ρφg k , which is in
agreement with (2.12) when we neglect T E

s . The reasons for the difference in both
constitutive relations is the following. To find the constitutive relation (2.5) in [23],
T E

s and T E
f were neglected only in the derivation of v r, keeping both terms in the

final equation, whereas in [70] just T E
f is neglected. If we use the same idea as in

[23] and neglect T E
s in the dimensionless equation (2.12) only to find a constitutive

relation for v r and replacing in (2.9), we will obtain (2.5).

Another system of equations can be derived from the set of equations (2.1)–(2.4) in a
similar way as Model 2 by neglecting T E

f based on a mass-average velocity approach.
Defining the mass-average velocity by v m := (φρsu + (1−φ)ρfv )/ρ(φ), where ρ(φ) =
ρsφ+ρf(1−φ), we may rewrite Equation (2.5) as

f (φ)

∆ρgφ2(1−φ)
∇p = ρ(φ)

∆ρgφ(1−φ)

(
v m −q

)
.

Then, assuming that the solid viscous stress tensors depends on φ and v m, i.e.,
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changing the argument u by v m, T E
s = T E

s (φ, v m), from (2.10)–(2.12) we obtain

∆ρ∂tφ+∇· (ρ(φ)v m) = 0, (2.13)

∇·
(

v m − vhs(φ)

gρ(φ)
∇p

)
= 0, (2.14)

∇p +∇σe(φ)−∇·T E
s (φ, v m) =−∆ρφg k , (2.15)

which has the unknownsφ, p and velocity field v m instead of u. The main advantage
of the system (2.13)–(2.15) is that the second term in (2.14) incorporates a bounded
nonlinear term vhs(φ)/ρ(φ) instead of f (φ)/φ2 which for typical unimodal flux func-
tions [105] tends to infinity when φ approaches zero. It seems that this model has
not been studied in the literature.

The three models presented are based from full derivations of physical laws and con-
stitutive assumptions. This thesis utilizes one-dimensional approaches of Model 1.

2.2 One-dimensional approach

Models based on one-dimensional approximations of the problem for vessels with
constant cross-sectional area have been widely used in applications for continuous
and batch sedimentation [5, 34, 35, 104]. Also many simulation software packages
are based on this kind of models [59, 63, 67, 95, 109]. The one-dimensional approxi-
mation results as a natural assumption since the sedimentation due the gravity force
is given essentially in the vertical direction. The aim of this section is to present the
derivation of the one-dimensional model of sedimentation in vessels with varying
cross-sectional area that is used in the papers that make up this doctoral thesis.

2.2.1 Batch sedimentation with varying cross-sectional area

Let Ω ⊆ R3 be the domain, which for batch sedimentation represents the vessel
where the sedimentation process occurs, see Figure 2.1. We consider vessels with
axisymmetric geometry and circular horizontal cross-section whose area is defined
by a non-negative function A := A(x) for 0 ≤ x ≤ H , where x is the vertical coordinate
(increasing upwards) and H is the height of the vessel. The radius of the horizontal
cross-section at the height x is given by r (x) = (A(x)/π)1/2. The one-dimensional
approximation is obtained from the multi-dimensional PDE system (2.1)–(2.2), and
using the equations derived in Model 1, under the main assumption that the volume
fraction is constant at each horizontal cross-section, i.e. φ := φ(x, t ) for 0 ≤ x ≤ H ,
and that wall effects are negligible. Then the gradient of φ (also 1−φ) varies only
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Figure 2.1: Batch sedimentation in three different types of vessels with down-
ward decreasing cross-sectional area.

with respect to x and t . The batch sedimentation is given in closed vessels and can
be identified by the absence of in- and outflows. Then the natural boundary condi-
tions for the solid and fluid velocities are u ·n = 0 and v ·n = 0 for n the outward-
pointing normal of ∂Ω, the boundary ofΩ. Let 0 ≤ x1 < x2 ≤ H and the sub-domain
Ω̃ := {x ∈Ω : x1 ≤ x ≤ x2}. Integrating (2.1) over Ω̃, we get from the first term∫

Ω̃

(
∂tφ

)
dx = ∂t

∫
Ω̃
φdx = ∂t

∫ x2

x1

A(x)φ(x, t )dx =
∫ x2

x1

∂t
(

A(x)φ(x, t )
)

dx. (2.16)

The divergence theorem for the second term over the boundary ∂Ω̃ = S1 ∪ S2 ∪ S∂,
where S1 := {

x ∈ ∂Ω̃ : x = x1
}
, S2 := {

x ∈ ∂Ω̃ : x = x2
}

and S∂ := ∂Ω∩∂Ω̃, implies∫
Ω̃
∇· (φu

)
dx =

∫
S1

(
φu

) · (−k) dS +
∫

S2

(
φu

) ·k dS +
∫

S∂

(
φu

) ·n dS

=φ(x2, t )
∫

S2

u ·k dS −φ(x1, t )
∫

S1

u ·k dS.

where k is the upward unit vector as in Section 2.1. Assuming there is no angular
variation, and using cylindrical coordinates for the surface integrals, we have∫

Ω̃
∇· (φu

)
dx =φ(x2, t )

∫ r (x2)

0
2πu ·kr dr −φ(x1, t )

∫ r (x1)

0
2πu ·kr dr. (2.17)

In the integrals on the right-hand side u is considered in cylindrical coordinates. We
define the horizontal-average solid velocity

u(x, t ) = 1

A(x)

∫ r (x)

0
2πu ·kr dr,

which is a scalar quantity that depends only on the spatial coordinate x and time t .
Replacing u in the equality (2.17) and using the fundamental theorem of calculus,
we get ∫

Ω̃
∇· (φu

)
dx =

∫ x2

x1

∂x
(
φ(x, t )u(x, t )A(x)

)
dx. (2.18)
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Since in both equalities (2.16) and (2.18) the values of x1 and x2 were chosen arbi-
trary, from Equation (2.1) we obtain

∂t
(

A(x)φ
)+∂x

(
A(x)φu

)= 0, (2.19)

where the arguments of the unknowns φ and u were omitted only for clarity. The
derivation of the one-dimensional version of the conservation of mass for the fluid
phase can be made in a similar way using Equation (2.2) and defining v by replacing
v instead of u in the definition of u. The one-dimensional version of (2.2) is given by

∂t
(

A(x)(1−φ)
)+∂x

(
A(x)(1−φ)v

)= 0. (2.20)

Using the definition of the horizontal-average velocities u and v we can define the
relative horizontal-average velocity by

v r(x, t ) := u(x, t )− v(x, t ) = 1

A(x)

∫ r (x)

0
2πv r ·kr dr.

Replacing the constitutive relation (2.5) along with the fact that ∇φ = ∂xφk , we ob-
tain the one-dimensional constitutive relation

v r = 1

A(x)

∫ r (x)

0
2π

(
− f (φ)

∆ρgφ2(1−φ)

(
σ′

e(φ)∂xφ+∆ρgφ
)

k
)
·kr dr

= − f (φ)

∆ρgφ2(1−φ)

(
σ′

e(φ)∂xφ+∆ρgφ
)

.

Defining

q(x, t ) :=φu(x, t )+ (1−φ)v(x, t ) = 1

A(x)

∫ r (x)

0
2πq ·kr dr,

and adding the one-dimensional equations (2.19) and (2.20) we get the one-dimensional
approximation of (2.7), ∂x

(
A(x)q

)= 0, which implies A(x)q(x, t ) =Q(t ), for Q a func-
tion of the time t . Considering that in batch sedimentation the boundary conditions
are given by zero flux, q ·k = 0 at the top and q · (−k) = 0 at the bottom, then replac-
ing this in the definition q(0, t ) = q(H , t ) = 0, we conclude that A(x)q(x, t ) = 0. Using
the relation φu = φ(1−φ)v r +φq , and q = 0 we obtain the main one-dimensional
equation

∂t
(

A(x)φ
)−∂x

(
A(x) f (φ)

)= ∂x

(
A(x) f (φ)σ′

e(φ)

∆ρgφ
∂xφ

)
. (2.21)

From the zero-flux boundary conditions at the top x = H we get u · k = v · k = 0,
and at the bottom x = 0 we have u · (−k) = v · (−k) = 0. These conditions imply that
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v r ·k = 0 at the top and v r · (−k) = 0 at the bottom, then v r(0, t ) = v r(H , t ) = 0 and the
boundary conditions are given by

− f (φ(x, t ))−a(φ(x, t ))∂x (φ(x, t ))|x=0,H = 0.

These follow from the zero flux boundary condition and condition Γ, see [37, Section
5]. For σe ≡ 0, since the flux function is assumed to be zero only for φ = 0 and φ =
φmax, the natural boundary conditions are

φ(0−, t ) =φmax, φ(H+, t ) = 0, t ≥ 0.

Then (2.21) plus the above boundary conditions and an initial condition φ(x,0) =
φ0(x) can be solved for the unknown φ = φ(x, t ). Observe that since the equations
are decoupled from the pressure in the multi-dimensional model, in this one-dimen-
sional case it is not needed to solve (2.21), and then we need not to solve the momen-
tum equation. On the right hand side of (2.21) the function

a(φ) = f (φ)σ′
e(φ)

∆ρgφ

is related to the compression of the solid particles, in some applications called dcomp,
[10, 12].

2.2.2 Continuous sedimentation

The extended one-dimensional model for continuous sedimentation has to manage
the inclusion of a feed inlet located at some point 0 < xf < H and outward volumetric
flows, the effluent at the top and underflow at the bottom of the vessel. The vessel is
divided into two regions, the clarification zone, above the feed inlet and the thicken-
ing zone, below the feed inlet, see Figure 2.2. Furthermore, the domain in this case
isΩ=R, which implies also the extention of the cross-sectional area function to the
pipes by, for example, A(x) = A(H) for x > H and A(x) = A(0) for x < 0, [38]. It is also
assumed that hindered settling occurs only inside the vessel, i.e. the batch flux f is
zero outside the vessel, for x < 0 or x > H . The feed inlet is added into the equation
through a singular source term that involves the Dirac distribution, the in- and out-
flows are included in the function Q, which in this case is not zero and depends also
on x, and has a discontinuity in the feed inlet position x = xf. The PDE modeling the
process is given by

∂t
(

A(x)φ
)−∂x

(
Q(x, t )φ+γ(x)A(x) f (φ)

)= ∂x
(
γ(x)A(x)a(φ)∂xφ

)+δxf (x)s(t ) (2.22)

where δxf is the xf-translation of the Dirac distribution δ, s(t ) is the mass entering
the vessel per time unit, and
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Figure 2.2: Vertical cross-section of the vessel including pipes for the contin-
uous sedimentation process.

Q(x, t ) =
{

Qe(t ), for x > xf,

Qu(t ), for x < xf,
γ(x) =

{
1, for 0 ≤ x ≤ H ,

0, for x < 0 or x > H .

Here the volumetric flows (volume per time unit) Qe and Qu are the flow up and
down, respectively. In many publications of continuous sedimentation, as in those
cited above, also in Paper II, the spatial coordinate is depth instead of height. It is
also possible to add a function modeling the dispersion effect produced by the feed
inlet mechanism in the same way as in [12]. If ddisp = ddisp(x) is the dispersion func-
tion modeling mixing due to the feed inlet, such that ddisp(x) = 0 for x ≤ 0 and x ≥ H ,
then this is included in the model equation (2.22) by adding ∂x

(
A(x)ddisp(x)∂xφ

)
on

the right-hand side. Similar models can be found in [7, 16, 18, 29, 38].
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Chapter 3

Overview and main results of the
papers

The purpose of this chapter is to present a compendium of the results obtained in
the papers of this thesis, they are divided depending on the topic and contribution
made.

The first section of this chapter contains the papers related to theoretical studies of
entropy solutions and the inverse problem of flux identification. The second sec-
tion is about the results obtained from the numerical simulation of the PDEs for the
models sedimentation processes, and the third section is about the application of
the theoretical results to specific problems in the applied sciences.

3.1 Exact solutions and inverse problem

In the first contribution, Paper I, batch sedimentation of an ideal suspension in a
vessel with variable cross-sectional area is modeled by

∂

∂t

(
A(x)φ

)− ∂

∂x

(
A(x) f (φ)

)= 0, for x ∈ (0,1), t > 0, (3.1)

φ(x,0) =φ0, for x ∈ (0,1), (3.2)

φ(0+, t ) = 1, φ(1−, t ) = 0, for t > 0, (3.3)

where φ is the local solids volume fraction, A is the cross-sectional area function, f
is the flux function, and φ0 is the initial volume fraction (constant). Equation (3.1)
is obtained by setting σe = 0 in (2.21), see Chapter 2. The flux f belongs to the set of
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Figure 3.1: Vertical cut of three vessel geometries generated by the cross-
sectional area A given by (3.4).

C 2[0,1] positive unimodal functions, such that f (0) = f (1) = 0, and it has not more
than one inflection point φinfl > 0. The point of maximum of f is denoted by φ̂ ∈
(0,1). The flux also needs to satisfy that f ′′(φ) < 0 for φ ∈ (0, φ̂). An example of such
a flux function is

f (φ) =φ(
e−rVφ−e−rV

)
, for a fixed parameter rV > 0.

The cross-sectional area function used is given by

A(x) =
(

p +qx

p +q

)1/q

, (3.4)

with p, q 6= 0 two independent parameters. This type of cross-sectional area function
includes a wide spectrum of vessel geometries, for example, the truncated cones, see
Figure 3.1.

It is well known from the theory of hyperbolic PDEs that the uniqueness of solutions
of equations such as (3.1) is not always satisfied [73, 85]. For that reason the concept
of entropic solution is introduced, which in simple terms means a physically rele-
vant solution. Furthermore, due to the possibility of the existence of solutions with
discontinuities, the entropy solutions sought must satisfy jump and entropy condi-
tions.

Apart from studying the existence and uniqueness of entropy solutions, there are
a couple of interesting questions regarding regularity and behavior of the solution.
Some of them are: Is there a finite number of discontinuities in the solution? Do the
discontinuities intersect each other and when? How many regions of smooth solu-
tion in the xt-plane are there? This paper has answered all these questions. The en-
tropy solutions were constructed, which were described in detail showing that there
exist at most two discontinuities, the upper discontinuity h := h(t ) and the bottom
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Figure 3.2: Illustration of a batch sedimentation test in a conical vessel. The
test starts with homogeneous concentration C0 = ρsφ0 at t0 and
the settling process is shown for the times t1, t2, t3, and t4 together
with the solid-liquid interface h in red.

discontinuity b := b(t ), that may or may not intersect, see Paper I, Figure 3. The
solutions where classified into three types of solutions depending on φ0. The con-
struction of the entropy solutions was based on the method of characteristics, and a
set of equations for the discontinuities and solution φ was obtained. Uniqueness of
the constructed solutions was guaranteed by [90].

The second contribution is Paper II. The upper discontinuity x = h(t ), also called
the sludge blanket or sediment level, is usually seen in reality and measurable. Fig-
ure 3.2 shows a batch test in a conical vessel and the solid-liquid interface trajectory
h := h(t ). Paper II addresses the inverse problem of flux identification related to the
problem (3.1)–(3.3) when h(t ) is known. The flux function f satisfies the same as-
sumptions as in Paper I, and the cross-sectional area is given by (3.4) but now with
p ≥ 0 and q > 0. Note that in comparison with Paper I, p = 0 is included and in this
case A(0) = 0, hence Equation (3.1) has a singular coefficient. The inverse problem
is formulated as follows:

Given φ0 > 0 and the interface trajectory [tstart, tend] 3 t 7→ h(t ) (the sludge blanket

level), find the portion of the flux function φ→ f (φ) corresponding to the interval

of φ-values adjacent to that trajectory.

The solution of this problem is based in the knowledge of the construction of the
entropy solutions of (3.1). For the inverse problem when p = 0 and q > 0, the analysis
and construction of the entropy solutions were included.

Since the flux function f depends on the application, the solution of the inverse
problem can be used to create a method for the calibration of the model (3.1)–(3.3).
Some of the questions of interest to be answered by Paper II are about the existence
of solutions, the type of solutions (implicit, explicit or parametric), the size of the
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portion of flux that can be identified, and how to apply the solution to handle real
data from experiments.

The solution developed is built principally from the ODEs derived from the con-
struction of the entropy solutions in Paper I and for the case p = 0 (q > 0). The
parametric solution (with p ≥ 0 and q > 0) found is(

φ

f (φ)

)
= φ0(p +q)1+1/q(

p +qh(t )
)1/q (

p +q (h(t )− th′(t ))
) (

1
−h′(t )

)
, 0 ≤ t ≤ t2.5, (3.5)

and an explicit formula is given by

f (φ) =−φh′ (σ−1 (
(φ0/φ)(p +q)1+1/q))

,

where σ(t ) := s(t )− qt s′(t )/(q +1), s(t ) = (p + qh(t ))1/q+1 and t2.5 is the time point
where h′ has a discontinuity. The length of the φ-interval of the identified flux de-
pends mainly on t2.5, which is difficult to obtain without solving ODEs and using f
(which is unknown in the inverse problem). When p tends to zero, the φ-interval
increases in length, see Paper II, Figure 3. Furthermore, the entropy solution when
p = 0 and q > 0 (for φ0 sufficiently big) does not contain any bottom discontinu-
ity and t2.5 coincides with the steady state starting point. Hence, the conclusion
reached is that in the case when p = 0 and q > 0, the flux function can be identified
in the maximal interval [φ0,1]. The best solution is then given in the case of a vessel
with downward-decreasing cross-sectional area with vertex at x = 0. An underly-
ing result is that the geometry of the vessel has an unexpected positive influence
on the solution of the inverse problem. This method of identification represents a
significant advance compared to traditional methods of flux identification. Finally,
examples of the identified flux with synthetic data and with published experimental
data are presented, see Paper II, Figures 5 to 7.

The third contribution, Paper III, explores a different settling process, the centrifugal
sedimentation of an ideal suspension in a rotating tube or basket. As in Paper I, this
process is modeled by an initial-boundary-value problem for a scalar conservation
law with a nonconvex flux function. The sought unknown is the volume fraction
of solids φ := φ(r, t ) as a function of the radial distance r > 0 measured from the
axis of rotation r = 0, and time t ≥ 0. The initial value is constant (homogeneous
concentration) and denoted by φ0. The model is given by

∂φ

∂t
+ 1

r γ
∂

∂r

(
f (φ)ω2r 1+γ)= 0, for r ∈ (r0,r1), t > 0, (3.6)

φ(r,0) =φ0, for r ∈ (r0,r1), (3.7)

φ(r+
0 , t ) = 0, φ(r−

1 , t ) = 1, for t > 0, (3.8)
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Figure 3.3: Schematic of the centrifugal settling process in a tube of dimen-
sions 0 < r0 < r1 rotating with angular speed ω.

where 0 < r0 < r1 are the vessel coordinates, ω is the constant angular speed of rota-
tion and γ ∈ {0,1} distinguishes between the two types of vessel considered, a rotat-
ing tube (γ= 0) and a cylindrical basket rotating around its axis of symmetry (γ= 1).
Figure (3.3) shows an illustration of the centrifugal settling process in a tube. An
application of this model is the separation of white blood cells from a blood sample.

The aim of Paper III is to give a full description of the entropy solutions, but also
to study the inverse problem of flux identification of (3.6)–(3.8). In a first instance,
this article seeks to construct the unique entropy solutions, characterize and give
a detailed description of them, and provide a set of equations needed to solve the
inverse problem. The same questions from Paper I and Paper II can be formulated
for this problem.

In the same way as in Paper I, the entropy and jump conditions are used for the spe-
cific PDE (3.6). The method of characteristics is used, and a set of ODEs is obtained
to compute the characteristic curves and discontinuities. The entropy condition
contains at most two discontinuities h := h(t ) (“upper” discontinuity) and b := b(t )
(“bottom” discontinuity), see Paper III, Figure 4. The analysis and entropy solutions
found have some differences from Paper I. The main difference is that the “bottom
discontinuity” b may not merge from the boundary r = r1, and three types of solu-
tions are described depending on the initial value φ0, the cases are also subdivided
depending on the interactions of the discontinuities.

The inverse problem here is defined in the same way as in Paper II (note that the
solid-liquid interface is denoted by h in both papers), and the parametric solution is
also determined by using the equations provided in the construction of the entropy
solutions, and given by(

φ

f (φ)

)
=φ0

(
r0

h(t )

)1+γ (
1

h′(t )/
(
ω2h(t )

) )
, 0 ≤ t ≤ ti, (3.9)
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Figure 3.4: Diagram of the vertical cross-section of a settling tank of cross-
sectional area function A used in continuous sedimentation. The
bulk flows Qu (underflow), Qe (effluent) and Qf (feed) are pointed
in the figure. The contour of the vessel (blue) is determined by the
radius r = r (z).

where ti is the time point when h changes its curvature. Furthermore, the following
closed formula was found

f (φ) = φh′ (h−1
(
r0(φ0/φ)1/(1+γ)

))
ω2r0(φ0/φ)1/(1+γ)

,

where h−1 may only be defined implicitly. Conversely to Paper II, the identified flux
obtained is to the left of the initial condition φ0. The formula (3.9) is tested with
synthetic data obtained from the numerical approximation of (3.6). For the case of
rotating baskets, it can be seen that for big values of φ0, i.e., φ0 tending to 1, the
value of φ(ti) tends to zero, and almost the entire flux function can be identified, see
Paper III, Figure 10. The pros and cons of this identification method compared with
the one developed in Paper II are described in Paper IX.

3.2 Numerical schemes and simulation models

In Paper IV a model for the process of continuous sedimentation in clarifier-thickeners
(settlers) with variable cross-sectional area is presented. The PDE describes the con-
centration of solid particles C =C (z, t ), where z is the depth and t time. The spatial
domain of the PDE is now the entire real line, and the vessel is considered to be lo-
cated between z = −H (top) and z = B (bottom), with H ,B > 0, see Figure 3.4. The
model equation can be obtained from (2.22) by setting x =−z, C (z, t ) = ρsφ(z, t ) (ρs
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the density of solids) and adding a term for the dispersion effect produced by the
feed mechanism:

∂
(

A(z)C
)

∂t
+ ∂

∂z

(
Q(z, t )C +γ(z)A(z) f (C )

)= ∂

∂z

(
A(z)

{
γ(z)dcomp(C )+ddisp(z, t )

} ∂C

∂z

)
+ sf(t )δ(z),

where γ(z) = 1 for −H ≤ z ≤ B and zero otherwise, the function dcomp denotes a in
Equation (2.22). The source term is sf(t ) = Qf(t )Cf(t ) with Qf and Cf the bulk feed
flow and feed concentration, respectively, and δ is the dirac distribution.

The main goal and contribution of this work was to extend the Bürger-Diehl settler
model in [12] to the case of vessels with varying cross-sectional area. The inclusion
of the cross-sectional area function results natural knowing the influences of the
vessel geometry in, for example, the inverse problem presented in Paper II.

In the same line as in [12], a numerical scheme based on Godunov’s flux and finite
differences for the second order derivatives is introduced. The numerical scheme
is proved to be monotone under an advantageous CFL condition. The monotonic-
ity implies that the numerical scheme is reliable and the approximated solutions
physically relevant. The way how the cross-sectional area function is handled al-
lows conical vessels with a vertex at the bottom to be simulated. Another advan-
tage is that the numerical scheme is given in a method of lines formulation (MOL),
this is of special interest for wastewater treatment community, since it is easier to
be implemented in ODE solvers. Simulations of continuous sedimentation for vari-
ous cross-sectional area functions show the influence of the vessel geometry in the
concentration profiles and underflow concentrations. Furthermore, batch settling
simulations in conical vessels with a vertex at the bottom are also presented, see
Paper IV, Figure 5.

The second contribution about numerical schemes and simulation models is Pa-
per V, where the reactive settling process is studied. The unknown solid and liquid
phases are composed by multiple components that may react with each other. The
solid phase is then given by a vector of concentrations C = (

C (1), . . . ,C (kC )
)

where
some of the components are some type of biological heterotrophic organism. The
liquid phase is composed by the vector of substrates S = (S(1), . . . ,S(kS )) and the con-
centration of water W . The total solids concentration is denoted by X . These func-
tions depend on the space coordinates z (depth) and time t > 0. The system of PDEs
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govering this appplication is given by

∂ (A(z)C )

∂t
+ ∂

∂z

(
A(z)FC (z, t , X )C

)= ∂

∂z

(
A(z)γ(z)

∂DC (X )

∂z
C

)
+BC (C ,S, z), (3.10)

∂ (A(z)S)

∂t
+ ∂

∂z

(
A(z)FS (z, t , X )S

)= ∂

∂z

(
A(z)γ(z)D∂S

∂z

)
+BS (C ,S, z), (3.11)

X = X (z, t ) =C (1)(z, t )+·· ·+C (kC )(z, t ), (3.12)

where FC and FS (scalars) are the velocity of the solid components and soluble
substrates, respectively, DC contains the compression function dcomp, the matrix
D contains the constants of diffusion for the substrates, and BS and BC involve the
feed and reaction terms of C and S, respectively. This model can be seen as an exten-
sion of Paper IV to the reactive case. Instead of one single PDE, now there are kC +kS

equations. Equation (3.10) is influenced by (3.11) through the reaction term in BC ,
conversely, (3.11) depends on C though its velocity FS and function BS . Observe
that the function FS does not depend on S.

A numerical method based on a combination of upwind approximations that ex-
ploits the particular structure of the PDE system is introduced. The semi-discrete
numerical scheme is written in method-of-lines formulation, which is a desirable
feature when simulating wastewater treatment processes. The monotonicity of the
fully-discrete numerical scheme is proved and the main mathematical result is an
invariant-region property, which implies that the numerical solutions produced are
physically relevant. Numerical simulations for a simplified denitrification model in
SSTs (Secondary Settling Tanks) are presented, see Paper V, Figure 5.

The third contribution is Paper VI. That work is about modeling and simulation of
sequencing batch reactors (SBRs) applied to the field of wastewater treatment. The
PDE model proposed is based on the one presented in Paper V, but there is a moving
boundary that varies depending on the bulk flows (in and out). The unknowns are
the same as in Paper V, i.e., C , S and X as functions of depth z and time t . The model
equations are given by

A(z)
∂C

∂t
+ ∂

∂z

(
A(z)FC (z, t , X )C

)− ∂

∂z

(
A(z)γ(z, t )

∂DC (X )

∂z
C

)
= δ(

z − z̄(t )
)
Qf(t )C f(t )+γ(z, t )A(z)RC (C ,S),

(3.13)

A(z)
∂S

∂t
+ ∂

∂z

(
A(z)FS (z, t , X )S

)
= δ(

z − z̄(t )
)
Qf(t )S f +γ(z, t )A(z)RS (C ,S),

(3.14)

X (z, t ) =C (1)(z, t )+·· ·+C (kC )(z, t ), (3.15)

where z̄ := z̄(t ) is the location of the moving boundary at the time t , γ = γ(z, t ) is
the indicator function which equals one if z̄(t ) < z < B and zero otherwise, C f and
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S f are the feed concentrations and Qf is the volumetric feed. The terms RC (C ,S)
and RS (C ,S) are the reaction functions. The rest of the functions are defined as in
Paper V. The model covers the operation of an SBR in cycles of consecutive fill, react,
settle, draw, and idle stages.

The main question answered by this paper is about how to extend the model in Pa-
per V to simulate SBRs including a moving boundary, and how to handle this in a
numerical scheme. Models for SBRs have been developed mainly considering only
temporal variations by means of ODEs [57, 74, 76, 89]. As it has been seen in Paper V,
the concentrations inside the vessel for a fix time point are not always constant and
therefore the neglect of the spatial variations is not desirable. Paper VI contributes
to fill the lack of studies that take into account spatial variations of the unknowns
and functions. (Observe that in comparison to (3.11), here the diffusion matrix of
the soluble substrats D is not included.)

The location of the moving boundary z̄ is determined by the ODE:

z̄ ′(t ) = (
Qu(t )−Q̄(t )

)
/A(z̄(t )),

where Qu is the underflow rate and Q̄ is equal to either Qf, the feed volumetric flow,
or Qe the effluent flow. The upper boundary varies depending on the volumetric
flows and cross-sectional are function and hence can be determined before solving
(3.13)–(3.15). A suitable monotone numerical scheme that handles the conservation
of mass is developed. Simulations of the SBR process with the developed numerical
scheme are presented, see Paper VI, Figures 4 and 6.

3.3 Applications and dissemination

The first contribution is Paper VII. That paper consists of the validation of the iden-
tification method developed in Paper II. Experiments in conical vessels using real
data collected from the wastewater treatment plant in Västerås, Sweden, were per-
formed by a collaborator. The experiments were carried out to measure the descend-
ing sludge-supernatant interface (sludge blanket), which is the upper discontinuity
h from Paper II. The identification method proposed is the following:

1. Perform a batch-settling test in a vessel such that the suspension fills out a
cone with its vertex at the bottom and with the initial homogeneous concen-
tration C0. Let H be the height of the suspension surface above the bottom
vertex. Collect data points (t j ,h j ), j = 1, . . . , N , along the descending solid-
liquid interface.
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2. Fit a curve x = h(t ) to the data set
{
(t j ,h j ) : j = 1 : 1, . . . , N

}
, for example, with a

least-squares method.

3. The estimated portion of the flux function is given by the following parametriza-
tion: 

C = C0H 3

(h(t ))2 (h(t )− th′(t ))

fpar(C ) =− C0H 3

(h(t ))2 (h(t )− th′(t ))
h′(t )

for 0 ≤ t ≤ tN .

This gives the shape of the flux function in the interval [C0,C (tN )]. To obtain a
full flux, the representation in the interval [0,C 0) can be a second-order poly-
nomial p satisfying p(0) = fpar(0) = 0, p(C0) = fpar(C0) and p ′(C0) = f ′

par(C0)
and for the interval [C (tN ),Cmax] a straight line can be fitted. The value Cmax

is the maximum concentration of solid particels.

4. An approximate and explicit representation of the flux function can be ob-
tained by a nonlinear fit to the parametric representation fpar.

This method is tested with the real data and the identified flux functions are re-
ported. Comparison between the experimental sludge-supernatant interface and
the one simulated using the identified fluxes were made, see Paper VII, Figures 3
and 4.

Some of the practical advantages of this method of identification are that no ad-
vanced equipment is needed and that with only one experiment a large portion of
the flux can be obtained.

The second contribution is Paper VIII. In that article methods of flux identification
are reviewed and compared from a theoretical point of view. The methods studied
are the ones derived from models of sedimentation described by PDEs with no pre-
scribed formula for the constitutive flux function. A common assumption of mod-
els of flux identification is that compression effects are neglected. Five methods of
identification are reviewed and compared with synthetic data (from numerical sim-
ulations). Among them are the identification methods presented in Paper II and III.
Paper VIII contributes to show the advantages of the methods developed in this the-
sis compared with the old ones from the literature.
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Chapter 4

Two-dimensional numerical
simulations

This chapter includes non-published material about the simulation of sedimenta-
tion processes in two-dimensional domains. This extra material is presented here
to show some of the excursions in the multi-dimensional problems made by the au-
thor. Part of Section 4.3 was elaborated together with Dr. Ricardo Ruiz-Baier during
my stay at University of Oxford, United Kingdom.

4.1 Simplified batch settling

As a first approach, a simplified version of Equation (2.6) is considered. As it was
seen in Chapter 2, in the one-dimensional case, the volume average velocity q is zero
for batch settling, although in the case of more spatial dimensions this may not be
true. In this first attempt the contribution of q to the flux is neglected. Furthermore,
setting σe to zero, for a two-dimensional domainΩ, Equation (2.6) can be written as

∂tφ+∇· ( f (φ)kθ
)= 0, x ∈Ω, (4.1)

f (φ)kθ ·n = 0, x ∈ ∂Ω, (4.2)

φ(x ,0) =φ0, φ0 ∈ (0,1), (4.3)

where x = (x, z), n is the normal vector of ∂Ω and kθ := (cos(θ),sin(θ))T is the unit
vector in the direction of the force, with θ ∈ [−π,π], this vector incorporates the posi-
bility of having a rotation of the domain. Note that the default case is θ =−π/2. Then
the vector becomes k−π/2 =−k , when the force is pointing in the gravity direction.
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Figure 4.1: Illustration of the domainΩ (left) and the axisymmetrical domain
Ωa (right).

From Equation (4.1) one can think in the case of domains in R3 which are axisym-
metric with respect to the z-axis, i.e., domains that are created by the rotation of a
two-dimensional set, e.g.,Ωa ⊆R2, where the subscript a denotes axisymmetry. Fig-
ure 4.1 shows the conceptual differences between the two-dimensional domain Ω,
vertical cross-section of a V-shaped vessel and Ωa whose rotation generates a coni-
cal vessel. Under the assumption of axisymmetry of the unknowns (no angular vari-
ation), the axisymmetric version of (4.1) in the domainΩa is given by

∂tφ+∇a ·
(

f (φ)kθ
)= 0, x ∈Ωa, (4.4)

f (φ)kθ ·n = 0, x ∈ ∂Ωa, (4.5)

φ(x ,0) =φ0, φ0 ∈ (0,1), (4.6)

where in this case x = (r, z), n is the normal of ∂Ωa, r > 0 is the radius from the
center of rotation, and the a-gradient and a-divergence operators for a vector field
w in cylindrical coordinates are defined by

∇aw :=
(
∂r wr ∂r wz

∂z wr ∂z wz

)
, ∇a ·w := ∂z wz + 1

r
∂r (r wr ) .

For the simulations in this chapter, the following unimodal flux function is consid-
ered

f (φ) := v0φ
(
exp(−rVφ)−exp(−rV)

)
, with v0 = 0.0176m/s, rV = 4.5. (4.7)
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Figure 4.2: Triangulation mesh onΩ andΩa.

4.1.1 Numerical scheme

The domain Ω, or possibly Ωa, is partitioned by a locally regular triangulation Th

(Delaunay triangulation), on which every triangle K ∈Th of diameter hK satisfies:

∃C > 0 : ∀K ∈Th : C h2
K ≤ |K | ≤ h2

K ,

where |K | is the area of the triangle, C is a constant independent of h, and the mesh
parameter h is defined by h = max{hK : K ∈Th}. Let Nh := {

s j : j = 1, . . . , N
}

be the
set of nodes of the triangles in Th , and Eh(K ) the set of edges of a triangle K ∈ Th .
Furthermore, the triangulation Th is considered to be independent of time. Fig-
ure 4.2 shows two triangularizations Th for the case of a two-dimensional triangular
domain Ω, vertical cross-section of a V-shaped vessel, and the triangularization of
the half triangleΩa whose rotation generates a conical three-dimensional domain.

In what follows a standard cell-centered finite volume scheme for Equation (4.1) is
derived. Integrating Equation (4.1) over a triangle Ki ∈Th ∈Th and using the Diver-
gence theorem, we have∫

Ki

(∂tφ)dx +
∫

Ki

∇· ( f (φ)kθ
)

dx = ∂t

(∫
Ki

φdx
)
+

∫
∂Ki

(
f (φ)kθ

) ·n ds = 0. (4.8)

where in the last integral, n denotes the normal of ∂Ki , and in what follows n will
denote the normal depending on the domain of integration. Approximating the PDE
solution φ by its average over Ki

φi = 1

|Ki |
∫

Ki

φdx ,
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the integral equation (4.8) can be approximated by the following Finite Volume scheme

|Ki |dφi

dt
+

∫
∂Ki

F̂ ·n ds = 0, (4.9)

where F̂ denotes the numerical flux at the boundary ∂Ki approximating f (φ)kθ. The
computation of F̂ ·n is carried out by Godunov’s numerical flux; given two adjacent
cells Ki ,K j ∈Th and the shared edge e = ∂Ki ∩∂K j with unit normal ne (pointing in
the direction from Ki to K j ), the flux at e is given by

F̂ ·ne :=
{
−G(φi ,φ j )kθ ·ne if kθ ·ne ≥ 0,

G(φ j ,φi )|kθ ·ne | if kθ ·ne < 0,

where G = G(φi ,φ j ) is Godunov’s flux between Ki and K j , which for the unimodal
function f can be computed by [1]

G(φi ,φ j ) := min
{

f
(
min

{
φi , φ̂

})
, f

(
max

{
φ j , φ̂

})}
with φ̂ the point of maximum of f . In the case of boundary edges, e ∈ ∂Ω, the flux
is zero. For the time discretization, let ∆t be the time step (constant), and tn = n∆t ,
for n ∈N, the discrete time points. From now on, the superscript n will denote time
evaluation of the time dependent functions at tn . Approximating the time deriva-
tive at (4.9) by forward finite differences, we obtain the fully discrete finite volume
approximation of (4.1)

|Ki |
φn+1

i −φn
i

∆t
+ ∑

e∈Eh (Ki )
|e|F̂ n ·ne = 0, i = 1, . . . , |Th |. (4.10)

where |e| is the length of the edge e. The upper bound for the time step ∆t is given
by the CFL condition:

∆t ≤ 1

Ch‖ f ′‖∞
where Ch := max

K∈Th

{ ∑
e∈Eh (K )

|e|
|K |

}
.

In the same way as before, one can approximate Equation (4.4) by a finite volume
scheme like (4.10), in this case we obtain the fully discrete finite volume approxima-
tion

φn+1
i −φn

i

∆t

∫
Ki

r dx + ∑
e∈∂Ki

(
F̂

n ·ne
)∫

e
r ds = 0, i = 1, . . . , |Th |. (4.11)

In the above formula, the main differences with (4.10) are the integral terms con-
taining r over the triangles and its edges. For a triangle K with vertices x1 = (r1, z1),
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x2 = (r2, z2) and x3 = (r3, z3), and edge e between the nodes x1 and x2 we have∫
K

r dx =
∣∣∣∣ r2 − r1 r3 − r1

z2 − z1 z3 − z1

∣∣∣∣(r1

2
+ r2 − r1

6
+ r3 − r1

6

)
,∫

e
r ds = |e| (r1 + r2)

2
.

Figure 4.3: Volume fraction φ approximated by the finite volume schemes
(4.10) in two different domains for the times t = 35.3s (top), t =
106.2s (middle) and t = 318.6s (bottom). The simulation is made
with the flux function (4.7) and angle of rotation θ = π/4 with re-
spect to a horizontal line.
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V-shaped vessel Conical vessel

Figure 4.4: Simulation by (4.10) (left), and (4.11) (right) for the times t = 35.3s
(top), t = 106.2s (middle) and t = 318.6s (bottom). The simulation
is made with the flux function (4.7) and angle of rotation θ =−π/2
with respect to a horizontal line.

Figure 4.3 contains the simulation of two inclined vessel produced by (4.10) using
the flux function (4.7), initial volume fraction φ0 = 0.3 and the angle of inclination
with respect to the horizontal line θ = π/4. As expected, in both simulations we can
observe that the solid particles settle downward accumulating to the walls creating
a non-horizontal bed whose shape depends on the vessel’s geometry. Despite the
assumption of q = 0, the two dimensional simulation in the cylinder (left column in
Figure 4.3) is in agreement with the ones presented in [19].
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Figure 4.4 shows two simulations made with the schemes (4.10) and (4.11) with the
domains presented in Figure 4.2. The flux function and initial volume fraction are
the same as in the previous simulation (Figure 4.3) and the angle of rotation is θ =
−π/2. It can be observed from the simulation that the solid particles with the model
equation (4.4) settle faster that the one with (4.1), nevertheless, with both models
the particles stick to the walls generating a non-horizontal bed.

4.2 Simplified centrifugal settling in tubes

Another simplified multi-dimensional settling model that can also be simulated us-
ing a finite volume scheme, such that the ones presented in the previous section, is
the process of centrifugal settling in tubes. The one-dimensional case of centrifu-
gal sedimentation was presented in Paper III, where the entropy solution, numeri-
cal scheme and inverse problem of flux identification were studied. To differentiate
from the two equations of the previous section, here the domain is denoted by ΩR

which is contained in the xz-plane. Let r be the vector in the radial direction and ω
the scalar angular speed. The model equation of this problem is given by

∂tφ+∇· ( f (φ)ω2r
)= 0, x ∈ΩR, (4.12)

f (φ)ω2r ·n = 0, x ∈ ∂ΩR, (4.13)

φ(x ,0) =φ0, φ0 ∈ (0,1). (4.14)

The components of the vector r coincide with the coordinates of the points, r =
(x, z). Utilizing the same steps used to obtain (4.10) or (4.11), one can obtain the
finite volume approximation of (4.12)

|Ki |
φn+1

i −φn
i

∆t
+ ∑

e∈Eh (Ki )
F̂ n

R

∫
e

r ·ne ds = 0, i = 1, . . . , |Th |. (4.15)

where for an edge with nodes x1 and x2, and middle point r e = (x1 +x2)/2 the inte-
gral term can be computed by∫

e
r ·ne ds = n1

e

∫
e

x ds +n2
e

∫
e

z ds = n1
e |e|

x1 +x2

2
+n2

e |e|
z1 + z2

2
= |e|ne · r e .

The numerical flux F̂R over an inner edge e between the two elements Ki and K j is
defined by

F̂R(φi ,φ j ) :=
{
−G(φi ,φ j ) if r e ·ne ≥ 0,

G(φ j ,φi ) if r e ·ne < 0,
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Figure (4.5) shows a simulation of centrifugal setling in a tube made with the scheme
(4.15), with the nonlinear function

f (φ) :=Cφ
(
exp(−rVφ)−exp(−rV)

)
, rV = 4.5, (4.16)

where C is chosen such thatω2C = 1, and the same initial value as in the simulations
presented in the previous subsection. As in the one-dimensional case, the particles
tend to settle rapidly to the bottom wall forming a thick layer at r = r1 followed by a
diluted mixture at the middle of the tube. There exist a thin layer of solid particles
that remain to the side wall of the vessel.

Figure 4.5: Simulation of centrifugation with a rotating tube obtained by the
numerical scheme (4.15) at the times t = 106.2s (top left), t = 177s
(top right), t = 212.4s (bottom left) and t = 248s (bottom right).
The simulation is made with the function (4.16).

4.3 Fully coupled multidimensional settling

In the same way as (4.4), the model equations (2.6)–(2.8) (Model 1) withσe ≡ 0 can be
adapted to axisymmetric domains Ωa under the assumption of axisymmetry of the
solutions. In this case the contribution of qφ to the flux in (2.6) makes the numerical
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approximation of (2.7)–(2.8) unavoidable. For a fix and constant φ, Equations (2.7)–
(2.8) correspond to a Stokes system, which is often approximated by using Finite
Element Methods. In [19] the authors have approximated Model 1 in cartesian grids
by using a multiresolution finite volume scheme and splitting techniques. The nu-
merical scheme for the simulation of SST in axysimmetric domains presented in [20]
utilizes a vertex centered finite volume scheme combined with a stabilized discon-
tinuous Galerkin method. A suitable choice for approximating the transport equa-
tion (2.6) is an interior penalty discontinuous Galerkin method, and for the coupled
equations (2.7)–(2.8) a classical Finite Element approximation. To define the weak
form of (2.6)–(2.8), the following weighted Sobolev spaces need to be introduced:

L2
0,1(Ω) = {q ∈ L2

1(Ω) : (q,1)1 = 0},

H 1
Γ,1(Ω) = {w ∈ H 1

1 (Ω) : w = 0 on Γ}, Γ⊆ ∂Ω,

with inner product between two functions u, v given by

(u, v)1 :=
∫
Ω

uvr dr dz,

and L2
1(Ω) the space of functions whose induced norm ‖·‖2

1 := (·, ·)1 is finite.

For ease of notation, the flux of Equation (2.6) is denoted by F (φ, q) := φq − f (φ)k .
The boundary conditions considered for this model are

F (φ, q) ·n = 0,
(
µ(φ)ε

(
q

)−p I
) ·n = 0, ∇p ·n = 0 on ∂Ω,

and q = 0 on Γs := ∂Ω \ {r = 0}. The weak formulation of the axisymmetric version
of (2.6)–(2.8) is the following: find (φ, q , p) ∈W := H 1(Ω)× (H 1

Γs ,1(Ω))2×L2
0,1(Ω) such

that (
∂tφ,ϕ

)
1 −

(
F (q ,φ),∇ϕ)

1 = 0, (4.17)(
µ(φ)ε(q),ε (w )

)
1 −

(∇·w , p
)

1 =−(
∆ρgφk , w

)
1 , (4.18)(∇·q ,ψ

)
1 = 0, (4.19)

for all (ϕ, w ,ψ) ∈W , where ∇ here represents the axisymmetric gradient operator ∇a

introduced in Section 4.1. The operator ε is defined by

ε(q) := 1

2

(∇q +∇q T)
.

Let Pk be the space of polynomial functions of degree less or equal than k, and con-
sider the mesh triangulation Th described in Section 4.1. The finite element spaces
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needed for the numerical formulation are:

Sh := {s ∈ L2
1(Ω) : s|∂K ∈P0(Ω),∀K ∈Th},

V h := {v ∈ (H 2
Γs ,1(Ω))2 ∩ (C0(Ω))2 : v |∂K ∈ (P1(Ω))2,∀K ∈Th},

Qh := {p ∈ L2
0,1(Ω)∩C0(Ω) : p|∂K ∈P1(Ω),∀K ∈Th}.

Where φ, q and p are approximated by φn
h ∈ Sh , q n

h ∈ V h and pn
h ∈ Qh , respectively.

Following the ideas of [20], the fully discrete approximation of Equation (4.17) based
in the Discontinuous Galerkin interior penalty method is(
φn+1

h −φn
h ,ϕ

)
1

∆t
+ ∑

e∈Eh

(
F̂ (q n+1

h ,φn+1) ·ne ,
[[∇ϕ]])

1,e +
∑

e∈Eh

κφ

h2
e

([[
φn+1

h

]]
,
[[
ϕ

]])
1,e = 0,

(4.20)

for all ϕ ∈ Sh , where the operators (·, ·)1,e and [[·]] are the inner product and jump
over the edge e, respectively, and the numerical flux F̂ is given by

F̂ (q n
h ,φn

h ) ·ne :=
[[
φn

h

2

(
F (q n

h ,φn
h ) ·ne +|F (q n

h ,φn
h ) ·ne |

)]]
.

The pair (q n+1, pn+1) is obtained by solving the system:

2
(
µ(φn+1

h )ε(q n+1
h ),ε(w )

)
1
− (

pn+1
h ,∇·w

)
1
+ Iq =−(∆ρgφn+1

h k , w )1, (4.21)(
ψ,∇·q n+1

h

)
1
+∑

K∈Th

h2
K

κp

(∇pn+1
h +∆ρgφn+1

h k ,∇ψ)
1,K

= 0 (4.22)

for all w ∈V h , ψ ∈Qh , where the term Iq is defined by

Iq := ∑
e∈Eh

4he

κU

([[
µ(φn+1

h )ε(q n+1
h ) ·ne

]]
,
[[
µ(φn+1

h )ε(w ) ·ne
]])

1,e .

The constants κφ, κq and κp are positive stabilization parameters. Equation (4.20) is
implicit in time and a non-linear solver method is needed, e.g., Newton-Raphson’s
method. The condition (p,1)1 = 0 can be added to (4.21)–(4.22) by means of lagrange
multipliers.

The numerical scheme proposed here utilizes several ingredients from [20], never-
theless it is fully implicit in time and no dual mesh is needed. The numerical scheme
has been implemented in FEniCS [88] (version 2019) with the following constants
and constitutive functions: ∆ρ = 50kg/m3, homogeneous initial volume fraction
φ0 = 0.3, velocity and viscosity functions given by

v(φ) = 0.08
(
exp(−4.5φ)−exp(−4.5)

)
,

µ(φ) =
(
1− φ

1.3

)−2.5

,
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constants κφ = 10−5, κp = 2µ(1), κU = µ(1) and ∆t = 0.5s. The mesh is generated
by mshr, the mesh generator of FEniCS, and the non-linear solver chosen is the
Newton-Raphson’s method. The simulation of the sedimentation in a conical vessel
produced by (4.20) and (4.21)–(4.22) is presented in Figures 4.6 and 4.7, where the
volume fraction and the norm of the volume average velocity in six different time
points are shown.

40



Figure 4.6: Sedimentation in a cone: Simulated volume fraction of solid parti-
cles φ produced by the numerical scheme (4.20) and (4.21)–(4.22)
for six different time points.
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Figure 4.7: Sedimentation in a cone: Simulated norm of the volume average
velocity ‖q‖ produced by the numerical scheme (4.20) and (4.21)–
(4.22) for six different time points.

42



Conclusions

This thesis is based in mathematical modeling of sedimentation processes with re-
search topics divided into three parts: Entropy solutions and inverse problem, nu-
merical schemes and simulation models, and validation and dissemination.

In the first part, two problems are studied, the batch sedimentation in vessels with
varying cross-sectional area and the centrifugal settling. Both are modeled by first-
order quasi-linear hyperbolic PDEs, Equations (3.1) and (3.6), respectively. Detailed
constructions of the entropy solutions in both problems were made by using the
method of characteristics. The knowledge obtained about the relations between the
characteristics and discontinuities led to the definition and (partial) solution of the
inverse problem of flux identification. Two new methods of flux identification based
on the solutions of the inverse problems are presented. These methods represent a
significant improvement, at least theoretically, compared to previous works [3, 8, 43]
in terms of the portion of flux identified, and also that only one experiment and no
prescribed functional expressions are needed. Constructed entropy solutions can be
used as test cases for numerical schemes. A limitation in this part is that compres-
sion effects are not considered. These effects are often simulated by a second-order
degenerate term, adding a level of complication in the construction of the entropy
solutions, and in consequence, to the inverse problem of flux identification. The
work done in this part of the thesis can be extended in different ways, for example to
the case of a more general flux functions, including more than one inflection point,
or for the case of the inverse problem of (3.1), to a more general cross-sectional area
function.

The second part contains the modeling and numerical simulation of secondary set-
tling tanks (SSTs) with varying cross-sectional area, where continuous sedimenta-
tion occurs with or without reactions, depending on the plant and application. Fur-
thermore, sequencing batch reactors (SBRs) in vessels with varying cross-sectional
area are modeled by means of PDEs and simulated. These problems are of interest
for the wastewater treatment community, where steady-state simulations are more
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common than transient solutions connected to the mathematical theory of PDEs.
The non-reactive settling is modeled by (2.21), the reactive case by (3.10)–(3.12) and
the SBR by (3.13)–(3.15). The three sedimentation processes are modeled by PDEs
that share many features; non-linear fluxes, second-order degenerated terms and
non-linear coefficient functions. The vectorial way in which the PDE models in
the reactive-settling case and SBR are written allows the application in cases where
there are several substrates and reactions are taking place, for example in the es-
tablished activated sludge models for biological reactions in wastewater treatment
(ASMx) [72]. Detailed numerical schemes are introduced to approximate the three
PDE models. In the case of Equation (2.21), the approximation is carried out by an
extension of the numerical scheme developed for the Bürger-Diehl model [12] to
the varying cross-sectional area case. One of the novelties is an improved CFL con-
dition where simulations can be obtained more efficiently than with previous meth-
ods. The reactive case, system (3.10)–(3.12), is approximated mainly by an upwind
scheme leading to a method-of-lines formulation (semi-discrete scheme), and an
extension of it is used for the approximation of system (3.13)–(3.15) in the applica-
tion to SBRs. In the three cases, the schemes capture the nature of the PDEs properly
(discontinuities), they are proven to be monotone and the approximated solutions
are physically relevant. In the three problems, simulations have been made to vi-
sualize, among others, the influences of the cross-sectional area in the sedimenta-
tion process, the versatility of soluble diffusion effects, and approximation of the
moving boundary for the case of the SBR problem. The numerical schemes intro-
duced in this part are all first-order accurate, and could be improved to a second-
or higher-order accuracy scheme, by for instance, utilizing high-order weighted es-
sentially non-oscillatory reconstructions combined with strong stability-preserving
Runge–Kutta time schemes.

In the third part, the flux identification method in conical vessels developed previ-
ously was tested and successfully validated with experimental data of batch settling
in cones. The validation shows that with one experiment only, the measurement
of the sludge blanket level is enough to determine almost the entire flux function.
It should be mentioned, however, that experiments with mineral powders carried
out with collaborators did not give as good results with the method, which can be
partially explained by external conditions (temperature) or two-dimensional effects.
The later motivates the two-dimensional simulations presented in Chapter 4, which
could be a starting-point for future research to improve the identification method.
Nevertheless, the review of flux identification methods in Paper VIII reveals the ad-
vantages of the methods developed in this thesis over previous methods from the
literature.
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