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ABSTRACT1
Traffic surveillance and monitoring are gaining a lot of attention as a result of an increase of2
vehicles on the road and a desire to minimize accidents. In order to minimize accidents and near-3
accidents, it is important to be able to judge the safety of a traffic environment. It is possible to4
perform traffic analysis using large quantities of video data. Computer vision is a great tool for5
reducing the data, so that only sequences of interest are further analyzed. In this paper, we propose6
a cross-disciplinary framework for performing automated traffic analysis, from both a computer7
vision researcher’s and traffic researcher’s point-of-view. Furthermore, we present STRUDL, an8
open-source implementation of this framework, that computes trajectories of road users, which we9
use to automatically find sequences containing critical events of vehicles and vulnerable road users10
in an traffic intersection, which is an otherwise time-consuming task.11

12
Keywords: Computer vision, data reduction, computer aided analysis, deep learning, surveillance,13
tracking, detection, traffic analysis14
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INTRODUCTION1
In 2017 more than 25,000 people died and approximately 135,000 people were seriously injured2
on the roads in the European Union (EU) (1). While the numbers are still very high, both injuries3
and fatalities have been decreasing for decades. Paradoxically, road safety experts worry about the4
problem of “too few crashes”, referring to the difficulties using the traditional safety diagnosing5
methods as crash counts registered at individual sites become very low (2)(3). The situation is6
aggravated by the unresolved problems of crash under-reporting, scarce information about the7
crash details and conditions in standard police reports and the general retro-active nature of the8
crash analysis (before safety problem can be diagnosed, it has to manifest itself in form of crashes9
with people killed or injured).10

An alternative or a complementary approach to crash analysis is to use surrogate measures11
of safety (SMoS). The method rests on the assumption of a continuous relation between the severity12
of events in traffic and their frequency (4), visualized in Figure 1. The fatal and injury crashes are13
the most severe events and occur relatively seldom, while the events of “normal” severity can be14
observed in hundreds or thousands every day. The SMoS are normally derived from non-crash15
events that are close enough to crashes on the severity scale to possess sufficient similarities and16
thus be relevant for the safety, but much more frequent compared the actual crashes.17

FIGURE 1: "Safety pyramid", adopted from (4).

While the idea has been known for decades (5)(6)(7), the lack of an efficient tool to reliably18
and accurately measure SMoS hindered the method from being used on a large scale. Previously,19
human observers were tasked to detect, classify and record the relevant events, all in real-time20
while being in the traffic environment. The high costs of using human observers, as well as some21
doubts in their reliability were too discouraging.22

Automated tools like computer vision are about to change the situation. It is already a very23
common practice in safety studies based on SMoS to use video recordings either as a comple-24
mentary documentation for field observations or as a main data source (8). With a proper camera25
perspective and resolution, the measurements of road user positions and speeds taken from video26
can be very accurate (9). Fully automated tools able to detect and track road users in video do27
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already exist and are used (10) (11) (12). The generel concepts of such tools are illustrated in1
Figure 2. The next challenge is to make the computer vision algorithms more stable while pro-2
cessing longer video sequences that include less favourable conditions such as congested traffic,3
precipitation, twilight and night, etc. (13) while making them more practically usable for traffic4
research.5

FIGURE 2: General concept for automated traffic analysis. Videos are captured via installed
cameras. Humans then annotate some images with bounding boxes, used to train an object detector,
which is then run on all the collected videos. The detected objects are then tracked across time, to
generate trajectories which can be analyzed to find times of interest or computing SMoS.

Traffic safety and computer vision are two different worlds and the communication between6
the researchers of these two domains is not always straightforward. The following list summarizes7
the specific “expectations” from the traffic side that has to be taken into consideration while devel-8
oping a computer vision tool:9

• Majority of the indicators suggested to measure the severity of a traffic event are based10
on temporal and spatial proximity of the road users. Thus, the most important data to11
extract from video are the positions and speeds of the road users, complemented with at12
least rough estimate of their type and size.13

• Traffic analysis requires measurements related to the road surface (e.g. speed is to be14
measured in meters per second rather than pixels per frame) requiring an accurate cali-15
bration model.16

• Though more frequent than crashes, the events used to calculate SMoS are still relatively17
rare. Depending on the definition of SMoS chosen, the observation period necessary to18
collect a sufficient number of the relevant events might vary from 8-10 hours to several19
weeks.20

• The observation period is limited in time, making it common to use temporary installa-21
tions for the recording equipment but not for the analysis. This put less constrains on the22
complexity of the video analysis algorithms as they can be processed off-line.23

• Traffic environment is a public space and special rules to how the data collected should24
be handled apply. Ideally, some pre-processing should be done during the recording such25
the images are cleared from the sensitive information while keeping the relevant data.26

Current frameworks trying to bridge the gap between traffic research and computer vision27
are all based on more traditional computer vision approaches (14)(15)(16)(17)(18)(19). The tra-28
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FIGURE 3: Simplified comparison of traditional machine learning approach and deep learning
approach for cyclist detection. Note that manual annotations are generally faster and require less
specialized knowledge than in traditional machine learning approaches.

ditional approach involve looking for movement in the image or calculating the foreground image1
which depending on the scene, tells something about the moving objects or foreground objects.2
To classify the objects, distinctive features, e.g. width, height, color, etc. are used to separate the3
localized objects. The features varies a lot from object to object, so the used features chosen for4
classification various correspondingly, but are in this case always manually selected. A traditional5
machine learning algorithm will then examine all the selected features and maximize the distinc-6
tion between each of the object’s subset of features with the purpose of classifying them. This7
traditional workflow is illustrated in the upper half of Figure 3.8

Computer vision have generally seen a tremendous boost as a result of past decade’s hard-9
ware improvements, in particular the graphical processing units (GPU) improvements, which have10
lead to a large use of the well-performing data-driven methods. A very popular data-driven method11
is deep learning(20)(21), which is based upon artificial neural networks, which to some extent is12
an imitation of the human brain. In a computer vision perspective, deep learning is a sub-field of13
the aforementioned machine learning. It differs from traditional machine learning as it does not14
require manually selected features. Deep learning is able to learn features that represents a given15
object automatically from large quantities of annotated data, which is illustrated in Figure 2 and16
the lower part of Figure 3.17

In this paper, we investigate and propose a general data-driven framework to help and ease18
the cross-disciplinary communication of going from capturing video sequences and automate the19
traffic analysis generation using deep learning. Furthermore, we present an open-source imple-20
mentation of the introduced framework.21

The contributions of this paper are thus two-fold:22
• Introducing and defining a data-driven cross-disciplinary framework for performing au-23
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tomated traffic analysis, from video acquisition to traffic analysis.1
• An implementation of this framework that can detect, classify, track, and create a traffic2

analysis of data from an intersection.3
Our implementation is released as open source and is available here: https://github.4

com/ahrnbom/strudl. This program is designed to be easy to use for traffic researchers, without5
extensive knowledge in computer vision.6

RELATED WORK7
In this section, we present recent and relevant work done related to defining a cross-disciplinary8
framework for easing collaborations between traffic researchers and computer vision researchers.9
The section will be split into 2 parts: a part containing general established frameworks followed10
by relevant work and applications where computer vision has aided traffic researchers.11

General frameworks12
From a computer vision perspective, several frameworks have been proposed to fit the develop-13
ment of most general computer vision systems. In (14), a general framework is defined which is14
applicable for most systems working with video. The framework consists of the following blocks:15
camera, image acquisition, pre-processing, segmentation, representation, and classification. Given16
a set of images acquired with one or several cameras, is is possible to classify e.g. objects and ac-17
tions, by the use of various mathematical operations. In (15) a video-based system for automated18
pedestrian conflict analysis is introduced following 5 basic components: video pre-processing, fea-19
ture processing, grouping, high-level object processing, and information extraction. Compared to20
(14), these components are more angled towards a high-level information extraction which can be21
considered more applicable for a traffic researcher.22

In (16) a comprehensive review of computer vision techniques used for analysis in urban23
traffic is presented. They propose two different approaches to automated traffic analysis. Both24
of them takes an input frame as starting point, but differ in structure by one being a top-down25
approach and the other a bottom-up approach. The top-down approach consist of estimating the26
foreground of the frame, e.g. by frame differentiation (17). A grouping of connected foreground27
pixels is done, e.g. connected component analysis, which constitutes the objects. These objects28
are classified (18), which can be based on heuristically predefined rules or by use of training data.29
Finally, tracking translate the objects into spatial-temporal domain, which provides the user with30
object trajectories (19). As described in (16), the top-down approach analyzes the objects as a31
whole, whereas the bottom-up approach takes its starting point in using smaller patches of the32
image to detect a part of the objects, e.g. scale invariant feature transform (22) and histogram33
of oriented gradients (23). The detected parts of the objects are afterwards grouped together to34
form an object constituting the object detection step. Object detection can be extended with a35
classification step, where the individual object is assigned to a specific class label. Finally, the36
objects is tracked with the purpose of creating object trajectories.37

The available cross-disciplinary frameworks are in general feature-based and model-based,38
which have been very common prior to the hardware improvements made the past decade. GPUs39
in particular have made training of complex artificial neural networks possible. The artificial neu-40
ral network is inspired by the neural networks found in the human brain. The recent trend in41
computer vision is the usage of artificial neural networks, often referred to as deep learning, to do42
object detection by learning and adjusting the parameteres and weights in the network by expos-43

https://github.com/ahrnbom/strudl
https://github.com/ahrnbom/strudl
https://github.com/ahrnbom/strudl
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ing it to large quantities of annotated data. Genreally, deep learning is outperforming traditional1
methods by a large margin (20, 21). The current available cross-disciplinary frameworks do not2
use deep learning, making our proposed framework the first to take advantage of this significant3
improvement in technology.4

Automated video-based traffic applications5
The related video-based traffic applications are split into two categories, which are object detecting6
and conflict-based data reduction.7

Object counting8
Object counting in relation to the traffic domain primarily consists of firstly detecting and classi-9
fying the object of interest, e.g. cars, trucks, pedestrians and cyclists, followed by tracking them10
to prevent counting the same object multiple times and to cope with potential occlusion. A lot11
of work has been done in especially detecting and classifying objects, in (24) they build upon the12
well-known Haar-like features (25), which have traditionally been used for single-frame detection.13
By computing such features in temporal space, the motion can estimated by comparing the ab-14
solute differences between the values in the spatial-temporal domain. Detecting and classifying15
objects have traditionally been based upon the RGB modality. In relation to traffic analysis, this16
can cause challenges as RGB is vulnerable changing weather and light conditions. To make a17
system more robust, the thermal modality can be introduced to complement the RGB camera, in a18
so-called multi-modal setup (13). In (26), object classification is done based on images captured19
from multiple visual traffic surveillance sensors, providing a multi-view setup which is less prone20
to occlusion.21

As previously mentioned, the recent years of object detection has followed the hardware22
improvements, leading to a large use of the well-performing deep learning methods (20). Most23
of the object detectors using deep learning methods, e.g. convolutional neural networks (CNN),24
relies on supervised learning, meaning that large quantities of annotated data is needed to train the25
CNN (27, 28). In (29) a CNN was applied to the popular ImageNet Large-Scale Visual Recogni-26
tion Challenge, which is a popular object recognition benchmark containing 1.2 million training27
images, 50,000 validation images, and 150,000 testing images. The CNN nearly halved the top-528
error rate of object recognition generated from traditional computer vision methods (21).29

In general, for most of the aforementioned methods, the found objects can be tracked by30
using nearest neighbour, Kanade-Lucas-Tomasi feature tracker (15, 30, 31), or by the use of more31
complex feature based methods such as a Kalman filter (32) or Hungerian tracking (33), which32
have proven quite useful in a wide variety of applications.33

Conflict-based data reduction34
Computer vison software can greatly speed-up the process of reducing a captured video dataset to35
only the sequences of interest, as manually analyzing large quantities of data is a time-consuming36
task. In (15) pedestrians and motorized traffics are detected, tracked and classified, and then used37
to identify critical events in the video. The critical events are in (15) defined as "any event that38
involves a crossing pedestrian and a conflicting vehicle in which there exists a conceivable chain39
of events that could lead to a collision between these road users", resulting in all the detected40
objects intersecting trajectories triggering an important event, which is similar to the illustration to41
the traffic analysis step in figure 2. All the triggered events can be split into a subset of important42
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conflict indicators: Time-to-Collision, Post-Encroachment Time, Gap Time, and Deceleration-to-1
Safety Time, which can be used the measure the severity of the event.2

In (34, 35) the human-in-the-loop framework is further cultivated as a graphical user in-3
terface is developed to enable traffic researchers to utilize computer vision methods. The traffic4
researchers can annotate areas of interest on the input video, which are triggered by activity. Com-5
bining multiple of these annotated areas in a timed logic, e.g. potential conflict between cyclist6
and a right-turning vehicle, can then be used to trigger an interesting event flag.7

To the best of our knowledge, our proposed framework is the first cross-disciplinary frame-8
work to use modern deep learning for data reduction in traffic surveillance, with an open source9
and free implementation designed to be used by traffic researchers with limited knowledge of deep10
learning and computer vision.11

FRAMEWORK OVERVIEW12
In order for a data reduction framework for traffic surveillance to be useful in practise, it needs13
to be general enough to be able to handle different kinds of queries and criteria. A single cross-14
disciplinary computer vision framework can work for multiple applications, as the main steps that15
need to be performed are typically the same. The proposed framework in this paper takes its16
spawn in a top-down approach, as presented in (16), and some of the general concepts presented17
in (14, 15). In Figure 4, the proposed framework is illustrated in a block flow diagram. Each block18
forms the structure for the following of this section and will thus be described accordingly.19

FIGURE 4: The proposed cross-disciplinary framework for automated traffic analysis. While
Video Acquisition and Traffic Analysis can be considered to belong to the field of traffic research,
the remaining central blocks belong to the field of computer vision.

Video Acquisition20
The first step in the general framework, seen in figure 4, is video acquisition. In this step the21
primary goal to acquire video data to the pipeline. Essential considerations to do this is presented22
in the following subsection.23

Modalities24
The most common sensor for acquiring video data is a traditional RGB camera, which is similar25
to the human eye making the videos easy to interpret and work with. As mentioned in the related26
work, other options include using a thermal camera, which during the last decade have seen a price27
reduction making it feasible to use in traffic surveillance applications (36). A thermal camera is a28
passive sensor that captures the infrared radiation emitted by all objects, which can be translated to29
"seeing" the temperature in a given scene. The thermal camera are thus usable in the night which30
can be an advantage compared to RGB, but can also be considered a disadvantage as the lack of31
color information can make classification challenging. An example of the two modalities is seen32
in Figure 5, where both modalities are used in a challenging rainy night-time scene.33
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The choice of modality, e.g. RGB or thermal, does not affect the rest of the suggested1
framework, the choice comes down to a matter of cost, expected light and weather conditions, and2
privacy concerns. Specifications of the sensor should be taken into consideration, e.g. FPS and3
resolution.4

(a) RGB Camera. (b) Thermal Camera.

FIGURE 5: Comparison of the RGB modality and thermal modality captured at a traffic inter-
section doing a rainy night. Notice the strong reflections in the RGB image, as well as the poor
contrast in the thermal image. This is an example of a situation where none of the modalities are
optimal.

Camera calibration5
By carefully measuring the positions of some points visible in the camera, the camera can be cali-6
brated, allowing positions in pixel coordinates in the images to be translated to world coordinates.7
If this step is omitted, any results found by computer vision algorithms are significantly more dif-8
ficult to interpret and use since they cannot be converted to world coordinates. Detailed search9
queries and SMoS typically need to be computed in world coordinates to be useful.10

Pre-processing11
Modern object detectors using CNNs do not need much pre-processing. The only form of pre-12
processing used in our framework is masking. Often, the entire scene captured by the camera13
is not of interest; if an application is to find interesting situations in a crossing, then it is of no14
importance what happens far from that crossing. For these cases, a manually drawn "do-not-care"15
zone is created as an overlaying mask as exemplified in figure 6. This speeds up annotations and16
helps training a reliable object detector. If this step is omitted, and only parts of the images are17
annotated, this may confuse the detector during training, possibly leading to reduced accuracy.18
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(a) RGB Camera. (b) Overlaying mask.

FIGURE 6: Manually annotated "do-not-care" zone which is overlayed on the input image as a
mask.

Annotations1
In order to run modern object detectors based on deep learning, manually creating annotations2
is necessary. CNNs learn by examples, so a human needs to define and annotate this example3
many times before the network can be trained to do the same. In this pipeline, neural networks are4
used for object detection only, so the annotations consist entirely of marking objects in images, by5
bounding boxes and assigning a class label to each box, as illustrated in Figure 7.6

FIGURE 7: Bounding box annotations with belonging class label.

It is important that all visible objects (after applying the mask defined in Section 4.2) are7
annotated. Otherwise, these will be considered negative examples when the detector is trained. For8
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example, if one car is marked as a "car" and another one is not, then the detector will have a hard1
time understanding why one is considered a "car" while the other one is not, and accuracy may2
suffer as a result.3

If a large dataset of traffic images were annotated and made publicly available, they could4
be used if their viewing angle, lightning conditions etc. are reasonably similar to the new data.5
In such a case, a smaller amount (or none at all) new data may need to be annotated. Despite the6
current lack of such a dataset, pre-training the networks on general images reduces the number of7
image annotations needed to a couple of hundred, as opposed to thousands or more.8

Object Detection9
The goal of object detection is to find "objects", e.g. road users, as axis-aligned bounding boxes10
with class labels in an image. Traditionally this step has been split into two steps: localization11
(finding the bounding box) and classification (assigning a class to the bounding box), but due to12
recent years’ advancements in CNN designs, both can be performed in a single step. The choice of13
class labels is application dependent and is not limited to a specific amount. Multiple can be used,14
if they are of particular interest, but it should be noted that a significant amount of examples has to15
appear in the annotated images for the detector to become accurate.16

Post-processing17
In the post-processing step, the movement direction for each of the detected objects can be com-18
puted and converted to world coordinates. Movement directions are useful cues when connecting19
the detections into tracks. Performing the tracking in world coordinates has benefits, mainly being20
more independent of the viewing angle, and working directly in natural units and world coordinates21
allows more detailed and natural track analysis.22

Tracking23
The tracking step consists of connecting the detected objects in spatio-temporal space, meaning24
that each detected object in the video needs to be either associated with a previously existing track25
or as a completely new track in the video. Though this might sound as a somewhat easy task,26
several challenges are introduced when objects radically change direction or if multiple objects get27
too close to each other in the sensor’s field-of-view.28

The performance of the object detection is critical for proper tracking as trajectories cannot29
be generated for objects that are not detected. Tracking can, however, compensate for some issues30
in the detector. For example, if a vehicle is detected in only 1 frame, but not in any of prior31
or following frames, there is a high probability that this is a false detection. If an object is not32
detected in a small number of frames, but is detected before and after, the tracking algorithm may33
be able to understand that it is indeed the same object.34

Selecting a sensor with too low FPS results in objects in the scene moving a large distance35
between the consecutive captured frames, which can make it harder to connect the detected objects36
in spatio-temporal space. Using a high FPS, the objects’ movement between consecutive captured37
frames becomes less, which generally makes tracking easier. Videos with 15 FPS seem to work in38
our experiments.39
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Traffic Analysis1
The final step of the proposed framework is to analyze the road user tracks with respect to safety.2
For example, indicators like Time-to-Collision and Post-Encroachment Time can be calculated and3
events with severity above a certain threshold can be detected and presented to the user for further4
examination. The data about the distribution of events within different severity categories can be5
used by special statistical methods such as extreme-value theory in order to estimate the expected6
number of crashes (37) (38). Also, trajectory data can be used for calculations of advanced ex-7
posure measures, for example a number of encounters between road users of a certain type and8
performing a certain manoeuvre (39). Clustering of the trajectories and detection of deviant trajec-9
tories do not fit into any of clusters may reveal the abnormal incidents such as movement in wrong10
direction or stop at an unusual place.11

Since the tracks are computed in world coordinates, thresholds, safety measures and other12
criteria can be expressed in natural terms and units. While traditional computer vision systems13
allow only simple criteria (typically expressed in pixel coordinates), world coordinate tracks allow14
for arbitrarily complex queries, that are more meaningful from a traffic analysis perspective15

EXPERIMENTS16
As a part of a traffic analysis project, an intersection with a crossing of interest in Malmö, Sweden17
was filmed for 24 hours with a thermal camera. TSAI calibration(40) was computed by measuring18
57 points visible in the videos. People were hired to watch through the entire 24 hours of video,19
tasked to find times in the video where both a car and either a pedestrian or a bicyclist are visible at20
the same time, where the car will at some point make a turn to pass the crossing of interest, while21
the pedestrian/bicyclist will at some point pass the crossing. See Figure 8 for a visual explanation22
of the task. These times were then inspected in more detail by traffic analysts. We stress that this23
is not a "toy problem"; the human watchers were required as a starting point for further traffic24
research at this intersection, and we hope that the existence of this framework can reduce the need25
for human labor in situations like these in the future.26

FIGURE 8: The goal is to find times when a vulnerable road user is moving through the red
regions in the marked directions, while a car is moving either through the green or yellow regions
simultaneously.

An implementation of the suggested framework was used to perform the same task, using27
the human observer’s results as ground-truth. As a baseline, the Road User Behaviour Analysis28
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(RUBA) software (34), which is a traffic analysis tool based on traditional computer vision tech-1
nology, was also tested for the same task.2

There is some ambiguity in when exactly during an encounter it is detected by an observer3
or computer vision tools. Therefore, it was allowed for some time discrepancy for a detection to4
be counted as correct. By testing multiple time distance thresholds between the ground truth and5
the output of the automatic systems, a trade-off between precision and recall can be observed. We6
use precision and recall curves to visualize this trade-off and compare the automatic systems.7

STRUDL: description of implementation8
This section describes how our framework following the definitions in Section 4 was implemented,9
in order to solve the problem described above. The implementation is called Surveillance Tracking10
Using Deep Learning (STRUDL). It can be used in any context where objects seen from a static11
camera need to be tracked. Those tracks can be analyzed to for example find times of interest.12
While thermal videos were used in this experiment, the STRUDL system works with RGB as well13
(and should in fact perform better with RGB as the pre-training of the object detector is made14
with RGB images). The remaining parts of this section will describe in more detail how STRUDL15
implements the computer vision parts of the suggested framework.16

Pre-processing17
With modern object detection algorithms based on CNN, very little pre-processing of images is18
necessary. The only pre-processing done is applying a visual "do-not-care" mask.19

Annotation20
500 frames were selected from the collected videos and annotated manually with bounding boxes21
and class labels. The frames were taken from 25 randomly selected 5 minute clips, and from each22
such clip, 20 frames were sampled evenly. This way, there should be a large variety in the road23
users appearing in the images. A variant of Extreme Clicking (41) was implemented to make the24
annotation process fast. The reason why 500 frames is sufficient to get decent object detection25
performance is that the detector is pre-trained on a general objects detection task. Training the26
object detector from scratch would require drastically many more images.27

Object Detection28
The object detector SSD (42) was used. It is a commonly used CNN for the object detection task29
for its reasonable trade-off between accuracy and execution speed. On a powerful modern GPU,30
it runs in around real-time. The objects found are presented as axis-aligned bounding boxes. The31
SSD network was pre-trained on the large MS COCO dataset(43), which contains a large amount of32
images with bounding box annotations of many different kinds of objects (not only traffic-related33
ones), made by human annotators. Then, the network was fine-tuned on images from the videos34
for which the experiment is conducted, as described in Section 5.1.2. Finally, the object detector35
is applied to every single image, and detected objects are stored.36

Post-processing37
For the videos, the OpenCV function goodFeaturesToTrack was used to find points which can be38
tracked, and then by repeatedly using the OpenCV function calcOpticalFlowPyrLK(44), those39
points were turned into point tracks. These tend to follow how objects move in the scene. For each40
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detected bounding box, the average movement direction of point tracks moving through the box1
were computed, giving each box a movement direction.2

Then, using a TSAI camera calibration model (40), each such box and movement direction3
were converted to world coordinates. Because of the pixel-aligned nature of bounding boxes, only4
the center point was converted.Because the orientation of road users can be computed from their5
movements directions, and the class labels allow approximate 3D models to be inserted in their6
place, any information about the movements, position and spatial extent of the road users should7
be possible to obtain, at least approximately, from this simple representation.8

Tracking9
A simple Hungarian tracker (33) was used, using class consistency, position in world coordinates10
and movement direction to compute the association cost. World coordinate detections that were11
not associated to any existing tracks, were made into tracks of their own unless they were too close12
to some already existing track. When no detection were associated with a given track, the track13
continues along its previous direction for some time until being removed, unless it is associated14
with a new detection before that. Tracks that were short-lived, that were only associated with one15
or two detections were removed, as they are often false or unreliable tracks.16

The tracking requires tuning of 13 parameters, which were optimized using a blackbox17
optimization scheme for a short video clip (15 seconds long) where ground truth tracks in world18
coordinates were created for each road user, which took around 30-40 minutes of human labor19
to create. Because the tracks are in world coordinates, it is believed to be possible to re-use the20
optimized parameters for a different viewpoint, perhaps with minor changes.21

Traffic Analysis22
The goal was to find times when at least two tracks are visible at the same time while the two23
tracks intersects at some point, e.g. car move to turn and cross the vulnerable road user track. To24
implement this as a traffic analysis program, mask images were drawn which mark the interesting25
regions, and the tracks were tested to see if they at some points move through the marked regions.26
The mask images can be seen in Figure 9.27

Results28
The results are seen in Figure 10, where the proposed system is compared to RUBA (34). RUBA’s29
raw output was compared directly, and after seeing that the number of false positives were very30
high (leading to a low precision), time was spent to remove 967 of RUBA’s found situations by31
manually examination ("RUBA+human" in the figure). Most of all the removed events were indeed32
false positives, as the recall drops very little in this process. Even so, the number of false positives33
remain high for left-turning cars. The manual time spent with RUBA was around three hours,34
where around 90 minutes were spent manually removing false positives. Our system, on the other35
hand, required only around two hours of manual work constructing the detection annotations, and36
around 30-40 minutes spent on tracking ground truth. Also note that the human time can decrease37
as the software becomes more used, allowing training images from similar viewing angles to be re-38
used, and tracking parameters might be possible to transfer with little to no changes, because they39
are expressed in world coordinates. Furthermore, for a human to make annotations, little training40
is required, while designing hitboxes and thresholds for RUBA requires experience and familiarity41
with the software.42
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FIGURE 9: Checking masks used for the experiment. Top left: VRUs moving to the right. Top
center: VRUs moving to the left. Top right: first required position of left-turning cars. Bottom
left: first required position for right-turning cars. Bottom center: the last required position of both
left-turning and right-turning cars. Bottom right: mask used during object detection annotations,
in order to save annotation time. The same mask is used when running the object detector.

It should be noted that the problem was significantly more difficult for left-turning cars1
than for right-turning cars. The exact cause for this is not yet known. Only 10 situations with left-2
turning cars were marked as interesting by the human annotators, compared to 331 for right-turning3
cars during this one day of video.4

We stress that this comparison between STRUDL and RUBA does not include the main5
difference between the two; while RUBA provides only "take-it-or-leave-it" times of interest,6
STRUDL provides full tracks in world coordinates that can be further analyzed, by e.g. computing7
SMoS, sorting by severity or further filtered.8

Some tracking example results can be seen in Figure 11. The tracking generally works9
well, but there is also some room for improvement in its robustness for some tracks.10
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FIGURE 10: Precision and recall for the experiment, against the time difference for which a
detected time can differ from the ground truth time and still be considered correct. RUBA+human
reaches STRUDL’s precision for right-turning cars, while STRUDL is still better for left-turning
cars. For recall, they perform similarly for right-turning cars, and are able to find more than 95% of
the ground truth times within ±10 s, while for left-turning cars, STRUDL’s recall is clearly better
for short time differences, while being only slightly better for longer time differences.
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FIGURE 11: Example of tracking results from our experiments. An example of bad tracking is
the person walking with a stroller, who is broken up into two tracks. "Car 9" is lost and it takes
a few frames for the tracking algorithm to remove this track. For the most part however, tracking
works as expected. The dark areas are the masked "do-not-care" zones. Best viewed in color.

DISCUSSION1
The experimental results show that the proposed framework works, and the STRUDL implemen-2
tation is better than traditional approaches for tasks of this kind. It is flexible, meaning that if one3
is dissatisfied with the results for a given problem, the path forward is often clear. If the object4
detector makes too many mistakes, more training data can be provided. If the tracking fails too5
often, the parameters can be tuned, manually or via data-driven optimization. If there are too many6
false positives, the analysis criteria can be modified with relatively little effort. Visualizations of7
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the different steps of the computer vision pipeline make it easy to pinpoint where issues arise.1
More importantly, where traditional computer vision system have a limited range of pos-2

sible operations, the richness of full trajectories allow for much more freedom. It is possible to3
compute SMoS or other measures of interest, to filter or sort the detected situations by sever-4
ity. The proposed system can therefore be seen as a starting point for arbitrarily complex traffic5
analysis, whereas traditional methods are essentially of a take-it-or-leave-it nature, impossible or6
difficult to further analyze, filter, sort and work with.7

The proposed automatic system needs some human assistance, mainly in annotating image8
data to train the object detector. When looking at new video data, the amount of new annotations9
necessary will depend heavily on previously available data. Manually annotating some images10
seem like a good trade-off, as opposed to traditional methods requiring time-consuming parameter11
tuning, as it is relatively simple and fast, and if multiple somewhat similar views are studied,12
annotations from one view can be re-used, reducing the annotation time per intersection.13

One limitation of the proposed framework is the tracking algorithm, which is quite simple14
in nature. It is known to sometimes make mistakes when tracks get too close to each other, or15
if the detector fails to locate an object for many frames. These flaws could possibly be fixed or16
reduced by letting a neural network perform the tracking, but that would require a large amount17
of annotated ground-truth tracks for training which take time to produce. Our implementation18
requires little to no annotated ground-truth tracks, since tracking parameters should be mostly19
transferable between views. Still, it would be of interest to test and compare different tracking20
algorithms for this setting. The modular implementation of STRUDL makes it relatively simple21
to replace the current tracking algorithm, should so be needed. Another limitation is the lack of22
uncertainty measures in the STRUDL software. There is no universally accepted standard for how23
to measure the certainty of detections and tracks, but some combination of detection confidence24
and the similarities between every track and typical trajectories could probably be used for this25
purpose. This is one promising direction for future work.26

The implementation of STRUDL is designed with flexibility in mind and it is our intention27
to continually improve the software. For example, it would be useful to have built-in support for28
computing SMoS, or make improvements to its computer vision algorithms, tracking in particular.29
We also hope that other implementations of the proposed framework will arise, to suit the specific30
needs of different traffic analysis problems.31

CONCLUSION32
We present the, to the best of our knowledge, first cross-disciplinary framework for automated33
traffic surveillance analysis to take advantage recent improvements in data-driven deep-learning.34
Through experiments with our open-source implementation, STRUDL, we show better results than35
traditional systems, while opening new possibilities by providing full trajectories in world coor-36
dinates, allowing arbitrarily complex traffic analysis. Promising future works includes computing37
certainty measures and SMoS automatically and improving the stability of tracking.38
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