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Populärvetenskaplig sammanfattning

Vi består alla av celler, och att förstå vad som händer inuti cellerna är viktigt bland an
nat för att förstå vad som orsakar olika sjukdomar. Men cellernas inre är en stökig miljö.
En stor mängd så kallade makromolekyler  huvudsakligen proteiner, RNA och DNA 
upptar en stor del av utrymmet, kanske så mycket som en tredjedel. Var och en av dessa
makromolekyler har en specifik uppgift i cellens maskineri, men de kan också växelverka
med varandra, mer eller mindre slumpmässigt. Att förstå hur den här sortens oavsiktlig
växelvekan påverkar molekylernas huvudsakliga funktion är en svår men viktig uppgift.

Trots detta skenbara kaos är cellerna internt organiserade. Denna organisation består delvis
av membranomgärdade så kallade organeller, men det finns även grupper av molekyler som
“spontant” bildar strukturer utan hjälp av membran. Att förstå de krafter som styr den här
typen av strukturbildning är också viktigt.

Att studera hur enskilda molekyler i en cell beter sig vore som att försöka följa en enskild
person i en storstad från yttre rymden. Därför utförs experiment på makromolekyler oftast
i en vattenlösning. Det blir då lättare att urskilja molekylen, men har man otur kan det
man ser skilja sig helt från hur det verkligen ser ut innuti en cell.

Ett viktigt komplement till direkta experiment på den här sortens svårstuderade system är
datorsimuleringar. I simuleringar är det enkelt att zooma in på precis de aspekter man vill
titta på. Men för att kunna utföra simuleringar krävs att man löser ett antal viktiga problem.

För det första måste man utveckla en modell, och se till att simuleringar med denna faktiskt
ger resultat som faktiskt stämmermed verkligheten.Det är i sig långt ifrån enkelt, och kräver
att man kan jämföra åtminstone några av resultaten med experiment.

För det andra måste simuleringarna vara tillräckligt snabba. Även om datorer utvecklats i
en rasande fart kan en enskild simulering av detta slag utan problem ta flera veckor eller
ännu längre. Snabbare simuleringsprogram gör också att man kan studera större och mer
detaljerade modeller.

Slutligen måste man kunna dra slutsatser från den data som kommer ut. Det är visserligen
rätt enkelt om man redan från början vet vilka sorters processer man vill studera. Men det
är långtifrån säkert att man vet det när man studerar system med många makromolekyler.
Ett annat problem är att resultaten ibland kan påverkas av hur stort det simulerade systemet
är – och det är än så länge omöjligt att simulera system som är lika stora som verkliga celler.

Alla ovan beskrivna problemmåste lösas om datorsimuleringar fullt ut skall kunna användas
för att studera cellliknande miljöer. Den här avhandlingen utgör mitt bidrag till att lösa
dem.

v





Assembling a toolkit for
computational dissection of
dense protein systems

1 Introduction

The question of what separates the living from the nonliving has long fascinated mankind.
Over the last hundredorso years, advances in imaging has allowed for a vastly improved
understanding of the structure, function, and organisation of biological matter. We now
know that living organisms are made up of cells, and that the interior of cells consists of
large numbers of chain molecules, such as DNA, RNA, and proteins.

Traditionally, the sequence of a protein has been seen as determining it’s threedimensional
shape, and thereby its function. Many proteins fold to a unique, so called native, conform
ation. Thus, by determining the native state of a protein, either through experiment or
through computation, it should be possible to determine the functionality of the protein.
However, as our understanding of the cellular interior has improved, new challenges have
emerged.

First, protein function can not be fully understood without understanding the environment
within which it operates. For imaging of macromolecules to be at all feasible, they are
usually studied in a dilute water solution. This environment is significantly different from
the cellular interior, where macromolecules often fill as much as a quarter of the available
volume [1]. Understanding if and how such a crowded environment affects protein function
is therefore crucial [2–4].

Second, nonspecific interactions between proteins (and/or nucleic acids) can provide large
scale structure to the cellular interior, as evidenced by recent studies of biomolecular con
densates. In contrast to membraneenclosed organelles, these condensates appear to form
as liquid droplets [5, 6]. They are often rich in socalled intrinsically disordered proteins,
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which do not fold to a unique conformation. Understanding the conformational ensembles
of these proteins, and how their sequence properties affect droplet formation is a key ques
tion.

Because the dense systems where the above described phenomena take place are difficult to
study using traditional experimental techniques, computer simulations have an important
role to play in the field. Yet such simulations are not without challenges of their own, and in
order to use them to their full potential, a suitable set of tools must be developed. Broadly
interpreted, such a toolkit will have to include

• Force fields/models which are simple enough that simulations are feasible, yet accur
ate enough to allow conclusions about reality to be drawn.

• Computationally efficient sampling algorithms.

• Data analysis tools which allow meaningful information to be extracted from simu
lations.

This thesis contains work on all three of these categories of tools. Below, I will first give a
brief biological background, including the two challenges mentioned above. Thereafter, I
will discuss the three categories in relation to my research.

2 Dense protein systems

Proteins are one of the most common types of macromolecules found in living organ
isms. Proteins are chain molecules built up of amino acids, the sequence of amino acids
determining the structure of the protein. Many proteins fold to a single welldefined three
dimensional structure, encoded by its sequence. In recent years, however, it has become in
creasingly clear that many proteins exhibit significant conformational flexibility, socalled
intrinsically disordered proteins. A key challenge within molecular biophysics is to un
derstand how the amino acid sequence encodes the properties of (folded or intrinsically
disordered) proteins.

2.1 Macromolecular crowding

The relationship between protein sequence on one hand, and structure and function on the
other, has traditionally been studied using protein molecules in dilute solutions. In such an
environment, it is easy to separate the experimental signal from the background response.
On the other hand, a dilute environment need not be a particularly good approximation
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of the cellular interior, where as much as a quarter of the volume is occupied by different
macromolecules [1].

The presence of large numbers of surrounding macromolecules can affect the conform
ational properties of proteins in several ways. The most straightforward way is through
steric interactions, which should universally cause proteins to adopt more compact con
formations. Thus, folded or bound conformations should be more favored in such an
environment, than in dilute solution.

However, recent studies have indicated that environments rich in macromolecules can
either stabilize or destabilize folded states, depending on both the protein studied and on
the types of (macro)molecules in the environment [7, 8].

The difficulties involved in experimentally probing protein behaviour in complex, celllike
environments open the possibility of using computer simulation to answer important ques
tions about how macromolecular crowding affects protein behaviour [9–11].

2.2 Biomolecular condensates

It has been known for more than a century that the cellular interior contains membrane
bound compartments known as organelles. In addition to these, cells also contain mem
braneless assemblies of biological macromolecules, sometimes referred to as biomolecular
condensates [5, 6]. Intrinsically disordered proteins are thought to often play an important
role in the formation of these assemblies [12–14].

In recent years, it has been shown that macromolecular condensates exhibit properties
typical of liquid droplets, such as concentrationdependent formation/dissolution, coales
cence, and wetting [5]. These observations strongly suggest that macromolecular condens
ates form through a liquidliquid phase separation (LLPS) process.

Biomolecular condensates presumably play important roles in regulating cell function, and
may also play a role in the development of certain diseases. Understanding the forces driving
the droplet formation process is therefore crucial, and also here simulation has an important
role to play [15–18].

3 Force fields

In order to gain useful insights from simulation, the choice of an appropriate force field is
crucial. In choosing a force field, two main and competing goals have to be fulfilled.
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1. The force field needs to be detailed enough that the phenomena of interest can be
observed.

2. At the same time, the force field must be simple enough to permit calculations to
finish within a reasonable time.

In the literature, the range of complexity of force fields is vast, from highly coarsegrained
models such as the latticebased HP model of Lau and Dill [19], to extremely detailed
descriptions which include quantummechanical effects [20]. The choice of model for a
particular study depends on the problem studied and the available resources.

Within my work I have been using two classes of models. In Paper I, we used an allatom
implicit solvent model. The same model was further developed in Paper v. In Papers IIIv,
we instead used coarsegrained models, in which the basic entities are amino acids rather
than atoms.

Below I will describe the approach taken in each case.

3.1 Allatom implicitsolvent force fields

In the force fields used in Papers I and v, all atoms in the protein molecules are explicitly
represented. This detail of representation is often required in order to be able to differentiate
the physical properties of different amino acids. Compared to more coarsegrained models
[21–23], we expect it to be better able to describe the conformational distribution of specific
proteins. In particular, a fully atomistic description facilitates the description of secondary
structure.

In contrast to the protein chain, the surrounding water is described only implicitly. Com
pared to explicitsolvent models [24–26], we need to represent far fewer atoms in the sim
ulations, which means our computational demands are lower. This holds especially when
simulating proteins with extended conformations. With our choice of model, we are able
to simulate multiple folding/unfolding events in a single simulation run, at least for small
proteins (∼50 residues long). Two force fields with a similar level of detail as ours are
ABSINTH [27] and AWSEM [28].

Since the force field is intended to be able to reproduce experimental results, it must be care
fully calibrated. Our approach has been to calibrate the force field against experimental data
for short peptides. For the version used in Paper I, the data came from a set of folded pep
tides, while in Paper v, we revised the force field using data also from a set of unstructured
peptides.

Below, an outline of the revised force field is given, see Paper v for a full description. A
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description of the force field used in Paper I can be found in ref. [29]. While many parts
of the two versions differ, the basic form of the two force fields is similar, with four terms
E = Eev + Eloc + Ehb + Esc.

The first of the four terms is an excluded volume potential, which ensures that collisions
between atoms do not happen.

The second term is needed to produce an accurate description of local distributions of
torsion angles. While several features of these distributions can be understood in terms of
excluded volume effects, others are hard to rationalize based on physical principles. The
local term we use is therefore an effective term, fitted based on observed torsion angle
distributions of folded proteins in the Protein Data Bank [30].

The third term represents hydrogen bonding. Hydrogen bonding is one of the major stabil
izing forces in protein folding, and is largely responsible for the formation of the common
secondary structures seen in folded proteins. They are formed through the interaction
between a hydrogen atom bound to an electronegative atom (called the donor) and a lone
pair of electrons on a different electronegative atom (the acceptor).

The strength of a single hydrogen bond in our model depends on the bond distance, as well
as on orientation. Rather than directly summing the individual hydrogen bond contribu
tions, however, we also explicitly ensure that each hydrogen atom participates in at most
one bond, and each acceptor in at most two (one for each lone electron pair). This requires
matching donors and acceptors such that each donor/acceptor is paired with the available
acceptor/donors that give the lowest possible energy contribution.

The fourth and final term represents interactions between the protein side chains, due to
electrostatics and (more importantly) hydrophobicity. Hydrophobic interactions play an
important role in determining the global, tertiary structure of proteins, since hydrophobic
parts of the protein chain “dislikes” contact with water and nonhydrophobic parts of the
protein.

We calculate the degree of “buriedness” of a hydrophobic atom i as a sum of contact meas
ures Cij with other hydrophobic atoms j. To avoid overly concentrated conformations,
however, Cij is reduced if atom i also makes contact with an atom near or in the same
amino acid as atom j.

The electrostatic energy is for simplicity calculated based on the same type of contact meas
ure as the hydrophobicity. In this case, however, the pairwise terms are combined by a
simple sum.

5



3.2 Coarsegrained force fields

For the Papers about liquidliquid phase separation (IIIv), we need to run simulations
with larger numbers of chains (at least ∼100). In order to ensure that the simulations
remain feasible we therefore use simpler HPtype lattice or offlattice models. Because of
their simplicity, detailed comparisons with experiments on specific proteins are typically
not fruitful. Nevertheless, they may be useful for identifying important factors governing
largescale properties.

In the HP model, each amino acid is represented by a single bead, and there are only two
types of amino acid in the model (hydrophobic and polar, hence the name). The original
model was defined on a lattice [19], with each bead occupying a lattice site, and beads
adjacent along the chain occupying adjacent lattice sites. The interaction energy was taken
as EHP = −ϵNHH, with NHH being the number of hydrophobic beads which are adjacent
on the lattice but not along the chain.

In Papers II and III we use an offlattice HP model. The bonds have a fixed length, b, while
the bond angles can vary freely. The beadbead interaction has a squarewell dependence
on the distance rij,

Eij =


∞, if rij < dev
ϵij, if dev < rij < Λ
0, if rij > Λ

, (1)

where dev = 0.75b, andΛ = 2.0b. The beadbead interaction strength is set to ϵij = ϵ < 0
for HH pairs, and ϵij = 0 otherwise.

In Paper Iv, we use a variant of the lattice HP model, with finite samesite repulsion. For
further details, see section 4.2 on field theory simulation.

4 Simulation methods

Along with the choice of force field, selecting an appropriate sampling technique is key to
acquiring useful simulation results. A major consideration when selecting a method is of
course the computational efficiency, but there are also other considerations. For instance,
the choicemay differ if one is interested in how a system evolves in time, or if one only wants
to sample from an equilibrium distribution. Depending on the problem, several approaches
are in use, including molecular dynamics, Monte Carlo and Langevin dynamics.

We have mostly usedMonte Carlo methods, such as theMetropolis algorithm [31]. Among
the advantages of these methods are that the move set can be customized to produce com
putationally efficient simulations. They also by design sample the desired probability dis
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tribution exactly (without e.g. time discretization errors). On the other hand, the updates
are not meant to mimic the precise timeevolution of the system, so trajectories may be
less well represented. Nevertheless, for largescale processes associated with the crossing of
freeenergy barriers the trajectories should still be informative, at least as long as only local
updates are used.

4.1 Monte Carlo sampling

The aim of any Monte Carlo algorithm is to sample conformations r, from a probability
distribution P(r) ∝ e−βE(r). For complicated, highdimensional distributions, generating
independent samples is often not feasible. For these cases, the Metropolis algorithm [31]
offers an attractive alternative.

The Metropolis algorithm falls into the wider category of Markov Chain Monte Carlo
(MCMC) algorithms. Here, each new sample r′ is generated based only on the imme
diately preceding conformation r. The particular algorithm can be specified through the
(conditional) transition probabilityW(r → r′).

When constructing an MCMC algorithm, it is common to enforce the condition

W(r → r′)P(r) = W(r′ → r)P(r′), (2)

known as detailed balance. Detailed balance ensures that the balance of probabilities
between any pair of “nearby” conformations (i.e. any pair with nonzero transition probab
ility) remains the same once the target distribution is reached. Assuming that the Markov
chain is ergodic, detailed balance is sufficient but not necessary to ensure that the correct
distribution is sampled.

In the Metropolis algorithm, detailed balance is enforced by splitting the transition prob
ability as W(r → r′) = F(r → r′)A(r → r′), with

A(r → r′) = min

(
1,

F(r′ → r)

F(r → r′)

P(r′)
P(r)

)
. (3)

The socalled proposal probabilities, F, can then be chosen arbitrarily, so long as they are
ergodic, i.e. any conformation can be reached starting from any other conformation. The
acceptance probabilities, A, ensure that detailed balance is obeyed.

Move set

In order to specify the proposal probabilities in the Metropolis algorithm, one has to select
a suitable set of elementary moves. In order to achieve an efficient sampling, we use a mix
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of largescale and local updates. The largescale updates include rigidbody translations and
rotations, as well as socalled pivot rotations. In a pivot rotation a one part of the molecule
is rotated around an arbitrary axis relative to the rest of the molecule.

The local updates in the coarsegrainedHPmodels are movements of one or a few consecut
ive beads. In the atomic models, local updates include rotations of individual side chains.
In addition we use semilocal moves to update a few consecutive torsion angles along a
chain. With only torsional degrees of freedom, a purely local update would require the
iterative solution of a trigonometric equation, so we instead use a computationally cheaper
first order approximation called biased Gaussian steps [32].

In the droplet simulations we also use a cluster update to move multiple chains at the
same time [33]. In this update, inspired by an algorithm originally proposed for the Ising
spin model [34], detailed balance is achieved by means of a stochastic cluster construction
process rather than a Metropolisstyle acceptance step.

Generalized ensembles

The basic Metropolis algorithm can of course be used with any target probability. Some
times, sampling efficiency can be improved by simulating a different probability distribu
tion from the one you eventually want to study. Some commonly used algorithms exploit
ing this freedom are:

• Simulated tempering [35–37], where the target probability is P(r, β) ∝ e−βE(r)+g(β).
An important feature of this algorithm is that the inverse temperature β = 1/kBT is
treated as a dynamic variable. The free parameters g(β) are often chosen so that the
marginal distribution P(β) is flat.

• Parallel tempering [38–40]. In this algorithm, several copies of the same system are
simulated in parallell at different temperatures. Apart from conformational updates,
one also attempts to swap pairs of temperatures between systems.

• TheWangLandau algorithm [41, 42], where the target ensemble is P(r) ∝ 1/g(E(r))
and the density of states, g(E), is determined iteratively. The desired canonical en
semble is recovered through reweighting. There are also related methods, where the
target probability is chosen to further optimize sampling efficiency [43, 44].

4.2 Field theory simulation

While the Monte Carlobased simulation algorithms described above do work well for
most of our simulations, the system sizes we simulate are still limited by computational
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considerations. A recently proposed alternative to conventional particle based simulation
for droplet formation, is to rewrite the system as a field theory and simulate that [45, 18].
An appealing feature of this method is that the particle number appears only as a parameter,
potentially making simulations with large numbers of particles less costly.

We use a lattice HP model with finite samesite repulsion, and nearestneighbour inter
actions between pairs of H beads. For simplicity, we consider a system consisting of N
identical HP chains. In order to transform the model to a field theory, the energy E, is
rewritten in terms of the occupancies of all beads, n(r), and of Hbeads, nH(r),

E =
Λ

2

∑
r

n(r)2 − 1
2

∑
r

∑
k=x,y,z

nH(r)nH(r+ êk). (4)

Thismodel can be transformed to a field theory through theHubbardStratonovichmethod
if each term is quadratic. To this end, the second term is written as a square of the vector
field ñ(r) =

∑
k(αnH(r)− α∗nH(r+ êk))êk, where α = (1+ i)/

√
2.

In the HubbardStratonovich method, the quadratic dependencies are eliminated by intro
ducing auxiliary fieldsw,ϕϕϕ. After some calculations, we are left with a field theory partition
function, ZFT = e−H, with an effective Hamiltonian

H =
1

2Λβ

∑
r

w(r)2 +
1
2β

∑
r

ϕϕϕ(r)2 − N logQ. (5)

Here, Q is the partition function of a single chain, where each monomer, m, interacts with
the fields through the energy EQ = i[w(rm)+σm

∑
k(αϕk(rm− êk)−α∗ϕk(r))], and can

be calculated analytically. σm indicates whether the monomer is hydrophobic (σm = 1) or
not (σm = 0). As can be seen, the field theory Hamiltonian is complexvalued.

Complex Langevin simulation

Since the fieldtheory Hamiltonian is complexvalued, normal simulation methods, such as
the Monte Carlo simulation techniques described in section 4.1, cannot be used. A possible
way around the issue is to use complex Langevin sampling [46–48].

In this sampling algorithm, the system evolves according to the Langevin equation

ẇ(r, t) = − ∂H
∂w(r, t)

+
√
2ξw(r, t) (6)

ϕ̇ϕϕ(r, t) = − ∂H
∂ϕϕϕ(r, t)

+
√
2ξξξϕϕϕ(r, t) (7)

where ξw and ξξξϕϕϕ are sources of zeromean unitvariance white noise. Langevin dynam
ics is a wellestablished method for sampling the Boltzmann distribution ∝ e−βH when
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the Hamiltonian H is realvalued. For a complexvalued Hamiltonian, means of analytic
functions can often be obtained from the same type of timeevolution, by allowing the
simulated variables to drift off into the complex plane. However, it is known that this
sometimes gives rise to instabilities [49].

5 Data analysis

Of course, performing an accurate and efficient simulation is not necessarily sufficient to
gain insights into the underlying system. To do that, one also has to be able to extract
relevant data from the simulation, which is not necessarily trivial.

Below, I will address two different challenges related to data extraction. First, the use of
methods such as timelagged independent component analysis (TICA) and Markov state
modeling to systematically extract important coordinates from simulation data. Second,
the use of finitesize scaling analysis for studying the transition in phaseseparating systems.

5.1 Identifying slowchanging coordinates

Themacromolecular systems we wish to study contain a vast number of degrees of freedom.
Even a single short protein can contain hundreds, if not thousands of atoms. To figure out
which coordinates correspond to physically and biologically relevant processes is not trivial.
In folding or binding studies, we often start from an educated guess based on experimental
data, but for multiprotein systems with many nonspecific interactions, guessing the in
teractions is rarely feasible. In those situations, a systematic way of identifying the most
relevant degrees of freedom is highly useful.

An important insight is that the most relevant coordinates in biomolecular systems are
often those which change slowly [50]. Such coordinates can be constructed by combining
the trajectories from a set of observables, {oi(t)}, from the simulations, to some function,
u({oi}), such that the normalized autocorrelation Cu(τ)/Cu(0) is maximal. Here,

Cu(τ) = ⟨u(t)u(t+ τ)⟩ − ⟨u(t)⟩⟨u(t+ τ)⟩, (8)

and the lagtime τ is a free parameter.

TICA

Perhaps the simplest way to construct the function u is to take it as a linear function of the
input variables, u =

∑
aioi. The ai are here parameters to be optimized. This approach,
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known as timelagged independent component analysis [51, 52], has a lot in common with
the wellknown principal component analysis (PCA). The difference being that TICA de
termines highautocorrelation rather that highvariance coordinates.

To find the slowest component, we need simply solve a linear optimization problem, using
a Lagrange multiplier to handle the regularization. The problem is thus to find

argmaxaa
TC(τ)a− λaTC(0)a (9)

where a is a vector of the coefficients ai, and C(τ) is a matrix with elements Cij(τ) =
⟨oi(t)oj(t+τ)⟩−⟨oi(t)⟩⟨oj(t+τ)⟩. Solving for a gives the generalized eigenvalue equation

C(τ)a = λC(0)a. (10)

Just as in PCA, the subsequent components can be found as solutions of the same equation,
with each additional component corresponding to a lower value for the eigenvalue λ.

Markov state models

Of course, linear combinations of the input coordinates may not always be an ideal choice
when constructing slowchanging functions. A popular method for constructing nonlin
ear functions has been to build socalled Markov state models [53, 50], wherein one first
tesselates the conformation space into cells Ci through a clustering procedure. Then, one
constructs a set of indicator coordinates θi(r) which depend on the conformation r. The
coordinates are such that θi = 1, if the conformation is in cell i, and θi = 0 otherwise.
Slow coordinates can then be constructed as linear combinations of the indicator variables,
in the same way as for TICA.

This construction also has an appealing interpretation, wherein each cell defines a state.
The autocorrelation matrix is then closely related to the transition matrix with elements
corresponding to the probability of moving from state i to state j in the chosen lagtime τ .
If the number of states is small, this interpretation may yield a useful intuitive view of the
dynamics.

In practice, the number of states required to achieve a good description is typically large,
thereby limiting the interpretability of the Markov state model. Even then though, it can
be used e.g. to achieve a more precise determination of the time scales involved in the slow
processes.

5.2 Finitesize effects

When studying biomolecular condensates, the underlying concentrationtemperature phase
diagram is of key interest. From simulations, points on the phase boundary can of course
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be determined, e.g. as the droplet formation temperature in constantdensity simulations.
However, simulations necessarily deal with finite systems, where the phase diagram turns
out to be distorted. Developing methods to minimize and control these finitesize effects
is important.

The main source of finitesize effects is the interplay between the bulk free energies of the
two phases, and the interfacial free energy, which scale differently with system size [54–56].
A simple but useful phenomenological ansatz for understanding finitesize effects, based on
the different scaling of the bulk and interface terms with system size, is given by [55, 57]

F(ρℓ, ρh,Vℓ,Vh) = fℓ(ρℓ)Vℓ + fh(ρh)Vh + γAℓh. (11)

Here ρi, Vi and fi (i = h, ℓ) are the singlephase densities, volumes and freeenergy densities
respectively. Aℓh is the interface area and γ is the surface tension. To find the singlephase
densities and volumes for a system with given volume V and density ρ, this expression
should be minimized subject to the constraints V = Vℓ +Vh and ρV = ρℓVℓ + ρhVh. The
largevolume limit corresponds to neglecting the surface term, and leading order correc
tions can be found by assuming that this term, as well as the density shifts, are small (for
more detail on this calculation, see Paper III). The firstorder correction to the singlephase
densities turns out to be proportional to dAℓh/dVh. For a spherical droplet this correction
is therefore inversely proportional to the droplet radius, while it vanishes for a slablike
droplet (see Paper III for further details).

Equation 11 can also be used to determine the finitesize scaling of the transition densities,
see e.g. [55]. In this case, however, the relevant physics can also be inferred from the
following backofanenvelope calculation [54].

To determine whether a droplet forms at density ρ = ρ∞ + δρ (where ρ∞ is the infinite
size droplet formation density), we must determine whether the freeenergy cost of using
the excess density δρ to form a droplet is lower than the cost of absorbing it into the dilute
phase. The cost for absorbing the excess scales (to lowest order) as δρ2V, whereas the cost of
making a droplet is proportional to the interface area, Aℓh ∼ V 2/3

h ∼ (δρV)2/3. Droplet
formation should set in when the two costs are comparable, i.e. when δρ ∼ V −1/4.

When doing the full calculation [54, 55], it turns out that even when a droplet does form,
some of the excess density will remain in the background. Despite this, the basic scaling
law remains the same.

It is interesting to note that in both the above cases, the finitesize shifts are inversely pro
portional to the droplet radius. The different scalings (as V −1/3 for the singlephase dens
ities, and V −1/4 for the transition densities) are due to the fact that the relative size of the
droplet, Vh/V, at the transition density decreases with system size.

In the largeV limit, the transition and singlephase densities both approach the coexistence
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densities. The above scaling relations thus offer two ways to determine coexistence densities
in large systems. Similar considerations apply when studying other observables.

6 Summary

In this thesis, I have developed and evaluated biophysical models, simulation algorithms
and data analysis tools for exploring new and challenging areas in biomolecular physics,
such as crowding effects in dense protein systems and liquidliquid phase separation. These
efforts can be summarized as follows.

• Development of an allatom force field designed to be able to handle intrinsically
disordered as well as globular proteins.

• Identification of important nonspecific intermolecular interactions in simulations
of crowded protein systems through data analysis methods (TICA and Markov state
modeling).

• Exploration of the potential and limitations of fieldtheory simulations of biomolecu
lar liquidliquid phase separation.

• Investigation of finitesize effects on phase diagrams from simulations of protein
droplet formation and their dependence on system geometry.
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Paper I

Markov modeling of peptide folding in the presence of protein crowders
D. Nilsson, S. Mohanty, A. Irbäck
The Journal of Chemical Physics 148, 055101 (2018)

In this Paper, we applied Markov state modeling techniques to crowding simulations of the
GB1m3 peptide in the prescence of either BPTI of GB1 crowders. These systems had been
studied in the group before I joined as a PhD student, and the paper could be seen as a
followup of this work. The aim of the paper was to see whether Markov state modeling
could be useful in analysing crowding simulations. We found that dimensional reduction
through TICA was very helpful for characterizing the systems, while the further analysis
provided only limited insights.

I performed all the simulations as well as the TICA andMarkov state modeling calculations.
The simulations were performed using code written and maintained by SandipanMohanty.
The manuscript was mostly written by Anders Irbäck, with input from the other authors.

Paper II

Finitesize scaling analysis of protein droplet formation
D. Nilsson, A. Irbäck
Physical Review E 101, 022413 (2020)

This paper was our first foray into simulation of protein droplet formation. The aim was to
probe the usefulness of finitesize scaling analysis in determining the values of biophysical
observables for large systems, from simulations which are necessarily performed at finite
size. To do this, we simulated systems of two different model proteins in a continuous
hydrophobicpolar model, and could show that one of them phaseseparated while the
other did not.
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I formulated the model in discussion with Anders Irbäck. I wrote the simulation code,
ran the simulations, and analysed the data. The manuscript was mostly written by Anders
Irbäck, with input from me.

Paper III

Finitesize shifts in simulated protein droplet phase diagrams
D. Nilsson, A. Irbäck
The Journal of Chemical Physics 154, 235101 (2021)

When determining the droplet formation temperature in Paper II, we identified the max
imum of the specific heat, at constant density. Another commonly used method of de
termining the same quantity is to measure the coexistence densities of the two phases in
simulations at constant temperature. After discussions with Anders Irbäck about how us
ing this method would affect the finitesize shifts, I came up with an expression for the
finitesize shifts (eq. 4 in the paper). The form of this expression also naturally lead us to
the question of how the simulation geometry influences the size of the shifts. We found
that when determining coexistence densities through direct measurement of equilibrium
densities, an elongated simulation geometry results in drastically smaller shifts.

I derived the expression for finitesize shifts of the coexistence densities. I ran the simula
tions, which were run using the code developed for Paper II, and analysed the data. I wrote
the first draft of the manuscript, which was then revised by Anders Irbäck and me.

Paper IV

Limitations of fieldtheory simulation for exploring phase separation: the role of repul
sion in a lattice protein model
D. Nilsson, B. Bozorg, S. Mohanty, B. Söderberg, A. Irbäck
Submitted to The Journal of Chemical Physics

This project was started because we wanted to try out field theory simulations, which were
proposed as a fruitful way of studying LLPS in [18]. To this end, we initially tried perform
ing fieldtheory simulations using a continuous HPmodel similar to the model used in that
paper. However, we had difficulties getting the simulations to output sensible results, and
therefore formulated a lattice model that had fewer free parameters and could be exactly
compared to particlebased simulations. We found that the results from fieldtheory and
particlebased simulations coincided only when the repulsion strength was so low that the
model droplets collapsed to an artificially dense state. We set up a toy model to investigate
the sampling issues, and identified a loss of ergodicity as a possible cause.
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Initial code development, simulations and analysis were done by Behruz Bozorg, with con
tributions from Sandipan Mohanty to the code development. By the time I started to
become actively involved, the cause of the discrepancies between field theory and particle
based simulations was still unclear. I helped adapting the field theory formulation to the
lattice model, together with Bo Söderberg and Anders Irbäck. I formulated the toy model.
Bo Söderberg did additional calculations with the toy model. Field theory simulations for
the lattice model were performed by Anders Irbäck, and particlebased simulations were
performed by Anders Irbäck and Sandipan Mohanty. The paper was mostly written by
Anders Irbäck and Bo Söderberg, with input from the other authors.

Paper V

An effective potential for atomiclevel simulation of structured and unstructured proteins
D. Nilsson, S. Mohanty, A. Irbäck
Manuscript

In this project, we updated the protein folding model developed in the group. The main
aim was to improve the performance of the model when sampling intrinsically disordered
peptides. We did this by comparing model results to experimental data for a set of small
peptides, both ordered and disordered.

Design of the model was done mostly by me, with important contributions from Anders
Irbäck. I did most of the coding and parameterization of the force field. SandipanMohanty
reimplemented the model in the protein simulation software package PROFASI, which
among other things enabled multithreaded simulation of the final model. I wrote the first
draft of the manuscript, which was then revised by all authors.
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Markov modeling of peptide folding in the presence of protein crowders
Daniel Nilsson,1,a) Sandipan Mohanty,2,b) and Anders Irbäck1,c)
1Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics,
Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
2Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich,
D-52425 Jülich, Germany

(Received 23 November 2017; accepted 10 January 2018; published online 1 February 2018)

We use Markov state models (MSMs) to analyze the dynamics of a β-hairpin-forming peptide in
Monte Carlo (MC) simulations with interacting protein crowders, for two different types of crowder
proteins [bovine pancreatic trypsin inhibitor (BPTI) and GB1]. In these systems, at the temperature
used, the peptide can be folded or unfolded and bound or unbound to crowder molecules. Four or five
major free-energy minima can be identified. To estimate the dominant MC relaxation times of the
peptide, we build MSMs using a range of different time resolutions or lag times. We show that stable
relaxation-time estimates can be obtained from the MSM eigenfunctions through fits to autocorrelation
data. The eigenfunctions remain sufficiently accurate to permit stable relaxation-time estimation down
to small lag times, at which point simple estimates based on the corresponding eigenvalues have large
systematic uncertainties. The presence of the crowders has a stabilizing effect on the peptide, especially
with BPTI crowders, which can be attributed to a reduced unfolding rate ku, while the folding rate kf

is left largely unchanged. Published by AIP Publishing. https://doi.org/10.1063/1.5017031

I. INTRODUCTION

In the crowded interior of living cells, proteins are sur-
rounded by high concentrations of macromolecules, which
leads to a reduction of the volume available to a given protein.
Under such conditions, steric interactions would universally
favor more compact structures. A growing body of evidence
indicates, however, that the effects of macromolecular crowd-
ing on properties such as protein stability cannot be explained
in terms of steric repulsion alone.1–3 To understand the role of
other interactions, in recent years, there have been increasing
efforts to perform computer simulations with realistic crowder
molecules,4–11 rather than hard-sphere crowders. When ana-
lyzing these large systems, a major challenge lies in identifying
the main states and dynamical modes, which may not be easily
anticipated. One possible approach to this problem is provided
by Markov modeling techniques,12–16 which in recent years
have found widespread use in studies of biomolecular pro-
cesses such as folding and binding.17,18 Most of these studies
dealt with data from molecular dynamics simulations, but the
methods are general and can be used on Monte Carlo (MC)
data as well.

In this article, we use Markov modeling, along with time-
lagged independent component analysis (TICA),19–22 to ana-
lyze data from MC simulations of a test peptide in the presence
of interacting protein crowders, for two different types of crow-
der proteins. We show that the major free-energy minima and
slow dynamical modes of these high-dimensional systems can
be identified in a systematic manner using TICA and Markov

a)Electronic mail: daniel.nilsson@thep.lu.se
b)Electronic mail: s.mohanty@fz-juelich.de
c)Electronic mail: anders@thep.lu.se

state models (MSMs). We further show that the dominant MC
relaxation times of the peptide can be robustly estimated from
the constructed MSMs, although simple estimates based on the
MSM eigenvalues are subject to well-known systematic uncer-
tainties. Our procedure for relaxation-time estimation uses the
MSM eigenfunctions and autocorrelation fits, rather than the
eigenvalues.

As a test molecule, we use the β-hairpin-forming GB1m3
peptide.23 The peptide is simulated in homogeneous crowd-
ing environments, where either the bovine pancreatic trypsin
inhibitor (BPTI) or the B1 domain of streptococcal protein G
(GB1) serves as a crowding agent. Both these proteins are
thermally highly stable24,25 and therefore modeled using a
fixed-backbone approximation, whereas the GB1m3 peptide
is free to fold and unfold in the simulations. The simulations
are conducted using MC dynamics at a constant temperature.
Recently, we studied the same systems using MC replica-
exchange methods and found that both BPT1 and GB1 have a
stabilizing effect on GB1m3.26

II. METHODS
A. Simulated systems

The simulated systems consist of one GB1m3 molecule
and eight crowder molecules, enclosed in a periodic box with
side length 95 Å. The eight crowder molecules are copies of a
single protein, either BPTI or GB1. This setup yields crowder
densities of ∼100 mg/mL, whereas the macromolecule densi-
ties in cells can be ∼300–400 mg/mL.27 The volume fraction
occupied by the crowders is around 7%. The simulation tem-
perature is set to 332 K, which is near the melting temperature
of the free GB1m3 peptide.23 For reference, simulations of the
free peptide are also performed, using the same temperature.
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The GB1m3 peptide is an optimized variant of the sec-
ond β-hairpin (residues 41–56) in protein GB1, with enhanced
stability.23 It differs from the original sequence at 7 of 16 posi-
tions. To the best of our knowledge, no experimental structure
is available for GB1m3, but its native fold is expected to be
similar to the parent β-hairpin in GB1.

B. Biophysical model

Our simulations are based on an all-atom protein repre-
sentation with torsional degrees of freedom and an implicit
solvent force field.28 A detailed description of the interaction
potential can be found elsewhere.28 In brief, the potential con-
sists of four main terms, E = Eloc + Eev + Ehb + Esc. One
term (Eloc) represents local interactions between atoms sepa-
rated by only a few covalent bonds. The other, non-local terms
represent excluded-volume effects (Eev), hydrogen bonding
(Ehb), and residue-specific interactions between pairs of side-
chains, based on hydrophobicity and charge (Esc). In multi-
chain simulations, intermolecular interaction terms have the
same form and strength as the corresponding intramolecular
ones. The potential is an effective energy function, parameter-
ized through folding thermodynamics studies for a structurally
diverse set of peptides and small proteins.28 Previous applica-
tions of the model include folding/unfolding studies of several
proteins with >90 residues.29–34 Recently, it was used by us to
simulate the peptides trp-cage and GB1m3 in the presence of
protein crowders.8,26

Our simulations use the same fully atomistic represen-
tation of both the GB1m3 peptide and the crowder proteins.
However, because of their high thermal stability,24,25 the crow-
der proteins are modeled with a fixed backbone and thus with
side-chain rotations as their only internal degrees of freedom.
The assumed backbone conformations of BPTI and GB1 are
model approximations of the Protein Data Bank (PDB) struc-
tures 4PTI and 2GB1, derived by MC with minimization. The
structures were selected for both low energy and high similarity
to the experimental structures. The root-mean-square devia-
tions (RMSDs) from the experimental structures (calculated
over backbone and Cβ atoms) are .1 Å.

C. MC simulations

The systems are simulated using MC dynamics. The sim-
ulations are done in the canonical rather than some generalized
ensemble. Also, only “small-step” elementary moves are used
so that the system cannot artificially jump between free-energy
minima, without having to climb intervening barriers. With
these restrictions, the simulations should capture some basics
of the long-time dynamics.35 Despite the restrictions, the meth-
ods are sufficiently fast to permit the study of the folding and
binding thermodynamics of the peptide, through simulations
containing multiple folding/unfolding and binding/unbinding
events.

Our move set consists of four different updates: (i) the
semi-local Biased Gaussian Steps (BGSs) method36 for back-
bone degrees of freedom in the peptide, (ii) simple single-
angle Metropolis updates in side chains, (iii) small rigid-
body translations of whole chains, and (iv) small rigid-body
rotations of whole chains. The “time” unit of the simula-
tions is MC sweeps, where one MC sweep consists of one

attempted update per degree of freedom. Specifically, each
MC sweep consists of 74 attempted moves in the crowder-
free system, whereas the corresponding numbers are 1208 and
1328 with BPTI and GB1 crowders, respectively. Note that
the average number of attempted conformational updates of
the peptide per MC sweep is the same in all three cases. In
the simulations with crowders, the relative fractions of BGS
moves, side-chain updates, rigid-body translations, and rigid-
body rotations are approximately 0.02, 0.94, 0.02, and 0.02,
respectively.

All simulations are run with the program PROFASI,37

using both vector and thread parallelization. To gather statis-
tics, a set of independent runs is generated for each system.
The number of runs is 16 with BPTI crowders, 62 with GB1
crowders, and 30 for the isolated peptide. Each run comprises
40 × 106 MC sweeps if crowders are present and 10 × 106 MC
sweeps without crowders. Compared to the longest relaxation
times in the respective systems (see below), the individual runs
are a factor >20 longer.

Several different properties are recorded during the sim-
ulations. As a measure of the nativeness of the peptide, the
number of native H bonds present, nhb, is computed, assum-
ing that the native H bonds are the same as in the full GB1
protein (PDB code 2GB1). The interaction of the peptide
with surrounding crowder molecules is studied by monitor-
ing intermolecular H bonds and Cα–Cα contacts. A residue
pair is said to be in contact if their Cα atoms are within
8 Å.

As input for our TICA and MSM analyses (see below),
two sets of parameters are stored at regular intervals dur-
ing the course of the simulations. The first set consists of
all (non-constant) intramolecular Cα–Cα distances within the
peptide, called rij. The second set consists of intermolecu-
lar distances between the peptide and the crowders, called
dij. Specifically, dij denotes the shortest Cα–Cα distance
between peptide residue i and residue j in any of the crowder
molecules.

D. TICA and MSM analysis

TICA can be used as a dimensionality reduction method.
It is somewhat similar to the principal component analysis
but identifies high-autocorrelation (or slow) rather than high-
variance coordinates. Given time trajectories of a set of param-
eters, {on} (in our case, the distances rij and dij, see above),
one constructs the time-lagged covariance matrix cnm(τcm)
= 〈on(t)om(t + τcm)〉t − 〈on(t)〉t〈om(t + τcm)〉t , where τcm is the
lag time and 〈·〉t denotes an average over time t. By solving the
(generalized) eigenvalue problem C(τcm)v̂i = λ̂iC(0)v̂i, slow
linear combinations of the original parameters can be identi-
fied. A more advanced method for identifying slow modes is
to construct MSMs.

To build an MSM, the state space needs to be discretized.
In our calculations, following Ref. 22, the discretization is
achieved by clustering the data with the k-means algorithm38

in a low-dimensional subspace spanned by slow TICA coor-
dinates. By computing the probabilities of transition among
these clusters in a time τtm (which, like τcm, is an adjustable
parameter), a transition matrix is obtained. Assuming Marko-
vian dynamics, the eigenvectors of this matrix have relaxation
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times given by
t̃i = −τtm/ ln λ̃i(τtm), (1)

where 1 = λ̃0 > λ̃1 ≥ λ̃2 ≥ · · · > 0 are the eigenval-
ues. The eigenvalue λ̃0 corresponds to a stationary distribution
(t̃0 = ∞), whereas all other eigenvalues correspond to relax-
ation modes with finite time scales t̃i. The time scales obtained
using Eq. (1) are expected to reproduce the dominant relax-
ation times of the full system if the discretization is sufficiently
fine39,40 or if the lag time is sufficiently large.40,41

There are several software packages available for TICA
and MSM analysis.42–45 Our calculations are done using the
pyEMMA software.42

E. Time scales from autocorrelations of MSM
eigenfunctions

Another way of estimating relaxation times from an MSM
is to compute autocorrelations of the eigenfunctions. The (nor-
malized) autocorrelation function of a general property f is
given by Cf (τ) = [〈f (t)f (t +τ)〉t −〈f (t)〉t〈f (t +τ)〉t]/σ2

f , where

σ2
f is the variance of f. Let ψMSM

i be the ith eigenfunction of a
given MSM, and let ψi be the true ith eigenfunction of the sys-
tem’s time transfer operator.16 The autocorrelation function of
ψMSM

i , Ci(τ), may be expanded as

Ci(τ) =
∑

j

cje
−τ/tj , (2)

where tj is the exact jth relaxation time. The coefficients cj

are given by cj = |〈ψj,ψMSM
i 〉|2, where the overlap 〈ψj,ψMSM

i 〉

can be expressed as an average with respect to the stationary
distribution, µ(x): 〈ψj,ψMSM

i 〉 = ∫ dxµ(x)ψj(x)ψMSM
i (x). Note

that ψj and ψMSM
i have mean zero and unit norm. In Sec. III,

overlaps between pairs of general functions are computed in
the same way, after shifting and normalizing the functions to
zero mean and unit norm.

Now, if ψMSM
i is a good approximation of ψi, then cj � ci

for j , i. If this holds, Ci(τ) decays approximately as e−τ/ti

for not too large τ (compared to ti) so that ti can be estimated
through a simple exponential fit.

The calculations discussed below use data for Ci(τ) in the
range of τ where 0.2 < Ci(τ) < 0.8. Over this range, Ci(τ)
is to a good approximation single exponential for all MSM
eigenfunctions studied. The upper bound on τ is set primar-
ily by statistical uncertainties, rather than by deviations from
single-exponential behavior.

III. RESULTS

Our analysis of the GB1m3 peptide in the three sim-
ulated systems (with BPTI crowders, with GB1 crowders,

without crowders) can be divided into two parts. First, equilib-
rium free-energy surfaces are constructed, using TICA coor-
dinates. Second, the dynamics are investigated, using MSM
techniques.

A. Free-energy landscapes

It is instructive to begin with the isolated GB1m3 peptide,
whose folding thermodynamics have been studied before using
the same model.28 This study found that the isolated peptide
folds in a cooperative manner, and that the number of native
H bonds present, nhb, is a useful folding coordinate that has
a bimodal distribution at the melting temperature. Figure 1(a)
shows the free energy of the isolated GB1m3, calculated as
a function of the two slowest TICA coordinates, TIC0 and
TIC1. The free-energy surface exhibits two major minima,
labeled I and II, which are well separated in the TIC0 direction.
From Fig. 1(b), it can be seen that this coordinate is strongly
(anti-) correlated with nhb. This correlation implies that the
peptide is native-like in free-energy minimum I and unfolded
in minimum II.

We now turn to the system where GB1m3 is surrounded
by BPTI crowders. Here, the TICA coordinates are linear com-
binations of both intra- and intermolecular distances (rij and
dij; see Sec. II C). Calculated as a function of the two slowest
TICA coordinates, the free energy exhibits four major min-
ima, labeled I–IV [Fig. 2(a)]. To characterize the minima, an
interpretation of the TIC0 and TIC1 coordinates is needed.
As in the previous case, TIC0 is strongly correlated with nhb

[Fig. 2(b)] and thus linked to the degree of nativeness. Inspec-
tion of the eigenvector corresponding to TIC1 suggests that
this coordinate depends strongly on certain peptide-crowder
distances dij involving the BPTI residue Pro8, which is part
of a sticky patch on the BPTI surface.26 Motivated by this
observation, Fig. 2(c) shows the TIC0,TIC1-dependence of a
function defined to be unity whenever there is at least one
residue-pair contact between the peptide and a Pro8 BPTI
residue and zero otherwise (smoothing is used). This func-
tion is indeed strongly correlated with TIC1. Therefore, the
main free-energy minima can be classified based on whether
or not the peptide is native-like, and whether or not the peptide
forms any Pro8 BPTI contact. The peptide is native-like and
bound in minimum I, which actually can be split into two dis-
tinct subminima, corresponding to two preferred orientations
of the folded and bound peptide. In the remaining three main
minima, the peptide is either unfolded and bound (minimum
II), native-like and unbound (minimum III), or unfolded and
unbound (minimum IV).

With GB1 crowders, the free energy of GB1m3 exhibits
five well-separated and easily visible minima [Fig. 3(a)] when

FIG. 1. (a) Free energy of the isolated GB1m3 peptide,
calculated as a function of the two slowest TICA coor-
dinates, TIC0 and TIC1. Major minima are labeled by
Roman numerals. (b) The dependence of the number of
native H bonds, nhb, on these coordinates. Here, each
stored conformation is represented by a point in the TIC0,
TIC1-plane, in a color determined by the value of nhb.
Smoothing is applied to improve readability. The TICA
lag time is set to τcm = 103 MC sweeps.
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FIG. 2. Characterization of the GB1m3 peptide in the
presence of BPTI crowders, using the two slowest TICA
coordinates, TIC0 and TIC1. (a) Free energy. Major min-
ima are labeled by Roman numerals. (b) The number of
native H bonds present in the peptide, nhb. (c) A function
which is unity whenever there is at least one residue-pair
Cα–Cα contact between the peptide and a Pro8 BPTI
residue and zero otherwise (drawn using smoothing). The
contact cutoff distance is 8 Å. The TICA lag time is set
to τcm = 103 MC sweeps.

calculated as a function of the slowest and third-slowest TICA
coordinates. The TIC0, TIC2-plane is used here because two
of the minima (III and IV) cannot be distinguished in the
TIC0, TIC1-plane (see the supplementary material, Fig. S1).
The TIC0 coordinate is again correlated with the degree of
nativeness of the peptide [Fig. 3(b)]. Proper interpretation
of the TIC2 coordinate requires knowledge of the preferred
peptide-crowder binding modes. It turns out that there are two
preferred binding modes, called B1 and B2. In both cases,
binding occurs through β-sheet extension; the edge strand β3
(residues 42–46) of GB1 binds to either the first or the second
strand of the folded GB1m3 β-hairpin. The binding modes can
be described in terms of the H bonds involved (see the supple-
mentary material, Fig. S2). Figures 3(c) and 3(d) show how the
presence of H bonds associated with the respective modes vary
with TIC0 and TIC2. Apparently, low and high TIC2 signal
B1 and B2 binding, respectively. A similar analysis of TIC1
shows that this coordinate separates bound and unbound states
but discriminates poorly between the B1 and B2 modes [see
the supplementary material, Figs. S1(c) and (d)]. The isolated
island at low TIC0 and intermediate TIC2 stems from simul-
taneous binding of the peptide via both modes, to two crowder
molecules. Based on the above observations, the free-energy

minima in Fig. 3(a) can be described as follows. In minima
I and II, the peptide is unfolded and native-like, respectively,
and neither B1 nor B2 binding occurs. In the remaining three
minima, the peptide is native-like and bound. The mode of
binding is either B1 (minimum III), B2 (minimum IV) or both
(minimum V).

It is worth noting that the interpretation of the TIC0 coor-
dinates of the BPTI and GB1 systems is not necessarily the
same although TIC0 is a strongly correlated with folding in
both cases. In the GB1 system, TIC0 is correlated not only
with folding but also with double binding [Figs. 3(c) and 3(d)].
By contrast, in the BPTI system, the correlation between TIC0
and the binding coordinate is weak [Fig. 2(c)].

To sum up, the results of this section show that TICA
provides useful coordinates for describing the free energy of
the peptide in the different systems. Using a few slow TICA
coordinates, the main free-energy minima can be identified.

B. Dynamics

TICA provides a first approximation of the slow modes.
For a more detailed investigation of the dynamics of the pep-
tide in our simulations with crowders, MSMs are constructed

FIG. 3. Characterization of the GB1m3 peptide in the
presence of GB1 crowders, using the slowest and third-
slowest TICA coordinates, TIC0 and TIC2. (a) Free
energy. Major minima are labeled by Roman numerals.
(b) The number of native H bonds present in the peptide,
nhb [(c) and (d)] the numbers of present H bonds associ-
ated with the peptide-crowder binding modes B1 and B2
(see the supplementary material, Fig. S2), respectively.
The TICA lag time is set to τcm = 20 × 103 MC sweeps.
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FIG. 4. Long-time dynamics of GB1m3 in the presence of BPTI crowders. Shaded areas indicate statistical 1σ errors. (a) Estimates of the four longest relaxation
times, as obtained using MSM eigenvalues [Eq. (1); blue curves] and autocorrelation analysis (Sec. II E; red curves). The data are plotted against the lag time
τtm of the MSM transition matrix. The second and third longest time scales are very similar. In building the MSMs, data were clustered in the space spanned by
the four slowest TICA modes (using τcm = 103 MC sweeps), into 800 clusters. (b) Autocorrelation functions, C(τ), for the two slowest MSM eigenfunctions
(τtm = 25 × 103 MC sweeps), the folding variable nhb [Fig. 2(b)], and the binding variable studied in Fig. 2(c).

as described in Sec. II D, for a range of lag times τtm. Relax-
ation times are estimated by two methods: (i) from MSM
eigenvalues [Eq. (1)] and (ii) by fits to autocorrelation data
for MSM eigenfunctions (Sec. II E). Illustrations of how the
main MSM eigenfunctions are related to the TICA modes
discussed above can be found in the supplementary material
(Figs. S3–S6).

Figure 4(a) shows estimates of the four longest relaxation
times in the system with BPTI crowders, as obtained by the
above-mentioned methods. As expected, the eigenvalue-based
estimates have systematic errors for small lag times τtm. To
keep this error low, τtm has to be comparable to the time scale
in question. The estimates based on autocorrelation analysis
depend, by contrast, only very weakly on τtm. This behavior
suggests that the true relaxation times can be estimated from
the MSM eigenfunctions even if τtm is relatively small. Consis-
tent with this, a further test shows that the shape of the slowest
MSM eigenfunction depends only weakly on τtm. Here, pair-
wise overlaps (see Sec. II E) were computed between variants
of this function obtained for different τtm. The overlap was
≥0.96 for all possible pairs of τtm.

Figure 4(b) compares the raw autocorrelation functions
for the two slowest MSM eigenfunctions to those for the
folding and binding coordinates studied in Figs. 2(b) and
2(c), respectively. One observation that can be made is
that the autocorrelations of the folding and binding coordi-
nates, not unexpectedly, show clear deviations from single-
exponential behavior at small τ. The MSM eigenfunctions
are, as intended by construction, much closer to single

exponential, which facilitates the extraction of relaxation
times.

Another observation from Fig. 4(b) is that, except at
small τ, the autocorrelations of the first MSM eigenfunc-
tion and the folding coordinate decay at very similar rates.
A close relationship between these two functions is indeed
suggested from a comparison of Figs. 2(b) and S4(a) (see the
supplementary material). This conclusion is further strength-
ened by their overlap (about 0.88). The autocorrelation func-
tion for the second MSM eigenfunction somewhat resembles
that for the binding coordinate [Fig. 4(b)], but the overlap
is not very large (about 0.36); the binding coordinate over-
laps significantly with other MSM eigenfunctions as well.
Thus, while the second eigenfunction probably is related to
binding, that relationship is not fully captured by the binding
coordinate.

Figure 5 shows data from our simulations with GB1 crow-
ders. The statistical uncertainties are larger for this system. The
main reason for this is that transitions to and from free-energy
minimum V [Fig. 3(a)], where the peptide simultaneously
binds two crowder molecules, occur only rarely in the sim-
ulations. Nevertheless, after increasing the number of runs
from 16 for the BPTI system to 62, our total data set contains
about 30 independent visits to this minimum, and some clear
trends can be seen. The estimated relaxation times follow the
same pattern as with BPTI crowders; the estimates based on
MSM eigenvalues converge only slowly with increasing τtm,
whereas those based on autocorrelation analysis are essentially
constant down to small τtm [Fig. 5(a)]. However, in the GB1

FIG. 5. Long-time dynamics of GB1m3 in the presence of GB1 crowders. Shaded areas indicate statistical 1σ errors. (a) Estimates of the four longest relaxation
times, as obtained using MSM eigenvalues [Eq. (1); blue curves] and autocorrelation analysis (Sec. II E; red curves). The data are plotted against the lag time
τtm of the MSM transition matrix. In building the MSMs, data were clustered in the space spanned by the three slowest TICA modes (using τcm = 20 × 103 MC
sweeps), into 1574 clusters. (b) Autocorrelation functions, C(τ), for the two slowest MSM eigenfunctions (τtm = 25 × 103 MC sweeps), the folding variable
nhb [Fig. 3(b)], and the binding variable χb (see text). For clarity, statistical errors are shown only for one of the four functions. The statistical uncertainties are
somewhat larger for the binding variable χb than they are for the other three functions.
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system, the first MSM eigenfunction is more closely linked to
binding than to folding. To show this, a binary function sen-
sitive to simultaneous binding of the peptide to two crowder
molecules is calculated. Specifically, this function is defined
as χb = χ1 χ2, where χi is unity if at least three of the H bonds
associated with binding mode i (see the supplementary mate-
rial, Fig. S2) are present, and χi = 0 otherwise. Figure 5(b)
shows autocorrelation data for the two slowest MSM eigen-
functions, the folding coordinate (nhb), and the function χb.
The nhb and χb functions are natural candidates for the slowest
modes since they are both highly correlated with TIC0. It turns
out that the autocorrelation function of χb decays slower than
that of nhb, and at a rate comparable to that for the first MSM
eigenfunction [Fig. 5(b)]. Consistent with this, the first MSM
eigenfunction has a larger overlap with the binding function
χb (about 0.76) than it has with the folding coordinate (about
0.44).

Finally, we compute and compare the folding and unfold-
ing rates of the peptide, kf and ku, in the three simulated
environments. To this end, we determine the native-state prob-
ability, Pn (with the peptide being defined as native if nhb ≥ 3),
and the apparent folding/unfolding rate, k = kf + ku. The rate
k is obtained by a fit to autocorrelation data for the folding
coordinate nhb (Fig. 6). Knowing k and Pn and assuming a
simple folded/unfolded two-state behavior, kf and ku can be
computed (kf = kPn, ku = k � kf). Our data for Pn, k, kf, and
ku are summarized in Table I. The BPTI crowders cause a
considerable stabilization of the peptide (increased Pn) and
a marked decrease in k. The decrease in k can be attributed
to a lower ku; no significant change in kf is observed. With
GB1 crowders, a similar pattern is observed although the sta-
bilization of the peptide is much weaker in this case. Again,
a markedly reduced ku is observed, whereas the change in
kf is smaller. Therefore, in both the BPTI and GB1 simu-
lations, the peptide seems to interact more efficiently with
the crowders when folded than when unfolded. At the same
time, the peptide-crowder interaction is different in character
in the BPTI and GB1 cases (see above). Note therefore that the
folding of the peptide to its native state entails the formation
of both β-sheet structure and a hydrophobic side-chain clus-
ter, which may enhance the interaction with GB1 and BPTI,
respectively.

FIG. 6. Autocorrelation function, C(τ), for the folding variable nhb (the num-
ber of native H bonds present in the peptide), as obtained without crowders,
with BPTI crowders, and with GB1 crowders. Table I shows apparent folding
rates k obtained by exponential fits to the data. Shaded areas indicate statistical
1σ errors.

TABLE I. Folding and unfolding rates of the GB1m3 peptide, kf and ku, in
our three simulated systems. The rates are computed from the apparent rate
constant k = kf + ku and the native-state probability, Pn. The peptide is taken
as native if at least three native H bonds are present, and k is obtained by fits
to the data in Fig. 6. Rates are in units of (106 MC sweeps)−1.

System Pn k kf ku

No crowders 0.30 ± 0.01 3.8 ± 0.3 1.1 ± 0.1 2.7 ± 0.2
BPTI crowders 0.72 ± 0.02 1.5 ± 0.2 1.1 ± 0.1 0.4 ± 0.1
GB1 crowders 0.33 ± 0.01 2.8 ± 0.1 0.9 ± 0.1 1.9 ± 0.1

IV. DISCUSSION AND SUMMARY

In this article, we have analyzed the interplay between
peptide folding and peptide-crowder interactions in MC sim-
ulations of the GB1m3 peptide with protein crowders, using
TICA and MSM techniques. A common major advantage of
these methods is that they can be used to search for key coordi-
nates of complex systems in an unsupervised manner. We used
the simpler TICA method to explore the free-energy landscape
of the peptide. Using a few slow TICA coordinates, it was pos-
sible to identify the major free-energy minima of the peptide
in the presence of the crowders.

In order to quantitatively analyze the dynamics of the
peptide in the simulations, we built MSMs. MSMs offer a
convenient method for estimating relaxation times, from the
eigenvalues via Eq. (1). However, this method is subject to
well-known systematic uncertainties. In particular, it assumes
effectively Markovian dynamics, which, at a given level of
coarse graining, need not hold for small lag times τtm. Unfor-
tunately, in our systems, τtm had to be comparable to the
relaxation time in question to keep the systematic error low.
Instead, we therefore estimated relaxation times by a procedure
based on fits to autocorrelation data for the MSM eigenfunc-
tions. The estimates obtained this way show essentially no
τtm-dependence. This robustness suggests that the calculated
MSM eigenfunctions maintain significant overlaps with the
respective true eigenfunctions down to the smallest τtm values
used.

It is, of course, also possible to estimate relaxation times
from autocorrelation data for other functions than the MSM
eigenfunctions. However, the autocorrelation of a general
function is a multi-exponential whose parameters may be sta-
tistically challenging to determine. The autocorrelation of an
MSM eigenfunction should, by contrast, be close to single-
exponential over a range of τ, if this eigenfunction approx-
imates the true eigenfunction sufficiently well (at low and
high τ, deviations will occur since the approximation is not
perfect). The autocorrelations of our MSM eigenfunctions
showed this behavior, and relaxation times could therefore be
estimated by single-exponential fits in an intermediate range
of τ (where 0.2 < C(τ) < 0.8). If general functions rather
than the MSM eigenfunctions had been used, our possibili-
ties to estimate relaxation times would have been much more
limited.

Our simulations further suggest that the GB1m3 pep-
tide interacts more efficiently with both BPTI and GB1 when
folded than when unfolded. The addition of either of the crow-
ders led to a reduced unfolding rate ku, while the change

32
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in the folding rate kf was smaller, especially with BPTI
crowders.

SUPPLEMENTARY MATERIAL

See supplementary material for illustrations of (i) the free
energy of GB1m3 with GB1 crowders as a function of the TIC0
and TIC1 coordinates (Fig. S1), (ii) the preferred GB1m3-GB1
binding modes (Fig. S2), and (iii) the character of the leading
MSM eigenfunctions in the different systems (Figs. S3–S6).
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FIG. S1. Characterization of the GB1m3 peptide in the presence of GB1 crowders, using the two

slowest TICA coordinates, TIC0 and TIC1. (a) Free energy. The minima identified in Figure

3 are indicated. Minima III and IV cannot be distinguished, while being well separated in the

TIC0,TIC2 coordinates used in the main text (Figure3). (b) The number of native H bonds present

in the peptide, nhb (c) The number of present H bonds associated with the peptide-crowder binding

mode B1 (Figure S2). (d) The number of present H bonds associated with the peptide-crowder

binding mode B2 (Figure S2).
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FIG. S2. Preferred binding modes between the peptide GB1m3 and the crowder protein GB1, B1

(left) and B2 (right). B1 involves residues 10–16 on the peptide, whereas B2 involves residues 1–5.

In both cases, the peptide binds to residues 41–47 on the crowder protein. Dashed black lines

indicate intermolecular H bonds. Structures drawn with PyMOL.1
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FIG. S3. The dependence of the slowest MSM eigenfunction on the two slowest TICA coordinates,

TIC0 and TIC1, for the isolated GB1m3 peptide. The TICA and MSM lag times are set to

τcm = τtm = 103MC sweeps. In building the MSM, data were clustered in the space spanned by

the three slowest TICA modes, into 547 clusters.
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FIG. S4. The four slowest MSM eigenfunctions for GB1m3 in the presence of BPTI crowders,

viewed as functions of the two slowest TICA coordinates, TIC0 and TIC1. The TICA and MSM

lag times are set to τcm = 103MC sweeps and τtm = 25× 103MC sweeps, respectively. In building

the MSM, data were clustered in the space spanned by the four slowest TICA modes, into 800

clusters.
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FIG. S5. The four slowest MSM eigenfunctions for GB1m3 in the presence of GB1 crowders, viewed

as functions of the slowest and third-slowest TICA coordinates, TIC0 and TIC2. The TICA and

MSM lag times are set to τcm = 20× 103MC sweeps and τtm = 25× 103MC sweeps, respectively.

In building the MSM, data were clustered in the space spanned by the three slowest TICA modes,

into 1574 clusters.
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FIG. S6. The four slowest MSM eigenfunctions for GB1m3 in the presence of GB1 crowders, viewed

as functions of the two slowest and TICA coordinates, TIC0 and TIC1. The TICA and MSM lag

times are set to τcm = 20×103MC sweeps and τtm = 25×103MC sweeps, respectively. In building

the MSM, data were clustered in the space spanned by the three slowest TICA modes, into 1574

clusters.
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Finite-size scaling analysis of protein droplet formation
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The formation of biomolecular condensates inside cells often involve intrinsically disordered proteins (IDPs),
and several of these IDPs are also capable of forming dropletlike dense assemblies on their own, through
liquid-liquid phase separation. When modeling thermodynamic phase changes, it is well known that finite-size
scaling analysis can be a valuable tool. However, to our knowledge, this approach has not been applied before
to the computationally challenging problem of modeling sequence-dependent biomolecular phase separation.
Here we implement finite-size scaling methods to investigate the phase behavior of two 10-bead sequences in a
continuous hydrophobic-polar protein model. Combined with reversible explicit-chain Monte Carlo simulations
of these sequences, finite-size scaling analysis turns out to be both feasible and rewarding, despite relying
on theoretical results for asymptotically large systems. While both sequences form dense clusters at low
temperature, this analysis shows that only one of them undergoes liquid-liquid phase separation. Furthermore,
the transition temperature at which droplet formation sets in is observed to converge slowly with system size,
so that even for our largest systems the transition is shifted by about 8%. Using finite-size scaling analysis, this
shift can be estimated and corrected for.

DOI: 10.1103/PhysRevE.101.022413

I. INTRODUCTION

Advances over the past decade have shown that, in addition
to classical membrane-bound organelles, various membrane-
less liquidlike droplets of proteins and nucleic acids can be
found within living cells [1,2]. The droplets form through
a liquid-liquid phase separation (LLPS) process, also called
coacervation, in which intrinsically disordered proteins (IDPs)
often play a key role. Furthermore, it has been demonstrated
in vitro that several of these IDPs are able to phase separate
on their own [3–5], depending on the solution conditions.
Phase-separating IDPs can be rich in charged residues [3] but
can also be dominated by polar and aromatic residues [5].

To rationalize the phase behavior of IDPs and its depen-
dence on solution conditions, a variety of theoretical and
computational methods have been employed. A widely used
method is Flory-Huggins mean-field theory [6,7] and its
extension to polyelectrolytes by Voorn and Overbeek [8].
However, this approach is sensitive only to the overall com-
position of amino acids but not to their ordering along the
chains. One way to overcome this shortcoming without re-
sorting to explicit-chain simulation is offered by the random-
phase approximation [9], which has been applied to model
the phase-separating ability of IDPs with different charge
patterns [10].

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

By turning to molecular simulation with explicit chains,
key approximations made in the above approaches can be
removed. In addition, structural properties become readily
accessible. Therefore, despite being computationally costly,
recent years have seen a growing number of explicit-chain
simulation studies of biomolecular LLPS [11–18]. In par-
ticular, there have been simulations based on coarse-grained
lattice or continuous representations to elucidate sequence
determinants of phase-separating IDPs [11–14].

Another approach, recently applied for the first time to
biomolecular LLPS [19,20], is to rewrite the original poly-
mer problem as a statistical field-theory problem that can
be investigated by field-theory simulation. This approach has
the potential to open for studies of system sizes that are
inaccessible with explicit-chain simulation.

Yet, regardless of whether explicit-chain or field-theory
methods are used, the simulated systems are finite and as such
there is a need to understand how measured properties depend
on system size. Fortunately, tools for this purpose are available
in the form of finite-size scaling theory for droplet formation
by phase separation [21–24]. These tools have previously been
applied to analyze droplet formation in simpler systems such
as the lattice gas and the Lennard-Jones fluid [24–26], but we
are not aware of any prior study of biomolecular LLPS using
these ideas.

In this paper, we implement finite-size scaling methods
to assess the phase behavior of two short model proteins,
which provide an instructive testbed for the analysis methods.
While several previous computational studies of IDP phase
separation focused on the role of charge-charge interactions,
we here consider a hydrophobic-polar (H-P) protein model.
One of the sequences we study, called A, is alternating (HPH-
PHPHPHP), whereas the other, called B, has a block structure

2470-0045/2020/101(2)/022413(8) 022413-1 Published by the American Physical Society
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(HHHHHPPPPP). Using Monte Carlo (MC) methods, we
perform canonical simulations of these sequences for a range
of system sizes, with up to 640 chains. Both sequences form
dense multichain assemblies surrounded by a dilute back-
ground at low temperatures, while only small clusters are
present at high temperatures. However, the sequences differ
in phase behavior. We show that their phase behavior can be
assessed in a systematic fashion by finite-size scaling analysis
of the simulation data. This analysis demonstrates that one
of the sequences, A, undergoes LLPS, whereas the other, B,
does not.

II. METHODS

A. Biophysical model

We study systems consisting of N copies of a polypeptide
enclosed in a periodic cubic box with volume V . The polypep-
tide is represented as a string of n hydrophobic (H) or polar (P)
beads. The length of the bond between two consecutive beads,
b, is kept fixed, while the polar and azimuthal bond angles are
both free to vary. In the absence of interactions, the bonds have
a spherically uniform distribution.

The beads interact through a pairwise additive potential,
E = ∑

i< j Ei j , where the sum runs over all intra- and in-
termolecular pairs of beads in the system. All beads have
a diameter of rev = 0.75b. When two beads i and j are at
a distance ri j < rev from each other, the pair potential Ei j

becomes infinite. Additionally, each HH pair interacts through
a soft attractive potential with interaction range rhp = 2b. If
rev < ri j < rhp, then the interaction energy is set to −ε (with
ε > 0). Thus, the pair potential can be summarized as

Ei j =
⎧⎨
⎩

∞, if ri j < rev

ui j, if rev < ri j < rhp

0, if ri j > rhp

, (1)

where ui j = −ε when beads i and j are both hydrophobic and
ui j = 0 otherwise.

Throughout this article, lengths and energies are given in
units of b and ε, respectively.

B. MC simulations

We investigate the thermodynamics of droplet formation in
this model by using MC methods to generate samples from
the canonical (NV T ) ensemble. Of particular interest is the
behavior at the onset of droplet formation. Therefore, given
N and V , the temperature T is chosen close to the maximum
of the heat capacity, by an iterative procedure. Simulations
at one or several additional temperatures are performed when
needed to ensure an accurate description of the heat capacity
throughout the transition region. The temperature dependence
of the heat capacity is computed by reweighting techniques
[27], using data from all simulated temperatures.

The efficiency of MC simulations depends strongly on the
choice of move set. We use a set of six elementary moves.
Two of the moves update the internal structure of individual
chains. The first of these is a single-bead move, which turns a
randomly selected nonend bead about the axis through its two
nearest neighbors. The second one is a pivot-type rotation,
where the rotation axis goes through a randomly selected

nonend bead in a random direction. Beads on one side of the
selected one are turned as a rigid body about this axis.

The other four moves are rigid-body translations and rota-
tions of either a single chain or a cluster of chains. In the clus-
ter moves, the clusters are constructed probabilistically using
a Swendsen-Wang-type algorithm [28,29]. The construction
is recursive and begins by picking a random first cluster
member, i. Then each chain j that has an interaction energy
Ei j < 0 with chain i is added to the cluster with probabil-
ity pi j = 1 − eβEi j , where β = 1/kBT is inverse temperature
(kB is Boltzmann’s constant). This step is iterated until the
list of potential further cluster members is empty. Finally, the
resulting cluster is subject to a trial rigid-body move. The
form of the statistical weight pi j is such that no Metropolis
accept-reject criterion is needed; any sterically allowed move
is accepted.

For each choice of N , V , T , and HP sequence, a set of one
to eight trajectories is generated, each comprising 107 MC
sweeps, where one MC sweep corresponds to nN elemen-
tary updates. Multiple runs are used for the largest systems
to ensure statistical significance. Statistical uncertainties are
computed using a jackknife procedure [30].

C. Finite-size scaling theory

Droplet formation by phase separation in finite systems is a
topic that has been extensively studied over the years [21–24].
This body of research provides a general framework for finite-
size scaling analysis, which has been tested on systems such
as the lattice gas and the Lennard-Jones fluid [24–26]. This
section outlines some key results that will be used in Sec. III.

We consider a d-dimensional system of N particles in a
volume V at temperatures T below an assumed critical tem-
perature Tc. A schematic phase diagram can be found in Fig. 1.
Under grand-canonical conditions, for a given T < Tc and
large system size, the system can be in one of two bulk phases
with respectively low (ρL) and high (ρH ) density, depending
on the chemical potential. At some value of the chemical
potential, a first-order transition occurs between these phases.
Under canonical conditions, for T < Tc and densities ρ such
that ρL(T ) < ρ < ρH (T ), the system is in a mixed two-phase
regime, bounded by the binodal curve, Tb(ρ) (Fig. 1).

Consider now a finite but large system under canonical
conditions, for a given T < Tc and ρ just above ρL(T ) (Fig. 1).
At some ρ

(N )
L (T ) > ρL(T ), the system transitions from a

supersaturated dilute state to a mixed two-phase state. It has
been shown that this mixed state consists of a single large
droplet of the high-density phase in a low-density background,
and that the linear dimension R of the droplet scales as
R ∼ N1/(d+1) with N [21–23]. This result can be rigorously
proven for the two-dimensional lattice gas [31]. In brief, the
size of the critical droplet can be viewed as the result of
two competing mechanisms for handling a particle excess,
δN . One is that the particle excess is absorbed as a density
fluctuation in the low-density phase, the free-energy cost of
which scales as (δN )2/N . The other mechanism is that a finite
fraction of the particle excess forms a dense droplet, the free-
energy cost of which scales as the surface area of the droplet,
that is, (δN )(d−1)/d . Assuming that droplet formation sets in
when these two costs become comparable, one finds that the
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FIG. 1. Schematic temperature-density phase diagram of a sys-
tem that undergoes phase separation below an upper critical tem-
perature, Tc, into two phases with respectively low (ρL) and high
(ρH ) densities. In other systems, phase separation may occur above a
lower critical temperature. Below the so-called binodal curve, Tb(ρ ),
the low- and high-density phases coexist. At the left branch of the
curve, the system transitions between the low-density phase and a
mixed two-phase regime. In finite systems, the transition temper-
ature, T (N )

b (ρ ), is shifted (dashed line). Finite-size scaling theory
predicts T (N )

b (ρ ) to converge toward Tb(ρ ) following the scaling
relation in Eq. (2) (arrow).

linear size of the critical droplet scales as R ∼ (δN )1/d ∼
N1/(d+1) [21–23].

Using this result, it follows that the finite-size shift of
the transition density scales as ρ

(N )
L (T ) − ρL(T ) ∝ N−1/(d+1).

Correspondingly, with ρ rather than T fixed, the transition
temperature has a finite-size shift, given by

T (N )
b (ρ) − Tb(ρ) ∝ N−1/(d+1). (2)

Note that this relation implies that the convergence of T (N )
b

toward its value for infinite system size, Tb, is slow. For com-
parison, the finite-size shift of a regular temperature-driven
first-order phase transition scales as N−1 [32].

In finite systems, the transition is not only shifted but
also smeared. At fixed ρ, the smearing, or width, of the
transition, wT , may be estimated as the temperature interval
over which |β�F | � 1 [23,26], where �F is the free-energy
difference between the states with and without a droplet.
Since �F vanishes at T (N )

b , a Taylor expansion yields β�F =
−[�E/kBT 2]T =T (N )

b
[T − T (N )

b ] to leading order. Here �E is
the energy gap, which, assuming that particle interactions are
negligible in the low-density phase, should scale as the droplet
volume, that is,

�E ∼ Nd/(d+1). (3)

It then follows that the smearing of the transition scales as

wT ∝ N−d/(d+1). (4)

When analyzing the droplet transition, a useful property is
the specific heat, CV /N , which exhibits a peak at the transition
and can be computed from the energy fluctuations, using
CV = (〈E2〉 − 〈E〉2)/kBT 2. The transition temperature, T (N )

b ,
and smearing, wT , may be defined as, the position and width

FIG. 2. MC evolution of the energy density E/N in a run with
N = 640, T ≈ T (N )

b , and ρb = 0.025b−3, for sequence A. Low and
high energies correspond to states with and without a droplet, respec-
tively. During the course of the run, droplet formation and dissolution
occur several times.

of the specific heat peak, respectively. With increasing N , the
width of the peak, wT , decreases [Eq. (4)], whereas the height
of the peak, CV,max/N , increases. With a two-state approxima-
tion, one has CV,max ≈ (�E )2/4kBT 2, where �E , as before,
is the energy gap. Using this relation along with Eq. (3), one
finds that

CV,max/N ∼ N (d−1)/(d+1). (5)

A slightly different behavior, namely CV,max/N ∼ Nd/(d+1),
has been suggested [26], based on the assumption that
CV,max/N scales inversely proportional to wT . However, unlike
at a regular temperature-driven first-order phase transition,
in the case of droplet formation, the area under the specific
heat peak vanishes in the large-N limit, since �E/N does
so. Hence CV,max/N should grow slower than w−1

T ∼ Nd/(d+1)

with N , as it does in Eq. (5).

III. RESULTS

Using the model and MC methods described in Sec. II,
we conduct thermodynamic simulations of droplet formation
by the two sequences A (HPHPHPHPHP) and B (HHHHH-
PPPPP) for a range of system sizes, with up to N = 640
chains. The volume V is adjusted so as to have a given bead
density ρb = nN/V . Most of the calculations are for a bead
density of ρb = 0.025b−3, where b is the link length of the
chains. For comparison, some data for ρb = 0.0125b−3 and
ρb = 0.0375b−3 are also included. The simulations focus on
temperatures near the onset of droplet formation and were
sufficiently fast for droplets to form and dissolve several times
during the course of a run, even for the largest systems, as
illustrated by Fig. 2.

A. Overall characterization

At high temperatures, the simulated systems are in a dis-
ordered state, with only small clusters present (� 10 chains).
As the temperature is reduced, markedly larger clusters, or
droplets, appear. Their formation sets in abruptly, in a narrow
temperature interval, where states both with and without
droplets are observed. Figure 3 shows representative snap-
shots of configurations with droplets for both sequences, from
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FIG. 3. Snapshots showing representative droplet-containing configurations from simulations near the temperature at which droplet
formation sets in for N = 640 and ρb = 0.025b−3. Each bead is shown as a dot. (a) Sequence A, for which a single large droplet is observed.
(b) Sequence B, which typically forms a few smaller droplets.

simulations with 640 chains. For sequence A, a single large
droplet can be seen, in a dilute background with only small
clusters. For sequence B, more than one droplet is often
present, and the droplets are smaller than those formed by
sequence A. A single large droplet is what one expects to
observe if droplet formation occurs through phase separation
[21–23].

If phase separation occurs, then the onset of droplet forma-
tion is, furthermore, expected to be associated with a diver-
gence in the specific heat (Sec. II C). Consistent with this, for
sequence A, specific-heat data from simulations with 10–640
chains show a peak that steadily gets higher and narrower
with increasing system size [Fig. 4(a)]. The corresponding
data for sequence B follow the same trend for small systems
[Fig. 4(b)]. However, for this sequence, at some system size
(around 80 chains), the specific heat stops growing higher
and becomes multimodal. This behavior reflects the fact that
sequence B forms more than one droplet in the larger systems

(Fig. 3) and implies that this sequence does not undergo
LLPS.

B. Finite-size scaling analysis

The above results indicate that, unlike sequence B,
sequence A may undergo LLPS. To determine whether this is
the case, we next compare simulation data for several quanti-
ties with predictions from finite-size scaling theory (Sec. II C),
focusing on sequence A.

At the onset of droplet formation, due to the coexistence of
states with and without a droplet, the probability distribution
of energy should be bimodal, as it is at a regular temperature-
driven first-order phase transition. In the latter case, the en-
ergy gap between the two phases scales linearly with system
size, corresponding to a nonzero specific latent heat. How-
ever, at the droplet transition, the energy gap �E should
scale as the critical droplet volume or �E ∼ N3/4 [Eq. (3)].

FIG. 4. Temperature dependence of the specific heat, CV /N , from simulations with 10–640 chains for fixed ρb = 0.025b−3. The curves are
computed by reweighting methods [27] using data from canonical MC simulations at several temperatures. Shaded bands indicate statistical
uncertainties but are in many cases too narrow to be visible. (a) For sequence A, the specific heat exhibits a single peak that steadily gets higher
and narrower with increasing system size. (b) For sequence B, the same trend is observed but only for small systems. In the larger systems,
sequence B forms more than one droplet, which leads to a multimodal specific heat.
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FIG. 5. Probability distribution of the shifted and rescaled energy
Ẽ = (E + a)/N3/4 (with a = 5Nε) from simulations with 160, 320,
and 640 chains for sequence A at T ≈ T (N )

b and ρb = 0.025b−3. Con-
sistent with the predicted scaling relation �E ∼ N3/4 [Eq. (3)], the
gap between the two peaks in Ẽ stays essentially constant, whereas
the statistical suppression of intermediate energies gets stronger with
increasing system size.

Figure 5 shows the probability distribution of the shifted and
rescaled energy Ẽ = (E + a)/N3/4, where a is a parameter
independent of E , for T ≈ T (N )

b and ρb = 0.025b−3, for our
three largest systems. With larger system size, the probability
distribution of Ẽ becomes increasingly bimodal in character,

due to a stronger suppression of intermediate energies. By
contrast, the gap between the two peaks in Ẽ stays essentially
unchanged, in perfect agreement with the predicted scaling of
�E [Eq. (3)].

Assuming this scaling of �E with N [Eq. (3)], the maxi-
mum specific heat, CV,max/N , should scale as N1/2 [Eq. (5)].
Figure 6(a) shows CV,max/N data against N in a log-log plot,
for three bead densities ρb. Not surprisingly, the data for
small systems do not follow the predicted scaling relation
for large N . However, the data for the four largest systems
(N = 80–640) match well with the predicted form for all three
bead densities.

Figure 6 also illustrates the finite-size smearing and shift of
the transition, for the same three bead densities. The smearing
wT is expected to scale inversely proportional to the energy
gap �E or wT ∼ N−3/4 [Eq. (4)]. From the log-log plot in
Fig. 6(b), it can be seen that the data for wT indeed are
consistent with the predicted scaling for large N .

The finite-size shift of the transition temperature,
T (N )

b − Tb, is predicted to scale as N−1/4 [Eq. (2)]. Therefore,
Fig. 6(c) shows the data for T (N )

b plotted against N−1/4. As can
be seen from this figure, fits of the form T (N )

b = Tb + cN−1/4,
with Tb and c as parameters, indeed provide a good description
of the large-N data (80 � N � 640). It is worth noting that the
scaling of the shift as N−1/4 or inversely proportional to the
linear size of the critical droplet, implies a slow convergence

FIG. 6. Finite-size scaling analysis at three bead densities ρb (0.0125b−3, 0.0250b−3, 0.0375b−3) for sequence A using data from
simulations with 5–640 chains. Lines represent fits of predicted scaling expressions from Sec. II C to data for the four largest system sizes.
(a) Log-log plot of the maximum specific heat, CV,max/N , against N . The lines are fits of the form CV,max/N ∼ N1/2 [Eq. (5)]. (b) Log-log
plot of the finite-size smearing of the transition, wT , against N , where wT is computed as the length of the temperature interval over which
CV > 0.8CV,max. The lines are fits of the form wT ∼ N−3/4 [Eq. (4)]. (c) The transition temperature T (N )

b plotted as a function of N−1/4. The
lines are fits of the form T (N )

b = Tb + cN−1/4 [Eq. (2)], with c and the transition temperature for infinite system size, Tb, as fit parameters. The
fitted values of Tb are TbkB/ε = 2.92, 3.10, and 3.23 for ρbb3 = 0.0125, 0.025, and 0.0375, respectively.
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FIG. 7. Mass fraction of clusters with m chains, P(m), as ob-
tained using N = 640, ρb = 0.025b−3 and a temperature near the
onset of droplet formation. Alternatively expressed, P(m) is the
probability that a randomly selected chain belongs to a cluster with
m chains. Sequence A forms droplets containing roughly 200 of
the 640 chains, whereas intermediate-mass clusters are statistically
suppressed.

of T (N )
b toward Tb with increasing N . In fact, for our largest

systems with 640 chains, T (N )
b is still about 8% smaller than

the fitted value of Tb.
To summarize the above analysis, for all properties studied,

we find that the simulation data for sequence A are consistent
with the theoretical predictions, which provides strong evi-
dence that this sequence indeed undergoes LLPS.

C. Droplet size and structure

The specific heat data discussed in Secs. III A and III B
show that the sequences A and B, despite sharing the same
length and composition, have different phase behaviors. To
understand this difference, we next examine some basic struc-
tural properties of the droplets formed by these sequences.
Throughout this section, we focus on data obtained using
N = 640, ρb = 0.025b−3 and a temperature near the onset of
droplet formation.

One important characteristic is the mass of the droplets or
the number of chains that they contain. It was already noted

that sequence A forms more massive droplets than sequence B
(Fig. 3). To quantify this assertion, Fig. 7 shows cluster mass
distributions for both sequences. From this figure, it can be
seen that, in these systems, a typical sequence A droplet
accommodates about 200 chains, whereas the corresponding
number for sequence B is less than 50. Also worth noting
is the statistical suppression of intermediate-mass clusters,
which is particularly pronounced for sequence A. If phase sep-
aration occurs, then one expects to observe a single dominant
droplet [21–23], as is the case for sequence A.

Another basic characteristic is the density of the droplets.
Figure 8 shows average bead-density profiles around the cen-
ter of mass of large clusters. Here a given cluster is defined
as large if the number of chains exceeds a threshold (75
for sequence A and 20 for sequence B), and the density is
calculated as a function of the distance from its center of mass,
rc.m., counting all beads, whether or not they belong to a chain
in the cluster. The total density is split into H and P densities.
The calculated density profiles for sequence A are essentially
flat at both small and large rc.m. [Fig. 8(a)], suggesting that
these densities are representative for the interior of droplets
and the dilute background, respectively. Using this property,
we find that the density inside droplets is more than a factor
40 higher than that of the dilute background (where the total
bead density is 0.019b−3). Note also that the droplets are
homogeneous in composition; the H to P ratio is virtually
independent of rc.m..

The droplets formed by sequence B exhibit, by contrast, a
micellar structure, with a high-density core composed almost
exclusively of H beads and a corona of mainly P beads
[Fig. 8(b)]. The formation of a hydrophobic core is possible
due to the block structure of this sequence. However, as the
sequence is short and contains a stretch of P beads, this
core can only accommodate a small number of chains, which
explains the low mass of droplets formed by this sequence
(Fig. 7). The mechanisms of micelle formation by block
copolymers have been extensively studied by both theory and
simulation [33–35].

While we have seen above that sequence A phase separates,
it is still not immediately clear whether the dense phase is
liquidlike. Therefore, we end with a brief assessment of the

FIG. 8. Bead-density profiles calculated as a function of the distance rc.m. from the center of mass of large clusters for (a) sequence A and
(b) sequence B. The data were obtained using N = 640, ρb = 0.025b−3 and a temperature near the onset of droplet formation. A cluster is
defined as large if the number of chains is above a cutoff (75 and 20 for sequences A and B, respectively). The total density is split into H and
P densities. For comparison, a perfect close-packing of the beads would give a total density of 3.35b−3.
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mobility of the chains in droplets formed by this sequence.
The analysis uses configurations stored at a time interval of
103 MC cycles, which is much shorter than the average droplet
lifetime of about 2 × 105 MC cycles. As before, a droplet
is a cluster with more than 75 chains. We first consider the
exchange of chains between droplets and their surroundings.
To this end, whenever two consecutive snapshots both contain
droplets, the chain contents of the droplets are compared. Over
this timescale (103 MC cycles), it turns out that, on average,
44% of the chains present in the original droplet are lost,
indicating a fast exchange with the surroundings compared to
the lifetime of a droplet.

To get a measure of whether also the internal structure of
a droplet is dynamic, we monitor changes in chain-chain con-
tacts within droplets. To this end, given a droplet-containing
snapshot, we identify all pairs of chains in the droplet that
are in contact (interaction energy < 0) and where each chain
also interacts with at least 15 other chains. The latter condition
serves to focus the analysis on chain pairs buried in the
interior of the droplet. Whenever a droplet is present also in
the next snapshot (103 MC cycles later), we check the fate
of the contacts identified in the first snapshot. On average,
we find that 54% of the pairs remain in contact, whereas
only about 11% are broken due to at least one of the chains
leaving the droplet. This leaves 34% of the pairs separating
due to internal rearrangements of the droplet, showing that
the internal structure is far from rigid. Thus, the droplets are
dynamic with respect to both exchange with the surroundings
and their internal organization.

IV. DISCUSSION AND CONCLUSIONS

It is well known that finite-size scaling theory provides a
powerful tool for analyzing phase transitions in spin models
as well as vapor-to-droplet transitions in simple liquids. In
this manuscript, we have applied these ideas to investigate the
sequence-dependent phase behavior of a simple explicit-chain
model for protein droplet formation.

Of the two specific sequences studied, the block sequence
B turned out not to undergo LLPS. It is worth noting that
from data for small systems, one may be led to the opposite
conclusion. In particular, the observed peak in the specific heat
is for small systems higher for sequence B than it is for the
alternating sequence A, which does phase separate. However,
above some system size (about 80 chains), the maximum
specific heat does not increase further for sequence B, in
contrast to what is observed for sequence A and to what one
expects if phase separation takes place.

For sequence B, we observed micelle formation rather
than the formation of a droplet of a dense bulk phase. Mi-
celle formation was found to set in at a kT of about 5.
Note that the system need not remain micellar in character
well below this temperature. In particular, it is conceivable
that the global free-energy minimum of this system contains
bilayer structures at low temperatures. However, a proper
investigation of the low-temperature phase structure is
computationally challenging and beyond the scope of the
present article.

To determine whether sequence A phase separates, simu-
lation data for several properties and a range of system sizes
were compared with predictions from finite-size scaling the-
ory. In this way, the phase behavior can, in principle, be inves-
tigated in a systematic fashion, but it must be remembered that
the theoretical results are leading-order predictions for large
systems and therefore not necessarily valid for the system
sizes amenable to simulation. It turned out, however, that a
scaling behavior consistent with the predicted asymptotic one
could be observed for all properties studied. Hence, taken
together, the results of this analysis leave little doubt that
sequence A does indeed phase separate.

It is worth noting that sequences with alternating hy-
drophobic and polar residues tend to have a high β-sheet
propensity [36,37]. The biophysical model used in our present
calculations cannot describe β-sheet formation, due to the
lack of hydrogen bonding. However, it has been shown that
droplet formation through LLPS sometimes is followed by
maturation into a solidlike state containing amyloid fibrils
[38]. In this case, LLPS represents a first step toward β-sheet
formation.

Among the specific scaling relations studied, the finite-size
shift of the transition temperature deserves special attention.
This shift scales inversely proportional to the linear size,
rather than the volume, of the critical droplet, so that T (N )

b −
Tb ∼ N−1/4 [Eq. (2)]. This slow convergence of the transition
temperature T (N )

b toward its value for infinite system size,
Tb, makes finite-size scaling analysis an important ingredient
when determining the phase diagram from simulation data.
This conclusion is highlighted by the magnitude of the relative
shift of the transition temperature for sequence A, which was
found to still be ∼8% for the largest systems with 640 chains.

Simulation methods, based on explicit-chain or field-
theory representations, offer some distinct advantages over
mean-field methods in the study of sequence-dependent
biomolecular phase separation. However, to exploit the full
potential of the simulations, the system-size dependence of
the generated data needs to be understood and accounted
for. The results presented here demonstrate that a systematic
analysis of the system-size dependence can be both feasible
and rewarding.

Note added in proof. We recently became aware of Ref.
[39]. This article studied finite-size effects on pair distribution
functions in a model for biomolecular LLPS. It did not use the
theoretical framework employed in the present article.
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ABSTRACT
Computer simulation can provide valuable insight into the forces driving biomolecular liquid–liquid phase separation. However, the sim-
ulated systems have a limited size, which makes it important to minimize and control finite-size effects. Here, using a phenomenological
free-energy ansatz, we investigate how the single-phase densities observed in a canonical system under coexistence conditions depend on
the system size and the total density. We compare the theoretical expectations with results from Monte Carlo simulations based on a simple
hydrophobic/polar protein model. We consider both cubic systems with spherical droplets and elongated systems with slab-like droplets. The
results presented suggest that the slab simulation method greatly facilitates the estimation of the coexistence densities in the large-system
limit.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0052813

I. INTRODUCTION

Liquid–liquid phase separation (LLPS) has recently been identi-
fied as an important driver of compartmentalization in living cells.1,2

Through LLPS, membraneless liquid droplets with high concentra-
tions of proteins and nucleic acids are formed. Intrinsically disor-
dered proteins (IDPs) often play an important role in this process,
and several IDPs have been shown to phase separate on their own in
vitro.3–5

Recent years have seen a growing number of theoretical
and computational investigations of biomolecular LLPS with some
emphasis on IDPs. These studies have provided insights into the
forces driving biomolecular LLPS and especially into the sequence-
dependence of IDP LLPS. A mainly analytical method that has
been adopted for this purpose is the random-phase approxima-
tion6 by which sequence-determinants of polyampholyte LLPS
were elucidated.7 A computationally demanding but more general
approach is to use numerical simulation of coarse-grained models
based on either explicit-chain8–21 or field-theoretic22–24 representa-
tions of the biomolecular systems. The most widely used of these
alternatives is explicit-chain simulation, which provides a versa-
tile method for exploring the sequence-dependence of IDP LLPS

as well as the basic structural properties of condensates. However,
both explicit-chain and field-theory simulations tend to become
time-consuming for large systems, which makes it important to be
able to minimize and control the system-size dependence of the
results.

The temperature-density (T-ρ) phase diagram of a phase-
separating sequence can be investigated in a systematic manner by
performing simulations close to the phase boundary that defines the
coexistence region, for different system sizes, followed by a finite-
size scaling (FSS) extrapolation25–27 to the large-system limit. This
approach provides information on both the character and location
of the transition that occurs at the phase boundary and was recently
tested by us on a simple continuous hydrophobic/polar explicit-
chain model.18 However, if the main focus is to locate the phase
boundary, then a common choice is to rely on (canonical) simula-
tions in the coexistence region, where the dense and dilute phases
are both present. The single-phase densities of such a system pro-
vide estimates of the transition densities at the temperature used.
The simulated systems may be cubic with spherical droplets. An
often used alternative for phase-separation studies is to adopt elon-
gated geometries, thereby causing droplets to take on a slab-like
shape.10,28–32
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In this article, we investigate how the asymptotic coexistence
densities are shifted in finite-size canonical systems with cubic
and elongated geometries. Using a phenomenological free-energy
ansatz for the mixed two-phase regime,33,34 we derive an expres-
sion describing how the single-phase densities depend on the system
size and the total density. Comparing with Monte Carlo simula-
tions based on the hydrophobic/polar model in Ref. 18, we find that
this expression can be used to rationalize data for both cubic and
elongated systems. In line with the analytical result, the simulations
show that using an elongated geometry greatly reduces the finite-size
effects on the coexistence densities.

II. METHODS
A. Biophysical model

Our simulations are performed using a minimal off-lattice pro-
tein model18 in which each protein chain is represented as a string of
m hydrophobic (H) or polar (P) beads. The simulated systems con-
sist of N chains sharing the same HP sequence, which are enclosed
in a periodic box with volume V. The box is either cubic (V = L3) or
elongated in one of the dimensions (V = L1L2

2, with L1 > L2).
The length of the bond connecting two consecutive beads in a

chain, b, is kept fixed, while the polar and azimuthal bond angles are
both free to vary. In the absence of interactions, the bonds have a
spherically uniform distribution. All beads are assigned a common
hard-sphere diameter, dev.

The interaction potential is a sum over all intra- and inter-
molecular pairs of beads in the system, E = ∑i<jEij, where Eij has a
square-well shape with depth ε for HH pairs, whereas HP and PP
pairs interact through a pure hard-sphere potential. For a bead pair
at distance rij from each other, the pair potential is given by

Eij =

⎧
⎪⎪
⎨
⎪⎪
⎩

∞ if rij < dev
εij if dev < rij < Λ
0 if rij > Λ,

(1)

where dev = 0.75b, Λ = 2b, and εij = −ε (HH pairs) or 0 (HP and PP
pairs).

Throughout this article, lengths and energies are given in units
of b and ε, respectively.

B. Phase-separation phenomenology
In this section, we consider a general system of particles or

chains at some fixed temperature T at which we assume that two
bulk phases with densities ρc

ℓ and ρc
h coexist. Coexistence occurs for

total densities ρ in the interval ρc
ℓ < ρ < ρc

h in the limit of infinite
system size.

In large but finite systems, where interface effects cannot be
neglected, the mixed two-phase behavior sets in at slightly shifted
densities, ρt

ℓ and ρt
h. The finite-size effects on the character and loca-

tion of the transition to the mixed two-phase regime have been
extensively investigated.25–27 In particular, it was shown that the
finite-size shift ρt

i − ρc
i (i = ℓ, h) scales as V−1/4. This FSS framework,

which can be used to study transition temperatures as well, has been
applied to analyze simulations of, for example, the lattice gas,35 the
Lennard–Jones fluid,36 polymer cluster formation,37 and recently
also the protein model studied in this paper.18

Here, we focus entirely on the problem of estimating the
infinite-system-size transition densities ρc

ℓ and ρc
h. This problem

can be approached by using simulations near the transition den-
sities for different system sizes in combination with FSS analysis.
A common alternative is to use simulations at total densities ρ
well into the regime where both phases are present and measure
the single-phase densities ρℓ(ρ, V) and ρh(ρ, V). For large V, the
densities ρℓ(ρ, V) and ρh(ρ, V) provide accurate estimates of the
respective asymptotic densities ρc

ℓ and ρc
h, independent of the precise

choice of ρ.
The finite-size shifts δρi = ρi(ρ, V) − ρc

i (i = ℓ, h) can be esti-
mated by adopting a phenomenological free-energy ansatz for the
mixed two-phase system, given by33,34

F(ρℓ, ρh, Vℓ, Vh) = f ℓ(ρℓ)Vℓ + f h(ρh)Vh + γAℓh, (2)

where f i(ρi) = μi(ρi)ρi − pi(ρi) denotes the free-energy density of
bulk phase i (i = ℓ, h), Aℓh is the interface area, and γ is the surface
tension. For simplicity, we assume a constant surface tension, which
should be a good approximation unless the droplet of the minority
phase is small.34 By minimizing the free energy F(ρℓ, ρh, Vℓ, Vh) in
Eq. (2) subject to the constraints N = ρℓVℓ + ρhVh and V = Vℓ + Vh,
one can determine how the N particles and the volume V are par-
titioned between the two phases and thus obtain the finite-size
densities ρℓ(ρ, V) and ρh(ρ, V).

In the large-V limit, the surface term in Eq. (2) can be neglected.
In its absence, the constrained minimization of F leads to the
conditions

f ′ℓ(ρℓ) = f ′h(ρh) =
f h(ρh) − f ℓ(ρℓ)

ρh − ρℓ
, (3)

which simply says that the two phases share the same chemical
potential μ = f ′i(ρi) and the same pressure p = μρi − f i(ρi) (i = ℓ, h).
The conditions in Eq. (3) are thus fulfilled when the densities take
their asymptotic values ρc

ℓ and ρc
h, as they should be.

For large but finite volumes, the mass balance condition
remains unchanged, μℓ(ρℓ) = μh(ρh), whereas the volume bal-
ance condition picks up an additional surface term to become the
Young–Laplace equation, ph(ρh) = pℓ(ρℓ) + γdAℓh/dVh. This extra
term leads to a shift of the volumes and densities of the two phases.
To leading order, the density shifts are given by

δρi = ρi(ρ, V) − ρc
i =

γκc
i ρc 2

i

ρc
h − ρc

ℓ

dAℓh

dVh
(i = ℓ, h), (4)

where κc
i = 1/( f ′′i (ρc

i)ρc 2
i ) is the isothermal compressibility of phase

i at coexistence. The derivative dAℓh/dVh in Eq. (4) depends on
Vh, which to leading order, by the lever rule, can be written as
Vh = V(ρ − ρc

ℓ)/(ρ
c
h − ρc

ℓ).
Under conditions such that the dense phase forms a spheri-

cal droplet (dAℓh/dVh ∝ V−1/3
h ), it follows that the density shifts in

Eq. (4) are positive and scale as

δρi ∝
1

V1/3
(ρ − ρc

ℓ)
1/3 (i = ℓ, h). (5)

This result suggests that the single-phase densities ρi(ρ, V) both
decrease with increasing total density, which, at first glance, may
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seem paradoxical. This behavior is possible because the volume
filled by the dense phase increases and can be seen as a con-
sequence of the shape of the chemical potential μ(ρ) in finite
systems.34

At fixed ρ, the finite-size shift of the single-phase densities
scales as V−1/3 [Eq. (5)]. This may be compared with the finite-size
shift of the transition densities, which, as indicated above, scales as
V−1/4.25–27 In both cases, the approach to the asymptotic densities ρc

ℓ

and ρc
h is rather slow.
Both these inferred system-size dependencies are for the case

that the minority phase forms a spherical droplet or bubble. How-
ever, the density shifts predicted by Eq. (4) depend on the “droplet”
geometry through the derivative dAℓh/dVh. In particular, if the
minority phase forms a slab, extending over the periodic bound-
ary in two of the three dimensions, then the interface area becomes
independent of the droplet volume so that the leading-order den-
sity shifts vanish [Eq. (4)]. The formation of slab-like droplets
can be promoted by using boxes that are elongated in one of
the dimensions, which is a common choice in phase-separation
studies.10,28,30–32

C. Monte Carlo simulations
We investigate the thermodynamics of the HP protein model

described above through equilibrium Monte Carlo simulations in
the canonical (NVT) ensemble, using a set of six elementary moves.
Two of these moves alter the internal structure of individual chains,
either through a single-bead move or through a pivot-type rotation
of part of the chain relative to the rest. The other moves are rigid-
body translations and rotations of either a single chain or a cluster
of chains.

The clusters are constructed stochastically, following a
Swendsen–Wang-type procedure.38,39 Here, a random chain is
selected as the first cluster member. New chains are then added itera-
tively with probability pij = 1 − eβEij , where Eij (≤0) is the interaction
energy between chain i in the cluster and chain j not (yet) added to
the cluster (β = 1/kBT). This step is repeated until all potential addi-
tions to the cluster have been tested. Finally, the resulting cluster is
subject to a trial rigid-body move. The probabilistic construction of
the cluster is such that the move can be accepted whenever sterically
allowed, without invoking any Metropolis accept/reject step. For a
cluster rotation, the periodic boundary conditions may cause the Eij
values to change upon the proposed move. If so, the move has to
be rejected. Note also that the particular form we use for the chain-
addition probability pij assumes that all Eij ≤ 0, as is the case in our
model.

The simulated systems consist of 320 chains in boxes with
varying volume and either cubic or elongated shape. In the
elongated systems, the volume V = L1L2

2 is altered by chang-
ing the longitudinal size, L1, while keeping the transverse size,
L2, fixed. All slab simulation results quoted below are for
L2 = 12b. Additional control simulations were performed using
several different L2 values ranging from L2 = 8b to L2 = 16b.
The results obtained did not show any statistically significant
L2-dependence.

Each simulation run consists of 107 sweeps, where one sweep
corresponds to mN attempted elementary moves. All simulations
are started from random initial states. The thermalization period

required for a dense-phase droplet to form represents a negligible
fraction of the total simulation time.

D. Density profiles
To determine the single-phase densities ρℓ and ρh, we com-

pute the bead density distribution around the center of dense-phase
droplets. In a given snapshot, the droplet is identified by cluster-
ing the chains,40,41 in our case, based on the criterion that two
chains with non-zero interaction energy must be in the same cluster.
For most snapshots, this procedure gave a single dominant cluster,
which is taken to define the droplet. However, some snapshots from
the cubic simulations (<1%) contained no cluster with more than
50 chains. These snapshots were omitted in constructing average
density profiles. A droplet was identified in all snapshots from the
slab simulations.

Given a snapshot with an identified droplet, we compute the
distribution of beads around the center of mass of the droplet,
counting all beads, whether or not they belong to a chain in the
droplet. Thus, the sole purpose of the droplet identification is to
determine the droplet center. The final density distributions are
obtained by averaging over the snapshots. In the cubic systems,
with spherical droplets, the density distribution is calculated as a
function of the radial distance to the droplet center, rc.m.. In the
elongated systems, we use the projected distance onto the elongated
direction, zc.m..

From the thus calculated profiles, the single-phase densities ρℓ
and ρh can be obtained using the data at large and small distances,
respectively.

III. RESULTS
Using the model and methods described in Sec. II, we study sys-

tems composed of multiple copies of the same ten-bead hydropho-
bic/polar chain, HPHPHPHPHP. In previous work,18 we showed by
FSS analysis that this alternating sequence, unlike the block sequence
HHHHHPPPPP, undergoes phase separation. The block sequence
forms miscelles of limited size rather than droplets of a dense bulk
phase. For the alternating sequence studied here, in the (ρ, T) plane,
mixed two-phase behavior is observed under the coexistence, or
binodal, curve, Tb(ρ).

In this work, we focus on the problem of determining the
asymptotic coexistence densities ρc

ℓ and ρc
h, at a given temperature,

from finite-size simulation data taken in the coexistence region. The
densities ρc

ℓ and ρc
h coincide with the total density values between

which coexistence is observed and thus provide two points on the
phase boundary Tb(ρ). We consider both cubic systems with spher-
ical droplets and elongated systems with slab-like droplets. The sim-
ulation results are compared with the finite-size shifts of the coex-
istence densities predicted by Eq. (4). Where relevant we also com-
pare the simulation results with simulation data from our previous
study.18

Throughout our calculations, the number of chains is the same,
namely, N = 320. The total density ρ is varied by changing the
volume. All densities quoted are bead, rather than chain, densities.

Figure 1 shows representative snapshots from simulations in
the cubic and elongated geometries. In both cases, there is a dense
droplet present in a dilute background. The dense minority phase
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FIG. 1. Representative snapshots from simulations using cubic and elongated
boxes at T = 2.86ε/kB and ρ = 0.02 375b−3. Both a dense and a dilute phase
are present in both cases. The dense phase forms (a) an approximately spherical
droplet in the cubic box and (b) a slab in the elongated box, which, for clarity, has
been truncated in the longitudinal direction.

forms an approximately spherical droplet in the cubic box and a slab
in the box with one elongated side.

A. Extracting finite-size coexistence densities
In our simulations, we determine the dilute- and dense-phase

densities, ρℓ and ρh, from the bead density distribution around the
center of mass of the droplets, as described in Sec. II D. Figure 2
shows representative examples of such density profiles from simu-
lations of both cubic and elongated systems for three total densities
ρ and T = 2.86ε/kB. The calculated density profiles level off at both
small and large distances, which implies that ρℓ and ρh can be esti-
mated from the data at large and small distances, respectively. The
finite-size single-phase densities ρℓ and ρh at given ρ, V, and T are
predicted by Eq. (4) to depend on whether the droplets are spherical
or slab-like. Specifically, this equation predicts the finite-size shifts
δρi = ρi − ρc

i (i = ℓ, h) to be positive if the droplets are spherical while
vanishing for a slab-like droplet whose surface area does not change
with the droplet volume. Consistent with this, the data in Fig. 2 sug-
gest that both ρℓ and ρh are higher in the cubic systems than in the
elongated ones. With a dilute minority phase, one would instead

expect ρℓ and ρh to be lower in cubic systems with spherical bubbles
than in elongated systems with slab-like bubbles [Eq. (4)].

It is also instructive to look at how the single-phase densities
in a given geometry depend on the total density, ρ (Fig. 2). In the
cubic case, with a spherical droplet, the positive shifts δρi predicted
by Eq. (4) scale as δρi ∼ V−1/3

h (i = ℓ, h) with the droplet volume,
Vh, which, in turn, increases with ρ, by the lever rule. Hence, the
finite-size single-phase densities should decrease with increasing ρ,
as is indeed observed in Fig. 2(a). A more detailed discussion of this
ρ-dependence will be given toward the end of this section. In the
elongated geometry, the simulated single-phase densities show no
detectable dependence on ρ [Fig. 2(b)]. This behavior is also consis-
tent with Eq. (4) since the predicted leading-order shifts vanish for a
slab-like droplet.

B. Estimating asymptotic coexistence densities
Having seen that the simulations in both cubic and elon-

gated geometries yield single-phase densities ρℓ and ρh that
qualitatively match well with the finite-size shifts predicted
by Eq. (4), we now turn to the problem of estimating the
asymptotic densities ρc

ℓ and ρc
h. Knowledge of these densities

at a given temperature gives two points on the coexistence
curve Tb(ρ).

We first discuss the slab simulations in elongated geometries.
As indicated above, our data do not reveal any significant finite-size
shifts of the single-phase densities in the elongated systems. There-
fore, we simply take the results obtained for some suitable choice
of ρ and V as estimates of the asymptotic densities, without invok-
ing any extrapolation. The results obtained, for seven choices of T,
are displayed in Fig. 3, along with three data points from our previ-
ous study.18 The latter were obtained by determining the finite-size
transition temperature in cubic systems at a given ρ for several dif-
ferent volumes, followed by an FSS extrapolation.18 These data are
in approximate but not perfect agreement with those from the slab
simulations, with the former falling a few percent above the latter.
This discrepancy can be clearly seen in Fig. 4(a), which provides a
zoomed-in view of the low-density branch of the coexistence curve.

FIG. 2. Average bead density distributions around the center of mass of large clusters in (a) cubic and (b) elongated geometries, for three total densities ρ
(0.01 625b−3, 0.02 000b−3, 0.02 375b−3), at T = 2.86ε/kB. The single-phase densities ρh and ρℓ can be estimated from the plateaus at small and large distances, respec-
tively. Insets are zoomed-in views of the tails of the distributions. In the cubic geometry, the single-phase density shifts decrease with increasing ρ, i.e., increasing droplet
volume, as expected from Eq. (4). In the elongated geometry, where the first-order shifts vanish, no statistically significant ρ dependence can be detected.
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FIG. 3. Data for the coexistence curve, Tb(ρ). Orange symbols indicate single-
phase densities from slab simulations at seven temperatures at a total density of
ρ = 0.015b−3. To be able to unambiguously measure the single-phase densities
at higher T , closer to the critical point, simulations of larger systems would be
required. Black symbols represent data based on cubic simulations and FSS anal-
ysis.18 A zoomed-in view of the low-density branch of the coexistence curve can
be found in Fig. 4. The statistical errors are smaller than the symbol size.

The small but systematic shift between these two datasets
prompted us to reanalyze the data for the finite-size transition
temperatures, T(N)b , from Ref. 18. In that study, the asymptotic
transition temperatures, Tb, were estimated for three values of ρ
by seemingly good fits of the leading-order form25–27,36 T(N)b − Tb

∝ N−1/4. However, the rather slow decay of the finite-size transi-
tion temperature shift makes the determination of Tb a delicate task.
Therefore, to test the robustness of the extrapolation, given data
for T(N)b and T(N/2)b , we compute the quantity T̃b

(N)
= (21/4T(N)b

− T(N/2)b )/(21/4
− 1), which becomes equal to Tb if the finite-size

transition temperature shift scales as N−1/4. The data for T̃b
(N)

shows a clear N-dependence [Fig. 4(b)], indicating that there are
non-negligible higher-order corrections to the leading-order form
T(N)b − Tb ∝ N−1/4. The shape of the data suggests that fits of this
form may overestimate Tb, unless restricted to sufficiently large

N. On the other hand, for large N, the T̃b
(N) values fall close

to Tb estimates based on slab simulation data, which are indi-
cated by the horizontal lines in Fig. 4(b). This observation, in
particular, provides further support for the conclusion that the
finite-size effects on the coexistence densities are small in the slab
simulations.

Finally, we discuss the possibility of determining the asymp-
totic coexistence densities, ρc

ℓ and ρc
h, from cubic simulations with

spherical droplets by means of Eq. (4). The predicted finite-size
coexistence density shifts are, in this case, inversely proportional to
the linear size of the droplet or equivalently δρi = ρi − ρc

i ∼ N−1/3
h

(i = ℓ, h), where Nh is the number of chains in the droplet. One
way to increase the droplet size is by increasing the total num-
ber of chains, N, at fixed total density ρ [Eq. (5)]. A compu-
tationally appealing alternative is to keep N fixed and decrease
V. Obviously, V cannot be reduced indefinitely or the spheri-
cal droplet is lost. Still, one may ask whether a sufficiently large
range of droplet sizes can be covered to permit extrapolation
of ρc

ℓ and ρc
h.

To assess the feasibility of this approach, we consider data for
the dilute-phase density, ρℓ, from cubic simulations with N = 320,
T = 2.86ε/kB, and varying V. We focus on ρℓ, which is easier to
determine than ρh. As expected, when decreasing V, we find that
the droplet size, Nh, increases while ρℓ decreases. At the smallest
V studied, the droplet contains just above 220 chains. We stop at
this V to ensure that the simulated droplet never extends over the
periodic boundary, although it might be possible to further slightly
reduce V without losing the spherical droplet. Figure 5 shows the
data for ρℓ, which can be quite well described by a fit of the form
ρℓ − ρc

ℓ ∝ N−1/3
h [Eq. (4)]. However, the fit yields ρc

ℓ = 0.009 b−3,
whereas slab simulation data suggest that ρc

ℓ = 0.012 b−3 [Fig. 2(b)].
This rather poor agreement is not surprising, given the limited
range of droplet sizes covered by the data (Fig. 5). Unfortunately,
for an accurate extrapolation of ρc

ℓ, or ρc
h, one would have to use

much larger droplets, which requires prohibitively time-consuming
simulations with much larger N.

FIG. 4. (a) Zoomed-in view of the low-density branch of the coexistence curve (Fig. 3). Symbols are as in Fig. 3. The line is a fit of the form ∣ρ − ρc∣ = A(Tc − T)0.32642

with which we interpolate the slab simulation data (orange symbols) to enable comparison with results from cubic simulations18 (black symbols). (b) The quantity T̃b
(N)

= (21/4T(N)
b − T(N/2)

b )/(21/4 − 1), which depends on the two finite-size transition temperatures T(N)
b and T(N/2)

b , plotted against N, using data from the cubic simulations
in Ref. 18 for three values of ρ. Horizontal lines indicate transition temperatures based on slab simulation data, extracted through the fit shown in (a). The N-dependence of

T̃b
(N) indicates that higher-order corrections to the leading-order form T(N)

b − Tb ∝ N−1/4 are non-negligible and explains why fits of this form may overestimate Tb. Note
also that the data from the large cubic systems are close to the slab simulation data. The statistical errors are smaller than the symbol size.
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FIG. 5. Dilute-phase density, ρℓ, in cubic systems with a spherical droplet for T
= 2.86ε/kB, N = 320, and varying total density ρ (0.01 625b−3 < ρ < 0.025b−3).

The data are plotted against N−1/3
h , where Nh is the number of chains in the

droplet. This number, Nh, is computed by following the clustering procedure
described in Sec. II D for individual snapshots of the system and then aver-
aging over snapshots. The line represents a fit of the form ρℓ = ρc

ℓ + cN−1/3
h

[Eq. (4)]. The fit is reasonable, but the range of N−1/3
h covered is too small to

permit an accurate extrapolation of the asymptotic density ρc
ℓ. The fitted value

is ρc
ℓ = 0.009 b−3, whereas the slab simulations suggest that ρc

ℓ = 0.012 b−1/3
[Fig. 2(b)]. The statistical errors are smaller than the symbol size.

IV. DISCUSSION AND SUMMARY
In computational studies of phase-separating systems, a widely

used method for estimating the phase diagram is to conduct simu-
lations under coexistence conditions and measure the single-phase
densities. In this paper, we have analyzed simulated single-phase
densities based on a phenomenological ansatz for the free energy
of a mixed two-phase system, F(ρℓ, ρh, Vℓ, Vh).33,34 Minimizing
the free energy, subject to the constraints N = ρℓVℓ + ρhVh and V
= Vℓ + Vh, yields a simple and general leading-order expression for
the finite-size shifts of the coexistence densities [Eq. (4)], which
depends on the droplet geometry through the derivative dAℓh/dVh.
In the case of spherical droplets, the shifts are rather slowly decay-
ing functions of the droplet volume (∝ V−1/3

h ). If, on the other hand,
the droplets are slab-like, then changes in the droplet volume leave
the interfacial surface area unchanged so that dAℓh/dVh = 0, which
makes the predicted finite-size shifts vanish.

The results of our simulations, based on a simple HP pro-
tein model, are fully consistent with the predictions by Eq. (4). In
cubic systems with spherical droplets, we thus observe significant
finite-size shifts of the coexistence densities. In fact, the magnitude
and slow decay of these shifts make accurate extrapolation of the
asymptotic coexistence densities a challenge. By contrast, in the slab
simulations, we do not find any detectable finite-size shifts of the
coexistence densities. The slab simulation data for the coexistence
curve were also compared with previous results based on tempera-
ture scans in cubic systems with varying size.18 A reanalysis of the
previous data shows that the transition temperatures in large cubic
systems match well with the slab simulation results, which further
strengthens the conclusion that the finite-size shifts are small in the
slab simulations.

It should be noted that our study has only looked at single-
phase densities in finite systems and their relation to the coexistence
densities in the large-system limit. Other properties may be less well

suited to slab simulation, especially near the transition to the coexis-
tence region. Thus, slab simulation may be more useful for locating
this transition than for investigating its character.

Nevertheless, when it comes to exploring the shape of the phase
diagram, the smallness of the finite-size coexistence density shifts
makes slab simulation a very attractive method, which may open for
studies of LLPS in systems that would otherwise be too demanding
to simulate.
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I. INTRODUCTION

Advances over the past 15 years have identified liquid-liquid phase separation (LLPS) as a

driver of compartmentalization in living cells1,2. Through LLPS, membraneless droplets are

formed, with high concentrations of proteins and nucleic acids. In this process, it has been found

that intrinsically disordered proteins (IDPs) often play a key role, and several such IDPs have been

shown to phase separate on their own3–5.

To gain insight into the forces driving IDP LLPS, a broad set of theoretical and computational

methods have been employed. The Flory-Huggins6,7 and Voorn-Overbeek8 mean-field methods

provide useful analytical estimates, which, however, are insensitive to the ordering of the amino

acids along the protein chains. By using the random phase approximation9,10, the sequence depen-

dence of polyampholytes can be explored without resorting to extensive simulations, at the price

of assuming Gaussian chains. To be able to avoid approximations made in the above methods,

there have also been many studies of biomolecular LLPS based on explicit-chain simulation11–18.

In particular, using various coarse-grained models, the sequence determinants of polyampholyte

LLPS were elucidated11–15. However, particle-based simulation (PBS), with explicit chains, be-

comes computationally expensive for large systems, even with coarse-grained models.

Another approach to dense polymer systems is to use field-theory simulation (FTS)19, which

has recently been applied for the first time to biomolecular LLPS20. Here, by means of a Hubbard-

Stratonovich transformation, the original polymer system is reformulated as a statistical field the-

ory, which can be investigated by simulation19,20. This approach has the advantage of removing di-

rect interchain interactions, which makes it, at least formally, easy to increase the number of chains

in the simulations. A disadvantage is that the effective energy of the field theory is complex-valued,

which renders standard sampling techniques inadequate. A potential solution to this problem is

offered by the complex Langevin method21–23. Indeed, using this method, several investigations

of biomolecular LLPS in both one- and two-component systems have been reported20,24–28. In

all these systems, phase separation was driven by Coulomb interactions, which are well suited for

field-theoretic treatment.

In this article, we test the FTS approach on a hydrophobic/polar (HP) protein model, where

phase separation is driven by short-range hydrophobic attraction rather than electrostatics. Since

the FTS method requires the introduction of an auxiliary spatial grid, we deliberately consider a

lattice-based protein model. In this way, it becomes possible to compare FTS and PBS results in a
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direct fashion, without having to extrapolate FTS results to the limit of vanishing lattice spacing.

Specifically, we consider a variant of the well-known HP lattice model for protein folding29, with

a finite same-site repulsion strength, Λ. As will be shown below, this model can be mapped onto a

field theory with a simple structure. Note that with a lattice-based protein model, particle densities

are, by construction, smeared. With this implicit smearing present, there is no need for the explicit

Gaussian smearing typically used in continuous models.

The strength of the same-site repulsion, Λ, is a critically important parameter. On physical

grounds, Λ has to be sufficiently large to prevent condensed clusters from collapsing to an arti-

ficially compact shape. If, on the other hand, Λ is taken too large, it turns out that the complex

Langevin method breaks down. To elucidate these two conflicting requirements, we simulate and

analyze in some detail a lattice gas, consisting of H particles rather than HP chains. Comparing

FTS and PBS data, we find that the two Λ regions where the respective requirements are met, un-

fortunately, do not overlap. To determine whether the sampling problems that we observe at large

Λ is a peculiarity of our particular model or a more general problem associated with repulsive

interactions, we construct a minimal toy model, which can be solved analytically. In the presence

of strong repulsive interactions, we find that the complex Langevin method fails in this toy model

as well. Finally, we present some examples of FTS results for systems of HP chains, which, again,

are compared with PBS data for the same systems.

II. METHODS

A. Biophysical model

We consider a system of N linear chains with M beads each, on a simple cubic lattice with

volume V and periodic boundaries in all three directions. The beads can be either hydrophobic

(H) or polar (P). For simplicity, we assume that all N chains share the same sequence, which we

write as σ = (σ1, . . . ,σM), where σm = 1 for an H bead and σm = 0 for a P bead. Throughout the

paper, we use dimensionless values for energy and length, with the lattice spacing set to unity.

The interaction potential is pairwise additive, U = ∑i< j ui j, where the sum runs over all pairs

of beads, both intra- and interchain pairs. The pair potential ui j has a repulsive part, which assigns

an energy penalty Λ > 0 to any pair of beads residing on the same lattice site. In addition, there

is an attractive nearest-neighbor interaction, which is felt only by HH pairs. In total, thus, the pair
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potential is given by

ui j =


Λ , if beads i and j are on the same site;

−σiσ j , if beads i and j are nearest neighbors;

0 , otherwise .

(1)

The full potential may thus be written as

U =Ur +Ua , (2)

where Ur = Λ×{number of same-site pairs} and Ua =−{number of nearest-neighbor HH pairs}.

The thermodynamic behavior of the system at inverse temperature β is determined by the par-

tition function

Z = ∑
C

e−βU , (3)

where the sum runs over all possible configurations C of the N-chain system.

To obtain a field theory representation of this particle-based system, we first express the poten-

tial U in terms of bead counts rather than bead positions. To this end, we consider the ansatz

Ubc =
Λ

2 ∑
r

n(r)2 +
1
2 ∑

r,µ̂
ñH(r, µ̂)2 , with ñH = αnH(r+ µ̂)−α

∗nH(r) , (4)

where r denotes a lattice site, µ̂ is one of three lattice unit vectors, α is a complex parameter,

n(r) is the total number of beads at site r, and nH(r) is the number of H beads at site r. The first

sum is over lattice sites, while the second is over links. Note that the second sum does not have

the common form ∑r[∑r′ Γ(r,r′)nH(r′)]2, where Γ is a smearing matrix and the outer sum is over

sites rather than links. The link-based form in Eq. 4 makes it possible to avoid interactions beyond

nearest-neighbor distance.

The bead counts n and nH can be written as

n(r) = ∑
i

δ (r,ri) and nH(r) = ∑
i

σiδ (r,ri) , (5)

where ri and σi denote, respectively, the location and type of bead i, and δ is a Kronecker delta.

Using Eq. 5, Ubc (Eq. 4) can be rewritten as a sum over bead pairs. One finds that the n-dependent

part of Ubc is equal to Ur plus a constant self-energy term, given by NMΛ/2. The ñH-dependent

part of Ubc generally contains both same-site and nearest-neighbor interactions. However, this
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mixing can be avoided by choosing the parameter α = eiπ/4. With this α , this part of Ubc becomes

equal to Ua, which means that

Ubc =U +
NMΛ

2
. (6)

All numerical results presented below were obtained using α = eiπ/4.

B. Field theory

It follows from the above that, adding the constant self-energy term to U , the partition function

(Eq. 3) can be expressed as

Z = ∑
C

e−βUbc, (7)

where Ubc (Eq. 4) depends quadratically on both the site variables n(r) and the link variables

ñH(r, µ̂). These quadratic dependencies can be linearized by introducing auxiliary fields, w(r)

and ϕ(r, µ̂), by means of the Hubbard-Stratonovich method. Note that since ñH(r, µ̂) is associated

with links, the corresponding field ϕ(r, µ̂) can be seen as a discrete version of a vector field, living

on the links of the lattice.

Specifically, the fields are introduced through the relations

exp
(
−βΛ

2
n(r)2

)
∝

∫
dw(r)exp

(
− 1

2βΛ
w(r)2− iw(r)n(r)

)
,

exp
(
−β

2
ñH(r, µ̂)2

)
∝

∫
dϕ(r, µ̂)exp

(
− 1

2β
ϕ(r, µ̂)2− iϕ(r, µ̂)ñH(r, µ̂)

)
.

(8)

This yields the partition function

Z ∝ ZFT =
∫

∏
r

dw(r)∏
r,µ̂

dϕ(r, µ̂)e−H[w,ϕ] , (9)

where the effective energy H[w,ϕ] is given by

H[w,ϕ] =
1

2ν
∑
r

w(r)2 +
1

2η
∑
r,µ̂

ϕ(r, µ̂)2−N lnQ[w,ϕ], (10)

with ν = βΛ and η = β . Here, Q[w,ϕ] is a conditional single-chain partition function, given by

Q[w,ϕ] = ∑
C1

exp

[
−i

M

∑
m=1

(
w(rm)+σm ∑

µ̂

[αϕ(rm− µ̂, µ̂)−α
∗
ϕ(rm, µ̂)]

)]
, (11)

where the outer sum is over single-chain configurations C1 = (r1, . . . ,rM), corresponding to a

random walk on the cubic lattice with M−1 unit steps. The evaluation of Q, given w and ϕ , can
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be conveniently organized by rewriting Eq. 11 in the form

Q[w,ϕ] = ∑
C1

M

∏
m=1

χσm(rm) = ∑
r1,...,rM

χσM(rM) . . .T (r3,r2)χσ2(r2)T (r2,r1)χσ1(r1) , (12)

where T (r,r′) = 1 if r and r′ are nearest neighbors, T (r,r′) = 0 otherwise, and

χσ (r) =

e−iw(r) , if σ = 0;

e−iw(r)−i∑µ̂ [αϕ(r−µ̂,µ̂)−α∗ϕ(r,µ̂)] , if σ = 1 .
(13)

C. Extracting polymer properties from the fields

In the field representation, the original bead count variables are not readily available, but hidden

in the conditional partition function Q. However, it is possible to derive useful identities between

bead count and field correlations19. A whole series of such identities can be derived by noting that

the fields w(r) and ϕ(r, µ̂) (Eq. 8) can be expressed as

w(r) = u(r)− iνn(r) ,

ϕ(r, µ̂) = uH(r, µ̂)− iη ñH(r, µ̂) ,
(14)

where u(r) and uH(r, µ̂) are auxiliary zero-mean Gaussian fields with 〈u(r)u(r′)〉= ν δ (r,r′) and

〈uH(r, µ̂)uH(r′, µ̂ ′)〉= η δ (r,r′)δ (µ̂, µ̂ ′). At the one- and two-point levels, one finds the identities

〈w(r)〉=−iν〈n(r)〉 (=−iνNM/V ) ,

〈ϕ(r, µ̂)〉=−iη〈ñH(r, µ̂)〉 (= 2η Im(α)NMH/V ) ,

〈w(r)w(r′)〉= νδ (r,r′) − ν
2〈n(r)n(r′)〉 ,

〈ϕ(r, µ̂)ϕ(r′, µ̂ ′)〉= ηδ (r,r′)δ (µ̂, µ̂ ′) − η
2〈ñH(r, µ̂)ñH(r′, µ̂ ′)〉 ,

(15)

where MH denotes the number of H beads per chain. From the last two of these identities, it

follows that
〈Ur〉+

NMΛ

2
=

V
2β
− 1

2β 2Λ
∑
r
〈w(r)2〉 ,

〈Ua〉=
3V
2β
− 1

2β 2 ∑
r,µ̂
〈ϕ(r, µ̂)2〉 .

(16)

The average particle-based total energy U =Ur+Ua (Eq. 3) therefore can be obtained as the field-

theory average of the estimator

UFT =
2V
β
− NMΛ

2
− 1

2β 2

[
1
Λ

∑
r

w(r)2 +∑
r,µ̂

ϕ(r, µ̂)2

]
. (17)
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When studying phase separation, a common choice is to use elongated simulation boxes, with

volume V = LzL2, in which droplets tend to be slab-like rather than spherical. Droplets can then be

detected by determining the density profile ρ(z) = L−2
∑x,y n(x,y,z). The simultaneous presence

of two bulk phases with different densities leads to a large spatial variance of ρ(z), defined as

σ
2
ρ =

1
Lz−1

Lz

∑
z=1

(ρ(z)−ρ)2 =
1

Lz−1

(
Lz

∑
z=1

ρ(z)2−Lzρ
2

)
, (18)

where ρ = NM/V denotes total density. Using Eq. 15, it can be easily verified that the ensemble

average of this quantity, 〈σ2
ρ〉, can be determined by using the field-theoretic estimator

σ
2
ρ,FT =

1
Lz−1

(
Lz

L2βΛ
−Lzρ

2− 1
(βΛ)2 ∑

z
ρw(z)2

)
, (19)

where ρw(z) = L−2
∑x,y w(x,y,z).

D. Complex Langevin sampling

The statistical field theory defined by Eq. 9 has a complex-valued effective energy H[w,ϕ],

and therefore a complex weight function e−H , which renders sampling techniques such as Markov

chain Monte Carlo inadequate. In principle, this problem can be overcome by sampling the distri-

bution e−ReH and using reweighting methods. However, this approach typically requires estimat-

ing rapidly fluctuating observables, which makes it inefficient. A potentially useful alternative is

to use Langevin dynamics21–23, defined by

ẇ(r) =− ∂H
∂w(r)

+
√

2 Ξw(r, t),

ϕ̇(r, µ̂) =− ∂H
∂ϕ(r, µ̂)

+
√

2 Ξϕ(r, µ̂, t),
(20)

where t is Langevin time, a dot indicates time derivative, Ξw is standard Gaussian noise with zero

mean and correlations given by 〈Ξw(r, t)Ξw(r′, t ′)〉 = δ (r,r′)δ (t− t ′), and similarly for Ξϕ . In a

simulation, these continuous-time equations have to be discretized. A simple discrete form is

w(r)k+1 = w(r)k−dt
∂H

∂w(r)

∣∣∣
k
+
√

2dt ξw(r, tk)

= (1−ν dt)w(r)k +dt
N
Q

∂Q
∂w(r)

∣∣∣
k
+
√

2dt ξw(r, tk) ,

ϕ(r, µ̂)k+1 = ϕ(r, µ̂)k−dt
∂H

∂ϕ(r, µ̂)

∣∣∣
k
+
√

2dt ξϕ(r, µ̂, tk)

= (1−η dt)ϕ(r, µ̂)k +dt
N
Q

∂Q
∂ϕ(r, µ̂)

∣∣∣
k
+
√

2dt ξϕ(r, µ̂, tk) ,

(21)
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where dt is the time step and k a time index, while ξw(r, tk) and ξϕ(r, µ̂, tk) are two sets of inde-

pendent Gaussian random variables with zero mean and unit variance. In Eq. 21, it is possible and

potentially advantageous to use different time steps for the w and ϕ fields, dtw and dtϕ , depending

on ν and η30,31. However, throughout this paper, we use the same dt for all degrees of freedom.

Due to the complex nature of H, the fields will not be restricted to real values when evolving

according to Eq. 21, but will wander off into the complex plane. Thus, we will have a probability

distribution over complex-valued fields, or, equivalently, a joint probability distribution over their

real and imaginary parts. Under fairly general conditions, the Langevin dynamics allows for this

distribution over complex fields to converge to one that mimics the formal, complex-valued Boltz-

mann distribution over real fields, e−H , in the sense that expectation values of analytic functions

of the fields will converge to the correct values. However, it is well-known that the success of the

method is system-dependent32,33.

E. Simulation details

We test the FTS method on systems consisting of H particles or multiple copies of one of two

different 10-bead HP chains. For comparison, we apply PBS techniques to the same systems, to

generate reference data.

The FTS results are time averages over Langevin trajectories, generated using Eq. 21 with a

fixed step size in the range 5× 10−6 ≤ dt ≤ 10−4. The simulations are started from randomly

perturbed uniform field configurations. Each run covers a total Langevin time of 4× 103 (H

particles) or 5×103 (HP chains), the first 20% of which is discarded for thermalization.

The PBS results are obtained using Monte Carlo methods. For H particles, a single type of move

is employed, namely displacement of individual particles to nearest-neighbor sites on the lattice.

A majority of the results are from fixed-temperature simulations with the Metropolis algorithm.

However, near the condensation/evaporation transition, this sampling method becomes inefficient,

because transitions between states with and without a droplet are rare. To overcome this problem,

some of our simulations use the Wang-Landau algorithm34,35, which, in particular, facilitates the

determination of the condensation/evaporation temperature.

The PBS results for HP chains are based on a set of three elementary moves. The first move

alters the internal structure of a random chain, by rotating one of its M− 1 bond vectors. The

second move is a rigid-body translation or rotation of an individual chain. The third and final

8

70



move is a rigid-body translation of a cluster of chains. The construction of the cluster to be moved

is stochastic, following a Swendsen-Wang type procedure36,37. All three moves are subject to a

Metropolis accept/reject test.

III. RESULTS

Above we gave a field-theoretic representation (Sec. II B) of the HP lattice protein model with

finite same-site repulsion (Sec. II A). In this section, we evaluate to what extent simulation of this

field theory by the complex Langevin method (Sec. II D) reproduces the thermodynamic proper-

ties of the HP model, using reference data obtained by conventional particle-based Monte Carlo

simulation. First, we investigate in some detail the case of a lattice gas, where the system consists

of (one-bead) H particles. To shed some light upon the findings for the lattice gas, we then intro-

duce a minimal, analytically solvable toy model, whose behavior under Langevin dynamics can

be analyzed and understood. Finally, we present some results from simulations with 10-bead HP

chains.

A. H particles

Throughout this subsection, we consider systems consisting of 64 H particles at fixed density

ρ = N/V = 0.125. The lattice used is either cubic (83) or elongated in one direction (32×42). In

the latter case, condensed droplets assume a slab-like rather than spherical shape. We study how

the ability of the FTS method to reproduce results obtained using conventional PBS techniques

depends on the two parameters of the model, the repulsion strength Λ and the inverse temperature

β . Another important issue is how large Λ has to be taken in order to prevent condensed droplets

from becoming artificially compact.

Figures 1A,C compare FTS and PBS data for the repulsive and attractive energies Ur and Ua,

respectively, for different Λ at fixed β = 0.3, on a cubic lattice. At this β , the system is in an

uncondensed gas state for all Λ values considered. The FTS results are in agreement with the

PBS data for Λ . 3, but deviations develop as Λ is increased. That the FTS method suffers from

sampling errors at large Λ is underscored by the fact that the, by definition, positive quantity Ur

turns negative.

The corresponding data at β = 0.4 follow a similar pattern (Figs. 1B,D), although the accuracy
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FIG. 1. Λ-dependence of the repulsion and attraction energies Ur and Ua at β = 0.3 and β = 0.4, for a

system of 64 H particles on an 83 lattice, as obtained using PBS (red) and FTS (blue). Lines are drawn to

guide the eye. (A) Ur at β = 0.3 (B) Ur at β = 0.4. (C) Ua at β = 0.3, (D) Ua at β = 0.4.

of the FTS method starts deteriorating at a lower Λ in this case. At β = 0.4, we omitted data

obtained for Λ = 0.5. The reason for this is that a condensation transition takes place as Λ is

reduced from 1 to 0.5, which leads to Ur and Ua values far outside the plotted ranges.

For fixed Λ = 0.5, the above results imply that a temperature-induced condensation transition

occurs as β is increased from 0.3 to 0.4. This transition is illustrated in Fig. 2, which shows

the β -dependence of the total energy U = Ur +Ua. By PBS, we estimate that the condensation

transition occurs at βt ≈ 0.375, with βt defined by having the maximum heat capacity. The curve

representing PBS data in Fig. 2 is computed by using the Wang-Landau algorithm34,35, along

with reweighting techniques. This algorithm turns out to be much more efficient than standard

constant-temperature Monte Carlo, which becomes very slow in the vicinity of the condensation

transition. This slowdown can be linked to a strongly bimodal energy distribution, P(U) (Fig. 3A),

where the two peaks correspond to states with and without a droplet, respectively. At the transition
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FIG. 2. β -dependence of the total energy U =Ur +Ua for fixed Λ = 0.5 in a system of 64 H particles on an

83 lattice. The red curve represents PBS data, obtained with the Wang-Landau algorithm34,35. Blue symbols

indicate FTS results.

temperature, the valley between the two peaks is statistically suppressed by about eight orders of

magnitude, despite the modest size of the system.

We now turn to the FTS method, which, for this Λ, captures the transition quite well. Figure 2

shows FTS results at four different β , two on each side of the transition. All four data points fall

close to the curve obtained by PBS. It is worth noting that all the FTS results are from runs started

from random initial field configurations. Therefore, for β > βt, the Langevin dynamics has to

bring the system from a random state to field configurations corresponding to a droplet-containing

state. Figure 3B shows the time evolution of the field-theoretic energy estimator UFT (Eq. 17) in a

run at β = 0.4≈ 1.07βt. The system initially spends a period of time in a high-UFT state, followed

by a sudden jump to a low-UFT state. This behavior matches well with PBS data for P(U) at

β = 0.4 (Fig. 3A). Here, although the low-energy peak dominates, the high-energy peak is still

present. Consistent with this, in the FTS run, there is a waiting time before the system escapes

from the initial high-UFT state (Fig. 3B).

Next, we investigate the droplet condensation transition in some more detail for three values

of Λ (0.5, 2.0, 5.0), using an elongated simulation box (32× 42). To this end, we first consider

the longitudinal distribution of particles, ρ(z) = L−2
∑x,y n(x,y,z). In particular, we compute the

spatial variance of this distribution, σ2
ρ (Eq. 18), and its field-theoretic estimator, σ2

ρ,FT (Eq. 19).

The formation of a dense droplet in a dilute backgrund leads to an increased spatial variance σ2
ρ .

Figure 4A shows PBS and FTS data for σ2
ρ and σ2

ρ,FT, respectively, in the vicinity of the inverse
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FIG. 3. Droplet condensation in a system of 64 H particles on an 83 lattice for Λ = 0.5. (A) Energy

distribution, P(U), in logscale at β = 0.375 ≈ βt (thick line) and β = 0.4 (thin line), based on PBS data

obtained with the Wang-Landau algorithm34,35. (B) Time evolution of the field-theoretic estimator UFT of

U (Eq. 17) in an FTS run at β = 0.4.

transition temperature, βt, for all three choices of Λ. As in Fig. 2, the FTS data agree quite well

with the PBS data for Λ = 0.5. By contrast, but not surprisingly given the data in Fig. 1, the FTS

method fails to properly describe the condensation transition for Λ = 2.0 and Λ = 5.0.

The change in σ2
ρ near βt is abrupt and large for Λ = 0.5, while becoming less drastic as Λ

is increased (Fig. 4A). The abruptness of the transition for small Λ is linked to the collapse of

condensed droplets, which leads to artificially low energies for droplet-containing configurations.

Figure 4B shows the total number of lattice sites hosting at least one of the 64 particles in the

system. For Λ = 0.5, it can be seen that this number, ns, drops from ≈ 60 to ≈ 10 upon droplet

condensation. By contrast, for Λ = 5.0, ns stays above 63 throughout the β range studied, 0.93≤

β/βt ≤ 1.07.

In summary, in the lattice gas studied here, in order for the FTS sampling errors to stay small,

the repulsion strength Λ must not be too large. At the same time, in order to prevent the formation

of artificially compact droplets, Λ must not be too small. Unfortunately, at least with the standard

Langevin scheme used here, the Λ regions where these two requirements are met do not overlap,

as is illustrated by the results for Λ = 2.0 in Fig. 4. This Λ is too large to avoid large sampling

errors (Fig. 4A), but still too small to prevent condensed droplets from collapsing (Fig. 4B).
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FIG. 4. Droplet condensation in a system of 64 H particles on a 32×42 lattice for three values of Λ (0.5, 2.0,

5.0), studied using PBS (red) and FTS (blue). For each Λ, data were acquired for six values of β/βt (0.93,

0.96, 0.99, 1.01, 1.04, 1.07), where βt is the inverse transition temperature, defined as the heat capacity

maximum. Lines are drawn to guide the eye. (A) Spatial variance of the density ρ(z), calculated using

Eq. 18 (PBS) or Eq. 19 (FTS). (B) The number of lattice sites hosting at least one particle, ns, with its

maximal value (64) indicated by the horizontal line.

B. Toy model

In this subsection, we turn to a minimal toy model, to elucidate how increased repulsion

strength can cause sampling problems in the FTS approach.

Thus, we consider a single particle (or a gas of N identical ones) on a lattice with only two

sites, labelled 1 and 2, respectively, with two possible types of same-site pair interactions, of an

either repulsive or attractive nature. The repulsive interaction gives a penalty of ν ≥ 0 for each

same-site pair, while the attractive one instead gives a reward η ≥ 0, as expressed by the respective

interaction energies

βUr =
ν

2
(
n2

1 +n2
2
)
,

βUa =−
η

2
(
n2

1 +n2
2
)
.

(22)

In a similar way as for the main model, these systems can be transformed into field theories, with

the respective effective energies

Hr(w1,w2) =
1

2ν

(
w2

1 +w2
2
)
−N logQr,

Ha(ϕ1,ϕ2) =
1

2η

(
ϕ

2
1 +ϕ

2
2
)
−N logQa.

(23)
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Here, w1,w2 and ϕ1,ϕ2 are site fields for the repulsive and attractive cases, respectively, while

Qr and Qa are the conditional, single particle partition functions, given by Qr = e−iw1 + e−iw2 ,

Qa = e−ϕ1 + e−ϕ2 .

Conveniently, H in each case separates in terms of the sum and difference of the fields on

the two sites, given by W = w1 + w2, w = w1−w2 for the repulsive case, and Φ = ϕ1 + ϕ2,

ϕ = ϕ1 − ϕ2 for the attractive one. The quadratic terms then become
(
W 2 +w2)/4ν and(

Φ2 +ϕ2)/4η , respectively, while the conditional partition functions factorize as, respectively,

Qr = e−iW/2
(

e−iw/2 + eiw/2
)

and Qa = e−Φ/2
(

e−ϕ/2 + eϕ/2
)

.

As a result, the summed fields, W or Φ , have quadratic effective energies,

hr(W ) =
W 2

4ν
+ iN

W
2
,

ha(Φ) =
Φ2

4η
+NΦ ,

(24)

and become simple Gaussian variables with rather trivial Langevin dynamics. Neglecting these,

we can focus on the non-trivial difference fields, w or ϕ , with the effective energies

Hr(w) =
w2

4ν
−N logcos

(w
2

)
,

Ha(ϕ) =
ϕ2

4η
−N logcosh

(
ϕ

2

)
.

(25)

Applying conventional (complex) Langevin dynamics to the original fields leads to the follow-

ing dynamics for the difference fields:

ẇ =−w
ν
−N tan

(w
2

)
+2Ξr ,

ϕ̇ =−ϕ

η
+N tanh

(
ϕ

2

)
+2Ξa ,

(26)

where Ξr is a standard Gaussian noise with zero mean and 〈Ξr(t)Ξr(t ′)〉= δ (t− t ′), and similarly

for Ξa. As before, the continuous-time evolution in Eq. 26 has to be approximated by discrete time

equations.

As it turns out, the dynamics differs significantly between the two cases, and we will therefore

consider them separately.
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1. Repulsive case

For the repulsive case, the target distribution on the real w line, determined by Hr (Eq. 25),

reads

P(w) ∝ e−w2/2ν cosN (w/2) , (27)

which is real on the real line, but with a varying sign, at least for odd N, due to the cosine factor.

Henceforth, we will assume N = 1. Figure 5 illustrates the drift in the complex w plane for two

values of ν .

The zeros of the cosine at odd multiples of π define poles of H, at which the drift term in the

Langevin equation for w diverges (Eq. 26). This leads to wild behavior, unless regulated, e.g., with

a dynamical time step. Between the poles, the drift is smooth, and leaves the real line an invariant

manifold that attracts the motion. On the real w line, the poles at odd multiples of π are repulsive

under the drift, and alternate with attracting fixed points. The noise term, however, spreads out the

trajectories.

Thus, it is clear that the real line acts as an attractor for the Langevin dynamics. In computer

simulation with a finite time step, trajectories will be trapped on the real line, in the intervals

between consecutive poles, and only occasionally pass to a neighboring interval. Within each in-

terval, the resulting distribution will be proportional to |P(w)|, but with different random normal-

ization constants in the different intervals, in a manner that depends on the particular simulation

details.

Due to the Gaussian factor in P, for small enough repulsion strength, ν � 1, the distribution is

dominated by the central peak around the fixed point at w = 0, and the error in the Gaussian tail

can be neglected. Hence, we would expect essentially correct long-term averages from computer

simulations of the Langevin dynamics for small enough ν , while they would deteriorate for larger

ν .

2. Attractive case

For the attractive case, on the other hand, the target distribution on the real ϕ line, determined

by Ha (Eq. 25), reads

P(ϕ) ∝ e−ϕ2/2η coshN (ϕ/2) , (28)
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FIG. 5. Drift in the complex w plane of the repulsive toy model with N = 1, for (A) ν = 1 and (B) ν = 3. The

arrows are normalized and indicate only the direction of the drift. The magnitude of the drift is indicated

by the background color. Red symbols indicate attractive fixed points (filled circles) and poles (plus signs).

The latter are repelling/attracting in the real/imaginary direction, respectively.

which is real and positive on the entire real line. For simplicity, we again focus on the case N = 1.

Figure 6 illustrates the drift in the complex ϕ plane for two values of η .

In Eq. 28, the cosine of Eq. 27 is replaced by a cosh, which means that P(ϕ) instead has zeroes

on the imaginary axis. These zeroes again correspond to poles of H, but are less disturbing, being

away from the real ϕ line. As in the w case, the real line is invariant, but the drift term now is

smooth there (Eq. 26). However, the dynamics close to the real line depends on the size of the

attraction strength η .

For η < 2, the real line is everywhere attracting, and the drift has a single attractive fixed point

there, ϕ = 0, with a basin of attraction containing the whole real line. This indicates that a nu-

merical simulation of the Langevin dynamics (Eq. 26) will result in long-term averages consistent

with P(ϕ).

At η = 2, the system undergoes a pitchfork bifurcation, where the central fixed point at ϕ = 0

turns unstable, while a previously repelling pair of fixed points on the imaginary line have closed

in on the origin, and instead becomes a pair of attracting fixed points on the real line, on either
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FIG. 6. Drift in the complex ϕ plane of the attractive toy model with N = 1, for (A) η = 1 and (B)

η = 3. The arrows are normalized and indicate only the direction of the drift. The magnitude of the drift

is indicated by the background color. Red symbols indicate attractive fixed points (filled circles), repulsive

fixed points (open circles) and poles (plus signs). The latter are repelling/attracting in the real/imaginary

direction, respectively.

side of the origin.

For η > 2, the real line is locally attracting only outside a pair of points lying inside the new

attracting fixed points; however, a strip around the real line, |Imϕ| < π , is attracting. Within this

strip there are no sampling barriers in the real direction, indicating that Langevin sampling may

not suffer from the same problems as in the repulsive case.

3. Numerical results and implications

We have performed a set of simulations to probe the performance of the complex Langevin

method for both the repulsive and the attractive toy model, using N = 1. Figure 7A shows the

second moment of w for the repulsive model, as compared to the correct value 〈w2〉 = 2ν − ν2.

Likewise, Fig. 7B shows the second moment of ϕ for the attractive model, as compared to the

correct value 〈ϕ2〉= 2η +η2. The simulations indeed confirm that the method significantly dete-

riorates in the repulsive case for ν & 0.5, while no noticeable deviation from the correct values is
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FIG. 7. Simulation data (red symbols) versus theoretical results (blue lines) for the toy model with N = 1.

(A) Repulsive case: the second moment of w as a function of ν . Simulation data are well behaved for small

ν , but deteriorates at ν ≈ 0.5. This erratic behavior will only become worse for higher ν values, and is

conjectured to be due to loss of ergodicity. (B) Attractive case: the second moment of ϕ as a function of η .

Simulation data follow the theoretical curve over the whole range.

seen in the attractive case.

This toy model illustrates how the Langevin dynamics yields correct results for an attractive

pair interaction, but deteriorates for a strong enough repulsive one, due to a loss of ergodicity, in

this case caused by poles on the real line. This behavior is qualitatively similar to what we observe

in the larger model, where the complex Langevin dynamics fails to yield correct results when the

repulsive part of the interaction is too large as compared to the attractive part.

The similarity in behavior suggests that also for the larger model, the problems might be due to

loss of ergodicity. Note that the zeros of Q form pole manifolds of H with complex codimension

one, corresponding to real codimension two. Normally, this should not jeopardize ergodicity.

However, in case there exists an attractor in field space of real codimension one or more – like the

real line in the repulsive toy model – ergodicity could be destroyed.

We speculate that the failure of the complex Langevin algorithm for strong repulsion might be

due to a bifurcation to a situation with a codimension-one attractor, inside which the pole manifold
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may have a real codimension one. This would be enough to block trajectories and destroy ergod-

icity for the exact continuum version of the complex Langevin dynamics. In computer simulations

with finite time step, trajectories may actually jump over the pole blockage, but in a way leading

to erroneous probabilities.

C. HP chains

We now return to the HP lattice model, with repulsion strength Λ. In the lattice gas (Sec. III A),

we saw that Λ = 2 was too small to prevent condensed droplets from collapsing, whereas this

problem was significantly alleviated when using Λ = 5. In this subsection, we present simulation

results for two 10-bead HP sequences, obtained with Λ = 5. We wish to explore how the FTS

method performs when applied to chain systems at this Λ.

The two HP sequences considered are the alternating sequence (HP)5, called A, and the block

sequence H5P5, called B, which share the same composition. These two sequences have previously

been studied using a coarse-grained continuous model38,39, where cluster formation was found to

set in at a higher temperature for sequence B than for sequence A. However, the clusters formed by

sequence B were micelle-like, and therefore did not represent a bulk phase. By contrast, sequence

A did phase separate38,39.

Here, we consider systems consisting of 64 copies of either the A or the B sequence, on an

elongated 36×122 grid. Figure 8 shows the β -dependence of the longitudinal bead density distri-

bution, ρ(z), using PBS data obtained with the Wang-Landau algorithm34,35. Here, before averag-

ing over snapshots, the distribution ρ(z) in a given snapshot is shifted, in such a way that if a single

droplet is present, then its center of mass ends up close to the center of the box (in the z direction).

From Fig. 8 it can be seen that cluster formation indeed sets in at a lower β for sequence B than

for sequence A, as in previous work38,39. We estimate that βt ≈ 0.77± 0.01 for sequence B and

βt ≈ 1.31±0.03 for sequence A.

We test the FTS method using β = 0.5 and β = 1.0. Table I compares FTS data for the energy

estimator UFT (Eq. 17) with PBS data for the energy U . The βt estimates above imply that a

large cluster is present in only one of the four systems studied, namely for sequence B at β = 1.0.

Therefore, the energy U is much lower in this system than in the other three. In all four cases, we

find that the FTS method severely underestimates U , which is not unexpected given that Λ = 5

(cf. Fig. 1). Now, one may argue that the energy is a model-dependent quantity and therefore less
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FIG. 8. Heat maps showing the temperature (1/β )-dependence of the bead density profile ρ(z), for (A)

sequence A and (B) sequence B. At a given β , ρ(z) is either clearly unimodal, indicating the presence of a

single dominant droplet, or weakly bimodal. In the latter case, the system tends to exhibit two main clusters.

The data are from PBS simulations with the Wang-Landau algorithm34,35. The simulated systems consist

of 64 chains on a 36×122 lattice, for Λ = 5.

interesting than basic structural properties, such as the presence or absence of large clusters.

In Fig. 9, we therefore also compare bead density profiles, ρ(z), obtained using FTS and PBS,

respectively, at the same two β values. As expected, the PBS profiles show that a large droplet

is present for sequence B at β = 1.0, but not in any of the other three systems studied. In sharp

contrast, the FTS data erroneously indicate that a large cluster is present in all four systems. Thus,

in the systems studied, there is clear tendency for FTS sampling errors to cause a bias toward

cluster formation. We also note that the maximal (averaged aligned) densities ρ(z) from the FTS

runs tend to be high, with values exceeding unity for sequence B. A value of unity corresponds to

one bead per site.

TABLE I. Estimates of the energy U obtained with FTS and PBS for the 10-bead HP sequences A and B at

β = 0.5 and β = 1.0, for Λ = 5 and 64 chains on a 36×122 lattice.

Sequence A Sequence B

β = 1.0 β = 0.5 β = 1.0 β = 0.5

FTS −4558±16 −2992±15 −7858±14 −6253±12

PBS −102±15 −12±9 −549±15 −22±15
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FIG. 9. Bead density profiles, ρ(z), calculated using FTS (blue) and PBS (red) for the sequences A (dots)

and B (dashes), for (A) β = 0.5 and (B) β = 1.0. The profiles are either clearly unimodal, indicating the

presence of a single dominant droplet, or weakly bimodal. The latter systems tend to exhibit two main

clusters. The FTS results for ρ(z) are obtained using a field-theoretic estimator derived from Eq. 15. The

simulated systems consist of 64 chains on a 36×122 lattice, for Λ = 5.

IV. DISCUSSION

FTS offers a new tool for investigating the mechanisms of biomolecular LLPS, with potential

advantages over traditional PBS. The FTS approach has previously been used to investigate various

systems where phase separation is driven by electrostatics20,24–28. In this paper, we have studied

systems where phase separation is driven by short-range hydrophobic attraction. In preliminary

work, we considered a continuous protein model similar to those in previous FTS studies20,24–28,

but with Coulomb interaction replaced by an effective attraction between hydrophobic beads. For

simplicity, we decided, however, to focus on a lattice-based HP protein model, with finite same-

site repulsion and nearest-neighbor attraction between HH pairs. We showed that this model can

be mapped onto a field theory with a simple structure, by using an unconventional link-based form

for the HH attraction. One advantage of choosing this lattice-based protein model is that FTS

results can then be directly compared with PBS data, without having to extrapolate the FTS results

to the continuum limit.

For a protein model to be amenable to standard FTS techniques, its excluded-volume repulsion

has to be soft. However, if this repulsion is made too soft, one risks affecting the phase behav-

ior14,20,27. A previous FTS study found that the excluded-volume strength affected the phase sep-
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aration propensity in one-component polyampholyte systems20, in line with theoretical results40.

Using both FTS and PBS, another study found that the excluded-volume strength affected demix-

ing in two-component polyampholyte systems27.

In this paper, we have investigated the ability of the FTS method to accurately capture the

thermodynamic behavior of the HP lattice protein model, which depends on the strength of the

same-site repulsion, Λ. To this end, we examined in some detail the special case of a lattice gas,

consisting of (one-bead) H particles. In particular, we asked whether, at a given Λ, the FTS method

can provide accurate results at sufficiently large β to permit the study of droplet condensation. For

this, Λ must not be too large. Unfortunately, we find that FTS accurately describes the droplet

condensation transition only for Λ values that are still too small to prevent the droplets from

becoming artificially compact (Fig. 4).

To get an idea of the origin and generality of the FTS sampling problems observed at large Λ

in the lattice gas, we introduced a minimal two-site toy model with either attractive or repulsive

interaction, which can be solved analytically. We find that this model can be simulated using

the complex Langevin method if the interaction is attractive, whereas sampling problems arise

if the interaction is repulsive and strong. We thus observe the same trends as in our lattice gas

simulations. This similarity hints that the FTS sampling problems might be of the same nature for

the lattice gas as in the toy model, where they can be linked to a loss of ergodicity.

Finally, we also presented results from some simulations of HP chains. Here, we wanted to

explore the size and nature of the FTS sampling errors in chain systems with a significant same-

site repulsion. We studied 64-chain systems for two 10-bead HP sequences, and and observed a

clear tendency for FTS sampling errors to cause a bias toward droplet formation. In particular,

using a temperature at which both systems should be free from large clusters, FTS data instead

indicated the presence of a high-density droplet in both cases.

In our systems, we thus find that complex Langevin sampling fails when the repulsion is made

sufficiently strong to prevent condensed droplets from assuming an artificially compact shape. It

should be remembered, however, that we have in this paper limited ourselves to a simple standard

implementation of complex Langevin dynamics. Furthermore, the gap between the two Λ regions

with acceptably strong repulsion and acceptable FTS sampling errors, respectively, is not huge. To

us, it would seem premature to rule out the possibility that this gap can be bridged by fine-tuning

the FTS approach.
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ABSTRACT

Intrinsicially disordered proteins play important roles in processes such as protein aggregation

and biomolecular liquid-liquid phase separation, which are computationally challenging to in-

vestigate and therefore studied using biophysical models at varying levels of detail, depending

on the question at hand. Here, we develop an effective interaction potential for all-atom protein

simulations with implicit solvent, by revising an earlier model by us. The previous model was

designed and parametrized through studies of a structurally diverse set of folded peptides. In

developing the revised model, we use an expanded set of peptides, which also contains experi-

mentally characterized disordered peptides. We demonstrate that the revised model provides an

adequate description of the structure and thermal stability a broad set of folded and disordered

peptides with 9–32 residues.
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1 INTRODUCTION

For a molecular understanding of cellular processes, there is a need for methods to model the

dynamics and interactions of proteins. A long-standing and notoriously difficult problem is to

simulate on the computer how proteins fold to their native states. While this problem remains

a challenge, the methods and hardware have today reached a stage such that fully atomistic

simulations of the folding of small proteins, in explicit solvent, are becoming possible [1]. The

past two decades have also seen a growing interest in the properties of intrinsically disordered

proteins (IDPs), which lack a well-defined 3D fold, in part due to their prominent roles in protein

aggregation and biomolecular liquid-liquid phase separation. Simulations of IDPs are sometimes

carried out using explicit solvent and fully atomistic force fields such as AMBER, CHARMM

or GROMOS [2–4]. However, long IDPs require large simulation boxes, which can make the

calculations challenging. Therefore, it is not uncommon for IDP simulations to rely on coarse-

grained protein models without explicit solvent [5–10], sometimes tailored specifically toward

IDPs.

In this paper, we develop a biophysical model intended for simulations of both folded proteins

and IDPs. For computational speed, the effects of the surrounding solvent are modeled implicitly,

through an effective interaction potential. By contrast, the model retains an all-atom protein rep-

resentation, which in particular facilitates the modeling of the forces driving secondary-structure

formation. The model builds on previous work by us [11–13]. Like previous versions, the model

presented here uses an effective potential, developed by testing results from thermodynamic sim-

ulations against experimental data for a selected set of small polypeptides. In our earlier work,

the polypeptides used for this purpose all had a native 3D fold. Since then, a large amount of

experimental data on IDPs has become available [14]. Here, we revise the interaction potential

in Ref. [13] using data for both structured and unstructured polypeptides.

The revision covers all parts of the interaction potential. The most important change is in the

local potential. For the description of local properties of protein chains, the use a grid correction

map (CMAP) in the Ramachandran φ,ψ space has proven very useful [15, 16]. In previous

versions of our model, the local potential was based on a simple ansatz. In the revised model

presented here, we adopt a CMAP-like procedure for deriving the local potential, based on data

from the Protein Data Bank (PDB).

2
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Our previous model, as implemented in the program package PROFASI [17], has proven

useful for studies of some large-size problems, such as the folding of top7 [18], the local un-

folding of SOD1 in the presence protein crowders [19], and the mechanical stability of PgiC

dimers with >1000 residues [20]. It has also been used to study IDPs such as Aβ [21, 22] and

α-synuclein [23]. The main aim of the present paper is to improve the description of IDPs, by

including disordered peptides in the set of polypeptides used for calibration.

2 BIOPHYSICAL MODEL

We use the same all-atom protein representation as in previous versions of the model [11–13].

We thus constrain bond lengths, bond angles and ω backbone torsion angles to fixed values,

which leaves us with the Ramachandran backbone angles φ,ψ and sidechain torsion angles χ as

the degrees of freedom. Bond lengths and bond angles are as previously described [11–13].

As in the previous models, the effective interaction potential, E, can be split into five ma-

jor terms, E = Eloc +Eev +Ehb +Ehp +Ech. One term (Eloc) represents local interactions be-

tween atoms separated by only a few covalent bonds. The other, non-local terms represent

excluded-volume effects (Eev), H bonding (Ehb), and residue-specific interactions between pairs

of sidechains based on hydrophobicity (Ehp) and charge (Ech). In multi-chain simulations, inter-

molecular interaction terms have the same form and strength as the corresponding intramolecular

ones.

In revising the potential, all the five major terms have undergone change. As indicated above,

the most important change is in the local potential, Eloc, which we now determine by a CMAP-

like procedure, based on PDB data. We also modify the form of both the H bonding (Ehb) and

sidechain-sidechain (Ehp, Ech) potentials, whereas the changes of the excluded-volume potential

(Eev) are modest.

In the following, we describe the five major terms of the potential. All energies are given in

a unit called eu, which is the thermal energy kT at 315 K, corresponding to 0.6260 kcal/mol.

Excluded volume

The repulsive excluded-volume potential is taken to have the form

Eev = κev ∑
i< j

(
σi +σ j

ri j

)12

(1)

3
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FIGURE 1: Ramachandran maps for (A) the alanine residue in the peptide GAG using our model with-

out any local potential, (B) alanine residues in the PDB database classified as coil by

STRIDE [24], and (C) the alanine residue in the peptide GAG using our model including the

local potential. The φ,ψ regions corresponding to α-helix, β-sheet and polyproline II (PPII)

structure are indicated in (B).

where κev = 0.04 eu and the radius parameter σi is set to σi = 1.77, 1.75, 1.53, 1.42 and 1.00 Å

for S, C, N, O and H atoms, respectively. The sum runs over all atom pairs with a non-fixed

separation ri j, except those H-O pairs that are capable of forming H bonds. The latter pairs

can be excluded because the H bonding potential contains a short-range hard-core repulsion (see

below). We also note that previous versions of our model [11–13] used a reduced excluded-

volume repulsion for atom pairs separated by three covalent bonds. This reduction has now been

removed. Each term in Eq. 1 is evaluated using a cutoff of 4.3 Å.

Local potential

While the excluded-volume term alone is able to qualitatively describe several key features of

observed Ramachandran φ,ψ distributions, in some regions this term fails to match PDB data,

either qualitatively or quantitatively (Figs. 1A,B). Some important examples are as follows.

• Angle pairs (φ,ψ) to the left of the α-helix region are not statistically suppressed by steric

interactions (Fig. 1A), while in the PDB very few residues are found in this part (Fig. 1B).

• Steric interactions do not separate the β and polyproline-II (PPII) regions (Fig. 1A).

• With only steric interactions, the β region is less asymmetric around the φ =−ψ line than

seen in the PDB (Figs. 1A,B). This asymmetry is important because it is linked to the



TABLE 1: Reweighting factors used when generating target probabilities, Ptg(φ,ψ,X), for the local poten-

tial. Any point in the specified φ,ψ regime is multiplied by this factor. The functions used are

defined by lnu(φ,ψ) = 1.21+0.49{1+exp[−0.4(0.87(φ+67.5◦)−0.50(ψ−150◦)+12◦)]}−1

and lnv(φ,ψ) = 1.21{1+ exp[−0.06(φ−ψ+45◦)]}−1

φ-range ψ-range Reweighting factor Amino acids

φ < 0◦ 50◦ < ψ u(φ,ψ) all

−150◦ < φ < 0◦ −100◦ < ψ < 50◦ v(φ,ψ) all but proline

e2.91v(φ,ψ) proline

0◦ < φ < 150◦ −50◦ < ψ < 100◦ e2.18 glycine

observed twist of β-sheets.

These observations suggest that local non-steric interactions play an important role. Due to

their importance, rather than using some ad hoc ansatz for such interactions, we here implement

a CMAP-like approach for determining amino acid-specific local interaction energies, based on

PDB data. For this purpose, we collected a set of 7133 protein X-ray structures using the PISCES

web server [25].

Each amino acid i, except the two terminal ones, is taken to contribute a term eloc(φi,ψi;Xi)

to the total local potential Eloc, where φi and ψi are the Ramachandran angles and Xi stands for

amino acid type. In the Ramachandran plane, the function eloc(φ,ψ;X) is piecewise constant on

2◦×2◦ squares. Our procedure for determining eloc(φ,ψ;X) is as follows.

First we generate a target distribution Ptg(φ,ψ;X) for each amino acid type X, based on PDB

data. This problem is solved in two steps. The aim of the first step is to obtain an accurate

description of the shape of the major free-energy minima, like α, β and PPII, for different amino

acids X. To this end, we use the Ramachandran angles of all amino acids in our database that are

classified as coil by STRIDE [24]. Additionally, we include data for amino acids classified as

310- or α-helix, with a weight of 1/50 and 1/300, respectively, relative to amino acids classified

as coil. The addition of 310- and α-helix data improves the description of these otherwise weakly

populated regions. Our second and final step in determining Ptg(φ,ψ;X) is to adjust the relative

weights of the major free-energy minima, by multiplying the original distributions with a few

reweighting factors. These factors are selected by trial and error, and can be found in Table 1.

5
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Given the target distributions Ptg(φ,ψ;X), we determine eloc(φ,ψ;X) using Monte Carlo sim-

ulations of GXG tripeptides, at 275 K. We want the Ramachandran distribution obtained from

such a simulation, Psim(φ,ψ;X ;Eloc), to closely resemble the target distribution, Ptg(φ,ψ;X). To

this end, we determine eloc(φ,ψ,X) by iteratively minimizing the cost function

∑
φ,ψ

[Psim(φ,ψ;X;e)−Ptg(φ,ψ;X)]2 +λ ∑
φ,ψ

∇
2eloc(φ,ψ,X), (2)

where the second term serves to smoothen the final, and otherwise spiky, eloc(φ,ψ,X). In Eq. 2,

∇2 is a discrete Laplace operator, acting on the 2◦×2◦ grid.

The procedure above works well for most amino acids, but for the four amino acids aspartic

acid, asparagine, glycine and proline, some special considerations apply.

Asparagine and aspartic acid require special consideration because their sidechains can easily

H bond with the backbone NH group on the amino acid two steps downstream, forming a so-

called Asx turn. This possibility biases the observed Ramachandran distribution. To remedy this,

we exclude all Asn/Asp residues i with any of their sidechain oxygen atoms within 4 Å of the

backbone nitrogen of amino acid i+2 when generating the target distribution.

Glycine is unique in that its Ramachandran distribution contains heavily populated free-

energy minima with φ > 0◦. These minima are different in form for glycine residues classi-

fied as coil and as turn. For this reason, in the first step of the construction of Ptg(φ,ψ;G), we

weighted in Ramachandran pairs classified as turn, and located in the region 0◦ < φ < 150◦,

−50◦ < ψ < 100◦ with a weight of 1/4. Finally, the distribution was explicitly symmetrized,

P(φ,ψ) = P(−φ,−ψ).

For proline, the φ angle is fixed because of the assumed geometry of our model. We thus

generate a local term for only the ψ angle, following a procedure similar to that for other residues.

The target distribution is generated for the full φ,ψ plane as above, and then maginalized to

retrieve a target distribution for ψ alone. Note that the reweighting factors (Table 1) are modifed

for both proline and glycine.

For the sidechain angles χi, we use the same local potential as in Ref. [13]. The sidechain

contribution to the total local potential Eloc is

Esc
loc = ∑

i
κi cosniχi, (3)

6
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TABLE 2: Groups participating in H bonding in the model. An asterisk indicates sp3 hybridized N atoms.

Donor (NH) groups Acceptor (CO) groups

Backbone Backbone

Arg sidechain Asp sidechain

Trp sidechain Glu sidechain

His sidechain Asn sidechain

Asn sidechain Gln sidechain

Gln sidechain C-terminus

Lys sidechain∗

N-terminus∗

where the parameters κi and ni depend on the type of sidechain angle and have the same values

as in Ref. [13].

H bonding

The H bond potential, Ehb, consists of explicit H bonding terms between NH donor groups and

CO acceptor groups. Both backbone and side-chain NH and CO groups can participate in H

bonding (see Table 2), but mainchain-mainchain H bonding between adjacent peptide units along

the chain are disallowed.

The interaction energy of a pair I of one NH and one CO group is taken to have the form

ehb,I = εhb

[
5
(

σhb

rI

)12

−6
(

σhb

rI

)10
]

ψI (4)

where rI is the HO distance, σhb = 2.0 Å, εhb = 3.4 eu, and ψI represents a directional depen-

dence. For the radial dependence in Eq. 4, a cutoff of 4.5 Å is used. For most donor-acceptor

pairs, the function ψI depends on both the NHO angle, αI , and the HOC angle, βI , and is given

by

ψI =

 (cosαI cosβI)
1/2 if αI,βI > 90◦

0 otherwise
(5)

However, for a mainchain-mainchain H bond connecting the NH group of amino acid i and the

CO group of amino acid i−3, the dependence on αI is omitted, such that ψI =(−cosβI)
1/2 when

7
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βI > 90◦ and ψI = 0 otherwise. In this case, the strength parameter is reduced to εhb = 2.8 eu.

This exception is made to promote the formation of certain β turns that otherwise were only

rarely observed, probably due to our use of fixed bond lengths and bond angles.

The total H bond energy is usually defined as a simple sum of single-bond energies over all

possible combinations of donor and acceptor groups. However, each NH group should be able

to participate in at most one proper H bond, and each CO group in at most two such bonds. To

strictly enforce this condition, rather than relying on indirect steric effects, we define the total H

bond energy as a constrained sum of single-bond energies,

Ehb = ∑
I

′ehb,I (6)

In this constrained summation, indicated by a prime, all positive energies ehb,I and a selected

set of negative energies ehb,I are included. The selection of which negative energies to include

proceeds as follows.

1. All NH,CO pairs I with a negative ehb,I are listed as potential bonds.

2. For each donor and acceptor group, among all potential bonds I involving this group, the

one with lowest energy is determined, and marked as the preferred bond of the group.

3. All potential bonds I which are preferred bonds by both their donor and acceptor groups

are accepted as bonds and removed from the list of potential bonds. Their energies ehb,I

are added to the total energy Ehb.

4. Any remaining non-accepted potential bond I whose donor group already participates in

one accepted bond or whose acceptor group participates in two accepted bonds is removed

from the list of potential bonds. Potential bonds where the acceptor group participates in

one bond are reduced in strengths by a factor γdb = 0.5.

5. Repeat from step 2 until the list of potential bonds is empty.

Hydrophobicity

The Ehp potential provides an effective attraction between hydrophobic sidechains. The atoms

in each sidechain are classified in three categories: strongly hydrophobic, weakly hydrophobic,

and not hydrophobic. Table 3 shows all atoms classified as strongly or weakly hydrophobic.

8
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TABLE 3: Atoms defined as strongly or weakly hydrophobic in the various amino acids.

Amino acid Strongly hydrophobic atoms Weakly hydrophobic atoms

Ala Cβ

Val Cγ1,Cγ2 Cβ

Leu Cγ,Cδ1,Cδ2 Cβ

Ile Cγ1,Cγ2,Cδ Cβ

Met Sδ,Cε Cβ,Cγ

Pro Cβ,Cγ,Cδ

Phe Cδ1,Cδ2,Cε1,Cε2,Cζ Cβ,Cγ

Tyr Cδ1,Cδ2,Cε1,Cε2 Cβ,Cγ,Cζ

Trp Cδ1,Cε3,Cζ2,Cζ3,Cη2 Cβ,Cγ,Cδ2,Cε2

For each pair i, j of strongly or weakly hydrophobic atoms not in the same residue, a contact

measure Ci j is calculated, such that Ci j = 0 (no contact) if the separation is greater than a = 5 Å,

Ci j = 1 (full contact) if the separation is less than b = 3.5 Å, and Ci j = (a2− r2
i j)/(a

2− b2) in

between.

A simple choice of energy function based on these contacts would be one proportional to

the sum of all contacts between pairs of hydrophobic atoms, where at least one atom is strongly

hydrophobic. However, such an energy function might encourage conformations, wherein many

hydrophobic atoms are located in close proximity, thus creating a large number of contacts. To

discourage such conformations, we adjust this simple formulation in two ways.

First, for any pair i, j where both atoms are also in contact with at least one other atom, we

use a modified contact measure, C′i j, defined as

C′i j =Ci j ∏
K
[1−max

k∈K
(CikC jk)/4], (7)

where the product is over amino acids K. This modified contact measure is meant to mimic the

effect of one hydrophobic atom “shielding” another.

Second, we remove the contribution from having multiple contacts with the same amino acid

by calculating the final energy as

Ehp =−εhp ∑
J>I+1

∑
i∈I

max
j∈J

(C′i j), (8)

9
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TABLE 4: Sidechain atoms defined as charged, and their assigned charges (in units of the elementary

charge e).

Amino acid Atoms Charge

Asp Oδ1,Oδ2 −1/2

Glu Oε1,Oε2 −1/2

Lys Nζ +1

Arg Nε1,Nη1,Nη2 +1/3

where the outer sum is over all pairs I,J of amino acids that are not nearest neighbors along the

chain, i runs over strongly hydrophobic atoms in amino acid I, and j runs over all (strongly or

weakly) hydrophobic atoms in amino acid J. The strength parameter is set to εhp = 0.45 eu.

Note that hydrophobic atoms with a given class play the same role irrespective of what amino

acid type they belong to. Therefore, after specifying the hydrophobicity class of all individual

atoms, there is only one free strength parameter in Ehp, namely the overall strength εhp. This

represents a major reduction of the number of parameters compared to Ref. [13].

Electrostatics

The last term of the potential, Ech, represents electrostatic energy between charged amino acids.

Assuming approximately neutral pH, there are two positively charged amino acids, arginine and

lysine, and two negatively charged ones, aspartic and glutamic acid. Furthermore, it is assumed

that the Coulomb interactions are screened by salt. For simplicity, we then model electrostatic

interactions using the same measure of contact, Ci j, as in the hydrophobic potential. Our contact-

based definition of Ech reads

Ech = εch ∑
i6= j

qiq jCi j , (9)

where qi and q j are atomic charges. The partial charges carried by atoms in the charged amino

acids can be found in Table 4. The two chain ends are treated in the same way as the lysine and

aspartic/glutamic acid sidechains, respectively. The strength parameter is set to εch = 0.8 eu.

Simulations details

Our simulations are performed using Monte Carlo-based conformational sampling, along with

simulated [26–28] or parallell [29–31] tempering. A typical peptide simulation ran for 5.5×109
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elementary Monte Carlo updates.

Our move set consists of the following three elementary updates: (i) pivot, where a single

backbone angle is rotated, (ii) BGS [32], where a series of consecutive backbone angles are

updated in such a way that the ends of this chain segment are kept approximately fixed, and (iii)

rotation of a single sidechain angle.

Model development and most of the peptide simulations were performed using a C simulation

program. The final model was independently reimplemented in the PROFASI C++ package [17].

It was checked that the two implementations produced the same results.

Analysis

Our simulations of small folded proteins give conformational ensembles that contain both folded

and unfolded structures. If an experimentally known structure is available, we quantify the

nativeness of the folded subensemble by computing the average root-mean-square deviation

(RMSD) from the experimental structure over the folded subensemble.

For some peptides forming a simple α-helix, we use the helix content, qh, as a measure of

nativeness. A residue is defined as helical if its Ramachandran angle pair is in region the−90◦ <

φ < 30◦, −77◦ < φ < 17◦. A given conformation is deemed helical if >60% of the residues are

helical (excluding the two end residues), and qh is the fraction of simulated conformations that

are helical.

For some peptides forming β-structure, we use a nativeness measure, qhb, based on H bond-

ing. Specifically, we define qhb as the fraction of simulated conformations in which at most two

the native H bonds are missing. An H bond is said to be formed if its energy is <−εhb/3.

In evaluating simulated ensembles for disordered peptides, we compute 3JHNHα scalar cou-

plings using the Karplus equation [33], with coefficients derived by Ref. [34], which we compare

to NMR data.

3 RESULTS

This section provides a summary of simulation results obtained with the biophysical model pre-

sented in Sec. 2, to illustrate the potential and limitations of this model. We consider a set of

about 30 polypeptides with 9–42 residues, some of which have a native fold, while others are

disordered. The amino acid sequences of these polypeptides can be found in Appendix A.
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TABLE 5: Summary of simulation results for seven helical peptides, and comparison to experimental re-

sults.

Peptide Observable Experiment Simulation

trp-cage Structure 1L2Y [35] RMSD 1.8 Å

Melting temperature 315 K [35] 297 K

E6apn1 Structure 1RIJ [36] RMSD 2.0 Å

Melting temperature 305 K [36] 309 K

C Helix content Partially helical (273 K) [37] h = 0.43 (275 K)

EK Helix content Partially helical (273 K) [38] h = 0.96 (275 K)

Fs Melting temperature 303 K (CD) [39] 329 K

308 K (CD) [40]

334 K (IR) [41]

GCN4tp Structure 2OVN [42] RMSD 1.4 Å

Helix content 0.6 (278 K, NMR, CD) [42] h = 0.65 (275 K)

Melting temperature 287 K

HPLC-6 Structure 1WFA [43] RMSD 1.2 Å

Helix content 0.10 (CD; 343 K) [44] 0.13 (336 K)

Melting temperature 327 K

Folded peptides

We begin with a set of 17 peptides which all have a folded 3D structure, although their thermal

stability varies. This set was used when parametrizing the previous version of our interaction

potential [13]. It consists of seven helical peptides and 10 peptides forming β-hairpins or three-

stranded β-sheets. A summary of the results obtained for these peptides with the current version

of the interaction potential can be found in Tables 5 and 6, which show data for helical and

β-sheet peptides, respectively.

As can be seen from these tables, after fine-tuning the new interaction potential, our model

remains able to fold all these 17 peptides, and the thermal stability for the most part shows good

agreement with experimental results. For a few peptides, the deviations from the experimental

results are somewhat large, with the simulated thermal stability being either higher (EK peptide)

or lower (chignolin and trpzip1) than experimental data. However, it should be noted that precise

comparisons of simulated and experimental thermal stabilities are difficult for small polypep-
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TABLE 6: Summary of simulation results for 10 β-sheet peptides, and comparison to experimental results.

Peptide Observable Experiment Simulation

chignolin Structure 1UAO [45] RMSD 0.8 Å

(hairpin) Melting temperature 311-315 K (CD/NMR) [45] 279 K

MBH12 Structure 1J4M [46] RMSD 0.8 Å

(hairpin) Melting temperature 305 K

GB1p Native population 0.42 (CD/NMR; 278 K) [47] qhb = 0.94 (275 K)

(hairpin) 0.30 (CD/NMR; 298 K) [48] qhb = 0.63 (298 K)

Melting temperature 297 K (Trp flourescence) [49] 303 K

GB1m2 Native population 0.74 (CD/NMR; 298 K) [48] ns = 0.85 (298 K)

(hairpin) Melting temperature 320K (CD/NMR) [48] 316 K

GB1m3 Native population 0.86 (CD/NMR; 298 K) [48] qhb = 0.95 (298 K)

(hairpin) Melting temperature 333 K (CD/NMR) [48] 325 K

trpzip1 Structure 1LE0 [50] RMSD 0.9 Å

(hairpin) Melting temperature 323 K (CD) [50] 287 K

trpzip2 Structure 1LE1 [50] RMSD 0.7 Å

(hairpin) Melting temperature 345 K (CD) [50] 325 K

290–335 K (various) [51]

betanova Structure RMSD 2.8 Å

(three-stranded sheet) Native population 0.08 (NMR; 283 K) [52] qhb = 0.09 (286 K)

LLM Structure RMSD 1.8 Å

(three-stranded sheet) Native population 0.36 (NMR; 283 K) [53] qhb = 0.44 (286 K)

beta3s Structure RMSD 1.8 Å

(three-stranded sheet) Native population 0.13–0.31 (NMR; 283 K) [54] qhb = 0.19 (273 K)
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FIGURE 2: 3JHNHα scalar couplings from simulations (at 294 K) and experiments (at 298 K) [55] for two

disordered EGAAXAASS peptides. Experimental data are read off from figure 3 in Ref. [55].

In addition to simulation results obtained using the full potential (“loc”), we also show data

from simulations without the local potential ("no loc”). (Left) EGAALAASS and (Right)

EGAADAASS.

tides like these, as the melting temperature sometimes shows a significant dependence on the

monitored observable. For instance, a study of trpzip2 measured melting temperatures varying

between 290 K and 335 K depending on observable [51]. This uncertainty limits the possibilities

to further fine-tune the model based on thermal stability data.

Disordered EGAAXAASS peptides

To assess the ability of our model to describe IDPs, we first consider a set of 14 disordered nine-

residue peptides with sequences of the form EGAAXAASS, for different choices of the residue

“X”. This set of peptides has been studied by NMR [55]. Figure 2 compares simulation and

experimental data for 3JHNHα scalar couplings of two such peptides, with respectively L and D

at the variable position. Similar plots for the remaining 12 peptides can be found in Appendix

B. All the 14 peptides are indeed disordered in the simulations, and the simulated 3JHNHα scalar

couplings show an adequate, albeit not perfect, agreement with experimental data. In Fig. 2,

we also include data from otherwise identical simulations with the local potential switched off,

which underscore the importance of this potential. The agreement with experimental data deteri-

orates considerably when leaving this term out. Figure 3 shows a scatter plot of simulated versus

experimental 3JHNHα values, for all the 3JHNHα scalar couplings that were determined experi-

mentally [55]. From this figure, it can be seen that while there is a slight tendency for simulation
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FIGURE 3: Simulation results (at 294 K) versus experimental data (at 298 K) for all the 3JHNHα scalar

couplings measured experimentally [55] in 14 EGAAXAASS peptides. The experimental

data are read off from figure 3 in Ref. [55].

data to fall below experimental data, a clear correlation exists between the two data sets.

The experimental data on these EGAAXAASS peptides [55] have previously been used to

evaluate a few force fields for molecular dynamics simulations with explicit solvent [56]. These

authors computed the RMSD of simulated 3JHNHα scalar couplings from their experimental val-

ues for five of the EGAAXAASS peptides, with I, V, D, G and W at the variable position. The

best results were obtained with the AMBER03-ILDN force field [57, 58], which gave an average

RMSD of 0.45 Hz over the five peptides. Table 7 shows RMSD values from simulations with our

model for all the 14 EGAAXAASS peptides studied in Ref. [55]. The average RMSD over the

above-mentioned set of five peptides is 0.54 Hz, which is slightly worse than for the best force

TABLE 7: RMSDs of simulated 3JHNHα scalar couplings from their experimental values [55] for 14

EGAAXAASS peptides.

Residue X I V L N Q T D E K G P W Y H Avg.

RMSD (Hz) 0.57 0.58 0.21 0.25 0.39 0.23 0.52 0.80 0.34 0.47 0.73 0.54 0.51 0.47 0.50
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FIGURE 4: Comparison of simulation and experimental results for the RS peptide. (Left) 3JHNHα scalar

couplings from our simulations (at 298 K) and the experiments (at 298 K) of Ref. [59]. (Right)

Probability distribution of the radius of gyration, Rg, from our simuations (at 298 K). The solid

line indicates the experimentally determined mean of Rg (at 298 K) [60], while the dashed line

represents the mean from our simulation.

field in Ref. [56]. The average RMSD over all the 14 peptides is 0.50 Hz. Overall, we conclude

that our model, despite its lower level of detail, is able to achieve results that are close to those

obtained with the best of the explicit-solvent force fields tested in Ref. [56].

The disordered RS peptide

Another disordered peptide that has served as benchmark in evaluating the performance of other

force fields is the 24-residue RS peptide [59, 60]. Figure 4 (left panel) shows our simulated
3JHNHα couplings for this peptide, along with experimentally measured values [59]. The average

unsigned error of our simulation results is 0.43 Hz, which is about 30% higher than what was

obtained with the CHARMM22 [61] force field in Ref. [60], but lower than the errors found

with all the other force fields tested in Ref. [60]. It worth noting that the overall shape of the

experimental 3JHNHα profile is accurately reproduced by our model. A large part of the deviations

from the experimental values corresponds to a simple constant shift by about 0.4 Hz.

For the RS peptide, the chain extension has also been investigated experimentally, by small-

angle X-ray scattering (SAXS) [60]. Through the SAXS data, the mean radius of gyration, Rg,

was measured [60], and simulation results obtained with different force fields were compared to

this measured value [60]. The best result was again obtained with the CHARMM22 [61] force

field, which gave an Rg value consistent with the measured value. Figure 4 (right panel) shows the

16

106



5 10 15 20 25 30 35 40
Residue number

5
6
7
8
9

10
11

3 J
HN

H
 (H

z)

exp
sim

FIGURE 5: 3JHNHα scalar couplings for Aβ42 from our simulations (at 273 K) and the experiments (at

273 K) of Ref. [62].

probability distribution of Rg in our model. As can be seen, the distribution is weakly bimodal,

and the mean value falls slightly above the experimentally determined value. Interestingly, a

nearly bimodal distribution of Rg was also seen for the best performing force field in Ref. [60].

Summarizing the results for the EGAAXAASS and RS peptides, we find that, despite the

absence of explicit solvent, our model gives results comparable with the best performing force

fields in previous tests using these peptides [56, 60]. It is also worth noting that the only force

fields that beat us in each case (AMBER03 for EGAAXAASS and CHARMM22 for RS) per-

formed relatively poorly on the other benchmark.

Aβ42

All systems discussed so far were part of the iterative process by which the new potential was

derived. Finally, we briefly discuss some preliminary results obtained with this potential for an

additional peptide, the disordered Aβ42 peptide with 42 residues, which has been studied with

our previous model [21].

Figure 5 shows 3JHNHα scalar couplings from our Aβ42 simulations, along with experimental

data from Ref. [62]. The agreement is not perfect, with a Pearson correlation coefficient of 0.61

and an RMSD of 0.90 Hz, computed over all the 38 experimentally determined couplings. For

instance, the data suggest that the model overestimates the probability of β-hairpin formation in

the C-terminal part. Nevertheless, some trends seen in the experimental data are captured by the

simulations. Note also the largest discrepancy is for the C-terminal residue 42, for which we
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have not included any local potential in the current simulations.

4 DISCUSSION AND SUMMARY

We have in this paper formulated and parameterized an effective interaction potential for all-atom

protein simulations with implicit solvent, starting from an earlier potential developed by us [13].

While the development of this predecessor was based on comparisons to experimental data on

folded peptides only [13], we have here used experimental data on both folded and disordered

peptides, the main aim being to improve the description of IDPs.

Our revision of the potential entails many changes, several of which are physically motivated,

and some of which are made just to simplify the potential, when possible. The most important

change is the adoption of a CMAP-like approach for determining an amino acid-specific local

potential, based on PDB data. Through the use of PDB data, it is possible to derive a local

potential that is able to accurately reproduce the amino acid-dependent shape of the populated

regions in the Ramachandran φ,ψ space, which is hard to achieve using some ad hoc ansatz.

However, the PDB-based analysis alone cannot be expected to provide accurate relative weights

of the populated Ramachandran regions, like the α/β ratio. Therefore, in a final second step, the

relative weigths of these regions were manually adjusted (Table 1), based on simulation data.

The simulation results presented here demonstrate that the new potential retains the ability

of the old one [13] to adequately describe a structurally diverse set of 17 folded peptides. In

addition, simulations with the new potential yield results in approximate agreement with exper-

imental data on the disordered EGAAXAASS and RS peptides. With regard to these disordered

peptides, the new potential represents a significant improvement over the old one. How useful the

model is for larger polypeptides remains to be seen. The study of larger polypeptides is beyond

the scope of the present paper.

The interaction potential presented in this paper has been implemented in the open source

program package PROFASI [17].
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APPENDIX A: AMINO ACID SEQUENCES

TABLE A1: Amino acid sequences of the polypeptides studied. Capping groups are indicated when used.

Ac and Suc stand for acetyl and succinylic acid, respectively.

Polypeptide PDB ID Sequence

trp-cage 1L2Y NLYIQ WLKDG GPSSG RPPPS

E6apn1 1RIJ Ac–ALQEL LGQWL KDGGP SSGRP PPS–NH2

C Ac–KETAA AKFER AHA–NH2

EK Ac–YAEAA KAAEA AKAF–NH2

Fs Suc–AAAAA AAARA AAARA AAARA A–NH2

GCN4tp 2OVN NYHLE NEVAR LKKLV GE

HPLC-6 1WFA DTASD AAAAA ALTAA NAKAA AELTA ANAAA AAAAT AR–NH2

chignolin 1UAO GYDPE TGTWG

MBH12 1J4M RGKWT YNGIT YEGR

GB1p GEWTY DDATK TFTVT E

GB1m2 GEWTY NPATG KFTVT E

GB1m3 KKWTY NPATG KFTVQ E

trpzip1 1LE0 SWTWE GNKWT WK–NH2

trpzip2 1LE1 SWTWE NGKWT WK–NH2

betanova RGWSV QNGKY TNNGK TTEGR

LLM RGWSL QNGKY TLNGK TMEGR

beta3s TWIQN GSTKW YQNGS TKIYT

RS GAMGP SYGRS RSRSR SRSRS RSRS

Aβ DAEFR HDSGY EVHHQ KLVFF AEDVG SNKGA IIGLM VGGVV IA
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APPENDIX B: 3JHNHα SCALAR COUPLINGS FOR EGAAXAASS PEPTIDES
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FIGURE A1: 3JHNHα scalar couplings from simulations (at 294 K) and experiments (at 298 K) [55] for

EGAAXAASS peptides with I, V, N, Q, T and E at the variable position. Experimental data

are read off from figure 3 in Ref. [55].
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FIGURE A2: 3JHNHα scalar couplings from simulations (at 294 K) and experiments (at 298 K) [55] for

EGAAXAASS peptides with K, G, P, W, Y and H at the variable position. Experimental

data are read off from figure 3 in Ref. [55].
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