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Abstract 

Background  

Colorectal cancer is a leading cause of cancer related death worldwide. 20-30 % of 
patients will develop colorectal liver metastases (CRLMs). Surgical resection is the 
mainstay of treatment for CRLMs, and is often combined with perioperative 
chemotherapy, which can prolong progression-free survival after resection. 
Moreover, observation of CRLMs response to preoperative chemotherapy can help 
to identify patients with progressive disease, which allows for treatment adjustment.  

However, preoperative chemotherapy can induce liver parenchymal injury, which 
can negatively affect surgical outcome and be difficult to detect in the preoperative 
setting. In addition, a worse surgical outcome has also been reported in patients with 
low preoperative muscle mass. Little is known about whether preoperative 
chemotherapy worsens skeletal muscle depletion. 

Aims 

To investigate effects of preoperative chemotherapy on the liver and preoperative 
muscle mass in patients undergoing liver resection for CRLMs, and to investigate 
whether diffusion-weighted magnetic resonance imaging (MRI) can be used to 
assess response in CRLMs to preoperative chemotherapy.  

Patients and methods 

In study I, liver volume measurements were conducted on pre- and postoperative 
computed tomography (CT) or MRI images in 74 patients who underwent major 
liver resections for CRLMs. In study II, intraoperative measurement of liver 
microcirculation was performed using sidestream dark-field imaging in 40 patients 
before and after liver resection. In study III, liver and spleen elastography was 
performed in 35 patients before and after liver resection. In study IV, measurement 
of skeletal muscle mass was carried out on pre- and posttreatment CT images in 97 
patients undergoing neoadjuvant chemotherapy for CRLMs. In study V, 
measurements of the apparent diffusion coefficient (ADC) on pre- and 
postchemotherapy diffusion-weighted MRI in 49 CRLMs in 27 patients were 
conducted and compared to the metastases’ pathological chemotherapy response.  

Results and conclusions 

Preoperative chemotherapy for CRLMs negatively affects the liver volume 
regeneration after a liver resection. The sooner the resection is carried out after the 
cessation of chemotherapy, the greater the impact on regeneration. Patients with a 
transient postoperative liver insufficiency have a lower liver volume regeneration 
than others.  
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A major liver resection leads to an increase in sinusoidal blood velocity and increase 
in liver and spleen stiffness. Hepatic microcirculation is altered in patients with liver 
parenchymal injury.  

Patients lose muscle mass during neoadjuvant chemotherapy, and muscle loss 
impairs the conditions for adjuvant chemotherapy.  

After preoperative chemotherapy, an increase in ADC occurs in both pathological 
responding and non-responding CRLMs, and in study V, there was no difference in 
the relative change of ADC between the pathological responding and non-
responding CRLMs.  
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Populärvetenskaplig sammanfattning 

Tjock- och ändtarmscancer är den tredje vanligaste och en av de dödligaste 
cancerformerna världen över. Spridning av dottertumörer, metastaser, till andra 
organ är en viktig orsak till att patienter avlider. Ca 25 % av patienter med tjock- 
och ändtarmscancer utvecklar metastaser i levern. Idag används flera olika metoder 
för att behandla levermetastaser från tjock- och ändtarmscancer. Att kirurgisk 
avlägsna levermetastaserna är den behandling med bäst chans till bot. Vid en sådan 
operation avlägsnas de delar av levern som innehåller metastaser. Efter operationen 
återväxer levern och får tillbaka stora delar av sin ursprungliga storlek och sin för 
patienten livsnödvändiga funktion. För att levern ska kunna återväxa får storleken 
av levern efter operationen inte vara för liten, eftersom det då finns en risk för 
livshotande leversvikt. Forskning om kirurgi av levermetastaser har gjort att 
operation av levermetastaser har blivit säkrare och kunnat erbjudas till fler. Trots 
detta kan endast ca 20 % av patienter med levermetastaser från tjock- och 
ändtarmscancer erbjudas operation.  

I tillägg till operation får patienterna ofta cellgifter både innan och efter kirurgin, då 
detta kan minska risken för att nya metastaser uppstår. Beroende på tumörernas 
känslighet för cellgifter kan cellgiftsbehandling innan operation göra att mängden 
levande tumörceller minskar och tumörerna krymper. Hur effektiv 
cellgiftsbehandlingen är på metastaserna är viktigt för patienternas prognos. Men 
cellgifter kan också leda till att levern tar skada, vilket kan göra en leveroperation 
mer riskfylld och ha betydelse för leverns återväxt efter operation. De skador som 
kan uppkomma i levern till följd av cellgifter är leverförfettning, inflammation och 
skador på leverns minsta blodkärl, sinusoiderna. Dessa skador kan vara svåra att 
upptäcka innan operationen.  

I denna avhandlings fem delarbeten studeras olika effekter av cellgifter givna innan 
leveroperation av patienter med levermetastaser.  I delarbete 1 studeras hur cellgifter 
påverkar leverns återväxt efter operation av levermetastaser. Resultaten visar att 
återväxten påverkas negativt av cellgiftsbehandling given innan operation och att ju 
kortare tidsintervallet är mellan det att cellgiftsbehandlingen avslutas och tiden för 
leveroperationen desto större är den negativa effekten.  

I delarbete 2 studeras vilka förändringar i sinusoiderna som sker under en 
leveroperation genom mätningar på leverytan med ett mikroskop. Mätningarna 
visade att blodflödeshastigheten i sinusoiderna ökade i den kvarvarande delen av 
levern efter att delen med metastaser opererats bort. Patienter som hade leverskador 
hade också högre blodflödeshastighet och bredare sinusoider än de utan leverskador. 
Resultaten kan användas för att utveckla metoder för att hitta leverskador under 
leveroperationer.  

I delarbete 3 används en ultraljudsbaserad metod för att studera styvheten i levern 
och mjälten före och efter operation. Styvheten i både lever och mjälte ökade efter 
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en operation där en stor del av levern opererats bort, men var nästan oförändrad efter 
en liten leveroperation. Inga skillnader hittades mellan patienter som fått cellgifter 
innan operationen jämfört med de som inte fått cellgifter. Styvheten i levern efter 
operation jämfördes också med några leverfunktionstester som uppmättes genom 
blodprov och leverns styvhet visades ha ett visst samband med dessa blodprov, men 
hur leverns styvhet efter operation hänger samman med alla leverns funktioner 
behöver studeras mer ingående.  

I delarbete 4 undersöktes vad som händer med muskelmassan hos patienter som 
genomgår cellgiftsbehandling. Patienter som har låg muskelmassa är mer sköra och 
kan ha en ökad risk för komplikationer och sämre prognos efter en leveroperation. 
Resultaten i delarbetet visade att patienter tappar en del av sin muskelmassa under 
cellgiftsbehandlingen. Dessutom fick patienter som hade en låg muskelmassa inför 
operationen i mindre utsträckning cellgiftsbehandling efter operationen vilket kan 
leda till en sämre prognos på lång sikt. Resultaten talar för att det kan behövas fler 
insatser för att förhindra att patienter tappar muskelmassa under sin behandling.  

Att kunna bedöma cellgifternas effekt på levermetastaserna redan innan de opereras 
bort kan göra det möjligt att välja rätt behandling för patienten. Men de metoder 
som används idag är inte alltid tillförlitliga. I delarbete 5 användes bilder från 
magnetkameraundersökningar för att undersöka om man med dessa bilder kan 
bedöma cellgifternas effekt på metastaserna. Med bilderna uppskattades tumörernas 
celltäthet, som ofta är hög i tumörer. Resultaten från bildmätningarna jämfördes 
med undersökningar av metastaserna gjorda med mikroskop. Det visade sig att 
mätningarna med magnetkamerabilderna inte kunde skilja på de metastaser som i 
mikroskop visade ha god effekt av cellgifterna och de som inte hade någon stor 
effekt.  

Avhandlingens olika delarbeten belyser olika effekter av cellgiftsbehandling inför 
operation av levermetastaser. Cellgiftsbehandling har stora fördelar för patienten, 
men avhandlingen visar att den också kan ha negativa effekter i samband med 
leveroperation. Effekterna kan monitorernas med olika metoder, varav några 
används i avhandlingen. Resultaten i avhandlingen kan användas för att bättre förstå 
hur dessa metoder kan användas för att optimera behandlingen för patienten.   
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Abbreviations 

ADC apparent diffusion coefficient 

ASA American Society of Anesthesiologists 

BMI body mass index 

BSA body surface area 

CEA carcinoembryonic antigen 

CEUS contrast-enhanced ultrasound 

CRLMs colorectal liver metastases 

CT computed tomography 

FLR future liver remnant 

FLV functional liver volume 

INR international normalized ratio 

IQR interquartile range 

MRI magnetic resonance imaging 

NAS non-alcoholic fatty liver disease activity score 

PET positron emission tomography 

PHLF post-hepatectomy liver failure 

PVE portal vein embolization 

RBCV red blood cell velocity 

RECIST response evaluation criteria in solid tumors 

ROI region of interest 

SDF sidestream dark-field 

SMI skeletal muscle index  

SOS sinusoidal obstruction syndrome 

TRG tumor regression grade 
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Introduction 

The liver 

Embryologic development and liver anatomy 

The liver originates from endodermal cells of the foregut in the upper part of the 
abdominal cavity 1. During the fourth week of embryological development, the 
endodermal cells start to proliferate and grow ventrally to form the hepatic 
diverticulum, which gives rise to the intrahepatic bile ducts and the hepatocytes, the 
main functional cells of the liver. Subsequently, the gallbladder and the cystic duct 
develop from the cystic diverticulum, which originates caudally to the hepatic 
diverticulum, on the ventral side of the duodenal part of the foregut. The hepatic and 
cystic diverticula elongate ventrally and superiorly, and the connection between 
them and the duodenum forms the common bile duct. The common bile duct 
connects to the duodenum near the developing ventral and dorsal pancreatic buds.  

As the liver develops ventrally, it grows into the ventral mesentery, which is formed 
by the caudal part of the septum transversum, the embryological structure that 
separates the thoracic and abdominal cavities. The septum transversum gives rise to 
liver fibroblasts, Kupffer cells and Glisson’s capsule, which covers almost the entire 
surface except a small area dorsally called the bare area. In addition, the ventral 
mesentery and septum transversum also give rise to the future ligamentous 
attachments of the liver: the right and left triangular ligaments and the coronary 
ligament superiorly, the falciform ligament ventrally and the hepatogastric ligament 
and the hepatoduodenal ligament inferiorly 2. The hepatoduodenal ligament contains 
the portal vein, the common bile duct, and the proper hepatic artery. The ligamentum 
teres is situated at the inferior border of the falciform ligament and is formed by the 
obliterated fetal umbilical vein. 

Around the seventh week of development the organs formed by the foregut starts a 
90-degree rotation. The liver is rotated to the right and stops in its final position in 
the right hypochondrium.   

Liver blood supply  

The liver has a dual blood supply, with approximately 75-80 % of the blood supply 
coming from the portal vein and 20-25 % from the hepatic artery 3. The arterial 
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supply develops between the aorta and the foregut in the dorsal mesentery, in which 
the celiac trunk and superior mesenteric artery form 2. The common hepatic artery 
commonly originates from the celiac trunk. After the gastroduodenal artery departs, 
the common hepatic artery continues as the proper hepatic artery trough the 
hepatoduodenal ligament to the porta hepatis where it divides into a right and left 
branch. However, anatomical variations are common and includes both the presence 
of accessory arteries and the replacement of the origin of the common hepatic artery 
or its branches, sometimes involving the superior mesenteric artery.   

The portal venous system is embryologically developed from the right and left 
vitelline veins, located alongside the foregut. The portal system drains the 
splanchnic blood from the gastrointestinal canal and the spleen. The vitelline veins 
also give rise to the liver sinusoids, the capillary vessels of the liver, by forming a 
vascular plexus within the hepatic diverticulum. The liver drains venous blood into 
to the inferior vena cava through three main veins: the right, the middle and the left 
hepatic vein. In addition, accessory veins between different parts of the liver and the 
inferior vena cava are relatively common.  

The liver lobule 

Histologically, the liver parenchyma is arranged in small liver lobules which 
consists of a network of sinusoids that is surrounded by rows of hepatocytes (Fig. 
1) 2. The sinusoids run from small branches of the portal vein and hepatic arteries, 
which are situated in the portal triad, to a central vein. Besides the portal vein and 
the hepatic arteries, the portal triads hold bile ducts and lymphatic vessels. The 
sinusoidal endothelial cells have large fenestrations and gaps between them that 
allows the contents of the blood plasma to flow into the perisinusoidal space and get 
in close contact with the hepatocytes. In addition, both liver macrophages, i.e., 
Kupffer cells, and hepatic stellate cells reside within the sinusoids and the 
surrounding parenchyma. 

Liver segmentation 

Historically the liver has been divided into lobes depending on surface lobulation, 
such as a division of the right and left lobe at the attachment of the falciform 
ligament 4. In 1897, Cantlie discovered that the vascular division between the right 
and left liver lies in a plane extending from the gallbladder fossa to the fossa for the 
inferior vena cava, i.e., the Cantlie line 5. 

In the mid-20th century Hjortsjö showed the segmentation pattern of the intrahepatic 
bile ducts and suggested a segmental division of the liver 6. A few years later 
Couinaud suggested a system that divided the liver into 8 segments, organized in 4 
sectors in the right and left hemi-livers 7. Each segment has separate branches of 
arterial and portal blood inflow, venous outflow, and biliary and lymphatic drainage. 
This division stand as a basis for the current terminology 4. 
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Liver function 

The liver has several vital functions, which when impaired causes severe symptoms 
that could be lethal. Currently there is no method to artificially replace all functions 
of the liver, thus considerations about residual liver function must be made when 
planning a partial liver resection 9.  

The liver functions as a storage of many substances important for energy 
homeostasis, e.g. glucose and fatty acids 10. Also, vitamins A, B12 and D are stored 
or transformed in the liver.  

In addition, the liver synthesizes important plasma proteins such as albumin and 
vitamin K-dependent coagulation factors, of which plasma levels can be evaluated 
through routine blood tests. Plasma albumin can be directly measured in blood, and 
coagulation factors are commonly evaluated by tests of blood coagulation time such 
as international normalized ratio (INR). Low plasma albumin levels and elevated 
INR can indicate impaired liver function.  

Liver functions also include detoxification reactions and secretion of both 
endogenous and exogenous substances from the blood.  Substances are metabolized 
by the cytochrome P450-system or other enzymes and then conjugated for later 
secretion in bile or urine. Bilirubin, a residue from the breakdown of heme in 
erythrocytes, is conjugated in the hepatocytes and secreted into bile. Both 
conjugated and unconjugated bilirubin can be measured in routine blood tests for 
evaluating both the conjugation process and the secretion of bilirubin into bile by 
the liver. Elevation of plasma bilirubin leads to the clinical syndrome of jaundice.  

Figure 1. Schematic illustration showing the structure of a portion of a liver lobule. 
Reprinted from Si-Tayeb et al 8, with permission from Elsevier. 
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Besides conjugated substances bile also contains bile salts, phospholipids, and 
cholesterol secreted by the liver. These elements facilitate the absorption of fat and 
fat-soluble vitamins in the bowel.  

Moreover, the liver also has immunological functions such as production of acute 
phase reactants. Liver Kuppfer cells have phagocytic functions for clearance of 
bacteria coming from the bowel via the portal system. 

Colorectal cancer 

Colorectal cancer is the third most common cancer and a leading cause of cancer 
related death worldwide 11. In Sweden, the incidence of colon cancer has increased 
during the last decades, while rectal cancer incidence is relatively stable 12. 
Concurrently, advances in diagnosis and treatment have resulted in increased 
survival rates. During the period 2014-2018, the age-standardized incidence of 
colorectal cancer in Sweden was 64.7 / 100 000 for men and 49.8 /100 000 for 
women (standardization to the Nordic standard population) 13. Consequently, 
approximately 6500 new cases are diagnosed every year, of which one third of 
tumors are located in the rectum. In the same period, the 5-year relative survival was 
67.6 % for men and 69.5 % for women 13. The median age at diagnosis is 
approximately 72 years 14.  

The development of colorectal cancer is multifactorial. The majority of colorectal 
cancer cases are sporadic, but a family history of colorectal cancer is a strong risk 
factor 15. Some hereditary syndromes are known, including Lynch syndrome, 
familial adenomatous polyposis (FAP) and MUTYH-associated polyposis, which 
together only accounts for a few percent of colorectal cancer cases 16-18.  

Most colorectal tumors evolve from adenomas, which arise from alterations 
affecting mechanisms involved in the regulation of DNA repair and cell 
proliferation in the normal renewal of the intestinal epithelium 19. Important 
initiating events in the development of adenomas are mutations in the adenomatous 
polyposis coli gene (APC) or the BRAF oncogene 20,21. Most adenomas remain 
stable, but some will progress in size and develop high-grade dysplasia and cancer, 
which in most cases occurs during a decade or more 22. The prevalence of adenomas 
increases with age and are more common among men than women 23.  

Progression from adenoma to cancer is mediated through a large mixture of genetic 
and epigenetic changes that accumulates over time 19. Genetic alterations in 
colorectal tumors are heterogenous and several pathways of tumorigenesis exist, 
overlapping with each other. The chromosome instability pathway (CIN) is 
suggested the most common, observed in 65-70 % of sporadic colorectal tumors.  In 
the CIN pathway, chromosome alterations are associated with mutations in APC, 
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TP53, KRAS and PIK3CA genes 19. Another important pathway is the microsatellite 
instability (MSI) pathway in which mutations in DNA mismatch repair genes causes 
cells not to detect and repair mismatched DNA. MSI is present in approximately 15 
% of sporadic tumors and is a main feature of tumors in patients with Lynch 
syndrome 24. 

Serrated adenomas are named after their histological appearance and are associated 
with the serrated pathway. The serrated pathway involves the CpG island methylator 
phenotype (CIMP) and mutation of BRAF, with or without MSI 25.  

With growing knowledge of tumor biology and genetics new carcinogenic pathways 
in colorectal tumors have been explored in recent years, confirming the complexity 
of colorectal cancer development 26,27. 

Colorectal cancer is more common in western industrialized countries than others 
and several lifestyle and dietary risk factors have been proposed 11. Some evidence 
exists showing that a sedentary lifestyle, obesity, and diabetes are individual risk 
factors for colorectal cancer 28-30. In addition, a high alcohol consumption and 
cigarette smoking both increases the risk of developing colorectal cancer 31. The 
mechanisms of how dietary components affect colorectal cancer development is not 
fully understood. A strong association between intake of processed food and red 
meat and increasing risk of colorectal cancer have been found 32. On the contrary, 
an intake of whole grains and dairy products is suggested to decrease the risk 31.  

The influence of the gut bacteria on colorectal cancer development has been 
investigated with special interest in Fusobacterium species that are commonly found 
in patients with colorectal cancer 33. Theories of potential carcinogenic mechanisms 
includes promotion of inflammation and activation of oncogenic genes 34,35. 

Colorectal metastasis, stage IV disease 

Metastases, i.e., stage IV disease, are an important cause of mortality in colorectal 
cancer patients 14,36-38. Metastatic spread occurs intraperitoneally, lymphogenous 
(regional or distant) or hematogenous. Specific genetic mutations in cancer cell 
evolution allows cells to acquire capacities to metastasize 39. The process of 
metastasis includes invasion of the basal membrane, intravasation, extravasation 
and colonization in the new dormant tissue 40. In addition, the cancer cell must be 
able to survive in the circulation as well as in the new tissue and avoid being attacked 
by the immune system. BRAF and KRAS mutations are associated with invasion and 
migration properties in cancer cells, and colorectal cancer patients with these 
mutations have a worse overall survival 41-43.  

However, metastatic disease is diverse, ranging from a single metastasis to 
multiorgan polymetastatic disease with high tumor burden, which have different 
treatment options and long-term prognosis. If a cancer cell does not acquire all but 



20 

only a few features promoting metastasis it can have limited metastatic capabilities, 
and the patient may present with a small number of metastases and a more favorable 
prognosis 39,44. In accordance, the number of liver metastases is prognostic of the 
risk of recurrence and long-term survival after liver resection 45-47.  

Distant metastasis occurs in 30-38 % of patients with colorectal cancer 14,48. The 
liver is the most common site for metastasis, approximately 65 % of patients with 
metastatic colorectal cancer have liver metastases 48. Other common sites for 
metastasis are the lungs, the peritoneum, the nervous system, and bone 14. Rectal 
cancer more commonly has lung metastases and colon cancer more often have 
peritoneal metastases as compared to the other 37,38. Distant metastasis is associated 
with the primary tumor being node-positive and having a high T-stage 38,48. 

When possible, surgical resection of metastases prolongs patient survival. A large 
registry study from the Netherlands on colorectal cancer patients reported that 
patients who underwent surgical resection of their metastases had a median survival 
of 46.2 months compared to 15.3 months in patients who received palliative 
systemic chemotherapy 37. When adding targeted therapy in the palliative setting, a 
median survival of 20 months has been reported 49,50. 

Colorectal liver metastases  

Of all patients with colorectal cancer, 15-17 % will have liver metastases at time of 
diagnosis of the primary tumor, i.e., synchronous liver metastasis 38,51,52. In addition, 
5-13 % will develop liver metastases later in the course of the disease, i.e., 
metachronous liver metastases 38,51,52. Almost all liver metastases are diagnosed 
within 3 years after the diagnosis of the primary tumor 38.  

Patients with synchronous colorectal liver metastases (CRLMs) have a higher risk 
of early recurrence and a worse survival after resection of liver metastases 46,53. Also, 
patients with synchronous CRLMs often have a higher number of metastases and 
more involved segments 38. In addition, 26-32 % of patients with synchronous 
CRLMs have concurrent lung metastases 14,54.  

Patients resected for liver metastases from a right-sided primary have a worse 5-
year survival as compared to from a left-sided primary 38. Right-sided colon cancers 
do more often have mutations in KRAS and BRAF and are more often poorly 
differentiated 55,56.  
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Imaging of CRLMs 

Several imaging modalities are useful for the detection of CRLMs including 
computed tomography (CT), magnetic resonance imaging (MRI), ultrasound and 
positron emission tomography with CT (PET/CT). In the perioperative setting, 
imaging also assists in surgical planning, mapping of the vascular anatomy, 
assessing chemotherapy response, and in intraoperative guidance of both surgical 
and local ablative interventions 57.    

Contrast-enhanced CT is commonly used for the initial staging of colorectal cancer, 
because it can provide fast acquisitions of images of the thorax, abdomen, and pelvis 
in one imaging session 58. CRLMs are hypoattenuating compared to the normal liver 
parenchyma on pre-contrast CT images, and hypoenhancing on contrast-enhanced 
images in the portal-venous phase. Contrast-enhanced CT has a reported sensitivity 
of 52-85 % and specificity of 77-98 % for detection of CRLMs 59. Sensitivity drops 
for small (<1 cm) metastases and in livers with steatosis, which leads to a decrease 
in attenuation difference between the liver parenchyma and the CRLMs. This can 
pose a problem after chemotherapy, which may both decrease the size of metastases 
and induce steatosis 60,61. 

Liver MRI with gadolinium-based contrast and diffusion weighted (DWI) imaging 
has better sensitivity and specificity than contrast-enhanced CT 62. Typically, 
CRLMs are hypointense on T1-weighted images and mildly hyperintense on T2-
weighted images. Fat and tumor tissue have different signal patterns, making 
steatosis less of a problem when using MRI compared to CT. Gadolinium-based 
contrast agents used in liver imaging can be either extracellular or hepatobiliary-
specific. Hepatobiliary-specific contrast agents undergo a selective up-take in 
functional hepatocytes. Contrast enhanced MRI using a hepatobiliary-specific 
contrast agent has a sensitivity of approximately 90 % for CRLMs detection and can 
better differentiate small (<1 cm) lesions as benign or malignant as compared to CT 
62,63. 

In addition to contrast-enhanced MRI, diffusion-weighted MRI can be useful for 
detection of CRLMs. The signal intensity on diffusion-weighted imaging reflects 
the motion of tissue water molecules and can be quantified with the apparent 
diffusion coefficient (ADC) 64,65. A low ADC denotes a reduced tissue water 
diffusion. ADC has been shown to be related to tissue cellularity and the integrity 
of cell membranes 66. CRLMs commonly have reduced diffusion (Fig. 2), making 
diffusion useful in the detection of CRLM with a sensitivity of 82-87 % 62,67. Using 
a combination of hepatobiliary contrast-enhanced MRI and diffusion-weighted 
imaging, the sensitivity for detection of CRLMs increases to approximately 95 %, 
even for small lesions 62,68. On the negative side, even if providing excellent 
sensitivity for detection of CRLMs, MRI has limited usage for detection of 
extrahepatic metastases and is more time consuming than CT 60.  
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PET/CT uses a positron-emitting radionuclide connected to a biological tracer to 
image biological processes in the body and provides both functional and anatomical 
information. For the detection of colorectal metastases, the glucose analogue 
fluorine-18-flourodeoxyglucose is mainly used. PET/CT has a sensitivity of 
approximately 75 % for the detection of CRLMs 69. However, the main strength of 
PET/CT is in the detection of extra-hepatic metastases 70. 

On contrast-enhanced ultrasound (CEUS), CRLMs are characterized by a focal 
hypoechoic defect in the echoic liver parenchyma on portal venous and delayed 
phases 71. CEUS has a sensitivity of 80-84% for detecting liver metastases and can 
be especially useful in the characterization of small lesions detected with other 
imaging modalities 72,73. However, imaging acquisition is dependent on operator 
skill and visibility can be decreased depending on patient body composition, which 
can decrease sensitivity 74. 

Intraoperative CEUS can, in addition to visual inspection and palpation, detect 
additional metastases that were not detected on preoperative imaging 75,76. Also, 
intraoperative CEUS can help to determine the most appropriate surgical strategy to 
achieve complete tumor resection 77. 

Figure 2. Diffusion-weighted magnetic resonance image of the abdomen with b-value = 800 
s/mm2 showing a colorectal liver metastasis (arrow).  
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Surgical treatment of CRLMs 

Today, curative intended treatment of CRLMs is multimodal, including surgical 
resection of metastases, perioperative chemotherapy, and local tumor ablation 
techniques 78,79. Since the first reports of partial hepatectomies for CRLMs in the 
1940s, surgical resection has become the mainstay of treatment for CRLMs, because 
it offers the best possibility of cure 80-83. After a liver resection, 5-year survival rates 
of 49-61 % have been reported in large series 38,84-86. However, due to disease extent, 
limited liver reserve, and comorbidities, only 15-26 % of patients with CRLMs 
undergo curative intended liver resection 37,47,48.  

The criteria for resectability have evolved during the last decades. Previously, the 
criteria for resection focused on the number of metastases, achieving a 1 cm 
resection margin, and precluded patients with extra-hepatic disease 87. Currently, the 
goal of CRLMs resection is to achieve a radical removal of all tumors and leaving 
a functional liver remnant with sufficient volume 82,88. Also, a limited number of 
peritoneal or lung metastases are if resectable no longer an absolute contraindication 
of resection of CRLMs 85,89.  

Liver resections can be carried out in an anatomical or non-anatomical fashion, with 
reference to the amount of liver parenchyma to be resected and the liver segmental 
anatomy 90. In non-anatomical resections, a smaller resection that spare normal liver 
parenchyma is possible, and they are suitable for small peripheral lesions. 
Anatomical resections normally involve the removal of two or more liver segments 
and may be required in the presence of large metastases or if metastases are located 
close to major hepatic vessels. If feasible, the performance of non-anatomical 
parenchymal-sparing resections can decrease the risk of postoperative 
complications, with equal rates of positive surgical margins and both disease-free 
and overall survival 91,92. In addition, a parenchymal-sparing resection technique can 
facilitate a later repeated resection if new CRLMs occur 93. 

Patients presenting with recurring CRLMs should be considered for repeated 
resections, because the long-term survival can be almost as good as after initial 
resections 94. Also, the complication rates are comparable after repeated and initial 
resections 95. The timing of the recurrence is important for long-term prognosis. 
Patients with an early recurrence have a worse prognosis, especially if presenting 
with recurrent disease during adjuvant chemotherapy 95,96. 

In patients with extensive bilobar liver metastases, large resections can be required 
to achieve a radical resection of all CRLMs. To ensure sufficient postoperative liver 
function and avoid post-hepatectomy liver failure (PHLF), a liver remnant 
consisting of functional liver segments with a size of at least 20-30 % of the 
preoperative liver volume must be spared 97-99. In patients treated with preoperative 
chemotherapy or with liver parenchymal disease, such as steatosis or fibrosis a 
larger liver remnant is required 98,100.  
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Different treatment strategies can make it possible for patients with extensive 
CRLMs and small future liver remnants (FLR) to undergo liver resection. Firstly, 
preoperative chemotherapy can be used to downsize the metastases 101. Secondly, 
hypertrophy of the FLR can be achieved by portal vein embolization (PVE) in the 
part of the liver that is to be resected 102,103. In a meta-analysis including 1088 
patients, the increase in FLR volume after PVE was 8-27 % 103. And thirdly, CRLMs 
can be resected in a two-stage procedure, where tumors in one lobe is resected in a 
first operation, and subsequently, after the FLR has grown to sufficient size, a 
second operation is performed, removing the rest of the tumors. This strategy can 
be performed either as a conventional two-stage hepatectomy or as an associating 
liver partition with portal vein ligation for staged hepatectomy-procedure (ALPPS) 
83,104,105. In ALLPS, a rapid growth of the FLR allows for a second operation 7-14 
days after the first 83,106. 

Laparoscopic liver resection 

Being first performed in the beginning of the 1990s, laparoscopic liver resection for 
liver tumors has been proven to be safe and can in selected cases provide less 
intraoperative blood loss, faster recovery and shorter hospital stay as compared to 
open resections 107,108. Also, the reported 5-year recurrence-free and overall survival 
are similar after an open and a laparoscopic resection 109,110. Even if the use of major 
laparoscopic resections is increasing and the indications for laparoscopic resections 
are constantly evolving, the current indication for laparoscopic liver resection 
includes resection of up to two adjacent liver segments containing a metastasis with 
a tumor size less than 5 cm and located in a favorable position, i.e., segment 2-6 
108,111,112. 

Postoperative complications and PHLF 

As surgical technique and perioperative care has evolved over the last decades, safer 
liver resections can be performed, and postoperative mortality has in some studies 
been reported to be as low as approximately 1 % 84,113. However, both postoperative 
mortality and morbidity are related to the extent of the resection, and major liver 
resections still poses a substantial risk of major postoperative complications 114. 
Complications include hemorrhage, bile leakage, surgical site infections, 
pneumonia, sepsis, pleural effusion, and pulmonary embolism 114,115. 

In addition, PHLF is an important complication after liver resection that carries high 
morbidity and mortality 86,115. Because there is no widely accepted definition of 
PHLF, the reported incidence varies in the literature (0.7-34 %) 116. The 
International Study Group of Liver Surgery defines PHLF as postoperatively 
acquired decline of one or more synthetic, excretory, or detoxifying functions of the 
liver and includes hypoalbuminemia, hyperbilirubinemia, prolonged prothrombin 
time or INR, elevated serum lactate, and hepatic encephalopathy 117.  
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The “50-50 criteria”, suggested by Balzan et al 118, defines a criterion using a 
combination of prothrombin time <50 % (INR >1.7) and serum bilirubin >50 
µmol/L on postoperative day 5 to distinguish patients with a high risk of early 
postoperative mortality. Currently, there are no causal treatment for PHLF, and only 
supportive care can be provided. Ensuring a sufficiently large liver remnant after 
liver resection is important in the prevention of PHLF, and special considerations 
should be made in patients with liver parenchymal injury 119,120. Moreover, early 
postoperative detection of signs of PHLF could enable early initiation of supportive 
measurements.  

Liver regeneration after liver resection 

The liver has a remarkable regenerative capability. Large liver resections can be 
carried out, and still liver volume and function are regained after surgery. Liver 
regeneration is initiated early after resection, already within the first day 121. 
Subsequently, most of the growth in size take place within the first week, and 
thereafter progresses more slowly 122.  Volume regeneration is completed 6-12 
months after liver resection 122-124.  

The complexity of the liver regeneration process has mostly been studied in animal 
models 125. Several signaling pathways are regarded as important and key mediators 
include the hepatocyte growth factor, tumor necrosis factor, interleukin 6, and the 
epidermal growth factor 126. The increase in portal pressure that can follow a major 
liver resection, may play an important part in the initiation of the regeneration 
process 126,127. The increased portal pressure could stimulate sinusoidal endothelial 
cells to release nitric oxide, which in turn sensitizes hepatocytes to hepatocyte 
growth factor 127-129.  As a result, the regenerative response after major liver 
resections promotes both hypertrophy and proliferation of hepatocytes which lead 
to rapid growth of the remnant liver 130,131. In addition, regeneration signaling also 
activates Kupfer cells, stellate cells, and sinusoidal endothelial cells, which help to 
control the regeneration process 131-134.  

Postoperative liver regeneration can be impaired in patients with liver parenchymal 
injury, such as steatosis and fibrosis 135-137. Preoperative chemotherapy, which is 
often included in the treatment of CRLMs, can induce liver parenchymal injury 
61,120,138. If chemotherapy affect liver regeneration is not fully understood and has 
mainly been studied after PVE. After preoperative PVE, chemotherapy has in most 
reports not been associated with a reduction in FLR growth 139-141. However, the 
effect of preoperative chemotherapy on liver regeneration after major hepatectomies 
has only been studied to a limited extent. 
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Preoperative chemotherapy 

In the preoperative setting, chemotherapy can be used to decrease the risk of 
recurrence after resection of CRLMs, i.e., as neoadjuvant therapy, or to downsize 
primarily non-resectable CRLMs. A combination of 5-fluorouracil, folinic acid and 
either oxaliplatin or irinotecan is the mainstay of treatment 142. The addition of 
targeted therapy with the monoclonal antibodies bevacizumab, cetuximab or 
panitumumab can be used for increasing the chance of downsizing metastases 101.   

In the randomized controlled EORTC intergroup trial 40983, perioperative 
chemotherapy was shown to prolong progression-free survival after resection of 
CRLMs 143,144. Patients who underwent perioperative chemotherapy were given a 
combination of oxaliplatin, folinic acid and fluorouracil given in 6 cycles before and 
6 cycles after surgery. Long-term follow-up data from the study showed an 
improvement in progression-free survival in the group receiving chemotherapy, 
with a median progression-free survival of 20.9 months as compared to 12.5 months 
in the group undergoing surgery alone, but no difference in overall survival 144. The 
result has been confirmed in a recent meta-analysis of 5 randomized controlled trials 
(including the EORTC trial) which found disease-free survival to be improved after 
perioperative chemotherapy in the pooled analysis, but no difference in overall 
survival 145. However, the included trials used different chemotherapy regimens and 
in 4 of the included trials in the meta-analysis only adjuvant chemotherapy was 
administered. 

In patients with primarily non-resectable CRLMs, chemotherapy with or without 
the addition of targeted therapy may downsize metastases, i.e., make the metastases 
shrink in size and allow for a radical resection, with an improvement in survival in 
selected cases 101,146,147.  

Moreover, observation of CRLMs response to preoperative chemotherapy help to 
identify patients with progressive disease. These patients have a higher rate of 
recurrence and a worse overall survival after liver resection and may not benefit 
from surgery 148. 

Chemotherapy-associated liver injury 

Chemotherapy regimens used in the treatment of CRLMs have been shown to 
induce pathological changes to the liver parenchyma including steatosis, 
steatohepatitis, and sinusoidal obstruction syndrome (SOS) 149. Patients with 
chemotherapy-associated liver injury (CALI) have been shown to have a higher rate 
of postoperative complications after a liver resection 113,150. 
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5-fluorouracil has been associated with liver steatosis 61,151. Patients with steatosis 
undergoing liver resection carries a higher risk of intraoperative bleeding and 
postoperative complications 152-154.  

Histological changes in steatohepatitis includes steatosis, lobular inflammation, 
ballooning of hepatocytes and fibrosis 155. Irinotecan has been associated with an 
increased risk of steatohepatitis 120,156 Patients with steatohepatitis have in a previous 
study been suggested to have a higher postoperative mortality after resection of 
CRLMs 120. Moreover, patients with obesity have a higher risk of developing 
steatosis and steatohepatitis when treated with preoperative chemotherapy 113,156. 

SOS is characterized by congestion and dilation of the sinusoids, disruption of the 
sinusoidal membrane and collagen deposits in the perisinusoidal space (Fig. 3) 157. 
An increased rate of SOS has been observed after oxaliplatin-based preoperative 
chemotherapy 138,158,159.  

 

  

Figure 3. Electron microscopy image of a liver sinusoid with pathological changes associated
with sinusoidal obstruction syndrome. The sinusoid lumen is congested with four red blood
cells (upper left part of the image). The endothelial cells are rounded and protrude into the
lumen (arrowhead). The perisinusoidal space (star) is dilated and contains red blood cells in
close contact with hepatocytes (arrow). Reprinted from Rubbia-Brandt et al 138, with 
permission from Elsevier.  
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In animal studies, steatosis, steatohepatitis, and SOS have been associated with 
changes in the hepatic microcirculation 157,160,161. Thus, changes in the hepatic 
microcirculation could potentially be used for detection of CALI. However, similar 
studies on human hepatic microcirculation have not been made.  

To decrease the perioperative risks of preoperative chemotherapy, it has been 
suggested that chemotherapy should be ended 4-5 weeks before liver resection and 
that the number of chemotherapy cycles should be kept low 162,163.  

Response to neoadjuvant chemotherapy 

Histological features of chemotherapy response include a reduction of the 
percentage of viable tumor cells, reduction of the tumor thickness at the tumor 
periphery and increased fibrosis 164,165. Central necrosis is a common feature in both 
untreated and treated CRLMs and does not correlate with pathological response 164. 
The pathological response of CRLMs to neoadjuvant chemotherapy predicts both 
overall and disease-free survival after resection 164,166-168. Patients who experience 
no or minor pathological response have the worst prognosis with 5-year survival 
rates of 9-33 % as compared to 41-56 % in patients with major pathological response 
164,167. Patients with a complete pathological response are relatively rare, with a 
reported frequency of 4-9 %, and have the best prognosis, with 5-year overall 
survival rates of approximately 75 %. A complete pathological response seems to 
be predicted by small tumor size and low carcinoembryonic antigen (CEA) level at 
diagnosis, both markers of low tumor burden 166,167. 

Preoperative assessment of chemotherapy response 

Accurate assessment of preoperative chemotherapy response in CRLMs would 
enable optimization of oncological treatment and identification of patients with a 
poor prognosis that may not benefit from a liver resection 148,169. Several methods 
have been suggested for the evaluation of response to chemotherapy in the 
preoperative setting when pathological specimens of the CRLMs are not available. 
Most used is the change in tumor size on imaging according to the Response 
evaluation criteria in solid tumors 1.1 (RECIST), which has been developed for the 
response evaluation of conventional cytotoxic chemotherapy 170. CT and MRI can 
be used to evaluate response in CRLMs using RECIST. At baseline, a maximum of 
five target lesions (maximum two lesions per organ) with a minimum diameter of 
10 mm are selected and the sum of their longest diameter recorded. At follow-up, 
the diameters of the target lesions is remeasured, and the number of new or 
disappearing lesions is recorded. A complete response is defined as all lesions 
disappearing and that no new appears. Partial response is defined as a ≥30 % 
decrease in the sum of diameters of the target lesions in comparison with the 
baseline examination. Progressive disease is defined as a ≥20 % (at least 5 mm) 
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increase in the sum of diameters of the target lesions or if any new lesion appears. 
If none of the criteria above is fulfilled the response is termed stable disease.  

However, assessment of chemotherapy response using tumor size is not always 
concordant with pathological response, especially when targeted therapy such as 
Bevacizumab is used 171,172. A recent study showed a discordance between 
radiological response using RECIST and pathological response in CRLMs after 
preoperative chemotherapy in 44 % of cases 173.  

Other imaging criteria have been suggested to better predict pathological response 
or survival in patients with CRLMs after chemotherapy. Chun et al 174 suggested a 
qualitative CT-based morphologic criterion for prediction of pathological 
chemotherapy response after treatment with bevacizumab. They found responding 
lesions to change from ill-defined heterogeneous lesions into well-defined 
homogeneously hypoattenuating lesions.  

Moreover, the metabolic activity in CRLMs after chemotherapy, measured with 
mean standard uptake value on fluorine-18-flourodeoxyglucose PET/CT, has been 
shown to correlate with the tumor viability rate, and a low mean standard uptake 
value can predict a major pathological response 175.  

ADC as a marker of chemotherapy response 

Diffusion-weighted MRI is frequently carried out before and after preoperative 
chemotherapy. Quantification of tumor water diffusion with ADC has been 
suggested as an imaging biomarker in malignant tumors 66. When compared to 
RECIST, pretreatment ADC has been found to be lower in CRLMs responding to 
chemotherapy than in non-responding CRLMs, and an ADC increase in responding 
CRLMs after chemotherapy has been observed, suggesting a decrease in tissue 
cellularity 65,176,177. However, it is problematic to use the change in size or RECIST 
as a reference method when evaluating ADC as a marker of chemotherapy response, 
because, as previously stated, change in size has been shown not always to be 
concordant with pathological response 171-173.  

Some studies have compared posttreatment ADC to pathological chemotherapy 
response and observed a higher posttreatment ADC in CRLMs with a major 
pathological response as compared to others 178-180. They used single absolute ADC 
measurements, which can be difficult to compare with ADC measurements acquired 
at a different imaging site. Absolute ADC measurements can differ in images 
acquired in MRI scanners from different vendors, in different models as well as 
when using different image acquisition parameters 181-184. To increase the 
comparability, it has been suggested that the change between pre- and posttreatment 
ADC measured using the same MRI scanner should be used rather than single 
absolute ADC measurements 185. Only a few recent studies have investigated the 
association between change in CRLMs ADC after preoperative chemotherapy and 
pathological chemotherapy response 186,187. 
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Sidestream dark-field imaging 

CALI can be difficult to detect preoperatively. Since liver parenchymal injury have 
been associated with changes in the hepatic microcirculation, perioperative studies 
of hepatic microcirculation could potentially provide a possibility for detection of 
CALI 157,160,161. Sidestream dark-field (SDF) imaging is a technique for direct 
visualization of the microcirculation 188. It consists of a hand-held microscope that 
is positioned directly onto the tissue. It uses a green stroboscopic light with a 
wavelength around 530 nm to illuminate the tissue. The green light is absorbed by 
hemoglobin in red blood cells and reflected by the surrounding tissue. Thus, in the 
image, flowing red blood cells appear dark and the surrounding tissue light. SDF 
imaging allows for in vivo measurement of sinusoidal red blood cell velocity 
(RBCV), sinusoidal diameter and functional sinusoidal density 189,190.  

SDF imaging has mainly been used to study microcirculation in the sublingual 
mucosa in patients with sepsis, but recently, a growing number of studies have used 
SDF imaging for intraoperative measurements of microcirculation in abdominal 
organs 191-193. Hepatic microcirculation has been studied using SDF imaging in rats 
194. 

Liver elastography 

Another technique that potentially could give information on CALI and monitor the 
early postoperative changes in the liver parenchyma after a liver resection is 
elastography. Elastography implies investigation of metrics related to the 
mechanical stiffness of an organ and can be made using either ultrasound or MRI 
techniques 195. The most frequent application of elastography in the liver is non-
invasively quantification of liver fibrosis in patients with chronic liver disease 196. 
In addition, studies have investigated the use of elastography in the characterization 
of liver tumors 197-199.  

Ultrasound point shear wave elastography can assess tissue elasticity using a 
standard ultrasound probe 200,201. It uses the acoustic radiation force impulse 
technique to generate a sound pulse that is transmitted through the tissue under 
study. The sound pulse generates small tissue displacements that induces shear 
waves in the tissue perpendicular to the original pulse. The shear wave velocity can 
be estimated in m/s, and it is related to tissue stiffness 200.  A high shear wave 
velocity denotes a stiff tissue. Combining the technique with standard real-time B-
mode ultrasound imaging, the elastography operator can choose a region of interest 
(ROI) at a preferred measurement site within the tissue. 
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Previously reported shear wave velocities in healthy livers range between 0.8-1.7 
m/s 202. In the setting of liver surgery, a high preoperative liver stiffness has been 
associated with an increased risk of PHLF after liver resection of hepatocellular 
carcinomas in patients with chronic liver disease 203. In addition, a postoperative 
increase in liver stiffness has been observed in living donors after liver resection for 
transplantation 204. However, perioperative changes in liver stiffness in patients 
without chronic liver disease undergoing liver resection for tumors have not 
previously been investigated.  

Preoperative sarcopenia and skeletal muscle depletion 

Preoperative risk assessment is important to improve surgical outcome. Frail 
patients with a poor physical performance status have a higher rate of postoperative 
complications and length of stay after surgical procedures 205. Skeletal muscle 
depletion or sarcopenia is known to cause functional impairment and to increase the 
risk of both nosocomial infections and postoperative morbidity in patients both with 
and without malignant disease 205-208. In addition, in patients with cancer, sarcopenia 
has also been shown to affect long-term prognosis 209-211. In patients with CRLMs 
undergoing liver resection, patients with preoperative sarcopenia have been 
suggested to have worse recurrence-free and overall survival and may have an 
increased risk of major postoperative complications 212,213. Moreover, sarcopenia is 
a predictor of chemotherapy toxicity in patients treated with 5-fluorouracil or its 
pro-drug capecitabine for colorectal or breast cancer 214,215.  

Little is known about whether preoperative chemotherapy worsens skeletal muscle 
depletion. Reports of patients with pancreatic or esophageal cancer suggested 
patient muscle loss after neoadjuvant chemotherapy 216,217. In a study of patients 
undergoing palliative chemotherapy for unresectable CRLMs, a skeletal muscle loss 
during chemotherapy has been shown to predict worse survival 218.  
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Abdominal CT and MRI examinations are routinely and repeatedly performed for 
diagnostic purposes and to monitor treatment response in patients with CRLMs. In 
addition, these images can be used to measure the cross-sectional muscle area of the 
psoas, paraspinal and abdominal wall muscles 219. The cross-sectional muscle area 
at the level of the third lumbar vertebra has previously been shown to correlate with 
whole-body muscle mass, and CT and MRI images of the abdomen can be used to 
evaluate patent muscle mass (Fig. 4) 219,220. In fact, CT measurements have been 
suggested to better evaluate skeletal muscle depletion than body weight and body 
mass index (BMI) 209. 

 

  

Figure 4. Computed tomography image of the abdomen at the level of the third lumbar 
vertebra with the cross sectional skeletal muscle area outlined in green.  



33 

Aims 

The general aim of the thesis was to investigate effects of preoperative 
chemotherapy on patients undergoing liver resection for CRLMs with the goal of 
providing information that can be used to improve the treatment of these patients. 
The thesis focuses on four different topics in the surgical treatment of CRLMs with 
the aim to provide answers to the following questions: 

 Is the liver regeneration capacity after partial liver resection affected by the 
administration of preoperative chemotherapy? (Study I) 

 Can SDF and point shear wave elastography be used to monitor 
perioperative changes in the liver parenchyma during a partial liver 
resection and detect changes associated with preoperative chemotherapy? 
(Study II and Study III) 

 Does the use of neoadjuvant chemotherapy for CRLMs affect the 
preoperative muscle mass of the patient? (Study IV) 

 Can changes in ADC in diffusion-weighted imaging assess pathological 
response to preoperative chemotherapy in CRLMs? (Study V) 
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Patients and methods 

Study design 

All studies were observational studies. Studies I, IV and V were retrospective 
studies and studies II and III were prospective studies.  

Patients  

Patients included in study I-V were all scheduled for liver resection for liver tumors 
at Skåne University Hospital, Lund, Sweden, a tertiary referral center for liver 
surgery. The treatment plan of every patient was decided in a multidisciplinary team 
conference. If a patient with CRLMs was to receive preoperative chemotherapy, the 
type of chemotherapy regimen was chosen by the medical oncologist after 
individual assessment, although oxaliplatin-based therapy was normally considered 
as the first choice. Data acquisition of patients’ clinical data was made using patient 
records.  

Study I 

All consecutive patients domiciled in Skåne, who underwent a major resection, i.e., 
a resection of three or more liver segments, for CRLMs between 2005 and 2010 
were retrospectively identified. Patients were grouped according to if they had or 
had not received chemotherapy within three months before surgery.  

Study II 

All patients scheduled for an open liver resection between January 22, 2013 and 
June 4, 2013 were considered for inclusion, except patients with viral hepatitis. All 
considered patients were informed about the study and patients included gave their 
written consent. Patients were grouped according to if they were operated with a 
major or minor resection. A major resection was defined as a right or extended right 
hepatectomy.  
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Study III 

Patients scheduled for liver resection were considered for enrollment. All 
considered patients were given both written and oral information about the study 
and gave their written consent prior to enrollment. Patients were divided into groups 
depending on whether they underwent a major or minor resection. A major resection 
was defined as a hemihepatectomy or extended hemihepatectomy. Patients with a 
marked fibrosis on histological analysis of the resected liver specimen were 
excluded from study analysis.  

Study IV 

Patients who underwent liver resection for CRLMs between January 2010 and 
December 2014 were retrospectively identified. Patients who underwent first time 
resections and for whom preoperative CT images were available were included in 
the study. Patients receiving down-sizing chemotherapy and patients with extra-
hepatic disease that eventually was not resected, including the primary tumor, were 
excluded.  

Study V 

All patients who underwent liver resection for CRLMs after preoperative 
chemotherapy between January 2011 and December 2019 were retrospectively 
identified and assessed for eligibility. Patients were included if they had undergone 
MRI before and after preoperative chemotherapy on the same 1.5 T MRI scanner 
with diffusion-weighted imaging acquired with b-values 50, 400, 800 s/mm2. 
Patients were excluded if their primary tumors were classified as mucinous 
adenocarcinoma, or no evaluation of pathological response had been conducted.  
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Assessment of liver regeneration after liver resection 

Liver volume measurements were conducted on pre- and postoperative CT or MRI 
images. The liver contour was manually traced on all transverse images of the liver 
and the area was automatically calculated (Fig. 5). The area of each image was then 
multiplied with the slice thickness (typically 5 mm) and all slices were added 
together to obtain liver volume. Equally, the volume of each metastasis was 
measured and subtracted from the liver volume to get the functional liver volume 
(FLV).  

 

The most recent available images prior to liver surgery were used for preoperative 
liver volume measurements, except for patients who underwent PVE, in whom the 
most recent images prior to PVE were used instead. Postoperative liver volume 
measurements were made on the images closest to one year after liver surgery, but 
no sooner than six months. The ratio of post- and preoperative FLV was defined as 
the %FLVpost/pre-op.  

Postoperative morbidity was graded according to Dindo et al 221 (Table 1). 
Postoperative liver insufficiency was defined as a peak postoperative bilirubin >50 
µmol/l and a peak postoperative INR ≥1.7. The formula suggested by Vauthey et al 

Figure 5. Computed tomography image of the abdomen showing liver volume 
measurement after right hepatectomy. The liver contour is outlined in green. 
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222 for prediction of total liver volume (TLV) based on body surface area (BSA) was 
used to analyze if preoperative liver volumes were influenced by preoperative 
chemotherapy: 

𝑇𝐿𝑉 𝑐𝑚 794.41 1267.28 ∗ 𝐵𝑆𝐴   (1) 

BSA was calculated as: 

𝐵𝑆𝐴 𝑐𝑚 𝑤𝑒𝑖𝑔ℎ𝑡 𝑘𝑔 . ∗ ℎ𝑒𝑖𝑔ℎ𝑡 𝑐𝑚 . ∗ 71.84 (2) 

Grade Definition 

I 

Any deviation from the normal postoperative course without the need for pharmacological 
treatment or surgical, endoscopic, and radiological interventions. 
Allowed therapeutic regimens are: drugs as antiemetics, antipyretics, analgetics, diuretics, 
electrolytes, and physiotherapy. This grade also includes wound infections opened at the 
bedside 

II 
Requiring pharmacological treatment with drugs other than such allowed for grade I 
complications.Blood transfusion and total parenteral nutrition are also included. 

III Requiring surgical, endoscopic, or radiological intervention 

   IIIa Intervention not under general anesthesia 

   IIIb Intervention under general anesthesia 

IV 
Life-threatening complication (including central nervous system complications) requiring 
intermediate care/intensive care unit management 

   IVa Singel organ dysfunction (including dialysis) 

   IVb Multiorgan dysfunction 

V Death of a patient 

Intraoperative measurement of liver microcirculation 
with SDF imaging 

Intraoperative measurement of liver microcirculation was performed using a SDF 
imaging microscope (MicroScan Video Microscope System, MicroScan BV, 
Amsterdam, The Netherlands) (Fig. 6). Measurements were conducted twice: first, 
after the liver had been exposed and mobilized from its diaphragmatic attachments; 
second, directly after completion of liver resection. Three investigators performed 
all measurements.  

The SDF imaging microscope was covered with a disposable sterile lens cap 
(MicroScan Lens, Microvision Medical, Amsterdam, The Netherlands) and a sterile 

Table 1. Clavien-Dindo classification of surgical complications 221. 
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drape (Video camera laser drape, Microtek Medical BV, Zutphen, The 
Netherlands). During measurements, the operation room light was switch off. The 
liver capsule was removed on an approximately 2 x 2 cm area on a segment not to 
be resected, typically segment 3 or 5. If necessary sterile room temperature 0.9 % 
NaCl solution was flushed over the liver parenchyma and the surface dried gently 
with a sterile cloth to remove coagulated blood. The SDF imaging probe was gently 
manually applied to the liver surface, minimizing pressure on the liver parenchyma. 
Each measurement consisted of three 20 second recordings on three different ROIs 
during apnea 223. Central venous pressure, mean arterial pressure, and positive end 
expiratory pressure at the time of measurements were noted.  

 

Recordings were analyzed on a standard computer using a vascular analysis 
software (AVA 3.0, MicroScan BV, Amsterdam, The Netherlands). Analysis of 
RBCV was made using space-time diagrams of three vessels 224. Mean sinusoidal 

Figure 6. Intraoperative measurement of liver microcirculation using a sidestream dark-field 
imaging microscope. Photo courtesy of Jan Nilsson.  
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diameter (µm) and functional sinusoidal density (mm/mm2) were determined after 
automatic vessel detection. The functional sinusoidal density was defined as the 
length of perfused vessels per observation unit area. A mean of the three recordings 
was calculated for each variable and comparisons between pre- and postresection 
were made.  

Perioperative liver and spleen elastography 

Liver and spleen elastography were made twice, before and after liver resection. 
Preoperative measurements were conducted in the right and left liver lobes as well 
as the spleen.  Postoperative measurements were carried out in the remnant liver and 
the spleen. Elastography was performed with a Siemens Acuson S2000 ultrasound 
system with the Virtual touch tissue quantification software and a 4C1 transducer 
(Siemens medical solutions Inc., Mountain View, CA, USA). Patients were fasting 
four hours before the measurement procedure. For measurements in the right liver 
lobe, intercostal transducer placement was used. A ROI was chosen within the liver 
or spleen parenchyma, at a depth of 3-6 cm from the transducer, avoiding major 
vessels and ducts. Each ROI was measured 10 times and a median of the 
measurements was calculated. Comparisons were made of pre- and postoperative 
measurements for the spleen and the remnant liver lobe. Measurements were 
presented as shear wave velocity (m/s). 

Measurement of preoperative skeletal muscle mass 

Patient skeletal muscle mass was retrospectively assessed using measurements of 
muscle area on existing diagnostic CT examinations of the abdomen. For patients 
who received neoadjuvant chemotherapy, measurements were made on the last CT 
prior to the first cycle of neoadjuvant chemotherapy and on the last CT prior to 
surgery. For patients not receiving neoadjuvant chemotherapy, measurements were 
made on the last CT prior to surgery. 

The skeletal muscle area on a single transverse CT image of the abdomen at the 
level of the transverse processes of the third lumbar vertebra, was manually traced 
and the area automatically calculated (Fig. 4) 219,220. The calculated area was 
normalized to body length, presenting a skeletal muscle index (SMI) (cm2/m2). 
Sarcopenia was defined as an SMI < 52.4 cm2/m2 for men and < 38.5 cm2/m2 for 
women 211.  

The patients receiving neoadjuvant chemotherapy were divided in two groups 
according to if they had lost skeletal muscle mass during neoadjuvant therapy (>5 
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% decrease in SMI) or not 218. Postoperative complications were graded according 
to Dindo et al 221. Major complications were defined as ≥ grade 3 complications.  

MRI with diffusion-weighted imaging and assessment of 
chemotherapy response 

Measurements of CRLMs ADC were made before and after preoperative 
chemotherapy. Lesions were then divided into two groups if there they were 
pathological responding (tumor regression grade [TRG] 0-2) or non-responding 
(TRG 3), and the difference in ADC change after chemotherapy was compared 
between the two groups of lesions.  

To avoid differences in ADC measurements between patients due to differences in 
field strengths, and strengths and timing of the diffusion gradients, only MRI images 
from 1.5 T systems with diffusion-weighted imaging acquired with b-values 50, 
400, 800 s/mm2 were included.  

Lesions were excluded if: (1) they had a diameter < 10 mm on either pre- or 
posttreatment imaging, (2) lesion ADC measurements were impaired by artifacts or 
a low signal-to-noise ratio. Exclusion of lesions due to artifacts was carried out in 
consensus between the two investigators that conducted the ADC measurements.  

Liver MRI protocols included transverse and coronal T2-weighted turbo spin echo 
images, transverse T1-weighted gradient echo images with fat-water separation, 
transverse diffusion-weighted echo-planar imaging and dynamic contrast enhanced 
T1-weighted gradient echo images using either gadoxetic acid (Gd-EOB-DTPA) or 
gadoteric acid (Gd-DOTA). 

ADC maps were calculated using a non-linear exponential fit model of the signal 
intensities in the diffusion-weighted images with b-values 50, 400, 800 s/mm2. ADC 
measurements were conducted using an in-house developed image analysis tool 
using MATLAB (The MathWorks Inc., Natick, MA, USA). Two readers – one 
radiology resident and one abdominal radiologist with 10 years of experience in 
liver MRI – individually performed ADC measurements on all patients. The 
radiology resident matched the CRLMs in the surgical specimen with the 
corresponding lesions on MRI using the pathological report.  

Each reader individually placed two ROIs for every lesion on a single 400 or 800 
s/mm2 b-value image, one ROI including the entire tumor at the equatorial plane of 
the lesion (whole area ADC) and one ROI with a width of approximately 0.5 cm at 
the tumor periphery (peripheral ADC). Each ROI was placed to include only the 
metastases without any surrounding liver parenchyma or major vessels. The ROIs 
were then copied onto the ADC map and mean ADC values for the entire and 
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peripheral area of the lesion were recorded. ADC measurements were conducted on 
both pre- and posttreatment MRI examination and the absolute and relative 
difference between the examinations were calculated lesion by lesion. The ADC 
values measured by the abdominal radiologist, who was blinded to the result of the 
TRG classification of the lesions, were used in the study analysis. 

In addition, the longest diameter of each liver metastasis at pre- and posttreatment 
MRI was measured on contrast-enhanced images, and the chemotherapy response 
was assessed per patient using the RECIST principle 170, i.e., measurement of the 
change in size of up to two liver metastases, not including the size of the primary 
tumor or lung metastases. 

Histological analysis 

The resected liver specimen was fixed in formalin. Histological analysis of the liver 
parenchyma was performed using hematoxylin and eosin stain or trichrome stain. 
In studies II and III, the liver parenchyma was assessed for steatosis, steatohepatitis, 
SOS and fibrosis. Steatosis, steatohepatitis, and fibrosis were graded according to 
the nonalcoholic fatty liver disease activity score (NAS) 155,225. Steatosis was defined 
as a grade ≥2 (>33 % of parenchymal involvement).  In study II a NAS ≥ 4 was 
defined as steatohepatits and a fibrosis grade ≥ 2 was defined as significant fibrosis. 
In study III, a NAS ≥ 5 was defined as steatohepatitis and a fibrosis grade > 2 was 
considered marked fibrosis. SOS was defined as a sinusoidal dilatation grade ≥ 2 
(centrilobular involvement extending in two-thirds of the lobular surface) according 
to Rubbia-Brandt et al 138. In study II, liver parenchyma damage was defined as 
either of steatosis, steatohepatitis, SOS or significant fibrosis.  

In study V, the pathological response to chemotherapy in CRLMs was classified 
according to the TRG by the American Joint Committee of Cancer and College of 
American Pathologists (AJCC/CAP)226. The metastases were classified into one of 
the four categories: no residual tumor cells (TRG 0), single cells or small group of 
cells (TRG 1), residual cancer with a desmoplastic response (TRG 2) or minimal 
evidence of tumor response (TRG 3).  
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Statistical analysis 

A p-value <0.05 was considered statistically significant.  

Study I 

The results are presented as mean ± standard error of the mean, unless stated 
otherwise. The %FLVpost/pre-op distribution was tested with the Shapiro-Wilk test, 
which indicated that %FLVpost/pre-op was normally distributed. Therefore, a two-tailed 
independent sample t-test were performed to test differences in %FLVpost/pre-op 

between groups. Other continuous data was compared using the Mann-Whitney U-
test, and categorical data was compared using the Fisher’s exact test. Correlations 
between variables were made using linear regression and by calculating a Pearson’s 
correlation coefficient r  

Study II 

The results are presented as median (range), unless stated otherwise. Continuous 
data was compared using a Mann-Whitney U-test for independent samples, and 
Wilcoxon signed-rank test for paired samples. Categorical data was compared with 
a Fisher’s exact test. Correlations between variables were made using linear 
regression and by calculating a Pearson’s correlation coefficient r.  

Study III 

The results are presented as median (interquartile range [IQR]), unless stated 
otherwise. Continuous data was compared using a Mann-Whitney U-test for 
independent samples, and Wilcoxon signed-rank test for paired samples. 
Categorical data was compared with a χ2 test. Correlations between variables were 
made using linear regression, and by calculating a Pearson’s correlation coefficient 
r. 

Study IV 

The results are presented as median (IQR), unless stated otherwise. Continuous data 
was compared using a Mann-Whitney U-test for independent samples, and 
Wilcoxon signed-rank test for paired samples. A χ2 test was used to compare 
categorical data. Overall and recurrence-free survival were estimated using the 
Kaplan-Meier method, and risk factors were compared using the log rank test. 
Hazard ratios and 95 % confidence intervals for risk factors of a worse overall 
survival were estimated using a Cox regression. Risk factors with a P-value < 0.1 
on univariable unadjusted analysis model were included in a final multivariable 
analysis model. 
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Study V 

The results are presented as median (IQR) for continuous data, and frequencies for 
categorical data, unless stated otherwise. Inter-reader differences in ADC 
measurements were evaluated with the Wilcoxon signed-rank test for paired 
samples and a Bland-Altman plot. To compare continuous data, a Mann-Whitney 
U-test or the Wilcoxon signed-rank test for paired samples. A χ2 test or the Kruskal-
Wallis test was used to compare ordinal and categorical data.  

Ethics  

Studies I-IV were approved by the Regional Ethical Review Board in Lund and 
study V was approved by the Swedish ethical review authority. In study II and III, 
which included perioperative measurements of liver microcirculation or liver and 
spleen elastography, all included patients gave their written informed consent prior 
to enrollment. Studies I, IV and V were retrospectively conducted and the need for 
informed consent was waived by the ethical review authority. Data acquisition, 
analysis and publication were conducted with respect of the research subjects’ safety 
and integrity. Participating patients did not benefit themselves from participation in 
the studies. However, the results of the research will be beneficial for future patients 
with CRLMs.  
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Results 

Study I 

Seventy-eight patients were identified. Two patients were excluded due to death 
before any follow-up radiology was performed, one due to reoperation for liver 
metastases within six months, and one patient due to the preoperative CT scan being 
unavailable. Thus, 74 patients were included in the study analysis. Patients’ 
characteristics and perioperative data are presented in Table 2. In patients receiving 
preoperative chemotherapy, a majority received an oxaliplatin-based chemotherapy 
regimen (n=25), with (n=8) or without (n=17) the addition of targeted therapy. Six 
patients received bevacizumab.  

Liver volumes before and after liver resection are presented in Table 3. The ratio of 
preoperative FLV and BSA did not differ between patients treated with preoperative 
chemotherapy and patients that were not (p=0.80). There was a linear correlation 
between regenerated volume and the duration between the end of chemotherapy and 
liver surgery (Fig. 7). 

%FLVpost/pre-op did not differ between patients preoperatively treated with or without 
bevacizumab (88 ± 6 vs. 83 ± 3 %, p=0.43), or between patients that received 
adjuvant chemotherapy (n=63) or not (n=11) (88 ± 2 vs. 87 ± 4 %, p=0.76). Neither 
did patients who underwent PVE and preoperative chemotherapy (n=9) differ 
significantly from patients treated with preoperative chemotherapy alone (n=25) in 
%FLVpost/pre-op (89 ± 4 vs. 82 ± 4 %, p=0.22). 

A lower %FLVpost/pre-op was found in patients suffering from postoperative hepatic 
insufficiency (n=13) than others (79 ± 3 vs. 89 ± 2 %, p=0.013). 

There was no difference in postoperative complications between patients treated and 
patients not treated with preoperative chemotherapy (p=0.35). There was no 90-day 
mortality. 
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 No chemotherapy Chemotherapy P 

Number of patients 40 34  

Sex (male:female) 21:19 19:15 0.82 

Age (years) 66 (46-86) 62 (42-74) 0.003 

BMI (kg/m2) 26.5 ± 0.8 24.0 ± 0.4 0.010 

Patients with diabetes 6 4 0.75 

Metastasis volume (ml) 66 ± 18 29 ± 9 0.08 

Number of metastases 2 (0-5)* 2 (0-7)* 0.74 

Size of largest metastasis (mm) 48 (0-120)* 25 (12-99)* 0.30 

Number of patients with PVE 1 9 <0.0001 

Number of chemotherapy cycles  7 (2-28)  

Time to surgery after chemotherapy (days)  40 (20-88)  

Type of resection    

   Right-sided hepatectomy ± atypical 
resection 

26 21 0.18 

   Extended right-sided hepatectomy  
   ± atypical resection 

5 8 0.10 

   Left-sided hepatectomy ± atypical 
resection 

9 5 0.30 

Operative bleeding (ml) 700 (100-15000) 1000 (250-4000) 0.21 

Length of hospital stay (days) 8 (5-79) 9 (5-19) 0.69 

Peak post-operative bilirubin (µmol/l) 32 (12-202) 35 (13-127) 0.77 

Peak postoperative INR 1.6 (0.9-2.1) 1.6 (1.1-2.6) 0.44 

Time from operation to postoperative 
imaging (days) 

326 (127-822) 315 (188-593) 0.45 

 

 No chemotherapy Chemotherapy p 

FLV before resection (ml) 1521 ± 50 1556 ± 47 0.64 

ΔFLV (ml) -135 ± 35 -278 ± 32 0.005 

%FLVpost/pre-op 91 ± 2 83 ± 2 0.007 

  

Table 2. Patients’ characteristics and perioperative data

Data is presented as either mean ± standard error of the mean, or median (range). BMI, 
body mass index; PVE, portal vein embolization. *Based on pathological-anatomic 
diagnosis.  

Table 3. Liver volumes

Data is presented as mean ± standard error of the mean. Functional liver volume (FLV) 
signifies functional liver volume. ΔFLV denotes the paired volume difference in FLV 
between after and before resection. %FLVpost/pre-op is defined as the ratio of post- and 
preoperative FLV. 
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Figure 7. Correlation between regenerated volume and the time interval between cessation 
of chemotherapy and the operation. A linear correlation was found (r=0.37, p=0.031). 
Reprinted with permission from Elsevier.  
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Study II 

Forty patients were included, of whom 12 patients underwent a major resection and 
28 patients a minor resection. Patients’ characteristics are presented in Table 4. 
Using SDF imaging, intraoperative measurement of hepatic microcirculation could 
successfully be performed in all patients. The time of the intraoperative 
measurement procedure was approximately 5 mins per patient. Measurements of 
hepatic microcirculation in patients undergoing a major or minor resection is 
presented in Table 5. Measurements of hepatic microcirculation in patients with or 
without liver parenchymal damage is presented in Table 6. There were no 
correlations between RBCV and central venous pressure or mean arterial pressure 
(r=0.139, p=0.393 and r=0.022, p=0.895). 

 

 

 
  

Table 4. Patients’ characteristics for the major and minor resection groups 
 Major resection Minor resection 

No. of patients 12 28 

Sex (male:female) 5:7 15:13 

Age (years) 67.5 (61-74) 66.5 (42-83) 

BMI (kg/m2) 25.8 (17.7-34.8) 26.2 (20.2-38.1) 

Smokers 1 3 

Patients with diabetes 1 2 

Diagnosis   

   Benign 0 2 

   Biliary cancer 3 0 

   Colorectal metastases 8 17 

   Hepatocellular carcinoma 0 4 

   Other malignancy 4 2 

Preoperative serum bilirubin (µmol/l) 6 (3-15) 7.5 (3-24) 

Preoperative INR 1.0 (0.9-1.1) 1.0 (0.9-1.4) 

Preoperative chemotherapy 4 6 

Operative bleeding 575 (200-3800) 225 (25-3200) 

Serum bilirubin POD3 (µmol/l) 31 (14-69) 11.5 (4-31) 

INR POD3 1.3 (1.1-1.6) 1.2 (0.9-1.8) 

Liver parencymal damage 3 8 

   Steatosis 2 1 

   Steatohepatitis 3 5 

   SOS 1 2 

   Fibrosis 0 4 

Data is presented as median (range). BMI, body mass index; POD3, postoperative day 
three; SOS, sinusoidal obstruction syndrome. 
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 Major resection Minor resection p 

Red blood cell velocity (µm/s)    

   Before resection 196 (136-464) 178 (118-329) 0.512 

   After resection 338 (231-483) 217 (104-505) 0.007 

   Difference 121 (19-253) 44 (-113-221) 0.009 

   p 0.002 0.016  

Sinusoidal diameter (µm)    

   Before resection 12.3 (11.7-14.7) 12.3 (10.7-15.7) 0.873 

   After resection 11.5 (11.0-15.0) 11.8 (10.0-16.0) 0.896 

   Difference -0.33 (-1.3-0) -0.5 (-4.3-3.0) 0.873 

   p 0.007 0.041  

Functional sinusoidal density (mm/mm2)    

   Before resection 21.8 (16.2-25.6) 21.4 (14.6-26.4) 0.493 

   After resection 22.8 (17.2-26.4) 23.2 (15.8-27.6) 0.827 

   Diffrence 1.0 (-1.2-3.9) 1.5 (-5.9-6.8) 0.286 

   p 0.060 0.011  

 

 

 Liver damage (n=11) 
No liver damage 
(N=27) 

p 

Red blood cell velocity (µm/s) 225 (148-464) 161 (118-329) 0.016 

Sinusoidal diameter (µm) 12.7 (11.7-15.7) 12.0 (10.7-14.7) 0.009 

Functional sinusoidal density (mm/mm2) 20.4 (14.6-22.3) 22.2 (17.9-26.4) 0.007 

 

  

Table 5. SDF imaging results for the major and minor resection groups 

Data is presented as median (range). SDF, Sidestream dark-field. 

Table 6. SDF imaging results before resection in patients with liver parenchymal damage 
versus patients with no damage 

Data is presented as median (range). Two patients were not included in the analysis 
because the liver specimens were too small to be analyzed. SDF, sidestream darkfield 
imaging. 
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Study III 

Forty-seven patients were enrolled in the study. Six patients later declined 
participation, mostly due to postoperative pain and three patients were transferred 
to a different hospital before completing the measurements. Three patients had 
marked fibrosis on histological analysis and were excluded. Thus, 35 patients (17 
males and 18 females) were included in the final study analysis.  

15 patients underwent a major resection, 16 patients a minor resection and four 
patients underwent laparotomy but no resection. 26 patients had CRLMs, five 
patients had other malignant tumors and three patients had benign tumors. In the 
major resection group, seven patients underwent a right hemihepatectomy and eight 
patients an extended right hemihepatectomy. In the minor resection group, seven 
patients underwent resection in the right liver lobe, four patients underwent 
resection in the left lobe and five patients under resections in both lobes.  

20 patients received preoperative chemotherapy and 15 of them received an 
oxaliplatin-based regimen. Only one patient had liver parenchymal damage 
(steatosis) on histological analysis of the liver specimen.  

Perioperative tissue stiffness measurements 

The second measurement were typically carried out on postoperative day two. In all 
patients, median preoperative shear wave velocity in the right liver lobe was 1.33 
(IQR 1.15-1.50) m/s and in the left liver lobe 1.41 (1.20-1.66) m/s. Left lobe shear 
wave velocity was higher as compared to the right liver lobe (p=0.026). Median 
preoperative spleen shear wave velocity was 2.76 (2.37-3.02) m/s. 

Liver and spleen stiffness measurements in the major and minor resection groups 
are presented in Table 7. There were no differences in gender ratio, diagnosis, body 
mass index or American Society of Anesthesiologists (ASA) physical status 
classification between the two groups. Patients in the minor resection group were 
older than patients in the major resection group (75 [66-79] vs. 66 [50-74] years, 
p=0.033) and did not receive preoperative chemotherapy as often as patients who 
underwent a major resection (6 vs. 12 patients, p=0.017). In patients undergoing a 
major resection, the stiffness in the liver remnant increased after resection 
(p=0.001). No difference was found in patients undergoing a minor resection 
(p=0.438).  
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 Minor resection Major resection p 

No. of patients 16 15  

Future liver remnant (m/s) 1.31 (1.15-1.52) 1.41 (1.24-1.63) 0.318 

Right liver lobe preoperative (m/s) 1.29 (1.12-1.49) 1.38 (1.14-1.57) 0.423 

Left liver lobe preoperative (m/s) 1.35 (1.06-1.71) 1.41 (1.29-1.63) 0.667 

Spleen preoperative spleen (m/s) 2.76 (2.36-2.91) 2.69 (2.33-3.11) 0.984 

Liver remnant postoperative (m/s) 1.37 (1.12-1.77) 2.20 (1.72-2.44) <0.001 

Spleen postoperative (m/s) 2.83 (2.44-3.18) 2.90 (2.63-3.50) 0.216 

Relative difference in liver remnant (%) 4 (-16-24) 42 (33-71) 0.001 

Relative difference in the spleen (%) 2 (-1-13) 16 (7-33) 0.047 

Chemotherapy 

There was no difference between patients who underwent preoperative 
chemotherapy (n=20) and patients who did not (n=15) in preoperative right liver 
lobe (1.31 [1.16-1.50] vs. 1.38 [1.12-1.56] m/s, p=0.569) or spleen stiffness (2.79 
[2.33-3.11] vs. 2.71 [2.37-2.86] m/s, p=0.515). 

Moreover, patients preoperatively treated with oxaliplatin (n=15) did not differ 
compared to others in preoperative right liver (1.31 [1.16-1.50] vs. 1.38 [1.14-1.61] 
m/s, p=0.670) or spleen stiffness (2.76 [2.34-2.97] vs. 2.76 [2.37-3.07] m/s, 
p=0.892).  

Postoperative liver remnant stiffness and postoperative bilirubin and INR 

Fig. 8 presents correlations between postoperative shear wave velocity in the liver 
remnant and maximum postoperative increase of bilirubin and INR. 

  

Table 7. Liver and spleen stiffness measurements for the minor and major resection groups 

Data is presented as median (interquartile range). 
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Figure 8. Correlation between maximum postoperative bilirubin increase (A), INR (B) and 
stiffness in the liver remnant for patients who underwent minor (O) or major (X) resection.  
A: R2=0.154, r=0.392, p=0.032; B: R2=0.285, r=0.534, p=0.003. INR, international 
normalized ratio. 
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Study IV 

Of 240 patients who underwent liver resection for CRLMs, eight underwent 
downsizing chemotherapy and four had known extra-hepatic disease that was 
eventually not resected. These and three patients who died within 90 days of surgery 
were excluded from further analysis, leaving 225 patients included in the study 
analysis. The median follow-up time was 32 (IQR 5-73) months.  

Impact of neoadjuvant chemotherapy on skeletal muscle mass 

Ninety-seven (43 %) patients underwent neoadjuvant chemotherapy. The median 
time from start of neoadjuvant chemotherapy to follow-up radiology was 54 (49-64) 
days. Neoadjuvant chemotherapy resulted in a decrease in skeletal muscle mass. 
SMI decreased by 5.5 (-1.1-11) % (p<0.001) as compared to pre-chemotherapy 
SMI.   

Patients’ characteristics for patients with and without skeletal muscle loss >5 % are 
presented in Table 8. A skeletal muscle loss >5 % during neoadjuvant did not result 
in worse overall survival (40.3 vs. 56.4 months, log rank p = 0.131), or recurrence-
free survival (14.6 vs. 17.5 months, log rank p = 0.105). Six patients who did not 
meet the criterion for sarcopenia at baseline turned sarcopenic after chemotherapy.  
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 No muscle loss Muscle loss p 

Number of patients 47 50  

Gender (male:female) 27:20 34:16 0.282 

Age (years) 68.0 (62-71) 66.5 (63-75) 0.355 

BMI (kg/m2) 24.3 (22.9-27.1) 24.6 (21.4-27.0) 0.798 

Current smokers 13 8 0.163 

Patients with diabetes 4 8 0.263 

ASA physical status (1/2:3/4) 34:13 35:15 0.799 

Preoperative albumin (g/l) 37 (35-40) 38 (34-40) 0.796 

Preoperative creatinine (µmol/l) 71 (64-85) 74 (64-88) 0.710 

Primary tumor site (colon:rectum) 29:18 28:22 0.569 

Node-positive primary 37 42 0.370 

Detection of metastases 
(Synchronous:Metachronous) 

16:31 16:34 0.831 

Liver-first approach 8 11 0.537 

Number of hepatic tumors 3 (2-4) 3 (2-4) 0.531 

Largest hepatic tumor (mm) 20 (15-31) 25 (15-37) 0.334 

Type of chemotherapy   0.104 

   Oxaliplatin-based 28 33  

   Irinotecan-based 12 5  

   Other combinations 7 12  

Targeted therapy 11 8 0..358 

Number of cycles 4 (4-5) 4 (4-5) 0.947 

Total muscle area before 
treatment (mm2) 

12 194 (10 411-15 550) 13 854 (10 644-16 024) 0.095 

SMI before treatment (cm2/m2) 40.8 (36.9-46.9) 47.4 (40.2-51.9) 0.009 

Total muscle area after treatment 
(mm2) 

12 201 (10 504-16074) 12,355 (9488-14475) 0.083 

SMI after treatment (cm2/m2) 41.8 (37.7-48.6) 39.9 (33.6-45.6) 0.124 

Operating time (hours) 5.75 (5.0-7.0) 6.5 (4.0-7.5) 0.684 

Operative bleeding (ml) 500 (300-800) 425 (250-800) 0.598 

Major complications (Clavien-
Dindo ≥3) 

8 4 0.177 

Length of hospital stay (days) 7 (6-9) 7 (6-9) 0.558 

Adjuvant chemotherapy 40 34 0.048 

Preoperative sarcopenia 

Among all 225 patients, including those who received and not received neoadjuvant 
chemotherapy, 147 (65 %) were found to be sarcopenic preoperatively.  The 
sarcopenic group consisted of 94 men and 53 women and the median age was 69 
years. The non-sarcopenic group consisted of 39 men and 39 women and their 

Table 8. Patients’ charactheristics for patients who underwent neoadjuvant chemotherapy 

Data is presented as number or median (interquartile range). BMI, body mass index; ASA, 
American Society of Anesthesiologists; SMI, skeletal muscle index. 
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median age was 68 years. Patients with sarcopenia had a lower BMI (24.2 [IQR 
21.5-26.1] vs. 27.6 [25.4-29.9] kg/m2, p <0.001). Seventy-six (52 %) patients with 
sarcopenia underwent neoadjuvant chemotherapy compared to 31 (40 %) patients 
without sarcopenia.  

There were no differences between patients with sarcopenia and others in operation 
time (5.2 [3.0-7.0] vs. 4.5 [3.0-7.0] hours, p=0.651) or operative bleeding (350 [200-
600] vs. 400 [200-600] ml, p=0.725).  Moreover, there were no differences in the 
rate of major complications (12 vs. 10 %, p=0.657) or length of hospital stay (7 [6-
9] vs. 7 [6-8] days, p=0.635).  

Preoperative sarcopenia resulted in worse overall survival (Fig. 9). No difference 
was found for recurrence-free survival (Fig. 10). Univariable and multivariable 
hazard ratio analyses of risk factors for overall survival are shown in Table 9.  

 Univariable  Multivariable  
 Hazard ratio p Hazard ratio p 

Gender (male vs. female) 1.52 (0.89-2.57) 0.122   

Age >70 0.89 (0.54-1.49) 0.681   

Current smoking 0.80 (0.42-1.53) 0.504   

Diabetes mellitus 0.73 (0.31-1.68) 0.456   

BMI >25 kg/m2 0.80 (0.49-1.31) 0.375   

Sarcopenia 1.87 (1.08-3.26) 0.026 1.81 (1.02-3.21) 0.042 

Body fat percentage > 50 % 1.23 (0.56-2.71) 0.603   

Neoadjuvant chemotherapy 1.64 (1.00-2.69) 0.049 0.93 (0.53-1.63) 0.807 

ASA (1/2:3/4) 1.20 (0.71-2.02) 0.496   

Major complications 
(Clavien-Dindo ≥3) 

1.31 (0.65-2.65) 
0.450   

Primary tumor site (colon vs. 
rectum) 

1.01 (0.61-1.67) 
0.960   

Node-positive primary 2.09 (1.17-3.73) 0.013 1.70 (0.93-3.10) 0.086 

Synchronous disease 2.51 (1.51-4.19) <0.001 2.48 (1.38-4.46) 0.002 

>1 hepatic tumor 1.70 (0.99-2.91) 0.053 1.45 (0.81-2.61) 0.212 

Largest hepatic tumor >50 
mm 

1.38 (0.63-3.03) 
0.425   

No adjuvant chemotherapy 2.09 (1.25-3.48) 0.005 2.72 (1.56-4.71) <0.001 

 
  

Table 9. Risk factors of overall survival 

Data is presented as hazard ratio (95 % confidence interval). BMI, body mass index; ASA, 
American Society of Anesthesiologists.  
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Figure 9. Overall survival for patients with (red line) and without (blue line) preoperative 
sarcopenia (Log rank test, p=0.024). Reprinted with permission from Elsevier. 

Figure 10. Recurrence-free survival for patients with (red line) and without (blue line) 
preoperative sarcopenia (Log rank test, p=0.104). Reprinted with permission from Elsevier. 
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Study V 

 

Thirty-nine patients met the inclusion criteria. One patient that underwent 
concomitant liver resection and intraoperative radiofrequency ablation, was 
excluded because no CRLMs were found in pathological examination of the surgical 
specimen. Seven patients were excluded because their CRLMs had not been 
evaluated regarding TRG. Three patients were excluded because they had primary 
tumors classified as mucinous adenocarcinoma. Among the remaining 28 patients, 
15 lesions were regarded as non-measurable. In one patient, all lesions were 
excluded due to artifacts. Thus, 27 patients with 49 lesions were included in the 
study analysis. Patients’ characteristics are presented in Table 10. 

Lesion ADC and pathological chemotherapy response 

The ADC measurements made by the two readers did not show a statistical 
difference (p=0.173). Median ADC measurements and absolute and relative ADC 
changes for the pathological responding (TRG 0-2) and non-responding (TRG 3) 
lesions are presented in Table 11. Both responding and non-responding lesions 
increased in whole area ADC (responding: p=0.026; non-responding: p=0.018) and 
peripheral ADC (responding: p=0.006; non-responding: p=0.045) after 
chemotherapy. Ten of 19 lesions that increased ≥ 20 % in whole area ADC showed 
a pathological response, compared to 14 of 30 lesions increasing < 20 % (p=0.684). 
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Number of patients 27 

Gender (male:female) 20:7 

Age (years) 69 (64-72) 

BMI (kg/m2) 25.5 (22.1-28.4) 

Diabetes mellitus 5 

ASA physical status (1/2:3/4) 18:9 

Preoperative creatinine (µmol/l) 74 (63-83) 

Preoperative albumin (g/L) 37 (35-40) 

CEA at time of diagnosis of CRLMs 11 (4-65) 

Location of primary tumor (right colon: left or sigmoid colon: rectum) 4:15:8 

T-stage primary (2:3:4) 3:15:9 

Node-positive primary 24 

Synchronous CRLMs 18 

Number of CRLMs before chemotherapy 3 (2-5) 

Bilobar CRLMs 19 

Largest CRLM before chemotherapy (mm) 30 (21-46) 

Preoperative chemotherapy regimen  

   Oxaliplatin-based 15 

   Irinotecan-based 9 

   Other combinations 3 

Targeted therapy  

   EGFR antibody (i.e. Panitumumab/Cetuximab) 7 

   Bevacizumab 1 

Total number of cycles 5 (4-6) 

Number of cycles between pre- and posttreatment MRI 4 (4-5) 

Days between pretreatment MRI and start of chemotherapy 29 (23-39) 

Days between start of chemotherapy and posttreatment MRI 56 (48-78) 

Days between posttreatment MRI and surgery 48 (34-60) 

Days between last cycle of chemotherapy and surgery 38 (32-47) 

Preperative PVE 1 

Liver-first strategy 13 

Adjuvant chemotherapy 21 

 

  

Table 10. Patients’ characteristics 

Data are presented as number of patients or median (interquartile range). BMI, body mass 
index; ASA, American Society of Anesthesiologists; CEA, carcinoembryonic antigen; 
CRLM, colorectal liver metastases; EGFR, epidermal growth factor receptor; MRI, magnetic 
resonance imaging. 
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 Responding (n=24) Non-responding (n=25) p-value 

Pretreatment whole area ADC 
(10-3 mm2/s) 

1.26 (1.06-1.37) 1.12 (0.980-1.21) 0.119 

Pretreatment peripheral ADC 
(10-3 mm2/s) 

1.15 (0.979-1.31) 1.10 (0.961-1.21) 0.337 

Posttreatment whole area ADC 
(10-3 mm2/s) 

1.33 (1.13-1.56) 1.20 (1.09-1.43) 0.197 

Posttreatment peripheral ADC 
(10-3 mm2/s) 

1.28 (1.11-1.42) 1.15 (1.05-1.34) 0.112 

Whole area ADC difference 
(10-3 mm2/s) 

0.190 (0.020-0.350) 0.080 (-0.052-0.285) 0.610 

Peripheral ADC difference 
(10-3 mm2/s) 

0.171 (0.063-0.344) 0.090 (-0.049-0.299) 0.465 

Relative whole area ADC (%) 15.8 (1.42-26.3) 7.17 (-4.31-31.2) 0.795 

Relative peripheral ADC (%) 14.0 (5.12-29.7) 9.43 (-4.11-33.6) 0.617 

Lesion size and RECIST vs. pathological chemotherapy response 

After chemotherapy, both pathological responding and non-responding lesions 
decreased in size, and responding lesion decreased slightly more than non-
responding lesions (responding: -35 [-41- -28] %; non-responding: -28 [-37-0.0] %, 
p=0.016). There was no difference in radiological response assessed according to 
the RECIST principle between patients with pathological responding and patients 
with pathological non-responding lesions (p=1.00).  

  

Table 11. Lesion ADC in pathologic responding (TRG 0-2) vs non-responding (TRG 3) 

Data are presented as median (interquartile range). ADC, apparent diffusion coefficient. 
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Discussion 

This thesis has examined the impact of preoperative chemotherapy on preoperative 
skeletal muscle depletion, postoperative liver regeneration, and tumor ADC on 
diffusion-weighted MRI in patients undergoing liver resection for colorectal liver 
metastases. In addition, perioperative changes in the liver parenchyma have been 
investigated with special interest in changes associated with chemotherapy 
associated liver injury. 

Preoperative chemotherapy and liver regeneration after a 
major liver resection 

In study I, we found that liver volume regeneration is negatively affected by 
preoperative chemotherapy after a major liver resection. Patients undergoing major 
resection were chosen because of the hypothesis that possible effects on liver 
regeneration of preoperative chemotherapy would be greater in a greater total 
volume gain 227. In comparison, in a study on liver regeneration after mainly minor 
liver resections, no effect of preoperative chemotherapy was found 228. 

Preoperative chemotherapy has previously been shown to induce CALI which is 
associated with an increased risk of postoperative morbidity 61,120,138,154. Steatosis, 
which can be induced by preoperative chemotherapy, has previously been shown to 
impair post-hepatectomy liver regeneration 135,136. In this study, no histopathological 
analysis of the liver parenchyma for investigation of CALI was performed. Thus, if 
the reduced liver regeneration in patients treated with chemotherapy is mediated via 
CALI remains uncertain. However, we found that the duration between 
chemotherapy cessation and surgery impacted the reduction in liver regeneration. 
This finding could imply that reversable effects of chemotherapy on the liver 
parenchyma accounts for the reduction in liver volume regeneration and emphasizes 
the importance of a time interval without chemotherapy before liver resection is 
performed.   

In addition, postoperative morbidity may affect final regenerated liver volume, as 
most of the volume gain is suggested to occurs within the first postoperative week 
122. There was no difference in morbidity between patients who were treated with 
preoperative chemotherapy or not. However, patients with transient postoperative 
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liver insufficiency had a reduced liver volume regeneration. This further supports 
the finding that the initial weeks after liver resection are the most important for liver 
regeneration. 

In patients with CRLMs, recurrence is common. The feasibility of a repeated liver 
resection may be dependent of a sufficient regeneration after the first resection. We 
found mean %FLVpost/pre-op to be 83 % and 91 % in the two groups of patients treated 
and not treated with preoperative chemotherapy. These findings are in the range of 
findings in previous studies also including healthy living donors 122,229.  

Methodological considerations and limitations 

In study I, we measured the liver volume regeneration after a liver resection. 
However, volume may not reflect the functional regeneration. Some previous 
studies have suggested that the functional regeneration occurs more slowly than 
volume regeneration 122,229. If functional regeneration was impaired in patients 
treated with chemotherapy in this study, is not known. 

Moreover, liver volumes were not measured before the start of chemotherapy, and 
whether preoperative chemotherapy affects the preoperative liver volume is not 
known. Chemotherapy can cause steatosis and steatohepatitis, which in turn could 
increase liver size 61,120,230. Thus, patients treated with preoperative chemotherapy in 
our study possibly had an increased liver volume before hepatectomy. However, 
there was no difference in the ratio of preoperative FLV and BSA between patients 
treated and not treated with preoperative chemotherapy, which contradicts this 
possibility.  

In addition, the retrospective design of this study may contribute to bias via 
unknown confounding factors that influences the comparisons between the groups.  

Intraoperative measurement of liver microcirculation 
with SDF imaging 

Changes in liver microcirculation after liver resection 

To our knowledge, study II is the first study on changes of liver microcirculation 
during liver resection in humans. In study II, we found an increase in RBCV after 
liver resection, larger after a major resection than after a minor. This finding is in 
accordance with the increased blood flow observed after major liver resections in 
rats 231. Increased hepatic perfusion has in an animal model been suggested to be 
important for endothelial injury after extended liver resection 232.  

Patients undergoing a major resection had a larger increase in RBCV than patients 
undergoing a minor resection, which suggests that the volume of the resection 
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affects the increase. However, the relationship between size of the liver remnant and 
RBCV was not investigated in the study. Future studies including liver volumetry 
could confirm this.  

A decrease in sinusoidal diameter after resection was found in both patients 
undergoing a major and minor resection, and there was no difference between the 
two groups. The underlying explanation for this could be technical. SDF imaging 
only contrasts between red blood cells and other tissue, and do not visualize the 
sinusoidal wall. Thus, only the width of the red blood cell column can be assessed. 
An increase in RBCV and consequential velocity-dependent closer alignment of red 
blood cells within the sinusoid, would result in a decrease in measured sinusoidal 
diameter, and may explain the findings 233.  

In addition, a small increase in functional sinusoidal density was found in both 
groups. Normally, almost all sinusoids are perfused and a large increase in 
functional sinusoidal density is not expected 234.  

Liver microcirculation in liver parenchymal damage 

In patients with histological liver parenchymal damage, RBCV was found to be 
higher, sinusoidal diameter larger and functional sinusoidal density lesser than in 
patients without parenchymal damage (Table 6). A lesser functional sinusoidal 
density has also been observed in a steatohepatitis model in mice 160. A lesser density 
may be due to fat accumulation and fibrosis in the liver parenchyma that results in 
a larger distance between vessels.  

We found a higher RBCV in patients with liver parenchymal damage, which is in 
accordance with a study on cirrhotic rats 235. On the contrary, a slower RBCV has 
been observed in animal studies of steatohepatitis and steatosis 160,161,236. These 
studies were made using different measurement techniques, which may contribute 
to the differences. Moreover, there is a large difference in reported RBCV in human 
and rat livers among previous studies 190,194,231,237,238. Our findings on pre-resection 
RBCV are lower than most previous studies on humans, but concordant or even 
higher than studies on rats. 

The group of patients with histological liver parenchymal damage was heterogenous 
as it consisted of patients with different combinations of steatosis, steatohepatitis, 
SOS, and fibrosis. Due to the small number of patients with parenchymal damage 
(n=11), the specific histological patterns could not be investigated separately. 
Despite this, on a group level, SDF imaging seems to be useful in detection of 
microcirculatory changes associated with liver parenchymal damage.  

Methodological considerations and limitations 

Hepatic microcirculation can be affected by various systemic parameters. To check 
if differences in microcirculatory measurements were dependent on differences in 
systemic blood circulation, the central venous pressure and the mean arterial 
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pressure at the time of measurement were recorded for each patient. In the study, no 
correlations between microcirculatory measurements and central venous pressure or 
mean arterial pressure were found.  

The SDF imaging method is sensitive to motion artifacts. In intraoperative liver 
microcirculatory measurements, motion artifacts are generated by respiratory 
movements and heart movements. To control respiratory movement, all 
measurements were conducted during apnea. Movement artifacts because of heart 
movements were handled with post-processing image stabilization.  

Furthermore, the contact between the SDF imaging probe and the liver tissue can 
cause pressure-related changes in microcirculatory flow. It is important that the 
probe is only gently applied to the liver surface, applying as little pressure as 
possible when conducting measurements.  

Another limitation is that SDF imaging has a focus depth of approximately 1 mm 
239. This has two implications. First, the liver capsule had to be removed in a 2 x 2 
cm area to get the probe in close contact with the hepatic parenchyma. Second, only 
the subsurface microcirculation can be assessed with this method. Some previous 
authors have argued that the liver blood flow is macroscopically homogenously 
distributed 240,241. However, if this also applies to the parenchymal microcirculation 
in patients with CRLMs is not known.  

Perioperative liver and spleen elastography  

In study III, we investigated changes in liver and spleen stiffness in patients 
undergoing a liver resection for hepatic tumors and if tissue stiffness differed 
between patients treated with preoperative chemotherapy and others. The liver 
remnant stiffness increased by 42 (IQR 33-71) % in patients undergoing a major 
resection, compared to 4 (-16-24) % in patients undergoing a minor resection. A 
possible explanation to the increase in liver remnant stiffness after a major resection 
is a postoperative increase in hepatic blood flow that causes congestion in the liver 
remnant. Accordantly, an increase in portal pressure has been observed after 
hepatectomy in living donors 204. Also, in study II, RBVC was found to increase 
after a liver resection. In comparison, increased liver stiffness has been observed in 
patients with acute decompensated heart failure and in patients with extrahepatic 
biliary obstruction 242,243. However, portal blood flow or pressure were not measured 
in study III, and the underlying cause of the increased stiffness is not proven by this 
study.  

Also, spleen stiffness increased more after a major resection than after a minor 
resection (Table 7). A positive correlation between spleen stiffness and portal 
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pressure has previously been observed, suggesting that changes in the splanchnic 
circulation can be assessed through measurements of tissue stiffness 204. 

CALI could worsen morbidity and mortality after a liver resection and perioperative 
identification of hepatic parenchymal injury is desirable 113,120,154. Oxaliplatin, which 
has been associated with sinusoidal congestion and SOS, has previously been shown 
to induce splenic enlargement 244. A possible consequence would be an increase in 
liver and spleen stiffness in patients treated with oxaliplatin. Contrary, in study III, 
no differences in preoperative liver or spleen stiffness were found between patients 
undergoing preoperative chemotherapy and others. Neither did patients 
preoperatively treated with oxaliplatin differ in liver or spleen stiffness compared to 
others. However, the frequency of CALI among included patients was very low, 
only one patient had steatosis, and none presented with SOS. This is a considerably 
lower frequency than observed in study II and in other studies 113,245. In accordance 
with our findings, a concurrently published study on 20 patients undergoing 
resection for CRLMs found no difference in preoperative liver stiffness between 
patients preoperatively treated with oxaliplatin and others, despite 9 patients in that 
study presented with SOS 246.  

Postoperative stiffness measurements in the liver remnant showed a trend towards 
a positive correlation between tissue stiffness and maximum postoperative increase 
in bilirubin and INR (Fig. 8). Similar results on postoperative maximum bilirubin in 
living donors has previously been reported 204. Also, high liver stiffness has been 
observed in patients with acute liver failure due to intoxication 247. In the setting of 
liver resection, PHLF has high morbidity and mortality, and early detection is of 
great importance to rapidly initiate supportive measures 115. Postoperative 
elastography of the liver remnant could potentially assist in the early detection of 
PHLF. However, further studies on the dynamics of normal and pathological liver 
stiffness after liver resection are needed before patients with pathological liver 
remnant stiffness can be distinguished.  

Methodological considerations and limitations 

Patients with liver fibrosis may have an increased liver stiffness 195. As patients with 
liver fibrosis were excluded in this study, the findings should be unrelated to 
fibrosis.   

Elastography measurement in the left liver lobe has previously been shown to result 
in higher shear wave velocities than in the right lobe, possibly due to smaller 
parenchymal volume and movement artifacts from the heart 248. The same finding 
was made in our study. In patients undergoing a liver resection in the right liver 
lobe, comparative measurements before and after liver resection were made in the 
left liver lobe, which may contribute to differences in absolute tissue stiffness. 
Because of this, relative changes in the liver remnant stiffness were investigated in 
the study analysis.   
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Moreover, postoperative elastography was conducted only once postoperatively, in 
general on postoperative day two. A previous study, that conducted elastography in 
liver remnants after hepatectomy in living donors, made multiple postoperative 
measurements and found liver stiffness to peak on postoperative day 3-5 204. The 
findings in our study could have been affected by the timing of the measurements. 
Conducting multiple postoperative measurements may further explain the relation 
between the liver remnant stiffness and the dynamics of postoperative increase in 
bilirubin and INR. 

Skeletal muscle depletion during neoadjuvant 
chemotherapy and preoperative sarcopenia 

Study IV presents evidence of patient skeletal muscle loss during neoadjuvant 
chemotherapy for CRLMs. SMI decreased in median 5.5 (IQR -1.1-11) %. This is 
in accordance with a study of patients with metastatic colorectal cancer who 
decreased 6.1 % in muscle area during 3 months of palliative chemotherapy and a 
study on patients with pancreatic cancer who had a mean loss in SMI of 2.5 % after 
chemoradiotherapy for a mean time of 4.2 months 216,249. 

Skeletal muscle loss >5 % did not lead to worse overall or recurrence-free survival 
after liver resection. In contrast, a worse progression-free and overall survival in 
patients with >5 % skeletal muscle loss during chemotherapy has been suggested in 
a study on patients with unresectable colorectal cancer 218. Also, in the study of 
patients with pancreatic cancer by Cooper et al 216, muscle loss affected recurrence-
free survival but not overall survival.  

However, in our study, patients with muscle loss >5 % during neoadjuvant 
chemotherapy were less likely to undergo adjuvant chemotherapy (68 vs. 85 %, 
p=0.048). Skeletal muscle depletion may indicate poor performance status, which 
may make it more likely not to consider the patient for adjuvant chemotherapy. 
When studying all patients, failure to receive adjuvant chemotherapy resulted in 
worse overall survival.  

When studying both patients receiving neoadjuvant chemotherapy and those who 
did not, patients with preoperative sarcopenia had a worse overall survival. 
Preoperative sarcopenia in patients with CRLMs has previously been suggested to 
worsen both overall and progression-free survival 212. Similar results have been 
found in patients with hepatocellular carcinomas 250.  

The prevalence of preoperative sarcopenia in patients with CRLMs differs in 
available studies, with frequencies ranging from 17-68 % 212,213,251,252. In our study, 
65.3 % of patients were considered to have preoperative sarcopenia. Sarcopenia 
increases with age, and the current study population is older than in studies with a 
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lower frequency, which may explain the difference 253. In addition, different studies 
use different definitions of sarcopenia, making results more difficult to compare. 
Study IV uses the definition that has been used by most authors 254.  

Accepting that sarcopenia results in worse outcome after liver resection for CRLMs, 
it is logical that efforts should be made to prevent the development of sarcopenia 
during neoadjuvant chemotherapy. However, if perioperative sarcopenia is 
preventable is not known. A randomized controlled trial including patients 
scheduled for surgery of CRLMs evaluated oxygen uptake during exercise and 
quality of life after a four-week physical exercise program 255. Both oxygen uptake 
and quality of life improved after training but no effect on surgical outcome was 
found. Despite this, this implies that exercise can be beneficial in improving the 
perioperative care of cancer patients.  

Methodological considerations and limitations 

Limitations to study IV include its retrospective method, where only patients that 
had a curative liver resection were investigated. Patients who underwent 
neoadjuvant chemotherapy and who, for any reason, did not undergo liver resection, 
are not accounted for. Furthermore, the study does not include a group of controls 
not receiving neoadjuvant chemotherapy. These patients do not routinely undergo 
repeated preoperative abdominal CT examinations.  

The selected cut-off of 5 % loss in muscle mass during neoadjuvant chemotherapy 
was arbitrary and an attempt to define a patient group with worse prognosis. The 
cut-off is not validated.  

Changes in ADC and pathological response after 
preoperative chemotherapy 

In study V, we investigate changes in ADC in CRLMs on diffusion-weighted MRI 
as a marker of pathological chemotherapy response. An example of ADC 
measurements before and after chemotherapy in a CRLM is presented in Fig. 11. In 
accordance with previous studies, 24/49 lesions showed pathological chemotherapy 
response 178,179,187. No differences in median absolute or relative difference in whole 
area ADC after chemotherapy between pathological responding and non-responding 
lesions were found (Table 11). In fact, both pathological responding and non-
responding lesions increased in ADC after chemotherapy.  

The underlying histological changes that account for the change in lesion ADC in 
this study are not fully known, since no analysis of tumor composition besides TRG 
was included. Previous studies have suggested that an increase in ADC may reflect 
other changes in tumor features denoting chemotherapy response than those 
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included in the TRG system, such as mucinous regression 256-258. Accordingly, an 
increase in ADC in non-resectable CRLMs after selective internal radiation therapy 
has been suggested as a marker of response and has been associated with a longer 
overall survival 259.  

Also, lesion ADC may increase due to an increase in tumor necrosis 260. Necrosis is 
common in both treated and untreated CRLMs and is not a good marker of 
chemotherapy response 164,261. Tumor necrosis is predominately located at the tumor 
center, and peripheral ADC has been suggested to better reflect tumor response than 
whole area ADC 178. However, in study V, no difference in peripheral ADC in the 
pathological responding versus non-responding lesions was found.  

 

Our findings are contrary to the findings of Boraschi et al 186, who found a linear 
correlation between the ADC difference after chemotherapy and pathological 
chemotherapy response and no ADC increase in lesions with no pathological 
response. In their study, the increase in ADC in pathological responding lesions was 
higher as compared to responding lesions in study V. Only six lesions with TRG 0-
1 were included in our study, which may contribute to the difference. In addition, 
the MRI examinations in their study were conducted using diffusion-weighted 

Figure 11. ADC measurements before (a-c) and after (d-f) chemotherapy in a colorectal 
liver metastasis. Pretreatment diffusion-weighted image with b-value = 800 s/mm2 with (a) 
whole area ROI and (b) peripheral ROI. (c) Pretreatment ADC map with peripheral ROI. 
Posttreatment diffusion-weighted image with b-value=800 s/mm2 with (d) whole area ROI 
and (e) peripheral ROI. (f) Posttreatment ADC map with peripheral ROI. Whole area A.DC 
increased from 1.10 to 1.21 10-3 mm2/s (10 %) and peripheral ADC increased from 0.989 to 
1.07 10-3 mm2/s (8%) after treatment. The lesion decreased in size from 50 mm to 33 mm 
and presented with tumor regression grade 0, no residual tumor cells. 
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imaging with b-values 0, 150, 500, 1000, 1500 s/mm2 using a 3T-scanner. If this 
contributed to the differences is uncertain.  

Both pathological responding and non-responding lesions decreased in size after 
chemotherapy, even if responding lesions decreased slightly more than non-
responding lesions. Previous studies have shown that assessment of chemotherapy 
response using tumor size is not always concordant with pathological response, 
especially when targeted therapy such as bevacizumab is used 171,172. Also, when 
assessing response per patient according to the RECIST principle, no difference was 
found, but the small number of patients may have affected the result. 

Methodological considerations and limitations 

The reproducibility of quantitative measurements between different MRI scanners 
and imaging sites is a major challenge when using ADC as an imaging biomarker. 
Measurement variability can arise from differences in scanner field strength, the 
choice of b-values, scanner-dependent gradient nonlinearity outside scanner 
isocenter and the choice of mathematical model used to calculate the ADC maps 
183,184,262. This poses a problem both when comparing the results between different 
studies and in the clinical setting, because patients with CRLMs commonly undergo 
preoperative MRI at different sites before referral to a tertiary surgical center. To 
overcome this, analyzing the change between pre- and posttreatment ADC measured 
using the same MRI scanner, instead of using single absolute ADC measurements, 
has been suggested 185. In study V, each patient underwent MRI before and after 
preoperative chemotherapy using the same MRI scanner. Also, all scanners had the 
same field strength and included diffusion-weighted imaging that used the same b-
values. These strict inclusion criteria meant that only a minority of patients who 
underwent resection for CRLMs after preoperative chemotherapy at our institution 
could be included. The small number of patients is a limitation to the study.  
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Conclusions 

The major conclusions of the studies are:  

Study I 

Preoperative chemotherapy for CRLMs negatively affects the liver volume 
regeneration after a liver resection. The sooner the resection is carried out after the 
cessation of chemotherapy, the greater the impact on regeneration.  

Patients with a transient postoperative liver insufficiency have a lower liver volume 
regeneration than others.  

Study II 

A liver resection leads to an increase in sinusoidal blood velocity. Hepatic 
microcirculation is altered in patients with liver parenchymal damage, and SDF 
imaging may be useful for intraoperative detection of these damages.  

Study III 

Liver and spleen stiffness increases after a major liver resection. The usage of 
perioperative point shear wave elastography in detection of PHLF and CALI needs 
further investigation.  

Study IV  

Patients lose muscle mass during neoadjuvant chemotherapy. Low preoperative 
skeletal muscle mass is a risk factor of worse overall survival after liver resection. 
Skeletal muscle loss during neoadjuvant chemotherapy impairs the conditions for 
adjuvant chemotherapy.  

Study V 

After preoperative chemotherapy, an increase in ADC on diffusion-weighted MRI 
occurs in both pathological responding and non-responding CRLMs. There was no 
difference in changes in ADC after chemotherapy between pathological responding 
and non-responding CRLMs in this study. 
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Future perspectives 

Advances in the treatment of patients with CRLMs in the last decades have 
expanded the indications for curative intended liver resection and improved 
patients’ long-term survival. However, there are still several challenges that need to 
be addressed, especially in patients with extensive liver tumor disease. Preoperative 
chemotherapy has several advantages: prolonging progression-free survival, 
downsizing primarily unresectable metastases to make them resectable, and 
allowing for preoperative identification of patients with progressive disease and a 
poor prognosis. Still, preoperative chemotherapy can have a negative impact on the 
patient and the liver.  

In study I, we found preoperative chemotherapy to affect the liver volume 
regeneration after liver resection. In addition, we found that the duration between 
chemotherapy cessation and surgery impacted the reduction in liver regeneration. 
This finding could imply that reversable effects of chemotherapy on the liver 
parenchyma accounts for the reduction in liver volume regeneration and emphasizes 
the importance of continuing to have a time interval without chemotherapy before 
liver resection is performed. However, the underlying mechanism of this effect is 
not fully understood. Further studies should investigate in what way chemotherapy 
affects the regeneration process and to what extent CALI mediates the negative 
effects on liver regeneration. Also, in addition to measuring liver volume 
regeneration, the restoration of liver function should also be investigated. 

Perioperative measurements in the liver parenchyma during liver resection can 
provide important information about the dynamics of the perioperative changes that 
occur in both normal liver parenchyma and in livers with parenchymal injury and a 
risk of PHLF. In study II and III we studied perioperative changes in hepatic 
microcirculation and liver and spleen stiffness using SDF imaging and point shear 
wave elastography. Even if SDF imaging seems to be useful in intraoperative 
detection of microcirculatory changes associated with liver parenchymal damage, 
studies including more patients with CALI is needed to evaluate the true usefulness 
of SDF imaging for detection of liver parenchymal damage. 

Point shear wave elastography is an easy and available method for measurement of 
liver stiffness in the perioperative setting. Future studies including volumetric 
measurements of the liver and conducting repeated measurements during the 
postoperative course after a liver resection could further clarify the relation between 
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tissue stiffness and changes in liver biochemistry and factors related to liver 
regeneration. This may allow for early detection of signs of PHLF.  

In study IV, we found skeletal muscle depletion in patients undergoing neoadjuvant 
chemotherapy, leading to lower preoperative patient skeletal muscle mass, which is 
a known factor of worse surgical outcome after liver resection. This calls for 
preventive measures during preoperative chemotherapy and before liver resection. 
Studies on physical training and prehabilitation programs aimed to prevent muscle 
loss will demonstrate whether skeletal muscle depletion is preventable and if 
surgical outcome can be improved.  

Moreover, accurately assessing the chemotherapy response preoperatively could 
allow for optimization of the treatment plan for patients not responding to initial 
treatment. In study V, we investigated ADC as a marker of pathological 
chemotherapy response in CRLMs and found that both pathological responding and 
non-responding lesion increased in ADC after chemotherapy. This result is contrary 
to previous findings. Thus, the usefulness of ADC in assessing pathological 
chemotherapy response needs further investigation. Including comparisons between 
ADC changes and histopathological analyses of tumor composition could explain 
the relation between them.  
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