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Populärvetenskaplig sammanfattning 

Magnetisk resonanstomografi (MR) tar bilder av människokroppens insida. MR-kamerans 
starka magnetfält skapar en magnetisering av kroppens vattenmolekyler som med hjälp av 
radiovågor fås att generera en bildsignal. Jämfört med datortomografi ger MR en överlägsen 
bildkontrast av hjärnan och utsätter den inte för farlig strålning. Med hjälp av ett stort antal 
bildsekvenser och ‘viktningar’ kan man också via MR få bildkontraster som återspeglar olika 
vävnadsegenskaper. 

Diffusionsviktad MR (dMRI) ger en bildkontrast som återspeglar de kontinuerliga 
slumpmässiga (diffusiva) rörelserna hos kroppens vattenmolekyler. Eftersom dessa rörelser 
påverkas av tätheten och formen av cellmembran fångar dMRI vävnadens struktur på 
mikrometerskalan. Detta används kliniskt, till exempel, för att kartlägga kopplingar i 
hjärnans vitvävnad inför kirurgi eller för att snabbt detektera stroke. dMRI används också 
inom medicinsk forskning och neurovetenskap för att utforska mikroskopiska processer i 
både den normala och den sjuka hjärnan. 

Det finns sedan länge en förhoppning om att i detalj kunna beskriva hjärnans 
mikroskopiska sammansättning med hjälp av dMRI—att kunna skatta form och täthet av 
hjärnans nervceller som en form av icke-invasivt vävnadsprov. Detta är dock behäftat med 
stora utmaningar. Till exempel bygger dagens modeller av hjärnans mikrostruktur på osäkra 
antaganden. Vidare baseras tolkningen av dMRI på närvaron av kraftigt olikriktad 
(anisotrop) diffusion, men det är inte klarlagt vilka strukturer som bidrar till detta. Diffusion 
leder dessutom till ett konstant utbyte av vatten mellan olika mikroskopiska miljöer, men 
detta tas normalt inte hänsyn till i tolkningen av dMRI. 

Denna avhandling söker utforska och förbättra tolkningen av dMRI med hjälp av nya 
‘multidimensionella’ dMRI-metoder. Dessa metoder kombinerar olika sekvensparametrar för 
att ta fram ny information om vävnaden. Multidimensionell dMRI kan, till exempel, skilja 
mellan cellform och variation i celltäthet i hjärnans komplexa gråvävnad, separera bidragen 
från mikroskopiska vävnadskomponenter med olika kemiska egenskaper, eller detektera och 
mäta diffusivt vattenutbyte. 
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1 Introduction  

Diffusion MRI (dMRI) is a non-invasive probe of brain tissue microstructure (Le Bihan 
2003). By using magnetic field gradients to manipulate the magnetization of diffusing water 
protons (Stejskal et al. 1965b), diffusion-weighted MRI pulse sequences encode the random 
displacements of water molecules within a time window of milliseconds. In brain tissue, these 
displacements are determined by the shape and densities of cell membranes (Beaulieu 2002). 
The sensitivity of dMRI to tissue microstructure has had an important clinical impact 
(Sundgren et al. 2004). For example, dMRI captures early changes associated with ischemic 
stroke (Moseley et al. 1990, Albers 1999) and maps sensitive white matter connections in 
surgical planning (Mori et al. 1999, Romano et al. 2009). dMRI has also been widely used 
in research, for example, to detect microstructural alterations in the brain both due to 
disease (Werring et al. 1999, Horsfield et al. 2002, Goveas et al. 2015) and normal processes 
such as maturation (Lebel et al. 2008, Löbel et al. 2009) and learning (Scholz et al. 2009, 
Sagi et al. 2012, Zatorre et al. 2012). 

It is a long-standing promise to use dMRI for ‘in vivo histology’ and estimate specific 
brain tissue quantities such as the volume fraction (density) of axons (Alexander et al. 2019). 
A major challenge, however, is that dMRI has low specificity for any given tissue feature. 
The information on tissue microstructure that is encoded by dMRI can be captured in a few 
parameters that describe the acquired signal. For example, the mean diffusivity from 
diffusion tensor imaging (Basser et al. 1994) and the mean kurtosis from diffusion kurtosis 
imaging (Jensen et al. 2005) capture the signal’s initial slope and curvature with respect to 
the encoding b-value, respectively. These parameters reflect many microstructural features 
simultaneously and do not report directly on any tissue quantity. For example, a change in 
the mean kurtosis could reflect a change in axonal density (Fieremans et al. 2011), 
myelination (Falangola et al. 2014), cell density variation (Szczepankiewicz et al. 2016b), T2 
relaxation rates (Ning et al. 2019) or diffusional exchange (Ning et al. 2018). 

Microstructure modeling, or ‘biophysical modeling,’ aims to estimate specific brain tissue 
quantities from dMRI data. The technique uses a forward model to separate the signal 
between different microstructural components, and estimates quantities associated with 
these components by fitting the model to acquired data (Nilsson et al. 2013b, Novikov et al. 
2018a, Alexander et al. 2019, Jelescu et al. 2020). The ability to estimate quantities like the 
density of ‘neurites’ (axons and dendrites combined) has made microstructure modeling very 
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popular in brain research. Models like Neurite Orientation Dispersion and Density Imaging 
(NODDI) (Zhang et al. 2012) have been used to interpret changes to brain diffusion in a 
wide variety of conditions, including: glioma brain tumors (Wen et al. 2015), ischemic stroke 
(Wang et al. 2019), multiple sclerosis (Collorone et al. 2020), cortical dysplasia (Winston et 
al. 2014) and Alzheimer’s disease (Colgan et al. 2016). However, despite the success of 
microstructure modeling, several important challenges remain in the interpretation of dMRI data. 

Microstructure models require assumptions to separate the contributions from different 
tissue features to the dMRI signal. For example, models use parameter constraints that fix 
or interrelate the diffusion properties of different microstructural components (Jelescu et al. 
2016a, Novikov et al. 2018b). In conditions where the assumptions do not hold true, they 
may bias the estimated parameters and cause errors in interpretation. For example, studies 
using NODDI have reported elevated neurite densities in the enhancing parts of high-grade 
gliomas (Wen et al. 2015, Zhao et al. 2018), where few neurites are expected 
(Szczepankiewicz et al. 2016b). Also, applying NODDI to acute ischemic stroke has 
suggested a sharp increase in the neurite density in the lesions (Caverzasi et al. 2016, Wang 
et al. 2019). To obtain parameters that are less susceptible to bias requires models based on 
fewer assumptions. However, to simply remove model assumptions generally results in 
degeneracy in model fitting (Jelescu et al. 2016a, Novikov et al. 2018b), meaning that the 
model parameters cannot be uniquely determined by the data. Thus, to reduce the risk of 
erroneous interpretations, model assumptions need to be replaced with independent data. 

The interpretation of dMRI data in terms of ‘neurites’ is based on the property of 
microscopic diffusion anisotropy. However, this connection has not been experimentally 
established. Microscopic diffusion anisotropy is induced by environments where obstructions 
cause the rate of diffusion to be different across directions (Chenevert et al. 1990, Moseley 
et al. 1991). In white matter, a high level of microscopic anisotropy has been associated with 
the presence of axons (Beaulieu et al. 1994a, Beaulieu et al. 1994b, Beaulieu 2002)—
reflecting a diffusional displacement that is free in the parallel direction but restricted by 
cell membranes in the perpendicular direction (McKinnon et al. 2017, Veraart et al. 2019). 
Accordingly, microstructure models of white matter represent axons with a ‘stick’ 
component with completely anisotropic diffusion (Behrens et al. 2003). When microstructure 
models have been extended to gray matter, the ‘stick’ component has been interpreted as 
representing neurites and thus dendrites as well as axons (Jespersen et al. 2007, Jespersen 
et al. 2010, Zhang et al. 2012, White et al. 2013, Kaden et al. 2016). This assumes that 
dendrites induce a similarly high microscopic anisotropy as axons, based on the rationale 
that both these structures are elongated membranous processes with small diameters. 
However, the evidence that dendrites do induce high microscopic anisotropy is inconclusive 
(Jespersen et al. 2007, Jespersen et al. 2010, Lawrenz et al. 2018, Novikov et al. 2018b, Veraart 
et al. 2020). Thus, the source of microscopic anisotropy in the brain needs to be elucidated. 
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The interpretation of dMRI data does typically not account for diffusional exchange, 
which refers to mixing of water molecules between different microscopic environments. The 
effects of diffusional exchange on dMRI data range between negligible and dramatic 
depending on the rate of exchange versus the timing of the experiment (Harkins et al. 2009). 
Although exchange of water occurs continuously in brain tissue (Amiry-Moghaddam et al. 
2003), the evidence for its impact on dMRI in human brain is inconclusive. On the one 
hand, several studies have indicated negligible diffusion time dependence in normal brain 
(Clark et al. 2000, Clark et al. 2001, Lätt et al. 2009, Nilsson et al. 2009). On the other 
hand, diffusional exchange has been demonstrated in normal brain (Nilsson et al. 2013a, 
Nedjati-Gilani et al. 2017, Li et al. 2021) as well as in brain tumors (Nilsson et al. 2013a), 
ischemic stroke (Lätt et al. 2009) and multiple sclerosis (Nedjati-Gilani et al. 2017). Thus, 
to avoid interpretation errors or missing out on potentially clinically useful information, the 
role of diffusional exchange needs to be further investigated. 

Multidimensional dMRI is an umbrella term for dMRI techniques that vary experimental 
parameters beyond the conventional b-value (Topgaard 2017, de Almeida Martins et al. 
2018, Benjamini et al. 2020). This encodes additional tissue information into the data and 
allows the separation of features that are otherwise entangled. For example, most dMRI 
studies still use the diffusion-encoding design introduced by Stejskal et al. (1965b), which is 
also referred to as single diffusion encoding (SDE) (Shemesh et al. 2016). Because SDE only 
applies diffusion-encoding gradients in a single direction per signal readout, it entangles the 
shape of microscopic structures with their dispersion in orientations and their variance in 
isotropic diffusivities (Mitra 1995). Tensor-valued diffusion encoding separates these features 
by using gradient waveform designs to apply diffusion encoding in multiple directions per 
readout (Jespersen et al. 2013, Lawrenz et al. 2013, Lasič et al. 2014, Szczepankiewicz et al. 
2015, Szczepankiewicz et al. 2016a, Szczepankiewicz et al. 2021). We refer to this as varying 
the shape of the b-tensor (Westin et al. 2014, Westin et al. 2016). Also, dMRI data is 
typically acquired using a single echo time. This entangles the volume fractions of tissue 
components with their signal contributions due to their T2 relaxation rates (Paper III). 
Diffusion-relaxation MRI separates these features by acquiring dMRI data using multiple 
echo times (Beaulieu et al. 1998, Clark et al. 2000, Does et al. 2000, Benjamini et al. 2016, 
Veraart et al. 2017, de Almeida Martins et al. 2018, Ning et al. 2019, Slator et al. 2019). 
Furthermore, accounting for diffusional exchange is possible with SDE using multiple 
diffusion times (Kärger 1985). However, such data entangle diffusional exchange with 
restricted diffusion (Nilsson et al. 2009). Filter exchange imaging (FEXI) isolates the effects 
of exchange by using a double diffusion-encoding (DDE) design and varying the mixing time 
(Åslund et al. 2009, Lasič et al. 2011, Nilsson et al. 2013a). 
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In this thesis, we investigated four gaps in the current knowledge: First, to what degree 
do the additional data from multidimensional dMRI alleviate the need for assumptions in 
microstructure models? Second, to what extent can the interpretations suggested for 
microstructure model parameters be trusted? Third, what is the source of microscopic 
diffusion anisotropy in the brain? Fourth, what is the impact of diffusional exchange on 
dMRI in normal brain, and what is its clinical potential in intracranial tumors and in 
ischemic stroke? Our approach was to combine different multidimensional dMRI techniques 
in normal human brain and in brain pathologies. To this end, we used tensor-valued diffusion 
encoding, diffusion-relaxation MRI, SDE with multiple diffusion times, and FEXI to acquire 
data from normal brain tissue, white matter lesions, intracranial tumors, malformations of 
cortical development, and ischemic stroke. 
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2 Aims 

The central subject of this thesis concerns the use of multidimensional dMRI to probe the 
microstructure of the living human brain. The thesis is structured around two main parts. 
The background part (Chapters 3–7) reviews important concepts on brain tissue 
microstructure, diffusion in a heterogeneous environment, diffusion encoding, and 
microstructure modeling. The results part (Chapters 8–12) reports, extends, and discusses 
results from Papers I–VI concerning the aims listed below. 

The aims of this thesis were: 
 

• To explore how multidimensional dMRI data alleviate the need for model 
assumptions on diffusion and T2 relaxation, and to remove assumptions in vivo 
using efficient acquisition protocols (Papers II, III and IV). 

• To investigate to what extent the interpretations suggested for microstructure 
model parameters can be trusted (Papers II, III and IV). 

• To investigate the source of microscopic diffusion anisotropy in the brain  
(Papers II, III, IV and V). 

• To assess the impact of diffusional exchange on dMRI in normal brain and to 
explore its clinical potential in intracranial tumors and ischemic stroke  
(Papers I and VI). 
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3 Brain tissue microstructure 

Brain tissue microstructure primarily concerns the shape and density of cell membranes. It 
is a topic in-between neuroanatomy—which describes nervous structures on the centimeter-
to-millimeter scale—and brain tissue ultrastructure, which describes subcellular structures 
on the nanometer scale. 

3.1 Microstructural components of brain tissue 

Key components of brain tissue microstructure are illustrated in Figure 3.1 and are reviewed below. 

3.1.1 The neuron 

The neuron is the principal cell of the nervous system and is specialized to receive, generate, 
and conduct electrical signals (Clark et al. 2010). The brain has two main types of neurons: 
the larger pyramidal neurons that form long-range connections between different parts of 
the nervous system, and the smaller stellate neurons that form short-range connections 
within local neural circuits (Braitenberg et al. 2013). 

The neural cell bodies (soma, Figure 3.1A) have diameters between a few micrometers 
for stellate cells to between 10 and 100 µm for pyramidal cells (Braitenberg et al. 2013). The 
soma contains the nucleus whose dark genetic substance yields gray matter its appearance 
to the naked eye. The soma also features membranous processes in the form of multiple 
signal-receiving dendrites and one signal-conducting axon (Clark et al. 2010). Dendrites form 
branching structures that, for pyramidal neurons, measure a few 100 µm between base and 
tip, have an average segment length of 80 µm between branch points, and diameters from 
10 µm at the base to between 0.5 and 2 µm at the distal end (Bennett 2013). The axon is a 
long a long process that originates from the soma at a region referred to as the axon hillock 
(Clark et al. 2010) and continues into white matter (pyramidal axons) or remains in gray 
matter (stellate axons). Axons in the gray matter of the cerebral cortex are highly branching 
and largely consist of thin collaterals with an average diameter of 0.4 µm (Bennett 2013). 
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Figure 3.1 | Microstructural components of brain tissue. A) Gray matter contains the neurons’ cell bodies (soma) 
with multiple dendrites and a single axon. The end-processes of axons (boutons) and dendrites (spines) form 
synaptic terminals that are enveloped by the end-feet of astrocyte glial cells. B) White matter contains axons 
covered by myelin sheaths from oligodendrocytes. Compacted membrane folds (myelin lipid) are wrapped around 
the axolemma and separated by narrow spaces (myelin water, excaggerated for ilustration). Pie charts show tissue 
component volume fractions from histology (Section 3.2). 
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3.1.2 The synaptic terminal 

The dendrites of pyramidal cells and of most stellate cells are densely populated with up to 
5000 ‘spines’—end-processes up to 3 µm long and 0.5 µm wide with a thin neck and a 
bulbous head (Figure 3.1A) (Bennett 2013). The most distal parts of axon collaterals branch 
further and form ‘boutons’—end-processes approximately 0.6 µm in diameter (Bennett 
2013). The spines and boutons combine to form synaptic terminals—the sites of the 
electrochemical couplings (synapses) that convey signals between neurons. Upon sufficient 
excitatory stimulation by axons, the soma generates an action potential at the axon hillock 
to form a new signal that is conducted distally along the axonal membrane (axolemma) and 
eventually reaches other neurons (Clark et al. 2010). 

3.1.3 Myelinated axons 

Myelinated axons are the principal component of white matter, where they form long-
distance connections for rapid electric signalling between different cortical and subcortical 
structures (Clark et al. 2010). The high lipid content of the myelin sheaths yields white 
matter its appearance to the naked eye. Myelinated axons are present also in gray matter 
and in the cortex, where they appear on myelin stains as radial and tangential bands (with 
respect to the cortical surface) (Vogt 1910). 

Myelin is produced by oligodendrocytes, a type of glial cells that have a cell body 
approximately 6–8 µm in diameter and a few membranous processes that may provide up 
to 60 myelin sheaths (Figure 3.1B) (Edgar et al. 2009). The myelin sheaths line up along 
the length of the axons with each internode covering between 100 and 1700 µm of axolemma 
(Hildebrand et al. 1993). The sheaths are separated by the 1–5 µm-wide nodes of Ranvier, 
where the axolemma is dense with ion channels that allow the propagation of action 
potentials (Trapp et al. 2004). Each myelin sheath consists of membrane folds that wrap 
around the axolemma up to 160 times to form a concentric spiral structure (Figure 3.1B) 
(Hildebrand et al. 1993). The myelin sheath’s membranous, or lipid, portion is mostly 
compact with no remaining cytoplasm. It functions as an electrical insulator that increases 
the axon’s conduction speed between 10- and 100-fold (Trapp et al. 2004). The myelin 
sheath’s water portion is the narrow space between folds where the myelin is not fully 
compact (Edgar et al. 2009). 
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3.1.4 Astrocytes 

Astrocytes are a type of glial cells that have a cell body approximately 9 µm in diameter 
and many membranous processes (McCaslin et al. 2011). In gray matter, the end-processes 
(end-feet) of protoplasmic astrocytes envelop all synaptic terminals (Figure 3.1A) where 
they support synaptic activity by regulating the extracellular balance in ions and 
neurotransmitters (Sofroniew et al. 2010). In white matter, fibrous astrocytes occupy the 
extracellular space between myelinated axons and contact the nodes of Ranvier with their 
long processes (Figure 3.1B) (Sofroniew et al. 2010). 

3.2 Volume fractions of microstructural components 

Approximate estimates of the volume fractions occupied by different microstructural 
components in brain tissue are reported from animal histology below and in Figure 3.1. 

For cortical gray matter, volume fraction estimates from electron microscopy in mice are 
shown in Figure 3.1A (Ikari et al. 1981, Schüz et al. 1989, Chklovskii et al. 2002, Kasthuri 
et al. 2015). Neurites occupied almost two thirds of the space, with an even split between 
axons (30%) and dendrites (30%). The remaining space was occupied by neurite 
projections—dendritic spines and axonal boutons (13%)—as well as glial cells (10%), soma 
(8%), extracellular space (5%) and blood vessels (4%). 

For white matter, volume fraction estimates from electron and light microscopy in guinea 
pigs, rats, macaque, and mice are shown in Figure 3.1B (Perge et al. 2009, Xu et al. 2014, 
Stikov et al. 2015, Jelescu et al. 2016b). Myelinated axons occupied approximately two 
thirds of the space, with an even split between intra-axonal space (34%) and myelin (34%). 
The composition of the remaining space is not detailed in all studies, although some report 
intra-axonal space of unmyelinated axons (15%) (Jelescu et al. 2016b), cell bodies and 
processes of astrocytes and oligodendrocytes (41%) (Perge et al. 2009) and extracellular 
space (2%) (Perge et al. 2009). According to PET data, white matter is composed of 2–3% 
blood vessels (Leenders et al. 1990). 

The above numbers should be interpreted with caution. First, they are from studies on 
animals and not humans. Second, volume fractions in MRI voxels may be smaller due to 
partial volume effects with cerebrospinal fluid (CSF). Such partial volume effects are mostly 
expected in the cerebral cortex and periventricular white matter, although small amounts 
of CSF are present throughout brain tissue within the perivascular spaces surrounding blood 
vessels (Sepehrband et al. 2019). Third, the cortex is not homogeneous but features six 
histologically distinct layers with different microstructural composition (Bennett 2013). 
However, this layering is not resolved in the millimeter-sized voxels of clinical dMRI.  
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Fourth, the volume fractions of extracellular space reported in histology are markedly 
smaller than the approximately 20% estimated in vivo using tracer-diffusion studies (Syková 
et al. 2008). This may reflect negative bias of histology estimates from fixation-induced 
swelling (Van Harreveld et al. 1965) or positive bias of tracer-diffusion estimates from 
conflating extracellular space with astrocytes that are interconnected by gap junctions 
(Sofroniew et al. 2010). 

3.2.1 The volume fractions associated with myelinated axons 

The volume fraction of myelinated axons (𝑣MA) is a composite quantity (Figure 3.1B). It is 
related to the volume fractions of the intra-axonal space (𝑣IA), myelin (𝑣M), myelin lipid 
(𝑣ML) and myelin water (𝑣MW), according to 
 

𝑣MA = 𝑣IA + 𝑣M, where 
𝑣M = 𝑣ML + 𝑣MW. (3.1) 

The volume fractions of intra-axonal space (𝑣IA) and myelin (𝑣M) are related by the g-
ratio between the (inner) diameter of the axolemma (𝑑) and the (outer) diameter of the 
myelin sheath (𝐷, Figure 3.1), according to  
 

𝑔 = √
𝑣IA

𝑣IA + 𝑣M
= √

𝑣IA
𝑣MA

= 𝑑
𝐷

, (3.2) 

assuming parallel and cylindrical structures. The g-ratio theoretically has a range from zero 
(only myelin) to unity (no myelin). In human white matter, estimates of the g-ratio are 
approximately 0.6, possibly reflecting an optimal balance between conduction speed and size 
restrictions (Rushton 1951, Perge et al. 2009). 

The volume fractions of myelin lipid (𝑣ML) and myelin water (𝑣ML) are expected to be 
proportional, although no clear relation has been established. Stikov et al. (2015) combined 
magnetization-transfer MRI with electron microscopy in the corpus callosum of the macaque 
to estimate 𝑣ML ≈ 1.6𝑣MW . With an estimated myelin volume fraction 𝑣M ≈ 0.4, this 
corresponded to 𝑣ML ≈ 0.25 and 𝑣MW ≈ 0.15. Furthermore, an estimated intra-axonal 
volume fraction 𝑣IA ≈ 0.3 yielded a total volume fraction of myelinated axons 𝑣MA ≈ 0.7.  
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4 Mathematical concepts 

This chapter defines important mathematical concepts and relationships that simplify the 
reading of the subsequent chapters. The first section defines tensors and tensor operators, 
which are later used to describe diffusion and tensor-valued diffusion encoding. The second 
section defines moments and cumulants of probability distributions, which are later used to 
describe diffusion tensors and relaxation rates, as well as the precession phase, displacement, 
and velocity of spins. 

4.1 Tensor algebra 

Tensors are mathematical objects composed of scalar elements that describe multilinear 
relationships (Comon 2014). This thesis considers tensors of four different orders, which is 
the number of indices required to specify an element. Zeroth-order tensors are scalars 
represented by italic letters, for example; diffusion coefficient 𝐷𝐫 or b-tensor trace 𝑏. First-
order tensors are vectors represented by boldface lowercase letters, for example; 
displacement 𝐫 or symmetry axis 𝐮. Second-order tensors are represented by 3 ´ 3 matrices 
in boldface capital letters, for example; diffusion tensor 𝐃 or b-tensor 𝐁. Fourth-order 
tensors are represented by 3 ´ 3 ´ 3 ´ 3 matrices in blackboard bold capital letters, for 
example, diffusion covariance tensor ℂ. Tensors of unspecified order are represented by a 
roman lowercase t. 

4.1.1 Inner and outer tensor products 

The Frobenius inner product between two tensors of order > 1 is designated by the ‘double-
dot’ operator (:). For two tensors of equal order and size, it yields a scalar that equals the 
sum of the tensor elements after point-wise multiplication. For example, the inner product 
between two second-order tensors 𝐓A and 𝐓B is given by 
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𝐓A: 𝐓B = ∑ ∑ 𝑇A;𝑖𝑗𝑇B;𝑖𝑗

𝑗=1𝑖=1
. (4.1) 

The outer product between two tensors is designated by the ‘circled cross’ operator (⊗). 
For two tensors of order 𝑛 and 𝑚, it yields an 𝑛 + 𝑚 order tensor whose elements equal 
the different product combinations between the elements of the two tensors (Comon 2014). 
For example, the outer product between two second-order tensors 𝐓A and 𝐓B yields a 
fourth-order tensor with the elements 
 

(𝐓A ⊗ 𝐓B)𝑖𝑗𝑘𝑙 = 𝑇A;𝑖𝑗𝑇B;𝑘𝑙. (4.2) 

The outer product of a tensor of unspecified order with itself is written as t⊗2. 

4.1.2 Eigenvalue operators for second-order tensors 

For a second-order tensor 𝐓 with eigenvalues {λ𝑖}𝑖∈{1 2 3}, the eigenvalue expectancy is a 
third of the tensor trace, according to 
 

Eλ [𝐓] = 1
3

∑ λ𝑖

3

𝑖=1
, (4.3) 

and the population variance of the eigenvalues is defined as (Westin et al. 2016) 

Vλ[𝐓] = 1
3

∑(λ𝑖 − Eλ[𝐓])2
3

𝑖=1
. (4.4) 

The eigenvalue variance can be determined without calculating the eigenvalues, according 
to Vλ[𝐓] = 𝐓⊗2: 𝔼shear , where 𝔼shear is the ‘shear’ component of the fourth-order unit 
tensor 𝔼I (Westin et al. 2016). 

4.1.3 Parameterization of axisymmetric second-order tensors  

An axisymmetric second-order tensor represented by a 3 ´ 3 matrix has four degrees of 
freedom. By eigendecomposition, these degrees of freedom specify two rotationally invariant 
eigenvalues—the radial eigenvalue 𝑇⊥  (duplicate) and the axial eigenvalue 𝑇||  (non-
duplicate unless 𝑇∥ = 𝑇⊥)—as well as two spherical coordinate angles for the rotational 
symmetry axis 𝐧.  
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We re-parameterize the two tensor eigenvalues as in Eriksson et al. (2015) (Figure 4.1) 
in terms of the tensor ‘size,’ the eigenvalue expectancy, given by 
 

𝑇I = Eλ[𝐓] = 1
3 (𝑇∥ + 2𝑇⊥), (4.5) 

and the tensor ‘shape,’ a normalized eigenvalue standard deviation given by  
 

𝑇∆ = √ Vλ [𝐓]
2Eλ[𝐓]2

=
𝑇∥ − 𝑇⊥

3𝑇I
. (4.6) 

Equivalently,  
 

𝑇⊥ = 𝑇I(1 − 𝑇∆) and 
𝑇∥ = 𝑇I(1 + 2𝑇∆). (4.7) 

In the principal axis system where 𝐓 is diagonal,  
 

𝐓 = 𝑇I
3 [𝐈 + 𝑇∆ ∣

−1 0 0
0 −1 0
0 0 2

∣], (4.8) 

where 𝐈 is the identity matrix. 

 

Figure 4.1 | The rotationally 
invariant properties of 
axisymmetric second-order 
tensors are represented by the 
(isotropic) tensor size (𝑇I) and the 
(anisotropic) tensor shape (𝑇∆ ). 
The tensor size has the unit of the 
tensor elements and ranges 
between zero and arbitrarily large. 
The tensor shape is dimensionless 
and ranges between −0.5 
(planar), through 0 (spherical) to 
1 (linear), with the intermediate 
values corresponding to 
oblate (−0.5 < 𝑇∆ < 1) and 
prolate (0 < 𝑇∆ < 1) shapes. 
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4.2 Moments and cumulants of probability distributions 

For a probability distribution 𝑃 (t) of a stochastic tensor variable t, the first raw moment 
is the mean, given by (Kollo 2005) 
 

〈t〉 = ∫ t𝑃 (t) dt. (4.9) 

The mean defines the distribution’s central moments 𝑚𝑛 according to  
 

𝑚𝑛 = ∫(t − 〈t〉)⊗𝑛𝑃 (t) dt. (4.10) 

The second central moment 𝑚2 is the distribution variance, given by 
 

V[t] = 〈t⊗2〉 − 〈t〉⊗2. (4.11) 

The distribution’s cumulants 𝑐𝑛  are related to its central moments. For the first four 
cumulants 
 

𝑐1 = 𝑚1, 
𝑐2 = 𝑚2, 
𝑐3 = 𝑚3, and 
𝑐4 = 𝑚4 − 3𝑚2

⊗2. 

(4.12) 
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5 Description of diffusion 

Diffusion, or ‘self-diffusion’, of water refers to the continuous thermal motion of water 
molecules that does not result in net transport (Minati et al. 2007). The displacement path 
of a diffusing water molecule is shaped by constant collisions and referred to as a ‘random 
walk.’ The diffusional displacement for a single molecule during a given ‘diffusion time’ 𝑇d  
is a stochastic variable 𝐫(𝑇d) = 𝐫1 − 𝐫0 described by a probability distribution 𝑃 (𝐫|𝑇d), 
referred to as the diffusion propagator. 

All work in this thesis assumes diffusion in ‘Gaussian environments,’ meaning that the 
diffusional displacements are described by a Gaussian propagator 𝑃 (𝐫|𝑇d). For this to hold 
true, the displacements must be unrestricted (not fully confined) as well as homogeneous 
with respect to 𝑇d . Homogeneity means that barriers within the environment affect all 
diffusing particles similarly during 𝑇d . It can be expressed mathematically as 𝜏c ≪ 𝑇d , 
where 𝜏c is the ‘characteristic time’ required for the initial and final velocities of a diffusing 
particle to become statistically independent. By this property, the displacement 𝐫(𝑇d) is a 
sum of many small independent displacements and the propagator 𝑃 (𝐫|𝑇d) is a Gaussian 
function by the central limit theorem (Van Kampen 1992). Investigation of the limits of 
assuming Gaussian diffusion in dMRI of the human brain is ongoing work (Henriques et al. 
2020, Lee et al. 2020). 

In this chapter, we describe diffusion in a single Gaussian environment by a diffusion 
tensor and then describe diffusion in an ensemble of Gaussian environments by a diffusion 
tensor distribution (DTD).  



34 

5.1 A single Gaussian environment: The diffusion tensor 

In a Gaussian environment, diffusional displacement during the diffusion time 𝑇d  is 
described by a propagator on the form  
 

𝑃 (𝐫|𝑇d) = 1
√|𝐃|(4π𝑇d)3

 exp (− 𝐫⊗2: 𝐃−1

4𝑇d
),  (5.1) 

where |𝐃| and 𝐃−1are the determinant and inverse of the diffusion tensor 𝐃, respectively 
(Minati et al. 2007). The diffusion tensor is a symmetric positive-definite 3 ´ 3 matrix given 
by (Boss et al. 1965, Basser et al. 1994) 
 

𝐃 =
⎝
⎜⎜⎛

𝐷xx 𝐷xy 𝐷xz
𝐷yx 𝐷yy 𝐷yz
𝐷zx 𝐷zy 𝐷zz⎠

⎟⎟⎞. (5.2) 

This thesis considers axisymmetric diffusion tensors with rotationally invariant properties 
parameterized by the tensor size (isotropic diffusivity) 𝐷I (Eq. 4.5) and the tensor shape 
(anisotropy) 𝐷∆ (Eq. 4.6; Figure 4.1) (Eriksson et al. 2015). 

The diffusion tensor is proportional to the variance of 𝑃 (𝐫), according to 
 

V[𝐫] = 〈𝐫⊗2〉 − 〈𝐫〉⊗2 = 2𝑇d𝐃, (5.3) 

where 〈𝐫〉 = 0 by the condition of zero net transport. In any normalized direction 𝐮, the 
diffusion coefficient, or diffusivity, with unit m2/s describes the rate of mean squared 
displacement, according to  
 

𝐷u = 𝐮⊗2: 𝐃 = 〈𝑟u
2〉

2𝑇d
. (5.4) 

The standard deviation of the displacement during 𝑇d is referred to as the ‘diffusion length,’ 
given by (Einstein 1905) 
 

𝑙u = √2𝐷u𝑇d. (5.5) 
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5.2 An ensemble of non-exchanging Gaussian environments: 
The diffusion tensor distribution (DTD) 

In an ensemble of non-exchanging Gaussian environments, the diffusional displacements in 
each environment follow a single Gaussian distribution described by a single propagator 
𝑃 (𝐫|𝑇d) (Eq. 5.1) and diffusion tensor 𝐃 (Eq. 5.2). However, the diffusional displacements 
of the whole ensemble follow different Gaussian distributions described by a DTD—a 
probability distribution 𝑃 (𝐃) over the space of diffusion tensors, where is 𝐃 a stochastic 
variable (Mitra 1995, Basser et al. 2003, Jian et al. 2007, Westin et al. 2014, Westin et al. 
2016). 

5.2.1 Statistical properties of the DTD 

The mean of the DTD is the ensemble-average diffusion tensor 〈𝐃〉. The variance of the 
DTD is given by (Eq. 4.11) 
 

V[𝐃] = 〈𝐃⊗2〉 − 〈𝐃〉⊗2 = ℂ, (5.6) 

where the 3 ´ 3 ´ 3 ´ 3 matrix ℂ is the fourth-order diffusion covariance tensor. It has 21 
unique elements comprising the variances in the 6 unique tensor elements and the 15 
covariances between these elements across 𝑃 (𝐃) (Basser et al. 2007, Westin et al. 2016). 

5.2.2 Scalar rotational invariants of the DTD 

Tensor scalar rotational invariants can be obtained by inner products with isotropic tensors 
of the appropriate order. The ensemble-average diffusion tensor 〈𝐃〉  has one scalar 
rotational invariant; its eigenvalue expectancy (Eq. 4.3), or mean diffusivity (MD), given 
by (Westin et al. 2016) 
 

〈𝐃〉:
1
3

𝐈 = Eλ[〈𝐃〉] = MD. (5.7) 

The diffusion covariance tensor ℂ has two scalar rotational invariants corresponding to inner 
products with the two orthogonal components of the fourth-order isotropic tensor 𝔼I (which 
is diagonal with the elements 1/3). The ‘bulk’ component, 𝔼bulk = 𝔼I

⊗2, yields the isotropic 
diffusional variance (𝑉I), or ‘isotropic heterogeneity’ (Szczepankiewicz et al. 2016b), according to 
(Westin et al. 2016) 
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𝑉I = 〈𝐃⊗2〉: 𝔼bulk − 〈𝐃〉⊗2: 𝔼bulk 

= 〈Eλ[𝐃]2〉 − Eλ[〈𝐃〉]2 
= V[𝐷I], 

(5.8) 

which is the ensemble-variance in the diffusion tensors’ isotropic diffusivities V[𝐷I]. The 
‘shear’ component, 𝔼shear = 𝔼I − 𝔼bulk,  yields the shear variance (𝑉S),  according to 
(Westin et al. 2016) 
 

𝑉S = 〈𝐃⊗2〉: 𝔼shear − 〈𝐃〉⊗2: 𝔼shear 
= 〈Vλ [𝐃]〉 − Vλ[〈𝐃〉] 
= 5 2⁄ 𝑉µA − 𝑉MA. 

(5.9) 

The shear variance is a composite quantity. The microscopic anisotropic diffusional variance 
𝑉µA = 2 5⁄ 〈Vλ(𝐃)〉 (Westin et al. 2016) reflects the ensemble-average of the diffusion 
tensors’ eigenvalue variances (Eq. 4.4). The macroscopic anisotropic diffusional variance 
𝑉MA = Vλ [〈𝐃〉] is the eigenvalue variance of the ensemble-average diffusion tensor and 
reflects macroscopic anisotropy like the fractional anisotropy from diffusion tensor imaging 
(Westin et al. 2016). 

5.2.3 Representation of diffusion in a voxel by a DTD 

For diffusion times between 1 and 1000 ms, and free water at 37°C with 𝐷𝑢 ≈ 3.0 µm2/ms 
(Mills 1973), the diffusion length (Eq. 5.5) ranges between 2 and 80 µm. This is several 
orders of magnitude smaller than the side of a dMRI image element (voxel), which ranges 
between 1 and 4 mm. Thus, under the assumption of no exchange between environments, 
each voxel contains a large ensemble of Gaussian environments that can be described by a 
DTD. Figure 5.1 shows two example voxels together with their corresponding DTDs and 
scalar rotational invariants. 
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Figure 5.1 | The content within a voxel described as an ensemble of Gaussian environments (represented by 
diffusion tensors) together with the corresponding DTDs and scalar rotational invariants. The volume fractions of 
the different environments are indicated by percentages. A) Voxel with two different microscopic environments: 
one ‘linear’ (red, 𝐷I = 0.80 µm2/ms, 𝐷∆ = 1) and one ‘prolate’ (green, 𝐷I = 1.00 µm2/ms, 𝐷∆ = 0.3). In this 
voxel, diffusional variance is mostly due to microscopic anisotropy (𝑉µA). B) Voxel with three different microscopic 
environments: one ‘linear’ (red, 𝐷I = 0.75 µm2/ms, 𝐷∆ = 1) and two ‘spherical’ (green, 𝐷I = 0.80 µm2/ms, 
𝐷∆ = 0; blue, 𝐷I = 3.00 µm2/ms, 𝐷∆ = 0). In this voxel, diffusional variance is mostly due to differences in 
isotropic diffusivities (𝑉I). 
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6 Encoding of diffusion in MRI 

The physical principles of MRI are described in detail in, for example, Plewes et al. (2012). 
Briefly, the strong magnetic field in the MRI scanner focuses the magnetic moments of 
proton spins and creates a net magnetization parallel to the field. To form an image signal, 
a radiofrequency (RF) pulse is applied whose frequency matches the spin precession 
frequency of water hydrogen protons. This redirects parallel magnetization to the transverse 
plane, perpendicular to the field, where it rotates and induces a detectable current within 
receive-coils. The rotational phase coherence among spins with transverse magnetization 
then decreases over time. This causes signal attenuation by destructive interference and 
yields an image contrast that depends on the ‘relaxation properties’ of tissue. In dMRI, 
magnetic field gradients are applied to induce an additional phase dispersion among diffusing 
spins to create a diffusion-weighted image contrast (Stejskal et al. 1965b, Le Bihan et al. 1986). 

6.1 The diffusion-encoding pulse sequence 

The basic composition of the spin-echo pulse sequence that is used for most dMRI 
acquisitions is illustrated in two examples in Figure 6.1. The sequence has three parts: the 
spin excitation by the 90° RF pulse, the spin refocusing by the 180° RF pulse, and the spin-
echo readout using echo-planar imaging around the echo time (TE). Diffusion encoding is 
performed by the time-dependent magnetic field gradient waveform 𝐠(𝑡). The effect of the 
gradients is, for Gaussian diffusion, fully described by the b-tensor, a symmetric 3 ́  3 matrix 
given by  
 

𝐁 = ∫ 𝐪(𝑡)⊗2𝑑𝑡
TE

0
, (6.1) 
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where 
 

𝐪(𝑡) = 𝛾 ∫ 𝐠(𝑡′)𝑑𝑡′
𝑡

0
, (6.2) 

and 𝛾 is the gyromagnetic ratio (Westin et al. 2014). This thesis considers axisymmetric b-
tensors that are parameterized in terms of the conventional b-factor 𝑏 = 3Eλ[𝐁], b-tensor 

 
Figure 6.1 | The spin-echo pulse sequence used in dMRI. A signal is generated by the 90° RF pulse and refocused 
by the 180° RF pulse at the echo time (TE), where it is read out using echo-planar imaging (EPI). Diffusion 
encoding is applied by the gradient waveform 𝐠(𝑡) = [𝑔x(𝑡) 𝑔y(𝑡) 𝑔z(𝑡)]. Different gradient waveform designs can 
yield b-tensors with different shapes (Figure 4.1). A) The conventional Stejskal-Tanner design (SDE) applies two 
trapezoidal gradient pulses in a single direction and yields LTE (𝑏∆ = 1). B) Numerical gradient waveform 
optimization uses three-dimensional gradient waveforms and can yield any b-tensor shape. The example yields 
prolate tensor encoding (𝑏∆ = 0.6) and is taken from Paper IV (protocol II). 
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shape 𝑏∆ (Eq. 4.6), and the rotational symmetry axis 𝐮. The diffusion encoding yielded by 
a given gradient waveform 𝐠(𝑡) can be classified based on shape of the b-tensor (Figure 4.1), 
according to: linear tensor encoding (LTE), prolate tensor encoding, spherical tensor 
encoding (STE), oblate tensor encoding, and planar tensor encoding (PTE) 
(Szczepankiewicz et al. 2021). 

Using different gradient waveform designs in the diffusion-encoding sequence (Figure 6.1) 
can yield b-tensors with different shapes (Figure 4.1) (Szczepankiewicz et al. 2021). The 
rank (number of non-zero eigenvalues) of the b-tensor equals the number of orthogonal basis 
vectors required to describe 𝐠(𝑡). A rank-1 b-tensor is linear, a rank-2 b-tensor is planar 
(assuming axisymmetric 𝐁) and a rank-3 b-tensor is prolate, spherical or oblate. The 
conventional Stejskal-Tanner design (SDE) applies two trapezoidal gradient pulses in a 
single direction (Figure 6.1A) (Stejskal et al. 1965a). This yields a rank-1 b-tensor and thus 
LTE. The double diffusion encoding (DDE) design applies two sets of trapezoidal gradient 
pulses in two directions (Cory et al. 1990, Özarslan 2009, Shemesh et al. 2010, Shemesh et 
al. 2016). This yields a rank £ 2 b-tensor and thus LTE or PTE. Triple diffusion encoding 
(Mori et al. 1995, Wong et al. 1995) and magic angle spinning of the q-vector (Eriksson et 
al. 2013) both yield a rank £ 3 b-tensor and thus any b-tensor shape. Another design that 
can yield any b-tensor shape is numerical gradient waveform optimization (Sjölund et al. 
2015, Szczepankiewicz et al. 2018) (Figure 6.1B), which was used in Papers II–V. 

6.2 The diffusion-weighted signal 

The signal attenuation at the time of readout (TE) caused by phase dispersion among spins 
that diffuse in magnetic field gradients is given by 
 

𝐴 = 〈exp(−𝑖𝜙(TE))〉, (6.3) 

where the average is across the complex transverse magnetization vectors of all individual 
spins with phase 𝜙(TE). The spin phase is determined by the spin path 𝐫(𝑡) and gradient 
waveform 𝐠(𝑡), according to (Kiselev 2010) 
 

𝜙(TE) = 𝛾 ∫ 𝐠(𝑡) ⋅ 𝐫(𝑡)
TE

0
𝑑𝑡 

= − ∫ 𝐪(𝑡) ⋅ 𝐯(𝑡)
TE

0
𝑑𝑡, 

(6.4) 

where 𝐯(𝑡) is the spin velocity (using integration by parts).  
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The signal attenuation in Eq. 6.3 averages an exponential function of the stochastic phase 
variable 𝜙, allowing it to be expressed in terms of the cumulants (Eq. 4.12) of the phase 
distribution 𝑐𝑛(𝑃 (𝜙)), according to (Kiselev 2010) 
 

ln〈exp(−𝑖𝜙)〉 = ∑ 𝑖𝑛

𝑛!

∞

𝑛=1
𝑐𝑛(𝑃 (𝜙)). (6.5) 

The 𝑛th phase cumulant is related to the 𝑛th cumulant of the velocity distribution 𝑐𝑛
𝑣 (𝐯1 ⊗

… 𝐯𝑛), according to (Kiselev 2010) 
 

𝑐𝑛(𝑃 (𝜙)) = ∫ (𝐪1 ⊗ … 𝐪𝑛): 𝑐𝑛
𝑣 (𝐯1 ⊗ … 𝐯𝑛)𝑑𝑡1 … 𝑑𝑡𝑛.

TE

0
 (6.6) 

In the absence of spin flow, 𝑃 (𝜙) is symmetric with non-zero 𝑐𝑛 only for even 𝑛, and the 
diffusion-weighted signal is given by  
 

𝑆 = 𝑆0exp(− 1
2

𝑐2 + 1
24

𝑐4 + ⋯ ), (6.7) 

where 𝑆0 is the signal without diffusion encoding. The diffusion-weighted signal for a given 
medium and experimental condition can be obtained by deriving the phase cumulants in 
Eq. 6.7 up to an order of appropriate approximation. 

6.3 Diffusion encoding in a single Gaussian environment 

To derive the cumulants of the phase distribution 𝑐𝑛(𝑃 (𝜙)) (Eq. 6.6), we recognize that a 
particle’s velocity 𝐯 at a given timepoint 𝑡 can be related to the displacement 𝐫 within a 
short time ∆𝑡, according to 𝐯(𝑡) ≈ (𝐫(𝑡 + ∆𝑡

2 ) − 𝐫(𝑡 − ∆𝑡
2 )) ∆𝑡⁄ . By the Gaussianity of 

𝑃 (𝐫|∆𝑡), 𝜏c ≪ ∆𝑡 such that 𝐯(𝑡) is the sum of many independent velocities and 𝑃 (𝐯) is 
Gaussian by the central limit theorem (Van Kampen 1992). Accordingly, 𝑐𝑛

𝑣  is non-zero 
only for 𝑛 = 2 and equal time points: 𝑐2

𝑣(𝐯⊗2) (Stepišnik 1993). Then, from Eq. 6.6, only 
𝑐2(𝑃 (𝜙)) is non-zero wherefore 𝑃 (𝜙) is also Gaussian. The second velocity cumulant is given by 

𝑐2
𝑣 = ⟨𝐯⨂ 2⟩ − 〈𝐯〉⊗2 

= 1
∆𝑡2 (〈𝐫⊗2〉 − 〈𝐫〉⊗2) = 1

∆𝑡
2𝐃. (6.8) 

using Eqs. 4.11 and 5.3. Letting ∆𝑡 → 0 yields the second phase cumulant from Eq. 6.6, 
according to 
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𝑐2(𝑃 (𝜙)) = ∫ (𝐪1 ⊗ 𝐪2): (2𝐃𝛿(𝑡2 − 𝑡1))𝑑𝑡1𝑑𝑡2

TE

0
 

= (∫ 𝐪(𝑡)⊗2𝑑𝑡
TE

0
) : (2𝐃) = 2𝐁: 𝐃, 

(6.9) 

using the definition of the b-tensor (Eq. 6.1). The diffusion-weighed signal for a single 
Gaussian environment is thus given by 
 

𝑆 = 𝑆0exp(−𝐁: 𝐃). (6.10) 

For axisymmetric tensors 𝐁 and 𝐃 with the respective symmetry axes 𝐮 and 𝐧, Eq. 6.10 
is simplified to  
 

𝑆 = 𝑆0exp(−𝑏𝐷I[1 + 2𝑏∆𝐷∆𝐿2(𝛽)]), (6.11) 

where 𝛽 = 𝐮 ⋅ 𝐧, and 𝐿2(𝛽) = (3𝛽2 − 1)/2 is the second Legendre polynomial (Eriksson 
et al. 2015). Note that, for isotropic diffusion tensors (𝐷∆ = 0) or encoding tensors (𝑏∆ = 0), 
the diffusion-weighted signal is invariant to anisotropy, according to 
 

𝑆 = 𝑆0exp(−𝑏𝐷I). (6.12) 

6.4 Diffusion encoding in an ensemble of non-exchanging 
Gaussian environments 

To derive the cumulants of the phase distribution 𝑐𝑛(𝑃 (𝜙)) for an ensemble of non-
exchanging Gaussian environments, we recognize that the diffusion-weighted signal is the 
ensemble-average (Eq. 4.9) of the signals from each environment, according to 
 

𝑆 = 𝑆0 ∫ 𝑃 (𝐃)exp(−𝐁: 𝐃) d𝐃, (6.13) 

where 𝑃 (𝐃) is the DTD, and that the phase distribution is the ensemble-average of the 
phase distributions from each environment 𝑃 (𝜙′|𝐃), according to  
 

𝑃 (𝜙) = ∫ 𝑃 (𝐃)𝑃 (𝜙′|𝐃)d𝐃. (6.14) 
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Then, by linearity, the central moments of the phase distribution 𝑚𝑛(𝑃 (𝜙)) (Eq. 4.10) are 
given by 
 

𝑚𝑛 = ∫(𝜙 − 〈𝜙〉)⊗𝑛𝑃 (𝜙)𝑑𝜙 

= ∫(𝜙 − 〈𝜙〉)⊗𝑛 (∫ 𝑃 (𝐃)𝑃 (𝜙′|𝐃)d𝐃) 𝑑𝜙 

= ∫ 𝑃 (𝐃) (∫(𝜙′ − 〈𝜙′〉)⊗𝑛𝑃 (𝜙′|𝐃)𝑑𝜙′) d𝐃 

= ∫ 𝑃 (𝐃)𝑚𝑛
′ (𝐃) d𝐃 = 〈𝑚𝑛

′ 〉. 

(6.15) 

The second phase cumulant is then given by Eqs. 4.12, 5.6, 6.9 and 6.15, according to 
 

𝑐2 = 2𝐁: 〈𝐃〉, (6.16) 

where 〈𝐃〉 is the ensemble-average diffusion tensor. The fourth cumulant of 𝑃 (𝜙) is given 
by Eqs. 4.11, 4.12, 6.9 according to1  
 

𝑐4 = 12𝐁⊗2: ℂ (6.17) 

using 𝑐4
′ = 0 for the individual environments (Section 6.3). Thus, for an ensemble of non-

exchanging Gaussian environments, a fourth-order approximation of the diffusion-weighted 
signal in terms of phase cumulants (Eq. 6.7) is given by 
 

𝑆(𝐁) ≈ 𝑆0exp (−𝐁: 〈𝐃〉 + 1
2

𝐁⊗2: ℂ). (6.18) 

The equation is also referred to as the covariance tensor model (Westin et al. 2016) and was 
used for joint analysis of LTE and STE data in Paper V. An expression up to the sixth 
order that includes the diffusion skew tensor has been presented in Ning et al. (2021). 

 
1 The full derivation is: 𝑐4 = 〈𝑚4

′ 〉 − 3〈𝑚2
′ 〉2 = ⟨𝑐4

′ + 3𝑐2
′ 2⟩ − 3〈𝑐2

′ 〉2 = 〈𝑐4
′ 〉 + 3(⟨𝑐2

′ 2⟩ − 〈𝑐2
′ 〉2) 

= 3V[𝑐2
′ ] = 12𝐁⊗2: V[𝐃] = 12(𝐁⊗2): ℂ. 
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6.4.1 Diffusion-relaxation encoding 

The MRI signal is also influenced by non-diffusion phenomena. T2 relaxation has a large 
impact on the signal of the spin-echo sequences used in dMRI. For a single environment 
with T2 relaxation properties described by the time constant 𝑇2, the signal without diffusion 
encoding at TE is given by 
 

𝑆0(TE) = 𝑆0(0) exp(−TE/𝑇2). (6.19) 

In an ensemble of non-exchanging Gaussian environments with different 𝑇2 , Eq. 6.13 
generalizes to 
 

𝑆 = 𝑆0|TE=0 ∫ 𝑃 (𝐃, 𝑅2) exp(−TE ⋅ 𝑅2) exp(−𝐁: 𝐃)d𝐃𝑑𝑅2 (6.20) 

where the diffusion-relaxation distribution 𝑃 (𝐃, 𝑅2) is a probability distribution over the 
space of diffusion tensors 𝐃 and relaxation rates 𝑅2 = 1 𝑇2⁄ . 

A cumulant expansion of Eq. 6.20 for a given b-tensor symmetry axis 𝐮 using LTE (𝐁 =
𝑏𝐮⊗2) was presented by Ning et al. (2019). Here, we present a new formulation by extending 
that expression to any 𝐁, according to 
 

𝑆(𝐁) ≈ 𝑆0exp (	

−𝐁: 〈𝐃〉 + 1
2

𝐁⊗2: ℂ 

−TE ⋅ 〈𝑅2〉 + 1
2
TE2 ⋅ Var[𝑅2] 

+TE ⋅ 𝐁: 𝐌11 − 1
2
TE2 ⋅ 𝐁: 𝐌12 − 1

2
TE ⋅ 𝐁⊗2: 𝕄21) 

(6.21) 

where the tensors m𝑛𝑚  are the (𝑛, 𝑚)th  central moments of 𝑃 (𝐃, 𝑅2), m𝑛𝑚 = 〈(𝐃 −
〈𝐃〉)⊗𝑛(𝑅2 − 〈𝑅2〉)𝑚〉, here given by 
 

𝐌11 = cov(𝐃, 𝑅2), 
𝐌12 = cov(𝐃, 𝑅2

2 − 2〈𝑅2〉𝑅2) and 
𝕄21 = cov(𝐃⊗2 − 2〈𝐃〉 ⊗ 𝐃, 𝑅2), 

(6.22) 

where the second term in 𝕄21 assumes 〈𝐃〉 ⊗ 〈𝑅2𝐃〉 = 〈𝑅2𝐃〉 ⊗ 〈𝐃〉. For simplicity, Eq. 
6.21 includes the mean and variance terms 〈𝐃〉, ℂ, 〈𝑅2〉 and Var[𝑅2] of the marginal 
distributions 𝑃 (𝐃, 𝑅2|TE = 0) and 𝑃 (𝐃, 𝑅2|𝑏 = 0), but excludes the higher order terms. 
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6.5 Powder-averaged signal expressions 

So-called powder averaging corresponds to arithmetic averaging of the signal across different 
b-tensor symmetry axes (𝐮) to mimic a complete orientation dispersion of the diffusion 
tensors across the DTD. In the limit of a fully homogeneous directional average, the signal 
depends only on the scalar rotational invariants of the tensors that describe diffusion and 
diffusion encoding (Callaghan et al. 1979). This section derives powder-averaged versions of 
the signal expressions in Sections 6.3 and 6.4. 

6.5.1 A single Gaussian environment 

For a single Gaussian environment, assuming axisymmetric diffusion and encoding tensors, 
the powder-averaged version of Eq. 6.11 is given by 
 

𝑆 ̅ = 𝑆0 ∫ (−𝑏𝐷I[1 + 2𝑏∆𝐷∆𝐿2(𝐮 ⋅ 𝐧)])d𝐮
𝐮∈𝕊𝟐

 

= 𝑆0 exp(−𝑏𝐷I + 𝛼/3) ∫ exp(−𝛼(𝐮 ⋅ 𝐧)2)d𝐮
𝐮∈𝕊𝟐

 

= 𝑆0 exp(−𝑏𝐷I + 𝛼/3) √
𝜋
4𝛼

erf(
√

𝛼), 

(6.23) 

which uses the substitution 𝐮 ⋅ 𝐧 = 𝑥, and where 
 

𝛼 = 3𝑏𝐷I𝑏∆𝐷∆ (6.24) 

and erf is the error function. Eq. 6.23 was initially presented for 𝑏∆ = 1 in Callaghan et al. 
(1979) and extended to any 𝑏∆ in Eriksson et al. (2015). It was used to derive the powder-
averaged version of the NODDI model (Zhang et al. 2012) in Paper II and of multiple models 
in Paper III. 

6.5.2 An ensemble of non-exchanging Gaussian environments 

The powder-averaged signal for an ensemble of non-exchanging Gaussian environments can 
be expanded in isotropic cumulants of the phase distribution 𝑐𝑛;I(𝑃 (𝜙)), obtained by 
replacing the tensors in Eq. 6.18 with their isotropic projections. For a tensor t , the 
projection onto an isotropic basis eI  is given by tI = (t: eI eI: eI⁄ )eI . For second-order 
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tensors and the isotropic basis 𝐄I = 1
3 𝐈, where 𝐄I: 𝐄I = 1

3, the isotropic projections are 
given by 𝐓I = 3Eλ [𝐓]𝐄I. For 𝐁 and 〈𝐃〉, we obtain 
 

𝐁I = 𝑏𝐄I, 

〈𝐃〉I = 3MD𝐄I and 

𝑐2;I = 2𝑏MD. 
(6.25) 

For fourth-order tensors and the isotropic basis 𝔼I = 𝔼bulk + 𝔼shear, where 𝔼bulk: 𝔼bulk =
1
9, 𝔼shear: 𝔼shear = 5

9 and 𝔼bulk: 𝔼shear = 0, the isotropic projections are given by 𝕋I =
(9𝕋: 𝔼bulk)𝔼bulk + (9 5⁄ 𝕋: 𝔼shear)𝔼shear. For 𝐁⊗2 and ℂ, we obtain 
 

(𝐁⊗2)I = 𝑏2 (𝔼bulk + 2
5

𝑏∆
2 𝔼shear) , 

ℂI = 9 (𝑉I𝔼bulk + 1
2

𝑉µA𝔼shear)  and 

𝑐4;I = 12𝑏2(𝑉I + 𝑏∆
2 𝑉µA), 

(6.26) 

using Eqs. 5.8 and 5.9 and that 𝑉MA = 0 in the powder average. The variances can be 
scaled to the dimensionless isotropic kurtosis (MKI ) and anisotropic kurtosis (MKA ), 
according to (Szczepankiewicz et al. 2016a) 
 

MKI = 3 𝑉I
MD2 , 

MKA = 3
𝑉µA

MD2 , and 

 MKE = MKI + 𝑏∆
2 MKA, 

(6.27) 

where the ‘effective kurtosis’ MKE depends on the shape of the b-tensor. Notably, the MKE 
resulting from LTE (𝑏∆ = 1) is referred to as the ‘total kurtosis,’ MKT = MKI + MKA 
(Lasič et al. 2014, Szczepankiewicz et al. 2016a). The powder-averaged version of Eq. 6.18 
is then given by 
 

𝑆 ̅ ≈ 𝑆0exp(−𝑏 ⋅ MD + 1
6

𝑏2 ⋅ (MKI + 𝑏∆
2 ⋅ MKA)MD2). (6.28) 

The equation is also referred to as the powder-averaged covariance tensor model and was 
used for joint analysis of LTE and STE data in Paper III. For LTE, Eq. 6.28 yields the 
powder-averaged diffusion kurtosis model (Jensen et al. 2005). 
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6.5.3 An ensemble of non-exchanging Gaussian environments 
with T2 relaxation 

To derive the powder-averaged signal in an ensemble of non-exchanging Gaussian 
environments with T2 relaxation, we use the approach in Section 6.5.2 and replace the 
tensors in Eq. 6.21 with isotropic projections. For 𝐃 and 𝐃⊗2, we obtain 
 

𝐃I = 3𝐷I𝐄I, 

(𝐃⊗2)I = 9𝐷I
2𝔼bulk + 9

5
Vλ [𝐃]𝔼shear. 

(6.29) 

Then, using Eqs. 6.25 and 6.26, we obtain the powder-averaged version of Eq. 6.21, according 
to 
 

log (
𝑆 ̅
𝑆0

) ≈ 

−𝑏 ⋅ MD + 1
6

𝑏2 ⋅ (MKI + 𝑏∆
2 ⋅ MKA)MD2 

−TE ⋅ 〈𝑅2〉 + 1
2
TE2 ⋅ Var[𝑅2] 

+TE𝑏 ⋅ cov(𝐷I, 𝑅2) 

− 1
2
TE2𝑏 ⋅ cov(𝐷I, 𝑅2

2 − 2〈𝑅2〉 ⋅ 𝑅2) 

− 1
2
TE𝑏2 ⋅ cov(𝐷I

2 + 9
5

𝑏∆
2 ⋅ Vλ [𝐃], 𝑅2). 

(6.30) 

Similar to how the b-tensor shape (𝑏∆) determines the effective kurtosis (MKE, Eq. 6.27), 
the b-tensor shape determines the ‘effective eigenvalue variance’ of the diffusion tensors 
(Eriksson et al. 2015, Szczepankiewicz et al. 2021), here derived as 
 

Vλ,E[𝐃] = 𝐷I
2 + 9

5
𝑏∆

2 ⋅ Vλ [𝐃], (6.31) 

where LTE (𝑏∆ = 1) yields the ‘total eigenvalue variance’ Vλ,T. 
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7 Estimating brain tissue quantities 
with microstructure modeling 

This chapter describes the use of model fitting to extract the information that has been 
encoded into the dMRI signal, and how using a forward microstructure model allows the 
information to be interpreted in terms of brain tissue quantities. 

7.1 Model fitting for extracting tissue information 

The acquired dMRI signal reflects the tissue in the voxel but also experimental parameters 
such as 𝐁 and TE as well as noise and measurement artifacts. To estimate quantities that 
reflect the tissue independently on the details of the experiment, the signal is expressed a 
priori using a forward model that separates the influence of model parameters and 
experimental parameters. The model parameters are then estimated from an acquired signal 
by solving the inverse problem of finding the set of parameters that best explains the signal 
given the experiment. Measurement noise and artifacts are typically not included in the forward 
model and will generally reduce model parameter precision and trueness, respectively. 

7.2 Microstructure models are constrained DTDs 

Two main types of forward models are used for dMRI data: signal representations and 
microstructure models (Novikov et al. 2018a). Signal representations include the truncated 
cumulant expansions in Eqs. 6.18, 6.21, 6.28 and 6.30. These models parameterize the 
encoded tissue information in terms of statistical properties of the DTD. For example, the 
powder-averaged covariance tensor model (Eq. 6.28) is parameterized by the MD, MKI and 
MKA. Microstructure models are DTDs constrained down to a few ‘components’ that 
represent tissue microstructure (Nilsson et al. 2013b, Novikov et al. 2018a, Alexander et al. 
2019, Jelescu et al. 2020). These models parameterize the encoded tissue information in 
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terms of tissue quantities. For example, the NODDI model is parameterized by the ‘neurite 
density’ and the ‘free water density’ (Zhang et al. 2012). 

7.2.1 Separation between ODF and kernel 

The DTDs of microstructure models are constrained by three fundamental assumptions. 
First, the diffusion tensors are assumed to be axisymmetric (Figure 4.1). Second, tensors are 
assumed to feature a finite number (J) of different size/shape combinations (𝐷I;𝑗, 𝐷∆;𝑗), 
which are referred to as ‘components.’ Third, symmetry axes {𝐧}𝑗 are assumed to follow 
the same orientation distribution function (ODF) 𝑃 (𝐧)  for tensors of all component 
combinations. Then, for axisymmetric b-tensors, Eq. 6.13 can be simplified to the isotropic 
convolution (⊛) on the unit sphere (Driscoll et al. 1994) between a rotationally invariant 
kernel 𝐾 and 𝑃 (𝐧) using Eq. 6.11, according to 
 

𝑆 = 𝑆0(𝐾 ⊛ 𝑃 (𝐧))(𝐮) 

= 𝑆0 ∫ 𝐾(𝐮 ⋅ 𝐧)
|𝐧|=1

𝑃 (𝐧)d𝐧, where 

𝐾(𝐮 ⋅ 𝐧) = ∑ 𝑓𝑗
J

𝑗=1
exp(−𝑏𝐷I[1 + 2𝑏∆𝐷∆𝐿2(𝐮 ⋅ 𝐧)]) 

(7.1) 

and 𝑓𝑗  (∑ 𝑓𝑗 = 1, 𝑓𝑗 ≥ 0) is the signal fraction without diffusion encoding of the 𝑗th 
component. The kernel captures the rotationally invariant (microstructural) aspects of the 
DTD—the signal fractions and the tensor isotropic invariants (𝐷I;𝑗 and 𝐷∆;𝑗)—while the ODF 
captures the orientational variation of that configuration. 

7.2.2 ODF expansion in spherical harmonics 

Some microstructure models assume an ODF on a closed form to yield a minimal but 
realistic representation of the arrangement of anisotropic structures within tissue. Such 
ODFs include the axisymmetric three-parameter Watson distribution (Mardia et al. 2009, 
Zhang et al. 2012) and the biaxial five-parameter Bingham distribution (Bingham 1974, 
Tariq et al. 2016). Other models use a truncated spherical harmonic (SH) expansion of the 
ODF (Jespersen et al. 2007, Jespersen et al. 2010). This approach, which was used in Paper 
IV, has the advantage of being more general and removing the integral from Eq. 7.1. 

In the SH basis, the kernel coefficients (𝑘𝑙𝑚) are rotationally invariant and factor with 
the ODF coefficients (𝑝𝑙𝑚), according to 
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(𝐾 ⊛ 𝑃 )(𝐮) = ∑ 𝑆𝑙𝑚(𝐮)

𝑙,𝑚
= ∑ 𝑘𝑙0𝑝𝑙𝑚𝑌𝑙𝑚(𝐮)√ 4π

2𝑙 + 1𝑙,𝑚
, (7.2) 

where the sum is over the SH basis functions 𝑌𝑙𝑚 of order 𝑙 = 0, 2,… and degree 𝑚 =
−𝑙, −𝑙 + 1,… , 𝑙. Due to the axial symmetry of 𝐾, its coefficients are non-zero only for even 
𝑙  (odd-order harmonics are anti-symmetric) and 𝑚 = 0  (invariance to symmetry-axis 
rotation). The kernel coefficients are obtained from inner products with SH basis functions 
of the appropriate order and have been derived for LTE, for example, in Jespersen et al. 
(2007). In Paper IV, we derived the kernel coefficients for any shape of the b-tensor, 
according to 
 

𝑘𝑙0 = √4π(2𝑙 + 1) ∑ 𝑓𝑗
𝐽

𝑗=1
exp (−𝑏𝐷I;𝑗 +

𝛼𝑗

3
) 𝐼𝑙𝑗, where 

I𝑙𝑗 = ∫ 𝑒−α𝑗x2𝐿𝑙(𝑥)𝑑𝑥
1

0
, 

(7.3) 

where 𝐿𝑙 is the 𝑙th Legendre polynomial and 𝛼𝑗 is from Eq. 6.24. Note that the zeroth-order 
coefficient features the powder-averaged diffusion attenuations for each component (Eq. 6.23). 

7.2.3 Kernel component selection 

The kernel components of microstructure models are selected to capture the diffusion 
characteristics of water within different microstructural components of brain tissue 
(Alexander et al. 2019). Figure 7.1A illustrates the three main components used by 
contemporary models to represent tissue microstructure in white matter. 

• The ‘stick’ component (S) with zero radial diffusivity (𝐷∆;S = 1) represents the 
intra-axonal space (Behrens et al. 2003), whose elongated shape induces a 
maximally anisotropic diffusion (McKinnon et al. 2017, Veraart et al. 2019). 

• The ‘zeppelin’ component (Z) with non-zero radial diffusivity (𝐷∆;Z < 1) 
represents the extra-axonal space (or extra-axonal tissue in fast exchange) with 
less anisotropic diffusion. 

• The ‘ball’ component (B) with isotropic diffusion (𝐷∆;B = 0) and fixed 
isotropic diffusivity 𝐷I;B = 3 µm2/ms represents CSF (Pasternak et al. 2009). 

Note that no component represents myelin. Despite a relatively large volume fraction in 
white matter (Figure 3.1B, Section 3.2), the low T2 values of myelin water and myelin lipid 
result in a very small signal fraction at the TE used in dMRI (Mackay et al. 1994). 
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Figure 7.1 | A) Microstructure models represent tissue components with diffusion tensors with different 
characteristics. ‘Sticks’ and ‘zeppelins’ represent the intra- and extra-axonal space and ‘balls’ represent CSF.  
B) Assumptions that fix or enforce relations between the parameters of the Stick-Zeppelin-Ball model result in 
different microstructure models with different number of free parameters (in parenthesis, Table 7.1). The DTD 
that corresponds to each model is illustrated by representing each component (coded by color) with its allowed 
position in the tensor size/shape landscape (Figure 4.1). Free parameters are written out explicitly (coded by color). 
Areas denote unconstrained components, lines denote components with fixed shapes, dots denote components that 
are fully constrained by fixing and/or relations. Crossed fractions indicate fixing its value to zero. 
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7.3 Different assumptions define different models  

The full ‘Stick-Zeppelin-Ball’ model features five kernel parameters (Table 7.1, excluding 
𝑆0): the ‘stick’ fraction (𝑓S), the ‘stick’ isotropic diffusivity (𝐷I;S), the ‘zeppelin’ isotropic 
diffusivity (𝐷I;Z), the ‘zeppelin’ anisotropy (𝐷∆;Z), and the ‘ball’ fraction (𝑓B). Fitting all 
five parameters results in a degenerate inverse problem for most dMRI acquisitions (Jelescu 
et al. 2016a). Therefore, microstructure models use assumptions that reduce the number of 
free kernel parameters. 

 Different assumptions on the Stick-Zeppelin-Ball model define different microstructure 
models from the literature (Table 7.1, Figure 7.1B). Assumptions take the form of 
constraints that reduce the number of free parameters by fixing a parameter’s value or by 
enforcing a relation between two parameters. The four-parameter ‘Standard model’ assumes 
no CSF (𝑓B = 0) . The three-parameter ‘Jespersen 2007’ model additionally assumes 
isotropic diffusion in the ‘zeppelin’ component (𝐷∆;Z = 0). CODIVIDE equals Jespersen 
2007 but assumes equal ‘stick’ and ‘zeppelin’ isotropic diffusivities (𝐷I;Z = 𝐷I;S) instead of 
no CSF. Among the two-parameter models, ‘Pake’ only includes the ‘zeppelin’ component. 
‘Ball and stick’ equals Jespersen 2007 but assumes equal ‘stick’ and ‘zeppelin’ axial 
diffusivities (𝐷I;Z = 3𝐷I;S). The NODDI and SMT models fully constrain the ‘zeppelin’ 
component. Its shape is defined by a tortuosity relation (Szafer et al. 1995), according to 
 

𝐷∆;Z = 𝑓S/(3 − 2𝑓S), (7.4) 

and its size is determined by assuming equal ‘stick’ and ‘zeppelin’ axial diffusivities, 
according to (using Eq. 7.4) 
 

𝐷I;Z = 𝐷I;S(3 − 2𝑓S). (7.5) 

NODDI and SMT differ in their third assumption, where NODDI uses 𝐷I;S =
0.57 µm2/ms and SMT uses 𝑓B = 0. 
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Table 7.1 | Different sets of assumptions on the Stick-Zeppelin-Ball model results in different 
microstructure models from the literature. Extending the Stick-Zeppelin-Ball model to include free 
‘stick’ and ‘zeppelin’ T2 values results in the diffusion-relaxation models used in Papers III and IV. 
 Diffusion models Model constraints (- indicates a free parameter) # free 

pars. 𝑓S 𝐷I;S 𝐷I;Z 𝐷∆;Z 𝑓B 

Stick-Zeppelin-Ball - - - - - 5 

Standard modela - - - - 0 4 

Jespersen 2007b - - - 0 0 3 

CODIVIDEc - - 𝐷I;S 0 - 3 

Paked 0 N/A - - 0 2 

Ball and sticke - - 3𝐷I;S 0 0 2 

NODDIf - 0.57 Eq. 7.5 Eq. 7.4 - 2 

SMTg - - Eq. 7.5 Eq. 7.4 0 2 
 Diffusion-relaxation models 

PIV+h - - - - - 7 

PIVi - - - - 0 6 

PIIIj - - - 0 0 5 

 Diffusivities are in µm2/ms. 
The number of free parameters counts the kernel parameters but excludes 𝑆0. 
Diffusion-relaxation models include 𝑇2;S and 𝑇2;Z as free parameters.	
a(Novikov et al. 2018b), b(Jespersen et al. 2007) (with 𝐷∆;S = 1), cPaper II, d(Kroenke et al. 2004, 
Eriksson et al. 2015, Kaden et al. 2015), e(Behrens et al. 2003), f(Zhang et al. 2012), g(Kaden et al. 
2016), hPaper IV (Supporting information), iPaper IV, jPaper III 
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7.4 The role of T2 relaxation 

Heterogeneity in T2 values across microscopic environments impacts the relationship 
between the environments’ signal fractions and volume fractions. In an ensemble of non-
exchanging environments with different T2 values, the signal fraction at TE (without diffusion 
encoding) for an environment with volume fraction 𝑣𝑗 and T2 value 𝑇2;𝑗 is given by  
 

𝑓𝑗(TE) =
𝑆0;𝑗(TE)
𝑆0(TE) =

𝑣𝑗 exp(− TE 𝑇2;𝑗⁄ )
∫ 𝑃 (𝐃, 𝑅2|𝑏 = 0) exp(−TE ⋅ 𝑅2) d𝐃𝑑𝑅2

 (7.6) 

where 𝑃 (𝐃, 𝑅2)  is the diffusion-relaxation distribution of the ensemble. Thus, signal 
fractions are generally TE-dependent and different from volume fractions. 

7.4.1 The density assumption 

When signal fractions are interpreted as volume fractions (densities), an implicit ‘density 
assumption’ is made that the T2 values are approximately equal across environments, 
according to 
 

𝑇2𝑗 ≈ 𝑇2𝑗′ ∀ 𝑗, 𝑗′, (7.7) 

which allows the T2-dependency in Eq. 6.20 to be factored into the 𝑆0 parameter. 

7.4.2 Diffusion-relaxation models 

Extending microstructure models to include T2-relaxation is straightforward. By using the 
diffusion-relaxation distribution 𝑃 (𝐃, 𝑅2) and Eq. 6.20 instead of 𝑃 (𝐃) and Eq. 6.13, the 
kernel is modified as 
 

𝐾(𝐮 ⋅ 𝐧, TE) = ∑ 𝑓𝑗
J
𝑗=1 𝐴D;𝑗(𝐮 ⋅ 𝐧) exp(− TE 𝑇2;𝑗⁄ ), (7.8) 

using 𝐴D;𝑗 from Eq. 6.11. Example diffusion-relaxation models are shown in Table 7.1, and 
include the models used in Paper III (PIII) and Paper IV (PIV), as well as the model in the 
supporting information of Paper IV (PIV+). In PIV+, the ‘ball’ T2 value was fixed as 
𝑇2;B = 1.4 s to represent free water (Weigel et al. 2006). 
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8 Removing model assumptions with 
multidimensional dMRI 

This chapter investigates to what degree multidimensional dMRI data alleviate the need for 
model assumptions on diffusion and T2 relaxation. First, we formalize the relationship 
between the acquisition and the tissue information that it encodes into the signal. We define 
the concept of an acquisition protocol and how different protocols use different encoding 
dimensions that are sensitive to different tissue observables. Then, we use a test for 
degeneracy to investigate the relationship between acquisition protocols and the ability of 
the resulting data to support different microstructure models. Finally, we optimize a 
multidimensional acquisition protocol to remove most assumptions on diffusion and T2 
relaxation in vivo. 

8.1 Acquisition protocols, encoding dimensions, 
and tissue observables 

This section analyses the information content of a general diffusion-relaxation acquisition 
from the perspective of the powder-averaged cumulant expansion (Eq. 6.30). Notably, 
powder-averaging removes the information provided by the signal differences across b-
tensors symmetry axes (𝐮). On the one hand, this has a small but non-negligible negative 
impact also on the precision of non-orientational model parameters, as investigated in Paper 
IV. On the other hand, powder-averaging simplifies the signal descriptors to scalar 
rotationally invariants and focuses the analysis to the information that is present 
independently of the true orientation dispersion in an image voxel. 

We define an ‘acquisition protocol’ as a set of encoding parameters 𝑏𝑛, 𝑏∆;𝑛, TE𝑛, and 
𝐮𝑛 that specify the acquisition of a full dataset intended for model fitting. For b-values, we 
define the ‘low interval’ as 𝑏 ≤ 1	ms/µm2 and the ‘high interval’ as 1 < 𝑏 ≤ 2.5 ms/µm2. 



58 

We define an ‘encoding dimension’ as a unique product of the scalar encoding parameters 
𝑏, 𝑏∆ and TE that form the acquisition-related part of a term in the cumulant expansion 
(Eq. 6.30). 

We define a ‘tissue observable’ as a product of scalar model parameters (such as MD or 
MKA) that form the tissue-related parts of a term in the cumulant expansion (Eq. 6.30). 
Note that, by definition, encoding dimensions and tissue observables are coupled and equal 
in number. For example, the encoding dimensions 𝑏 and 𝑏2 have sensitivity to the tissue 
observables MD  and MKT  (Eq. 6.27 with 𝑏∆ = 1 ), respectively (excluding repeated 
quantities). 

For a given acquisition protocol, we define the associated set of encoding dimensions and 
tissue observables as those that form the cumulant expansion terms that are necessary and 
sufficient to describe the signal. This means that fitting the signal representation that 
includes these terms would be statistically favored by, for example, an F-test over fitting 
representations with fewer or more terms. Thus, the set of tissue observables captures all 
rotationally invariant tissue information that is provided by varying the encoding 
parameters. This also means that extending the acquisition to use additional encoding 
dimensions may yield sensitivity to additional observables. This is the key benefit of 
multidimensional dMRI (Topgaard 2017, de Almeida Martins et al. 2018, Benjamini et al. 
2020). 

The relationship between acquisition protocols and tissue observables clearly depends on 
the specifics of the tissue as well as the noise level in each situation. As a rule of thumb, the 
signal contribution from the 𝑏2 and 𝑏3 cumulant expansion terms can be considered small 
for b-values 𝑏 ≤ 1	ms/µm2 (Jones et al. 2004) and 𝑏 ≤ 2.5	ms/µm2 (Kiselev et al. 2007, 
Ianuş et al. 2018), respectively, corresponding to the low and high intervals defined above. 
Notably, the contribution from higher-order terms is generally not negligible wherefore the 
choice of signal representation is a compromise between precision and trueness (Ianuş et al. 
2018). 

Table 8.1 lists six acquisition protocols together with the encoding dimensions that they 
use and the tissue observables they are sensitive to (rephrased to only feature independent 
quantities). 

• ‘SDE1’ features a single shape of the b-tensor (LTE, 𝑏∆ = 1) and b-values in 
the low interval. This uses encoding dimension 𝑏 with sensitivity to observable 
MD. 

• ‘SDE2’ also features b-values in the high interval. This uses encoding dimension 
𝑏2 with sensitivity to observable MKT. 

• ‘QTI’ also features two or more b-tensor shapes (𝑏∆) for b-values in the high 
interval. This uses encoding dimension 𝑏2𝑏∆

2  with sensitivity to observable 
MKE. 
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• ‘DR1’ also features multiple TE for b-values in the low interval. This uses 
encoding dimensions TE, TE2, 𝑏TE and TE2𝑏 with sensitivity to observables 
〈𝑅2〉, V[𝑅2], cov(𝐷I, 𝑅2) and cov(𝐷I, 𝑅2

2), respectively. 
• ‘DR2’ also features multiple TE for b-values in the high interval for 𝑏∆ = 1.This 

uses dimension 𝑏2TE with sensitivity to observable cov(Vλ,T[𝐃], 𝑅2). 
• ‘DR3’ also features multiple TE in the high interval for different 𝑏∆. This uses 

dimension TE𝑏2𝑏∆
2  with sensitivity to observable cov(Vλ,E[𝐃], 𝑅2). 

 
Table 8.1 | Encoding dimensions and tissue observables associated with acquisition protocols. 
  Encoding 
dimension 

Tissue  
observable 

 Acquisition protocol 
 SDE1 SDE2 QTI DR1a DR2b DR3c 

𝑏 MD  1 1 1 1 1 1 
𝑏2 MKT

d  0 1 1 1 1 1 
𝑏2𝑏∆

2  MKE
e  0 0 1 1 1 1 

TE 〈𝑅2〉  0 0 0 1 1 1 
TE2 V[𝑅2]  0 0 0 1 1 1 
TE𝑏 cov(𝐷I, 𝑅2)  0 0 0 1 1 1 
TE2𝑏 cov(𝐷I, 𝑅2

2)  0 0 0 1 1 1 
TE𝑏2 cov(Vλ,T[𝐃], 𝑅2)f  0 0 0 0 1 1 
TE𝑏2𝑏∆

2  cov(Vλ,E[𝐃], 𝑅2)g  0 0 0 0 0 1 
  S 1 2 3 7 8 9 
  aPaper III (Group C) 
bPaper IV (in vivo protocol) 
c(de Almeida Martins et al. 2018) 
dAssuming SDE (𝑏∆ = 1) (Eq. 6.27)	
eSeparation of MKI and MKA (Eq. 6.27) 
fAssuming SDE (𝑏∆ = 1) (Eq. 6.31) 
gSeparation of 𝐷I

2 and Vλ[𝐃] (Eq. 6.31) 
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8.2 Test for degeneracy 

In Paper III, we devised a test for degeneracy that assesses whether a given acquisition 
protocol yields sufficient data to support a given microstructure model. In the test, a signal 
is first synthesized using the acquisition protocol, the forward microstructure model, and a 
relevant set of prior values of the free model parameters. Then, after adding noise, the model 
is repeatedly fitted to the signal with one of its free parameters pre-fixed in the fit to different 
values along its prior range. A goodness-of-fit metric is calculated, for each fixed value, as 
the variance of the fit residuals normalized with the variance due to noise, or the ‘normalized 
residual variance’ (NRV), according to 
 

NRV = 1
I ∑ (∑ [(𝑆𝑘𝑖 − 𝑆𝑘𝑖

′ )2 (K − M)⁄ ] σnoise
2⁄K

𝑘=1 )I
𝑖=1 , (8.1) 

where the average is across I realizations of Gaussian noise with variance σnoise
2 , 𝑆𝑘𝑖 is the 

noised signal, 𝑆𝑘𝑖
′  is the fitted signal, K is the total number of measurements and M is the 

number of free model parameters after fixing. Plotting the NRV against the values of the 
fixed parameter illustrates how precisely this parameter is determined by the acquired data. 
If the protocol yields sufficient data to determine the parameter, then the plot should exhibit 
a single prominent minimum. If the protocol yields insufficient data, however, multiple 
parameter values will yield similar goodness-of-fit and the plot will indicates degeneracy by 
being flat or having multiple minima. 

8.3 Acquisition protocol versus model support 

In Papers III and IV, we used the test for degeneracy to assess the ability of different 
diffusion-relaxation acquisition protocols to support microstructure models with free 
component T2 values. In Figure 8.1, we extend this analysis to more cases to fully illustrate 
the relationship between the acquisition protocol and the ability to support different models. 
The test was applied to twenty-four cases comprised of four different acquisition protocols 
and six different microstructure models. The protocols (Table 8.1, with its associated 
number of tissue observables) were: SDE2 (2), QTI (3), DR1 (7) and DR2 (8). The models 
(Table 7.1, with number of free kernel parameters, excluding 𝑆0) were powder-averaged 
versions of four diffusion models: Ball and stick (2), Jespersen 2007 (3) and Standard model 
(4); and three diffusion-relaxation models: PIII (5), PIV (6) and PIV+ (7).  
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Figure 8.1 | The ability of different acquisition protocols (Table 8.1) to support different models (Table 7.1), 
illustrated by the normalized residual variance (NRV, Eq. 8.1). Narrow NRV minima indicate that the protocol 
yielded sufficent data to uniquely determine the ‘stick’ fraction parameter (𝑓S). Flat minima indicate insufficient 
data that are equally well explained by multiple sets of model parameters. The plots are colored based on whether 
the protocol could support the model at all noise levels (green), some noise-level (yellow) or no noise level (red) 
Data were synthesized assuming the priors: 𝑆0 = 1, 𝑓S = 0.5, 𝐷I;S = 0.8 × 10−9 µm2

ms , 𝑇2;S = 100 ms, 𝐷I;Z =
0.8 × 10−9 µm2/ms, 𝐷∆;Z = 0.4, 𝑇2;Z = 60 ms, and 𝑓B = 0. Gaussian noise was added at SNR corresponding 
to 15, 30 and 60 at TE = 70 ms. To correct for protocol differences in acquisition time (𝑇Acq), the actual SNR 
was adjusted according to SNR = SNRref(𝑇Acq/𝑇Acq;ref)1/2, with 𝑇Acq;ref = 30 min. The NRV (Eq. 8.1) was 
calculated when pre-fixing the ‘stick’ fraction (𝑓S) between zero and unity. Data were powder-averaged before fitting. 
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In all cases where the protocol yielded sufficient data to support the model at all noise 
levels (Figure 8.1, green plots), the number of tissue observables associated with the protocol 
was greater than or equal to the model’s number of free kernel parameters. Conversely, in 
all cases where the protocol yielded insufficient data to support the model at any noise level 
(red plots), the number of tissue observables associated with the protocol was smaller than 
the model’s number of free kernel parameters. Thus, the number of tissue observables 
required to describe the acquired data appears to be closely related to the maximal number 
of free kernel parameters of models that the data can support. However, as shown by the 
yellow plots in Figure 8.1, the exact data requirements in each situation may depend on the 
noise level and likely also on tissue priors and orientational information (absent here due to 
powder-averaging). 

The results in Figure 8.1 were consistent with previous results from the literature. 
Conventional dMRI using SDE with b-values in the high interval (SDE2, Table 8.1) yielded 
data that supported two but not three kernel parameters (Figure 8.1). This is consistent 
with Kiselev et al. (2007) and explains the prevalence of two-parameter models like NODDI 
and SMT in research. Tensor-valued diffusion encoding (QTI) yielded data that supported 
three parameters. This is consistent with Paper II and with Szczepankiewicz et al. (2016b). 
For high SNR, QTI would also support the four-parameter Standard model (Table 7.1). 
This is consistent with Coelho et al. (2019b) and Reisert et al. (2019), noting that the low 
precision in Figure 8.1 may reflect the absence of orientational information after powder 
averaging, as well as low sensitivity to the sixth phase cumulant for 𝑏 ≤ 2.5 ms/µm2 
(Kiselev et al. 2007, Ianuş et al. 2018). QTI extended to multiple TE for b-values in the low 
interval (DR1) yielded data that supported the four-parameter diffusion model at all noise 
levels. This is consistent with results from Paper IV that diffusion-relaxation MRI may 
compensate for the lack of orientational information. However, the DR1 data did not support 
any diffusion-relaxation model except under very high SNR conditions. This is consistent 
with results from Paper III, where in vivo use of this protocol did not support the PIII 
model. Even though DR1 is sensitive to 7 observables, only cov(𝐷I, 𝑅2 ) provides 
information that can separate the components’ T2 values. This results in degeneracy when 
the difference in component diffusivities is small (here absent). Diffusion-relaxation MRI 
using multiple TE for b-values in the high interval (DR2) yielded data that supported all 
models, including the seven-parameter diffusion-relaxation model (PIV+). This is consistent 
with in vivo results from Paper IV using this protocol. Being sensitive also to the tissue 
observable cov(Vλ,T[𝐃], 𝑅2) (Eq. 6.31), DR2 can separate the components’ T2 values based 
on their difference in anisotropy, which tends to be large between ‘sticks’ and ‘zeppelins.’ 
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8.4 Designing multidimensional dMRI acquisitions 

The previous section showed that multidimensional dMRI data can be used to remove most 
assumptions on diffusion and T2 relaxation (Figure 8.1). However, it also showed that the 
exact data requirements may be multifactorial and difficult to predict in each situation. The 
access to multiple encoding parameters also results in high protocol complexity, where a 
brute force strategy of using all encoding parameter combinations will inflate the acquisition 
time. Thus, it can be challenging to design a multidimensional acquisition protocol for 
practical purposes. In Papers I and IV, this problem was solved by optimizing acquisition 
protocols based on Cramer-Rao lower bounds (CRLB) (Rao 1945, Cramér 1946, Cercignani 
et al. 2006, Alexander 2008, Alexander et al. 2010, Coelho et al. 2019a). By finding a protocol 
that minimizes parameter variances approximated with CRLB, this approach can ensure 
both model support and experimental efficiency for relevant tissue priors. 

8.4.1 Protocol optimization using Cramer-Rao lower bounds 

CRLB are the diagonal elements of the inverse of the Fisher information matrix (𝐹 ). For 
Gaussian noise with standard deviation 𝜎noise, 𝐹  is given by (Alexander 2008) 
 

𝐹𝑖𝑗 = 𝜎noise
−2 ∑ 𝜕𝑆𝑘

𝜕𝑚𝑖

K

𝑘=1

𝜕𝑆𝑘
𝜕𝑚𝑗

(𝐩𝑘, 𝐦), (8.2) 

where ∂𝑆𝑘/ ∂𝑚i and ∂𝑆𝑘/ ∂𝑚j are partial derivatives of the forward model 𝑆(𝐦, 𝐩) with 
respect to the free model parameters 𝑚𝑖 and 𝑚𝑗, and the sum is over the set of K encoding 
parameter combinations {𝐩𝑘}. Thus, the Fisher information matrix is a correlation matrix 
that describes the impact on the signal from variation in the model parameters. Conversely, 
the inverse Fisher information matrix describes the impact on (estimated) model parameters 
from variation in the signal, and thus the propagation of noise. It has been shown that if 𝑆 
is an unbiased model of 𝐦, then the CLRB are lower bounds on the noise-induced variance 
on its estimates (Rao 1945, Cramér 1946) 

The CRLB can be used to construct a metric for a protocol’s efficiency at yielding data 
that determine the free parameters of a target model. In Paper IV, we defined the ‘weighted 
parameter variance’ (𝑉W), according to 
 

𝑉W = 1
J ∑ 𝐰𝐓𝐂𝐑𝐋𝐁𝑗

J
𝑗 𝑓Tacq, (8.3) 

where 𝐰𝐓 is a vector of weights, 𝑓Tacq is an efficiency factor, and the average was taken 
across different sets of model priors. Weights were chosen for the metric to ignore certain 
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model parameters while bringing the remaining to comparable scales, and the factor 𝑓Tacq =
𝑇Acq/𝑇Acq;ref  ensured that the metric reflected the protocol’s efficiency rather than its 
absolute acquisition time.  

Protocol optimization in Papers I and IV was performed as in Alexander (2008) using 
the Stochastic self-Organized Migrating Algorithm (SOMA) (Zelinka 2004), which is 
described in detail and available in open source at 
https://github.com/belampinen/lampinen_mrm_2019. 

8.4.2 Optimized multidimensional dMRI in vivo 

In Paper III, data were acquired using a naïve diffusion-relaxation acquisition protocol 
(Table 8.1, DR1) with the aim to support a diffusion-relaxation model (Table 7.1, PIII). 
However, as demonstrated in Figure 8.1, this generally resulted in degeneracy in model 
fitting. Precise parameter estimates were only obtained in white matter lesions with large 
differences in isotropic diffusivities between components. In Paper IV, we optimized an 
acquisition protocol with the aim to support an extended diffusion-relaxation model (Table 
7.1, PIV), based on a 15-minutes whole-brain acquisition on a MAGNETOM Prisma 3T 
system (Siemens Healthcare, Erlangen, Germany) using a multi-band factor 2 (Setsompop 
et al. 2012). The resulting protocol (adapted for an in vivo acquisition, Table 8.1, DR2) 
yielded data that supported not only the PIII and PIV models but also the seven-parameter 
PIV+ model (Table 7.1), and thus removed all conventional assumptions on both diffusion 
and T2 relaxation (Figure 8.2). 
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Figure 8.2 | In vivo maps of the seven kernel parameters of the PIV+ model (Table 7.1; together with 𝑝2 and 𝑆0). 
The maps were obtained using the DR2 protocol (Table 8.1) in the brain of a healthy volunteer from Paper IV. 
Isotropic diffusivities are in µm2/ms, T2 values are in ms and remaining parameters are dimensionless. The ‘stick’ 
fraction (𝑓S) maps indicated high microscopic anisotropy in white matter but not in gray matter. The ‘ball’ fraction 
(𝑓B) maps were consistent with CSF. The orientation coherence (𝑝2) maps resembled FA maps. The maps of the 
‘stick’ and ‘zeppelin’ isotropic diffusivities  (𝐷I;S and 𝐷I;Z) were brightest in white matter tissue. The ‘zeppelin’ 
shape (𝐷∆;Z) maps were mostly positive (non-red), indicating no oblate diffusion tensors in the brain. The ‘stick’ 
T2 value (𝑇2;S) maps were brighter than the ‘zeppelin’ T2 value (𝑇2;Z) maps in white matter, and particularly in 
the cerebrospinal tract (cover image). The 𝑆0 maps exhibited proton density-weighting rather than T2-weighting, 
as expected. The figure was adapted, with permission, from Paper IV by Lampinen et al. (2020), published by Wiley.  
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9 The interpretation of 
microstructure model parameters 

Microstructure models aim to estimate brain tissue quantities from dMRI data by fitting a 
forward model (Chapter 7) and use assumptions to avoid ambiguity of the inverse problem 
(Chapter 8). A unique solution does not guarantee a correct interpretation, however, since 
the estimated parameters could be biased in conditions where the assumptions do not hold 
true. Thus, the interpretation suggested for microstructure model parameters can be 
misleading. In Chapter 8, we showed that most model assumptions can be removed using 
multidimensional dMRI data. In this chapter, we use such data to test model assumptions 
and to investigate to what extent the interpretations suggested for microstructure model 
parameters can be trusted. 

9.1 Model assumptions versus independent data  

To test an individual model assumption, its associated parameter constraint can be 
compared with unconstrained parameter estimates obtained using independent data. To test 
a whole set of assumptions that defines a microstructure model, it can be assessed whether 
the model’s fitted parameters can predict independent data. For example, acquired STE 
data can be compared with predicted STE data synthesized using a forward microstructure 
model with the model parameters obtained from a fitting that model to LTE data. 
Invariance with respect to data acquisition is a requirement for any method that aims to 
estimate true quantities, as these should not vary according to their estimation means. 
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9.1.1 Testing individual assumptions 

Figure 9.1A shows results from Paper IV that compare independent parameter estimates 
with three commonly enforced parameter relations.  

The axial diffusivities of ‘sticks’ (𝐷∥;S) and ‘zeppelins’ (𝐷∥;Z) did not vary proportionally 
across the normal brain and white matter lesions (Figure 9.1A), in contrary to common 

 
Figure 9.1 | Testing model assumptions with independent data. A) Parameter relations commonly assumed in 
models versus unconstrained estimates from Paper IV. The axial diffusivities of ‘zeppelins’ (𝐷∥;Z) and ‘sticks’ 
(𝐷∥;S) did not vary proportionally. While 𝐷∥;Z was very variable, 𝐷∥;S differed mainly between tissue types and 
featured lower values. The ‘zeppelin’ shape (𝐷∆;Z) was more anisotropic than predicted by the tortuosity relation 
(Eq. 7.4) and exhibited high variability. The T2 values were lower in ‘zeppelins’ (𝑇2;Z) than in ‘sticks’ (𝑇2;S) in 
normal brain, and the opposite held true in white matter lesions. The estimates were obtained by fitting the PIV 
model (Table 7.1) to data acquired using the DR2 protocol (Table 8.1). B) Measured versus predicted MKA	in 
normal brain and a glioma brain tumor. NODDI predicted an MKA that was comparatively low in white matter 
and high in gray matter. Both NODDI and SMT predicted a high MKA in the contrast-enhancing region of the 
glioma (T1-weighted post-Gd). The measured MKA was obtained by a covariance tensor analysis (Eq. 6.18) of 
LTE and STE data. The predicted MKA was obtained by replacing the measured STE data by the STE data 
predicted by parameters obtained by fitting the NODDI and SMT models to the LTE data. The figure (A) was 
adapted, with permission, from Paper IV by Lampinen et al. (2020), published by Wiley. 
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assumptions (Behrens et al. 2003, Zhang et al. 2012, Kaden et al. 2016). In particular, the 
variation in axial diffusivities was considerably higher for ‘zeppelins’ than for ‘sticks,’ both 
in white matter and in deep gray matter. The axial diffusivity of ‘sticks’ was relatively 
different between these tissue types, however, which suggests that this parameter cannot be 
fixed to a single value in the brain. As a general observation, the axial diffusivities were 
markedly lower in ‘sticks’ than in ‘zeppelins.’ In white matter, this could possibly reflect a 
variation in axonal caliber that obstructs intra-axonal diffusion (Lee et al. 2019), although 
the difference in diffusivities was smaller in previous studies (Veraart et al. 2017, Novikov 
et al. 2018b, Dhital et al. 2019). 

The ‘zeppelin’ shape (𝐷∆;Z) was more anisotropic than predicted by the tortuosity 
relation (Eq. 7.4) and also exhibited high variability (Figure 9.1A). The relation in Eq. 7.4 
was originally derived from simulations of diffusion around parallel cylinders (Szafer et al. 
1995). In Paper IV, we point out that the use of this relation in microstructure modeling 
assumes that the ‘stick’ and ‘zeppelin’ components have the same geometric relationship as 
the intra- and extra-cylinder spaces in the simulation. However, this assumption ignores the 
presence of myelin around the true ‘sticks’ if these represent axons (Figure 3.1B, Eq. 3.1). 
Ignoring myelin should overestimate the volume fraction of the extracellular space and could 
explain the prediction of overly isotropic shapes. In Paper IV, we extended Eq. 7.4 to include 
myelin and showed that variability observed in ‘zeppelin’ shapes could reflect a variation in 
the g-ratio (Eq. 3.2) that was consistent with demyelination in the white matter lesions. 

The T2 of ‘sticks’ (𝑇2;S) was higher than the T2 of ‘zeppelins’ (𝑇2;Z) in normal brain 
(Figure 9.1A), which contradicted the ‘density assumption’ of equal T2 values (Eq. 7.7). In 
white matter, this is consistent with previous results, including a particularly high ‘stick’ T2 
in the cerebrospinal tract (cover image) (Veraart et al. 2017, McKinnon et al. 2019). If the 
‘stick’ and ‘zeppelin’ components are interpreted as the intra- and extra-axonal space, then 
a lower ‘zeppelin’ T2 could reflect exchange with short T2 myelin water (Mackay et al. 1994, 
Dortch et al. 2013). In the cerebrospinal tract, the high ‘stick’ T2 could reflect an axonal 
orientation parallel with the B0 field (Knight et al. 2017, Birkl et al. 2021), or a large axonal 
diameter that reduces the surface-to-volume ratio and the exposure of intra-axonal water to 
membrane lipids with exchangeable protons (O'Brien et al. 1965). In white matter lesions, 
the T2 of ‘sticks’ was similar to in normal white matter but the T2 of ‘zeppelins’ was 
substantially increased, thus reversing the relationship seen in normal brain. This is 
consistent with lesions of the ischemic type, where histology has shown demyelination and 
loss of tissue integrity that enlarges the extracellular space (Englund et al. 1990) and 
increases T2 (Englund et al. 1987). These results suggest that no reliable constraints can be 
placed on component T2 values. The only consistent observation in normal brain was that 
the T2 was lower in the ‘zeppelin’ than in the ‘stick’ component. However, the white matter 
lesions demonstrate how this does not hold true in conditions that involve oedema. 
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9.1.2 Testing entire models 

In Paper II, we showed that the NODDI parameteters were not invariant with respect to 
the shape of the b-tensor in the normal brain. Fitting to STE data yielded very different 
results from fitting to LTE data, and the parameters obtained by fitting NODDI to LTE 
data could not be used to predict data acquired with STE. In Figure 9.1B, we show that 
neither NODDI nor SMT could accurately predict the microscopic kurtosis (MKA) in the 
normal brain or in a glioma brain tumor. In the normal brain, the measured MKA was high 
in white matter and low in gray matter. The MKA predicted by NODDI was comparatively 
low in white matter and high in gray matter, and thus featured a weaker contrast. The 
MKA predicted by SMT was more alike in contrast to the measured MKA but featured 
markedly higher values in white matter. In the glioma tumor, the measured MKA was very 
low. However, both NODDI and SMT predicted high MKA  in the contrast-enhancing 
region. Thus, results indicate that the sets of assumptions used by NODDI and SMT are 
invalid in normal brain and in gliomas. 

9.2 Invalid assumptions become confounders 

In a model that aims to capture the true variation in brain tissue microstructure, tissue 
quantities that affect the signal but are not represented by free parameters must be 
accounted for by using assumptions—either explicitly (for example, Eq. 7.4) or implicitly by 
exclusion (for example, Eq. 7.7). When the true values of such quantities vary differently 
from the assumptions, they become confounders that bias the remaining free parameters 
and cause erroneous interpretations. In Figure 9.2, we simulate three scenarios that illustrate 
this effect on the interpretation of the NODDI and SMT ‘stick’ fractions (Table 7.1) as the 
neurite density. In each scenario, the true neurite density was represented by the volume 
fraction of ‘stick’ diffusion tensors, which was kept constant. 

The first simulation (Figure 9.2A) challenged the models’ ability to separate microscopic 
anisotropy with orientation dispersion from isotropic heterogeneity, which are entangled in 
SDE (Mitra 1995). Here, a variation in the variance in isotropic diffusivities among ‘ball’ 
diffusion tensors resulted in a variation in the NODDI and SMT ‘stick’ fractions, even 
though no ‘sticks’ were present. This confounding effect may explain findings of high ‘neurite 
densities’ in glioma tumors (Figure 9.1B) (Wen et al. 2015, Zhao et al. 2018), where no 
substantial amounts of neurites are expected but where high isotropic heterogeneity has 
been demonstrated (Szczepankiewicz et al. 2016a). 
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The second simulation (Figure 9.2B) challenged the NODDI assumptions that constrain 
all component diffusivities to estimate two fraction parameters (Table 7.1; Figure 7.1B). In  
Paper II, we show that this connects the neurite density to the mean diffusivity. Here, a 
variation in the isotropic diffusivity of ‘ball’ diffusion tensors resulted in a variation in the 
NODDI ‘stick’ fraction, even though no ‘sticks’ were present. This confounding effect may 
explain the high ‘neurite density’ detected by NODDI in acute ischemic stroke (Figure 9.2B, 
data from Paper VI) (Caverzasi et al. 2016, Wang et al. 2019), which induces a reduction 

 
Figure 9.2 | Simulation of three scenarios where invalid assumptions confound the interpretation of the NODDI 
and SMT ‘stick’ fractinos (Table 7.1) as the neurite density (represented by the ‘stick’ volume fraction). The signal 
was generated using LTE with 𝑏 ≤ 2.5 ms/µm2 and TE = 70 ms. A) The isotropic diffusivities of two sets of 
‘ball’ diffusion tensors (equal volume fractions) were changed from 𝐷I;1 = 𝐷I;2 = 1.3 µm2/ms  to 𝐷I;1 =
0.3 µm2/ms  and 𝐷I;2 = 2.3 µm2/ms . The NODDI and SMT ‘stick’ fractions were confounded by the 
independent variation of isotropic heterogeneity (MKI). This could explain findings of high ‘neurite density’ in 
glioma tumors. B) The isotropic diffusivities of ‘ball’ diffusion tensors were changed from 𝐷I = 1.3 µm2/ms to 
𝐷I = 0.3 µm2/ms. The NODDI ‘stick’ fraction was confounded by the independent variation in mean diffusivity, 
which could explain increased ‘neurite densities’ in ischemic stroke. C) The ‘zeppelin’ T2 value was changed between 
70 and 300 ms while the ‘stick‘ T2 value was kept constant at 70 ms. This caused a variation in the ‘stick’ signal 
fraction that NODDI and SMT interpreted as a variation in neurite density. This effect may explain low ‘neurite 
densities’ in white matter lesions, where studies have reported changes in T2 relaxation but minimal axon loss. 
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in mean diffusivity (Moseley et al. 1990). This effect should also explain the high MKA 
predicted by NODDI in gray matter (Figure 9.1B) and why the NODDI ‘stick’ fraction was never 
non-zero in Figure 9.2A. 

The third simulation (Figure 9.2C) challenged the density assumption of equal component 
T2 values (Eq. 7.7) that is used to estimate the neurite density from the ‘stick’ signal fraction, 
which is ambiguous at a single TE (Eq. 7.6). Here, a variation of the ‘zeppelin’ T2 value 
resulted in a variation in the NODDI and SMT ‘stick’ fractions that was unrelated to the 
neurite density. This confounding effect may explain the low ‘neurite density’ detected by 
NODDI in white matter lesions (Figure 9.2C, data from Paper IV), where histology has 
reported minimal axon loss (Coelho et al. 2018) but where extracellular oedema (Englund 
et al. 1990) could increase ‘zeppelin’ T2 values (Englund et al. 1987). 

9.3 The interpretation of model parameters has a small 
domain of validity 

In previous sections, we demonstrated how assumptions of microstructure models were 
contradicted by independent data (Figure 9.1), and how invalid assumptions become 
confounders that bias the remaining free parameters (Figure 9.2). One may ask, however, 
whether such bias is of practical importance. An absolute numerical trueness of model 
parameters with respect to their target tissue quantities may not be necessary and is rarely 
claimed. Instead, one may argue that microstructure model parameters are useful as indices 
of tissue quantities (Zhang et al. 2012, Kaden et al. 2016). Such an index could lack absolute 
trueness but feature ordinal trueness, meaning that it correctly ranks observations from low 
to high with respect to a given quantity. An important question, then, is whether invalid 
assumptions become sufficiently large confounders to affect the ordinal trueness of model 
parameters. 

In Paper III, we assessed the index property of the ‘stick’ fractions from contemporary 
models by comparing their rankings of different regions from normal brain tissue and white 
matter lesions (Figure 9.3). There, fitting six different microstructure models to the same 
data resulted in four different rankings of seven regions with respect to the ‘stick’ fraction. 
Since there can only be one true ranking with respect to a given tissue quantity, this means 
that the ‘stick’ fraction parameter of most of these models lack the ordinal trueness of an 
index across these regions. The conclusion was that the interpretation suggested for 
microstructure model parameters has a small ‘domain of validity.’ 
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The domain of validity of microstructure model parameters can be expanded by using 
multidimensional dMRI to remove assumptions (Figure 8.1; Table 8.1) as well as their 
associated confounders (Figure 9.2). In Paper IV, we used diffusion-relaxation MRI with 
tensor-valued diffusion encoding (Table 8.1, DR2) to remove the assumptions on both 
component diffusivities and T2 relaxation. Accordingly, the resulting parameters (Figure 
8.2) should be less biased in tissue types and conditions where these properties vary 
independently, including: gliomas (Figures 9.1B and 9.2A) (Wen et al. 2015, 
Szczepankiewicz et al. 2016a, Zhao et al. 2018), ischemic stroke (Figure 9.2B) (Caverzasi et 
al. 2016, Wang et al. 2019), oedematose conditions such as white matter lesions (Paper III; 
Figures 9.1A and 9.2C) (Englund et al. 1987, Englund et al. 1990), and the normal brain 
(Figure 9.1, Paper II). 

Even the relatively unconstrained models presented in Paper IV (Table 7.1, PIV and PIV+) 
are incomplete. For example, to interpret the ‘stick’ fraction of PIV+ (Figure 8.2) in white matter 
as the axonal density ignores the presence of myelin (Eq. 3.1, Figure 3.1B). Variation in myelin 
content could confound this parameter like variation in T2 relaxation confounds the ‘stick’ 
fractions from contemporary models (Figure 9.2C). Thus, its domain of validity may not 
encompass conditions that feature a combination of demyelination and axonal loss, such as 
multiple sclerosis (Criste et al. 2014). Moreover, component signal fractions are affected by T1 

 
Figure 9.3 | Fitting six microstructure models to the same data resulted in significantly different rankings of seven 
regions from normal brain and white matter lesions (𝑝 = 0.025, permutation-based test, Paper III). Thus, the 
result of comparisons between brain regions depended on the choice of assumptions. For example, using model C1 
would indicate a higher ‘neurite density’ in the mediodorsal thalamus than in white matter lesions, while model 
C6 would indicate the opposite. The figure was adapted, with permission, from Paper III by Lampinen et al. (2019), 
published by Wiley. 
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relaxation. Even though dMRI is usually weakly T1-weighted, severe variations in T1 could be a 
confounder, for example, in oedema (Englund et al. 1987) or in acquisitions using a very short 
repetition time (Hutter et al. 2018). To further expand the domain of validity may require data 
acquired with very short TE to account for myelin water, sensitivity to proton density to account 
for myelin lipid (Stikov et al. 2011, Stikov et al. 2015), and multiple repetition times (de Almeida 
Martins et al. 2018, Hutter et al. 2018) or inversion recovery (De Santis et al. 2016, Benjamini 
et al. 2018) to account for T1 relaxation. 
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10 The interpretation of microscopic 
diffusion anisotropy in the brain 

To estimate the properties of neurites, microstructure models assume that axons and 
dendrites induce a similarly high level of microscopic anisotropy to be jointly represented 
by a ‘stick’ component (Jespersen et al. 2007, Jespersen et al. 2010, Zhang et al. 2012, White 
et al. 2013, Kaden et al. 2016). Until recently, the validity of this ‘neurite assumption’ has 
been difficult to assess since the level of microscopic anisotropy in gray matter is obscured 
by orientation dispersion in SDE (Mitra 1995). In Papers II–V, we used tensor-valued diffusion 
encoding to overcome that issue. 

10.1 Microscopic anisotropy reflects axons 
but not neurites 

In Papers II and III, we found that the level of microscopic diffusion anisotropy, as quantified 
by the MKA, was considerably lower in gray matter than in white matter (Figure 10.1A). 
This did not agree with the neurite assumption; that is, that axons and dendrites induce 
similar levels of microscopic anisotropy. If this was the case, then the level of MKA should 
reflect the signal fraction from neurites. Histology shows that neurite signal fractions should 
be similar in gray and white matter (Section 3.2, discounting short T2 myelin), wherefore 
the neurite assumption predicts a similar MKA between these tissue types. The low MKA 
found in gray matter instead suggests that dendrites induce a relatively low level of 
microscopic anisotropy. Alternatively, the signal fraction of gray matter neurites could be 
reduced by a low T2 value (Figure 9.2C). 
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Figure 10.1 | Microscopic anisotropy reflects axons but not neurites. A) The MKA was considerably higher in 
white matter than in gray matter, even though histology predicts similar neurite signal fractions (Section 3.2, 
discounting short T2 myelin). B) The (T2-independent) ‘stick’ fraction reflected the axonal signal fraction expected 
from histology in white matter (𝑓S ≈ 0.48 vs. 𝑓n ≈ 0.52) but not in gray matter (𝑓S ≈ 0.14 in deep gray matter 
vs. 𝑓n ≈ 0.60 in the cortex). The dMRI data were obtained with the DR2 protocol (Table 8.1) from five healthy 
volunteers in Paper IV and the parameter values are inter-subject averages from four different white and deep gray 
matter regions. The MKA was estimated by fitting Eq. 6.18 (for a subset of data) and the stick’ fraction (𝑓S) was 
estimated by fitting the PIV model (Table 7.1). 
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In Paper IV, we found that the ‘stick’ fraction estimated independently of T2 relaxation 
(Table 7.1 PIV) was considerably lower in deep gray matter than in white matter (Figure 
10.1B). When compared with knowledge from histology (Section 3.2), the ‘stick’ fraction 
was close to the expected signal fraction of axons in white matter but lower than the 
expected signal fractions of either axons or dendrites in cortical gray matter. If axons 
contribute to the ‘stick’ fraction also in gray matter, this result indicates a near negligible 
contribution from dendrites and contradicts the neurite assumption. 

10.2 Microscopic anisotropy correlates with myelin 

In Paper III, we noted that maps of microscopic anisotropy, as quantified by the MKA, 
bore a similarity to myelin stains (Figure 10.2A). In particular, MKA maps exhibited a 
similar intensity gradient from the low-myelin medial thalamus, through the high-myelin 
lateral thalamus, and into the white matter of the internal capsule. We further studied this 
relationship in the cortical gray matter of twenty healthy subjects in Paper III. We found 
that MKA was significantly higher in cortical regions that were expected from histological 
studies to feature a high myelin content compared with cortical regions that were expected 
to feature a low myelin content (Figure 10.2B). Here, in Figure 10.2C, we compare MKA 
values from regions across the whole brain with corresponding values of the myelin water 
fraction obtained by Whittall et al. (1997) using multi-exponential T2 analysis. This revealed 
a strong linear correlation (𝜌 ≈ 0.93, Pearson’s r), where brain regions with lower myelin 
water fractions exhibited lower MKA, and vice versa. Also, the intercept of approximately 
zero indicated that the variation in microscopic anisotropy across the brain could be 
sufficiently explained by myelin, and thus axons, without any contribution from dendrites. 
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Figure 10.2 | Microscopic diffusion anisotropy was related to myelin (Paper III). A) MKA maps resembled myelin 
stains down to the detail level, as seen from intensity gradient between the medial (1) and lateral (2) thalamus 
and the internal capsule (3). B) The MKA was significantly higher in cortical regions expected from histology to 
feature a high myelin content (𝑝 < 0.001, two-sided t-test). C) MKA values from across the whole brain (Paper 
II, averaged across the five Group A subjects) were almost entirely explained by the myelin water fraction reported 
in Whittall et al. (1997). The figure (A and B) was adapted, with permission, from Paper III by Lampinen et al. 
(2019), published by Wiley. 
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10.3 Microscopic anisotropy reveals axons in 
malformations of cortical development 

In Paper V, we used tensor-valued diffusion encoding to estimate the MKA  in 
malformations of cortical development (MCD, Figure 10.3). MCD result from disrupted 
neuronal development and migration and consist of abnormal and disorganized gray matter 
(Guerrini et al. 2008). Anatomically, MCD may be located in both the cortex and white 
matter (Figure 10.3B and C) or by the ventricular walls (Figure 10.3A). 

On T1-weighted images, the MCD were seen as isointense with normal gray matter 
(Figure 10.3), which is typically associated with a low myelin content (Holland et al. 1986).  

On the MKA  maps, some lesions were similarly isointense with gray matter (Figure 
10.3A, blue arrow), exhibiting low levels that are typically seen outside white matter (Fig. 
10.1A). However, some lesions exhibited mixed levels of MKA; with low levels in regions 
located anatomically in the cortex and high levels in regions located anatomically in white 
matter (Figure 10.3B and C, yellow arrows). 

The high MKA in some lesion regions suggested a higher content of a microstructural 
component that induces high microscopic anisotropy without affecting the T1 properties 
(Figure 10.3). That component was unlikely to be dendrites, seeing that normal gray matter 
has low MKA despite being dendrite-rich (Figure 10.1A). Instead, we hypothesized that the 
high-MKA regions represented subcortical white matter that was myelin-poor, and therefore 
hypointense on T1, but whose high axonal content still induced a high level of microscopic 
anisotropy. This interpretation is consistent with histopathology, which has demonstrated 
reduced myelin content in white matter adjacent to MCD (Colombo et al. 2009). Overall, 
the finding is consistent with axons as the main drivers of microscopic anisotropy, with a 
smaller role for myelin (Beaulieu 2002) and a minimal role for dendrites. 
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Figure 10.3 | Microscopic diffusion anisotropy revealed white matter-like regions in malformations of cortical 
development (MCD, Paper V). The MCD could be seen by the ventricles (top example), in white matter (middle 
example) or in the cortex (bottom examlpe) as abnormalities that were isointense with normal gray matter on T1-
weighted images. Some lesions were isointense with gray matter also on the MKA (blue arrow). However, some 
lesions exhibited bright white matter-like regions (yellow arrows), particularly in the parts that were located 
anatomically in white matter. The figure was adapted, with permission, from Paper V by Lampinen et al. (2020), 
published by Wiley. 
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10.4 Microscopic anisotropy is an axon-based contrast 

Our results with tensor-valued diffusion encoding suggest that microscopic diffusion 
anisotropy reflects axons but not dendrites, and thus contradict the neurite hypothesis. This 
is consistent with previous findings in normal brain (Lawrenz et al. 2018, Novikov et al. 
2018b, Veraart et al. 2020) and in fixed tissue (Jespersen et al. 2010). The finding was not 
explained by T2 relaxation (Figure 9.1B), and primarily suggest that the intra-dendritic 
space is not an environment with microscopically anisotropic diffusion on the time scale of 
dMRI measurements at clinical scanners. This could reflect that dendritic water undergoes 
fast diffusional exchange—a phenomenon that has been demonstrated in cortical gray 
matter of rats in vivo (Pfeuffer et al. 1998, Jelescu et al. 2021, Zhang et al. 2021) and ex 
vivo (Olesen et al. 2021). Fast exchange between dendrites and the extracellular space might 
be facilitated by water-permeable channels that are involved in swelling-induced volume 
regulation (Akita et al. 2014), or by a larger surface area conferred by dendritic spines. Fast 
exchange could plausibly occur also between dendritic segments with different orientations 
or between dendrites and soma. 

The finding that microscopic anisotropy reflects axons but not dendrites has two 
important implications. On the one hand, microscopic anisotropy cannot be used to infer 
the properties of neurites, in contrary to what has been suggested (Jespersen et al. 2007, 
Jespersen et al. 2010, Zhang et al. 2012, White et al. 2013, Kaden et al. 2016). Thus, ‘stick’ 
fraction parameters should aim to capture axons, when not confounded by other phenomena 
(Figure 9.2). On the other hand, microscopic anisotropy may be a uniquely axon-based 
contrast. Parameters such as the MKA may, therefore, provide more robust differentiation 
between gray and white matter in conditions that involve alterations to myelin content—
which is a main determinant of conventional T1- and T2-weighted contrasts in the brain 
(Holland et al. 1986) (Figure 10.3). This could be important, for example, in malformations 
of cortical development, by improving the MRI delineation of lesions in the presurgical 
evaluation of epilepsy (Duncan et al. 2016) or in the evaluation of cortical thickness (Natu 
et al. 2019), for example, as a marker of progression in Alzheimer’s disease (Cullen et al. 2020). 
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11 The role of diffusional exchange in 
normal brain and pathology 

The previous chapters assumed diffusion in non-exchanging Gaussian environments 
described by a DTD (Chapter 5). This is known to be an approximation since diffusional 
exchange occurs continuously between different cellular components of brain tissue (Amiry-
Moghaddam et al. 2003). In this chapter, we first overview water permeability mechanisms. 
We then discuss the impact of diffusional exchange on the DTD description of diffusion and 
on the statistical DTD properties that are encoded into the dMRI signal. Then, we describe 
two different techniques for exchange-encoding in dMRI. Finally, we use these techniques 
to assess the impact of exchange on dMRI in normal brain and to explore the clinical 
potential of exchange in intracranial tumors and in ischemic stroke. 

11.1 Permeability of brain cell membranes  

Diffusional water exchange is tightly linked to the permeability of cell membranes, which 
are the main barriers for diffusion between microscopic environments in the brain . Cell 
membranes are semipermeable, which means that they allow differential passage of water 
and solutes. The membrane water permeability (𝑃 ) has the units of volume flow per unit 
area and defines two separate quantities. Osmotic water permeability (𝑃osm) regulates net 
flow in the presence of an osmotic gradient. Diffusional water permeability (𝑃d) is generally 
smaller and regulates the net zero flow that results from thermally driven diffusion (Reuss 
2012). In the context of dMRI, we assume the absence of osmotic gradients and thus net 
flow, and permeability always refers to 𝑃d. Below, we review three factors that influence 
permeability. 
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11.1.1 Membrane lipid composition 

Upon collision with a cell membrane, a water molecule has a non-zero probability to 
partition into the hydrophobic lipid core and diffuse to the other side. This process is referred 
to as solubility-diffusion and is facilitated by higher membrane fluidity. Factors that increase 
fluidity include high temperature, high content of phospholipids with unsaturated lipid 
chains, and low content of cholesterol (Reuss 2012). 

11.1.2 Water-selective aquaporins 

Aquaporins (AQP) is a family of narrow-pore (approximately 28 nm) membrane channels 
with high selectivity for water molecules (Reuss 2012), whose discovery was awarded the 
2003 Nobel Prize in Chemistry (Agre 2004). Cellular AQP expression greatly increases its 
membrane water permeability (King et al. 2004). This function is important, for example, 
in the kidney for controlled re-uptake of water, and in red blood cells for deformation in 
narrow capillaries (Reuss 2012). In the brain, three AQP isoforms have been identified. 
AQP1 is present in ependymal cells of the choroid plexuses where it may facilitate CSF-
secretion (Oshio et al. 2005). AQP9 is known to be present in some ependymal cells that 
line the ventricles but have an unclear role (Amiry-Moghaddam et al. 2003). AQP4 is 
considered the predominant AQP of the brain and is particularly found in astrocytes 
(Amiry-Moghaddam et al. 2003).  

The AQP4 of astrocytes have an important role in brain water transport. To exit or enter 
brain tissue, water must pass through a barrier whose permeability is largely determined by 
astrocytic AQP4 expression (King et al. 2004, Papadopoulos et al. 2007). Between blood 
and tissue, astrocytic end-feet contribute to the blood-brain-barrier by enveloping the 
endothelial cells of all brain capillaries. Between CSF and tissue, astrocytic end-feet form 
the so-called glia limitans that lines the ventricular, subarachnoid, and perivascular spaces 
(Papadopoulos et al. 2007). At these locations, the astrocytic membranes feature an order 
of magnitude larger concentrations of AQP4 (Amiry-Moghaddam et al. 2003). Inside brain 
tissue, water and solutes can also move rapidly through the intracellular network formed by 
astrocytes interconnected with gap-junctions (Amiry-Moghaddam et al. 2003, Sofroniew et 
al. 2010, Iliff et al. 2012). In rat brain, inhibition of AQP4-expression caused a 50% reduction 
in the apparent diffusion coefficient (Badaut et al. 2011). 
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11.1.3 Large non-selective membrane channels 

Some large membrane channels may permit sufficient non-selective passage of water to 
significantly impact membrane water permeability.  

The volume regulatory anion channel (VRAC) is present in both neurons and astrocytes 
and has a wide pore (110–120 nm) (Akita et al. 2014) that may allow non-selective passage 
of water (Nilius 2004a). VRAC are involved in compensatory volume regulation in response 
to cellular swelling. Membrane permeability to negatively charged solutes (anions) is 
dramatically increased when the channel is open, which results in a net outward flux and 
osmotic shrinking (Akita et al. 2014). 

The urea transporter UT-B1 is a membrane channel protein expressed by astrocytes 
(Berger et al. 1998), which may allow non-selective passage of water with similar 
permeability as AQP (Yang et al. 1998). UT-B1 facilitates the elimination of urea, a toxic 
waste product from protein catabolism (Ogami et al. 2006). It is upregulated in gliosis, 
which may reflect the increased urea turnover associated with healing (Berger et al. 1998). 

11.2 Diffusion in an ensemble of Gaussian environments 
with exchange 

The impact of diffusional exchange in an ensemble of Gaussian environments is determined 
by the environments’ exchange times 𝜏ex;𝑗 −the average durations of residence for water 
molecules in each environment before exchange occurs. The assumption of non-exchanging 
environments during the diffusion time 𝑇d can be defined as 𝜏ex;𝑗 ≫ 𝑇d for all 𝑗, meaning 
that each water molecule only experiences a single environment. The introduction of 
exchange among environments can be defined as 𝜏ex;𝑗~ 𝑇d for some 𝑗, meaning that some 
water molecules experience multiple environments. Finally, the condition of ‘barrier-limited’ 
exchange can be defined as 𝜏ex;𝑗 ≫ 𝜏c  for all 𝑗 , meaning that water molecules spend 
sufficient time in each environment to make many statistically independent displacements 
and preserve Gaussian diffusion by the central limit theorem. The barrier-limited term is 
reflective of the fact that the probability of exchange for each particle is determined by 
barrier permeability rather than the particle’s initial distance to barriers. 
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11.2.1 The Kärger model 

The Kärger model describes exchange between two one-dimensional components (Kärger 
1985), and can be seen as a minimal model of diffusion in an ensemble of Gaussian 
environments with exchange. The components are described by the fractions 𝑓1 and 𝑓2 =
1 − 𝑓1  and the diffusion coefficients 𝐷1  and 𝐷2 . Exchange between the components is 
determined by the outward rate constants 𝑘12⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  and 𝑘21⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ , which are the fractions of particles 
in each component that move to the other component per unit time. Exchange rates are 
related to the exchange times, according to 𝑘12⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 1/𝜏ex;1 and 𝑘21⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 1/𝜏ex;2. The effective 
exchange rate can be defined as (Åslund et al. 2009) 
 

𝑘 = 𝑘12⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ + 𝑘21⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 1
 𝜏ex;1(1 − 𝑓1)

, (11.1) 

using conservation of mass, according to 𝑓1𝑘12⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 𝑓2𝑘21⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ . 
If the Kärger model components are interpreted as intra- and extracellular spaces in a 

system of cells suspended in water, then the exchange rate is related to the surface-to-volume 
ratio 𝐴 𝑉⁄  and membrane permeability 𝑃d of cells according to (Åslund et al. 2009) 
 

𝑘 = 𝑃d
𝐴
𝑉

. (11.2) 

11.2.2 Diffusional exchange and the dMRI signal 

The cumulants 𝑐2  and 𝑐4  of the phase distribution 𝑃 (𝜙)  were derived for the (one-
dimensional) Kärger model by Ning et al (Ning et al. 2018), according to 
 

𝑐2 = 2𝑏(𝑓1𝐷1 + 𝑓2𝐷2) = 2𝑏MD (11.3) 

and 
 

𝑐4 = 12𝑏2V[𝐷]ℎ, where 

ℎ = 2
𝑏2 ∫ exp(−𝑘𝑡) 𝑞4(𝑡)𝑑𝑡

TE

0
 and 

𝑞4(𝑡) = ∫ 𝑞2(𝑡1)𝑞2(𝑡1 + 𝑡)𝑑𝑡1

TE

0
, 

(11.4) 
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where V[𝐷] is the diffusional variance, 𝑘 is from Eq. 11.1 and 𝑞 is from Eq. 6.2. This yields 
the signal expression 
 

𝑆 = 𝑆0exp (−𝑏 ⋅ MD + 1
6

𝑏2 ⋅ MKℎ ⋅ MD2), (11.5) 

where MK  corresponds to the MKT  parameter (Eq. 6.27, 𝑏∆ = 1 ) in the absence of 
exchange (𝑘 = 0). 

11.2.3 The impact of diffusional exchange on dMRI 

In an ensemble of Gaussian environments with (barrier-limited) exchange, individual water 
molecules experience multiple environments with Gaussian diffusion and therefore have 
multi-Gaussian displacement paths. The second cumulant of the phase distribution is 
unaffected by such exchange (Eq. 11.3) because it is sensitive to the average absolute 
displacement among spin-carrying particles. By conservation of mass, any reduction in 
displacement experienced by one particle that enters an environment with lower diffusivity 
is offset by a corresponding increase in displacement experienced by another particle that 
exits that environment. The fourth phase cumulant is affected (11.4), however, because it 
is sensitive to the variance in absolute displacement among spin-carrying particles. 
Increasing exchange allows each particle to experience more of the total environment and 
results in more similar absolute displacements among particles. 

An ensemble of Gaussian environments with exchange generalizes the conditions 
described in sections 6.3 and 6.4 to two extremes. For very slow exchange, 𝑘 → 0, ℎ → 1 
(Eq. 11.4) and diffusional variance has maximal impact. All individual displacement paths 
occur within single environments and the ensemble can be described by a DTD. For very 
fast exchange, 𝑘 → ∞  and ℎ → 0  (11.4), diffusional variance has zero impact. All 
displacement paths reflect the average environment, which makes the central limit theorem 
valid for the whole ensemble and allows it to be described by a single diffusion tensor. 
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11.2.4 Three regimes of diffusional exchange 

In Figure 11.1, we assessed the impact of exchange on dMRI by plotting MD and MK 
against the intracellular exchange time (𝜏i ≡ 𝜏ex;1, Eq. 11.1). This suggested three relatively 
non-overlapping regimes of exchange. First (shown in green), for intracellular exchange times 
approximately one order of magnitude longer than the diffusion time (𝑇d), exchange had no 
appreciable effect on either MD or MK. We refer to this as the ‘slow regime’ of minimal 
impact, where the ensemble is effectively non-exchanging and can be described by a DTD. 
Second (shown in yellow), for shorter intracellular exchange times, MK was progressively 
reduced towards zero while MD remained relatively unaffected. We refer to this as the 
‘intermediate regime’ that is most simply described by the Kärger model. Third (shown in 
red), for intracellular exchange times approximately one order of magnitude shorter than 
the diffusion time, MD was progressively increased towards the diffusivity of the fast 
component and MK was approximately zero. We refer to this as the ‘fast regime,’ where 
the exchange is no longer barrier-limited.  
 

 
Figure 11.1 | Plotting MD and MK against the intracellular exchange time (𝜏i ) suggested three regimes of 
exchange. In the ‘slow regime’ (green), for 𝜏i approximately one order of magnitude longer than the diffusion time 
(𝑇d), diffusion affected neither MD nor MK. In the ‘intermediate regime’ (yellow), for shorter 𝜏i, MD remained 
unaffected but MK was reduced towards zero. In the ‘fast regime’ (red), for 𝜏i  approximately one order of 
magnitude shorter than 𝑇d, MD was increased toward the diffusivity of free water. MD values were borrowed 
from (Harkins et al. 2009). MK  values were obtained by fitting Eq. 6.28 to data synthesized using 𝑏 ≤
2.5 ms/µm2, 𝑏∆ = 1 and 𝑇d  ∈ {20 30 40} ms with the Kärger forward model and the priors from (Harkins et 
al. 2009): 𝑓1 = 0.8, 𝐷1 = 1 µm2/ms, 𝐷2 = 3 µm2/ms and 𝜏i logarithmically spaced between 1.7 × 10−3  and 
1700 ms. The figure was adapted, with permission, from (Harkins et al. 2009), published by Wiley. 
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11.3 Exchange-encoding in dMRI 

Diffusional exchange can be estimated by acquiring dMRI data using exchange-sensitive 
encoding parameters, describing its effect on the signal with a forward model and solving 
the inverse problem. Two techniques for exchange estimation were used in this thesis: SDE 
with multiple diffusion times (Paper VI) and filter exchange imaging (FEXI; Paper I). 

 11.3.1 SDE with multiple diffusion times 

A forward model of the SDE signal including exchange based on Eqs. 11.3 and 11.4 has been 
presented by Ning et al. (2018). For small products 𝑘𝑡, where exp(−𝑘𝑡) ≈ 1 − 𝑘𝑡, Ning et 
al defined an exchange-sensitive encoding parameter Γ,  or ‘exchange-weighting time,’ 
according to 
 

ℎ ≈  1 − Γ𝑘, where 

Γ = 2
𝑏2 ∫ 𝑡𝑞4(𝑡)𝑑𝑡.

𝑇

0
 (11.6) 

This yields a simplified forward model of exchange, according to 
 

𝑆 = 𝑆0exp(−𝑏 ⋅ MD + 1
6

𝑏2 ⋅ MK(1 − Γ𝑘) ⋅ MD2) (11.7) 

The exchange rate 𝑘 can be estimated by fitting Eq. 11.7 to powder-averaged data acquired 
with b-values in the high interval for multiple Γ (Paper VI). 

11.3.2 Filter exchange imaging (FEXI) 

The effects of diffusional exchange are entangled with the opposing effects of restricted 
diffusion for SDE with multiple diffusion times (Nilsson et al. 2009). To overcome this, the 
FEXI sequence uses a DDE design with constant diffusion times and a variable mixing time 
to isolate the effects of exchange (Figure 11.2A) (Callaghan et al. 2004, Åslund et al. 2009, 
Lasič et al. 2011). 

FEXI estimates the apparent exchange rate (AXR) by analysing the equilibration of 
labeled spins (Figure 11.2B) (Lasič et al. 2011). The analysis is based on the Kärger model 
(Section 11.2.1) with a ‘fast component’ (F), described by 𝑓F  and 𝐷F , and a ‘slow 
component’ (S) described by 𝑓S  and 𝐷S , where 𝑓F = 1 − 𝑓S  and 𝐷F > 𝐷S . The mean 
diffusivity is given by  
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MD = 𝑓F𝐷F + 𝑓S𝐷S. (11.8) 

At the beginning of the sequence, the signal fractions are determined only by non-diffusion 
properties such as T1 and T2 relaxation. Both the fractions and the MD are at equilibrium 
(𝑓F

eq, 𝑓S
eq, and MDeq). At the first diffusion-encoding block (the ‘filter block’ with strength 

𝑏𝑓 ), the action of the gradients induces an additional phase dispersion among spins within 
each component depending on its diffusivity. This results in greater signal attenuation of 
the fast component and perturbed signal fractions, according to (Åslund et al. 2009) 
 

𝑓F/S(𝑡𝑚 = 0) = 𝑓F/S
eq exp(−𝑏𝑓𝐷F/S)

exp(−𝑏𝑓𝐷F) + exp(−𝑏𝑓𝐷S), (11.9) 

as well as a reduction in the MD (Eq. 11.8). During the mixing time, diffusional exchange 
equilibrates the phase dispersion between the components and restores the signal fractions, 
according to (Callaghan et al. 2004) 
 

𝑓F/S(𝑡𝑚) = 𝑓F/S
eq − (𝑓F/S

eq − 𝑓F/S
′ (0))exp(−𝑘𝑡𝑚), (11.10) 

where the effective exchange rate 𝑘 is given by Eq. 11.1. The restoration of the fractions 
also restores the MD, according to  
 

MD(𝑡𝑚) = MDeq + exp(−𝑘𝑡𝑚)[MD(0) − MDeq]. (11.11) 

To estimate the exchange rate, FEXI assumes that the strength (𝑏) of the second 
diffusion-encoding block (the ‘detection block’) is in the low interval (Section 8.1) where the 
isotropic fourth-order phase cumulant (Eq. 6.26) has a near negligible contribution to the 
signal. This allows its resulting diffusion attenuation to be approximated as (Lasič et al. 2011) 
 

𝐴 ≈ exp(−𝑏MD(𝑡𝑚)). (11.12) 

Then, defining the ‘filter efficiency’ as σ = 1 − MD(0)/MDeq and renaming 𝑘 as AXR yields 
 

MD(𝑡𝑚) = MDeq[1 − σexp(−AXR𝑡𝑚)], and 
𝑆 = 𝑆0(𝑡𝑚)exp(−𝑏𝑓MDeq − 𝑏MD(𝑡𝑚)), (11.14) 

where 𝑆0(𝑡𝑚) = 𝑆0exp(−𝑡𝑚/𝑇1) and 𝑇1 is the voxel-average longitudinal relaxation time 
constant. FEXI estimates MDeq, σ, AXR, and 𝑆0 (for each 𝑡𝑚) by fitting Eq. 11.14 to 
powder-averaged data acquired with two or more different 𝑏, both with filtering (𝑏𝑓 ≠ 0) 
at two or more 𝑡𝑚, and without filtering (𝑏𝑓 = 0). 
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Figure 11.2 | A) The FEXI pulse sequence uses a DDE design with stimulated echoes. The first diffusion-encoding 
block with strength 𝑏𝑓  is referred to as the ‘filter block’ and the second diffusion-encoding block with strength 𝑏 is 
referred to as the ‘detection block.’ The second 90° RF pulse moves magnetization from the transversal plane to 
the longitudinal direction parallel to the field. There, during the mixing time (𝑡𝑚), the signal undergoes T1 but not 
T2 relaxation. The third 90° RF pulse returns the magnetization to the transversal plane and induces a stimulated 
echo at TE where the signal is read-out using EPI. B) FEXI measures the exchange of labeled spins. At the 
beginning of the sequence, the signal fractions of spins with fast and slow diffusion are at equilibrium and MD =
MDeq. At the filter block, a higher phase dispersion is induced for among spins with fast diffusion. This perturbs 
the signal fractions and reduces the MD depending on the ‘filter efficiency’ (σ). During the mixing time, exchange 
equilibrates the spins that were ‘labeled’ with high phase dispersion at the filter block. This restores the signal 
fractions and the MD depending on the apparent exchange rate (AXR, Eq. 11.14). The AXR is then measured 
indirectly at the detection block by its effect of the MD. The figure (B) was adapted, with permission, from (Nilsson 
et al. 2013a), published by Wiley. 
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11.4 The impact of exchange on dMRI in normal brain 

In Paper I, we used FEXI (Figure 11.2) to estimate the AXR (Eq. 11.14) in gray and white 
matter of 18 healthy volunteers (Figure 11.3A). The AXR maps were somewhat noisy but 
exhibited symmetry and anatomical structure. Here, a model selection map was obtained 
that indicated significant exchange across the whole brain. The average AXR values from 
the volunteers are shown in Figure 11.3B. AXR values were similar in gray and white matter, 
but lowest in the corpus callosum (0.3 s–1) and highest in the anterior corona radiata (1.8 s–1).  

In Paper VI, we used SDE (Figure 6.1A) with multiple diffusion times to estimate the 
effective exchange rate (𝑘, Eq. 11.7) in the brain of patients with subacute ischemic stroke 
(Figure 11.3C). The 𝑘 maps appeared very noisy in the normal-appearing brain tissue 
outside the stroke lesions. Here, a model selection map was obtained that did not indicate 

 
Figure 11.3 | A) Map of the apparent exchange rate (AXR) obtained using FEXI in a healthy volunteer from 
Paper I. The corresponding model selection map was calculated using the procedure described in Paper IV. The 
red voxels indicate where including AXR as a free parameter in Eq. 11.14 yielded a significantly better fit (with 
respect to an F-test) compared with fixing the AXR to zero. B) AXR values from each of the 18 healthy volunteers 
in six brain regions from Paper I together with means and inter-subject standard deviations. C) Map of the effective 
exchange rate (𝑘) obtained using SDE with multiple diffusion times and Eq. 11.7 in a patient with subacute 
ischemic stroke. The model selection map indicated no significant exchange in normal-appearing brain tissue but 
fast exchange in the stroke lesion. 
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significant exchange in normal-appearing brain tissue, although the stroke lesion exhibited 
coherent regions with elevated exchange rates. 

The AXR values estimated in white matter in Paper I (Figure 11.3B) were of similar 
magnitude as in those estimated in Nilsson et al. (2013a) (between 0.8 and 1.6 s–1) and in 
Li et al. (2021) (between 1.5 and 2.9 s–1). If the exchange occurs between intra- and extra-
axonal spaces with approximately equal signal fractions (Section 3.2, discounting short T2 

myelin) and AXR ≈ 𝑘 in Eq. 11.1, then the estimated values correspond to intracellular 
exchange times (𝜏i) between approximately 0.6 and 6 seconds. By the results in Figure 11.1, 
such exchange rates are safely in the slow regime and should have a negligible impact on 
the dMRI signal when using SDE with diffusion times below 60–600 ms. This may explain 
the low sensitivity to exchange when using SDE Paper VI (Figure 11.3C), using 𝑇d  ∈
{30 60} ms, and the small effects observed in previous studies using SDE with 𝑇d between 
8 and 260 ms (Clark et al. 2000, Clark et al. 2001, Lätt et al. 2009, Nilsson et al. 2009). The 
exchange-weighting yielded by FEXI is on a somewhat longer timescale (Ning et al. 2018), 
however, and may detect such slow exchange (Figure 11.3A). Also, SDE with very long 
diffusion times have revealed exchange times at the shorter end of those detected with FEXI (0.6 
s) (Nedjati-Gilani et al. 2017). 

The AXR values estimated in gray matter in Paper I (Figure 11.3B) were of similar 
magnitude as in white matter and should thus be in the slow regime (Figure 11.1). However, 
previous studies using SDE with multiple diffusion times have indicated faster exchange in 
gray matter of the rat brain, with intracellular exchange times between 10 and 60 ms 
(Pfeuffer et al. 1998, Jelescu et al. 2021, Zhang et al. 2021). In the context of clinical dMRI, 
with 𝑇d between 20 and 100 ms, such exchange is clearly in the intermediate regime where 
it affects the dMRI signal (Figure 11.1). Some estimates even approache the fast regime 
where exchange affects intra-component diffusivities, which could help in explaining the low 
microscopic anisotropy induced by dendrites (Chapter 10). The absence of fast exchange 
when using FEXI may reflect equilibration of fast-exchanging environments already during 
the filter block, leaving only slower-exchanging environments to be detected during the 
mixing time. 

The slow diffusional exchange in white matter detected by FEXI may reflect exchange of 
water between the intra- and extra-axonal spaces associated with myelinated axons. Myelin 
appears to impede exchange (Nedjati-Gilani et al. 2017, Hill et al. 2021), wherefore intra-
extra axonal exchange may preferentially occur across the nodes of Ranvier or through the 
myelin spirals (Figure 3.1B). Simulations of such exchange (Nilsson et al. 2010, Brusini et 
al. 2019) have yielded exchange rates that are consistent with the low AXR values observed 
in white matter in Paper I and in previous studies (Nilsson et al. 2013a, Li et al. 2021). The 
simulations also showed slower exchange rates for thicker myelin sheets (Brusini et al. 2019) 
and larger inter-nodal distances (Nilsson et al. 2010), wherefore the low AXR values in the 
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cerebrospinal tract and the corpus callosum could reflect larger axonal diameters (assuming 
similar g-ratios, Eq. 3.2) (Rushton 1951). That exchange in white matter is associated with 
axons is supported also by the finding of Li et al. (2021): that the AXR was anisotropic and 
higher in the direction perpendicular to fibers. 

11.5 Clinical potential of exchange in intracranial tumors 

In Paper I, we used FEXI to estimate the AXR in eleven brain tumors, comprising six 
meningiomas and five astrocytomas. The two tumor types appeared very differently in the 
AXR maps (Figure 11.4A). While the meningiomas were inconspicuous, the gliomas stood 
out as relatively bright against surrounding tissue. The exception was one outlier 
meningioma that was salient in the AXR map. The gliomas exhibited significantly higher 
AXR values compared with the meningiomas, excluding the outlier (Figure 11.4B). 

The results suggested a relationship between diffusional exchange and tumor grade, both 
between and within different tumor types. The (malignant) grade II–IV gliomas generally 
exhibited higher AXR than the (benign) grade I meningiomas (Figure 11.4B). Among 
gliomas, the tumor with the highest grade (IV) exhibited the highest AXR . Among 
meningiomas, the outlier that exhibited an almost triple AXR was of intermediate grade 
(between I and II) and suspected to be invasive by the surgeon. A relationship between 
diffusional exchange and tumor aggressiveness has previously been indicated in breast 
cancer, both using FEXI in vitro (Lasič et al. 2016) and studying T1 relaxation in mice 
(Ruggiero et al. 2018). 

A higher level of diffusional exchange in higher-grade tumors could reflect an increased 
AQP expression that facilitates cell migration and metastasis (Saadoun et al. 2002, McCoy 
et al. 2007, Papadopoulos et al. 2008, Jung et al. 2011). A preliminary study in breast 
tumors also indicated a relationship between the AXR and AQP5 concentration (Shekar et 
al. 2021).  

Diffusional exchange have potential clinical utility as a marker of tumor grade, which is 
key to the prognosis and management of gliomas (Louis et al. 2007). Another potential 
clinical utility of exchange is for evaluating tumor treatment response. MD is a marker of 
treatment response related to loss of cellularity due to treatment induced cell-kill and necrosis 
(Chenevert et al. 2000, Hamstra et al. 2005). MD is not affected until very high permeabilities 
(Figure 11.1), however, wherefore the AXR could be an even faster and more sensitive marker. 
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Figure 11.4 | FEXI in intracranial tumors from Paper I. A) Example AXR maps in one glioma, one meningioma 
and one outlier meningioma, together with T1-weighted and T2-weighted images. Both the gliomas and the 
meningiomas were hypointense on T1-weighted images and hyperintense on T2-weighted images. On the AXR 
maps, the gliomas were salient and relatively bright against the surrounding tissue, while the meningiomas were 
inconspicuous. One outlier meningioma exhibited very high AXR values. B) AXR values for the five gliomas, six 
meningiomas and 18 healthy volunteers (averaged across the six ROIs in Figure 11.3B and across test and retest 
data). The gliomas exhibited significantly higher AXR values compared with the meningiomas (1.0 ± 0.3 s–1 vs. 
0.6 ± 0.1 s–1, mean ± inter-subject SD, p < 0.05, two-sided t-test), excluding the outlier with AXR = 1.7 s–1. For 
the normal brain, AXR = 0.8 ± 0.2 s–1. The figure (A) was adapted, with permission, from Paper I by Lampinen 
et al. (2017), published by Wiley. 
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11.6 Clinical potential of exchange in ischemic stroke 

In Paper VI, we used SDE (Figure 6.1A) with multiple diffusion times to obtain maps of 
the effective exchange rate (𝑘, Eq. 11.14) in five ischemic stroke patients. Imaging was 
performed at the early and late subacute stage (on approximately day 2 and day 9, 
respectively) and at the chronic stage (on approximately day 100). 

 The stroke lesions were defined at the early subacute stage based on their associated 
reduction in MD (Figure 11.5A). The lesions exhibited a heterogeneous elevation in 𝑘 both 
at the early and late subacute stage (Figure 11.5B), being bright in some regions (high 𝑘) 
but similar to normal-appearing tissue (low 𝑘) in other regions. The outcome of the lesions 
was heterogeneous by the chronic stage (Figure 11.5C), with a high MD  indicating 
liquefaction of infarcted tissue in some regions but a near-normal MD indicating viable 
tissue in other regions.  

Diffusional exchange at the subacute stage predicted tissue infarction by the chronic 
stage. There was a visual correspondence between the early patterns of elevated exchange 
and the late patterns of infarction (Figure 11.5B and C). Also, tissue that would be infarcted 
by the chronic stage exhibited significantly higher values of 𝑘 compared with tissue that 
would remain viable, both on day two (9.5 ± 3.1 s−1 vs 3.6 ± 3.0 s−1; mean ± SD, p < 0.05) 
and on day nine (7.2 ± 3.4 s−1 vs 3.6 ± 1.0 s−1, p < 0.05). The MD values in lesions, 
however, were not predictive of outcome 

Elevated rates of exchange in ischemic neural tissue has been demonstrated previously 
both in humans (Lätt et al. 2009) and in vitro (Yang et al. 2018). In Paper VI, we 
hypothesized that the association between ischemia and exchange reflects increased 

 
Figure 11.5 | Diffusional exchange in ischemic stroke from Paper VI. A) The lesions were defined in the subacute 
stage by their MD reduction. B) The effective exchange rate was heterogeneously elevated all lesions in the subacute 
stage, with a high 𝑘 in some regions and a low 𝑘 in other regions. C) The outcome of the lesions was heterogeneous 
by the chronic stage, with a high MD indicating infarction in some regions but a near-normal MD indicating viable 
tissue in other regions. The patterns of infarction by the chronic stage were similar to the patterns of exchange in 
the subacute stage, and tissue that would be infarcted exhibited significantly higher values of 𝑘. The figure was 
adapted, with permission, from Paper VI by Lampinen et al. (2021), published by Wiley. 
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membrane permeability of dead or dying cells. Ischemic cell death is thought to mainly 
involve necrosis (Buja et al. 1993) and is paralleled by an increased membrane permeability 
(O'Brien et al. 1997). In ischemic cardiomyocytes, membrane damage mechanisms include 
phospholipid depletion, oxidative stress, pore formation and unbalanced fatty acid 
metabolism (Buja et al. 1993, Weerasinghe et al. 2013). The process of excitotoxicity is 
another potential mechanism for the elevated exchange rates in ischemia, as it is dependent 
on the supposedly water-permeable VRAC (Nilius 2004b, Inoue et al. 2005, Mongin 2016). 

A marker of necrosis and tissue damage in ischemic stroke may have clinical utility for 
deciding whether to perform revascularization outside the normal treatment time window, 
for example, in patients with wake-up stroke. Currently, a small volume of MD reduction 
is used to identify patients that have slow infarction progression and likely to benefit from 
such treatment. However, this may unnecessarily exclude patients, as MD reduction is 
unspecific for infarction (Paper VI) (Pierpaoli et al. 1996, Beaulieu et al. 1999, Ueda et al. 
1999, Kidwell et al. 2000, Merino et al. 2007) and reflects reversible morphological changes 
(Hossmann 2006, Li et al. 2008, Baron et al. 2015) and possibly the loss of AQP4 from 
perivascular membranes (Frydenlund et al. 2006). As a marker of actual tissue damage, 
diffusional exchange may improve lesion characterization and enable the successful 
treatment of additional patients. 
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12 Conclusions 

This thesis uses multidimensional dMRI to obtain additional information on human brain 
microstructure. In our work, we used tensor-valued diffusion encoding, diffusion-relaxation 
MRI, FEXI and SDE with multiple diffusion times to acquire data from normal brain tissue, 
white matter lesions, intracranial tumors, malformations of cortical development, and 
ischemic stroke. 

We demonstrated that multidimensional dMRI data can remove model assumptions and 
that efficient acquisition protocols can be obtained using CRLB-based optimization. We 
applied the approach in vivo to remove all conventional assumptions on both diffusion and 
T2 relaxation. This increased the number of free parameters from two to six or seven, 
depending on the specific context. By replacing assumptions with free parameters, the 
estimated parameters become less susceptible to bias and may represent tissue quantities 
across larger ranges of conditions. 

We found that the domain of validity where the interpretation of microstructure model 
parameters can be trusted is small. Common assumptions were contradicted by independent 
data and resulted in parameter bias in normal brain, white matter lesions and intracranial 
tumors. Such bias prevented the ‘stick’ fraction from contemporary models to even compare 
different regions of normal brain and white matter lesions with respect to a tissue quantity 
like the neurite density. 

We found that microscopic anisotropy in the brain reflects axons but not dendrites. One 
consequence is that microscopic anisotropy cannot be used to map neurites. Nevertheless, 
another consequence is that microscopic anisotropy may be a strong tool for tissue 
differentiation. As a primarily axon-based contrast, microscopic anisotropy may separate gray 
and white matter in conditions where alterations to myelin confounds conventional MRI 
contrasts such as T1-weighted imaging. 

We detected diffusional exchange with FEXI in normal brain, but at a rate that should 
have negligible impact on most dMRI acquisitions. In intracranial tumors, faster exchange 
was tentatively associated with higher histopathological grade. In ischemic stroke, fast 
exchange was predictive of infarction and may improve the definition of the ischemic core. 
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The conclusions of each individual publication were: 
 
I. Optimization of the FEXI acquisition protocol allowed whole-brain estimation of 

the AXR in 13 minutes. Relevant AXR differences should be inferable between 
two populations for small group sizes. In vivo results showed slow exchange in the 
normal brain and in low-grade meningiomas but faster exchange in high-grade 
gliomas and in one meningioma of intermediate grade. 

II. The assumptions of the NODDI model were contradicted by STE data and resulted 
in parameter bias in normal brain and in intracranial tumors. The CODIVIDE 
model uses joint analysis of LTE and STE data to remove assumptions from the 
NODDI model. This made it less susceptible to parameter bias and erroneous 
interpretations. 

III. Microscopic diffusion anisotropy from tensor-valued diffusion encoding was 
associated with axons but not dendrites. Diffusion-relaxation MRI showed that the 
densities of microstructural components could not be estimated in the normal brain, 
and that T2 relaxation may bias density estimates in white matter lesions. 
Contemporary microstructure models ranked the same regions of normal brain and 
white matter lesions differently with respect to the neurite density. 

IV. Optimized diffusion-relaxation MRI with tensor-valued diffusion encoding removed 
all conventional assumptions on diffusion and T2 relaxation from a two-component 
model and increased its number of free parameters from two to six. By removing 
the confounding effects of assumptions, the resulting parameters should be less 
susceptible to bias and represent tissue quantities across larger ranges of conditions. 
Independent parameter estimates contradicted assumptions of contemporary 
microstructure models. We found lower ‘stick’ fractions in children than in adults, 
and white matter lesions exhibited changes compatible with demyelination. 

V. Microscopic anisotropy from tensor-valued diffusion encoding revealed white 
matter-like regions in malformations of cortical development that were gray matter-
like in conventional MRI contrasts. We interpreted this as an indication of the 
presence of unmyelinated axons and that dendrites do not contribute to microscopic 
diffusion anisotropy. By reflecting axons rather than myelin or dendrites, microscopic 
diffusion anisotropy may differentiate gray and white matter in conditions where 
alterations to myelin confound conventional T1- and T2-weighted contrasts. 

VI. Ischemic stroke lesions exhibited increased rates of diffusional exchange in the 
subacute stage. The rate of exchange was predictive of tissue infarction by the 
chronic stage, but the reduction in MD was not. Diffusional exchange may improve 
the definition of ischemic core and could allow selecting additional patients for late 
reperfusion therapy. 



101 

12.1 Future work  

Future work will use multidimensional dMRI to remove additional assumptions and obtain 
model parameters with an even larger domain of validity. We will seek to extend the model 
in Paper IV (Table 7.1, Paper IV) to account for myelin water and myelin lipid (Figure 
3.1B, Eq. 3.1). This would approach the estimation of true volume fractions in white matter 
and could enable the separation of demyelination from axonal loss. To sensitize the signal 
to myelin water, data can be acquired using a very short TE (Mackay et al. 1994, Whittall 
et al. 1997). To estimate the volume fraction of myelin lipid (𝑣ML), data can be acquired 
using multiple repetition times to account for T1 relaxation and estimate proton density 
from the 𝑆0 parameter. Preliminary results using this approach are presented in Figure 12.1, 
which shows a map of the myelin volume fraction (𝑣MW + 𝑣ML, Eq. 3.1). Future work 
should also investigate the clinical utility of microscopic anisotropy for differentiating gray 
and white matter in myelin pathology (Figure 10.3), validate diffusional exchange as a 
marker of tumor grade (Figure 11.4), and explore the ability of diffusional exchange to 
improve the definition of ischemic core and identify additional patients for late 
revascularization (Figure 11.5). 

 

 

Figure 12.1 | Map of the myelin volume 
fraction in a healthy volunteer. The map was 
obtained by fitting a three-component model 
with free T2 and T1 values to dMRI data 
acquired using 𝑏 between 0 and 4 ms/µm2 
multiple shapes of the b-tensor, TE between 
21 and 320 ms and repetition times between 
2100 and 1400 ms The full acquisition took 30 
minutes on a Siemens Prisma 3T system. The 
myelin water signal fraction was estimated 
based on the property of T2 = 15 ms. The 
myelin lipid volume fraction was estimated by 
comparing the proton-density weighted 𝑆0 
parameter between tissue and CSF. The 
signal was corrected for receive- and transmit-
field inhomogeneities using PrescanNormalize 
and tfl_b1map, respectively. 
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