
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Accessing general IEEE Std. 1687 networks via functional ports

Larsson, Erik; Murali, Prathamesh ; Zhang, Zilin

Published in:
International Test Conference

DOI:
10.1109/ITC50571.2021.00051

2021

Link to publication

Citation for published version (APA):
Larsson, E., Murali, P., & Zhang, Z. (2021). Accessing general IEEE Std. 1687 networks via functional ports. In
International Test Conference (pp. 354-363). IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ITC50571.2021.00051

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ITC50571.2021.00051
https://portal.research.lu.se/en/publications/e1d20c32-03d9-4c0b-b7f0-8abb1f51feae
https://doi.org/10.1109/ITC50571.2021.00051


Accessing general IEEE Std. 1687 networks via
functional ports

Erik Larsson, Prathamesh Murali, and Ziling Zhang
Lund University
Lund, Sweden

Email: erik.larsson@eit.lth.se

Abstract—Reconfigurable scan networks (RSNs), like IEEE Std.
1687 networks, offer flexible and scalable access to embedded (on-
chip) instruments. These networks are typically accessed from
the outside via a dedicated test port, like the test access port
(TAP) of IEEE Std. 1149.1. As not all integrated circuits have
a dedicated test port, the IEEE Std. P1687.1 working group is
exploring how existing functional ports can be used. Fundamental
challenges are to determine what hardware to include in the
component translating information between a functional port and
an IEEE Std. 1687 network and to describe a protocol for the
data transported over a functional interface. We have previously
shown hardware and protocol to access a limited type of IEEE
Std. 1687 networks, known as flat segment insertion bit (SIB)-
based networks. In this paper, we present a solution to handle
general IEEE Std. 1687 networks. We have made a number of
implementations with various benchmarks on an FPGA to evaluate
the data overhead and the area usage.

Keywords—IEEE Std. P1687.1, IEEE Std. 1687, IEEE Std.
1149.1, functional port, embedded instruments

I. INTRODUCTION

The semiconductor technology development makes it pos-
sible to constantly design and manufacture integrated circuits
(ICs) with smaller, faster and more transistors. While the devel-
opment gives many advantages, there are also many challenges.
Smaller and faster transistors lead to tighter margins, both in
device sizes and timing. Tighter margins lead to higher risks
of wear-out effects and larger sensitivity to process variations
(transistors length, widths, oxide thickness). Tighter margins, in
combination with higher transistor count, increase the risks of
malfunctioning, which lead to an increased need of possibilities
to test, tune, re-configure, and so on. To accurately perform
measurements, there is a need of on-chip, instead of off-chip
(external), instrumentation [1]. Embedded (on-chip) instruments
are increasingly used at different stages through the life cycle
of ICs: from prototype debug, test and validation to in-field
monitoring and test. A modern IC can include thousands of
instruments [2].

IEEE Std. 1687 [3] was developed to offer flexible and
scalable access to embedded instruments. The flexibility is
achieved by the possibility to dynamically configuring the
active scan-path so that only desired instruments are included,
for example by means of segment insertion bits (SIBs). The
standard includes two description languages, instrument con-
nectivity language (ICL) and procedural description language
(PDL). ICL describes how instruments are interconnected and
PDL describes how to operate on instruments. The access to
the outside is typically via a dedicated test port, like the test
access port of IEEE Std. 1149.1. To operate on instruments, an
Electronic Design Automation (EDA) tool takes PDL and ICL

as inputs and generates access patterns. These access patterns
are transported to and from the IC using the protocol of IEEE
Std. 1149.1 and translated by the TAP of IEEE Std. 1149.1 to
the IEEE Std. 1687 network.

Rearick et al. described early in the development of IEEE
Std. 1687 problems, activities and instruments [4]. Portolan
described test design-flows with IEEE Std. 1687 [5]. Zadegan
et al. made access time analysis [6] and explored design
methods for IEEE Std. 1687 networks [7]. Baranowski et al.
investigated minimization of reconfiguration steps of IEEE Std.
1687 networks [8]. Jutman et al. proposed the first work with
IEEE Std. 1687 for fault management where the network was
complemented with an additional infrastructure to speed-up
fault detection [9]. A similar infrastructure as proposed by
Jutman et al. [9] was used by Petersen et al. [10]. Zadegan et
al. proposed self-configuring SIBs to speed-up fault localization
[11]. Cantoro et al. proposed techniques to test the IEEE Std.
1687 network [12].

As not all ICs are equipped with an IEEE Std. 1149.1
TAP, the IEEE Std. P1687.1 [13] working group is currently
exploring the use of functional interfaces, like serial peripheral
interface (SPI), inter-integrated circuit (I2C), universal serial bus
(USB), and advanced microcontroller bus architecture (AMBA)
to enable access to IEEE Std. 1687 networks. The fundamental
question is what hardware is needed instead of the IEEE Std.
1149.1 TAP and what protocol is needed to describe data
transportation over a functional interface. There are some work
on IEEE Std. P1687.1 [14]–[16]. We have previously proposed
and explored protocols and hardware components such that a
functional port can be used to access flat SIB-based IEEE Std.
1687 networks [15]. In this paper, we present a solution to
handle general IEEE Std. 1687 networks.

The paper is organized as follows. In Section II we give a
brief background to IEEE Std. 1687, how to access IEEE Std.
1687 networks via a dedicated test port, like IEEE Std. 1149.1,
and via a functional port. We also describe our previously
proposed hardware component and protocol to access flat SIB-
based IEEE Std. 1687 networks via a functional port [15]. The
proposed solution to handle general IEEE Std. 1687 networks
accessed via a functional port is described in Section III. We
provide an illustrative example of our solution in Section IV.
Experimental results are in Section V and the paper is concluded
in Section VI.

II. BACKGROUND

In this section we provide a brief background to IEEE Std.
1687, how to access IEEE Std. 1687 networks via a dedicated
test port like IEEE 1149.1 and via a functional port, including

Regular Paper



Fig. 1. Accessing reconfigurable scan networks using IEEE Std. 1687 via a
dedicated test port, that is normally IEEE Std. 1149.1 TAP

our previous work on using a functional port to access IEEE
Std. 1687 networks.

Figure 1 shows an IEEE Std. 1687 network with three
instruments, i1, i2 and i3, connected in a flat manner with
one SIB per instrument. The SIBs provide a possibility to
dynamically configure the active scan-path by including or
excluding instruments. The IEEE Std. 1687 network in Figure 1
is accessed from the outside via a dedicated test port, the IEEE
Std. 1149.1 test access port (TAP).

Figure 1 shows some PDL with an iApply group to simulta-
neously write to instrument i1 and read from i3. The retargeting
process forms access patterns according to the protocol of IEEE
Std. 1149.1. When applied, the access patterns will be received
by the IEEE Std. 1149.1 TAP, which transforms the data to fit
the IEEE Std. 1687 network. Smart retargeting includes only
needed instruments in the active scan-path as any additional
instruments lead to a need to transport more data and longer
time for the shifting process. For the example in Figure 1, a
smart active scan-path sets SIBs such that i1 and i3 are included
but i2 is excluded.

Figure 2 shows the same IEEE Std. 1687 network as in
Figure 1 with the difference that a functional port is used instead
of a dedicated test port for access with the outside. In the
retargeting process, the data (access patterns) for the IEEE Std.
1687 network is formed to be transported over the functional
port, instead of using IEEE Std. 1149.1, and some hardware
translates data transported on the functional port such that it
fits the IEEE Std. 1687 network. The topic of specifying the
protocol for how data should be transported over a functional
interface and what hardware to include in the component placed
between the functional port and the IEEE Std. 1687 is in the
scope of the on-going IEEE Std. P1687.1 working group.

We have previously investigated some protocols and corre-
sponding hardware components such that a functional port can
be used to access IEEE Std. 1687 networks [15]. Figure 3 shows
the alternative that gave least need of transported data. In respect
to protocol, a given iApply group is translated into one or more
control commands followed by one or more data commands.
Figure 3 shows the protocol and the hardware component for
the same iApply group as in Figure 1. We see in Figure 3 that
the first control command is for i1. There is one bit indicating
that this is a control command, one bit to indicate that a write

Fig. 2. Accessing reconfigurable scan networks using IEEE Std. 1687 via a
functional port, the scope of IEEE Std. P1687.1

operation should be performed and an address to instrument
i1. The second control command is for i3. There is one bit
indicating that the command is a control command, one bit
indicating that a read operation should be performed and an
address to instrument i3. The third command is a data command,
indicated by the most significant bit in the first byte is set to 1.
The following 15 bits specify the number of bytes of data that
will follow. In this example, these bits specify the value one,
which means that one byte of data follows. This is the data
(0b1111000) that should be written to i1.

The hardware component is based on a finite state machine
(FSM) complemented with an instrument control register (ICR),
a SIB control register (SCR), and an instrument length memory
(ILM). ICR keeps a position for each instrument to indicate
the type of operation, read or write, and SCR keeps the value
for each SIB, active or inactive. Control commands for a given
iApply group set suitable values of ICR and SCR. ILM, which
contains the length in bits of each instrument, is fixed at design
time. The control commands for the iApply group in Figure
3 set SCR such that SIB1 and SIB3 are active and set ICR
such that a write is performed on instrument i1 and a read is
performed on instrument i3.

The FSM operates as follows. First, when the first control
command arrives, which indicates the beginning of a new
iApply group, the FSM resets the IEEE Std. 1687 network such
that only SIBs are included in the active scan-path.

Second, when the first data command arrives, indicating that
ICR and SCR are fully configured according to the iApply
group, the FSM sets the active scan-path by traversing the SCR
and shifting in corresponding bits. For the example in Figure 4,
the first bit to be shifted is the value of SIB3, which is 1, then 0
for SIB2, and finally 1 for SIB1. The values that are shifted out
during this process are dropped by the FSM; hence, not sent
back via the functional port.

Third, the FSM starts to operate on the active scan-path.
The shift-in sequence is constructed as follows. The first bit
in the shift-in sequence is the value for SIB3, which the FSM
gets from SCR at position SIB3. As this value is 1 the FSM
knows that corresponding instrument (i3) should be included
in the active scan-path. Hence, the FSM checks ICR to learn
that a read operation should be performed, which means that the
shift-out values should be returned over the functional port. The

Regular Paper



Fig. 3. Protocol and hardware translator to access IEEE Std. 1687 networks
via a functional port [15]

Fig. 4. Setting the active scan-path [15]

FSM checks ILM for i3 to know the length of the instrument,
the number of shifts. As the operation on i3 is read, the FSM
creates dummy bits that are shifted in to push out the content of
i3. The FSM proceeds to SIB2 and finds by checking SCR that
the value is 0, which means corresponding instrument (i2) is not
in the active scan-path, the FSM shift in a 0 for SIB2. And then
the FSM proceeds with SIB1. SIB1 holds the value 1, which
means that i1 is included in the active scan-path. The FSM
checks ICR to learn that a write operation should be applied.
This means that data transported on the functional bus should
be shifted in, which arrives in a data command (0b1111000).
The FSM checks ILM for i1 to learn how much data to shift-in.
The data that is shifted out is dropped by the FSM. In general,
the FSM drops all shift-out data expect the data that is read
from instrument i3.

The protocol and hardware component we developed are
general and can be applied using any functional interface. The
fact that key information, basically the complete ICL describing
the IEEE Std. 1687 is included in the FSM leads to that
the amount of data that needs to be transported is very low.
However, there are some important shortcomings. The scheme
is only applicable to SIB-based IEEE Std. 1687 networks, the
structure of the IEEE Std. 1687 network must be flat, that is,
SIBs can only be on the top-level, and there can only be one
instruments, same operation, under each SIB.

Fig. 5. Applying operation to the active scan-path [15]

Fig. 6. A general IEEE Std. 1687 network

III. TRANSLATOR AND PROTOCOL

In this section we describe our approach to access and
operate general IEEE Std. 1687 networks via a functional
port. Figure 6 shows a general IEEE Std. 1687 network with
sequential elements, that is instruments, SIBs and ScanMux
control. These elements are connected in a general (non-flat)
manner. We make the following observations:

• There are several constructs to define the active scan-
path, for example SIBs, like SIB4, and ScanMuxes, like
C1

• Some instruments are always on the scan-path and
cannot be excluded, for example instrument i8.

• Some instruments must be on the scan-path under some
conditions, for example if instrument i7 is on the active
scan-path, instrument i5 is also included.

• There is a hierarchy which leads to that several con-
figuration steps may be needed to include some instru-
ments, for example if SIB4 is not on the active scan-
path, there is a need to first include SIB4 and then SIB6
to access instrument i7

• Some instruments are mutually exclusive such that they
cannot be on the active scan-path at the same time, for
example instruments i2 and i3

Our scheme to operate general IEEE Std 1687 networks is
as follows.

First, we number the sequential elements in a given IEEE
Std. 1687 network in the order they can appear on an active
scan-path. We will use the general IEEE Std. 1687 network in
Figure 8 for illustration. First bit to be set in a shift-in sequence
(or the first bit that is shifted out) is that for C1. We therefore
assign C1 with number 1. The second group of bits to shift in

Regular Paper



D Q

CLRSET

S

0

1

D Q

CLRSET

U

si

tsi fso
so

Fig. 7. Illustration of a SIB

Fig. 8. Numbering of sequential elements in an IEEE Std. 1687 network

are determined by the value of C1. If C1 = 0 the multiplexor
selects i2 and if C1 = 1 the multiplexor selects i3. These two
instruments are mutually exclusive, which means they cannot be
on the active scan-path at the same time. Hence, the individual
numbering of them is not important so we number them in
an arbitrary way. In this example, we give i2 number 2 and i3
number 3. Next bit to consider is related to SIB4. The numbering
here depends on the SIB implementation. Let us assume a SIB
implementation is as in Figure 7, which leads to that the content
of a SIB appears before anything controlled by the SIB. Hence,
we give SIB4 number 4. With an implementation of SIBs where
shift-out from the SIB appears after anything controlled by the
SIB, the SIB gets a higher number as it, if included in the
active scan-path, appears later. Next groups of bits to consider
are related to instruments i8 and i5. We make the following
observation; there is no possibility to include i5 and i8 in the
an active scan-path such that i8 comes before i5. Hence, our
numbering scheme gives instrument i5 number 5. For the rest
of the sequential elements, the numbering is straight forward;
SIB6 gets number 6, i7 number 7, and finally, i8 gets number
8.

Second, for the numbered elements, we create a table with
one column per element, see Figure 9. Each column specifies
for a given element; length in bits, current operation, and if the
element is included in the active scan-path or not. The length is
the number of bits, which for a SIB is one and for an instrument,
like i5 is 10. This information is fixed at design time. Operations
for elements like SIBs and ScanMuxes are 0 or 1 and for other
instruments, like i7, read (R), write (W), and No operation (N).
A read operation means that data should be taken from the
particular instrument and reported and a write operation means
that data from the outside should be placed in the instrument. An
instrument marked with no operation means that the instrument
is on the active scan-path but no operation should be performed
on it. The operation is needed for instruments that appears on
the active scan-path but there is no operation specified for them
in the iApply group. For example, instrument i8 is always on
the active scan-path but there might not always be an operation
for it.

Given a table for an IEEE Std. 1687 network, like the one
in Figure 9, we create an FSM complemented with registers
storing data in the table. We have:

• Length of sequential elements, which is fixed at design
time, are stored in Length Memory (LM).

Fig. 9. Numbering and information of sequential elements in an IEEE Std.
1687 network

Fig. 10. Our numbering of sequential elements in an IEEE Std. 1687 network

• Current Operation on a given sequential element is
stored in Operation Register (OR). We have three types
of operations: Read, Write and No operation.

• Active is a flag to determine if an element should be
included in the active scan-path or not, which is stored
in Active Register (AR)

The protocol we use to set OR and AR is based on control
commands and data commands, as proposed by Larsson et al.
[15]. These commands where introduced for flat SIB-based
IEEE Std. 1687 networks with one SIB associated with each
instrument. To handle general IEEE Std. 1687 networks, we
updated the control command to separate the control of SIBs
and instruments, which means that each sequential element in an
IEEE Std. 1687 network can be individually controlled. And, to
be able to control if a sequential element should be included in
the scan-path or not we added one bit to indicate if an element
should be active or not (in the active scan-path). The updated
control command is shown in Figure 10.

The data command is as proposed by Larsson et al. [15]. The
data command consists of 2 bytes where the most significant
bit in the first byte that arrives to the FSM determines if the
command is a data command or a control command, see Figure
11. The remaining bits are used to specify the number of bytes
of data needed for the active scan-path. In the example in Figure
11, the fifteen bits specifies the value one, meaning that one
byte of data follows. It should be noted that the active scan-
path is rarely an exact multiple of 8 bits (a byte). However,
the FSM knowns the length of the active scan-path and knows
exactly how many bits that are needed. Hence, the additional
bits needed to fill-up the last byte are simply dropped. The
worst that can occur is that one bit is to be sent, which mean
that seven out of eight bits in the byte are dropped. However, in
practice, huge amount of data will be transported, which means
that losing a couple of bits in the last byte has a minor impact
on data overhead.

The FSM includes three main states:

1) The FSM waits while control commands set OR and
AR. When the first data command arrives, the FSM

Regular Paper



Fig. 11. Our numbering of sequential elements in an IEEE Std. 1687 network

generates a capture en signal to capture instrument
data in their corresponding shift register.

2) Once data has been captured, the shift process begins.
The FSM traverses OR, AR and LM for each sequen-
tial element to learn what action to take. For a given
sequential element, a column in Figure 9, there are
several possible combination. First, FSM checks AR to
learn if current sequential element is included in active
scan-path. If AR stores the value 0, current sequential
element is not part of the active scan-path; hence,
no shift-in data is created for this element. The FSM
moves to next sequential element. If AR, on the other
hand, stores the value 1, current sequential element is
part of the active scan-path. The FSM checks OR to
find the type of operation and LM to find the length
in bits of the element. The possible operations on an
element are:

• Read. The FSM performs two operations on the
number of bits shifted out from the element.
First, the FSM returns them out of the system
as this is requested by the iGet in the iApply
group. Second, the FSM feeds back the shift-
out bits to the shift-in such that the instrument
maintains the same value as before the shift
process.

• Write. The FSM shifts from the data command
the number of bits given by LM.

• No operation. If there is no operation specified
in the iApply group for an element but the
element is on the active scan-path, the FSM
takes the shift out bits for the element and
feeds them directly back to scan in to maintain
current value in the elements shift register.

3) Once the FSM has traversed all elements, the table in
Figure 9, an update en signal is generated to make
data go from shift registers to instruments.

IV. EXAMPLE

In this section we illustrate with examples some aspects on
how our scheme handles general IEEE Std. 1687 networks.

We begin with an iApply group to read from instrument i2:

iRead i2;
iApply;

in an IEEE Std. 1687 network as given in Figure 12.

We note that the iApply group specifies an operation on
instrument i2 and that for this IEEE Std. 1687 network the
active scan-path must include C1, i2, SIB4, and i8. Hence, while
there is no operation given for instrument i8, it is due to the
design of the IEEE Std. 1687 network included in the active
scan-path. This means that data must be handled for instrument
i8 during the shift process. There are two aspects. First, the
number of shifts must consider all instruments on the active

Fig. 12. Illustration of active scan-path

scan-path. Second, it is specifically required by IEEE 1687 to
maintain the content of their associated shift-registers unless
there is a write which explicitly should make a change. While
IEEE 1687 indicates that the ”previously written” value must be
maintained after a scan shift for an element not currently being
written, our scheme will maintain the ”just captured” value. It
should be noted that all instruments on the active scan-path
will perform capture-shift-update. One alternative is that data
is shifted out from the active scan-path and modified externally
such that the new shift-in pattern includes the desirable values.
Such a scheme leads to additional transportation of data. Our
scheme is to directly feedback data from the shift-out to the
shift-in. The scheme is used for all instruments in the active
scan-path except for those where data should be modified, for
example due to a write. In order to implement the scheme, we
increase the shift process with one bit such that the output from
the active scan-path can be returned to the shift-in.

Let us assume that control commands have been used to
setup the data, detailed in the table in Figure 12 and that a
data command, which is empty as there is no write operation
in the iApply group, arrives to initiate the shift process. The
shift process is as follows. First a dummy bit is shift in and
concurrently we shift out current value of C1. We check the
column for C1 in the table in Figure 12 and learns that the
element should be on the active scan path and the operation
is 0, so the first real bit (apart from the dummy bit) to be
shifted-in is a 0. Instrument i2 is the second element in the
table and it is active, with length 5 bits, and the operation is
read, which means that 5 bits should be returned to the outside.
To maintain the value in the shift register the shift-out is also
used as shift-in. Instrument i3 is the third element in the table
and it is not active, hence no shift occurs for this element. The
fourth element is SIB4 and it is closed and on the active scan-
path so a value 0 is shifted in. The output at this shift, current
value of the SIB, has no value and is dropped. For elements 5 to
7 in the table, all are inactive, which means they are ignored and
no shifts are created for them. The last element on this active
scan-path is instrument i8. When checking the table in Figure
12, the operation is N (No operation), which means there is no
operation for the instrument in the iApply group. The output
from the shifting is feed-back so that the instrument contains
the same value as before the shifting, and those bits are not sent
as part of the output stream.

Our second example illustrates how to reconfigure the IEEE
Std. 1687 network, that is to go from accessing one set of
instruments to accessing another set of instruments. In previous
work [15], which was limited to flat SIB-based IEEE Std.
1687 networks, the FSM performed an automatic reset before
operating on a new iApply group. The main advantages are that
each individual iApply group can be handled independently as
the IEEE Std. 1687 network is always in a reset state and that
configuration to set the active scan-path is simple and quick;

Regular Paper



Fig. 13. Reconfiguring going from configuration in Figure 12 to read (iGet)
from instrument i3

one step is needed to decide which SIBs to open and then the
operation on the active scan-path can begin. In current work,
where we handle general IEEE Std. 1687 networks, several steps
can be needed to go from accessing one set of instruments to
accessing another set of instruments. We assume that we have
performed the iApply group in Figure 12 and would like to do
a read from instrument i7, see Figure 13:

iRead i7;
iApply;

The first step is to indicate set instrument i2 to invalid as
there is no operation for it in the iApply group and change SIB4
so that it opens up for access. These modifications require two
control commands and one data command to execute:

Control command: set i2 to no operation
Control command: open SIB4
Data command

In the second step, there is a need to include instrument i5
in the active scan-path and change values for SIB6 such that it
is opened and included in the active scan-path:

Control command: include i5
Control command: include SIB6
Control command: open SIB6
Data command

In the third step, there is a need to include instrument i7
and set it for the read operation:

Control command: include i7
Control command: set i7 to read
Data command

V. EXPERIMENTAL RESULTS

The objective of the experiments is to evaluate overhead
in respect to transported data and implementation area. The
transported data overhead is computed as described in Section
V-A and proposed scheme is compared against so called Bit-
banging, which is a straight forward scheme, described in
Section V-B for all benchmarks and also against the approach
in [15] for the flat SIB-based benchmark. The three benchmarks
that have been used are described in Section V-C. The results
are presented in Section V-D and the results are discussed in
Section V-E.

A. Overhead

The number of useful bits that needs to be transported can
be extracted directly from PDL and ICL. For example, assume

a write operation on a 32-bit long instrument. This operation
requires 32 bits of useful data, the information that is written to
the instrument. A read operation on the same instrument results
in that 32 bits are taken from the instrument. All additional bits
needed to enable operations are considered as overhead. For
proposed scheme, the communication over a functional port to
an IEEE Std. 1687 network is formed into control command and
data command. One control command requires 16 bits of data,
which we call control overhead. One data command requires
also 16 bits of data, which we call data overhead.

B. Bit-banging

Bit-banging is a straight forward scheme that uses a min-
imum of hardware to control and operate an IEEE Std. 1687
network. We assume that the data that should be applied is
stored in a memory and the content of the memory is directly
applied to the IEEE Std. 1687 interface. An IEEE Std. 1687
interface consists of eight signals, that is seven inputs, ScanIn,
CaptureEn, ShiftEn, UpdateEn, Select, Reset, and one output,
ScanOut. As clock (TCK) is one input, there is a need to store
and handle information when TCK is low and when TCK is
high. Hence, each clock cycle requires 16 bits for the eight
signals.

C. Benchmarks

We have used three IEEE Std. 1687 benchmarks, named Flat
SIB-based, General Flat and SIB-based Perfect Tree. For each
benchmark we have made three versions with different number
of instruments and for each version we applied variations of
PDL.

The Flat SIB-based benchmark, presented in [15], has one
SIB per instrument and the SIBs are connected in a flat manner.
For a setup with 30 instruments, there are 30 SIBs connected
in a chain and each SIB controls one instrument. The length of
instruments in bits are as follows. First instrument is of length
8, second 16, third 32, fourth 8, and so on. We have used three
sizes of this benchmark with 30, 60 and 90 instruments.

We created the General Flat benchmark and the SIB-based
Perfect Tree benchmark. The General Flat benchmark is based
on a fixed module that is repeated n number of times. Figure
14(a) shows the fixed module, which contains three instruments,
one SIB and one ScanMux control. The instruments are of
length 8, 16, and 32 bits. To scale the benchmark, we con-
catenate n of these modules, as shown in Figure 14(b). We
have used three sizes of this benchmark, with 30, 60 and 90
instruments. The SIB-based Perfect Tree benchmark is based on
a perfect binary tree structure. A perfect binary tree of height
h has 2(h+1) − 1 elements. We have fixed the height of the
benchmark to 5, which means we have (2(h+1) − 1 =) 63 SIBs
and 32 instruments. To scale the benchmarks such that there
are more instruments, we keep the height fixed and include
additional instruments on intermediate levels, that means we do
not include additional instruments at top-level and bottom-level.
On top-level we always keep one SIB and on bottom-level there
are always 32 instruments. If we want to have a benchmark with
48 instruments, that is 16 additional instruments, we distribute
them evenly on the four levels as follows. In this case, four
instruments per level, see Figure 15. We note that the four
instruments on level 1 are distributed such that two instruments
are after SIB1.1 and two instruments are after SIB 1.0. For the
four additional instruments on level 2, there is one instrument

Regular Paper



Fig. 14. General Flat benchmark: (a) A single module (b) Concatenation of
n modules

Fig. 15. Illustration of SIB-based Perfect Tree with 16 additional instruments

after each SIB. The length of instruments in bits are as follows.
First instrument 8, second 16, third 32, fourth 8, and so on. We
have used three sizes of this benchmark, with 48, 96 and 144
instruments.

For PDL, we have used the following iApply groups:
Write to instrument 1, Read from instrument 1, Write to all
instruments, and Read from all instruments. In addition, we
have used the PDL scheme from the BASTION benchmarks
[17], which is to first perform one iApply group with a write to
all instruments, followed by one iApply group with read from
all instruments, and finally, for each individual instrument, an
iApply group with a write followed by an iApply group with a
read. For a benchmark with 30 instruments the scheme results
in 62 iApply groups.

D. Results

The results are produced using an Artix-7 (XC7A100T-
1CSG324C) field-programmable gate array (FPGA) where we
used the universal asynchronous receiver-transmitter (UART) as
the functional interface.

The results on transported data are in Tables I, II and III.
In Table I, proposed scheme is compared against [15] and Bit-
banging. The first column states the number of instruments, the
second column indicates the PDL that has been used, and the
third column reports the number of useful bits, which is given
directly from the PDL and the ICL. Columns four to seven list
data overhead, control overhead, total overhead and the ratio of
useful bits versus total number of bits transported for proposed
scheme. Columns eight to eleven list the same for the scheme
in [15]. Column twelve reports the total overhead for the Bit-
banging scheme and column thirteen reports the ratio of useful
bits versus total number of bits transported.

Tables II and III report results where proposed scheme is
compared against Bit-banging. Note that the scheme in [15]
is not applicable on these benchmarks. Tables II and III are
organized in the same way. The first column states the number
of instruments, the second column indicates the PDL that has

been used, and the third column reports the number of useful
bits, which is given directly from the PDL. Column four to
seven list data overhead, control overhead, total overhead and
the ratio of useful bits versus total number of bits transported
for proposed scheme. Column eight reports the total overhead
and column nine the ratio of useful data over total number of
bits transported for Bit-banging.

The results on area overhead are reported in Tables IV, V,
VI and VII, which are organized in the same way. Column
one lists the number of instruments. There are four columns
for each scheme listing the number of flip-flops (FF) and the
number of look-up tables (LUT) for the UART transceiver,
proposed controller, the IEEE Std. 1687 network, and total area.
In addition, we list the relative number (%) of FFs and LUTs
in relation to the IEEE Std. 1687 network.

E. Discussion

We collected the transported data overhead in Figure 16 and
the area overhead in Figure 17 from the experiments using
BASTION PDL. The first observation we make is that Bit-
banging gives huge data overhead, which leads us to conclude
that some smarter approach is needed. Our second observation
is that data overhead for proposed scheme is worse than the
approach presented at ITC’19. It should be noted that the
scheme presented at ITC’19 is limited to a particular style
of IEEE Std. 1687 networks, known as flat SIB-based. Given
results on three benchmarks we observe that the design of IEEE
Std. 1687 networks, the way instruments are connected, has
a quite large impact on the data overhead. When developing
solutions to access IEEE Std. 1687 networks without some
dedicated test interface, like the work of the IEEE Std. P1687.1
working group, one should be careful not violating the basic
concepts of IEEE Std. 1687, which is to provide flexibility and
scalability. In respect to area overhead, a Bit-banging scheme
provides no area. However, in order to use bit banging via a
functional port, that port’s clock must become the source for
the TCK of the 1687 network. While proposed scheme gives
more area than the scheme at ITC’19, it is interesting to note
that the relative area of the proposed controller in respect to the
IEEE Std. 1687 network decreases as the number of instruments
increases, which indicates that area is kept under control as
design sizes increases.

VI. CONCLUSIONS

Reconfigurable scan networks, like IEEE Std. 1687, offer
flexible and scalable access to the increasing number embedded
(on-chip) instruments that are needed in modern integrated
circuits (ICs). As not all ICs, have a dedicated test port, like
IEEE Std. 1149.1, the IEEE Std. P1687.1 is working towards
a standard to enable the use of functional ports to access IEEE
Std. 1687 networks. We have proposed a hardware component
and protocol to enable access to general IEEE Std. 1687 network
for ICs without a dedicated test port, like IEEE Std. 1149.1.
We have implemented our scheme on an FPGA and made
experiments on several benchmarks with various number of
instruments. A key feature of our scheme is that our hardware
component ensures that instruments maintain their original
content after shift operations through a scheme that directly
feedback shift-out data to the shift-in, in cases when instruments
should not be updated.

Regular Paper



TABLE I. TRANSPORTED DATA FOR THE FLAT SIB-BASED BENCHMARK

Instruments
Proposed ITC’19 Bit-banging

PDL Useful Data Control Total Useful Data Control Total Useful Total Useful
bits overhead overhead overhead data (%) overhead overhead overhead data (%) overhead data (%)

30

iWrite 1 16 32 48 80 16.7 16 16 32 33.3 1104 1.4
iRead 1 16 32 48 80 16.7 16 16 32 33.3 1104 1.4
Allwrite 560 32 1440 1472 27.6 16 480 496 53.0 34560 1.6
Allread 560 32 1440 1472 27.6 16 480 496 53.0 34560 1.6
BASTION 2240 1968 6608 8576 20.7 992 1920 2912 43.5 168844 1.3

60

iWrite 1 16 32 48 80 16.7 16 16 32 33.3 1884 0.8
iRead 1 16 32 48 80 16.7 16 16 32 33.3 1884 0.8
Allwrite 1120 32 2880 2912 27.8 16 960 976 53.4 115920 1.0
Allread 1120 32 2880 2912 27.8 16 960 976 53.4 115920 1.0
BASTION 4480 3888 13328 17216 20.6 1952 3840 5792 43.6 548814 0.8

90

iWrite 1 16 32 48 80 16.7 16 16 32 33.3 2664 0.6
iRead 1 16 32 48 80 16.7 16 16 32 33.3 2664 0.6
Allwrite 1680 32 4320 4352 27.9 16 1440 1456 53.6 244080 0.7
Allread 1680 32 4320 4352 27.9 16 1440 1456 53.6 244080 0.7
BASTION 6720 5808 18624 24432 21.6 2912 5760 8672 43.7 1139384 0.6

TABLE II. TRANSPORTED DATA FOR THE GENERAL FLAT BENCHMARK

Instruments PDL Useful Proposed Bit-banging
bits Data Control Total Useful Total Useful

overhead overhead overhead data (%) overhead data (%)

30

Write 1 16 32 48 80 16.7 3564 0.4
Read 1 16 32 48 80 16.7 3564 0.4
Allwrite 560 32 1120 1152 32.7 90620 0.6
Allread 560 32 1120 1152 32.7 90620 0.6
BASTION 2240 1776 5360 7130 23.8 428494 0.5

60

Write 1 16 32 48 80 16.7 7424 0.2
Read 1 16 32 48 80 16.7 7424 0.2
Allwrite 1120 32 2240 2272 33.0 432800 0.3
Allread 1120 32 2240 2272 33.0 432800 0.3
BASTION 4480 3536 11120 14565 23.4 2126080 0.3

90

Write 1 16 32 48 80 16.7 11104 0.2
Read 1 16 32 48 80 16.7 11104 0.2
Allwrite 1680 32 3360 3392 33.1 970800 0.2
Allread 1680 32 3360 3392 33.1 970800 0.2
BASTION 6720 5296 16720 22016 23.3 4669920 0.2

TABLE III. TRANSPORTED DATA FOR THE SIB-BASED PERFECT TREE BENCHMARK

Instruments PDL
Proposed Bit-banging

Useful Data Control Total Useful Total Useful
bits overhead overhead overhead data (%) overhead data (%)

48

iWrite 1 16 32 144 176 8.3 1157 1.4
iRead 1 16 32 144 176 8.3 1157 1.4
Allwrite 896 128 3552 3680 19.6 16884 5.3
Allread 896 128 3552 3680 19.6 16884 5.3
BASTION 3584 4240 18784 23024 13.5 293620 1.2

96

iWrite 1 16 32 336 368 4.2 4965 0.3
iRead 1 16 32 336 368 4.2 4965 0.3
Allwrite 1792 128 5088 5216 25.6 33012 5.4
Allread 1792 128 5088 5216 25.6 33012 5.4
BASTION 7168 5776 28768 34544 17.2 1760260 0.4

144

iWrite 1 16 32 528 560 2.8 8773 0.2
iRead 1 16 32 528 560 2.8 8773 0.2
Allwrite 2688 128 6624 6752 28.5 49140 5.5
Allread 2688 128 6624 6752 28.5 49140 5.5
BASTION 10752 7328 40480 47808 18.4 4372900 0.2

TABLE IV. AREA OVERHEAD FOR THE ITC’19 SCHEME ON THE FLAT SIB-BASED BENCHMARK

Instruments UART Controller Network Total Controller compared to network
FF LUT FF LUT FF LUT FF LUT FF LUT

30 109 179 261 663 1184 1223 1554 2065 22% 54%
60 109 179 321 759 2364 2437 2794 3375 14% 31%
90 109 179 381 845 3544 3652 4034 4676 11% 23%

TABLE V. AREA OVERHEAD FOR THE PROPOSED SCHEME ON THE FLAT SIB-BASED BENCHMARK

Instruments UART Controller Network Total Controller compared to network
FF LUT FF LUT FF LUT FF LUT FF LUT

30 110 178 380 821 1184 1222 1673 2221 32% 54%
60 109 178 564 1068 2364 2436 3037 3682 23% 31%
90 109 178 749 1299 3544 3651 4401 5128 21% 36%

Regular Paper



TABLE VI. AREA OVERHEAD FOR THE GENERAL FLAT BENCHMARK

Instruments UART Controller Network Total Controller compared to network
FF LUT FF LUT FF LUT FF LUT FF (%) LUT (%)

30 109 178 350 828 1167 1185 1626 2191 30% 70%
60 110 178 503 1200 2333 2362 2945 3751 21% 51%
90 109 178 656 1504 3496 3637 4261 5320 19% 41%

TABLE VII. AREA OVERHEAD FOR THE SIB-BASED PERFECT TREE BENCHMARK

Instruments UART Controller Network Total Controller compared to network
FF LUT FF LUT FF LUT FF LUT FF (%) LUT (%)

48 109 178 537 1022 1937 1992 2583 3192 28% 51%
96 109 178 683 1249 3732 3789 4524 5216 18% 32%

144 109 178 841 1437 5550 5605 6500 7220 15% 26%

(a) Flat SIB-based (b) General Flat

(c) Perfect Tree

Fig. 16. Data overhead on benchmarks: Flat SIB-based, General Flat and Perfect Tree

REFERENCES

[1] “Embedded Instrumentation: Its Importance and Adoption in the Test and
Measurement Marketplace, Frost and Sullivan, Whitepaper, 2010.”

[2] K. Posse, “Component manufacturer perspective,” in 2015 International
Test Conference, 2015, pp. 1–10.

[3] “IEEE standard for access and control of instrumentation embedded
within a semiconductor device,” IEEE Std 1687-2014, 2014.

[4] J. Rearick et al., “IJTAG (Internal JTAG): A step toward a DFT standard,”
in International Test Conference (ITC), 2005.

[5] M. Portolan, “A novel test generation and application flow for functional
access to IEEE 1687 instruments,” in European Test Symposium (ETS),
2016.

[6] F. Zadegan et al., “Access time analysis for ieee p1687,” IEEE Transac-
tions on Computers, vol. 61, no. 10, pp. 1459–1472, Oct 2012.

[7] F. Ghani Zadegan et al., “Design automation for IEEE P1687,” in Design,
Automation & Test in Europe Conference (DATE), 2011.

[8] R. Baranowski, M. Kochte, and H.-J. Wunderlich, “Modeling, verification
and pattern generation for reconfigurable scan networks,” in International
Test Conference (ITC), 2012.

[9] A. Jutman, S. Devadze, and J. Aleksejev, “Invited paper: System-wide
fault management based on IEEE P1687 IJTAG,” in 6th International
Workshop on Reconfigurable Communication-Centric Systems-on-Chip
(ReCoSoC), June 2011, pp. 1–4.

[10] K. Petersen et al., “Fault injection and fault handling: an MPSoC
demonstrator using IEEE P1687,” in IEEE International On-Line Testing
Symposium (IOLTS), 2014, 2014, pp. 170–175.

[11] F. G. Zadegan, D. Nikolov, and E. Larsson, “On-chip fault monitoring
using self-reconfiguring IEEE 1687 networks,” IEEE Transactions on
Computers, vol. 67, pp. 237–251, 2018.

[12] R. Cantoro et al., “Test of reconfigurable modules in scan networks,”
IEEE Trans. on Computers, vol. 67, no. 12, pp. 1806–1817, Dec 2018.

[13] IEEE P1687.1, “Standard for the Application of Interfaces and Con-
trollers to Access 1687 IJTAG Networks Embedded Within Semicon-
ductor Devices,” Dec. 2016.

[14] A. Crouch, M. Laisne, and M. Keim, “Generalizing access to instrumen-
tation embedded in a semiconductor device,” IEEE Computer, vol. 50,
no. 7, pp. 92–95, 2017.

[15] E. Larsson, P. Murali, and G. Kumisbek, “IEEE Std. P1687.1: Translator
and Protocol,” in International Test Conference, 2019, pp. 1–10.

Regular Paper



(a) Flat SIB-based

(b) General flat

(c) Perfect tree

Fig. 17. Area overhead on benchmarks: Flat SIB-based, General Flat and Perfect Tree

[16] M. Laisne, H. von Staudt, A. Crouch, M. Portolan, M. Keim, M. Ab-
dalwahab, B. Van Treuren, and J. Rearick, “Modeling Novel Non-JTAG
IEEE 1687- Like Architectures,” in International Test Conference (ITC),
2020, pp. 1–10.

[17] A. Tšertov et al., “A suite of IEEE 1687 benchmark networks,” in
International Test Conference (ITC), 2016.

Regular Paper


