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A SCHULER-TUNED THREE-GYRO PLATFORM SYSTEM

In this report the possibilities of Schuler-tuning a three-gyra platform
are discussed. The work is a direct continuation of the work reported
in reference 1. It is assumed that the reader is familiar with the

notations and the main scope of reference {,

The platform is suspended in a vehicle which moves in a gravity field
with spherical symmetry. In section 1 the equations of motion are
derived, the conditions for ideal Schuler-tuning are also given. In
section 2 the stability of the system is analysed. It is found that the
gyros must be arranged in a special way if the system should be stable.
The possibilities of obtaining position information from the system are

discussed in section 3. It ig shown that it is possible to obtain the

position of the carrying vehicle without using any accelerometers.

Some queations conhcelning the synthesis of a three-gyro Schuler-tuned
platform system are briefly discussed in section 4. Fof an analysis
of the practical problems, the requirements on the components etc. we
refer to reference 3 where the instrumentational problems of a single-
axis loop are discussed. Some experiments with a single axis system
based on the german surplus gyro KZ-14 have been successfully per-

formed.

Utsandes enligt sirskild utsindningslista.
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1.

A short description of the system. The equation of motion of the

platform

It is a wellknown fact that an ordinary physical pendulum can be
Schuler-tuned if the distance between the pivot point of the pendulum
and its center of mass is sufficiently small, and the moment of inertia
of the pendulum sufficiently great. It is also wellknown that it is
impossible to mechanize such a pendulum with the technological means
today available. The concept of platform introduced in section 7 of
reference 1 has many properties similar to an ordinary physical
pendulum, but advances the ordinary physical pendulum to a great
extent. The moment of inertia of the platform, e.g., is not at all
related to the geometrical structure of the platform. It therefore
seems reasonable to assume that it is easier to mechanize a Schuler-
tuned platform than to mechanize an ordinary physical pendulum with
the Schuler period*.

The basic philosophy is thus to provide the platform with an unbalance
of reasonable size and to obtain the high moment of inertia by the
proper choice of the internal feedback. Compare reference 1, sec-

tion 7.

Suppose the stable element to be suspended at a point P, fixed in

a vehicle which moves in a gravity field with spherical symmetry.
Let Obe the center of the gravity field. The vector OP is denoted
by r, and the vector from the point of suspension to the center of
mass of the stable element is denoted by h. Further, let the vector

from the center of mass to the center of gravity be h”. See fig. 1.1.

Figure 1.1

E
This is also confirmed with experiments,



4.
Newtons Laws of motion gives
P = - h F + h’x G 1.01
[HCM hxF+hxqG
¢
im(§+}‘1)=F+G | 102
where
I:iCM the angular momentum of the platform with respect
to its center of mass
I:IP the angular momentum of the platform with respect
to the point of suspension
F the force acting on the platform at the point of
suspension
G the gravity force acting on the stable element
m the mass of the stable element

Equations (4,01) and (1.02) gives

- (h+h)xG-mhxrt

Neglecting the difference between the CM and CG and introducing

G = m.é
we get

H =mhbx(g - 1) 1.03
P

Let §1, §2, §3 be an orthogonal coordinate set fixed to inertial space.

Introduce the n;-8et with the origin at the point P and the n3-a.xis

coincident with the vector PO. The orientation of the n-set around

the -axis is specified later.
3

The {-set is fixed to the stable element with the origin at the point P
and the axes parallel to the input axes of the gyros. The §3-a.xis

coincides with the vector h.
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The transformations between the coordinate sets are
n=AEf, A= {aik} 1.04
;:Bn, B = {blk} 1.05

Assuming the angular velocity of the stable element to be small, we
obtain for the time derivative of the angular momentum of the plat-
form.

- ” ~

H =JK' 0O ¢ 1. 06

P nm~"m °n

where 2 is the angular velocity of the stable element

1 :
a = 'z‘[bij By ¥ BBy Ay aijemu 1.07

g =gn,

M
1]
§
H
=
w

Evaluating the cross-product we get for the right membrum of

equation (1.03)

m b ox(g - 7) =

" o e L e ] ’ A 1. 08
= mh i_(g+r)bl3+2ra’3sb1ja'js+ra3sbljajsj €310 b n
The equation of motion of the platform is then
K’ (D)2 =
nm m
- mh ) L) o "l
= —j—[(g+r')bl3+2:n'a.3sbljajs+ra3sbljajs Je 3ln 1.09

Assume that it is possible to choose the differential operators Kr’nn(D)
in such a way that the n,-set differs from the L ;-set only by a small

rotation, Hence

By = 855t vy

where

g



Neglecting the terms of the equation (1.09) which are of the second

order in Yij and é'ij we get

1., . mh, - -
7 K (D) [Yil ‘mlijl —(8tr)vy3eq, =

mh " . .
=77 [(g”) él3+2ra3sa1s+ra3salsJ€31n - 1. 10

e

1, .
=3 KD { a‘ikalk} *mli

»

The transformation (1.05)
&4 7 Pig Ty

can be interpreted as the Euler rotations around three successive

axes, see figure 1.2.

&
N3
.rlH §3
72
ha
n” n"
— 2 2
1 .
X3
oM My
n" &y

Figure 1.2
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When the rotations are small they commute and we get
-
Xl = Y23 7 " Y3
4 X2=Y31=-y13 1.11
X3 = v = = vy
Let ¢ be the vertical indication error i.e the angle between the
ns-a.xis and the t‘;3-axis then
ces = cos Xl + cos 7(2 1.12
For small angles this reduces to
1.112 £ Xlz + XZZ ] . 1.13

Equations (1.10) and (1. 11} give

' ] { |
g' r Eb’. ] i . oy - _‘ﬂ-l_h;_ o B o J o . L4
| PR+ (FE) X DKL, XD Xy = =T (288 pmg #rlp oy | 4Ky )85 05 vKy 558y o+ 5y 00y

T

’ -r-’.g_}_l_& - r Egr oD 3 ° » *
DKZL7(1+[DK22+ T T+g ]X2+EK23 5: I i2r335313+ra5sa’ls] +K21azsa3s+K22335313*K25a1ba'2;

;‘-DK:’,’I'X1+ DK;Z)(} + DK%}X3 = +K518,085+K5083.8) +Ky58) 8,

1. 14

Introduce the notations

X: ‘Xz



It is easily seen that W, is the 1 ;-component of the angular velocity

of the 1 -set.

Equation (1. 14) becomes
[D K /(D) + mTh(r+g)n3]i (t) = {K’(D)- r-nﬁ(z'rwn)na] a(t) 1,14

If it is required that the { -set and the 7 -set shall coincide, at least

when the vehicle moves at constant height, i.e. r=R=const, we get

Ki’j:O i#j 1. 15
l:Kh"mTRhDj“’l:O 1. 16
[Kéz -Ef;hnjwz =0 1. 17

i ey =0 1. 18

Equation ( 1.15) means that the platform system is diagonal.
Equations (1. 16) and (1. 17) are satisfied if

s _ 1. _mRh_
Kll-KZZ— 3 D=AD 1. 19

This means that the moments of inertia of the platform with respect

to the axes z_,l and Z"Z are mRh.

The platform is thus Schuler-tuned with respect to the Ly and L, axes.

Considering the order of magnitude of K7, 6 and K, we conclude that

11 22
the high moments of inertia of the platform must be obtained by the
proper choice of the internal feedback and not by making a heavy
stable element. Compare section 4.

4

33
acting on w 3. This can be obtained in many ways., A few examples

Equation (1. 18) means that the operator K3, should give zero when

are given below.



(1) Choose the 1 -set in such a way that @, is zero,
This implies that the platform system should be
inertial stabilized with respect to the C3-a.xis, e. g.

by choosing

*3
(ii) Choose the 7 -set in such a2 way that w; is constant.

Equation (1. 18) is then satisfied if
K33 = alD

Considering disturbing torques this system is not
very attractive as a constant disturbing torque will

. . . . 2
give an angular error increasing with t,

(1i1) Choose the mn-set in such a way that one axis is
always pointing to the north. The angular velocity
component g and K§3 will then depend on the posi-
tion and the velocity of the vehicle, It will thus be
necessary to feed the torquemotor on the C3-axis

from a computer.

How much deviation from the ideal conditions we can allow for
is determined by the disturbances and the tolerable indication error.
These questions are dealt with elsewhere. See references 2 and 3.

Let it suffice by mentioning a few things.

Taking into account the disturbing torques on the stable element, and

on the floats of the gyros, equation (1. 14) becomes

DK(D) + %E(%+g)n3j;2(t) - I?_K*(D) i E‘JE(zr+rD)n31(3(t)
1. 20
+ M(t) + AL G(D) S"l(D) m(t)
22

Compare equation (6. 13), of reference 1.
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Assume that the massdistributions of the gyrofloats are symmetric

with respect to the output axes, i.e.

Aoy = Ay =0; Ay = a

Assume further that the vehicle moves at constant height, i.e.
r=R=constant. Equation (1.20) then has constant coefficients.
Laplace-transforming with respect to the timecoordinate and solving

for )((p) we get

X (p) = ¥,(p) &(p) + ¥,(p) M(p) + ¥,(p) (p) 1.21
where
- 2. 17t
Y, (0) = |p KT+ Ao 1] [Kp) - Ap I 1.22
1-1
¥,(p) = [p Kp) + %wSZII?,J 1.23
L -1
Yy(p) = 5 [p Kp) + Ao’ 113!' G(p) ™ (p) 1. 24
and
mRh
A==F
w : =£
s R

Compare reference 2, equations (6.207), (6.208), (6.209) and (6.210).

The stability of a Schuler-tuned three-gyro platform system

We will now give some conditions on the stability of the system.

Analogous to section 8.1 of reference 1 we introduce.

Definition 2.1

A platform system is said to be stable if a proper torque-puls acting
on the stable element or on the float of a gyro gives a finite angular

displacement of the stable element.

By a proper torque-puls we mean a torque puls, of such a magnitude

that the servos are not saturated,acting for a short time.

This definition and equations (1.21), (1.23) and (1.24) gives the

following lemma
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Lemma 2.1

A Schuler-tuned platform system is stable if the equations
det l‘p K’(p)+Am2I[ } =0 2.01
1 s 3]

.

det JlS(p) G p) [p K p) + }\wsz n3j }: 0 2. 02

are stable.

The first equation is the characteristic equation of the system.

The stability of this equation implies that the disturbing moments
acting on the stable element do not give errors increasing with time.
The stability of the second of the above equations means that disturbing
moments acting on the gyrofloats do not give errors encreasing with

time.

We further obtain the following sufficient condition on the stability

of the system,

Corollarium 2.1

A Schuler-tuned platform system is stable if

(i) The arrangement of the gyros is choosen in such

a way that s 23 and 1 = 0.

(i1) The characteristic equation
[ . 2 o)
det {P K1)+ A W, ]I3__|r =0
is stable,
(iii) The function det | K”{p) - F(p)]

has no poles in the right half plane.

Proof

Equation (6. 14) of reference 1 gives

() G '(p) = V(o) K(p) - F(p)]

hence

det{S(P) G"i(p) f:P K (p) + Awsz I, ‘ JI=

= det W(p)- det [K(p)-IF‘(p)] detJ{ p Kip) + A wsz I, r

. _l
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=
The function det W(p) is stable according to (i) and det [K(p) - F(p)]

according to (iii). Further is the characteristic equation stable

according to (ii). Hence the system is stable according to the
lemma 2. 1.
If the conditicn (i) is not satisfied i.e., the function det W(p) has

zeros in the right half plane, the system must be heavily restricted

in order to be stable. This fact is illustrated by the following lemma,

Lemma 2,2

For a stable system the equations det W(p) and det {K(p) - ]F(p)}

has the same zeros in the right half plane.

The proof is left for the reader,

The position indication loop

An interesting feature of the Schuler-tuned platform system described,
is that the output signals of the gyros are functionals of the angular
velocity of the vehicle. This fact makes it possible to obtain position

indication without using accelerometers. The output signal of the gyros is

3(t) =5 '(D) WD) A () - — §~ (D) & (1) 3.01
22
The angular velocity of the stable element _,’:)L(t) is given by equation

(1.07)

and neglecting terms of the second order in Yij and é’ij we get

_1 o -]
‘O‘m——Z—LYil-}- %k 2k } mli

N

hence
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Introducing this into equation (3.01) we get the output signal of the gyros

7(t) = 57(D) WD) [3(e) + Gto) |-

— s '(D) & () 3.02
22

By feeding this signal through a linear network with the transfer

function

v~ (D) $(D) 3,03

S#(t) = w (D) $(D) P(t) =

G(t) + X(t) - 7}; v YD) &)

By this procedure we obtain &*(t) which is an estimate of the angular
velocity of the n-set and thus also an estimate of the velocity of the
vehicle. The accuracy of the estimate is given by equations (1.20)
and (3. 04).

The orientation of the 7-set is given by the transformation (1.04).

Let A(t) denote the matrix formed by the B of equation (1.04), hence
n o= At)E

We obtain the following equation for the matrix A(t)

{ d ﬁ(t) =00 (t) At)

1 Afo) =1
where

Q) = {o0 s

Let n* denote the estimate of the 1-set formed in the following way
n* = AX(t)E

where the matrix A*(t) is calculated from the estimated values of the

angular velocity o*(t) i.e.

»

d Ak
LET - () ax()

A*(o) = 1

3.06
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where

The transformatimm matix from the 1n-set to the n%*-set is denoted
by E(t) i.e.

1 %(t) = E(t)n (t)

Equations (3.05) and (3.06) gives

t
B(t) = I+ r{@"‘(t’) B(tY) - E(t’).@(t’)} dt” 3.08

J

Introduce the matrix sequence

:

B (t)=I+ ' l@*(t')lﬁln_l(t’) - ]En_i(t’)@(t’)] dat” 3.09
o

This sequence converges to a limit IE(t), which is the solution of

the equation (3,08), at least when all the elements of @*(t) and

€Y (t) are bounded in any compact set including (0,t). Compare

section (9.1) of reference 1.

According to Eulers theorem of a rigid body the transformation
matrix E(t) can be interpreted as a rotation around the eigenvector

of the matrix. Let the angle of rotation Y (t).

The positional error of the system is then r\Y(t).

Definition 3.1

By the navigation error of the system we mean the angle ‘{f(t)
The navigation error \I"'r(t) is related to the matrix E(t) by the rela-

tion

kP’(t) = arc cos —é—[Tr E(t) - 1} | 3. 10
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Some remarks concerning the synthesis of a Schuler-tuned three-gyro

platform system

The design procedure can follow the scheme given in section 10 of
reference 1.  The first step is thus to choose a K“p)-matrix. In
case of Schuler-tuned platform systems the K*p)-matrix should be
choosen according to equations (1.15) and (1.19). The elements of
the K(p)-matrix will thus depend on the magnitude of the unbalance
mh. The unbalance is determined from considerations of navigation
accuracy, bearing friction, torque-capacity of the gimbal torques,
maximum acceleration of the vehicle etc. A detailed discussion of

these questions is given in reference 3.

Because of the limited accuracy of the available components we have
to allow for deviations from the conditions given by the equations

(1. 15) and (1.19). The K(p)-matrix may have small nondiagonal
elements and the diagonal elements may deviate from the desired
values. How much deviation we can allow for is given by the de-
sired navigation accuracy and the disturbances. These questions

are discussed in reference 3.

We will now discuss some methods of synthesizing a system with
the desired K’(p)-matrix. According to equations (1.15) and (1. 19)
the system should have

K (p) =5 p 0 4.21
\0 0 ky(p)

This means that the platform with respect to the axes ¢ { and gz

‘p 0 0
in_R_h.( ;

should have the moment of inertia mRh. Considering actual magni-
tudes of mh, the number mRh will be so large that the inertia of
the platform must be obtained by the proper choice of the internal
feedback and not by using a stable element with extremely high

moments of inertia.

This means that

e 2ol [ ]
{K (p)le >> FJ‘)ij
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According to Lemma 2.2 a stable system then must have det W(p)
stable which means that the gyros must be arranged in such a way

that 1 =0 and s = 3,

We will now analyse some methods available for the synthesis of

platforms with high moments of inertia.

Consider e.g. a system according to section 8.1 of reference 1.

The diagonal elements of the K(p)-matrix are

w, T(P)+wp

o, _~ o 4,22
5 s
& p +G(p)

bp +

According to reference 1, section 7, moment of inertia of the plat-
form equals the coefficient of p in the above expression. The mo-
ment of inertia of the platform can thus be obtained either by making
b large or by choosing the second part of the above expression in
such a way that it contains a term linear in p. One way to obtain

this is by choosing

{ﬂm = 9P+ ap

‘LT(p) =0

For small values of p the expression (4.22) then reduces to

2
wO
b+ gz P

This means that the moment of inertia of the platform is

2
wo
(b + 5

which can be very large for sufficiently small values of of.

This method of synthesizing a platform with a very high moment of

inertia is e.g. used in the Anschiitz Gyro Compass.

Another possibility of obtaining a platform with a high moment of

inertia is by choosing

T(p)=A§3[ 2+G‘(};’)}p-mop 4.24

o)
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The expression 4.22 then reduces to

(b+ A)p
- The moments of inertia of the platform is then
J(b + A)

This method of synthesizing a platform with high moments of inertia
is extensively discussed in reference 3. Some experiments with
the german surplus gyro KZz-14 showing the possibilities of this
method have been successfully performed. The difference between
the two schemes (4.23) and (4.24) of synthesizing a platform with
high moments of inertia is that in the system according to equation
(4.23) the gyros are used as actuating as well as sensing devices.
In the last mentioned system the gyros are only used as sensing

devices and the torque is supplied by the torque motors on the gim-
bals.
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