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Popular Summary

The field of elementary particle physics is driven by the desire to understand the most
fundamental building blocks of nature and how they interact. One very successful way to
experimentally access the properties of elementary particles is to accelerate them to very
high energies and let them collide, as it is done at the Large Hadron Collider at CERN
near Geneva. According to Einstein’s famous equation E = mc2, the kinetic energy of
the colliding particles can be converted to mass and form new particles. The properties of
the particles produced in collisions can be measured and studied. In this way, we can learn
more about the properties of known particles and their interactions, or even find new ones.

The accelerated particles move with velocities close to the speed of light. To describe these
particles appropriately, we need to use Einstein’s theory of Special Relativity. The high
collision energies also imply that the scattering process happens at very short time scales,
corresponding to small distances. This aspect is captured by Quantum Mechanics, giving
rise to a probabilistic outcome of experiments even if the initial conditions are identical.
These theories are combined in Quantum Field Theory, where particles are described in
terms of fields.

The Standard Model of particle physics is a very successful quantum field theory that de-
scribes all elementary particles that have been discovered so far. It includes three of the
four fundamental forces, the electromagnetic force, the weak force and the strong force.
Electromagnetism describes the interactions between particles with electric charge, and is
responsible for the visible light. The weak force governs certain types of radioactive decays,
while the strong force is responsible for the stability of atomic nuclei. The gravitational
force is not described by the Standard Model, but it is typically much weaker than the
other forces at particle-physics experiments, such that the Standard Model still gives very
accurate predictions.

Once the free parameters of the Standard Model are measured experimentally, it allows
to predict the outcome of many experiments. However, the theory is very complex, and
different assumptions, approximations and additional modeling need do be combined to
describe the outcome of collider experiments on the level of individual outgoing particles.
Monte Carlo Event Generators allow for the simulation of collision events based on random
numbers, reflecting the probabilistic nature of such processes. Combining a large number
of these generated events gives rise to probabilistic distributions that can be compared to
experimental data. Based on this comparison, it is possible to determine parameters of the
underlying theory and improve the modeling of events. Furthermore, the predictions can
provide guidance on how to design experimental analyses, e.g., by estimating backgrounds
to signals of interest. The precise simulation of the existing theory might thus allow for
the identification of experimental signals that are not compatible with the known theories,
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pointing to new phenomena that the Standard Model might not be able to describe.

The publications in this thesis concern some of the uncertainties and assumptions asso-
ciated with Monte Carlo event generators. The first publication proposes a method for
the optimization of parameters to better describe data, especially in the case that many
parameters need to be optimized. The second publication addresses uncertainties in the
combined description of the hard process at the core of a collision, and the radiation of
further particles from the incoming and outgoing particles. The third publication concerns
the interference between electromagnetic and strong radiation effects in combination with
an improved modeling of the strong radiation. The fourth publication is about the consist-
ent combination of precision effects in different limits of the emission of pairs of particles
in a radiative cascade.
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Introduction

This thesis collects my work during my studies in Lund in the field of high energy particle
physics. The four included publications address different aspects of Monte Carlo Event
Generators (MCEGs), which are used to simulate particle collision events at collider ex-
periments like the Large Hadron Collider at CERN. Precise predictions of the expected
outcome of collisions are crucial to explore the Standard Model of particle physics and to
identify collision events that might signal new physics. As the field is rather established,
some background in particle physics is required to understand the content of the publi-
cations, and a thorough introduction that would make them accessible to all readers is
beyond the scope of this thesis. The introduction therefore starts at a general level, and
then becomes more technical to provide some context for the research papers. Thorough
introductions to Quantum Field Theory and the Standard Model can be found in [1, 2], a
detailed description of Quantum Chromodynamics and hadron collider physics is available
in [3], and a review on general-purpose event generators for LHC physics is given in [4].

The first section of the introduction gives a brief introduciton into particle physics, the
Standard Model and its application to collider physics by means of simulating particle
collision events using MCEGs. Starting from section two, the introduction becomes more
technical, introducing cross sections and matrix elements as the central concepts when
calculating the probability of observing certain collision events. Sections three and four
of the introduction introduce parton showers and the matching and merging of parton
showers with matrix elements, providing some background for Papers II, III and IV. Section
five briefly touches upon the tuning of Event Generators, which is the topic of Paper I. The
introduction concludes with an outlook and an overview of the publications included in
this thesis.

1 Particle Physics and the Standard Model

The field of theoretical physics is driven by the motivation to describe the world based on
fundamental mathematical principles. This applies to a vast range of resolution scales. In
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one extreme, the theory of general relativity describes gravitation on galactic scales, treating
space and time as a dynamic ensemble curved by energy. It allows to describe the motion
of planets and whole galaxies, and gravitational waves emerging from rapidly accelerated
massive objects. In the other extreme, the fundamental building blocks of nature are de-
scribed by the theory of quantum fields, treating elementary particles as excitations of fields
that obey the rules of special relativity and quantum mechanics.

The field of classical mechanics, which is the traditional theory applicable at human and
planetary scales, describes the dynamics of objects based on forces. By measuring the forces
acting on objects, one can describe accelerations of objects and thus how they move and
interact. In order to determine the force that two electrically charged objects exert on
each other, we can for example place these objects at different distances to each other and
measure the force between the two depending on how far they are apart.

Compared to everyday scales, elementary particles are very light and small, which means
that the rules of classical mechanics are not sufficient to describe their dynamics. Acceler-
ating particles to high energies leads to very high velocities. This is the regime of special re-
lativity, which combines space and time into a united framework. Energy and momentum
are conserved, but the concept of mass becomes broader. Massless particles like the photon
can travel at the speed of light. In decays of massive particles, mass of bound states can be
converted to kinetic energy, making mass just one incarnation of different forms of energy,
and giving rise to Einstein’s famous equation E = mc2 [5].

Looking at very small systems also necessitates taking into account the results of quantum
mechanics. Small systems can be characterized by states, and the behavior of systems de-
termined by transition probabilities between different such states. The probability of going
from one state to another can only be described probabilistically. Looking for example at
the transition of a bound state to a more stable state in a radioactive decay, we can only
determine the probability of this transition to occur in a given amount of time, and by
observing such a transition very often, we recover a probability distribution. However, it
is not possible to determine the exact lifetime of a specific nucleus, only the probability
distribution governing the decay process.

The fundamental question that we try to answer in particle physics is: What are we made
of? Everything we experience in our daily lives can be broken down into the dynamics of
smaller systems. We are built according to information encoded in our genome, which
consists of amino acids. Those are complex molecules, formed from atoms. The atoms in
turn are composed of electrons, protons and neutrons. Protons and neutrons can further be
broken down into quarks, ultimately giving a set of elementary particles. While everyday
phenomena are thus fundamentally governed by the rules of elementary particles, the rather
complex calculations necessary to compute the behavior of systems with many particles
means that they can not be applied directly, motivating the use of effective theories at
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different scales. By understanding how elementary particles interact with each other, we
hope to understand on the most fundamental level why the world behaves like it does.

On the scales of particle physics, the objects of interest are typically way too small to meas-
ure the forces directly. Instead, if we want to understand how elementary particles interact
with each other, we have to find other ways of experimentally accessing their properties. On
the scale of atoms, the dynamics are governed by how electrons are bound to the nucleus
due to the electromagnetic force. On an even smaller scale, we can study the composition
of hadrons, which are bound by the strong force to form nuclei. Another approach is to
look out for the decay of bound states. The radioactive β-decay of neutrons into protons,
electrons and neutrinos, allows us to access properties of the weak force. A powerful ap-
proach to access the detailed dynamics of the electromagnetic, weak and strong forces is
to perform collisions of particles. By studying the outcome of different types of collision
experiments, we can learn about the composition of composite particles, and about the
properties of elementary particles alike.

In elementary particle physics, Quantum Field Theory (QFT) allows us to describe the
dynamics of elementary particles in terms of excited fields. Excitations of these fields cor-
respond to particles, and their dynamics are compatible with the predictions of quantum
mechanics and special relativity. The Standard Model of particle physics is based on the
language of QFT, and is in fact a collection of related theories, including Quantum Electro-
dynamics (QED), the Glashow-Weinberg-Salam theory of electroweak processes and the
theory of Quantum Chromodynamics (QCD). It is very successful in describing a large
variety of phenomena to an astonishing precision.

However, the Standard Model can hardly be seen as the final word in particle physics, since
it is an effective theory with many parameters, the values of which are not determined by
the theory itself.

In order to improve our understanding of particle physics, there are multiple ways to go
about it. We can extend the Standard Model to include new physics, which are not (yet)
described by the Standard Model, called Beyond the Standard Model (BSM) physics. Many
efforts are also put into finding an even more fundamental theory, of which the Standard
Model can be derived as a low-energy approximation. In order to determine what kinds of
improvements are required, it is important to study the phenomenology of the Standard
Model in detail and to perform precision calculations within the Standard Model. Only
such predictions allow to compare experimental observations to the Standard Model, and
identify effects that might not be described appropriately.

The projects included in this thesis all lie within the last mentioned category, facilitating
precise predictions based on the Standard Model, which can then be compared to experi-
mental results. This comparison enables us to determine deviations between the theoretical
predictions of the Standard Model and the observed behavior of high-energy particle phys-
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ics experiments.

1.1 The Standard Model

The Standard Model of particle physics collects the fundamental particles and describes
their interactions. The fundamental particles described by the Standard Model can be sum-
marized as follows:

Fermions The group of fermions consists of quarks and leptons, and together, these form
the constituents of the matter we observe. While three generations of fermions exist,
only the first and lightest generation occurs abundantly in everyday life. The up and
down quarks form protons and neutrons, which together form the cores of atoms.
The electron and its neutrino form the lightest generation of leptons. While the
electron, together with the cores, forms electrically neutral atoms, there is also its
neutrino, which is less visible due to the lack of electric charge.

Bosons The symmetry properties of the Standard Model give rise to the existence of gauge
bosons, which describe the forces between fermions. There are three gauge forces in
the Standard Model. Electromagnetism is mediated by the photon, and describes
the forces acting on electrically charged fermions. The weak force, mediated byW±

and Z bosons, is crucial for describing the radioactive β-decay. Finally, there is the
strong force, mediated by gluons. Just like the photons, gluons are massless, but
unlike their electromagnetic counterpart, they can interact with each other. Finally,
there is the Higgs boson. Its interaction with the fermions gives rise to the masses of
elementary particles.

The particle content and its interactions are shown in Fig. 1.

The formulation of the Standard Model is based on the identification of symmetries that
give rise to conserved quantities, the charges. Specifying all symmetries of the theory allows
to write down the Lagrangian density, including all terms that obey the specified symmet-
ries. From this function, the equations of motion can be derived, ultimately describing how
the theory behaves. Taking the example of the complex electron field Ψ, which comes with
an absolute value ψ and a phase ϕ: Ψ = ψeiϕ. The U(1) symmetry transformation of the
field is given by Ψ 7→ eiϕ(x)Ψ, where the dependence on the space-time point x character-
izes a local symmetry transformation. Assuming that this symmetry transformation should
leave the predictions of the theory invariant requires the introduction of additional terms
in the Lagrangian density, compensating for the effect of the transformation. These terms,
together with a kinetic term to describe the free behavior of the introduced field ϕ(x), then
gives the gauge theory describing the photon, QED.
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Figure 1: Particle content of the Standard Model. The lines indicate interactions. All elec-
trically charged particles interact with the photon. All color charged particles
interact with the gluon, including itself. Both Leptons and Quarks interact with
W and Z bosons. The Higgs boson couples to all massive particles.

A similar reasoning can be applied to other local gauge symmetries, namely SU(2)L ⊗
U(1)Y, giving rise to the model of electroweak interactions, where all fermions except the
neutrino come in left- and right-handed versions, with only the left-handed transform-
ing under the SU(2)L symmetry transformation. This symmetry actually includes QED,
which only becomes apparent when the original symmetries are hidden by the Higgs mech-
anism. The SU(3)C symmetry group gives rise to QCD, where the C stands for color, the
charge of the strong force. Only the quarks are affected by the SU(3)C group, while all
fermions take part in the electro-weak interaction.

Once the Standard Model Lagrangian density is constructed, it becomes apparent that
it depends on about 25 parameters, describing the masses and interactions of the fields.
These can be determined from experiments, allowing us to use the theory to make various
predictions. In practice, these predictions are usually limited to small systems with a limited
number of involved particles.

Nevertheless, the Standard Model has been very successful. It allowed for the prediction of
different quarks and bosons before their first observations. With the discovery of the Higgs
boson in 2012 [6, 7], all particles predicted by the Standard Model have been observed ex-
perimentally. Beyond the existence of particles, the model allows for the precise prediction
of various observables at collider experiments and beyond.
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1.2 Limitations and Open Questions

While the Standard Model is extremely successful in describing a large range of exper-
imental results very precisely, there are also limitations and open questions to which it
cannot provide an answer. One question that remains unsolved is why the Standard Model
takes the form it has. While experiments dictate the symmetries and values of parameters
needed to describe elementary particles, the Standard Model does not provide an answer
to the question why exactly these symmetries are realized in nature, and why exactly three
generations of fermions exist. Also, the hierarchy between the different generations’ fer-
mion masses is not explained within the Standard Model. It is therefore desirable to embed
the Standard Model into an overarching framework that gives answers to these questions.

Another aspect not described by the Standard Model is the so-called dark matter. Astro-
nomical observations suggest that only about 15% of the observed matter in the universe is
described by the Standard Model in its present form. The rest, called dark due to not being
visible to us, could be explained by different extensions of the Standard Model. A promin-
ent example of such BSM extensions are supersymmetric theories, postulating an additional
particle for every particle in the Standard Model, the super-partners. Many other theories
have been proposed, but so far, experiments have not been able to determine which ones
might be realized in nature.

In order to identify the shortcomings of the Standard Model, it is important to make precise
predictions that experimental data can be compared against.

1.3 Quantum Chromodynamics and Colliders

In the Standard Model, the strong force is described by QCD. The theory introduces three
distinct color charges to the quarks and corresponding anticharges to the antiquarks. The
name color is chosen in analogy to how three different colors, say red, green and blue, can
add up to a colorless white state. The color charges allow the particles to form color-neutral
bound states, the so-called hadrons. These can be mesons, formed from a quark–antiquark
pair with a color and the corresponding anti-color, or baryons, which are combinations of
the tree colors, forming a ”white” state. More exotic combinations from combining even
more quarks are possible.

QCD is a so-called non-abelian gauge theory, which means that the gluons that are me-
diating the strong force, can interact with each other. This is different from QED, since
photons do not carry electric charges and thus don’t interact directly. The coupling para-
meter of the strong force, αs, depends on the energy scales at which the force is probed.
While the electromagnetic coupling becomes larger at larger energies, the strong coupling
becomes smaller, leading to asymptotic freedom: at high energies, the dynamics of color-
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Figure 2: Schematic picture of an electron–positron collision. The red lines depict the in-
coming electron and positron, which then scatter into a quark–antiquark pair
depicted in blue. Additional QCD radiation is emitted in the final state, which
then hadronizes to form color-neutral particles shown in green.

charged particles is well described by a perturbative expansion in its coupling parameter,
and individual color-charged particles can interact. At low energies, corresponding to large
distances, this perturbative expansion breaks down, and colored particles are confined in
color-neutral composite objects, i.e., hadrons.

Hadrons are primarily classified by their net quark content, like two up and one down
quark for the proton. These so-called valence quarks set some quantum numbers, notably
that the hadron charge is the sum of the valence quark charges. In addition there is a sea of
shorter-lived particles: gluons needed to bind the quarks, and extra quark–antiquark virtual
fluctuations. More and more sea can be observed when the resolution scale is increased.
The quark and gluons constituents of a hadron are collectively called partons.

In order to study QCD at particle colliders, different approaches can be taken. We can
collide color-neutral objects like electrons and positrons, and look at final states that include
colored partons. Such a collision is schematically depicted in Fig. 2. The main component
of this collision event is depicted by the red blob, which is the hard process. It can be
calculated in perturbation theory and gives a certain probability of the depicted transition
of an electron–positron pair to a quark–antiquark as a function of the momenta. Due to
the fact that these partons are accelerated charges, there will be additional radiation. Here,
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only final state radiation is depicted in the form of gluons being emitted from the outgoing
quarks and antiquarks. Due to color confinement, a hadronization needs to take place,
converting quarks and gluons into color-neutral hadrons, depicted in green.

Another approach to study QCD and other theories at colliders is the use of hadron col-
liders like the Large Hadron Collider (LHC) at CERN, which collides protons at very high
energies. The interaction of hadrons is then governed by the interactions of their constitu-
ents, the quarks and gluons. In contrast to electron–positron collisions, it is thus crucial
to model the chances of finding specific partons within the proton. Since there are color
charges in the initial state, there are also QCD emissions of the incoming partons. As the
colliding particles contain multiple partons, there can also be multiple parton interactions
that need to be described.

1.4 Event Generators

In order to predict the outcome of particle collision events, general purpose event generators
have been developed. The aim of these programs is to simulate collisions as precisely as
possible, while taking all relevant aspects of a collision into account. For hadron–hadron
collisions, the relevant physics that need to be modeled can be grouped into the following
categories:

Hard scattering At the core of the event, there is typically a hard scattering process, with
a high characteristic energy or momentum transfer. This process is modeled in per-
turbation theory, which is an expansion for small coupling parameters. The precise
modeling of the hard process is a crucial ingredient to the full event, often determin-
ing its general geometry, but many additional aspects need to be modeled to generate
a realistic final state.

Parton Distribution Functions and Initial State Radiation In hadron collisions, the in-
coming beams consist of composite objects, while the hard process is typically modeled
on the level of elementary partons. This necessitates the modeling of the distribution
of partons within hadrons, given by Parton Distribution Functions (PDFs). On their
way towards the hard collision event, the partons can further radiate other particles,
which gives rise to Initial State Radiation (ISR). The radiation off initial state partons
and PDFs are closely related.

Final State Radiation The final state partons produced in the hard scattering, as well as
partons that might have been emitted from the incoming beams, can further radiate
partons. This cascade gives rise to the description of so-called jets, collimated sprays
of partons (and later hadrons) that might look different depending on the initiating
partons.
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Soft scattering and Multi Parton Interactions Not every event consists of a hard scatter-
ing. Also softer processes can take place, which can either leave the incoming par-
tons intact (elastic) or break them to transition into something else (inelastic). Also,
there might be additional interactions on top of a hard interaction that need to be
modeled. These effects are important at hadron colliders, where the incoming objects
are composite, so that several constituents may interact more or less independently.

Beam remnants While some partons are kicked out of the incoming hadrons, others con-
tinue along the original beam directions. Usually, these remnants are color-connected
to the rest of the event.

Hadronization After the evolution of radiative cascades originating from the hard process,
and from other event components, the transition to color-neutral hadrons needs to
be modeled. Unlike both the hard process and the initial and final state radiation,
the strong coupling cannot be treated as small in this context, leading to a non-
perturbative treatment of this stage. In the Lund string fragmentation model [8], the
fragmentation is modeled based on color fields being stretched between the partons.
While very few parameters are needed to describe the perturbative evolution, the
non-perturbative hadronization is based on models that depend on a larger number
of parameters. These need to be chosen to best reproduce the effects observed at
collider experiments.

Decays Some of the now color-neutral hadrons generated in this manner might not be
stable, but rather decay on their way towards the detectors. These decays are com-
monly modeled based on known particle properties and plausible extensions where
necessary.

All of the mentioned components of a collision event are probabilistic. In order to answer
questions like how many particles of a specific type we expect to see in the final state, or
how energetic the hardest jet might be, it is necessary to generate a large number of events,
and from this extract the probability distribution that describes the observables of interest.
The modeling is thus based on pseudo-random numbers, giving rise to the name Monte
Carlo event generators.

All projects collected in this thesis are related to Monte Carlo event generators, specifically
in the context of PyTHIA [9]. Paper I concerns the tuning of parameters to best describe
experimental data, focusing on the case where many parameters are to be optimized simul-
taneously. Paper II is concerned with the combination of the hard process with the parton
shower, and the corresponding modeling uncertainties. Paper III focuses on some un-
derlying assumptions commonly made in the treatment of color in parton showers, and
improvements to the parton-shower simulation taking into account the combination of
QCD and QED for specific states. Paper IV concerns the perturbative precision of parton
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showers. While these are often based on splitting probabilities modeled to the first order
in the strong coupling αs, this paper concerns improvements of parton showers including
higher order splitting functions.

2 Matrix Elements and Cross Sections

In classical scattering experiments, the rate of incoming particles that scatter is proportional
to the cross-sectional area of the scattering objects. Such scattering cross sections can be
measured at collider experiments. In elementary particle collisions, the simple notion of
an area might not hold, but based on the interaction properties of the particles, it is still
possible to define, calculate and experimentally access cross sections.

2.1 From Quantum Fields to Cross Sections

In order to predict the probability of observing a specific outcome at a collider experiment
with specified initial conditions, we can use the scattering matrix or S matrix. If a given
initial state is characterized by |i〉, for example two proton beams at the LHC, and the out-
come or final state is given by 〈f |, for example a given parton configuration, the modulus
square of the product 〈f |S|i〉 gives the probability of a transition from the specified initial
to final states: |〈f |S|i〉|2.

The scattering matrix encodes information about the time evolution of given states. In free
theories, where particles do not interact with each other, S = 1. If a theory allows for
interactions, the scattering matrix has a second component, S = 1+ iT , where the matrix
T describes deviations from the free theory. The quantity of interest is now the matrix
element M of the matrix T describing the transition for given 〈f | and |i〉:

〈f |T |i〉 = (2π)4δ4
(∑

pµi −
∑

pµf

)
M . (1)

In this equation, the delta function of the sums of initial and final state momenta ensures
energy and momentum conservation in the process, and M is short for 〈f |M|i〉.

The probability of observing a specified outcome is not given by the matrix element alone.
Instead, we need to take into account all possible kinematic configurations that can facilitate
the process of interest. This is done by introducing the Lorentz invariant phase space

dΠ ≡
∏
f

d3pf
(2π)3

1

2Ef
(2π)4δ4

(∑
pµi −

∑
pµf

)
, (2)
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where the product over f labels the final state particles. Together with the flux of incoming
particles 1 and 2, this gives the differential cross section

dσ =
1

4E1E2|v⃗1 − v⃗2|
|M|2dΠ . (3)

For small coupling parameters, it is then possible to calculate the matrix elements based on
perturbation theory. The Feynman rules allow for a pictorial representation of interactions
in terms of vertices, external lines and propagators. Each vertex corresponds to one order of
the respective coupling constant. For small coupling constants, diagrams with less vertices
are dominant. If we look at the scattering of e+e− → qq̄ for example, we find the following
leading order diagram:

e+

e−

q

q̄

γ/Z
∝ e2 . (4)

Due to the fact that this process is mediated by a photon or Z-boson, with two vertices,
the matrix element is proportional to e2.

One particular higher order contribution is the insertion of fermion loops into the photon
propagator, the so-called photon self-energy:

p
+

p p
+

p p p
+ ... , (5)

which gives contributions of the form

1 +
e2(µ)

12π2
ln
Q2

µ2
+

(
e2(µ)

12π2
ln
Q2

µ2

)2

+ ... =
e2(µ)

1− e2(µ)
12π2 ln Q2

µ2

. (6)

Here, Q2 = −p2. This resummed correction becomes e2(µ) at momenta Q2 = µ2.
However, for general Q2, the coupling is running:

e2(Q2) ≡ e2(µ)

1− e2(µ)
12π2 ln Q2

µ2

. (7)

This effect comes from the renormalization of a theory, where infinities from high loop
momentum integrals are absorbed into the definition of the parameters. The so-called
renormalization scale µ, at which the physical value of these parameters is fixed is arbitrary,
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and the effective charge should not depend on that choice. This requirement gives rise to
the renormalization group equation

µ
de

dµ
=

e3

12π2
≡ β(e) . (8)

Equation (7) indicates that for very high energies, corresponding to very low distances, the
perturbative description of collisions breaks down.

In QCD, due to the self-coupling of the gluon, the beta function contains both fermion
and gluon loops, leading to a qualitatively different behavior. While in QED the coupling
increases with energy, the opposite happens in QCD. For the strong coupling αs = g2s

4π ,
we have:

αs(Q
2) =

αs(µ
2
R)

1 + αs(µ2R)
β0

4π log Q2

µ2
R

with β0 = 11− 2

3
nf , (9)

where nf is the number of active flavours. Due to the different sign in this function as
compared to the photon case, the strong coupling decreases with increasing scales, leading
to asymptotic freedom. In QCD, perturbation theory thus breaks down for low scales, cor-
responding to large distances, giving rise to confinement of the color charge into hadrons.

In practical calculations, it is not always obvious which value to choose as a reference scale
forαs, giving rise to scale uncertainties. In order to estimate the effect of scale uncertainties,
it is customary to vary the scale by a factor of 2 up and down, and take the resulting range
as a perturbative uncertainty, which is of higher order in the coupling itself. However, in
some situations, for example when the next higher order allows for qualitatively different
contributions, the scale band can underestimate the actual uncertainty entailed with the
perturbative expansion.

2.2 Hadronic Collisions and Parton Distributions

As discussed above, hadrons are composite objects. Their parton content is given by the
valence quarks and antiquarks, and a sea of short-lived gluons and further quark–antiquark
pairs. In order to calculate the cross section for hadron collisions, it is useful to relate the
hadronic cross section to the partonic cross section of individual partons colliding.

This is the underlying idea of PDFs. They parametrize the probability of finding specific
partons in a hadron, carrying a certain fraction of the hadron momentum. Depending on
the energy scale at which the hadron is probed, i.e., how hard the collision is, the content of
hadrons may look different. In a collision of hadrons A and B, which respectively contain
partons a and b with momentum fractions pµa = xap

µ
A, the hadronic cross section σ(AB)
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can be written in terms of different partonic cross sections σ(ab) as

σ(AB) =
∑
a,b

∫ 1

0

dxa
xa

∫ 1

0

dxb
xb

xaf
A
a (xa, µ)xbf

B
b (xb, µ)σ̂(ab) , (10)

where µ defines a resolution scale, often called factorization scale. Above this scale, partonic
interactions are assumed to be described by the partonic cross section σ̂. Below the scale,
the partonic evolution is parametrized by the PDFs, as described below.

At low scales, hadrons mainly consist of their valence quarks, which are carrying a large
portion of the hadron momentum. At higher scales, the structure begins to change, and
more and more gluons are encountered. With them, also virtual quark–antiquark pairs
may be present. Adding up the number of quarks of a given flavour and subtracting the
number of corresponding antiquarks should always give the number of valence quarks in
the hadron. For protons, which have two up and one down valence quark, this gives∫ 1

0
dx(fPd (x, µ)− fPd̄ (x, µ)) = 1 ,

∫ 1

0
dx(fPu (x, µ)− fPū (x, µ)) = 2 . (11)

Furthermore, the total momentum of a hadron is given by the sum of momenta of all
partons ∑

a

∫ 1

0
dx(xfAa (x, µ)) = 1 . (12)

Once the parton content of a hadron is parametrized at some (low) resolution scale, the
evolution towards higher scales can be calculated perturbatively. The coupled set of differ-
ential equations describing this evolution is known as the DGLAP equations [10–12]:

µ
d

dµ

(
fi(x, µ)
fg(x, µ)

)
=
∑
j

αs

π

∫ 1

x

dξ

ξ

Pqi←qj

(
x
ξ

)
Pqi←g

(
x
ξ

)
Pg←qj

(
x
ξ

)
Pg←g

(
x
ξ

)(fj(ξ, µ)
fg(ξ, µ)

)
, (13)
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with the splitting functions

Pq←q(z) = CF

[
1 + z2

[1− z]+
+

3

2
δ(1− z)

]
=

z

1− z + ... ,

Pq←g(z) = TF
[
z2 + (1− z2)

]
=

z

1− z ,

Pg←q(z) = CF

[
1 + (1− z)2

z

]
=

z

1− z , (14)

Pg←g(z) = 2CA

[
z

[1− z]+
+

1− z

z
+ z(1− z)

]
+
β0
2
δ(1− z)

=

z

1− z + ... .

Here, β0 is the same as above. The QCD color factors CF = 4/3, TF = 1/2 and CA = 3
are discussed in more detail below. The plus distribution is defined as∫ 1

0
dz

f(z)

[1− z]+
≡
∫ 1

0
dz
f(z)− f(1)

1− z
, (15)

while 1
[1−z]+ = 1

1−z for z 6= 1. The plus prescription is necessary to subtract the infrared
divergence occurring for soft gluon emissions. Physically, arbitrarily soft gluons are not
observable. In a fixed order calculation, the divergence is cancelled by the corresponding
gluon loop diagram.

The DGLAP equations and corresponding splitting functions are based on the collinear
approximation, i.e., emissions at a small angle, which is very reasonable when it comes to
identifying partons within a hadron. However, in general, it is desirable to also describe
soft wide-angle emission. Those need some special treatment as discussed in Section 3.2.

3 Parton Showers

Just like matrix elements, parton-shower calculations are crucial ingredients for precise pre-
dictions of MCEGs. Both are based on the expansion in small coupling parameters, but
come with complementary strengths and weaknesses. Matrix element calculations are com-
plete to a given order in the coupling constant, making them a precise baseline for the hard
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process calculation. However, some observables are sensitive to the effect of more than a
few vertices, requiring an approximate treatment of arbitrarily many emissions. The par-
ton shower is based on such an approximation, being most suited for describing arbitrarily
many soft and collinear emissions. However, well separated, hard emissions are not neces-
sarily well described by parton-shower algorithms.

3.1 Parton Shower Resummation

The structure of collinear QCD emissions from partons, governed by the splitting functions
in Eq. (14), is universal. This allows for the concept of parton showers: once a certain cross
section in calculated, the universal structure of collinear emissions can be used to dress the
state with further emissions from both initial and final state partons. For a processX → Y
where the final state Y contains quarks, the cross section for the emission of an additional
gluon collinear to a quark leg is given by

dσ(X → Y + g) = dσ(X → Y )
∑

partons
CF

αs

2π

dp2⊥
p2⊥

dz
1 + (1− z)2

z
. (16)

The evolution variable, which was called µ in the DGLAP equations above, is here chosen
to be p2⊥. In principle, this could be different variables, as long as they become singular
when the emitted gluon is collinear to the emitting parton. Other possible choices are
the emission angle θ or the virtuality t = (pq + pg)

2. This choice leads to subleading
differences, but the dominant contributions of the shower remain the same.

The emission kernels do in general also depend on the azimuthal angle ϕ of the emission.
Here, we use the kernels averaged over this angle, and omit the corresponding dϕ.

The factor in Eq. (16) can be interpreted as the probability of emitting a gluon (or another
parton with the appropriate splitting function) at a specific scale p2⊥,

P(p2⊥) =
1

p2⊥

αs

2π

∫ zmax

zmin

dzPi←j(z) . (17)

It is important to keep in mind that the coupling itself does also depend on the scale,
and diverges for low transverse momenta where perturbation theory is no longer a useful
approximation. This means that we would run into infinitely many emissions at very low
scales. Thus, it is crucial to introduce a lower cut-off in p2⊥, below which partons combine to
form color-neutral hadronic states, and parton-shower emissions are no longer meaningful.
Such a cut-off in p2⊥ also introduces a lower and upper cut on the energy fraction z. For
now, we will not explicitly consider the running of αs, but in detailed calculations it is
included.
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Taking a closer look at Eq. (17), we see that the emission probability not only diverges
for low transverse momenta. In the case of gluon emissions, it further diverges for soft
gluons, due to the 1/z term in the denominator of the splitting functions. Integrating over

z and p2⊥ will give rise to logarithmic enhancements of the type αs ln
2 p2⊥,max

p2⊥,min
. These so-

called infrared divergences cancel between the real-emission and loop diagrams, and since
arbitrarily soft or collinear radiation is not observable in experiments, their occurrence is
not a problem in general. It is just important to define observable quantities in an infrared
safe way, i.e., observables should not be sensitive to arbitrarily soft or collinear emissions.
As an example, it is reasonable to ask for the probability of emitting a jet with a transverse
momentum above a given p2⊥ scale. On the other hand, asking for the total number of
gluons emitted in a process, is ill-defined, if we don’t specify a minimal energy or transverse
momentum for the gluons.

So far, we have only looked at emission probabilities. However, an emission off a given
state can only occur if the state did not already change due to an emission at higher scales.
The probability of observing the first emission at a certain value of p2⊥ should thus be given
by the emission rate at that scale times the probability of not having an emission before.
This no-emission probability between the starting scale p2⊥,max and a scale p2⊥ is also called
Sudakov factor ∆(p2⊥,max, p

2
⊥). In order to find its form, we can look at small shifts in

the evolution. For such small shifts, the no-emission probability will be given by the no-
emission probability up to the shift times one minus the probability of an emission at that
scale:

∆(p2⊥,max, p
2
⊥ + δp2⊥) = ∆(p2⊥,max, p

2
⊥)

(
1−

∫ p2⊥+δp2⊥

p2⊥

P(p2⊥)dp
2
⊥

)
= ∆(p2⊥,max, p

2
⊥)− P(p2⊥)δp

2
⊥∆(p2⊥,max, p

2
⊥) .

(18)

Comparing this to a Taylor expansion

∆(p2⊥,max, p
2
⊥ + δp2⊥) = ∆(p2⊥,max, p

2
⊥) + δp2⊥

d

dp2⊥
∆(p2⊥,max, p

2
⊥) (19)

allows to identify the derivative of the no-emission probability with respect to the evolution
variable p2⊥

d

dp2⊥
∆(p2⊥,max, p

2
⊥) = −P(p2⊥)∆(p2⊥,max, p

2
⊥) . (20)

The solution to this equation is given by

∆(p2⊥,max, p
2
⊥) = exp

(
−
∫ p2⊥,max

p2⊥

P(p′2⊥)dp
′2
⊥

)
. (21)
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In spirit, this is very similar to radioactive decays: The decay rate A = λN is proportional
to the probability of not having observed a decay earlier, or the number of non-decayed
particle if we look at an ensemble of particles, leading to an exponential expression for the
left-over fraction of particles N = N0e

−λt from the initial amount N0. In this analogy,
the evolution variable p2⊥ in a parton shower can be interpreted as a time parameter, where
decreasing p2⊥ corresponds to increasing time.

Having a closer look at the gluon emission rate, now using the explicit form zmin = 1 −
zmax =

√
p2⊥/Q

2 for the phase space limits in z and assuming p2⊥,max = Q2, allows us
to find

P(p2⊥) =
αs

2π
CF

1

p2⊥

∫ 1−
√

p2⊥/Q2

√
p2⊥/Q2

dz
1 + z2

1− z
≈ αs

2π
CF

1

p2⊥

(
ln
Q2

p2⊥
+O(1)

)
. (22)

Using this in the Sudakov factor gives the dominant contribution

∆(p2⊥,max, p
2
⊥) ≈ exp

(
−
∫ p2⊥,max

p2⊥

αs

2π
CF

1

p′2⊥

(
ln
p2⊥,max

p′2⊥

)
dp′2⊥

)

≈ exp

(
−αs

4π
CF ln2

p2⊥,max

p2⊥

)
,

(23)

where the missing contributions are less singular in p2⊥. This is the parton shower equivalent
of leading logarithmic resummation.

In order to get a feeling for what this entails physically, we can take a look at the emission
rate for the hardest gluon. The requirement that it shall be the hardest means that we need
to take the Sudakov factor into account,

∆(p2⊥,max, p
2
⊥)

1

p2⊥

αs

2π
Pg←q(z) ≈ exp

(
−αs

4π
CF ln2

p2⊥,max

p2⊥

)
1

p2⊥

αs

2π
CF

1 + (1− z)2

z
.

(24)
This gives a realistic picture of the scale of the hardest emission, not being too big, as the
emission rate is enhanced for small scales, but not being to small either, since the low scale
region is suppressed by the Sudakov factor. This interplay between Sudakov factors and
emission rates is crucial for describing jets, as the scale of an additional hard jet is governed
by the hardest parton emitted from the process.

In contrast to analytic resummation calculations, the parton shower generates splittings
explicitly, with full kinematic information, i.e., a certain transverse momentum and energy
fraction and also an azimuthal angle. The resulting states generated by the parton shower
can thus be used to evaluate any observable that depends on the final state momenta. At

17



the same time, most parton showers ensure that intermediate states are physical, i.e., that
all final particles have the right mass. The splitting of massless partons into a pair of two
partons with relative momentum thus requires to adjust also the momentum of (one of ) the
other momenta in the process, such that energy and momentum conservation is guaranteed
at all times. This gives rise to the recoil treatment, as we discuss a bit more later.

By construction, parton showers are unitary, i.e., they do not change the inclusive cross
section of the state they act upon. Their effect is rather to distribute the cross section dif-
ferentially over multiple parton multiplicities. Integrating over the probability of having
the hardest emission at some scale above the lower cutoff simply gives one minus the prob-
ability of having no emission at all,∫ p2⊥,max

p2⊥min

dp2⊥P(p2⊥)∆(p2⊥,max, p
2
⊥) =

∫ p2⊥,max

p2⊥,min

dp2⊥
d

dp2⊥
exp

(
−
∫ p2⊥,max

p2⊥

P(p′2⊥)dp
′2
⊥

)
= 1−∆(p2⊥,max, p

2
⊥min) .

(25)
This property is interesting when correcting the parton shower with fixed-order matrix
elements. Depending on the details of how this is done, the shower unitarity may or may
not be preserved.

In practical implementations, parton showers often employ the veto algorithm. A detailed
description can be found in e.g. [13]. The basic idea is the following:

• For all partons participating in the evolution: propose next emission scale p2⊥ based
on an overestimate of the splitting function.

• Determine a winner parton i and a new parton j.

• Accept the splitting with a rate Pi←j/P
over
i←j to compensate for the overestimation.

• Continue sampling from the current p2⊥ scale until the pre-defined shower cut-off
p2⊥,min is reached.

As mentioned above, in contrast to analytic resummation techniques, the parton shower
constructs explicit kinematic information for every emission step. This is not possible for
pure 1 → 2 splittings, so practically, a third parton needs to take some kinematic recoil to
make sure that energy and momentum are conserved while all partons have their physical
masses. There are different ways to deal with recoil and to assign an appropriate recoiler.
In QCD dipole showers, every parton is connected to one (in the case of quarks) or two
(in the case of gluons) color partners. In a dipole picture, these can be used as recoilers.

For initial state radiation, the situation is a bit more complex, since one of the involved
partons is actually part of the incoming hadron beam. As discussed above, this mandates
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to take PDFs into account. The crucial idea to still study the process of interest is to start
at the hard process, and sample emissions towards lower scales. This is know as backwards
evolution [14]

P(p2⊥) =
1

p2⊥

αs

2π

∫ zmax

x
dzPi←j

x
z fj(

x
z , p

2
⊥)

xfi(x, p2⊥)
. (26)

3.2 Coherence in Parton Showers

Up to this point, the discussion of parton showers was based on collinear radiation. But
as we already saw, the emission of gluons is also softly enhanced, i.e., even wide-angle
emissions can have a significant rate if the energy of the emitted gluon is small. The collinear
approximation includes this soft radiation as a special case in the collinear limit, but it is
not necessarily suitable for describing wide-angle emissions.

For the coherent treatment of soft emissions, it is useful to consider the soft limit. As an
example, let us consider a process X → µ+µ−γ, i.e. a muon anti-muon pair with four-
momenta pµ and p′µ is emitting a photon with small momentum kµ and polarization ϵ∗µ.
The corresponding emission term factorizes as

MX→µ+µ−γ = eW(p, p′; k, ϵ)MX→µ+µ− , (27)

with the so-called eikonal term

W(p, p′; k, ϵ) = ϵ∗µ(k)

[
pµ

p · k
− p′µ

p′ · k

]
. (28)

This term is divergent both for small photon momenta kµ and if the photon becomes col-
linear to one of the muons. The contribution to the squared matrix element then becomes[

pµ

p · k
− p′µ

p′ · k

]2
= −2

p · p′

(p · k)(p′ · k)

= −2

[
p · p′

(p · k)(p · k + p′ · k)
+

p · p′

(p′ · k)(p · k + p′ · k)

]
.

(29)

On the right side of the first line, we see that this still shows the same divergences, but now
in just one term, mixing soft and both collinear singularities. In the second line of Eq. (29),
the two collinear divergences are separated by partial fractioning, identifying one of the
collinear divergences in each term. Both terms are divergent for soft photon emissions,
and their sum recovers the correct soft radiation pattern overall.

This partial fractioning of coherent dipole radiation is a convenient baseline for building
dipole showers, where the term dipole indicates that the radiation is of 2 → 3 type. Each

19



of the terms should in the collinear limit recover a collinear splitting kernel, while the sum
of both should match the eikonal radiation pattern, avoiding double-counting of soft con-
tributions in the collinear sectors. An additional ingredient to the dipole shower approach
is a suitable phase space factorization. The same ingredients are also the baseline for fixed-
order subtractions of infrared divergences [15, 16], which allow to calculate next-to-leading
order cross sections by making the cancellation of infrared divergences explicit between vir-
tual and real contributions. Thus, subtraction schemes and the corresponding momentum
maps can be used for the construction of dipole showers [17–20].

Expressed in angles between the particles, the radiation pattern in Eq. (29) can also be
written as

Wpp′ =
1− cos θpp′

(1− cos θpk)(1− cos θp′k)
. (30)

Analogous to the arguments above, this can be separated into two contributions Wpp′ =

W
(p)
pp′ +W

(p′)
pp′ with

W
(p)
pp′ =

1

2

(
Wpp′ +

1

1− cos θpk
− 1

1− cos θp′k

)
, (31)

such that W (p)
pp′ is only divergent if the emitted photon is collinear to p. This can now be

integrated over the azimuthal angle, giving∫
dϕpk
2π

W
(p)
pp′ =

{
1

1−cos θpk if θpk < θpp′ ,

0 otherwise .
(32)

Up to a color factor, this result also holds for gluon emissions, and is the baseline for angular
ordering in QCD parton showers [21, 22].

3.3 Dealing with Colour

The QCD splitting functions Eq. (14) contain the factors CF, CA and TF, which originate
from the SU(3) color group. Vertices of gluon emissions from a quark line include color
factors T a

ij , where i and j label the color of the quark lines, while a labels the color of
the gluon. For SU(3) there are N2 − 1 = 8 such generators, commonly written in the
standard basis T a = 1

2λ
a, where λa are the Gell-Mann matrices.

Their product when squaring this emission matrix element gives the Casimir operator of the
fundamental representation,

∑
a(T

aT a)ij = CFδij . We have CF = N2−1
2N , so CF = 4

3
for SU(3). For gluon emissions from gluons, we get the Casimir in the adjoint reprensent-
ation instead, stemming from the structure constants in the vertex facdf bcd = CAδ

ab. We
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have CA = N , so CA = 3 for SU(3). For a gluon split into a quark–antiquark pair, we
find tr(T aT b) = T a

jiT
a
ij = TFδ

ab with the group index TF = 1
2 .

In parton showers, the large N limit is often used to simplify the color treatment. Every
new emission is associated with a new color, such that the dipoles that connect colored
partons are unique. A quark is color-connected either to a gluon or to an antiquark, which
play the role of spectators in a dipole-shower picture. A gluon carries a fundamental and
an anti-fundamental index, so it is connected to two other partons instead. In a dipole
shower picture, its radiation is therefore distributed on two dipoles. In the large N limit,
the Casimir operators become CF = N/2 = CA/2, such that quarks radiate half as much
as gluons, since they only carry one color instead of two. Taking a look at the Fierz identity∑

a

T a
ijT

a
kl =

1

2

(
δilδkj −

1

N
δijδkl

)
, (33)

we see that corrections to this approximation are suppressed by factors 1/N , which is why
the large N limit is also called leading color limit. In practice, it is beneficial to keep the
N = 3 value for CF and use the leading color picture to assign dipole partners. The limit
is taken such that αsN = const., so CA can keep its value.

In order to include sub-leading color effects in the parton shower, it is necessary to take
sub-leading color connections into account. For the example of a qq̄g state, a leading
color shower would have a qg and a gq̄ dipole. A full color treatment would require an
additional color dipole spanned between q and q̄, contributing sub-leading radiation to
the qq̄gg state with a negative sign. The treatment of subleading color effects in dipole
showers is an ingredient to Paper III, where it is combined with matrix element corrections
as discussed below.

3.4 Parton Showers beyond Leading Order

So far, we have discussed parton evolution at leading order in the strong coupling αs,
characterized by the fact that the splitting functions introduced in Eq. (14) do not depend
on the strong coupling. The DGLAP equations can be generalized to higher orders in αs,
giving an expansion

Pi←j(z, αs) = P
(0)
i←j(z) +

αs

2π
P

(1)
i←j(z) + ... , (34)

where the P (0)
i←j correspond to the leading order splitting functions introduced above.

The corresponding corrections to the splitting functions to the first order in αs have been
calculated in [23, 24]. On top of the splitting functions discussed so far, there are also new
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contributions for q → q′ and q → q̄ splittings that do not exist at leading order, stemming
from graphs like

. (35)

In the collinear limit, a parton shower implementing next-to-leading order parton evolution
should reproduce these equations. The intuitive interpretation of the splitting functions as
a branching probability does not extend to higher orders, since the corresponding contri-
butions are not necessarily positive. This means that the parton-shower algorithm needs to
be able to also sample negative contributions, which can be achieved employing weighted
parton-shower algorithms [25–27]. In these algorithms, events are generated with a corres-
ponding event weight that needs to be taken into account when filling histograms of any
observable.

In [28, 29], the inclusion of triple collinear and double soft 1 → 3 splittings has been
investigating, taking steps towards a fully differential NLO parton evolution. Such an
evolution includes correlated emissions of parton pairs in addition to the usual iterated
emission of two partons, and allows to cover more phase space beyond the strict ordering
of a leading-order shower. Furthermore, it allows for the reduction of scale uncertainties
in shower evolution. The consistent combination of the soft and collinear NLO shower
evolution is the topic of Paper IV.

4 Matching and Merging

The terms matching and merging refer to techniques of combining matrix element calcula-
tions with parton showers. As we discussed above, the fixed-order matrix element calcula-
tion is an expansion in small coupling parameters, and can describe high energy collisions
with a few well-separated partons very well. The parton shower is a calculation in all or-
ders in the coupling, so it takes leading logarithmic enhancements into account at any
order in the coupling. This is crucial to describe soft and collinear configurations, where
the all-order Sudakov factor plays an important role, but it comes with the drawback of
being based on the soft and collinear limits, which makes parton showers inaccurate for
well-separated jet configurations.

In a combination of matrix elements and parton showers, we would like to combine the
advantages of both approaches. Well-separated parton configurations should be described
accurately by the full matrix element calculation at fixed order, while parton-shower re-
summation is kept to treat soft and collinear configurations appropriately.

One of the most straightforward approaches to achieve this matching is the use of matrix
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element corrections [30]. The basic idea is to generate an emission using the parton-shower
approximation, but to then correct to the actual matrix element emission rate, which is
given by the ratio of the squared matrix elements of the underlying state and the state with
one additional emission:

αs

2π

1

p2⊥
Pg←q →

αs

2π

1

p2⊥
Pg←qRME with RME =

|MX+g|2

|MX |2
∑

q
αs
2π

1
p2⊥
Pg←q

. (36)

In contrast to the parton-shower approximation, the matrix elements are process depend-
ent, so this method requires a process-specific implementation. If the matrix element ratio
for the process of interest happens to be smaller than the parton-shower approximation,
the correction can be implemented by a hit & miss approach, so instead of accepting pro-
posed parton-shower emissions with the rate given by the parton-shower kernel, they can
be accepted with the rate given by the matrix elements. A complication of this method is
that there might be kinematic regions that the parton shower does not fill. These would
then also be missing the matrix element correction, since only states that the shower can
generate can be corrected. In order to reproduce the full matrix element rate, it is therefore
necessary to include such regions. Compared to some other methods, as we will see below,
another advantage of matrix element corrections is the fact that not only the emission rate,
but also the no-emission rate is corrected. The parton shower therefore keeps its unitary
property, such that both the emission rates and the Sudakov factors are corrected.

The method of matrix element corrections can be generalized to different processes and
emission types, and also be applied iteratively to higher multiplicity configurations as long
as the required matrix element calculations are available [31]. The concept of iterated matrix
element corrections is relevant for Paper III in this thesis, where it is applied to fixed-color
parton-shower evolution.

A related concept is matrix element matching to parton showers including also virtual cor-
rections, with the most common implementations being MC@NLO [32–34] and POwHEg
[35–38]. MC@NLO assumes that the poles in the matrix elements are reproduced by the
shower. The shower is subtracted from the real-emission matrix element, and added to the
virtual contribution. Once the shower is applied to events generated in this way, the phys-
ical distributions are recovered. A drawback of this approach is that some events come with
negative weights, making the method less efficient. In POwHEg, real and virtual contribu-
tions are combined in one sample, and a first emission is generated with the real-emission
matrix element as the splitting function, similar to the matrix-element corrections described
above. These NLO matching techniques are very appealing, but do not easily allow for the
inclusion of multiple hard emission matrix elements simultaneously, which in turn is the
strength of multi-jet merging schemes.

23



4.1 Multi-jet Merging

An alternative approach to combining matrix element calculations of different final state
multiplicities is to generate states according to the different matrix elements, and then to
consistently combine and shower them afterwards. In a most naïve approach, one might
attempt to combine the different samples by just adding the parton-shower effects to each.
However, there are some complications to be kept in mind:

• The parton shower on lower multiplicity samples will generate emissions that are
already included in higher multiplicity samples. Just adding these up would lead to
an overcounting of emission rates, which should be cured.

• Higher multiplicity matrix element configurations are based on fixed-order calcula-
tions, so no logarithmic enhancements are included beyond the fixed order in the
coupling. In a consistent combination that retains the advantages of matrix elements
and parton showers, we would want to also include the shower resummation effects.

• The coupling parameter in the shower is treated as a scale-dependent quantity. In
QCD emissions, low transverse momentum emissions are thus further enhanced.
This is not the case in matrix element calculations, requiring further corrections.

• Soft and collinear configurations in the matrix element calculation with multiple
partons exhibits infrared divergences. In order to be able to sample phase space
points that are distributed according to the matrix elements, these configurations
require some mitigation.

The general multi-jet merging strategy for combining matrix element calculations of differ-
ent multiplicities takes these points into account. When generating the events distributed
according to the matrix elements for different parton multiplicities, it is first necessary to
define some phase space region in which the fixed-order calculation should be considered,
and a complementary region that is exclusively sampled by the parton shower. This intro-
duction of a merging scale cut ensures that divergent contributions from soft and collinear
configurations are excluded from the fixed-order calculation, allowing for the phase-space
sampling of events without divergent contributions. Thinking in terms of a transverse mo-
mentum cut, the scale must be chosen high enough to make sure that the matrix element
calculation is efficient, and low enough to make sure that the parton-shower approximation
is appropriate in the shower exclusive phase space region, since the soft and collinear limits
are more appropriate for lower scales. All emissions up to the multiplicity of the available
matrix elements in the hard region should then be described by the matrix elements alone.
The shower emissions should only fill emission beyond the matrix element multiplicity,
and the region below the merging scale, where no hard matrix element configurations are
sampled.
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So far, the distributions are then fixed-order correct according to the matrix elements. In
order to also retain the resummation effects of the parton shower, all-order effects that the
shower would have generated need to be added without changing the fixed-order contri-
butions. Following the question how would a parton shower have generated this state? then
allows to construct the necessary corrections.

• The Sudakov factors can be taken into account by considering no-emission probab-
ilities. This is possible by assigning weights to the matrix elements with additional
emissions, which encode the probability of having parton-shower emissions on the
corresponding underlying states before the given configuration could be reached. In
order to calculate these, it is necessary to find the lower multiplicity configurations
from which a parton shower could have generated the state of interest. Then, these
factors can either be calculated analytically [39], or by running the parton shower
explicitly and checking whether there would have been an emission or not [40].

• With the shower histories at hand, it is also possible to evaluate the coupling para-
meters at the scales the shower would have chosen, by applying ratios of the desired
coupling parameter divided by the one used in the matrix element calculation. Sim-
ilarly, for initial state radiation, ratios of PDFs need to be taken into account.

• Finally, the parton shower can be used to generate emissions below the merging scale,
and for multiplicities higher than what is available from matrix elements, also for the
hard region.

Following this prescription, well-separated jets will be described by the appropriate matrix
element rates, while resummation of softer and more collinear configurations will be taken
into account by the parton shower. The result might exhibit a dependence on the chosen
merging scale though. If it is too high, part of the shower-filled region might not be ac-
curate. If it is too low, the efficient matrix element calculation becomes challenging. Since
the matrix element calculations includes all logarithmic terms at a given order in the coup-
ling, and the shower only the leading terms, the correction might also introduce subleading
logarithmic terms. If only the emission rates, but not the no-emission probabilities are cor-
rected, this leads to a mismatch, changing the total cross section. Both the parton shower
accuracy and the fixed-order accuracy are preserved though, but the mismatch might be
visible in differential distributions.

The concept of parton-shower histories is important for the procedure outlined above.
Every event sampled from a matrix element calculation comes with a set of momenta,
but does not provide a notion of how the particles are connected. In contrast, a parton
shower has a notion of which parton was emitted by which, and which spectator took the
role of a recoiler in an emission. In order to assign the appropriate merging weights, one
can build all possible parton-shower histories, and then use all, or a probabilistically chosen
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Figure 3: Example of a parton-shower history for a given state with an incoming qq̄ pair
and qqq̄q̄ in the final state. The ρ characterize the scales of the splittings, e.g. a
transverse momentum for p2⊥ ordered showers. The x and x′ give the momentum
fractions at which the initial state partons are extracted from the incoming beam.
The ρ1 and ρ2 give the parton-shower scales associated with the parton-shower
emissions.

one, to allow for the shower aware merging. To illustrate this, we take a look at an example
parton-shower history for the process qq̄ → qqq̄q̄, which is shown in Fig. 3. The variables
ρ1 and ρ2 correspond to the scales of the splittings, e.g., a transverse momentum for p2⊥
ordered showers. The values of x and x′ give the momentum fractions at which the initial
state partons are extracted from the incoming beam.

The differential cross section as given by the matrix element is

dσME
+2

dΦ+2
= x+f+(x+, µF)x−f−(x−, µF)|M+2|2 . (37)

The corresponding differential parton-shower cross section, generated from a matrix ele-
ment state qq̄ → qq̄ would instead be given by

dσexcl+2

dΦ+0dΦ1dΦ2
=x′+f+(x

′
+, ρ0)x−f−(x−, ρ0)|M+0|2∆0(ρ0, ρ1)

αs(ρ1)

2π

x+f+(x+, ρ1)

x′+f+(x
′
+, ρ1)

x−f−(x−, ρ1)

x−f−(x−, ρ1)

P1

ρ1
∆1(ρ1, ρ2)

αs(ρ2)

2π

P2

ρ2
∆2(ρ2, ρms) ,

(38)

where ρms is the merging scale. The no-emission probabilities∆(ρi, ρi+1) occurring in this
rate correspond to all partons in the process. For final state partons, these correspond to
the Sudakov factor defined in Eq. (21). For initial state partons, the additional PDF ratios
in the emission rates need to be taken into account as well.
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With these rates, we can now define a weighting factor w that needs to be applied to the
higher multiplicity inclusive matrix element to introduce the shower resummation effects:

dσexcl+2

dΦ+0dΦ1dΦ2
= w

dσME
+2

dΦ+2
. (39)

By comparing Eq. (37) and Eq. (38) for this particular history and assuming that the coup-
ling factors and PDFs in the matrix element sample are evaluated at the scales µR and µF
respectively, we find

w = wαswpdfwno−em with

wαs =
αs(ρ1)

αs(µR)

αs(ρ2)

αs(µR)
,

wpdf =
f+(x

′
+, ρ0)

f+(x′+, ρ1)

f+(x+, ρ1)

f+(x+, µF)

f−(x−, ρ0)

f−(x−, ρ1)

f−(x−, ρ1)

f−(x−, µF)
,

wno−em = ∆0(ρ0, ρ1)∆1(ρ1, ρ2)∆2(ρ2, ρms) .

(40)

All of these weight factors are expandable as 1+O(αs)+ ..., such that applying them does
not spoil the fixed-order accuracy of the matrix element calculation. At the same time, they
introduce the all-order terms that the parton-shower resummation introduces, combining
the advantages of both approaches.

4.2 Merging and Unitarity

As discussed above, parton showers are unitary: they distribute the cross section over differ-
ent parton multiplicities by implementing emission and corresponding no-emission prob-
abilities. In this way, the fixed-order inclusive cross section is not altered by showering. The
shower effect on differential distributions that are sensitive to parton emissions can be quite
significant though. Calling the total rate inclusive, in the sense that we do not distinguish
whether there are further emissions, and the differential rates exclusive, in the sense that
we look at a state with a given number of partons without further resolved emissions, the
effect of the parton shower is to project inclusive rates onto exclusive distributions.

The multi-jet merging approach as discussed above corrects the emission rates, that a parton
shower only approximates. To a given order in the coupling constant, the distributions
agree with the fixed-order matrix elements. On the contrary, no-emission probabilities
are included using the shower approximations. In unitary multi-jet merging approaches,
the merging prescription is adjusted to preserve the unitary property of the shower. The
total cross section is not changed when higher multiplicity states are corrected, and the
dependence on the merging scale is reduced. This is achieved by not just correcting emission
rates, but also no-emission probabilities [41].
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Instead of generating no-emission probabilities based on the parton-shower approximation,
we can expand the no-emission term:

∆0(ρ0, ρms) = 1−
∫ ρ0

ρms

dρ1dz
αs

2π

PME
0

ρ1
∆0(ρ0, ρ1) , (41)

where we write the emission probability in terms of the accurate fixed-order rate PME
0 =

|M1|2/|M0|2. Focusing on no-emission probabilities for now, and neglecting running
coupling and parton flux effects, this relation can be used to write the exclusive cross section
as

dσex0
dΦ0

= |M0|2∆0(ρ0, ρms) −→ |M0|2 −
∫ ρ0

ρms

dΦ1|M1|2∆0(ρ0, ρ1) . (42)

The corresponding one or more parton cross section is

dσ≥1
dΦ0

= dΦ1|M1|2∆0(ρ0, ρ1) , (43)

such that the integral over the combined contributions Eqs. (42) and (43) recovers the
inclusive lowest multiplicity cross section. If another parton is to be included, we can
repeat the same procedure. The exclusive one-parton cross section can be written as

dσex1
dΦ0

= dΦ1|M1|2∆0(ρ0, ρ1)∆1(ρ1, ρms)

−→ dΦ1|M1|2∆0(ρ0, ρ1)− dΦ1∆0(ρ0, ρ1)

∫ ρ1

ρms

dΦ2|M2|2∆1(ρ1, ρ2) ,
(44)

while the cross section with two or more additional partons is given by

dσ≥2
dΦ0

= dΦ1∆0(ρ0, ρ1)dΦ2|M2|2∆1(ρ1, ρ2) , (45)

such that upon integration, we still recover the lowest multiplicity cross section as desired.
This recipe can be followed for further emissions, as long as the necessary matrix element
calculations are available.

So far, the discussion concerned tree level matrix elements, such that emission as well as
no-emission rates are described according to their respective lowest fixed-order matrix ele-
ments. For these, a merging prescription should avoid overcounting of emission from mat-
rix elements and the parton shower. For a genuine higher order calculation, both tree-level
and loop diagrams are included in the matrix element calculations. These introduce desired
αs terms that are only approximated by the shower. Therefore, the corresponding O(αs)
terms need to be subtracted from the merging weights to avoid spoiling the fixed order ac-
curacy of included matrix element samples. This corresponds to avoiding an overcounting
of virtual contributions. The inclusion of NLO matrix elements in different unitary NLO
merging prescriptions with their respective uncertainties is the topic of Paper II.
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5 Monte Carlo Event Generator Tuning

As discussed in Section 1.4, general purpose event generators aim to provide fully differen-
tial predictions of collision events, describing numerous observables simultaneously. The
theory and models going into the simulation depend on a number of parameters that need
to be adjusted to suitably describe the expected observational data. In adjusting these para-
meters, it is important to maintain the generality of the simulation. A tune should not be
aiming at just describing a certain observable really well while neglecting other effects, but
rather provide a set of parameters that is suitable to describe all components of the event
reasonably well.

Due to the high number of parameters, and the abundance of experimental data to describe,
the task of tuning can be challenging. It is therefore helpful to identify which parameters
can be tuned independently of others, and what processes and observables are suitable to
be used for the optimization. As an example, electron-positron collisions provide a good
baseline for tuning final state radiation and hadronization in the absence of initial state ra-
diation, beam remnants and underlying event effects. In the perturbative parts of the event
generation, there are only very few parameters, most notably the coupling constant. By fo-
cusing on sufficiently inclusive observables and employing appropriate perturbative input,
the coupling can be determined rather independently of other parameters. Hadronization
on the other hand is based on models that entail multiple parameters, some of which are
more universal than others. Also, the lower cut-off of the parton shower can influence the
transition from the perturbative to the non-perturbative regime. It is therefore not always
possible to tune one parameter at a time, based on a small set of observables.

A manual tuning approach can be very time-consuming, and requires expert knowledge
on both the parameters that are to be tuned, and the experimental data to be employed.
Automated tuning approaches have been proposed, one heavily used example being the
PROfESSOR package [42] based on the RIvET analysis toolkit [43]. It allows for the efficient
optimization of several parameters simultaneously, using an interpolation of the event gen-
erator response. The exact definition of the goodness-of-fit function, and the selection and
relative weight of the data histograms and bins used as a target distribution for the tune are
user-defined.

In Paper I, we address the problem of high dimensional parameter determination, employ-
ing an algorithmic splitting of the parameters into subspaces and an automated setting
of the weights used in the goodness-of-fit function, enabling a more automated retuning
whenever changes in the event generators require it. This makes tunes more reproducible
and reduces the influence of user made choices, the impact of which is difficult to access.
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6 Outlook

The theme of this thesis are the uncertainties of event generators, and the included publi-
cations take steps in different directions. Based on these, further studies are possible, and
a few ideas are given below.

The first paper presents an algorithm for the tuning of event generators for high dimensional
parameter spaces. The method allows for tuning with reduced human interaction, and
therefore also for tuning different models with a similar bias. Applying this procedure to
different models could be used to identify mismodeling, since the origin of differences is less
likely to be attributed to better or worse tuning. In the automated assignment of weights,
the difference between pure parton shower and matched/merged predictions could be used
to reduce the weight of observables that are very sensitive to these kinds of corrections.
Furthermore, the over-representation of correlated data could be addressed in future work.

The second paper concerns scale and scheme variations in unitarized NLO merging. In
addition to the commonly employed renormalization scale variations, a scheme variation
can be used by reweighting to estimate algorithmic uncertainties. Further sources of un-
certainties could be included in a similar fashion, but would require some redesign of the
parton-shower algorithm, for example variations of the merging scale, the factorization
scale in conjunction with the shower starting scale or the shower cut-off. This improved
uncertainty budget could also be used as a baseline for an NLO tune, ideally leading to a
more universal result due to less perturbative bias on non-perturbative models.

In the third paper, we present a shower framework allowing for fixed-color parton evolution
with QCD/QED interference effects through matrix element corrections. We find these
effects to be small in a simple test case, but see that electroweak effects can be very signi-
ficant. Further phenomenological studies could help to refine this outcome, by looking at
more general configurations and including also initial state radiation. The developments
in this project could also facilitate parton-shower matching to fixed color hard-scattering
events, since these are used as a starting point for the fixed-color shower evolution. An-
other interesting application of the presented framework is the use for fixed color shower
deconstruction.

In the fourth paper, we address the question of how to combine triple-collinear and double-
soft corrections to parton showers. The net effect of including these corrections is small
when employing a reasonable leading order shower, and helps to reduce the uncertainties.
The implementation of a complete NLO parton evolution seems possible based on this
approach. Besides being valuable as such, this would also facilitate the use of modified
subtraction schemes at O(αs

2).
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7 Overview of Publications

Here, I briefly summarize each paper in the thesis and specify my individual contributions.

Paper I: High dimensional parameter tuning for event generators

Johannes Bellm, Leif Gellersen
Eur.Phys.J.C 80 (2020) 1, 54. E-print: arXiv:1908.10811 [hep-ph]
LU-TP-19-40, MCNET-19-20

We present an algorithm that allows to tune Monte Carlo Event Generators for high di-
mensional parameter spaces by splitting the parameter space algorithmically and perform-
ing PROfESSOR tunes on the resulting subspaces. We test the algorithm in ideal conditions
and in real life examples.

Johannes Bellm proposed the project and the basic algorithm, which we then developed to-
gether. The implementation was a joint effort. I performed the test under ideal conditions,
where we tune to a data set that what previously generated with a known set of parameters,
that we aimed to recover. I also performed the PyTHIA 8 LEP tune. In the manuscript, I
wrote section 2, contributed to section 3, and wrote the relevant parts of sections 4 and 5.

Paper II: Scale and scheme variations in unitarized NLO merging

Leif Gellersen, Stefan Prestel
Phys.Rev.D 101 (2020) 11, 114007. E-print: arXiv:2001.10746 [hep-ph]
LU-TP-20-03, MCNET-20-04

In this paper, we discuss possible pit-falls in defining the perturbative uncertainty of unit-
arized next-to-leading order multi-jet merging predictions. For this purpose, we define and
implement different unitarized NLO merging schemes and discuss consistent variations of
renormalization scales. We find that both the central prediction and the scale uncertain-
ties are affected, but largely overlap. Differences can be comparable to scale uncertainties
though, even for well-separated jets.

Based on the UNLOPS implementation in PyTHIA 8, I implemented the alternative NLO
matching schemes and consistent renormalization scale variations in different parts of the
calculation, and produced the results and plots for the paper. Of the manuscript, I wrote
the Theory and Implementation and Application and Results sections.
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Paper III: Coloring mixed QCD/QED evolution

Leif Gellersen, Stefan Prestel, Michael Spannowsky
To be submitted to SciPost Phys. E-print: arXiv:2109.09706 [hep-ph]
IPPP/21/30, LU-TP-21-41, MCNET-21-16

In this paper, we investigate the effect of QCD/QED interference in parton showers. For
this purpose, we develop a shower including QED, QCD at fixed color, and tree-level
matrix element corrections for fixed color configurations. We find QCD/QED interference
effects to be small in a simple test case.

My contributions to this project are the implementation of a fixed color shower mode for
the DIRE parton shower in PyTHIA 8, and the kinematic matrix element corrections based
on fixed color states. I furthermore adapted the necessary matrix element plugin for the
simple test case. I generated the results and figures, wrote large parts of section 2, and wrote
section 3 of the paper.

Paper IV: Disentangling soft and collinear effects in QCD parton evolution

Leif Gellersen, Stefan Höche, Stefan Prestel
To be submitted to Phys.Rev.D. E-print: arXiv:2110.05964 [hep-ph]
FERMILAB-PUB-21-483-T, LU-TP-21-44, MCNET-21-17

We introduce a method for the consistent removal of overlapping singularities in QCD par-
ton evolution at the next-to-leading order in the strong coupling. Using an implementation
in the DIRE parton shower, we analyze the numerical impact of the genuine tripe-collinear
corrections for quark pair emission in e+e− → hadrons.

For this project, I implemented the consistently assembled next-to-leading order quark
to quark splittings based on the previous NLO shower machinery in the DIRE shower for
PyTHIA 8, and generated the corresponding results. The paper was written in collaboration.

Further contributions

In addition to the four papers listed above, I made additional contributions that are not
included in this thesis. These include technical developments in PyTHIA, especially around
the handling of event weights and merging, and contributions to the upcoming PyTHIA
8.3 manual. The developments of Papers II, III and IV are and will be made available in
PyTHIA.
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I also contributed to the following report.

Self-consistency of backwards evolved initial-state parton showers
Leif Gellersen, Davide Napoletano, Stefan Prestel
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