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Abstract

This thesis deals with the general problem of controlling rigid-body systems
through space, with a special focus on unmanned aerial vehicles (UAVs).
Several promising UAV control algorithms have been developed over the
past decades, enabling truly astounding feats of agility when combined with
modern sensing technologies. However, these control algorithms typically
come without global stability guarantees when implemented with estimation
algorithms. Such control systems work well most of the time, but when
introducing the UAVs more widely in society, it becomes paramount to prove
that stability is ensured regardless of how the control system is initialized.

The main motivation of the research lies in providing such (almost) global
stability guarantees for an entire UAV control system. We develop algorithms
that are implementable in practice and for which (almost) all initial errors
result in perfect tracking of a reference trajectory. In doing so, both the track-
ing and the estimation errors are shown to be bounded in time along (almost)
all solutions of the closed-loop system. In other words, if the initialization is
sound and the initial errors are small, they will remain small and decrease in
time, and even if the initial errors are large, they will not increase with time.

As the field of UAV control is mature, this thesis starts by reviewing some
of the most promising approaches to date in Part I. The ambition is to clarify
how various controllers are related, provide intuition, and demonstrate how
they work in practice. These ideas subsequently form the foundation on which
a new result is derived, referred to as a nonlinear filtered output feedback. This
represents a diametrically different approach to the control system synthesis.
Instead of a disjoint controller/estimator design, the proposed method is
comprised of two controller/estimator pairs, which when combined through a
special interconnection term yields a system with favorable stability properties.

While the first part of the thesis deals with theoretical controller design,
Part II concerns application examples, demonstrating how the theory can
solve challenging problems in modern society. In particular, we consider the
problem of circumnavigation for search and rescue missions and show how
UAVs can gather data from radioactive sites to estimate radiation intensity.
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1
Introduction

1.1 Background and Motivation

The field of control theory concerns the computation of a control signal that
is used to actuate a system based on (partial) information of its state. The
state is a concise representation of the system at any given time, and its
composition and evolution in time can be modeled in various ways depending
on the context in which the system is analyzed. For unmanned aerial vehicles
(UAVs), which are the main subject of this thesis, the state is often defined
as the configurations of the UAV (position and rotation) and their velocities.
These states evolve in time by nonlinear dynamics, as governed by the
laws of classical mechanics. The UAVs are actuated through external forces
and torques generated by a set of rotors. While the exact configurations
of the rotors vary both in number and relative location, it is common to
use a configuration of four rotors with aligned rotational axes for reasons
related to the mathematical concept of controllability. This form of UAV is
commonly referred to as a quadrotor. While the control systems in this thesis
are developed specifically for quadrotor UAVs, they may also be used for
other UAVs, such as satellites, or form the basic building blocks in robotic
manipulation applications. A flying quadrotor is illustrated in Figure 1.1.

Figure 1.1 Three configurations of a quadrotor UAV in motion.
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Chapter 1. Introduction

For all of these systems, a common control objective is to achieve stabiliza-
tion about some stationary configuration of interest. In the case of the UAV,
this could be to drive the system to a stable hovering position. More gener-
ally, the control objective could be to track a feasible time-varying reference
trajectory. Throughout this thesis, we focus on the latter tracking problem
to enable flights along time-varying trajectories as depicted in Figure 1.1. In
either case, secondary objectives are often considered, such as to minimize
a cost expressed in the errors and control signals over time, or to ensure
robustness of the closed-loop system to certain classes of disturbances.

Depending on the context and specifications, many approaches can be
taken to solving the same control problem. In this thesis, we primarily dis-
tinguish between four different problems. The first is the computation of the
control signal (forces and torques), from a given state (configurations and
their velocities), which is commonly referred to as a full state feedback (FSF)
problem. However, in order to implement such a controller, the state needs
to be known in time. For this purpose, the system is equipped with sensors
which generate information on the states, and the inference of the state con-
ditioned on such measurements is commonly known as a full state estimation
(FSE) problem. Alternatively, a feedback law can be constructed directly from
the measurements, also known as an output feedback (OF) control problem.
Finally, one may consider co-designing controller and estimator with the con-
straint that the control signal should be computed from the estimates without
explicitly using the measurements in the feedback law, which is referred to as
a filtered output feedback (FOF) problem (see Figure 1.2).

It may seem that combining a solution to (A), the full state feedback
problem, and (B), the estimation problem, makes it uninteresting to consider
the notion of a filtered output feedback (provided that an estimate of the
state, x, is represented in the filter memory, ζ). However, the estimator in
(B) introduces additional dynamics, which may cause the combined system to
become unstable in the nonlinear setting. This is somewhat counter-intuitive,
as one may expect that a cascade of two nonlinear systems whose errors
independently decay to zero will itself result in a stable system. However, the
separation principle does not apply generally in nonlinear systems (see the
discussion on the peaking phenomenon in Sec. 2.5), unless stringent conditions
are met by both (A) and (B). These conditions will be made more precise
in Chapter 2, but do not hold for many of the popular approaches to (A)
and (B). Generally, the problem becomes difficult to analyze beyond local
approximations of the error dynamics when combining (A) and (B).

In contrast, problems (C) and (D) may be solved to guarantee global
or almost global stability properties - that is, regardless of how large the
initial estimation and control errors are, the system will always reach a
state of stability or perfect tracking. What’s more, with the powerful tools
of Lyapunov theory used throughout this thesis (see Sec. 2.4), one may

14



1.1 Background and Motivation

C
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Figure 1.2 Block diagrams of various UAV control systems where the
state is denoted x, the measurements by y, the control signals by u, and
the estimator memory by ζ. Sketches of (A) a full state feedback, (B) a full
state estimator, (C) an output feedback, and (D) a filtered output feedback.

express a positive definite function in the errors and show that the errors
are bounded and decaying in time. Still, the FOF solution in (D) enjoys two
important advantages over the OF solution in (C). The first is that it can be
designed to yield estimates of the true system states which represent physically
important signals, which can be used by an operator or higher-level control
systems. For instance, with an OF solution, we would know the memory
of the controller and the resulting control signal, but might not be able to
infer the configurations and velocities of the system. The second advantage
of the FOF solution is that the measurements are not used directly in the
feedback law. Instead, the measurements are filtered, and the filter memory
is used in the filtered output feedback. Consequently, the measurement noise
does not appear directly in the control signal, but is first filtered through a
nonlinear system. Thus, apart from ensuring general stability properties of
the closed-loop system, a solution in (D) can be expected to have a smoother
control signal when compared to a solution in (C). This will prove to be
important when considering the cascade analysis of the control system in (D).

1.1.1 Part I - Theoretical Developments
Due to the great practical utility of the UAV and the intricacies of its
mathematical description, the associated control and estimation problems
have attracted significant attention in the research community over the past
decades. As a consequence, the literature is mature, and there exist many
important and useful solutions to the FSF stabilization and tracking problems.
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Chapter 1. Introduction

However, it is not always clear when one solution should be preferred over
another. As such, a topic of the thesis is to clarify how a representative subset
of these controllers are related, and use these insights to propose extensions
ensuring robustness to relevant disturbances, and to explore various tuning
strategies. To this end, the problem of designing FSF controllers corresponding
to control system (A) in Figure 1.2 is discussed in Chapters 3 and 4.

As mentioned in the introduction, the separation principle that is often
invoked in linear control system design to analyze combinations of full state
feedback controllers in (A) and estimators in (B), does not apply in the general
nonlinear setting. As such, if uniform (almost) global stability properties are
to be shown for the closed-loop system, such arguments need to be made for
specific controller and observer pairs, or by considering the (filtered) output
feedback problem directly. Consequently, a topic of the thesis is to construct
such a (filtered) output feedback controller in a deterministic framework
for the pure attitude dynamics as well as the full UAV dynamics given the
directional, gyroscopic and positional measurements that are ubiquitous in
modern UAVs. The problem of designing FOF solutions corresponding to (D)
in Figure 1.2 is discussed in Chapters 5 and 6.

While it is of great interest to know which of these solutions to use and
when, it is equally important that they actually get used in practice. However,
implementing low-level controllers on UAVs is a highly nontrivial task, as
small errors in implementation or tuning can have disastrous consequences
in practice. Therefore, many of the theoretical results of this thesis, along
with several prior results, have been implemented in C such that the they
may be simulated exactly as they are presented. This facilitates the testing
and evaluation of code that can be run directly on the micro-controller of an
intended application, or wrapped in any given programming language. Many
commercial platforms do not permit a complete replacement of the firmware,
but the hope is that making the software available in this form will serve to
disseminate the ideas both within academia and the industry.

1.1.2 Part II - Application Examples
The low-level tracking controllers and estimators derived in Part I of this
thesis are essential in solving many important problems in modern society.
When considering applications such as navigating through the aisles of a
supermarket for inventorying, or flying in close proximity to a radioactive
surface in a nuclear surveying task, it is of great importance to abstract
away the lower-level control system and consider a simplified system. For
instance, with some of the controllers presented in Part I, if a sufficiently
smooth reference trajectory for the closed-loop control system is generated,
then there exist guarantees that it will be followed down to some known
upper bound in the tracking errors. Consequently, the UAV applications are
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simplified greatly, as we can consider a point moving around in the aisles and
plan its movement such that its distance to the shelves is greater than the
bounds on the tracking errors at all times. Thus ensuring that its movement
will be safe provided that the reference trajectory is sufficiently smooth.
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1.3 Included Publications

In this section, the papers that are included in the thesis are stated in the
order of appearance, along with explanations of the contributions made by
each author. These are divided into three categories; those related to Part I
(primarily theoretical), those related to Part II (application oriented), and
those excluded entirely from the thesis in order to improve its cohesion.

1.3.1 Part I
The following publications are included in Part I of the thesis:

[P1] M. Greiff, Z. Sun, and A. Robertsson (2021f). “Attitude control on
SU(2): stability, robustness, and similarities”. IEEE Control Systems Letters
6, pp. 73–78. doi: 10.1109/LCSYS.2021.3049440

[P2] M. Greiff, Z. Sun, and A. Robertsson (2021e). “Tuning and analysis
of geometric tracking controllers on SO(3)”. In: 2021 American Control
Conference (ACC). IEEE, pp. 1674–1680. doi: 10.23919/ACC50511.2021.
9482745

[P3] M. Greiff and A. Robertsson (2018). “Incremental reference generation
for nonsingular control on SE(3)”. In: 2018 IEEE Conference on Control
Technology and Applications (CCTA), pp. 132–137. doi: 10.1109/CCTA.2018.
8511419

These publications were based on the ideas of M. Greiff, who also derived
the theoretical results, conducted the supporting simulations and wrote the
AerialVehicleControl.jl module published at CodeOcean [Greiff, 2020].
Z. Sun and A. Robertsson participated in the proof reading of the results,
and helped structuring the papers and the ideas therein for increased clarity.

[P4] E. Lefeber, M. Greiff, and A. Robertsson (2020). “Filtered output feedback
tracking control of a quadrotor UAV”. IFAC-PapersOnLine 53:2, pp. 5764–
5770. doi: 10.1016/j.ifacol.2020.12.1609

The ideas for this paper came during a visit of E. Lefeber to Lund Uni-
versity. They were initiated by E. Lefeber and derived collaboratively with
M. Greiff during this visit. The results were subsequently implemented by M.
Greiff, who was responsible for the numerical simulation studies. E. Lefeber
and M. Greiff participated equally in the writing of the paper, and all of the au-
thors helped structuring the paper to aid the clarity of its presentation. Parts of
this paper were implemented by M. Greiff in the AerialVehicleControl.jl
module and published for reproducibility at CodeOcean [Greiff, 2020].
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1.3.2 Part II
The following publications are included in Part II of the thesis:

[P5] M. Greiff, M. Deghat, Z. Sun, and A. Robertsson (2021b). “Target
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Systems Letters 6, pp. 1250–1255. doi: 10.1109/LCSYS.2021.3091633

The main ideas were developed by M. Greiff from discussions with M.
Deghat and Z. Sun. All authors contributed to the writing process, and M.
Greiff was responsible for the implementation and generation of the numerical
results. The experiments were conducted by M. Greiff, and the code used in
the simulations and experiments is available at CodeOcean for transparency
and reproducibility [Greiff, 2021].

[P6] M. Greiff, E. Rofors, A. Robertsson, R. Johansson, and R. Tyllström
(2021d). “Gamma-ray imaging with spatially continuous intensity statistics”.
In: 2021 International Conference on Intelligent Robots and Systems (IROS).
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algorithms and conducted the numerical experiments. The data was acquired
in experiments at the former nuclear power plant in Barsebäck, where the
UAV was operated by R. Tyllström and the gamma detector was operated
by E. Rofors. The paper was largely written by M. Greiff, with E. Rofors, A.
Robertsson, R. Johansson, and R. Tyllström helping in structuring the paper.

1.3.3 Excluded papers
Several other papers were not included in the thesis. This was mainly done
to improve the cohesion and clarity of its presentation, but also due to some
of the work being related to US patents and ongoing projects at Mitsubishi
Electric Research Laboratories. These are listed as follows:

M. Greiff and A. Robertsson (2017). “Optimisation-based motion planning
with obstacles and priorities”. IFAC-PapersOnLine 50:1, pp. 11670–11676.
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ACC.2018.8431134

M. Greiff, A. Robertsson, and K. Berntorp (2019a). “Performance bounds
in positioning with the VIVE lighthouse system”. In: 2019 22th International
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Conference on Information Fusion (FUSION). IEEE, pp. 1–8. isbn: 978-1-
7281-1840-6
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PapersOnLine 53:2, pp. 2489–2494. doi: 10.1016/j.ifacol.2020.12.202

M. Greiff and K. Berntorp (2020). “Optimal measurement projections with
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CDC42340.2020.9304191

M. Greiff, A. Robertsson, and K. Berntorp (2020b). “MSE-optimal measure-
ment dimension reduction in Gaussian filtering”. In: 2020 IEEE Conference
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In addition to these papers, journal extensions of [Greiff et al., 2019b; Sun
et al., 2019] on temporal viability; the mixed-integer estimators in [Greiff
et al., 2021a]; and the radiation inference method in [Greiff et al., 2021d] are
being prepared or have been submitted. Additionally, a paper pertaining to
quadrotor control on SU(2)×R3 has been submitted to the American Control
Conference, and an extended version is available on arXiv as a pre-print.

M. Greiff, P. Persson, Z. Sun, A. Robertsson, and K. Åström (2021c).
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1.4 Contributions

1.4 Contributions

The main contributions of this thesis are, in order of appearance:

• The introduction of a distance on SU(2) and subsequent derivation of
continuous, discontinuous, and robust attitude controllers using this
metric, with quantification of decay rates and the domains of attraction.

• A comparison of the aforementioned controllers with the analogous
results on SO(3), and a clarification of how these relate to other methods
used in the design of various controllers and estimators on SO(3).

• A method of tuning the controllers on SU(2) and SO(3) by solving a
bilinear matrix inequality program, facilitating performance comparisons
when optimally tuned with respect to certain closed-loop properties.

• The open-source implementation of these and prior results on attitude
control in C for direct use on the micro-controllers of a target application,
with the options for tuning and external simulation in Julia.

• The extension of the results in SU(2) to the control of UAV dynamics
configured on SU(2)× R3, with validation in simulation and real-time
examples demonstrating aggressive trajectory tracking maneuvers.

• The derivation of a filtered output feedback on SO(3), guaranteeing
closed-loop stability for the tracking problem when assuming measure-
ments from a nine degrees of freedom (9-DOF) inertial measurement
unit (IMU), without these appearing directly in the control signal.

• A filtered output feedback controller on SO(3) × R3 for trajectory
tracking, with saturated controls, assuming positional information and
a 9-DOF IMU, and ensuring uniform almost global asymptotic stability.

• An extension of the circumnavigation and target tracking result
in [Deghat et al., 2010] with integral action, facilitating rejection of
disturbances caused by actuator errors, with experimental verification.

• An extension of the additive point-source localization (APSL) algorithm
for radiation intensity inference in [Hellfeld et al., 2019] with Gaus-
sian kernels, with subsequent experimental validation of the presented
algorithm using a spectrometer mounted on a large UAV.

The notation SO(3), SU(2), and R will be explained in Chapter 2.
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Table 1.1 Overview of the contents, separating Part I and Part II.

Chapter Description Overview

Chapter 2 Mathematical preliminaries for Part I of the thesis
defining the dynamics and main theoretical tools.

Not given

Chapter 3 A collection of results on full state feedback for the
attitude dynamics of a UAV, related to (A) in Figure 1.2.

Table 3.1

Chapter 4 A collection of results on geometric full state feedback
for the UAV dynamics, related to (A) in Figure 1.2.

Table 4.1

Chapter 5 A collection of results on filtered output feedback for the
attitude dynamics of a UAV, related to (D) in Figure 1.2.

Table 5.1

Chapter 6 A collection of results on filtered output feedback
for the UAV dynamics, related to (D) in Figure 1.2.

Table 6.1

Chapter 7 Summary of Part I of the thesis Not given

Chapter 8 The generalization of a result on circumnavigation and target
tracking, with verification in simulation and examples in practice.

Sec. 8.1.2

Chapter 9 The generalization of an algorithm for radiation estimation
with verification in simulation and examples in practice.

Sec. 9.1.2

Chapter 10 Summary of Part II of the thesis Not given

1.5 Outline and Structure

This thesis is comprised of several chapters, each including (i) a mathemat-
ical problem formulation, with (ii) a brief motivation describing why it is
considered, followed by (iii) an overview with of the results and examples of
the chapter. The purpose of this is to give an overview what the chapters
contain, and to clearly indicate what should be considered prior and original
work, respectively. For an overview of the developments, Table 1.1 gives a
description of each chapter, and a reference to secondary tables outlining their
results and examples. These chapters are divided into two parts, and while
both contain simulations as well as real-time examples, the first is focused on
the theory of UAV control, while the latter concerns application examples.

Part I The first part concerns theoretical results related to control and
estimation for systems with rotational degrees of freedom. In Part I, the
mathematical preliminaries are given in Chapter 2, followed by the results on
full state feedback (FSF) attitude control in Chapter 3, with results pertaining
to the full UAV dynamics given in Chapter 4. The filtered output feedback
(FOF) results are then derived separately for attitude dynamics and the full
UAV dynamics. This is done in Chapters 5 and 6, respectively.

Part II The second part of the thesis concerns two very different applica-
tions which seek to demonstrate how the theoretical results can be applied
practice. The first is an application to circumnavigation control in Chapter 8,
where an output feedback controller is derived using some of the techniques
in Chapter 6, incorporating smooth saturation functions to give sufficient con-
ditions for collision avoidance. The second application in Chapter 9 pertains
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1.5 Outline and Structure

Table 1.2 Overview of the explanatory videos with links to YouTube.

Name and Link Description

chapter-3-simulations.mp4 Simulation examples in Chapter 3
chapter-4-simulations.mp4 Simulation examples in Chapter 4
chapter-4-spiraling.mp4 Real-time example of the spiraling maneuver in Chapter 4
chapter-4-inventorying.mp4 Real-time example of the inventorying task in Chapter 4
chapter-5-simulations.mp4 Simulation examples in Chapter 5
chapter-6-simulations.mp4 Simulation examples in Chapter 6
chapter-8-circumnav.mp4 Real-time example of the UGV control in Chapter 8
chapter-9-radiation.mp4 Real-time example of the radiation experiments in Chapter 9

to radiation estimation by mobile spectrometers mounted on UAVs, where
spherical-radial cubature rules common to nonlinear Gaussian filtering are
used infer the moments of an intensity function over a known surface.

Videos As this thesis concerns the control of moving and rotating bodies
in space, the results are best explored in videos depicting the time-evolution
of the signals and the system configurations. To provide intuition, a vast
majority of the simulations and real-time experiments come with associated
videos. These are uploaded in the Lund University Research Portal:

http://portal.research.lu.se/portal/

They are also available through the author’s YouTube channel:

http://www.youtube.com/channel/UCMn1bUgdQcIJ7MP-4N58Zgw

The videos are referenced explicitly from the relevant figure captions, but a
list of all of the video contributions is given in Table 1.2 for easier access.
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Part I

Theoretical Developments





2
Preliminaries

Throughout the thesis, a wide range of topics are covered. In this chapter,
definitions and concepts that appear in the chapters on full state feedback
(Chapters 3 and 4) and filtered output feedback control (Chapters 5 and 6)
are introduced, with mathematical intuition provided when possible.

2.1 Nomenclature and Definitions

Bold font is used to denote vectors, x, with the element at an index i denoted
xi. Similarly, matrices are denoted capital bold font letters,A, with an element
at a row i and column j denoted [A]i,j . The real numbers are denoted R,
the complex numbers by C (with an imaginary unit i), and the integers are
denoted by Z. All positive real numbers are denoted R>0, or R≥0 if including
the zero, and the complex numbers with a negative real part are denoted
C<0. A concatenation of two vectors x ∈ Cm and y ∈ Cn is denoted by
(x; y) = (x>,y>)> ∈ Cm+n. An ordered collection of objects x ∈ A and
y ∈ B is denoted (x,y) ∈ A×B, where the notation (x,y) = (a, b) implies
that x = a ∈ A and y = b ∈ B. The notation I refers to an identity matrix,
and if it is necessary to clarify its dimensions, this is done by IN ∈ RN×N .
The zero matrix is denoted 0, and if necessary, its dimensions are written out
as 0M×N ∈ RM×N . The standard Kronecker product is denoted by ⊗ in the
usual convention, such that for any A ∈ Rm×n and B ∈ Rk×l,

A⊗B =

 [A]1,1B · · · [A]1,nB
...

. . .
...

[A]m,1B · · · [A]m,nB

 ∈ Rmk×nl. (2.1)

The eigenvalue with largest real part of a matrix A is denoted λM (A), and the
eigenvalue with the smallest real part is denoted λm(A). The spectrum of a
matrix is denoted spec(A) = {λm(A), ..., λM (A)}. The determinant and trace
of a matrix A are written det(A) and Tr(A), respectively. Throughout the
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thesis, we work with the classical Lie groups SO(n) and SU(n), which will be
defined shortly. These groups are equipped with a unique translation invariant
probability measure (a Haar measure), hence, we can without ambiguity let
U(G) denote a uniform distribution over any of these groups (see e.g., [Meckes,
2019, Lemma 2.1]). Similarly, a uniform distribution over a compact interval
I ⊂ Rn is denoted U(I). The first time-derivative of a signal x(t) is denoted
(d/dt)x = ẋ, often omitting the time-argument, the second time-derivative is
written (d2/dt2)x = ẍ, and its nth derivative is denoted (dn/dtn)x = x(n).

Definition 2.1—Vector Norm
A vector norm is denoted ‖x‖, and satisfies

(i) ‖x+ y‖ < ‖x‖+ ‖y‖ for all x,y ∈ Rm,

(ii) ‖αx‖ = |α|‖x‖ for all x ∈ Rm, α ∈ R,

(iii) ‖x‖ > 0 for all x ∈ Rm\{0}, and ‖x‖ = 0 if and only if x = 0. 2

While ‖ · ‖ may refer to any vector norm, we will, for any u ∈ Rm, let
‖u‖ = (u2

1 + · · ·+ u2
m)1/2 denote the usual two-norm unless stated otherwise.

For matrices, we let ‖ ·‖ denote the induced two-norm, which in case of square
matrices is the spectral norm. That is, if A ∈ Cn×n, ‖A‖ = (λM (A∗A))1/2.

Definition 2.2—Continuity
Let function f : Rm 7→ Rn and x,y ∈ Rm. The function f is said to be
continuous at a point x if for all constants ε > 0 there exists δ > 0 such that

‖x− y‖ < δ ⇒ ‖f(x)− f(y)‖ < ε. (2.2)
2

Definition 2.3—Piecewise Continuity
A function f : Rm 7→ Rn is said to be piecewise continuous on a set D ⊂ Rm
if it is continuous at all points x ∈ D except for a finite number of points.2

Definition 2.4—Uniform Continuity
A function f : Rm 7→ Rn is said to be uniformly continuous on a set D ⊂ Rm,
if, for any ε > 0, there exists a δ > 0 such that (2.2) holds for all x,y ∈ D.2

Definition 2.5—Lipschitz Continuity
A function f : Rm 7→ Rn is said to be Lipschitz continuous on a set D ⊂ Rm,
with a Lipschitz constant L > 0, if ‖f(x)−f(y)‖ < L‖x−y‖ for all x,y ∈ D.2

Definition 2.6—Function Smoothness
A function f : Rm 7→ Rn, whose first N derivatives are continuous on the set
D ⊂ Rm is said to belong to the function class CN (D). 2
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Generally, when discussing smoothness with respect to time, the domain
of the function argument is omitted. When stating that a function or signal
is CN , then this implies a smoothness of degree N with respect to time.

To talk about proximity of points to the origin, a ball is defined as follows.

Definition 2.7
A ball of radius r > 0 is defined as Br = {x ∈ Rn|‖x‖ < r}. 2

We also make frequent use of cross-products defined with a screw operator.

Definition 2.8—Screw operator
Let S : R3 7→ R3×3 such that for any a, b ∈ R3, S(a)b = a× b, where then

S(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (2.3)
2

The thesis deals with various attitude representations relating to specific
matrix Lie groups, which will be defined next. The notation will follow [Hall,
2015], and the relevant details are summarized in Appendix A.1.

Definition 2.9—The Special Orthogonal Group SO(3)
Let SO(3) = {R ∈ R3×3 | R>R = I, det(R) = 1}, with an associated Lie
algebra so(3) = {L1ω1 +L2ω2 +L3ω3 ∈ R3×3 | ω ∈ R3} spanned by a basis

L1 =

0 0 0
0 0 −1
0 1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , L3 =

0 −1 0
1 0 0
0 0 0

 . 2

Definition 2.10—The Special Unitary Group SU(2)
Let SU(2) = {X ∈ C2×2 | X∗X = I, det(X) = 1}, with an associated Lie
algebra su(2) = {L1ω1 +L2ω2 +L3ω3 ∈ C2×2 | ω ∈ R3} spanned by a basis

L1 =

[
0 i
i 0

]
, L2 =

[
0 −1
1 0

]
, L3 =

[
i 0
0 −i

]
. 2

Let G be either SU(2) or SO(3) with associated algebra g defined as above.

Definition 2.11
Let [·]∧G : R3 7→ g, take [·]∨G : g 7→ R3, and denote the associated exponential
and logarithmic maps by ExpG : g 7→ G and LogG : G 7→ g, respectively. 2

We will not be working directly with the adjoint representations of G, but
its exponential and logarithmic maps will be used in the subsequent chapters
and are presented in Appendix A.1. Due their frequent use, the aptly named
vee and hat maps in Definition 2.11 are written out below.
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Definition 2.12—Hat and vee maps of SO(3)
From Definitions 2.9 and 2.11, it follows that if K = [ω]∧SO(3) ∈ so(3), then

[ω]∧SO(3) = S(ω), [K]∨SO(3) =

[K]3,2
[K]1,3
[K]2,1

 . 2

Definition 2.13—Hat and vee maps of SU(2)
From Definitions 2.10 and 2.11, it follows that if K = [ω]∧SU(2) ∈ su(2), then

[ω]∧SU(2) =

[
iω3 −ω2 + iω1

ω2 + iω1 −iω3

]
, [K]∨SU(2) =

1

2

=([K]1,2 + [K]2,1)
<([K]2,1 − [K]1,2)
=([K]1,1 − [K]2,2)

 .
2

In the following, we also make use of the quaternion representation.

Definition 2.14—The Quaternion Space
The quaternion is a four-dimensional complex number, here defined in a
Hamilton construction as in [Sola, 2017], with imaginary units {i, j, k}. Let

H̃ = {a+ ib+ jc+ kd | a, b, c, d ∈ R, i2 = j2 = k2 = ijk = −1}. 2

Throughout this thesis, the conventional vector representation of the quater-
nion will be used, with q = (a, b, c, d)> ∈ H̃, with a real and imaginary part
<(q) = a and =(q) = (b, c, d)>, respectively.

From Definition 2.14, many interesting and relevant algebraic properties
follow. In the convenient vector notation, these can be summarized as follows.

Definition 2.15—Quaternion Operations
The conjugate of a quaternion q ∈ H̃ is denoted q∗, satisfying <(q) = <(q∗)
and =(q) = −=(q∗). Furthermore, the multiplication of p, q ∈ H̃ is denoted

p� q = [p]Lq = [q]Rp ∈ H̃.

with the maps [·]L : H̃ 7→ R4×4 and [·]R : H̃ 7→ R4×4 stated in Appendix A.1.6.
With this operation, the norm of a quaternion is defined as ‖q‖ = q � q∗.
The identity quaternion is defined as qI = (1, 0, 0, 0)> ∈ H̃, and with it, an
inverse quaternion q−1 ∈ H̃ is defined as satisfying q � q−1 = qI . 2

When considering rotations in a quaternion representation, it becomes
relevant to define the space of unit quaternions. While the quaternion oper-
ations apply to quaternions more generally, we will at all times work with
quaternions in a normalized space, defined using these operations as follows.
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SU(2) su(2) R3

SO(3) so(3) R3

LogSU(2)(·)

ExpSU(2)(·)

[·]∨SU(2)

[·]∧SU(2)

E
SU(2)
SO(3)(·)

LogSO(3)(·)

ExpSO(3)(·)

[·]∨SO(3)

[·]∧SO(3)

2(·)(·)/2

Figure 2.1 Relationships between SU(2) and SO(3) given Definition 2.17.
Here (·)/2 and 2(·) denote a division and multiplication by 2, respectively.

Definition 2.16—The Unit Quaternion Space
The space of unit quaternions is defined as

H = {q ∈ H̃ | ‖q‖ = 1}. 2

By this definition of the unit quaternion it can be seen that SU(2) ∼= H,
and for future reference, we embed the quaternion into elements of SU(2) by

q = a+ ib+ jc+ kd ∈ H ⇔ X =

(
a+ id −c+ ib
c+ ib a− id

)
∈ SU(2). (2.4)

The mapping of SU(2) to SO(3) is a 2-to-1 homomorphism, and ifX ∈ SU(2),
then both X and −X map to the same element on SO(3). In this thesis, we
parameterize the rotation matrix in the unit quaternions as follows

R=

a2 + b2 − c2 − d2 2(bc− ad) 2(bd+ ac)
2(bc+ ad) a2 − b2 + c2 − d2 2(cd− ab)
2(bd− ac) 2(cd+ ab) a2 − b2 − c2 + d2

∈SO(3). (2.5)

Definition 2.17—Attitude embedding
The embedding of a group G into group H is defined as EGH : G 7→ H, and
EH

SU(2), E
SU(2)
H , ESU(2)

SO(3) , E
H
SO(3) are given by (2.4) and (2.5), respectively. The

relationships between the considered groups are illustrated in Figure 2.1. 2

Remark 2.1
Here, we note that if X ∈ SU(2), q ∈ H and R ∈ SO(3) all represent the
same attitude, using the embedding in Definition 2.17, then, for any ω ∈ R3,

RExpSO(3)([2ω]∧SO(3)), XExpSU(2)([ω]∧SU(2)), q �
[

cos(‖ω‖)
sinc(‖ω‖)ω

]
,
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θ
u

b

a

uu>b

(I − uu>)b

u× b

Figure 2.2 Illustration of the vector-rotation formula in Equation (2.7).

.

represent the same attitude on SO(3), where sinc(x) = sin(x)x−1 (which
should be interpreted in the limit as the argument approaches zero). Further-
more, for any a, b ∈ R3 with ‖a‖ = ‖b‖, the following are equivalent

a = Rb, a = [X[b]∧SU(2)X
∗]∨SU(2), a = =

(
q �

[
0
b

]
� q∗

)
. (2.6)

2

Remark 2.2
From a mathematical point of view, having the elementX ∈ SU(2) multiplied
with an element of the Lie algebra may seem odd. However, we note that
X[b]∧SU(2)X

∗ ∈ su(2). Furthermore, if X = ExpSU(2)([θu/2]∧SU(2)), with an
angle θ ∈ R and a unit vector u ∈ R3, it can be shown that

[X[b]∧SU(2)X
∗]∨SU(2) = (I − uu>)b cos(θ) + (u× b) sin(θ) + uu>b, (2.7)

which is recognized as the vector-rotation formula (see, e.g., [Sola, 2017]). As
such, the rotation action described in (2.6) has a clear geometric interpretation
(see Figure 2.2), representing a rotation of b about u by an angle θ. 2

Since the map from SO(3) to SU(2) and H is non-unique, we will avoid it
if possible. This ambiguity is one of the major reasons for designing estimators
on SU(2) or H, as any controller with an attitude representation in SU(2), H
or SO(3) may then be used. If instead an estimator is designed on SO(3), then
a controller operating with an attitude representation in SU(2) or H may give
rise to the so-called dynamical unwinding phenomenon described in [Mayhew
et al., 2011a] unless special care is taken in the controller implementation. To
compare elements on SO(3) and SU(2) (and H), we define two closely related
distances as follows.
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Definition 2.18—Distance on SO(3)
A distance on SO(3) is defined as Ψ : SO(3)2 7→ [0, 2], where

Ψ(R1,R2) =
1

2
Tr(I −R>1 R2). 2

For completeness and later use, a similar distance is defined on SU(2).

Definition 2.19—Distance on SU(2)
A distance on SU(2) is defined as Γ : SU(2)2 7→ [0, 2], where

Γ(X1,X2) =
1

2
Tr(I −X∗1X2). 2

In the UAV literature, it is common to consider other distances and
attitude parameterizations. While we generally opt to work directly with
elements of SO(3), SU(2), and H, using the distances in Definitions 2.18
and 2.19, we will also reference Euler or Tait-Bryan angles, defined as follows.

Definition 2.20—Rotation angles
Let φ be a pitch angle, θ a roll angle, and ψ a yaw angle. Let these angles
parameterize an element R(φ, θ, ψ) ∈ SO(3) in the ZYX-convention by,

R(φ, θ, ψ)=

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

.
(2.8)

2

To get a sense of how these rotation angles relate to the previously defined
distances, it is simple to verify that for small rotational angles (in the sense that
they are close to the origin), we have that ‖(φ; θ;ψ)‖2 ≈ 2Ψ(R, I) ≈ 8Γ(X, I).
As such, when studying the forthcoming plots of attitude errors in the distances
Ψ and Γ, this proportionality should be taken into consideration.

Remark 2.3
An appealing property of the distances in Definitions 2.18 and 2.19 is that
they relate special elements of their associated manifolds. Specifically, every

{R>1 R2 ∈ SO(3)|Tr(R>1 R2)=−1}={R>1 R2 ∈ SO(3)|Ψ(R1,R2)=2}, (2.9)

maps to elements of SU(2) in the set

{X∗1X2 ∈ SU(2)|Tr(X∗1X2)=0}={X∗1X2 ∈ SU(2)|Γ(X1,X2)=1}, (2.10)

and vice versa. 2
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Figure 2.3 Illustration of the SO(3)-manifold as a surface in R3-space
(left) and SU(2)-manifold as a surface in R3-space (right), with a darker
color indicating an increasing trace of the elements of the manifold.

The set in (2.9) is of particular interest when designing controllers on
SO(3). Typically, the error dynamics will give rise to one or more unstable
equilibrium points with an attitude error in this set. Here we note that the set
corresponding to Γ(X1,X2) = 2, namely {X∗1X2 ∈ SU(2) | Γ(X1,X2) =
2} = {−I}, is a set of measure zero while the set characterized by Ψ(R1,R2) =
2 is not. Therefore, when working with SO(3), it is common to consider three
important diagonal elements of SO(3), which are defined as follows.

Definition 2.21
Let {D1,D2,D3} ⊂ {R ∈ SO(3) | Tr(R) = −1}, where

D1 = diag(1,−1,−1), D2 = diag(−1, 1,−1), D3 = diag(−1,−1, 1). 2

To illustrate the relation between SO(3) and SU(2), consider Figure 2.3. Here,
the subsets of SO(3) and SU(2) defined in (2.9) and (2.10) are shown (in
blue), along with the special diagonal elements in Definition 2.21.
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Figure 2.4 The distance Γ(X1,X2) with the element X∗
1X2 parameter-

ized in a quaternion representing a rotation of 2θ about an arbitrary axis.
The figure illustrates the bounds in (2.11) for three φ ∈ {0.9, 1.2, 1.5}.

Here, we emphasize that every element on the blue line on SO(3) (left)
maps to elements on the blue line on SU(2) (right) through Definition 2.17.
Consequently, if a controller is designed to minimize a distance in Γ, and this
causes the error trajectory on SU(2) to cross the blue line while converging to
the identity element, we implicitly attain the theoretical maximum distance
in Ψ on SO(3) at least once in the transient. This is related to the concept of
dynamical unwinding, which will be discussed further in Chapter 3.

Yet another reason for introducing the Γ-distance in Definition 2.19, is that
it facilitates a derivation of bounds in quantities that relate to an intuitive
attitude error. This is shown in the following remark, which will be used
frequently in the forthcoming controller derivations and stability proofs.

Remark 2.4
Define q1 = E

SU(2)
H (X1) and q2 = E

SU(2)
H (X2), then Γ(X1,X2) = 1−<(q∗1�

q2). Let qe = q∗1 � q2 and parameterize this quaternion by θ ∈ [−π, π] and a
unit vector u ∈ R3, such that <(qe) = cos(θ) and =(qe) = sin(θ)u, then,

1

2
sin2(θ) ≤ Γ(X1,X2) ≤ 1

2− φ sin2(θ), ∀Γ(X1,X2) ≤ φ < 2. (2.11)

These inequalities are illustrated in Figure 2.1, and an important consequence
is that if a controller can be expressed in an error that is a positive definite
function in sin(θ), then the Γ-distance may be upper and lower bounded in
the errors. Consequently, it may be possible to construct Lyapunov function
candidates that include explicit terms in this Γ-distance. 2
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2.2 Mechanics, Actuation and Reference Generation

This section introduces the relevant rigid-body dynamics defining the motions
of the systems that are to be controlled. Specifically, various coordinate
frames are defined in Sec. 2.2.1, with which the dynamics of a rotational body
configured on SO(3) is presented in Sec. 2.2.2, and the equations of motion for
the UAV configured on SO(3)× R3 are defined in Sec. 2.2.3. This is followed
by a discussion on actuators in Sec. 2.2.4, before concluding with an example
on reference generation and the concept of differential flatness in Sec. 2.2.5.

2.2.1 Coordinate Frames
In the following, we consider a body-fixed frame {B} which relates to an
inertial frame {I} by a rotation, and this inertial frame relates to a global
frame {G} through a translation. An attitude, represented by R ∈ SO(3),
X ∈ SU(2), or q ∈ H, defines a rotation of a vector in the body frame {B}
to the inertial frame {I}. If necessary, the reference frame in which a vector
v ∈ R3 is considered is clarified with a sub-index, such that vB is defined in
the body frame and vG is defined in the global frame. The basis vectors of
the global frame is defined by ei, with the ith element set to 1, and the basis
vectors of the body frame are defined by bi ∈ R3 with i ∈ {1, 2, 3}, such that

I3 =
[
e1 e2 e3

]
= R>

[
b1 b2 b3

]
. (2.12)

2.2.2 Attitude Dynamics
The dynamics of a mechanical system with a configuration, Q, can be derived
for first principles by formulating a Lagrangian in the kinetic energy, T (Q, Q̇),
and the potential energy, U(Q), as L(Q, Q̇) = T (Q, Q̇)− U(Q). An action
integral can then be expressed in the Lagrangian over a time t ∈ [t◦, tf ], as

G =

∫ tf

t◦

L(Q, Q̇)dt. (2.13)

From Hamilton’s principle, the variation of the action integral is zero in time,
implying a conservation of energy. The trajectories (Q(t), Q̇(t)) satisfying
this property are found in the solution to the Euler-Lagrange equation

d
dt
∂L
∂Q̇
− ∂L
∂Q

= M , (2.14)

withM denoting a set of exogenous generalized forces, here forces and torques.
Solving (2.14) becomes involved when considering systems configured on the
Lie groups defined in Sec. 2.1, and is easiest done using a variational approach.
A review of solutions for systems configured on Lie groups is found in [Lee,
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b1
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b3

τ1

τ2
τ3

τ

e1

e2

e3

Figure 2.5 Illustration of a quadrotor UAV when only considering its
attitude dynamics, with a configuration Q = R driven by a set of torques,
τ = (τ1; τ2; τ3), defined in the body-fixed frame, {B} (dashed, red, blue,
green), sharing the same origin as {G} (full, red, blue, green).

2008; Lee et al., 2017], and relevant results for the attitude dynamics of a
UAV driven by external torques (see Figure 2.5) are summarized as follows.

Let ρ denote a vector from the center of the body fixed frame to a mass
element, dm, and let ω denote the body frame rate with respect to the
inertial frame, with ω defined in the body fixed frame. This mass element has
a velocity of ω × ρ, and the kinetic energy of the system can be expressed

T (ω) =
1

2

∫
B
‖ω × ρ‖2dm(ρ) =

1

2

∫
B
ω>S(ρ)>S(ρ)ωdm(ρ) =

1

2
ω>Jω,

referring to an integration over the UAV mass in {B}, where then

J =

∫
B
S(ρ)>S(ρ)dm(ρ), (2.15)

denotes the standard inertia matrix. With Q = R, Q̇ = ω and absence of
any potential energy, L(R,ω) = T (ω), following [Lee, 2008, Chapter 2.3.2]
we arrive at the solution to (2.14) using intermediary variations on SO(3) as

Ṙ = RS(ω), (2.16a)
Jω̇ = S(Jω)ω + τ , (2.16b)

with τ denoting generalized forces (here torques) defined in the body fixed
frame (see Figure 2.5). Performing the same set of computations for attitudes
configured on SU(2) instead of SO(3) only changes the attitude kinematics
in (2.16a). Specifically, for X ∈ SU(2) or q ∈ H, we instead obtain

Ẋ = X[ω/2]∧SU(2), (2.16c)

q̇ =
1

2
q �

[
0
ω

]
, (2.16d)
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Figure 2.6 Illustration of a UAV defined by a configuration Q = (p,R)
defined with respect to the frames {G} and {B}, driven by a set of torques,
τ , and a force fb3, as the sum of the thrusts fi generated by each rotor.

respectively. Regardless of the attitude parmeterization, we note that

d
dt
L(R,ω) = ω>Jω̇ = ω>(S(Jω)ω + τ ) = ω>τ = 0, (2.17)

if τ = 0, implying (i) conservation of energy in the absence of external torques,
(ii) an increase in rotational energy when the torque is aligned with ω, and
(iii) a decrease in energy when they are pointing in the opposite directions.

2.2.3 UAV Dynamics
When instead considering the full UAV dynamics, the system’s configuration is
taken as a translation, p, of the inertial frame relative to the global frame, and
a rotation, R, relating the body frame to the inertial frame, with a translation
velocity, v, in the body-fixed frame, and an attitude rate, ω, also expressed
in the body-fixed frame {B}. The geometry is illustrated in Figure 2.6, with
external forces and torques generated by positive rotor thrusts, fi > 0.

The configuration of the system is Q = (p,R), and its kinetic energy is

T (v,ω) =
1

2

∫
B
‖ω × ρ‖2dm(ρ) +

1

2

∫
B
‖v‖2dm(ρ) =

1

2
ω>Jω +

m

2
v>v.

The potential energy of the system can be expressed as a function of the
elevation of the UAV in the gravitational field, increasing with its height, as

U(p) = mge3 · p, (2.18)
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and the Lagrangian is L(p,R,v,ω) = T (v,ω)− U(p). Following [Lee, 2008,
Chapter 2.3.5] with −(∂/∂p)U(p) = −mgR>e3, the solution to (2.14) is

ṗ = Rv, (2.19a)

mv̇ = −mS(ω)v −mgR>e3 + fe3, (2.19b)

Ṙ = RS(ω), (2.19c)
Jω̇ = S(Jω)ω + τ , (2.19d)

where f denotes an external force and τ denotes external torques, both
generated by the actuators. The use of body-frame accelerations is common
when implementing estimators, but reference generation and development of
UAV control systems are often done with the velocities defined in the global
frame, in which case the subsystems in (2.19a) and (2.19f) are replaced by

ṗ = vG , (2.19e)
mv̇G = −mge3 + fRe3. (2.19f)

Similar to the attitude dynamics, here using that vG = RvB, we note that

d
dt
L(p,R,vG ,ω) =

d
dt
L(p,R,vB,ω) = f(vB · e3) + ω · τ = 0,

in the absence of external forces and torques, implying conservation of energy.
Similarly, if the system is moving in the b3-direction, then a positive force
implies an increase in energy. As the attitude dynamics can be expressed in
various representations, the same holds true for (2.19), and we are free to
exchange the attitude representation in (2.19c) with either (2.16c) or (2.16d),
provided the vectors e3 and v in Equations (2.19b), (2.19b), and (2.19f), are
rotated in accordance with Remark 2.1. The various permutations are not
written out for brevity. The different representations of the attitude dynamics
will be considered in Chapter 3, the global velocity model (Equations (2.19e)
and (2.19f)) will be used in Chapter 4, and the body fixed-frame velocity
model (Equations (2.19a) and (2.19b)) will be used in Chapter 6, here mainly
with attitudes configured on SO(3).

2.2.4 Actuation
From blade element theory, the force generated by the ith rotor when running
at a speed of Ωi [rad/s] is approximately proportional to the rotor speed
squared when the UAV is in a hovering state (see, e.g., [Bangura et al., 2016]).
In the following, we therefore let fi ≈ kΩ2

i and τMi
≈ bΩ2

i denote the force
and torque induced about the rotor axis which is parallel with the body b3

direction and located in the b1b2-plane at a distance l [m] from the center
of mass. Such quadratic approximations are common when modeling the
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forces of multi-rotor UAVs, and have been used to perform impressive looping
maneuvers in practice (see, e.g., [Mellinger et al., 2012]). These approximations
are studied experimentally in [Greiff, 2017], and are a standard assumption
in more theoretical UAV works [Lee et al., 2010; Lee et al., 2013]. Part of the
appeal of this approximation is that the forces and torques can be related to
the rotor speeds. When collected in a vector Ω = (Ω1; Ω2; Ω3; Ω4) ∈ R4 ,

(f ; τ )≈A+(Ω) =


k

4∑
i=1

Ω2
i

kl(Ω2
4 − Ω2

3)
kl(Ω2

1 − Ω2
2)

b(Ω2
1 + Ω2

2 − Ω2
3 − Ω2

4)

, (2.20)

with the rotor setup depicted in Figure 2.6. Other rotor configurations are
also possible, but should be devised such that the map A+ is surjective if
Ωi > 0. In doing so, the problem of rotor control can be abstracted away
in its entirety, and this is the reason why many UAV control problems are
formulated with the forces and torques (f ; τ ) as control signals. However,
any errors in these approximations will result in disturbances on the control
inputs, which should be addressed when constructing the control systems.

2.2.5 Differential Flatness and Reference Generation
When considering UAV applications beyond simple stabilization, it becomes
necessary to generate reference trajectories for the controlled system to follow.
This problem of motion planning is not considered in the thesis, but to
demonstrate the proposed controllers, we still require methods of generating
feasible reference trajectories. For this purpose, we make use of the property
of differential flatness described in [Fliess et al., 1995; Fliess et al., 1999].

Definition 2.22
A system, Σ : ẋ = f(x,u), with a state x ∈ Rn, u ∈ Rm, where f is a
smooth vector field, is called differentially flat if there exist outputs γ ∈ Rm,

γ = h(x,u, u̇, · · · ,u(r)), (2.21)

such that

x = φ(γ, γ̇, · · · ,γ(q)), (2.22a)

u = β(γ, γ̇, · · · ,γ(q)), (2.22b)

where {h,φ,β} are smooth functions. 2
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Here, we let FΣ denote a flat output space associated with a system Σ
such that γ ∈ FΣ. By this definition, for any differentially flat system Σ, given
a sufficiently smooth trajectory γ(t) ∈ FΣ, the states and control signals of
the system can be evaluated at any time without integration. In other words,
the flat system can be transformed into a trivial system without dynamics.
While sometimes difficult to show, several mechanical rigid-body systems
exhibit the property of differential flatness (see, e.g., [Nieuwstadt et al., 1994;
Lewis and Murray, 1997; Rathinam and Murray, 1998]). The UAV dynamics
in (2.19) are considered in [Mellinger et al., 2012], and the relevant maps used
in this thesis are detailed in [Greiff, 2017, Chapter 3]. As such, it should come
as no surprise that the attitude subsystem in (2.16) is differentially flat.

Example 2.1
Regardless of parameterization, the attitude dynamics in (2.16) has three
inputs, and we therefore seek a flat output trajectory γ(t) ∈ R3. Here, we
drop the time argument and parameterize the attitude in a set of quaternions,

q(γ) =


cos(γ3/2)

0
0

sin(γ3/2)

�


cos(γ2/2)
0

sin(γ2/2)
0

�


cos(γ1/2)
sin(γ1/2)

0
0

 . (2.23a)

By this particular parameterization, the rotational angles in Definition 2.20
constitute a flat output with γ = (φ; θ; ψ), with EH

SO(3)(q(γ)) resulting a
rotation matrix parameterized as in (2.8). Given (2.23a), the first and second
time-derivative of the quaternion in (2.23a) can be expressed in the flat
outputs by the chain rule, as q̇(γ, γ̇) and q̈(γ, γ̇, γ̈). The states and control
signals of (2.16) can then be written in the signals (γ, γ̇, γ̈), as

ω(γ, γ̇) = 2={q(γ)∗ � q̇(γ, γ̇)}, (2.23b)
ω̇(γ, γ̇, γ̈) = 2={q̇(γ, γ̇)∗ � q̇(γ) + q(γ)∗ � q̈(γ, γ̇, γ̈)}, (2.23c)
τ (γ, γ̇, γ̈) = Jω̇(γ, γ̇, γ̈)− S(Jω(γ, γ̇))ω(γ, γ̇). (2.23d)

Here, φ is defined by (2.23a) and (2.23b), and β is defined by (2.23d). We also
note that it is possible to define h with γ as a function of q through (2.23a),
but this map will not be unique unless constraints are imposed on γ. 2

This abstraction greatly simplifies the implementation of the control
systems, as the only requirement on γ : R≥0 7→ R3 is sufficient smoothness,
specifically that γ is C2. Similar equations can be expressed for the full UAV
dynamics, where trajectories γ : R≥0 7→ R4 that are C4 can be expanded into
the states and control signals of (2.19) (see, e.g., [Greiff, 2017, Chapter 3]).
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Example 2.2
Consider an implementation where a joystick is used to control a differentially
flat system, and let γc(t) denote commands in the flat outputs. The commands
may be discontinuous, and to generate feasible trajectory, define a vector
Xf = (γ; γ(1); · · · ;γ(q)) ∈ Rm(q+1), and construct a system with a pole of
multiplicity m(q + 1) in −c < 0, with a characteristic polynomial

p(λ) = ((λ+ c)q+1)m = (λq+1 + aqλ
q + · · ·+ a1λ+ a0)m, (2.24)

realized with unit static gain,

Σf : Ẋf (t) =


0 I · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 I
−a0I −a1I · · · −aq−1I −aqI

Xf (t) +


0
0
...
0
a0I

γc(t).
(2.25)

Filtering the input commands in this manner yields a smooth trajectory
γ(t) ∈ Rm that is (at least) Cq, with the qth derivatives known in Xf .

This approach to reference generation is demonstrated with the UAV
attitude dynamics in (2.16) with (2.16d). Consider computing a trajectory
(qr,ωr, τ r) using the flatness equations in Example 2.1 from Xf in (2.25)
when injecting discontinuous step commands in γc. Simulating the dynam-
ics (2.16) in open loop with the computed torques τ r, the state trajectory
(q,ω) is identical to the trajectory (qr,ωr), as shown in Figure 2.7. 2

Example 2.2 demonstrates that it is generally simple to construct a state
trajectory (x,u) for a differentially flat system Σ : ẋ = f(x,u). Therefore, we
abstract away the problem of motion planning. Instead of considering specific
methods for reference generation, we represent all such methods by a system
Σr : ẋr = f(xr,ur), whose states and control signals are expanded from an
analytical trajectory γ(t). This is done in all of the forthcoming simulations
and real-time experiments (see Figure 2.8). To facilitate implementations,
the method of pre-filtering input commands as well as the flatness maps
associated with (2.16) and (2.19) are available in C in [Greiff, 2020].

Remark 2.5
When considering differential flatness in the context of any variant of the
attitude dynamics in Sec. 2.2.2, here referred to as Σa, the flat output space is
defined as γ = (φ; θ; ψ) ∈ FΣa with the rotational angles in Definition 2.20,
parameterizing elements of SU(2) and SO(3) through Definition 2.17.
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Figure 2.7 Example of the filtered reference generation using the property
of differential flatness. Top, left: Input commands γc (gray), and smooth
flat output trajectory γ (blue). Top, right: Quaternion reference trajectory
(blue) and response (gray). Bottom, left: Attitude rate reference trajectory
(blue) and response (gray). Bottom, right: Torque reference trajectory.

γc

Σf

Xf

φ(·)

β(·)

ur

xr ur

Σr

xr

Figure 2.8 Left: Reference generation for a differentially flat system from
input commands by smoothing through a system Σf in the form of (2.25).
Right: Representation of the reference generation used in the thesis.

Remark 2.6
When instead considering differential flatness in the context of the UAV
dynamics in 2.2.3, here referred to as a system Σ, the flat output space
is defined with γ = (p1; p2; p3; ψ) ∈ FΣ. These flatness equations are
generally defined with velocities in the global frame, with (pG ,vG ,R,ω) =

φ(γ, · · · ,γ(4)) and (f, τ ) = β(γ, · · · ,γ(4)) (see [Greiff, 2017]). However, the
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trajectory can easily be converted to velocities and accelerations in {B} by

vB = R>vG , (2.26a)

v̇B = −S(ω)R>vG − gR>e3 + (f/m)e3, (2.26b)

As such, regardless of the UAV dynamics being defined with velocities in the
global or the body frame, and regardless of the choice of attitude parameteri-
zation, a flat output trajectory in FΣ can be expanded into a full state and
control signal trajectory of the UAV dynamics in (2.19). 2

In summary, two systems are of primary interest in this thesis: the UAV
attitude dynamics in Sec. 2.2.2 and the full UAV dynamics as described
in Sec. 2.2.3. These systems are actuated using a set of rotors that generate
torques and forces using the rotor approximation in (2.20) (see Sec. 2.2.4). In
the remainder of the thesis, the coordinates will be defined in an east-north-up
fashion, such that the gravitational acceleration is negative along e3 in {G},
and the actuating force generated by the rotors is defined as being positive
along b3 in {B}. As such, various results defined differently in other papers will
be restated in this notation to avoid any confusion. All future plots will follow
the same color coding of basis vectors as used in Figure 2.5 and Figure 2.6,
with b1, b2, and b3 visualized red, blue and green, respectively. Finally, the
differential flatness discussed in Sec. 2.2.5 will only be referred to in specific
examples. Due to the relative ease with which complete state trajectories
can be computed for these differentially flat systems, we will abstract away
the problem of motion planning. Instead of considering specific methods of
reference generation, as shown in the left-most diagram in Figure 2.8, we
assume the existence of a reference system that obeys the same dynamics as
the system that is to be controlled.
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2.3 Numerical Analysis and Integration Theory

When studying continuous nonlinear and non-autonomous systems, any nu-
merical verification of the theoretical results require explicit numerical compu-
tation of the system trajectories at discrete points in time. For this purpose,
we make use of the classical Runge-Kutta methods in all subsequent simula-
tions, see e.g., [Atkinson, 1988]. This wide class of algorithms are concerned
with the integration of nonlinear and non-autonomous systems in the form

ẋ = f(t,x), t ∈ [t◦, tf ], x(t) ∈ Rn, (2.27)

where, if the system state is known at a time tk as x(tk) = xk, with a local
time step hk = tk+1 − tk, the state at xk+1 , x(tk+1) is computed as

x
(i)
k = xk + hk

i−1∑
j=1

aijk
(j), (2.28a)

k
(i)
k = f(tk + cihk,x

(i)
k ), (2.28b)

xk+1 = xk + hk

s∑
j=1

bjk
(j). (2.28c)

The coefficients {aij}1≤i≤j<s, {bi}1≤i<s, and {ci}1≤i<s are chosen according
to a Butcher tableau [Butcher, 2016] to yield a method of desired accuracy. In
this thesis, a fixed-step explicit 4-stage RK method (RK4) is used, with the
coefficients chosen by a Butcher tableau in Appendix A.2. The local truncation
error is then of order O(h5

k), such that systems simulated at time-steps in the
order of hk = 10−3 for all k result in a local truncation error approaching
machine precision. Historically, the classical RK methods have been used
for the simulation of ordinary differential equations with x(t) ∈ Rn, but
the systems considered in this thesis will typically be configured on special
manifolds, such as the Lie-groups SO(3) and SU(2). In the literature pertaining
to UAV control, it is common to perform the integration in Rn, and then
project the state back to its manifold on each time-step, which in the case of
SO(3) and SU(2) would imply an orthogonalization, and for the quaternion
kinematics implies a normalization. These are defined in Appendix A.1.3, as

ProjSO(3) : R3×3 7→ SO(3), ProjSU(2) : C2×2 7→ SU(2). (2.29)

However, in [Crouch and Grossman, 1993], an elegant solution is developed
for systems configured on Lie groups, commonly refereed to as the Crouch-
Grossman Lie group methods (CG). The general idea is to use the exponential
maps associated with the Lie groups to keep the state in its configuration
manifold over all stages in multi-step algorithms such as the RK methods.
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The butcher-tableau for a subset of these methods are given in [Jackiewicz
et al., 2000], and are also summarized in Appendix A.2. The exact adaption of
these methods to the context of quaternions has been discussed in [Andrle and
Crassidis, 2013; Sveier et al., 2019]. Due to the implications of Definition 2.17,
it is sufficient to develop methods for SU(2), as such algorithms also permit
the simulation of systems partly evolving on SO(3).

Starting from [Crouch and Grossman, 1993], we consider a GC where
subsets of the state are configured on Lie groups Gl of dimension 3. Consider
N distinct elements Y l ∈ Gl for l = 1, · · · , N . Let z ∈ Rn, and take the full
state of the system in (2.27) to have an internal representation as

x(t) ∈ G1 × · · · ×GN × Rn = Dx, t ∈ [t◦, tf ] = Dt.

To facilitate the CG algorithm, we decompose the state into two distinct parts.
The first concerns the dynamics of z, with a function f0 : Dt ×Dx 7→ Rn,
and the second describes the kinematics of each Y l as a function of the state
x, with N functions fl : Dt ×Dx 7→ R3, as

ż = f0(t,x), (2.30a)

Ẏ
l

= Y l[fl(t,x)]∧Gl
, ∀l = 1, · · · , N. (2.30b)

The s-stage CG algorithm in [Andrle and Crassidis, 2013], when stated in
the context of SU(2), SO(3), H, for the left-invariant case, can be written

x
(1)
k = xk, (2.31a)

k
(i)
k = f0(tk + cihk,x

(i)
k ), (2.31b)

K
l,(i)
k = hk[fl(tk + cihk,x

(i)
k )]∧Gl

, ∀l = 1, ..., N (2.31c)

z
(i)
k = zk + hk

i−1∑
j=1

aijk
(j), (2.31d)

Y
l,(i)
k = Y l

k

i−1∏
j=1

ExpGl
(aijK

l,(j)
k ), ∀l = 1, ..., N (2.31e)

zk+1 = zk + hk

s∑
j=1

bjk
(j), (2.31f)

Y l
k+1 = Y l

k

s∏
j=1

ExpGl
(bjK

l,(j)
k ), ∀l = 1, ..., N (2.31g)

Note that if the attitude is represented as a set of N complex-valued 2× 2
matrices or quaternions, the associated rotation matrices can be evaluated at
any point in time by Definition 2.17. Consequently, while not being restricted
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Figure 2.9 Left: Global error in time between the true analytical solution
and solution computed by numerical integration when using the RK-methods
(with and without projection) and the CG methods. Center: Zoom on the
global errors at around t = 10. Right: Distance between the numerically
integrated quaternion and H in time, as measured by |‖q(t)‖ − 1|.

to quaternions, the CG-method is implemented with an internal quaternion
representation. To illustrate these methods, an example of the algorithms
in (2.29) and (2.31) is given by simulating the attitude dynamics in (3.1).

Example 2.3
Consider the attitude dynamics in (3.1) with τ (t) = 0 for all t ≥ t◦, and let
J = diag(JT , JT , J3) � 0 with the initial conditions q(t◦) = q◦ and ω(t◦) =
ω◦ at t◦ = 0. Interestingly, the solution to this ODE is known analytically
from [Andrle and Crassidis, 2013]. This analytical solution, here denoted
xa(t) ∈ H× R3, is stated in the notation of the thesis in Appendix A.2.2. As
such, we can evaluate the global integration errors of the numerical integration
schemes. For this example, we start by writing the system on the CG form.
For instance, if x ∈ SU(2)× R3, with z = ω ∈ R3, Y 1 ∈ SU(2), then

f0(t,x) = J−1S(Jω)ω, f1(t,x) = (1/2)ω. (2.32)

The resulting truncation errors are shown in Figure 2.9, when running the
s = {1, 4} stage RK algorithm (with and without projection), as well as the
s = {1, 4} stage CG algorithm, both with an internal attitude representation
on H. Here, the system is initialized with q◦ = qI , a random ω◦ with
‖ω◦‖ = 20, with the parameters JT = 0.7, J3 = 0.5 and hk = 10−2 for all k.
From this example, we can draw several conclusions that will determine how
the systems of the thesis are simulated and implemented in real-time. The
main takeaways are summarized in Remarks 2.7, 2.8, 2.9, and 2.10. 2
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Remark 2.7
In some software, such as the Julia package DifferentialEquations.jl, one
has great freedom in manipulating the solver memory, permitting projections
on each time-step. However, when using tools such as Simulink, one might see
severe errors in time as the global integration errors build up in the internal
memory of the solver, despite an external projection back to the configuration
manifold (as this does not change the internal solver memory in Simulink). If
the system is not too stiff, and the time-step chosen sufficiently small, then
simulations can be done without resetting the internal memory of the solver,
as the comparison of the RK4 method with and without the projection to H
clearly demonstrates. We emphasize that if investigating errors that should go
to zero down to machine precision for relatively stiff system using tools such
as Simulink, then it is imperative to monitor the distance of the numerically
integrated quaternions to H to assess the accumulated integration errors. 2

Remark 2.8
In this thesis, we avoid direct integration on SO(3), and instead integrate
all attitudes on H. While the CG-methods tend to be superior to an RK
with projection for relatively stiff systems (as demonstrated in Figure 2.9 and
discussed in [Andrle and Crassidis, 2013]), we use RK methods of order ≥ 4
with the time-step set to h = 10−3 in the simulations, as the local truncation
error in both methods then approaches machine precision O(10−15). The main
reason for this is to simplify the implementation and to avoid that artifacts
of the discretization appear in the studied signals. The simulation examples
in the forthcoming chapters are all implemented in Simulink. 2

Remark 2.9
While the projection is less important in high-order methods, it becomes
very important as order of the method decreases. For the explicit first-order
methods in Figure 2.9, which will be used when discretizing and implementing
the controllers, we note that a first-order CG-algorithm performs very similar
to the first-order RK method with projection. However, when removing the
projection, the errors quickly increase in time. While either may be used,
we will consider the first order CG-method when discretizing any dynamic
continuous controller or estimator with dynamics in the applications. This is
the method of discretization used in the implementations in [Greiff, 2020].2

Remark 2.10
When considering the C-code in [Greiff, 2020], any output feedback con-
troller implementation with a dynamic estimator (to be defined later)
needs to be simulated using a single step-method from Julia using
DifferentialEquations.jl. Presently, each time the controller is called, its
internal memory is updated, rendering multi-step methods infeasible to use.2
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2.4 Lyapunov Stability Theory

Lyapunov stability theory is an umbrella term for a set of powerful tools
that can be employed to analyze the properties of dynamical systems, first
published in the monograph of Lyapunov [Lyapunov, 1892] (with an English
translation of the original in [Lyapunov, 1992]). The theory sets out a generic
framework for studying the solutions of ordinary differential equations without
explicit computation of their solutions. These tools are frequently used in
the controller design for UAVs, and will also be applied in this thesis. In this
section, we give the relevant definitions, following the notation in the seminal
work of [Khalil, 2002], and proceed by detailing relevant results for linear
autonomous, linear non-autonomous, and nonlinear non-autonomous systems.

2.4.1 Definitions
In this thesis, we are primarily concerned with trajectory tracking for nonlinear
non-autonomous systems. In the most general case, we seek to represent the
tracking or estimate error dynamics of a controlled system in the form

ẋ = f(t,x), t ∈ [t◦,∞) = Dt ⊆ R≥0, x ∈ Dx ⊆ Rn, (2.33)

where f : Dt ×Dx 7→ Rn is piece-wise continuous in t and locally Lipschitz
continuous in x on Dx, where Dx is a compact domain that contains x = 0
in its interior. This point is said to be an equilibrium point of (2.33) if

f(t,x) = 0, ∀t ≥ t◦. (2.34)

Using Lyapunov theory, the stability properties of the origin x = 0 of the
non-autonomous system in (2.33) can be characterized in ways that, in modern
control theory, succeed the stability concepts in the thesis of Lyapunov. To
talk about these concepts, we first introduce a set of comparison functions.

Definition 2.23—Class K function [Khalil, 2002, Definition 4.2]
A function α : [0, a) 7→ [0,∞) is said to belong to class K if it is (i) continuous
in its argument, (ii) strictly increasing, and (iii) α(0) = 0. 2

Definition 2.24—Class KL function [Khalil, 2002, Definition 4.3]
A function β : [0, a)× [0,∞) 7→ [0,∞) is said to belong to class KL if (i) it is
continuous in its arguments, (ii) for each fixed s, the mapping β(r, s) belongs
to class K with respect to each fixed r, (iii) for each fixed r, the mapping
β(r, s) is decreasing with respect to s, and (iv) β(r, s)→ 0 as s→∞. 2

With these comparison functions, several forms of stability can be defined.
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Definition 2.25
The origin x = 0 of the non-autonomous system in (2.33) is said to be

• Stable, if there exists an α ∈ K and a constant r > 0, such that

‖x(t)‖ ≤ α(‖x(t◦)‖), ∀t ≥ t◦ ≥ 0, ∀x(t◦) ∈ Br ⊆ Dx. (2.35)

• Globally Stable, if (2.35) holds for all initial conditions x(t◦).

• Unstable, if it is not stable.

• Asymptotically Stable (AS), if there is a β ∈ KL and r > 0, such that

‖x(t)‖ ≤ β(‖x(t◦)‖, t− t◦), ∀t ≥ t◦ ≥ 0, ∀x(t◦) ∈ Br. (2.36)

• Globally Asymptotically Stable (GAS), if (2.36) holds for all x(t◦).

• Exponentially Stable (ES), if it is AS, and (2.36) is satisfied with

β(r, s) = kre−γs, k > 0, γ > 0. (2.37)

• Globally Exponentially Stable (GES), if the system is GAS for a class-
KL function on the form given in (2.37).

• Almost Globally Asymptotically Stable (AGAS), if the origin is GAS
except for a set of unstable equilibrium points, E , of measure zero.

• Asymptotically attractive, if for each r > 0 and each σ > 0, there exist
a time T > 0 such that

x(t◦) ∈ Br ⇒ x(t) ∈ Bσ, ∀t ≥ T + t◦. 2

Remark 2.11
These definitions of stability are quite simple and appealing, essentially
following [Khalil, 2002, Definition 4.4] but written in terms of K and KL-
functions, made possible [Khalil, 2002, Lemma 4.5]. The notion of almost
global asymptotic stability is not found among these more common stability
definitions. It was coined in the field of attitude control, and this definition has
been used for several decades (see, e.g., [Tsiotras, 1998; Sanyal and Chaturvedi,
2008]). It should be understood as the region of asymptotic attraction being
global, except for a negligible set of initial conditions. An AGAS system
is stable in the same sense that a damped two-dimensional pendulum is
stable about its configuration with least potential energy. The condition of
asymptotic attractiveness is defined as in [Loria et al., 2005]. 2
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Figure 2.10 Left: Illustration of a Lyapunov function over the phase plane
for a system in Dx = R2 and its level sets, with the state trajectory and
in the phase plane (blue), and the Lyapunov function evaluated along this
trajectory (black) converging to the origin in time. Right: The norm of the
state trajectories, bounded by an exponential class KL-function in (2.37).

Here, the different notions of stability are more or less interesting depending
on the considered application. For instance, if (2.33) is linear in x and
autonomous, then asymptotic and exponential stability becomes a distinction
without a difference. However, in the more general case where (2.33) is
non-linear and non-autonomous, the form of the stability has significant
implications for the robustness of the system to disturbances. As we shall see
later, it is possible to construct systems which are GAS that have unbounded
trajectories for arbitrarily small bounded disturbances. In order to guarantee
certain robustness properties, we therefore require the even stronger notions
of uniform stability, which implies an independence of the initial time t◦.

Definition 2.26
If any of the conditions in Definition 2.25 hold independently of the initial time
t◦, then the convergence of the errors is uniform (U), here abbreviated as US,
UGS, UAS, UGAS, UAGAS, UES, and UGES, respectively. Here, UAGAS
should be understood as uniform convergence to the set E in Definition 2.25.2

In general, the idea of Lyapunov theory is to prove certain stability
properties in Definition 2.25 by constructing a positive definite function in x,
here denoted V(t,x), whose convergence or divergence in time can be studied
along all possible trajectories of (2.33) on some domain. The main idea is
illustrated in Figure 2.10, here for an exponentially stable system, where
the states decay according to the KL-function in (2.37). In the remainder of
this chapter, various stability theorems will be presented for the cases where
the system in (2.33) is linear and nonlinear in x, respectively. All of these
theorems will follow the basic idea and intuition depicted in Figure 2.10.
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2.4.2 Linear Systems
Throughout the thesis, we consider the local stability properties of specific
equilibrium points, in which case the system’s error dynamics will often
be locally linear and possibly non-autonomous. Consequently, we begin by
summarizing relevant results for the stability analysis of systems in the form

ẋ = A(t)x, x◦ = x(t◦). (2.38)

For such systems, the existence of a quadratic Lyapunov function is related
to the solution of an associated Lyapunov equation, summarized as follows.

Theorem 2.1—[Khalil, 2002, Theorem 4.10]
Consider the system in (2.38) and assume thatA(t) is continuous and bounded.
Assume that for a continuous Q(t) = Q(t)>, there exists a continuously
differentiable solution P (t) = P (t)> to matrix differential equation,

A(t)>P (t) + P (t)A(t) + Ṗ (t) +Q(t) = 0, (2.39a)

referred to as the Lyapunov equation, and there exist ci ∈ R≥0, such that

c1I ≺ P (t) ≺ c2I, c3I ≺ Q(t). (2.39b)

If for all t ≥ t◦, c2 ≥ c1 > 0, and

• c3 > 0, the system is UES.

• c3 = 0, the system is US. 2

For such systems, the stability proof follows by constructing an associated
function V(t,x) = x(t)>P (t)x(t). This is a special version of Lyapunov’s
second method, which comes with a more general result in the nonlinear
system setting. It facilitates proofs that all solutions of the system in (2.38)
converge to the origin or remain bounded, independent of the initial conditions.
We also note that in this linear setting, UAS is equivalent to UES.

Theorem 2.2—[Antsaklis and Michel, 2006, Theorem 5.4, Chap. 6]
If ‖A(t)‖ is bounded for all t ≥ t◦, (2.38) is UAS if and only if it is UES. 2

These theorems provide a good starting point for analyzing systems with
special structure in A(t). To see this, we first give the following definition.

Definition 2.27
Let (P ,Q) be a solution to (2.39) where P = P> � 0 and Q = Q> � 0. 2

This thesis deals with mechanical systems with rotational degrees of
freedom, which have several particular properties, such as skew-symmetric
structure in the dynamics. As such, we will at times use the following lemma.
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Lemma 2.1
If A(t) = M−1

1 (S(t)−M2(t)) where S(t) is a bounded, real-valued, skew-
symmetric matrix, andM1 = M>

1 � 0, andM2(t) = M2(t)> � 0 is positive
definite, continuous and bounded, then (M1, 2M2(t)) solves (2.39). 2

Proof. The proof is verified by inserting the proposed solution. Some special
cases of related systems were studied in e.g., [Barnett and Storey, 1967]. 2

More complicated structures can be considered, and a result that will be
used frequently in the forthcoming proofs can be summarized as follows.

Lemma 2.2
If Ā(t) = F ⊗Im +In⊗S(t) where F ∈ Rn×n solves (2.39) with (P ,Q) and
S(t) ∈ Rm×m is bounded, real-valued skew-symmetric, then Ā(t) solves the
Lyapunov equation in (2.39) with (P̄ , Q̄) = (P ⊗ Im,Q⊗ Im). 2

Proof. The proof follows form (2.1), and is summarized in Appendix A.3.2

This is appealing, as it simplifies to problem of analyzing stability for a
non-autonomous system characterized by Ā(t) ∈ Rnm×nm to the analysis of
a smaller autonomous system characterized by a system matrix F ∈ Rn×n.
Other structures can be analyzed in a similar manner, such as the second-
order systems discussed in [Chetaev et al., 1961; Müller and Schiehlen, 1977;
Bernstein and Bhat, 1995], which will be used in the thesis. However, it is
not always easy to apply such results directly. As hinted before, we can take
various orthogonal or symmetric similarity transforms to massage A(t) into
a more suitable form for analysis. We also consider time-varying orthogonal
transformations with R(t) ∈ SO(3), where following lemma applies.

Lemma 2.3
Consider the system in (2.38), and take any orthogonal transform R(t) ∈
SO(3) evolving in time with a set of bounded velocities ω(t), such that
Ṙ(t) = R(t)[ω(t)]∧SO(3). By a change of coordinates z(t) = R(t)x(t),

ż = (R(t)A(t)R(t)> + [R(t)ω(t)]∧SO(3))z(t) = Ā(t) + S(t), (2.40)

where Ā(t) = R(t)A(t)R(t)> and S(t) is skew-symmetric. 2

Proof. The proof is given in Appendix A.3. 2

By applying such a time-varying transform, we obtain a similar term as
when using a stationary orthogonal transformation, plus a skew-symmetric
term (which vanishes when the rates driving the rotation ω(t) ≡ 0). However,
as we have already seen in Lemma 2.1, adding a skew-symmetric time-varying
matrix to the system matrix can potentially be dealt with, if it results in a
structure that admits analysis using, for instance, Lemma 2.1.
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Lemma 2.4
Consider a system

Eẋ = A(t)x, (2.41)

with E = E> � 0. Assume that the system

ẋ = A(t)x, (2.42)

is uniformly exponentially stable or uniformly stable by Theorem 2.1 with
(P ,Q(t)). If P is time-invariant and commutes with E, then (2.41) is:

• UES if (2.42) is UES,

• US if (2.42) is US. 2

Proof. The proof is given in Appendix A.3. 2

2.4.3 Nonlinear Systems
In Sec. 2.4.2, if the system is autonomous, the Lyapunov equation (2.39)
can be solved to synthesize a quadratic Lyapunov function. In the nonlinear
setting, finding a suitable Lyapunov function is often the most challenging part
of a stability proof. However, once found, theorems analogous to Theorem 2.1
can be used to analyze the stability of the system.

Theorem 2.3—[Khalil, 2002, Theorem 4.8]
Let x = 0 be an equilibrium point of the system (2.33) and Dx ⊆ Rn be
a domain containing x = 0. Let V : Dt × Dx 7→ R≥0 be a continuously
differentiable function such that

W1(x) ≤ V(t,x) ≤W2(x), (2.43a)
∂V
∂t

+
∂V
∂x

f(t,x) ≤ 0, (2.43b)

for all t ∈ Dt and x ∈ Dx, where W1(x) and W2(x) are continuous positive
definite functions on Dx. Then, x = 0 is US. 2

A useful extension of Theorem 2.3 can be made if imposing a more strict
condition on (2.43b), allowing UAS and UGAS to be concluded.

Theorem 2.4—[Khalil, 2002, Theorem 4.9]
If the second assumption of Theorem 2.3 in (2.43b) is strengthened to

∂V
∂t

+
∂V
∂x

f(t,x) ≤ −W3(x), (2.44)

for all t ∈ Dt and x ∈ Dx, where W3(x) is a continuous positive definite
function, then x = 0 is UAS. Finally, if W1(x) is radially unbounded, then
x = 0 is UGAS. 2
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Theorem 2.5—[Khalil, 2002, Theorem 4.10]
If the positive definite functions W1,W2,W3 in Theorem 2.4 can be expressed
as Wi(x) = ci‖x‖a for some positive ci > 0 and a > 0, then the origin x = 0
is UES on Dx. If the assumptions hold globally, then x = 0 is UGES.

There are tools available by which asymptotic stability properties may be
shown even in the case where the time-derivative of V(t,x) is negative semi-
definite. In this thesis, we will primarily use a result attributed to Barbălat,
originally presented in [Barbălat, 1959]. This is commonly referred to as the
Lemma of Barbălat, and can be used to show asymptotic (but not uniform)
stability properties of systems using Lyapunov-like functions.

Lemma 2.5—Lemma of Barbălat [Barbălat, 1959]
Let φ : R≥0 7→ R be a uniformly continuous function on its domain. Suppose
that limt→∞

∫ t
0
φ(τ)dτ exists and is finite. Then φ(t)→ 0 as t→∞. 2

Remark 2.12
A concise proof is given by contradiction in [Khalil, 2002, Lemma 8.2], and
the result is very useful for showing asymptotic stability properties. The most
common is to find a positive definite function V(t,x) in x, with a negative
(semi-)definite time-derivative, and let φ(t) , (d/dt)V(t,x). If it is possible
to show uniform continuity of φ(t), which in practice can be done by showing
that (d2/dt2)V(t,x) is bounded for all times, then Lemma 2.5 can be invoked
to conclude convergence of x(t) to an invariant set. 2

Lemma 2.5 has also been extended and reformulated in various ways to
simplify its use. A relevant extended version was given in [Micaelli, 1993].

Lemma 2.6—Michaelli’s Extension [Micaelli, 1993, Lemma 1, pp 34]
Let f : R≥0 7→ R and g : R≥0 7→ R, where f is differentiable and g is
uniformly continuous on their respective domains. If limt→∞ f(t) = l and
limt→∞(ḟ(t)− g(t)) = 0, then limt→∞ ḟ(t) = limt→∞ g(t) = 0. 2

This result was rewritten on an instructive form in the thesis of Lefeber
in [Lefeber, 2000], which will be used in the forthcoming developments.

Lemma 2.7—Lefeber’s Form [Lefeber, 2000, Lemma 2.2.12]
Let f : R≥0 7→ R be any differentiable function. If f(t) converges to zero as
t→∞ and its derivative satisfies

ḟ(t) = f0(t) + η(t), ∀t ≥ 0, (2.45)

where f0 : R≥0 7→ R is uniformly continuous and η : R≥0 7→ R. If η(t) tends
to zero as t→∞, then ḟ(t) and f0(t) tend to zero as t→∞. 2
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These lemmas are very useful in concluding asymptotic convergence to
an invariant set, which will typically contain multiple equilibrium points. As
the Barbashin-Krasovskii-LaSalle theorems do not generally apply in the
non-autonomous setting, we will use other tools to analyze such invariant
sets further. To show local instability, we use local linearizations of the error
dynamics, or a useful instability result by Chetaev in [Chetaev et al., 1961].

Theorem 2.6—[Hahn, 1967, Theorem 42.6]
Assume that (2.33) has an equilibrium point in the origin, and that there
exists a function C(t,x) satisfying C(t,0) = 0 for all t ≥ t◦, such that:

• There exists a non-empty domain G = {(t,x) ∈ Dt ×Dx | C(t,x) < 0}
• At least one component Gi ⊂ G is contiguous with x = 0 for all t ∈ Dt,

and on this component C(t,x) is bounded from below for all t ∈ Dt.

• There exist a neighborhood of the origin, U = {(t,x) ∈ Dt×Br} for some
arbitrarily small r > 0 such that Ċ(t,x) < 0, ∀(t,x) ∈ (Dt × Br) ∩ Gi.

Then, the equilibrium point x = 0 is locally unstable. 2

Remark 2.13
This slight restatement of the last point of the theorem is possible due to
the discussion on [Hahn, 1967, Page 202]. When working with the Lemmas
of Barbălat in 2.5, 2.6, and 2.7 to characterize an invariant set E ⊂ Dx,
this Chetaev instability theorem often proves useful. By construction, the
associated Lyapunov-like function V(t,x) ≥ 0 will typically satisfy V̇(t,x) < 0
for all x ∈ Dx\E . Assume that for some x̃ ∈ E , it holds that V(t, x̃) = c > 0.
Then, it may be possible to construct a function C(t,x) = V(t,x+ x̃)− c. If
we can find any direction in which G is non-empty, instability follows. 2

A drawback of using Lemmas 2.5, 2.6, and 2.7, followed by Theorem 2.6,
is that they (unlike Theorem 2.4) only can be used to conclude asymptotic
stability properties in the non-autonomous nonlinear setting, and not uniform
convergence properties. However, there are alternative routes toward showing
uniform stability even with so-called weak Lyapunov functions. Specifically,
the ideas of Matrosov, dating back to the work in [Matrosov, 1962]. The basic
idea is to find an auxiliary function that is uniformly bounded, and show that
its time-derivative is negative on the domain where the time-derivative of
the weak Lyapunov function vanishes. The ideas of Matrosov were notably
extended in [Loria et al., 2005], presenting a result with multiple auxiliary
ordered functions whose derivative bounds satisfy nested properties. This is
illustrated in Figure 2.4.3. In this thesis, we will use a variant of this specific
nested Matrosov Theorem, as presented below. It will be used in conjunction
with the various Lemmas of Barbălat, to show uniform stability properties
when the error dynamics are nonlinear and non-autonomous.
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Theorem 2.7—[Lefeber et al., 2017, Theorem 2]
Consider the system in (2.33), but with f : R≥0×Rn 7→ Rn, where f is locally
bounded, continuous, and locally uniformly continuous in t. If there exist j
differentiable functions Vi : R≥0 × Rn 7→ R, bounded in t, and continuous
functions Yi : Rn 7→ R for i ∈ {1, 2, . . . j} such that

(i) V1 shows that the origin is UGS,

(ii) V̇i(t,x) ≤ Yi(x), for all i ∈ {1, 2, . . . , j},

(iii) Yi(x) = 0 for i ∈ {1, 2, . . . , k − 1} ⇒ Yk(x) ≤ 0 for all k ∈ {1, 2, . . . , j},

(iv) Yi(x) = 0 for all i ∈ {1, 2, . . . , j} ⇒ x = 0,

then the origin of (2.33) is UGAS. 2

This is a slightly simpler way of stating the theorem in [Loria et al., 2005,
Theorem 1], and it should be noted that the assumption (i) can be replaced
when global stability cannot be shown, as discussed in [Loria et al., 2005].

Theorem 2.8—[Loria et al., 2005, Theorem 2]
If assumption (i) in Theorem 2.7 is replaced by

(i.1) V1 shows that the origin is US;

(i.2) for each x(t◦), there is an M◦>0 such that ‖x(t)‖≤M◦, ∀t◦ and t≥t◦;

(i.3) the map x 7→ f(t,x) is locally Lipschitz continuous uniformly in t;

then the origin of (2.33) is UGAS. 2

These theorems can be used with the Lemmas of Barbălat to show UGAS
properties, and will be employed frequently in Chapter 5 and Chapter 6.

2.5 Cascade Theory

When considering non-linear and non-autonomous systems, certain structure
in the dynamics may simplify the analysis significantly, much like in the
linear setting. For mechanical systems, it is sometimes possible to write the
dynamics as a cascade of two smaller subsystems. If so, several powerful
stability results may be applied. In this section, we consider a system

Σ1 : ẋ1 = f1(t,x1) + g(t,x1,x2)x2 (2.46a)
Σ2 : ẋ2 = f2(t,x2), (2.46b)
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Figure 2.11 Illustration of the main idea of the nested Matrosov theorem.
Assume that V̇1 is negative semi-definite in x, and V1(t,x) can be used to
show US of x = 0. If there exists a differentiable function V̇2(t,x), whose
time-derivative is upper bounded by a continuous function Y2(x), such that
Y2(x) ≤ 0 if Y1(x) = 0, and Y1(x) = Y2(x) = 0⇒ x = 0, then the origin
is UGAS. Transiently, both V̇2(t,x) and Y2(x) might be greater than zero.

where f1(t,x1) is continuously differentiable in its arguments, and f2(t,x2)
and g(t,x1,x2) are both continuous in their arguments and locally Lipschitz
in x. If we consider the unperturbed system g(t,x1,x2) ≡ 0, here written as

Σ′1 : ẋ1 = f1(t,x1), (2.47a)

one may expect that certain stability properties for the simpler system
{Σ′1,Σ2} could be used to analyze the stability of the cascade {Σ1,Σ2}.
However, it is not sufficient to just consider the stability of {Σ′1,Σ2}, as
certain properties of the interconnection g(t,x1,x2)x2 may result in a peaking
phenomena and lead to instability. This is demonstrated in the example below.

Example 2.4
Consider a simple autonomous cascaded system in the form

Σ1 : ẋ1 = −(1− x2)x3
1 x1(t◦) = x1◦, (2.48)

Σ2 : ẋ2 = −x2 x2(t◦) = x2◦, (2.49)

with t◦ = 0. Then, Σ′1 : ẋ1 = −x3
1 and the interconnection term becomes

g(t, x1, x2)x2 = x3
1x2. If removing the interconnection term, Σ′1 is GAS and

Σ2 is GES. However, when connecting the two, the solution is given by

x1(t) = sign(x1◦)(x
−2
1◦ + 2x2◦(e

−t − 1) + 2t)−1/2, x2(t) = x2◦e
−t. (2.50)

Clearly, it is possible to find initial conditions for which the denominator
in x1(t) approaches zero for a finite escape time tesc > 0. Despite the two
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Figure 2.12 Illustration of the peaking phenomenon in Example 2.4.

subsystems being GES and GAS, the closed-loop is unstable and may diverge
at a finite escape time, tesc(x1◦, x2◦), here a function of the initial conditions.
This is illustrated in Figure 2.5 for x2◦ = 2 and varying x1◦ ∈ {0.6, ..., 1.3}. 2

Despite this pathological example, it is possible to show uniform global
asymptotic stability properties of a cascade on the form in (2.46), if one
poses special conditions on for instance the growth rate of the interconnection
term. Such cascades have been studied in [Panteley and Loria, 1998; Loria
et al., 2000], and relevant sufficient conditions are proposed to ensure uniform
stability of the cascade in (2.46), as summarized in the following theorem.

Theorem 2.9—[Panteley and Loria, 1998, Theorem 1]
If the assumptions (A1)-(A3) are satisfied, the cascade in (2.46) is UGS.

(A1) The system Σ′1 : ẋ1 = f1(t,x1) is UGS with a Lyapunov function
V(t,x1) that is positive definite and proper, which satisfies∥∥∥ ∂V

∂x1

∥∥∥‖x1‖ ≤ c1V(t,x1), ∀‖x1‖ ≥ η, (2.51)

where c1 > 0 and η > 0. Assume that (∂V/∂x1)(t,x1) is bounded
uniformly in t for all ‖x1‖ ≤ η. That is, there exists a constant c2 > 0
such that for all t ≥ t◦ ≥ 0∥∥∥ ∂V

∂x1

∥∥∥ ≤ c2, ∀‖x1‖ ≤ η. (2.52)

(A2) The function g(t,x1,x2) satisfies

‖g(t,x1,x2)‖ ≤ θ1(‖x2‖) + θ1(‖x2‖)‖x1‖, (2.53)

where θ1, θ2 : R≥0 7→ R≥0 are continuous.
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(A3) The system Σ2 : ẋ2 = f2(t,x2) is UGAS and for all t◦ > 0,∫ ∞
t◦

‖x2(t; t◦,x2(t◦))‖dt ≤ φ(‖x2(t◦)‖), (2.54)

where φ is a class-K function. 2

Example 2.5
For the system studied in Example 2.4, let V(t, x1) = 1

2x
2
1 be a Lyapunov

function associated with Σ′1. Take c1 = 2 and c2 = η for any η > 0. Then,∥∥∥ ∂V
∂x1

∥∥∥‖x1‖ = ‖x1‖‖x1‖ = ‖x1‖2 ≤ c1V(t, x1), ∀‖x1‖ ≥ η, (2.55)
2

and ‖(∂V)/(∂x1)‖ = ‖x1‖ ≤ c2 for all ‖x1‖ ≤ η. As the system Σ′1 is UGS,
(A1) is satisfied. Clearly, by the solution in x2(t) in (2.50), we have that (A3)
is also satisfied with φ(s) = s. However, as g(t, x1, x2) = x3

1, Assumption (A2)
is violated, and we cannot conclude UGS for the cascade, as expected.

Here, the condition (A1) can be strengthened to show UGAS in the entire
cascade, as also pointed out in [Panteley and Loria, 1998].

Theorem 2.10—[Panteley and Loria, 1998, Theorem 2]
Assume that Σ′1 in (2.47) is UGAS. If the associated Lyapunov function
satisfies (2.51) and Assumptions (A2)-(A3) hold, then (2.46) is UGAS. 2

A number of alternative conditions can be expressed. For a review of
such assumptions, refer to, e.g., [Lefeber, 2000] or [Loria and Panteley, 2005].
The main point of these assumptions is to guarantee uniform boundedness
of solutions, as by virtue of converse Lyapunov theory, if Σ′1 in (2.47) is
UGAS, and Σ2 in (2.46b) is UGAS, and solutions remain uniformly globally
bounded (UGB), the cascade in {Σ1,Σ2} in (2.46) is UGAS (see, e.g., [Loria
and Panteley, 2005, Lemma 2.1] for a proof of necessity and sufficiency).

In this thesis, we will work with a distilled form of the above theory as
presented in [Lefeber et al., 2017, Theorem 5], utilizing the result in [Loria
and Panteley, 2005, Proposition 2.3] and summarized as follows.

Theorem 2.11—[Lefeber et al., 2017, Theorem 5]
Assume that f1(t,x1) is continuously differentiable in (t,x1); and that f2(t,x2)
and g(t,x1,x2) are continuous in their arguments, and locally Lipschitz in
x2 and (x1,x2), respectively. If (i) the origins of the systems Σ′1 in (2.47)
and Σ2 in (2.46b) are UGAS, and (ii) the solutions to the cascaded system
{Σ1,Σ2} in (2.46) are uniformly bounded, then the origin of the system
{Σ1,Σ2} in (2.46) is UGAS. Furthermore, if the origins of Σ′1 in (2.47) and
Σ2 in (2.46b) are ULES, the origin of {Σ1,Σ2} in (2.46) is ULES.
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2.6 Robustness Concepts

When discussing robustness, we consider perturbed systems in the form

ẋ = f(t,x) + ∆(t,x), (2.56)

where f is defined as in (2.33), and an additive disturbance ∆(t,x) which is
continuous in its arguments and bounded in ‖∆(t,x)‖ ≤ L. If f had been
linear and autonomous, there exist many ways to characterize the system’s
robustness. One could be to compute a system norm, such as the H∞-norm,
which for any asymptotically stable system characterizes the worst-case effects
of an input disturbance to an output. In such a linear setting, AS implies
ES, and for any such system ẋ(t) = Ax(t) + ∆(t,x) with a Hurwitz A,
all solutions ‖x(t)‖ remain bounded if ‖∆(t,x)‖ is bounded. For non-linear
and non-autonomous systems, one may therefore think that a LES and GAS
system would yield similar properties, but as shown in [Panteley et al., 1999;
Loria and Panteley, 2005], it is possible to construct pathological examples
which yield unbounded state trajectories for arbitrarily small disturbances.

Example 2.6
Consider a system defined by a(t) = (t+ 1)−1, with

ẋ = f(x, t) =

{
−a(t)sign(x) if |x| > a(t)

−x if |x| ≤ a(t)
. (2.57)

Here, f is locally Lipschitz uniformly in t, and the system is GAS and
LES. However, when adding any perturbation ∆(t) = L 6= 0, solutions grow
unbounded as t→∞. In fact, one can show that limt→∞ |x(t)/t| = |L|. 2

This curious result is obtained due to the lack of uniform asymptotic
stability, as the gains in the KL-function depend on the initial error ‖x(t◦)‖
as well as the initial time t◦. Hence, if the system in (2.57) would have been
UGAS or ULES, such examples would be eliminated. In general, one can show
generic robustness results for small disturbances ∆ if the stability is uniform.

Theorem 2.12—[Khalil, 1996, Theorem 3.14 with Lemma 5.3]
Let x = 0 be an UAS equilibrium point on Br for the system in (2.33) where
f : Dt × Br 7→ Rn is continuously differentiable, and the Jacobian [∂f/∂x]
is bounded on Br, uniformly in t. Then, for the perturbed system in (2.56),
for any x(t◦) ∈ BR and any sufficiently small ‖∆(x, t)‖ ≤ L ≤ L̄(R),

‖x(t)‖ ≤ β(‖x(t◦)‖, t− t◦) ∀t ∈ [t◦, t◦ + T ], (2.58a)
‖x(t)‖ ≤ ρ(L) ∀t ≥ t◦ + T, (2.58b)

where β ∈ KL and R satisfies β(R, 0) < r, with a finite time T , and ρ ∈ K.2
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Consequently, a system in (2.33), with relatively mild assumptions on f
(specifically continuous differentiability and a locally bounded Jacobian in x),
the properties of ULAS, and implicitly UGAS, UAGAS, ULES, and UGES
yield quantifiable local robustness properties to bounded input disturbances.
This is why we put significant emphasis on concluding uniform stability
properties for the controllers that result in non-autonomous error dynamics.

Remark 2.14
While mild, the assumption of continuous differentiability may be violated
when using special controllers that switch between different feedback laws.
This assumption is, for instance, violated by the system in Example 2.6 at
any time where the state traverses the line ±a(t), and will require special
consideration when deriving discontinuous feedback laws. 2

Below, we summarize a useful theorem which migrates the assumption of
continuous differentiability to a Lyapunov function. This theorem will be used
to conclude ultimate boundedness of solutions and give explicit estimates of
this bound when considering controller robustness.

Theorem 2.13—[Khalil, 2002, Theorem 4.18]
Consider the system in (2.33) with Dx ⊂ Rn containing the origin, and let
V : Dt ×Dx 7→ R≥0 be a continuously differentiable function such that

α1(‖x‖) ≤V(t,x) ≤ α2(‖x‖), (2.59a)
∂V
∂t

+
∂V
∂x

f(t,x) ≤−W3(x), ∀‖x‖ ≥ µ > 0, (2.59b)

for all (t,x) ∈ Dt×Dx, where α1, α2 ∈ K, and W3(x) is a continuous positive
definite function on Dx. Take r > 0 such that Br ⊂ Dx, and suppose that

µ < (α−1
2 ◦ α1)(r). (2.60)

Then, there exists a class KL function β for every initial state x(t◦) satisfying
‖x(t◦)‖ ≤ (α−1

2 ◦α1)(r) , and a T ≥ 0 (dependent on x(t◦) and µ) such that

‖x(t)‖ ≤ β(‖x(t◦)‖, t− t◦), ∀t ∈ [t◦, t◦ + T ], (2.61a)

‖x(t)‖ ≤ (α−1
1 ◦ α2)(µ), ∀t ≥ t◦ + T. (2.61b)

2
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3
Full State Feedback:
Attitude Dynamics

3.1 Introduction

In this chapter, the problem of controller design for the attitude dynamics of
the UAV is studied. To recapitulate, the system is configured on either SO(3)
or SU(2), with the sub-index (·)r denoting a reference. The states evolve by

Ṙ = RS(ω), Ṙr = RrS(ωr), (3.1a)

Ẋ = X[ω/2]∧SU(2), Ẋr = Xr[ωr/2]∧SU(2), (3.1b)

Jω̇ = S(Jω)ω + τ , Jω̇r = S(Jωr)ωr + τ r, (3.1c)

respectively, with an inertia matrix J = J> � 0. Here, R ∈ SO(3) and
X ∈ SU(2) denote attitudes, with ω ∈ R3 and τ ∈ R3 denoting the attitude
rate and controlled torque, respectively, both defined in body-fixed frame {B}
(see Sec. 2.2.1). The initial conditions at a time t◦ ∈ R are defined on

R(t◦) ∈ SO(3), Rr(t◦) ∈ SO(3), (3.2a)
X(t◦) ∈ SU(2), Xr(t◦) ∈ SU(2), (3.2b)

ω(t◦) ∈ R3, ωr(t◦) ∈ R3. (3.2c)

By virtue of the embedding in Definition 2.17, we have that if R(t◦) =

E
SU(2)
SO(3)(X(t◦)) ∈ SO(3) and Rr(t◦) = E

SU(2)
SO(3)(Xr(t◦)) ∈ SO(3), then R(t) =

E
SU(2)
SO(3)(X(t)) ∈ SO(3) and Rr(t) = E

SU(2)
SO(3)(Xr(t)) ∈ SO(3) for all t ≥

t◦. Consequently, we can design controllers using either (3.1a) or (3.1b).
The properties of the attitude controllers depend on the choice of attitude
representation and the distances associated with their configuration manifolds.
In one of its more general forms, the deterministic attitude tracking control
problem treated in this chapter can be stated concisely as follows.

63



Chapter 3. Full State Feedback: Attitude Dynamics

τ r

Σr

(Rr,Xr,ωr)

τ = G(·) Σ

(R,X,ω)

∆

τ

Figure 3.1 A full state feedback attitude controller, with a reference
system, Σr, a controlled system, Σ, and an exogenous disturbance ∆.

Problem 3.1
Consider a system with a state x = (R,ω) ∈ SO(3)× R3, with an associated
reference trajectory xr = (Rr,ωr) ∈ SO(3) × R3, driven by torques τ ∈
R3 and τ r ∈ R3 respectively. Let R = E

SU(2)
SO(3)(X) ∈ SO(3) and Rr =

E
SU(2)
SO(3)(Xr) ∈ SO(3) by Definition 2.17, satisfying the dynamics in (3.1) with

initial conditions in (3.2). Find a feedback law using full state information,

τ = G(X,ω,Xr,ωr, τ r), (3.3)

such that x(t)→ xr(t) as (t− t◦)→∞, and characterize the equilibria. 2

Ideally, the feedback law, G, should result in UGAS or UGES error
dynamics, to ensure certain robustness properties through Theorem 2.12 and
facilitate the cascade analysis in forthcoming chapters using Theorem 2.11.
However, we know from the Poincaré-Brouwer Theorem [Brouwer, 1909] that
this requires discontinuous feedback laws. Consequently, we can at best hope
to find almost globally stabilizing controllers with continuous feedback laws.

When discussing robustness, we primarily study the case of disturbances,
∆(t) ∈ R3, that are continuous, bounded in the two-norm, ‖∆(t)‖ ≤ L, and
enter additively on the control signal torques. Specifically, we replace the
controlled attitude rate subsystem in (3.1c) by a perturbed system defined as

Jω̇ = S(Jω)ω + τ + ∆. (3.4)

Such disturbances are of special interest, as they arise in real-rime applications
due to modeling errors in the inertia (see 2.2.3) and the quadratic rotor
approximations (see Sec. 2.2.4), to name but two. An overview with the
reference system, controlled system, and disturbance, is given in Figure 3.1.
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3.1.1 Chapter Motivation
Problem 3.1 has been solved in many ways in the literature. The most basic
forms of controllers parameterize the rotation in terms of Euler angles, and
map errors in these angles and their derivatives to the controlled torque, such
as the work of [Luukkonen, 2011; Garcia et al., 2012]. These controllers at
best yield local stability properties, but are nonetheless frequently used in
practical applications, such as the Crazyflie and the PixHawk PX4 flight con-
trollers [Bitcraze, 2021a; PixHawk, 2021]. Slightly more advanced model-based
methods perform a single or successive linearizations of the error dynamics,
and employ tools from linear systems theory to compute stabilizing controllers.
This includes the linear quadratic regulators (LQR) approach in [Bouabdallah
et al., 2004], and closely related model predictive control approaches (MPC)
in [Manikonda et al., 1999; Slegers et al., 2006; Abdolhosseini et al., 2013].
Here the stability results are also local, as the controllers depend on local
linearizations to convexify the constraints, or nonlinear optimization methods
with which feasibility and constraint satisfaction generally cannot be guaran-
teed. In addition, most MPC solutions involve explicitly solving a numerical
optimization problem on each time step, which drastically increases the com-
putational burden of the controller. The closely related explicit MPC (EMPC)
approach, applied to attitude control in [Hegrenæs et al., 2005], amounts to
a gain scheduled piece-wise linear feedback law derived with respect to an
LQR-like cost function. The resulting closed-loop system needs to be analyzed
with a set of linear matrix inequalities (LMIs) to show stability by a common
Lyapunov function [Johansson and Rantzer, 1997; Ferrari-Trecate et al., 2001].

3.1.2 Contributions
In this chapter, we do not focus on optimal control with linear feedback
laws. Instead, we study nonlinear controllers for which uniform global or
almost global stability properties can be proven, in order to facilitate the
analysis in later chapters. To this end, a technical assumption in the explicit
vector control law in [Chaturvedi et al., 2011] is examined, whereby the
geometric controller on SO(3) in [Lee et al., 2010] is shown to be a subset
of the controllers parameterized in this generalized explicit vector feedback
law. Consequently, alternative proofs of asymptotic stability are given for the
controller in [Lee et al., 2010], permitting a characterization of its behavior
outside of the associated domain of exponential attraction. We also provide an
estimate of the ultimate bound of the errors when subjected to a common class
of load disturbances, quantifying the magnitude of permissible disturbances
for which the controllers are provably stable. However, apart from studying
how these prior works relate, the novelties of the chapter include a set of
three controllers on SU(2) derived using the Γ-distance in Definition 2.19,
published in [Greiff et al., 2021f]. These results relate to prior work in the
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quaternion formalism, but a slightly unconventional approach is taken in
the stability proof. This facilitates the derivation of [Greiff et al., 2021f,
Proposition 3], which is of particular relevance to real-time applications, as
this controller will be shown to yield superior robustness properties for the
disturbances considered in Figure 3.1. To facilitate real-time experiments, a
C-implementation of the various controllers can be found as open source code
in [Greiff, 2020], and this should also be considered a contribution of this
chapter. Finally, we present a method of tuning the controllers through a set
of bilinear matrix inequalities in [Greiff et al., 2021e].

3.1.3 Overview
We begin by considering an explicit vector-control law in Sec. 3.2 for the
case where the controller gains are uniform. Next, we present the geometric
controller on SO(3) in [Lee et al., 2010], there derived with respect to the
distance Ψ : SO(3)2 7→ [0, 2]. This is done in Sec. 3.3, where the latter
controller is shown to be parameterized by the generalized explicit vector
controllers. We emphasize that this controller yields asymptotic stability
properties for small controller gains, and proceed to derive the ultimate
bounds for time-varying load disturbances, entering as in (3.4), and also review
a related robust controller in Sec. 3.4. Using similar differential geometric
tools as in [Lee et al., 2010], we subsequently derive a geometric attitude
controller on SU(2) in Sec. 3.5 based on the distance Γ : SU(2)2 7→ [0, 2],
relating it to classical results with imaginary quaternion errors, and also
characterizing its ultimate bounds. We next present a globally exponentially
stable discontinuous controller on SU(2) in Sec. 3.6. Finally, a robust version
of the controller on SU(2) is given in Sec. 3.7. For these controllers, a tuning
problem is posed in Sec. 3.8 as a set of bilinear matrix inequalities (BMIs), here
solved using an alternating semi-definite programming (ASDP) approach. This
results in a convenient tuning method of the aforementioned feedback laws
over the set of provably feasible controllers and bounded load disturbances.
Using this method, a comparison of the controllers is given in Sec. 3.9, with
recommendations for attitude controller implementations in Sec. 3.10. To give
a holistic view, the results and examples are summarized in Table 3.1.

3.2 Continuous Explicit Vector Control on SO(3)

A relatively common approach to the attitude tracking control problem is to
consider correction terms defined by cross-products of rotated vectors. We
refer to this family of methods as explicit vector control. It is with such ideas
that the stabilizing controller in [Sanyal and Chaturvedi, 2008; Chaturvedi et
al., 2011] and explicit complementary filters in [Mahony et al., 2008; Euston
et al., 2008; Mahony et al., 2012] are all derived. In this subsection, we
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Table 3.1 Overview of the results and examples of Chapter 3. Here, 1

indicates work of others, proofs given elsewhere; 2 indicates work tangential
with others, but with independent proofs given; and 3 indicates new work.

Reference Description

Thm. 3.1 2 Slight generalization of [Chaturvedi et al., 2011, Thm. 2]
Thm. 3.2 1 Continuous control of [Lee et al., 2010, Prop. 1]
Prop. 3.1 3 Ultimate boundedness result related to Thm. 3.2
Thm. 3.3 1 Robust control on SO(3) of [Lee et al., 2013, Prop. 2]
Thm. 3.4 2 Continuous control on SU(2) [Greiff et al., 2021f, Prop. 1]
Prop. 3.2 3 Ultimate boundedness result related to Thm. 3.4
Thm. 3.5 2 Discontinuous control on SU(2)[Greiff et al., 2021f, Prop. 2]
Thm. 3.6 3 Robust control on SU(2) [Greiff et al., 2021f, Prop. 3]

Example 3.1 Simulation with Thm. 3.1 and Thm. 3.2
Example 3.2 Simulation with Thm. 3.3, demonstrating robustness properties
Example 3.3 Simulation with Thm. 3.4, with two different initializations
Example 3.4 Simulation with Thm. 3.5, with two different initializations
Example 3.5 Simulation with Thm. 3.6, demonstrating robustness properties
Example 3.5 Simulation with Thm. 3.6, demonstrating ultimate bound in εX
Example 3.7 Simulation with Thm. 3.6, demonstrating effects of noise
Example 3.8 Computation of an optimal tuning for Thm. 3.3 and Thm. 3.6

present such a controller in the context of Problem 3.1, removing the need for
using orthogonal vectors in [Chaturvedi et al., 2011], and investigating the
consequences of lifting a technical assumption of the distinctness of controller
gains in [Mahony et al., 2008]. For this discussion, we consider an attitude
error Re = R>r R, but refrain from using the distance Ψ(Rr,R), in favor
of considering errors defined by cross products. Assume knowledge of a set
of linearly independent directions {v1, ...,vN ∈ R3|‖vi × vj‖ 6= 0 ∀ i 6= j},
then, we can approach the attitude control problem by trying to minimize
the angle between yri(t) = Rr(t)

>vi and yi(t) = R(t)>vi, by rotating
the attitude about the axis yri(t)× yi(t) where then R(t) = Rr(t) implies
that yri(t) × yi(t) = 0. As a thought experiment, consider the simplified
setting in Figure 3.2 with a single direction vi in the e1e2-plane such that
(yri(t) × yi(t))‖e3. To drive yi to yri, we could construct a feedback law
ω̇e = −θe−ωe, or study the related feedback law e3ω̇e = yi(t)×yri(t)−e3ωe.
This intuition is at the heart of the explicit vector feedback laws, where
multiple weighted cross-product errors are summed. A slight generalization
of the stabilization result in [Chaturvedi et al., 2011] is then given as follows.
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θe(t)

e1

e2

e3

e3ωe(t)

yri(t) = Rr(t)
>vi yi(t) = R(t)>vi

Figure 3.2 Sketch of the intuition behind the explicit vector controller.

Theorem 3.1—Generalized explicit vector-control on SO(3)
Consider the control errors Re = R>r R and eω = ω −R>e ωr. Take Kω =
K>ω � 0, N > 2 gains ki > 0 and linearly independent vi ∈ R3, such that

N∑
i=1

kiviv
>
i ,M = UΛU> � 0, (3.5)

with a diagonal Λ and orthogonal U . The system in (3.1), in feedback with

τ =

N∑
i=1

kiS(vi)R
>
e vi −Kωeω −S(Jω)ω−J(S(ω)R>e ωr −R>e ω̇r), (3.6)

renders the equilibrium point (Re, eω) = (I,0) ULES and UAGAS if the eigen-
values of M are distinct. In this case, three additional unstable equilibrium
points are located at (Re, eω) ∈ {(UDiU

>,0)}3i=1. If the eigenvalues of M
are uniform, the equilibrium point (Re, eω) = (I,0) is ULES and UAS, with
all solutions converging to a point in E = {(Re, eω) ∈ SO(3)×R3 | Tr(Re) ∈
{−1, 3}, eω = 0}, and every point in E\{(I,0) ∈ SO(3)× R3} is unstable.2

Proof. The proof is stated in its entirety in Appendix B.1, and follows by
expressing the error dynamics of the closed-loop system and the construction
of a Lyapunov function candidate in the errors as

V =

N∑
i=1

ki
2
‖Revi − vi‖2 +

1

2
e>ωJeω. (3.7)

Along the solution of the error dynamics, it is shown that (d/dt)V ≤ 0 and
uniformly continuous. A characterization of an invariant set is found by
Lemma 2.5 (Barbălat) and subsequent signal chasing with Lemma 2.7. The
proof is then concluded with a linearization about the equilibrium points.2
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With the natural choice of attitude rate tracking error, which essentially
represents a comparison of the rotation time-derivatives Ṙ and Ṙr in the
tangent space TRSO(3), the control law stated in a slightly more general
form than in [Chaturvedi et al., 2011]. Importantly, the proof here also shows
of ULES and UAS for the case of uniform gains. However, as the proof is
finalized with Lemma 2.5 (Barbălat) and local linearizations of the resulting
equilibrium points, it is difficult to characterize the nature of the exponential
decay of the errors on larger subsets of SO(3) containing Re = I. This will
be necessary for a discussion on robustness and controller tuning. However, a
natural way of studying the transient behavior of the error dynamics becomes
apparent when treating the problem in a differential geometric setting.

3.3 Continuous Geometric Control on SO(3)

Consider next the geometric attitude controller in [Lee et al., 2010]. Here,
the controller is derived for the full UAV dynamics, but the ideas pertaining
to the attitude control are illuminating. The developments are done with an
attitude error element Re = R>r R ∈ SO(3), using the distance Ψ(Rr,R) in
Definition 2.18 to construct a Lyapunov function candidate with which uniform
exponential stability is shown for a large subset of (Re,ωe) ∈ SO(3) × R3.
The result is briefly summarized in the notation of this thesis as follows.

Theorem 3.2—Continuous Geometric Control on SO(3)
Let Re = R>r R ∈ SO(3) , and consider the control errors

eR =
1

2
[Re −R>e ]∨SO(3) ∈ R3, (3.8a)

eω =ω −R>e ωr ∈ R3, (3.8b)

z =(‖eR‖, ‖eω‖)> ∈ R2
≥0. (3.8c)

Take any set of gains (kR, kω, kc) ∈ R3
>0 such that the matrices

W =

[
kckR
λM (J) − kckw

2λm(J)

− kckw
2λm(J) kω − kc

]
, M1 =

1

2

[
kR −kc
−kc λm(J)

]
, M2 =

1

2

[
2kR
2−φ kc
kc λM (J)

]
,

(3.9)

are all positive definite. With initial errors on the domain

D =

{[
eR(t◦)
eω(t◦)

]
∈ R6

∣∣∣∣∣ Ψ(Rr(t◦),R(t◦)) ≤ φ < 2,
z(t◦)>M2z(t◦) ≤ kRφ

}
, (3.10)

the system (3.1) driven with a full state feedback

τ = −kReR − kωeω − S(Jω)ω − J(S(ω)R>e ωr −R>e ω̇r), (3.11)
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yields a single equilibrium point in (eR, eω) = (0,0), which is UES on a
domain D ⊂ R6 in (3.10). In addition, this point is UAS for all initial errors
on a much larger domain than D, as all solutions converge to a point in
E = {(Re, eω) ∈ SO(3) × R3 | Ψ(Rr,R) ∈ {0, 2}, eω = 0}, with every
equilibrium point in E\{(I,0)} being unstable. 2

Proof of Theorem 3.2. The first part of the proof is given in [Lee et al.,
2011, Appendix B], and follows by analysis of a Lyapunov function candidate

V = kRΨ(Rr,R) + kceω · eR +
1

2
eω · Jeω, (3.12)

where it is shown that all closed-loop trajectories remain within D, on which

z>M1z ≤ V ≤ z>M2z, V̇ ≤ −z>Wz, (3.13)

whereby the equilibrium point z = 0 ⇔ (eR, eω) = (0,0) is uniformly
exponentially stable for all initial errors on D ⊂ R6 by Theorem 2.4. The last
claim follows directly from Remark 3.1 below. 2

Remark 3.1
The geometric tracking control on SO(3) in Theorem 3.2 is equivalent to the
controller in Theorem 3.1, provided the latter is tuned withKω = kωI, N = 3
and ki = kR/2 for all i ∈ {1, 2, 3}, with the directions (v1,v2,v3) = I. 2

Proof of Remark 3.1. This is shown algebraically in Appendix B.2. 2

As such, there is an equivalence between the two controllers in Theorem 3.1
and Theorem 3.2, which permits discussions of robustness in the former, and
statements about transient behavior outside of D in the latter. To illustrate
their closed-loop properties, the decay of the Lyapunov function in (3.12) and
the associated bounds in (3.13), a simulation example is given in Example 3.1.

Example 3.1
In this example, the continuous geometric controller on SO(3) in Theorem 3.2
is demonstrated for a system with a randomized dense inertia matrix satisfying
λm(J) = 0.5 and λM (J) = 1. The initial conditions at t◦ = 0 are randomized
on X(t◦),Xr(t◦) ∼ U(SU(2)) with ω(t◦) ∼ U([−1, 1]3) and ωr(t◦) = 0, and
the reference dynamics are driven by a torque trajectory

τ r(t) = (sin(2πt+ 1); 2 sin(2πt+ 2); 1
2 sin(2πt+ 1

2 )) ∈ R3. (3.14)

The resulting tracking performance when tuned with kR = 4 and kω = 2 is
shown in Figure 3.3, with the attitude trajectories, the Lyapunov function
with bounds (bottom, left), and the Lyapunov function time-derivative with its
upper bound (bottom, right). Despite the highly volatile reference trajectory
(top, right), the tracking errors decrease monotonically to machine precision,
and excellent tracking is achieved in a matter of seconds. 2
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Figure 3.3 Example of the continuous geometric attitude control on
SO(3) in Theorem 3.2. Top left: Torques driving the reference system τ r
(gray), and controlled torque τ (blue). Top right: Elements of the reference
rotation Rr (gray), and controlled rotation R (blue). Center left: Attitude
error on SO(3). Center right: Attitude rate reference ωr (gray) and system
response ω (blue). Bottom left: Lyapunov function in (3.12), depicted in the
10-logarithm and the bounds (3.13) expressed in z. Bottom right: Lyapunov
function time-derivative and upper bound in (3.13). The simulated system
response is shown in the video chapter-3-simulations.mp4.

Remark 3.2
The only requirement for (3.13) to hold is that Ψ(Rr(t),R(t)) ≤ φ, ∀ t ≥ t◦,
and a sufficient condition for this can be stated in terms of the Lyapunov
function V in (3.12). For kc = 0 it is seen that (d/dt)V ≤ 0, whereby

kRΨ(Rr(t),R(t)) ≤ V(t)|kc=0 ≤ V(t◦)|kc=0 < kRφ, ∀ t ≥ t◦. (3.15)

Consequently,

V(t◦)|kc=0 < kRφ⇒ Ψ(Rr(t),R(t)) < φ, ∀ t ≥ t◦.
However, it is clear that this greatly restricts the initial attitude rate errors
that can be used. If Ψ(Rr(t◦),R(t◦)) = φ◦ < φ < 2, then the inequalities

71

https://youtu.be/jZQkXb0MXV0
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in (3.15) hold only if eω(t◦)>Jeω(t◦) < 2kR(φ− φ◦). Consequently, making
φ◦ large implies that φ−φ◦ is small, which in turn requires large kR and small
‖eω(t◦)‖ for the system to be initialized within the domain D in (3.10). 2

As the volume of D becomes small for large φ◦ and finite kR, it is of great
importance to know how the closed loop system behaves when initialized
outside of D. This is why the observation in Remark 3.1 is important. For
practically any initialization where Ψ(Rr(t◦),R(t◦)) < 2 or eω(t◦) 6= 0, the
error trajectories asymptotically converge to the domain D, and within this
domain, the worst-case exponential decay rates can be quantified by the
quadratic forms in (3.13). However, in contrast to the explicit vector-control
in Theorem 3.1, which technically parameterizes a larger family of controllers,
the geometric controller is exponentially stable on a region characterized by
D in (3.10). As such, it is possible to give uniform boundedness results when
the closed-loop system is perturbed with additive bounded load disturbances.

Proposition 3.1
Consider the perturbed system

Ṙ = RS(ω) (3.16a)
Jω̇ = S(Jω)ω + τ + ∆, (3.16b)

where ∆(t) ∈ R3 is continuous in time and ‖∆‖ ≤ L for all t ≥ t◦. Let (3.16)
be controlled by a feedback (3.11) in Theorem 3.2, with (kR, kω, kc) ∈ R3

>0

resulting in a set of positive definite matrices M1,M2,W in (3.9). For any

L <
θ
√
φkRλm(W )λm(M1)

δλM (M2)
, (3.17)

with
δ ,

√
1 + k2

cλM (J−1)2, θ ∈ (0, 1), (3.18)

the errors are ultimately bounded when

‖z(t◦)‖ ≤
√
φkRλm(M1)

λM (M2)
. (3.19)

That is, there exist a class-KL function, β, and time, T ≥ t◦ for which
‖z(t)‖ ≤ β(‖z(t◦)‖, t− t◦), ∀t ∈ [t◦, t◦ + T ], (3.20a)

‖z(t)‖ < r =
√
φkRλm(M1)/λM (M2), ∀t ≥ t◦ + T. (3.20b)

Furthermore, on the interval t◦ ≤ t ≤ t◦ + T , the error decay is bounded by

V̇ ≤ − λm(W )

λM (M2)
(1− θ)V, (3.21)

where V is the Lyapunov function defined in (3.12). 2

72



3.3 Continuous Geometric Control on SO(3)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 3.4 Sets in z containing Br used in the proof of Proposition 3.1,
evaluated numerically for a feasible tuning and the J and φ in Example 3.1.

Proof. To show this, the main idea is to use the Lyapunov function in (3.12)
with its associated bounds in M1,M2,W , and factorize the Lyapunov time-
derivative along the perturbed error dynamics to a form V̇ = −(1−θ)z>Wz−
‖z‖(λm(W )θ‖z‖ − δL). One then has to present a sufficient condition for
Ψ(Rr,R) < φ for all t ≥ t◦, which can be found in the largest ball z(t◦) ∈ Br
guaranteeing that V(t◦) ≤ kRφ. Here, the ideas in (3.15) cannot be used, and
we instead need to consider the sets depicted in Figure 3.4. Application of
Theorem 2.13 yields the result, with the full proof in Appendix B.3. 2

From this proposition, it is evident that tuning the controller is a nontrivial
task. Here, λM (M2) will dominate λm(M1) for any feasible controller tuning.
Consequently, if we maximize the decay rate, that is, to decrease λM (M2)
and increase λm(W ), the permissible disturbance bound L will increase,
and the ultimate bound in (3.41) will also be affected non-trivially in the
tuning parameters. If we both aim to increase the decay rate and decrease the
ultimate bound, we not only have to select kR and kω in a clever way based
on J and φ, but also pick a suitable kc. While it may be difficult to find a
good tuning, it is simple to find a feasible tuning, as shown in Remark 3.3.

Remark 3.3—[Lee et al., 2011, Appendix B]
For kR > 0, kω > 0, the matrices W ,M1,M2 in (3.9) are positive definite if

0 < kc < min

{
kω,

4kωkRλm(J)2

k2
ωλM (J) + 4kRλm(J)2

,
√
kRλm(J)

}
. (3.22)

2
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To explore the influence of φ on the decay rates and ultimate bounds, we
will pose and solve a BMI in Sec. 3.8 to find an optimal controller tuning with
respect to a cost expressed in an ultimate bound and worst-case error decay
rates. However, other modifications of the controller can be done to achieve
significantly smaller ultimate bounds. An appealing approach is to introduce
an additional term in the feedback law, by which the ultimate bound can be
pushed down further. This is referred to as a robust version of the continuous
geometric controller, and will be presented next.

3.4 Robust Geometric Control on SO(3)

The robust geometric controller was first published in [Lee et al., 2013,
Proposition 2], and seeks to extend the previous feedback law in Theorem 3.2
with an additive term to handle load disturbances, ∆, of arbitrary magnitude,
‖∆‖ ≤ L. This is made possible by including L explicitly in the feedback law,
and implementing a term which dominates those arising in V̇ by virtue of ∆.

Theorem 3.3—Robust geometric attitude control on SO(3)
Consider the system

Ṙ = RS(ω) (3.23a)
Jω̇ = S(Jω)ω + τ + ∆, (3.23b)

where ∆(t) ∈ R3 is continuous in time and ‖∆‖ ≤ L for all t ≥ t◦. Take any
tuning k = (kR, kω, kc) ∈ R3

>0 resulting in a set of positive definite matrices
M1,M2,W in (3.9), and define the errors as in (3.8a). Take the perturbed
system in (3.23) to be in closed-loop feedback with the control law

τ =− kReR − kωeω − µR (3.24a)

− S(Jω)ω − J(S(ω)R>Rrωr −R>Rrω̇r), (3.24b)

µR =
L2eA

L‖eA‖+ εR
, (3.24c)

eA = eω + kcJ
−1eR. (3.24d)

For any choice of parameter εR satisfying

0 < εR <
λm(M1(k))λm(W (k))

λM (M2(k))
φ(2− φ), (3.25)

the errors are ultimately bounded in εR, as

lim
t−t◦→∞

‖z‖2 ≤ γ(L;k) , λM (M2(k))

λm(M1(k))λm(W (k))
εR. (3.26)

2
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Proof. Refer to the original proof in [Lee et al., 2013, Proof of Proposition
2 in Appendix 8.2]. The key insight is that with the proposed feedback
law, we get an upper bound on the Lyapunov function time-derivative as
V̇ ≤ −z>Wz + εR, facilitating the rest of the proof. 2

Remark 3.4
This feedback law significantly attenuates the effects of large load disturbances
at the cost of making the control signal volatile for large L and small εR and
increasing sensitivity to measurement noise.

To demonstrate this result, we again consider a closed-loop simulation
example, but this time with the perturbed attitude dynamics in (3.23), and
with a significant additive load disturbance, as defined in Example 3.2.

Example 3.2
Here, we use the same simulation setup as in Example 3.1, but with load
disturbances that are realized such that ‖∆‖ = L = 1 for all t ≥ t◦ = 0, with

∆(t) , L
∆̄(t)

‖∆(t)‖ , ∆̄(t) , (sin(t); sin(4t+ π
2 ); sin(8t+ π

4 )) ∈ R3. (3.27)

Just as before, we get an initial attitude error of approximately φ ≈ 1.25,
which, in this particular case, means that we may pick any εR on the interval

0 < εR < ε̄R , λm(M1(k))λm(W (k))

λM (M2(k))
φ(2− φ) ≈ 0.0315, (3.28)

and for this example, we let εR = 0.01ε̄R = 3.15 · 10−4, which in turn implies
that all trajectories converge to an error within the ultimate bound

γ(L;k) ≈ 0.0093. (3.29)

The resulting system response is shown in Figure 3.5, depicting the control
signals, the disturbance in (3.28), the attitude error and attitude rate tra-
jectories, the Lyapunov function with bounds, and the Lyapunov function
time-derivative with its upper bound. The errors in z are also shown in the
two-norm, along with the ultimate bound γ in the bottom-most subplot.

This can be compared with the robustness result for the continuous geo-
metric controller in Theorem 3.2. By Proposition 3.1, the maximal permitted
load disturbances for (with θ → 1) is L = 0.0591, which is significantly smaller
than the magnitude of the disturbance used in this example. Furthermore,
even if the result would hold for such a large disturbance, we have that
the corresponding ultimate bound is γ(L;k) ≈ 0.0393 when computed for
Theorem 3.2 using Proposition 3.1, which is significantly larger than the cor-
responding bound computed for the robust controller in (3.29). Additionally,
as the ultimate bound with the robust controller is proportional to εR, we
can reduce it even further by picking a smaller tuning parameter εR. 2
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Figure 3.5 Example of the continuous geometric attitude control on SO(3)
in Theorem 3.3. Top left: Torques driving the reference system τ r (gray),
and controlled torque τ (blue). Top right: Torques driving the reference
system τ r (gray), and disturbance ∆ (blue). Top center, left: Attitude error
in the SO(3)-distance. Top center, right: Attitude rate reference (gray) and
system response (blue, dashed). Bottom center, left: Lyapunov function in
the 10-logarithm and the upper and lower bounds expressed in z. Bottom
center, right: Lyapunov function time-derivative and upper bound. Bottom:
Errors ‖z‖ converging a value smaller than the ultimate bound estimate. The
simulated system response is shown in the video chapter-3-simulations.mp4.
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3.5 Continuous Geometric Control on SU(2)

The results in Theorems 3.1, 3.2, and 3.3, are considered the state of the art
for attitude tracking control on SO(3). This is due to their relative simplicity,
computational efficiency, and robustness to commonly arising disturbances. In
the preceding sections we have highlighted some equivalences between these
controllers, and provided an conservative estimate of the ultimate bound
when using the popular feedback law in Theorem 3.2. In the remainder of this
chapter, we derive analogous feedback laws on SU(2), and show how these
relate to the literature of control based on imaginary quaternion errors.

3.5 Continuous Geometric Control on SU(2)

Next, we derive a set of closely related controllers on SU(2), which will later
enable a proof of exponential stability for all attitude errors configured on
SO(3), with a controller corresponding to φ = 1. For this discussion, we let the
elementsXr,X ∈ SU(2) denote the reference attitude and controlled attitude,
respectively. We now make use of the distance Γ(Xr,X) in Definition 2.19,
and to simplify the notation, we here let [·]∨ = [·]∨SU(2) and [·]∧ = [·]∧SU(2).

Theorem 3.4—Continuous geometric attitude control on SU(2)
Let Xe = X∗rX ∈ SU(2), and consider the control errors

eX =
1

2
[Xe − Tr(Xe)I/2]∨ ∈ R3, (3.30a)

eω =ω − [(Xe)
∗[ωr]

∧(Xe)]
∨ ∈ R3, (3.30b)

z =(‖eX‖, ‖eω‖)> ∈ R2
≥0. (3.30c)

Take any set of gains (kX , kω, kc) ∈ R3
>0 such that the matrices

W =

[
kckX
λM (J) − kckw

2λm(J)

− kckw
2λm(J) kω − kc

4

]
, M1 =

1

2

[
4kX −kc
−kc λm(J)

]
, M2 =

1

2

[
8kX
2−φ kc
kc λM (J)

]
,

(3.31)

are positive definite. Then, for any initial error on the domain

D =

{[
eX(t◦)
eω(t◦)

]
∈ R6

∣∣∣∣∣ Γ(Xr(t◦),X(t◦)) ≤ φ < 2,
z(t◦)>M2z(t◦) ≤ kXφ

}
, (3.32)

driving the system (3.1) with a full state feedback

τ =− kXeX − kωeω − S(Jω)ω (3.33)
+ J [−[eω/2]∧X∗e[ωr]

∧Xe +X∗e[ω̇r]
∧Xe +X∗e[ωr]

∧Xe[eω/2]∧]∨,

yields an equilibrium (eX , eω) = (0,0), which is ULES on D, corresponding
to (Xe, eω) = (I,0). In addition, this equilibrium point is UAGAS, with the
only other equilibrium (Xe, eω) = (−I,0) ∈ SU(2)× R3 being unstable. 2
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Proof. The proof uses techniques and ideas similar to the proof of Theo-
rem 3.2, and follows by proposing a Lyapunov function candidate

V = kXΓ(Xr,X) + kceω · eX +
1

2
eω · Jeω. (3.34)

It is shown that all closed-loop trajectories remain within D, where then

z>M1z ≤ V ≤ z>M2z, V̇ ≤ −z>Wz, (3.35)

whereby the equilibrium z = 0⇔ (eX , eω) = (0,0)⇔ (Xe, eω) = (I,0) is
uniformly exponentially stable for all initial errors on D ⊂ R6. The proof of
UAGAS follows by application of the Lemma of Barbălat to the Lyapunov
function with kc = 0, and subsequent linearization about the two resulting
equilibrium points. The proof is given in its entirety in Appendix B.4. 2

This is, seemingly, a very similar result to the geometric controller on
SO(3) in Theorem 3.2. We arrive at a slightly different set of matrices defining
the set of feasible controllers, and in contrast to the controller in Theorem 3.2,
the resulting stable closed-loop equilibrium point UAGAS for finite controller
gains. Consequently, the matrices in (3.31) permit studies of worst-case decay
rates on the domain D in (3.32), but as the point (Xe, eω) = (I,0) is UAGAS,
almost all error trajectories converge to D. As such, the controller derived in
Theorem 3.4 is UAGAS (just as Theorem 3.1) and ULES with an associated
with a domain of exponential attraction (just as Theorem 3.2), but this comes
at a potential cost of dynamical unwinding, a curious phenomenon that can
be treated in relation to the sketch in Figure 2.3 as follows.

Remark 3.5—Dynamical Unwinding

Let Rr = E
SU(2)
SO(3)(Xr),R = E

SU(2)
SO(3)(X). Any initial error on Γ(Xr,X) ≥

1 will necessarily transiently pass through the line Γ(Xr,X) = 1 ⇔
Ψ(Rr,R) = 2. Consequently, if the system is initialized with a large distance in
Γ(Xr(t◦),X(t◦)), this will correspond to a small distance in Ψ(Rr(t◦),R(t◦)),
but transient configurations will still necessarily attain a maximal distance
Ψ(Rr(t),R(t)) = 2 as Γ(Xr(t),X(t)) = 1 at least once before asymptotically
lim(t−t◦)→0 Γ(Xr(t),X(t)) = 0⇒ lim(t−t◦)→0 Ψ(Rr(t),R(t)) = 0. 2

This is sometimes used to dismiss controllers which operate with quater-
nions. However, if the system state and the reference state are both configured
on SU(2), then for any sufficiently small initial error on a domain D with
φ < 1, we have that Γ(Xr(t),X(t)) < 1 for all t ≥ t◦. Consequently, for such
small initial errors, closed-loop control with Theorem 3.4 will not give rise
to the phenomenon of dynamical unwinding described in Remark 3.5. Even
the case where the system state is configured on SO(3) can be handled using
specialized lifting techniques [Mayhew et al., 2012] (see, e.g., Chapter 4).
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Similar to the geometric controller on SO(3), Theorem 3.4 also character-
izes a worst-case decay rate on a domain of exponential attraction. As such,
an analogous estimate of an ultimate bound can be derived in the event of a
continuous and bounded disturbance ∆(t) acting on the control signals.

Proposition 3.2
Consider the system

Ẋ = X[ω/2]∧SU(2), (3.36a)

Jω̇ = S(Jω)ω + τ + ∆, (3.36b)

where ∆(t) ∈ R3 is continuous in time and ‖∆‖ ≤ L for all t ≥ t◦. Let (3.36)
be controlled by a feedback (3.50) in Theorem 3.4, tuned with (kX , kω, kc) ∈
R3
>0 resulting in positive definite matrices M1,M2,W in (3.31). For any

L <
θ
√
φkRλm(W )λm(M1)

δλM (M2)
, (3.37)

with
δ ,

√
1 + k2

cλM (J−1)2, θ ∈ (0, 1), (3.38)

the errors are ultimately bounded when

‖z(t◦)‖ ≤
√
φkRλm(M1)

λM (M2)
. (3.39)

That is, there exist a class-KL function, β, and time, T ≥ t◦ for which

‖z(t)‖ ≤ β(‖z(t◦)‖, t− t◦), ∀t ∈ [t◦, t◦ + T ], (3.40)

‖z(t)‖ < r =
√
φkRλm(M1)/λM (M2), ∀t ≥ t◦ + T. (3.41)

Furthermore, on the interval t◦ ≤ t ≤ t◦ + T , the error decay is bounded by

V̇ ≤ − λm(W )

λM (M2)
(1− θ)V, (3.42)

where V is the Lyapunov function defined in (3.34). 2

Proof. The proof is omitted for brevity and completely analogous to that of
Proposition 3.1, but with the quadratic forms bounding (3.34) instead defined
by the matrices in (3.31) and with the Γ-distance replacing that of Ψ. 2

Much like the controller in Theorem 3.2, finding a feasible tuning is trivial,
with a sufficient condition for positive definiteness of the matrices given below.
However, to choose a good tuning, we need to choose (kX , kω, kc) with respect
to the worst-case decay rates, the ultimate bound in Proposition 3.2, the
maximal attitude error φ and the inertia J , which is a far more difficult task.
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Remark 3.6—[Greiff et al., 2021f]
For (kX , kω)∈R2

>0, the matricesW,M1,M2 in (3.31) are positive definite if

0 < kc < min

{
4kω,

4kωkXλm(J)2

λM (J)k2
w + λm(J)2kX

, 2
√
kXλm(J)

}
. (3.43)

2

Remark 3.7
With the continuous geometric control on SU(2) in Theorem 3.4, the attitude
error eX is proportional to the imaginary quaternion error =(q∗r � q), which
is frequently used to design PD-controllers. The earliest known results for the
stabilizing control of the attitude dynamics using the imaginary quaternion
errors were presented in [Mortensen, 1968], subsequently extended with three
variant control laws in [Wie and Barba, 1985]. Here, under the assumption of a
diagonal inertia matrix and ωr = 0, “Control law 1” in [Wie and Barba, 1985] is
analogous to Theorem 3.4. Related stabilization results were comprehensively
reviewed in [Tsiotras, 1995] and extended in [Tayebi and McGilvray, 2006], in
which the stabilization problem was solved in the quaternion representation
showing almost global asymptotic convergence of an error on H × R3, and
local exponential convergence. Consequently, similar ideas are frequently used
to design heuristic tracking controllers for the attitude dynamics, see [Cutler
and How, 2012; Fresk and Nikolakopoulos, 2013]. However, we remark that
many of the heuristic PD controller omit the dynamic feed-forward terms in
Theorem 3.4 that arise from the time-variance of Xr, which are required in
order to show exponential stability and enable a discussion on robustness in the
tracking case. The analysis in Proposition 3.2 indicates why these controllers
are frequently implemented in practice, as the dynamic feed-forward terms,
if ignored, enter as load disturbances. These perturbations, if small, yield
ultimately bounded errors, explaining the tracking behavior reported as a
“phase lag” in [Fresk and Nikolakopoulos, 2013]. 2

To show that the behavior described in Remark 3.7 is eliminated by the
introduction of the dynamic feed-forward terms, to demonstrate the dynamical
unwinding described in Remark 3.5, and to validate the proposed theory, a
closed-loop example is given using Theorem 3.4. This example mirrors that
in Example 3.1 for the geometric controller on SO(3).

Example 3.3
In this example, the continuous geometric feedback controller on SU(2) in
Theorem 3.4 is run with a simulation setup identical to that in Example 3.1.
The resulting tracking performance with a tuning kX = 8, kc = 1, kω = 2,
for a φ = 1.61, is shown in Figure 3.6. Here we note that as the Lyapunov
function in (3.34) is defined with the distance Γ(Xr,X) on SU(2), it converges
to an attitude error at the identity element of SU(2), and implicitly the
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Figure 3.6 Example of the continuous geometric attitude control on SU(2)
in Theorem 3.4 for small attitude rate errors. Top left: Reference torques
τ r (gray), and controlled torque τ (blue). Top right: Attitude visualized as
quaternions, qr (gray), and attitude q (blue). Center left: Attitude error
on SO(3) (black) and SU(2) (blue). Center right: Attitude rate reference
ωr (gray) and system response ω (blue). Bottom left: Lyapunov function
in (3.34), depicted in the 10-logarithm and the bounds (3.35). Bottom right:
Lyapunov function time-derivative and bound in (3.35). The simulated
system response is shown in the video chapter-3-simulations.mp4.

identity element on SO(3). Note that the attitude error transiently attains
the maximum possible distance on SU(2) of Ψ(Rr,R) = 2 at around t = 1.5
[s]. This an example of the dynamical unwinding phenomenon described in
Remark 3.5, here induced by initializing an attitude error Γ(Xr,X) > 1. Due
to the large initial error on SU(2), significantly more control effort is required
this initial transient (c.f. the torques in Figure 3.3 and Figure 3.6).

The simulation in Figure 3.6 is representative of the tracking behavior
of a UAV with large initial attitude errors. In this case, the system is not
initialized onD, but convergence toD and subsequent exponential convergence
to (Xe, eω) = (I,0) is guaranteed for almost all initial errors, as this point
is UAGAS by Theorem 3.4. The reason that the bounds on V and V̇ hold
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Chapter 3. Full State Feedback: Attitude Dynamics

during the initial transient is that the attitude error Γ(Xr,X) (blue) never
exceeds φ = 1.61 for which the bounds in (3.35) are evaluated. Recall, the
condition for Γ(Xr,X) ≤ φ given in (3.32) is sufficient but not necessary.
The upper bound on V̇ is visibly less tight in particular example, explained
by the behavior of the upper bound on Γ illustrated in Figure 2.1 for larger φ.

To further emphasize the importance of the UAGAS, we instead initialize
the system with an attitude error ω(t◦) ∼ U([−10, 10]3) and consider a less
aggressive tuning with kX = 2, kc = 0.1, kω = 1, the rest of the simulation
parameters are kept the same. The result is depicted in Figure 3.7, and once
again the bounds are not guaranteed to hold when V(t) > φ, but the system
converges to a zero tracking error, approaching the domain D to never again
escape after tD ≈ 2.4 [s]. The bounds with which exponential convergence is
shown do not necessarily hold for t◦ ≤ t < tD, but in this particular case they
do nonetheless, as the attitude error does not exceed φ in the initial transient.

As convergence to D is ensured by the UAGAS property shown in Theo-
rem 3.4, and worst-case decay rates and robustness properties can be guaran-
teed on this domain, we can choose to view φ as a locality parameter in the
tuning process. It is noteworthy that even for an initialization far outside of D,
we may still have Γ(Xr(t),X(t)) < φ on t◦ ≤ t < tD (see Figure 3.7). It is also
worth noting that as SU(2) is a two-to-one covering of SO(3), we can represent
any Re ∈ SO(3) with an element in the set {Xe ∈ SU(2) | Tr(Xe) ≥ 0}.
Consequently, it is possible to generalize the continuous controller result in a
discontinuous setting and show global stability properties. Such modifications
will be considered in the next subsection.

3.6 Discontinuous Geometric Control on SU(2)

By virtue of the embedding in Definition 2.17, we have thatR = E
SU(2)
SO(3)(X) =

E
SU(2)
SO(3)(−X). Consequently,X → ±I implies thatR→ I, and we could there-

fore partition the attitude error into two distinct domains along Γ(Xr,X) = 1,

SU(2)+ = {X∗rX ∈ SU(2)|Γ(Xr,X) ≤ 1}, (3.44a)

SU(2)− = {X∗rX ∈ SU(2)|Γ(Xr,X) > 1}, (3.44b)

and design two different feedback laws on these two subsets of SU(2). This
idea is not uncommon in the field of attitude control when using the quater-
nion representation, see, e.g., [Salcudean, 1991; Fragopoulos and Innocenti,
2004; Mayhew et al., 2011a; Mayhew et al., 2011b; Brescianini et al., 2013;
Brescianini and D’Andrea, 2018], among many other similar works.
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Figure 3.7 Example of the continuous geometric attitude control on SU(2)
in Theorem 3.4 for large attitude rate errors. Top left: Reference torques
τ r (gray), and controlled torque τ (blue). Top right: Attitude visualized as
quaternions, qr (gray), and attitude q (blue). Center left: Attitude error
on SO(3) (black) and SU(2) (blue). Center right: Attitude rate reference
ωr (gray) and system response ω (blue). Bottom left: Lyapunov function
in (3.34), depicted in the 10-logarithm and the bounds (3.35). Bottom right:
Lyapunov function time-derivative and upper bound in (3.35). The simulated
system response is shown in the video chapter-3-simulations.mp4.

By the proposed partition in (3.44a), SU(2)+ ∪ SU(2)− = SU(2), and for
each element X∗rX ∈ SU(2)−, there exists an element −X∗rX ∈ SU(2)+. As
such, a controller can be constructed to ensure convergence to a pointX∗rX →
I if X∗rX ∈ SU(2)+ and X∗rX → −I if X∗rX ∈ SU(2)−. Conceptually, this
can be viewed as gain-scheduled controller, permitting every Xe ∈ SU(2)
to be covered by a set of two controllers, both tuned for φ = 1, but with
opposite signs in the P-gain. For this discussion, we define an inverse distance
on SU(2) as follows.
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Definition 3.1
Let Γ̄ : SU(2)× SU(2) 7→ [0, 2], be defined by

Γ̄(X1,X2) = 2− Γ(X1,X2) =
1

2
Tr(X∗1X2 − I). (3.45)

2

Given this definition, we can make an observation analogous to Remark 2.4.

Remark 3.8
Let q1 = E

SU(2)
H (X1) and q2 = E

SU(2)
H (X2), then it can be seen that

Γ(X1,X2) = 1−<(q∗1 � q2), Γ̄(X1,X2) = <(q∗1 � q2)− 1. (3.46)

Consequently, if we let qe = q∗1 � q2 and take this quaternion by a double
angle θ and a unit vector u, such that <(qe) = cos(θ) and =(qe) = sin(θ)u,

1

2
‖=(qe)‖2 ≤Γ(X1,X2) ≤ ‖=(qe)‖2, ∀Γ(X1,X2) ≤ 1, (3.47a)

1

2
‖=(qe)‖2 ≤Γ̄(X1,X2) ≤ ‖=(qe)‖2, ∀Γ̄(X1,X2) ≤ 1, (3.47b)

as illustrated in Figure 3.6. These bounds will be used in the stability analysis
of the discontinuous attitude controller on SU(2), presented below. 2

Theorem 3.5—Discontinuous geometric attitude control on SU(2)
Let Xe = X∗rX ∈ SU(2), and consider the control errors

e±X =

{
+ 1

2 [Xe − Tr(Xe)I/2]∨SU(2) ∈ R3 if Xe ∈ SU(2)+

− 1
2 [Xe − Tr(Xe)I/2]∨SU(2) ∈ R3 if Xe ∈ SU(2)−

(3.48a)

eω =ω − [(Xe)
∗[ωr]

∧
SU(2)(Xe)]

∨
SU(2) ∈ R3, (3.48b)

Take any set of gains (kX , kω, kc) ∈ R3
>0 such that the matrices

W=

[
kckX
λM (J) − kckw

2λm(J)

− kckw
2λm(J) kω − kc

4

]
, M1=

1

2

[
4kX −kc
−kc λm(J)

]
, M2=

1

2

[
8kX kc
kc λM (J)

]
,

(3.49)

are all positive definite. Driving the system in (3.1) with a feedback

τ =− kXe±X − kωeω − S(Jω)ω (3.50)
+ J [−[eω/2]∧X∗e[ωr]

∧Xe +X∗e[ω̇r]
∧Xe +X∗e[ωr]

∧Xe[eω/2]∧]∨,

yields an equilibrium point (e±X , eω) = (0,0) which is globally exponentially
stable. In addition, the resulting system is GES toward (Re, eω) = (I,0) ∈
SO(3)× R3 for all initial (Xe(t◦), eω(t◦)) ∈ SU(2)× R3. 2
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Figure 3.8 Illustration of the distance Γ with the element X1,X2 pa-
rameterized in a special quaternion, such that θ ∈ [−π, π] covers all of H
and implicitly all of SU(2). The figure illustrates the two sets SU(2)+ and
SU(2)−, and the bounds on the distances Γ and Γ̄ expressed in the norm of
the imaginary part of the attitude error.

Proof. The proof is similar to that of Theorem 3.4. It is sketched here and
given in Appendix B.6. A hybrid Lyapunov function candidate is defined, as

V± ,
{
V+ if Xe ∈ SU(2)+,
V− if Xe ∈ SU(2)−,

(3.51)

constructed similar to V in (3.34), with

V+ = kXΓ(Xr,X) + kceω · e±X +
1

2
eω · Jeω, (3.52a)

V− = kX Γ̄(Xr,X)− kceω · e±X +
1

2
eω · Jeω. (3.52b)

It is then possible to show that V± satisfies the bounds in (3.35) globally when
defined with φ = 1, and that V± is continuous when traversing Γ(Xr,X) = 1.
The result follows by application of the comparison lemma. 2

Example 3.4
In this example, the discontinuous geometric controller on SU(2) in Theo-
rem 3.5 is demonstrated with the same simulation setup as used in examples 3.1
and 3.3. The controller parameters from Example 3.3 are also reused, that
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Figure 3.9 Example of the discontinuous geometric attitude control on
SU(2) in Theorem 3.5 small attitude rate errors. Top left: Torques driving
the reference system τ r (gray), and controlled torque τ (blue). Top right:
Attitude visualized as quaternions, qr (gray), and attitude q (blue). Center
left: Attitude error on SO(3) (black) and on SU(2) with the distance Γ (blue)
and Γ̄ (blue, dashed). Center right: Attitude rate reference ωr (gray) and
system response ω (blue). Bottom left: Lyapunov function in (3.51), depicted
in the 10-logarithm and the bounds (3.35) (with φ = 1). Bottom right:
Lyapunov function time-derivative and bound in (3.35) (with φ = 1). The
simulated system response is shown in the video chapter-3-simulations.mp4.

is, (kX , kc, kω) = (8, 1, 2). The resulting trajectory tracking performance is
shown in Figure 3.9, and we note that the controller converges to an attitude
error Γ̄(Xr,X) = 0 with Xe ∈ SU(2)−, which implies a zero error on SO(3)
in Ψ(Rr,R) = 0. However, the distance in which the continuous controller on
SU(2) was expressed goes to Γ(Xr,X) = 2. Consequently, we have achieved
a tracking control on SU(2), which corresponds to the continuous tracking
control on SU(2) if Xe ∈ SU(2)+, but converging to Xe = −I on SU(2)−.

The bounds on the Lyapunov function V± and (d/dt)V± shown in Fig-
ure 3.9 are clearly tighter than the corresponding bounds in the case of
the continuous controller with the same tuning in Figure 3.6, as here, the
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Figure 3.10 Example of the discontinuous geometric attitude control on
SU(2) in Theorem 3.5 for large attitude rate errors. Top left: Torques driving
the reference system τ r (gray), and controlled torque τ (blue). Top right:
Attitude visualized as quaternions, qr (gray), and attitude q (blue). Center
left: Attitude error on SO(3) (black) and on SU(2) with the distance Γ (blue)
and Γ̄ (blue, dashed). Center right: Attitude rate reference ωr (gray) and
system response ω (blue). Bottom left: Lyapunov function in (3.51), depicted
in the 10-logarithm and the bounds (3.35) (with φ = 1). Bottom right:
Lyapunov function time-derivative and bound in (3.35) (with φ = 1). The
simulated system response is shown in the video chapter-3-simulations.mp4.

bounds are defined with the same tuning but a smaller φ. Furthermore, the
bounds defined with φ = 1 hold globally, and we do not need to worry
about convergence to some domain of exponential attraction when the errors
are large. To illustrate this, we again consider a modified simulation where
kX = 2, kc = 0.1, kω = 1 and let ω(t◦) ∼ U([−10, 10]3). The result is shown
in Figure 3.10, where we see that the system is initialized on Xe ∈ SU(2)−,
transitions across the line Tr(Xe) = 0 to SU(2)+ at t1 ≈ 0.1 [s] before travers-
ing this line once again at t2 ≈ 0.4 [s] and converging to Xe → −I ∈ SU(2)−.
The Lyapunov function V± is continuous at the switching times; but its
time-derivative V̇± is not continuous at t ∈ {t1, t2}.
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As such, V± is not generally continuously differentiable, as a transition be-
tween the two partitions on SU(2) at a time ts implies a jump in (d/dt)V±(ts)
if e±X(ts) · eω(ts) 6= 0. This is common to discontinuous feedback laws with
quaternion representations (see, e.g., [Mayhew et al., 2011b, Section 3]). When
initializing the system close to Γ(Xr(t◦),X(t◦)) = 1, an arbitrarily small
disturbance can be artificially constructed to prevent the global convergence
of the errors to one of the two equilibrium points. This lack of continuous
differentiability is the reason for developing a robust controller on SU(2) from
the continuous feedback. However, it should be noted that similar results can
be derived for the discontinuous case, provided that the errors are sufficiently
small and the references computed such that switching is eliminated.

3.7 Robust Geometric Control on SU(2)

In this section, we give an analogue to the robust controller on SO(3) in The-
orem 3.3 by extending the continuous feedback law on SU(2) in Theorem 3.4.

Theorem 3.6—Robust geometric attitude control on SU(2)
Consider the attitude system in (3.1) with the perturbed dynamics in (3.4),
where ∆(t) ∈ R3 is continuous in time and ‖∆‖ ≤ L for all t ≥ t◦. Take
any tuning k = (kX , kω, kc) resulting in a set of positive definite matrices
M1,M2,W in (3.31), and define the errors eX and eω as in (3.30). Take
the perturbed system in (3.4) to be in closed-loop feedback with

τ =− kXeX − kωeω − µX − S(Jω)ω (3.53a)
+ J [−[eω/2]∧X∗e[ωr]

∧Xe +X∗e[ω̇r]
∧Xe +X∗e[ωr]

∧Xe[eω/2]∧]∨

µX =
L2eA

L‖eA‖+ εX
, (3.53b)

eA = eω + kcJ
−1eX . (3.53c)

For any choice of parameter εX satisfying

0 < εX <
λm(M1(k))λm(W (k))

λM (M2(k))
φ(2− φ), (3.54)

the errors are ultimately bounded in εX , as

lim
t−t◦→∞

‖z‖2 ≤ γ(L;k) =
λM (M2(k))

λm(M1(k))λm(W (k))
εX . (3.55)

2

Proof. Similar to the proof in [Lee et al., 2013], we get an upper bound on
the Lyapunov function time-derivative as V̇ ≤ −z>Wz + εX , facilitating the
rest of the proof, which is stated in its entirety in Appendix B.7. 2
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Instead of characterizing the effects of a bounded and continuous load
disturbance ‖∆(t)‖ ≤ L on the errors in the control system, as done in
Proposition 3.2, we now proactively include L in the feedback law and in-
troduce a tuning parameter εX . Similar to the result in Theorem 3.3, this
generally results in a much smaller ultimate bound, which depends on the
parameters k = (kX , kc, kω). However, this bound now becomes proportional
to εX , permitting the system to perform well even in the event of large load
disturbances, at a cost of increased volatility in the control signal for small
errors, and an increased sensitivity to measurement noise.

Example 3.5
In this example, we consider a simulation setup similar to Example 3.3,
but now with robust controller in Theorem 3.6 controlling a system with a
randomized dense inertia matrix satisfying λm(J) = 0.5 and λM (J) = 1. The
initial conditions at t◦ = 0 are sampled from X(t◦),Xr(t◦) ∼ U(SU(2)) with
ω(t◦) ∼ U([−1, 1]3) and ωr(t◦) = 0. The reference dynamics are driven by the
sinusoidal torque trajectories in (3.14). We also inject a synthetic disturbance
∆(t), which is continuous and of a slightly smaller magnitude than τ r(t),
satisfying ‖∆(t)‖ = L = 1 for all t ≥ t◦. The disturbance is realized as

∆(t) , L
∆̄(t)

‖∆(t)‖ , ∆̄(t) , (sin(t); sin(4t+ π
2 ); sin(8t+ π

4 )) ∈ R3, (3.56)

and the controller is tuned with kX = 12, kc = 2, kω = 3. The response is
shown in terms of in the familiar torque, disturbance, attitude, attitude rate,
Lyapunov function and Lyapunov function time derivative plots in Figure 3.11.

Despite the large and volatile load disturbance, the closed-loop system be-
haves similar to the continuous geometric controller on SU(2) when the track-
ing errors are large (c.f., Figure 3.6). However, as these errors become small,
the Lyapunov function no longer decays monotonically, as V ≤ −z>Wz+ εX .
It is clear that for the chosen εX , this will result in a small ultimate bound,
with the disturbance being nearly invisible in the attitude tracking error and
the attitude rate plots (see Figure 3.11). 2

Remark 3.9
In practice, the maximally allowed εX in (3.54) may be very small if φ is
large. However, similar to how the Lyapunov function bounds hold for initial
errors violating the sufficient conditions for the error trajectories to remain
in D, it may be useful to include even larger terms in εX in practice. 2

To (i) illustrate the utility of setting larger εX ; (ii) show the proportionality
of the asymptotic errors to εX ; and (iii) give a sense of how the continuous
attitude controller behaves for the same disturbance, consider Example 3.6.
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Figure 3.11 Example of the robust geometric attitude control on SO(3)
in Theorem 3.6. Top left: Torques driving the reference system τ r (gray),
and controlled torque τ (blue). Top right: Torques driving the reference
system τ r (gray), and disturbance ∆ (blue). Top center, left: Attitude error
in the SO(3)-distance (black) and in the SU(2)-distance (blue). Top center,
right: Attitude rate reference (gray) and system response (blue, dashed).
Bottom center, left: Lyapunov function in the 10-logarithm and the upper
and lower bounds expressed in z. Bottom center, right: Lyapunov function
time-derivative and upper bound. Bottom: Errors ‖z‖ converging a value
smaller than the ultimate bound estimate. The simulated system response
is shown in the video chapter-3-simulations.mp4.
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Figure 3.12 Example comparing controllers on SU(2) without measure-
ment noise, specifically the geometric controller in Theorem 3.4 (blue) and
its robust counterpart in Theorem 3.6 (gray) when tuned with decreasing
εX (darker). Top left: Attitude errors on SU(2). Bottom, left: Norm of the
control signal torques. Right: Squared control errors in the 10-logarithm. The
simulated system response is shown in the video chapter-3-simulations.mp4.

Example 3.6
Here, we use the same simulation setup as in Example 3.5 with the exact
same controller tuning, the only exception being that the disturbance is
now characterized by L = 3. This permits a comparison of the continuous
geometric controller in Theorem 3.4 to the robust version of the controller in
Theorem 3.6 for different values of εX ∈ {0.1, 0.01, 0.001, 0.0001}. Given the
relatively large φ, only eX = {0.001, 0.0001} satisfy the sufficient conditions
for Γ(Xr(t)),X(t) < φ for all t ≥ t◦ in (3.54). However, in the system
response depicted in Figure 3.12, it can be seen that larger εX can yield
significant performance increases in the asymptotic trajectory tracking.

In the attitude tracking errors (top left in Figure 3.12), the load disturbance
is clearly visible when using with Theorem 3.4 (blue), but still very well
attenuated given the relatively large load disturbance. This is a reflection
of the inherent robustness properties of the continuous geometric controller
from Theorem 2.12, as highlighted in Proposition 3.2. However, the effect of
the load disturbance is nearly invisible in the same subplot when studying
the robust version of the controller, implemented with any of the considered
εX (black/gray). The difference in tuning is immediately clear from the error
subplot of Figure 3.12 (right in Figure 3.12), where a decreasing εX (darker)
yields a smaller bound, and the proportionality of the ultimate bound to εX
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is clearly seen. Finally, we note that the magnitudes of the control signals
are very similar in the continuous controller in Theorem 3.4 and the robust
controllers Theorem 3.6 (bottom, left). When εX = 0.1, the control signal is
smooth in the two-norm, but as εX becomes smaller, we observe more rapid
changes in µX and implicitly τ whenever eA in (3.53c) becomes small. This
happens around t = 3 and t = 5.2, where the torque changes rapidly. 2

Remark 3.10
Despite the temptation of pushing down the ultimate bound through εX , it is
often not desirable to make this parameter very small in practice. The reason
being that a smaller εX makes the system increasingly stiff and sensitive to
measurement noise close to the stable equilibrium point eX = eω = 0. 2

To demonstrate this, a final simulation example is given below.

Example 3.7
Consider the same simulation setup as in Examples 3.5 and 3.6, with the
exact same controller tuning, but a disturbance characterized by L = 3.
However, in this simulation we consider gyroscopic measurement noise. Specif-
ically, we take this noise to be Gaussian, which at a time-step k is realized
as ωnk ∼ N (0, σ2

ωI), entering additively on ω. Here we consider a noise
density of 0.014 [◦/s/

√
Hz] corresponding to a high-performance BMI088

gyroscope [Bosch Sensortec, 2020], which when sampled at a constant rate of
500 [Hz] corresponds to a standard deviation in the noise of σω = 0.0039. The
system response with the additive gyroscopic noise is shown in Figure 3.13.

Here we observe a ringing effect in the control signals associated with the
smaller εX . This is seen with εX as large as 0.01. However, the effect is barely
visible in the case where εX = 0.1, which still achieves asymptotic errors that
are more than a magnitude lower than those achieved by Theorem 3.4. As
such, if the volatility in the control signals becomes problematic, then εX
can be increased, loosing the stability properties shown in Theorem 3.4, but
yielding significant performance increases over its non-robust counterparts. 2

The examples in this section illustrate the utility of the robust controller
on SU(2), but also that it can become sensitive to measurement noise if εX is
small. The exact same reasoning holds for the geometric controller on SO(3) in
Theorem 3.2 and its robust counterpart in Theorem 3.3. As such, it becomes
interesting to ask how small the ultimate bound can be made, and how large
the worst-case error decay rates can be made for a given εX . This problem is
addressed in the next section using optimization-based tuning methods.
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Figure 3.13 Example comparing controllers on SU(2) with measurement
noise, specifically the geometric controller in Theorem 3.4 (blue) and its
robust counterpart in Theorem 3.6 (gray) when tuned with decreasing εX
(darker). Top left: Attitude errors on SU(2). Bottom, left: Norm of the
control signal torques. Right: Squared control errors in the 10-logarithm.

3.8 Tuning by Bilinear Matrix Inequalities

The controllers presented in this chapter can be tuned in many ways, but here
we envision a scenario where an engineer is aware of reasonable magnitudes
of the initial attitude errors, permitting the definition of a domain D by φ on
which performance is to be considered. All of the controllers will be stabilizing
outside of this domain, but are here tuned specifically for trajectories on D.
The task is to tune the controllers given φ, to minimize the ultimate bound
and maximize the error decay rate on D. To this end, we note that all of
the geometric controllers, both on SO(3) and SU(2), are defined by three
controller parameters, here represented as k ∈ R3

>0. For the controller in

• Theorem 3.2, let k = (kR; kc; kω), with W ,M1,M2 in (3.9);

• Theorem 3.3, let k = (kR; kc; kω), with W ,M1,M2 in (3.9);

• Theorem 3.4, let k = (kX ; kc; kω), with W ,M1,M2 in (3.31);

• Theorem 3.5, let k = (kX ; kc; kω), with W ,M1,M2 in (3.49);

• Theorem 3.6, let k = (kX ; kc; kω), with W ,M1,M2 in (3.31).

The decay rates can be expressed in M2 and W in all of the five controllers,
but the ultimate bounds on the tracking errors will be quite different. In the
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t◦ Time t tf

‖z
(t
)‖

2

β(‖z(t◦)‖2, t− t◦) + γ(0)

‖z(t)‖2 (supt≥t◦ ‖∆(t)‖ = 0)
β(‖z(t◦)‖2, t− t◦) + γ(L)

‖z(t)‖2 (supt≥t◦ ‖∆(t)‖ ≤ L)

Figure 3.14 Bounds on the errors ‖z‖2 when controlling the perturbed
system with a robust feedback in Theorem 3.3 or 3.6.

case of the continuous geometric controllers on SO(3) and SU(2), the effect
of small load disturbances on the tracking errors is given by Propositions 3.1
and Propositions 3.2 respectively, and in the case of the robust controllers,
this bound is given in (3.26) and (3.55), respectively.

Remark 3.11
Note that for the considered controllers, M1 and M2 are linear in the
controller parameters, but W is not, as it in all above cases includes a cross-
term with a factor kc. Thus, W is not linear, but rather bilinear in k. For
future reference, we let kA = (kR, kω) in the context of Theorems 3.2 and 3.3,
and let kA = (kX , kω) in the context of Theorems 3.4, 3.5 and 3.6. Then, for
fixed kc, the matrix W is linear in kA, and for fixed kA, it is linear in kc.2

In formulating the tuning problem, we consider Figure 3.14, and seek a
controller that quickly drives the errors to an ultimate bound (minimizing
the shaded blue area), and that this ultimate bound is small (minimizing the
shaded black area). In [Greiff et al., 2021e], this was expressed as a cost in a
negative weighted decay rate and a weighted ultimate bound with respect to
Theorem 3.3 for specific εR. In this section, we consider a cost function which
has a more natural interpretation, leading to a slight reformulation of the
tuning problem, allowing it to be posed for all the aforementioned controllers.

Consider a generic cost in terms of the worst-case decay rates of the errors
given a disturbance bounded in L, over a finite time t ∈ [t◦, tf ], defined as

J̄(k) =

∫ tf

t◦

‖z(t)‖2dt, (3.57)
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and consider solving a constrained optimization problem

min
k∈R≥0

max
‖∆‖≤L

J̄(k), M1(k) � 0, M2(k) � 0, W (k) � 0. (3.58)

Without loss of generality, let t◦ = 0. Using the worst-case decay rates in ‖z‖,

max
‖∆‖≤L

J̄(k) ≤
∫ tf

0

‖z(t◦)‖2e−d(k)tdt+

∫ tf

0

γ(L;k)dt

= ‖z(t◦)‖2
1− e−tfd(k)

d(k)
+ tfγ(L;k)

≤ w1
1

d(k)
+ w2γ(L;k) , J(k),

with the last inequality becomes tight as tfd(k) grows large, and with the
weights given by w1 , ‖z(t◦)‖2 and w2 , tf . As such, the general optimization
in (3.58) can be relaxed slightly and written as

min
k∈R≥0

J(k), M1(k) � 0, M2(k) � 0, W (k) � 0. (3.59)

Remark 3.12
The cost J(k) is closely related to that in [Greiff et al., 2021e], but introduces
an inverse weighted decay rate instead of a negative decay rate, thus getting
a clear interpretation of the cost which is minimized, as an upper bound to
J̄(k) (3.57) for the worst possible disturbance ‖∆‖ ≤ L, on a finite interval
t ∈ [t◦, tf ], when the weights are chosen as w1 , ‖z(t◦)‖2 and w2 , tf . 2

The problem in (3.59) can be solved directly by an interior point method,
or by the alternating semi-definite programming (ASDP) approach in [Greiff
et al., 2021e], which is shown to be numerically superior for a related set of
problems. Such an algorithm can be formulated as follows. Define the vector
ε = (ε1, ε2, ε3)> ∈ R3

>0 such that its elements bound the relevant eigenvalues
of the matrices in (3.59), with

ε1 ≤ λm(M1), ε2 ≥ λM (M2), ε3 ≤ λm(W ). (3.60)

Then, the cost in (3.59) can be upper bounded in these variables as

J(k) ≤ w1
ε2
ε3

+ w2
ε2
ε1ε3

, J(ε). (3.61)

This bound can be linearized about a point ε∗, as

J(ε; ε∗)≈ J(ε∗) +∇εJ(ε)|ε=ε∗(ε− ε∗) + o(‖ε− ε∗‖2). (3.62)
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where the gradient of the bound in ε can be computed explicitly as

∇εJ(ε) =

[
−w2ε2
ε21ε3

,
w1

ε3
+

w2

ε1ε3
, −ε2w1

ε23
− w2ε2
ε1ε23

]
. (3.63)

As noted in [Greiff et al., 2021e], the minimization of J(ε), close to a point
ε∗ can then be written as a set of bilinear matrix inequalities with a locally
linear cost, and solved efficiently by an alternating SDP heuristic. Here, we
write a set of constraints which ensure controller feasibility, lower and upper
bound the controller parameters in k+, also ensuring that (3.60) holds, as

F1(kA, kc, ε) = M1(k)− ε1I � 0, (3.64a)
F2(kA, kc, ε) = ε2I −M2(k) � 0, (3.64b)
F3(kA, kc, ε) = W (k)− ε3I � 0, (3.64c)
F4(kA, kc, ε) = diag(k, ε) � 0, (3.64d)
F5(kA, kc, ε) = diag(k+)− diag(k) � 0. (3.64e)

The relaxed tuning problem in (3.59), can then be stated as

min
(k,ε)∈R6

J(k), Fi(kA, kc, ε) � 0 ∀i ∈ 1, ..., 5. (3.65)

Furthermore, when relaxing (3.65) by minimizing the upper bound J(ε)
in (3.61) (which is tight when (3.60) is tight), then for any ε close to ε∗ and
fixing kc = k∗c , the problem is convex in kA and ε, with

min
(kA,ε)∈R5

J(ε; ε∗), Fi(kA, k
∗
c , ε) � 0 ∀i ∈ 1, ..., 5. (3.66)

Similarly, linearizing J(ε) at ε∗ and fixing kA = k∗A, the problem is locally
convex in kc and ε, and can be written

min
(kc,ε)∈R4

J(ε; ε∗), Fi(k
∗
A, kc, ε) � 0 ∀i ∈ 1, ..., 5. (3.67)

Consequently, the BMI-problem defined in (3.65), can be solved approxi-
mately by sequentially linearizing the upper bound of the objective function,
and iterating (3.66) and (3.67). This is referred to as an ASDP heuristic, and
outlined in Algorithm 1. These iterations are continued until a numerical toler-
ance γtol is reached, or the maximum number of iterations have transpired. To
initialize the algorithm, the system inertia, J , the upper bound on the attitude
errors, φ, the tuning weights, w1 and w2, and an initial kA are all required.
The algorithm then computes a feasible kc given by Remarks 3.3 and 3.6,
then proceeds to initialize a feasible ε, before iterating (3.66) and (3.67) until
convergence. Here, the algorithm is implemented with the SDPT3 solver [Toh
et al., 1999] called through CVX [Grant and Boyd, 2014] using Matlab.
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1 Receive J , φ, w1, w2,k
(0)
A , γtol, Nmax;

2 Compute feasible k(0)
c ;

3 Compute feasible ε(0);
4 for i = 1, ..., Nmax do
5 Linearize the objective function J(ε; ε(i−1));
6 Solve (3.66) for k∗A, ε∗A with fixed kc = k

(i−1)
c ;

7 Linearize the objective function J(ε; ε∗A);
8 Solve (3.67) for k∗c , ε∗B with fixed kA = k∗A;
9 Set k(i) = (k∗A, k

∗
c )>, ε(i) = ε∗B ;

10 if ‖∇εJ(ε(i))‖ ≤ γtol then
11 Return: k(i), ε(i)

12 end
13 end

Algorithm 1: The ASDP algorithm for the robust tuning problem.

Example 3.8
To demonstrate this numerical approach to controller tuning, consider the
tuning of the robust controllers in Theorem 3.3 and 3.6 by solving the
optimization problem in (3.59) using the ASDP in Algorithm 1. In both cases,
an optimal tuning is found with respect to the cost J(k) when fixing the
smallest eigenvalue of the inertia at λm(J) = 0.1 while varying its largest
eigenvalue λM (J) ∈ [0.1, 1] and the initial attitude error φ ∈ [0.1, 1.99].

The parameters are constrained by k+ = (5; 5; 5) and the weights are
chosen as w1 = 1 and w2 = 0.6, corresponding to a problem considered
with an initial error of ‖z(t◦)‖ ≤ 1 over tf − t◦ = 60 [s] with a parameter
εX = εR = 0.01. It is verified that the convergence criteria in Algorithm 1 is
met (typically in five to eight ASDP iterations), with the inequalities in (3.60)
being tight to the numerical tolerances. A total of 400 combinations of λM (J)
and φ are considered for each controller, and in all cases, the gains {kR, kX}
converge to the upper bound defined by k+. As such, only the results for kc,
kω, and cost J(k) are shown in Figure 3.15.

From this numerical study, we note that the optimal controller gains k
vary little in φ, but change significantly with the difference λM (J)−λm(J). In
general, when tuning the robust controllers, one should attempt to maximize
kR, and choose a kω ≈ kR when λM (J) − λm(J) = 0, and decrease kω as
λM (J)−λm(J) increases. The cross-term kc should be chosen relatively small
even as λM (J) ≈ λm(J), and should also decrease slightly as λM (J)−λm(J)
increases. For both controllers, it is advised to make kR or kX as large as
the noise levels and actuators permit, and then choose kω smaller and kc
significantly smaller, both decreasing with λM (J)− λm(J) regardless of φ. 2
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Figure 3.15 Example of an optimal tuning for the robust controllers in
Theorem 3.3 (left) and in Theorem 3.6 (right). Top: Optimally tuned kc
as a function of (φ, λM (J)). Center: Optimally tuned kω as a function of
(φ, λM (J)). Bottom: Optimal cost J(k) as a function of (φ, λM (J)).

This example demonstrates that the optimal tuning of the robust con-
trollers depends greatly on the inertia, and less on the initial attitude error. In
contrast, the cost depends on both J and φ, exploding for both controllers as
φ→ 2 (as then the worst-case decay rate approaches zero), but also increasing
significantly with λM (J) for fixed λm(J). Despite being similar, the generally
higher cost for the controller on SU(2) indicates that a bound of kR ≤ 5 and
kX ≤ 5 could might mean very different things. Indeed, a cost expressed in z
defined with eR on SO(3) is fundamentally different to a cost expressed in z
defined with eX on SU(2), making a direct comparison difficult. To clarify
how the controllers are related and what might constitute a fair comparison,
their similarities and differences are highlighted in Sec. 3.9.
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3.9 Similarities and Differences

At this point, it is clear that there exist many good solutions to Problem 3.1,
and several such controllers are presented and demonstrated in various nu-
merical examples. It is also evident that many of the controllers on SU(2)
are similar to those on SO(3); yet, their subtle differences have meaningful
consequences when considering a real-time implementation.

Controllers on SO(3) To recapitulate, a slight generalization of the con-
trollers in [Chaturvedi et al., 2011] is given in Theorem 3.1. Importantly,
two cases are considered: one in which the matrix M =

∑N
i=1 kiviv

>
i has a

distinct spectrum, and one in which all of its eigenvalues are equal. While
the property of UAGAS (as defined in this thesis) is lost in the latter, this
makes little practical difference. The former description becomes interesting
when considering the design of (filtered) output feedback laws with directional
measurements, as the controller can be realized by a set of measured rotated
vectors instead of direct knowledge of R. The controller in Theorem 3.1 is
closely related to the popular geometric controllers in [Lee et al., 2011], de-
rived with respect to the Ψ-distance, and summarized in Theorem 3.2. Indeed,
Theorem 3.1 parameterizes controller in Theorem 3.2, as evident from Re-
mark 3.1, but the latter comes with a very different stability proof permitting
an extension to a robust controller in [Lee et al., 2013], here summarized in
Theorem 3.3. In particular, this last controller should be considered in favor
of the others when there is reason to suspect significant load disturbances.

Controllers on SU(2) A completely analogous set of controllers is derived
on SU(2) in [Greiff et al., 2021f], here included to illustrate exactly how
the controllers on SO(3) relate to those on SU(2). From the discussion in
Remark 3.7, several PD-controllers based on imaginary quaternion errors can
be interpreted as geometric controllers on SU(2) with respect to the distance
Γ in Definition 2.19, but the proof provided here shows ULES and UAGAS.
By the proofs construction, a partition of SU(2) can be made to construct a
discontinuous feedback law, recovering the attitude controllers in [Mayhew
et al., 2011a; Brescianini and D’Andrea, 2018] and showing GES. Importantly,
due to the construction of the proof, a robustness result is made possible
in Theorem 3.6, completely analogous to that in Theorem 3.3. All of these
controllers can be used to great effect in a real-time implementation, but
caution must be taken when implementing Theorem 3.4 and 3.6, as these may
give rise to dynamical unwinding, as described in Remark 3.5, if the reference
trajectory and estimated attitudes are not computed with care.

Local Behavior When considering the tuning and comparison of con-
trollers on SO(3) and SU(2), it is relevant to ask if it is fair to bound the
controller gains in the same way, given that the attitude errors are fun-
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damentally different. To investigate this, consider a parameterization of
all q ∈ H by a double angle θ ∈ [−π, π] and a normal vector u ∈ R3,
such that <(q) = cos(θ) and =(q) = sin(θ)u. If R>r R = EH

SO(3)(q) and
X∗rX = EH

SU(2)(q), For the attitude control error in Theorems 3.2 and 3.3,
we then get eR = 2 cos(θ) sin(θ)u = sin(2θ)u. Similarly, for the attitude error
in Theorems 3.4, 3.5, and 3.6, we obtain eX = (1/2) sin(θ)u. As such,

sup
Rr∈SO(3),R ∈SO(3)

‖eR‖ = 1, sup
Xr∈SU(2),X ∈SU(2)

‖eX‖ =
1

2
. (3.68)

From this, we can make two important observations:

• if we wish to find a tuning for the controllers on SO(3) and SU(2) that
gives the same maximal contribution to the control signal torque over all
possible attitude errors, then we should find a tuning where kX = 2kR;

• however, if they are to yield similar local decay in the errors, we should
instead compare the controllers when tuned such that kX = 4kR. This
can be seen in that kReR ≈ 2kRθ and kXeX ≈ (1/2)kXθ for small θ.

This last point is also evident from the local linearizations conducted about
(Re, eω) = (I,0) and (Xe, eω) = (I,0) in the proofs of Theorems 3.1 and 3.4,
respectively. When writing out the same linearization for the geometric
controller on SO(3), and using the equivalence in Remark 3.1, we obtain a
second-order system in (B.19) and (B.68), with a damping term K = kRI
for the geometric controllers on SO(3), whereas the geometric controllers on
SU(2) yield a damping term of K = (kX/4)I. A takeaway from this insight is
that if considering similar magnitude of the attitude corrections in the SO(3)
and SU(2) controllers, such that kX = 2kR, then the controllers on SO(3)
yields a faster local decay of the errors and give a greater “bang for the buck”.

Large Initial Errors One the other hand, if the initial attitude errors are
expected to be large, we note that a complete covering of SU(2) can be achieved
with a worst case decay rate characterized by φ = 1 using Theorem 3.5. The
corresponding geometric controllers in SO(3) are UAS, but the worst-case
decay rate becomes arbitrarily small as φ → 2 for finite kR. This becomes
relevant in practical applications pertaining to UAV control. Here, the system
is often initialized on a flat surface with the reference trajectory set to move
it upward in a take-off maneuver, where then approximately Rr(t◦)e3‖e3,
R(t◦)e3‖e3, and where typically eω(t◦) is small. In this case, a rotation of
the reference system relative to the physical system of an angle π about e3

yields ‖eR(t◦)‖ ≈ 0, and potentially slow convergence of the tracking errors if
implementing the geometric continuous or robust controllers on SO(3). On the
other hand, for the controllers on SU(2), the same initial configuration yields
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‖eX(t◦)‖ ≈ 1/2, attaining its theoretical maximum in this configuration, as
described in (3.68). The takeaway is that for large initial attitude errors, it is
generally favorable to implement the SU(2)-configured controllers.

The Robust Controllers It may seem like the robust controllers are
favorable at all times. As Example 3.6 clearly demonstrates, this is certainly
true if only considering a continuous deterministic load disturbance. However,
when introducing measurement noise, these controllers may result in a volatile
control signal that may exhibit a ringing behavior for small errors eA. This
can be particularly problematic if the torques are generated by rotors, and
can cause significant wear and tear on the hardware. In such scenarios, the
tuning parameters {εR, εX} can be increased, or the corresponding geometric
controller on SO(3) or SU(2) should be considered instead. In Example 3.7,
it was shown that the former can yield asymptotic errors which are orders
of magnitude lower than the corresponding geometric controller. However,
when increasing {εR, εX}, the sufficient condition for the distance {Ψ,Γ} to
remain small is violated. As these distances can be measured actively in the
implementation, it is relatively simple to implement continuous geometric
controllers in Theorem 3.2 and Theorem 3.4, that switch on the {µR,µX}-
terms for a larger {εR, εX} and monitors the associated distance {Ψ,Γ},
switching back in the unlikely event that the distances exceed a predefined φ.

3.10 Summary

In this chapter, the problem of attitude tracking control has been discussed
extensively. The reason for giving such attention to Problem 3.1 is that its
solutions are instrumental in designing control laws for the full UAV dynamics.
These solution often form the inner-most controllers in cascaded controller
approaches, and the presented results will be used in the remainder of Part I.

To summarize, various controllers on SO(3) were considered, starting with
a slight generalization of [Chaturvedi et al., 2011, Theorem 2] as summarized
in Theorem 3.1. The popular controller in [Lee et al., 2010, Proposition 1] was
then reviewed, here summarized in Theorem 3.2. In doing so, it was shown
that the latter represents a subset of the controllers parameterized by the
former. However, the method of proof employed in Theorem 3.2 gave rise to
bounds on the Lyapunov function that became highly informative for the
tuning problem. These bounds were used to give an estimate of the ultimate
bound in Proposition 3.1, and also facilitated the derivation of a robust
controller in [Lee et al., 2013, Proposition 2], as summarized in Theorem 3.3.

Following this, a distance on SU(2) was introduced, where similar methods
were used to find three analogous controllers in [Greiff et al., 2021f], including:
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• A continuous controller with UAGAS and ULES properties and known
decay rates for domains parameterized in φ (see Theorem 3.4);

• A discontinuous controller with GES properties (see Theorem 3.5);

• A robust feedback law on SU(2) with an estimate of a uniform ultimate
bound for continuous and bounded load disturbances (see Theorem 3.6).

In doing so, several PD-like controllers in imaginary quaternion errors were
recovered, both by the continuous and discontinuous controllers (see Re-
mark 3.7). However, their stability proofs also facilitated a fruitful discussion
on robustness to a realistic class of load disturbances, with the robust controller
in Theorem 3.6, analogous to its counterpart on SO(3) in Theorem 3.3.

Additionally, a tuning method was presented based on relaxed BMIs [Greiff
et al., 2021e], facilitating a theoretical comparison of the various controllers
in Sec. 3.9, as well as tuning guidelines supported by these numerical results.
The main takeaways from this discussion on controller tuning were that:

• Compared to the controllers on SU(2), the controllers on SO(3) give
comparatively large corrections for small errors when constraining the
controllers to yield an equal contribution to the torque control signal;

• There exist realistic physical initial error configurations in which the
attitude errors on SO(3) are close zero, whereas the attitude errors on
SU(2) are maximized;

• The robust versions of the controllers should be considered for tracking
problems with bounded load disturbances, but the controller gains then
need to be chosen with care in the presence of measurement noise.

In conclusion, we propose that the controller be chosen based on the shape
of the set of possible initial attitude errors, specifically with reference to the
magnitude of the initial errors characterized by φ. More generally, we suggest
using the SU(2)-controllers when the attitude tracking errors are assumed
to be large, and the SO(3)-controllers when they are assumed to be small,
as the latter gives more “bang for the buck” when in close proximity to a
zero tracking error. Furthermore, we suggest a tuning based on the intuition
presented in Sec. 3.9, or a direct solution of the associated bilinear matrix
inequality program, and that the controllers be compared and evaluated
in simulation for the specific system to be controlled before conducting a
real-time implementation. To facilitate this comparison, and to simplify their
use in experiments, the controllers were coded in C and published open-source
on CodeOcean and in the Julia package AerialVehicleControl.jl [Greiff, 2020].
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4
Full State Feedback: UAV
dynamics

4.1 Introduction

In this chapter, the previous results on trajectory tracking control for attitude
dynamics are used to construct feedback laws for the full UAV dynamics. In
the following, consider a description of the UAV dynamics with the transla-
tion velocities defined with respect to the global frame {G}, as summarized
in (2.19c)-(2.19f). The objective is to control this system, here restated as

Σ :


Σp :

{
ṗ = v

mv̇ = −mge3 + fRe3

Σa :

{
Ṙ = RS(ω)

Jω̇ = S(Jω)ω + τ

, (4.1)

along the trajectories of a reference system that obeys the same dynamics,

Σr :


Σpr :

{
ṗr = vr

mv̇r = −mge3 + frRre3

Σar :

{
Ṙr = RrS(ωr)

Jω̇r = S(Jωr)ωr + τ r

, (4.2)

when assuming full knowledge of the states (x,v,R,ω) ∈ R3×R3×SO(3)×R3.
It should be noted that this assumption of full state information is typically
violated in real-time implementations, which generally require the estimation
of the states in Σ from available measurements. In contrast to Chapter 3, we do
not explicitly consider additive input disturbances in the problem formulation,
instead opting to study the control system as sketched in Figure 4.1.
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(fr, τ r)

Σr

(pr,vr,Rr,ωr)

τ = G(·) Σ

(p,v,R,ω)

(f, τ )

Figure 4.1 Sketch of a full state feedback, G, for the UAV dynamics, Σ,
which is to follow a trajectory characterized by a reference system, Σr.

Given that the UAV translation dynamics in Σp behaves as a double integrator
in R3, it is relatively easy to construct a stabilizing feedback law, with
the exception of the input constraint that depends on R. An example is a
simple proportional-derivative (PD) feedback law in the translation dynamics,
resulting in a desired force fd ∈ R3 defined in the global frame. To actuate
Σp with this desired force, the UAV must be oriented in a specific manner.
For the purpose of designing such controllers, we recall the results on attitude
control derived in Chapter 3. Consider the computation of a so-called desired
attitude reference trajectory, here sub-indexed (·)d. Noting that the attitude
subsystem Σa can be actuated along any feasible reference trajectory satisfying
the attitude dynamics, the controller can be constructed by computing a
trajectory (Rd,ωd, ω̇d) ∈ SO(3)× R3 × R3 satisfying the same dynamics as
Σa
r , and that asymptotically converges to (Rr,ωr, ω̇r) ∈ SO(3) × R3 × R3.

This basic intuition will guide the forthcoming developments, and the problem
of designing a full state feedback is formulated concisely as follows.

Problem 4.1
Consider a system with a state x = (p,v,R,ω) ∈ R3 × R3 × SO(3) × R3,
with an associated reference trajectory xr = (pr,vr,Rr,ωr) ∈ R3 × R3 ×
SO(3)×R3, driven by (f, τ ) ∈ R≥0×R3 and (fr, τ r) ∈ R≥0×R3, respectively,
evolving by the UAV dynamics in (4.1) and (4.2), respectively. Assume that
the state x is known and design a feedback law, G, such that x → xr as
t→∞, and characterize the stability properties of the closed-loop system.2

4.1.1 Chapter Motivation
Due to the wide interest in UAVs within the research community and the in-
dustry alike, a variety of tools from control theory have been used to construct
full state feedback solutions to Problem 4.1. The very simplest solutions in-
clude proportional-integral-derivative (PID) controllers with errors expressed
in positions and Euler angles (see, e.g., [Bouabdallah et al., 2004; Luukkonen,
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2011; Garcia et al., 2012]). Such approaches can be analyzed and tuned with
respect to a linearized system model, but they can also be implemented and
tuned directly on the physical system. This explains the popularity of the PID
controller in practical applications, such as the Crazyflie and the PixHawk PX4
flight controllers [Bitcraze, 2021a; PixHawk, 2021]. Slightly more advanced
approaches that make direct use of the linearized system dynamics include
the linear quadratic regulators (LQR) (see, e.g., [Antsaklis and Michel, 2006]),
where a stabilizing linear feedback law is found to achieve linear quadratic
performance objective. Such controllers were developed for UAVs in [Bouab-
dallah et al., 2004] and demonstrated in practice with UAVs in [How et al.,
2008]. This family of controllers can be generalized to state-dependent LQR,
where the system is re-linearized and the associated optimization problem is
solved online. Recent results for UAVs demonstrating significant agility are
found in [Foehn and Scaramuzza, 2018]. The closely related approach of model
predictive control (MPC) involves solving an optimization problem online
over a moving horizon (see,e.g., [Garcia et al., 1989]). Similar to the LQR
approaches, the linear MPC has been applied to the problem of quadrotor
tracking, with experimental results in [Bouffard et al., 2012], and extensions
to nonlinear MPC-approaches in [Kaufmann et al., 2020], demonstrating
impressive complex maneuvers. For a recent survey, see e.g. [Kim et al., 2019].

Due to the high rates at which the measurements are sampled, it is not
uncommon to implement the UAV controllers at rates of 500-1000 [Hz]. Con-
sequently, stabilizing or tracking controllers are often implemented directly on
the processor of the UAV, which then comes with constraints on the available
computational power. While the computationally light linear feedback laws
can be implemented on smaller UAVs, they lack global stability properties. In
contrast, the more advanced methods such as state-dependent LQR in [Foehn
and Scaramuzza, 2018] and nonlinear MPC in [Kaufmann et al., 2020] require
significant computational resources. For large angle maneuvers with controllers
implemented directly on the processor of the UAV, it becomes interesting to
study simple feedback laws derived using the tools of nonlinear control theory.
Many such controllers are memory-less (unless integral action is introduced),
require few computations, and come with rigorous stability guarantees. For
UAVs, such methods include the dynamic feedback linearization in [Mokhtari
and Benallegue, 2004], the back-stepping control approaches in [Das et al.,
2009; Huang et al., 2010; Chen et al., 2016], and the sliding-mode control
in [Merheb et al., 2015]. For a relevant survey, see, e.g., [Mo and Farid, 2019].

The above nonlinear control approaches come with certain drawbacks.
For instance, control systems based on dynamic feedback linearization tend
to be sensitive to modeling errors. While applied to control a quadrotor
UAV in [Lee et al., 2009], such approaches are often found in combination
with of linear robust controllers. For instance, the work of [Ryan and Kim,
2013] addresses this problem by a secondary H∞/H2-performance objective
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relating to errors in the feedback linearization. The sliding mode control
approaches can give rise to chattering effects which may be prohibitive in
real-time implementations, and the back-stepping methods tend to become
extremely involved, making real-time implementations a challenging prospect.
As an alternative, simple yet powerful nonlinear geometric feedback laws can
be derived using the results in Chapter 3 and Lyapunov theory, leveraging
algebraic properties of the configuration manifolds in the controller design.

To this latter category of controllers, we count the seminal work in [Lefeber
et al., 2017], which shows UAGAS and ULES for the UAV system configured
on SO(3)× R3 using Lyapunov theory and cascade theorems, starting from
a variation of the attitude controller in Theorem 3.1. We also consider the
geometric control approaches in [Lee et al., 2010; Mellinger et al., 2012;
Goodarzi et al., 2013; Lee et al., 2013; Lee, 2015] for systems on SO(3)× R3,
based on the controllers in Theorem 3.2 and 3.3. Similar controllers include
those developed for H × R3 in [Brescianini et al., 2013; Brescianini and
D’Andrea, 2018], based on variations of the attitude controllers in Theorem 3.4
and 3.5. These works present powerful controllers leveraging the solutions
in Chapter 3, and directly address Problem 4.1. Their implementations are
computationally light, and yield global or almost global closed-loop stability
or attractiveness properties of the tracking errors in an idealized setting
(without disturbances and noise). When combined with reference generation
utilizing differential flatness, the tracking performance of such control systems
rivals the state of the art nonlinear MPC approaches (see [Sun et al., 2021]).

Given this introduction to nonlinear UAV control, we stress that Prob-
lem 4.1 is solved when considered in the idealized setting with full state
information. Consequently, we discuss how these controllers are related, high-
lighting considerations that need to be made when considering a real-time
implementation, and demonstrate how they can be used to perform large-angle
maneuvers in practice. We stress that all of the controllers presented in this
chapter require full state information. When combined with an independently
designed estimator, this introduces additional memory and dynamics which
may lead to instability. Recall, the cascade of two stable systems, in this case
the tracking error dynamics and the estimation error dynamics, need not be
stable unless stringent conditions on the systems and their interconnection
are satisfied (see Sec. 2.5). Despite this, the controllers in this chapter work
exceptionally well in practice, as the forthcoming examples will demonstrate.

4.1.2 Contributions
In this chapter, we demonstrate how the attitude controllers from Chapter 3
can be leveraged to control the full UAV dynamics in the form stated in (4.1).
In particular, we focus on the continuous geometric attitude controller on
SO(3) and its counterpart on SU(2). These results and their extensions to the
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UAV dynamics are considered the state of the art for nonlinear UAV control. A
new stability proof for continuous and discontinuous controllers on SU(2)×R3

is given, following the same geometric ideas in [Lee et al., 2010]. This should be
seen as a minor contribution, as tangential results have been given in different
notations in [Brescianini et al., 2013; Brescianini and D’Andrea, 2018]. But it
is worth noting that these last two works do not provide a complete stability
proofs for the positional and attitude tracking errors, which are given in this
chapter. While we seek to clarify how the controllers are related, the main
contribution of this chapter lies in the discussion of the considerations that
are required in a real-time implementation, and subsequent demonstration of
the presented controllers both in simulation and in practice.

4.1.3 Overview
We start by presenting the geometric controller on SO(3)× R3 in [Lee et al.,
2010]. This is done in Sec. 4.2, commenting on considerations than need to be
made when implementing the controller in real-time. This is followed by the
presentation of an analogous result on SU(2)×R3 in Sec. 4.3. Both controllers
are demonstrated in simulation examples, followed by two real-time examples
in Sec. 4.4. The summary in 4.5 concludes the chapter, highlighting the
benefits and drawbacks of using the proposed controllers. To give an overview
of the chapter, the results and examples are summarized in Table 4.1.

Table 4.1 Overview of the results and examples of Chapter 4. Here, 1

indicates work of others, proofs given elsewhere; 2 indicates work tangential
with others, but with independent proofs given; and 3 indicates new work.

Reference Description

Prop. 4.1 1 Continuous geometric control on SO(3)× R3,
originally in [Lee et al., 2010, Prop. 3]

Prop. 4.2 1 Asymptotic attractiveness result associated
with Prop. 4.1, given in [Lee et al., 2010, Prop. 4]

Prop. 4.3 2 Continuous and discontinuous geometric control
on SU(2)× R3, not yet published elsewhere

Prop. 4.4 2 Asymptotic attractiveness result associated
with Prop. 4.3, not yet published elsewhere

Example 4.1 Simulation example with Prop. 4.1, circular maneuver
Example 4.2 Simulation example with Prop. 4.3, looping on a torus
Sec. 4.4.1 Real-time example with Prop. 4.3, spiraling maneuver
Sec. 4.4.2 Real-time example with Prop. 4.3, supermarket inventorying
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4.2 Geometric Control on SO(3)× R3

A rigorous solution to Problem 4.1 is given in [Lee et al., 2010] and with more
detail in [Lee et al., 2011]. This controller is here stated for the UAV dynamics
as defined in (4.1). The main difference is that the force, f , is positive along b3

(instead of being positive along −b3 as assumed in [Lee et al., 2010; Lee et al.,
2011]). A set of translation control errors are defined in ep = p − pr ∈ R3

and ev = v−vr ∈ R3. Combined with the reference acceleration, these errors
can be used to compute a desired force in {G}, as

fd = −kpep − kvev +mge3 +mp̈r. (4.3)

As the considered system Σ in (4.1) is only capable of generating forces
along the b3-direction, its attitude needs to be controlled to a desired attitude,
Rd(t) ∈ SO(3), which transiently may differ from Rr(t) ∈ SO(3) when
correcting for the errors in ep and ev. Consider expressing this attitude in
terms a set of desired body basis vectors bd,i ∈ R3, forming a desired body
frame {Bd}. It is clear that bd,3 = fd/‖fd‖, but the final degree of freedom
can be fixed in many ways. Three such examples are given below, where:

(i) the body basis vector bd,1 is provided explicitly;

(ii) the body basis vector bd,1 is computed from Rr;

(iii) the body basis vector bd,1 is defined with respect to bd,3.

In the second case, (ii), the desired body direction can be computed through
a sequence of projections as outlined in [Lee et al., 2010], where

bd,1 = − 1

‖bd,3 × br,1‖
(bd,3 × (bd,3 × br,1)). (4.4)

This permits a construction of the desired rotation, desired attitude rate and
desired attitude rate time-derivative for case (i) and case (ii), as

Rd =
[
bd,1 (bd,3 × bd,1) bd,3

]
∈ SO(3), (4.5a)

ωd = [R>d Ṙd]
∨
SO(3) ∈ R3, (4.5b)

ω̇d = [Ṙ
>
d Ṙd +R>d R̈d]

∨
SO(3) ∈ R3. (4.5c)

Alternatively, in the case (iii), the element RA = ExpSO(3)([a]∧SO(3)) ∈ SO(3)
that minimizes the rotational angle ‖a‖, and aligns fd and e3 in the sense
that bd3 , (b1; b2; b3) = RAe3, can be expressed in bd3 as

RA =


1− b21

1+b3
− b1b2

1+b3
b1

− b1b2
1+b3

1− b22
1+b3

b2

−b1 −b2 b3

 ∈ SO(3), (4.6)
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which may subsequently be combined by a rotation

RB =

cos(ψr) − sin(ψr) 0
sin(ψr) cos(ψr) 0

0 0 1

 ∈ SO(3). (4.7)

The desired rotation can then be formed as Rd = RARB ∈ SO(3). This is
the same idea as used in computing the desired quaternion in [Brescianini
and D’Andrea, 2018], where an angle α = atan2(

√
f2
d1 + f2

d2, fd3) defines

n =
1√

f2
d1 + f2

d2

−fd2

fd1

0

 , qA =


cos(α2 )
n1 sin(α2 )
n2 sin(α2 )
n3 sin(α2 )

 , qB =


cos(ψr

2 )
0
0

sin(ψr

2 )

 , (4.8)

forming the desired quaternion qd = qA� qB . Here, it is simple to verify that
RARB = EH

SO(3)(qA � qB) through the embedding in Definition 2.17, and it
should be noted that qA in (4.8) is undefined as bd3‖e3, unlike RA in (4.6),
which is only undefined as bd3 · e3 = −1.

Remark 4.1
While the approach to computing the reference rotation in (ii) is undefined
when bd,3‖br,1, the approach in (iii) is only undefined as bd,3 = −e3. As
such, both approaches contain singularities which need to be dealt with in
an implementation, and the system may exhibit significant volatility close to
these points. Apart from considering highly extreme maneuvers, this generally
does not pose any problems in practice. However, if a trajectory is planned
such that bd,3 6= −e3 and bd,3‖br,1, then it may instead be favorable to
compute the desired rotation by integration on SO(3). Instead of considering
the alignment of bd,3(t) and e3 at a time t, we can in the same way consider
the alignment of bd,3(t) and bd,3(t− h) in an element δR(t) as pointed out
in [Greiff and Robertsson, 2018], letting RA(t) = δR(t)RA(t−h), where then

bd,3(t) = δR(t)bd,3(t− h) = δR(t)RA(t− h)e3 = RA(t)e3. (4.9)

As such, RA(t) is well defined if {δR(t − hk) ∈ SO(3)|t◦ ≤ hk ≤ t, k ∈ N}
are well defined, facilitating non-singular reference generation for any given
maneuver, provided that h is sufficiently small in relation to (d/dt)RA. 2

With a desired reference trajectory (Rd,ωd, ω̇d), computed using any of
the methods (i), (ii) and (iii), the geometric tracking controller in [Lee et al.,
2010, Proposition 3] can be expressed in the notation of the thesis as follows.
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Proposition 4.1—Geometric Control on SO(3)× R3

Consider the dynamics (4.1) controlled by a feedback where:

• the torques, τ , are computed by the controller (3.11) in Theorem 3.2
implemented to track a desired attitude trajectory (Rd,ωd, ω̇d);

• the desired attitude reference trajectory is formed by (4.5); and

• the actuating force is computed as f = fd ·Re3, with the desired force
fd computed as described in (4.3).

Assume that:

(A1) the reference trajectory (Rd,ωd, ω̇d) is well defined at all times;

(A2) there exists a bound ‖mge3 +mp̈r‖ ≤ Bf for all t ≥ t◦;

(A3) the initial attitude error satisfies Ψ(Rd(t◦),R(t◦)) ≤ φ < 1;

(A4) the initial positional error satisfies ‖ep(t◦)‖ < Bp for a fixed Bp > 0;

(A5) the controller parameters (kp, kv, kR, kω, ca, cp) ∈ R6
>0, are chosen such

that for an α =
√
φ(2− φ) < 1, the matrices

Maa
1 , 1

2

[
kR −ca
? λm(J)

]
, Mpp

1 , 1

2

[
kp −cp
? m

]
, (4.10)

Maa
2 , 1

2

[
2kR
2−φ ca
? λM (J)

]
, Mpp

2 , 1

2

[
kp cp
? m

]
,

W aa =

[ cakR
λM (J) − cakw

2λm(J)

? kω − ca

]
, W pp ,

[
cpkp
m (1− α) − cpkv2m (1 + α)

? kv(1− α)− cp

]
,

are all positive definite, and there exist a matrix

W pa ,
[

Bf cp
m 0

Bf + kpBp 0

]
, (4.11)

such that Bz = 4λm(W aa)λm(W pp)− ‖W pa‖2 > 0.

Let zp = (‖ep‖; ‖ev‖) ∈ R2
≥0, za = (‖eR‖; ‖eω‖) ∈ R2

≥0, and define a domain

D =



ep(t◦)
ev(t◦)
eR(t◦)
eω(t◦)

 ∈ R12

∣∣∣∣∣
Ψ(Rd(t◦),R(t◦)) ≤ φ < 1,

‖eω(t◦)‖2 ≤ 2
λM (J)kR(φ−Ψ(Rd(t◦),R(t◦))),

λM (Maa
2 )‖za(t◦)‖2 + λM (Mpp

2 )‖zp(t◦)‖2 ≤ 1
2kpB

2
p

 ,

(4.12)

Given (A1)-(A5), the point (ep, ev, eR, eω) = (0,0,0,0) is UES on D.2
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4.2 Geometric Control on SO(3)× R3

Proof. The proof is given in [Lee et al., 2011, Appendix B and D], and
follows by the analysis of a Lyapunov function candidate

V̄ =
1

2
kp‖ep‖2 +

1

2
m‖ev‖2 + cpep ·ev+kRΨ(Rd,R) + caeR ·eω+

1

2
eω ·Jeω.

(4.13)
Given the assumptions (A1)-(A5), for sufficiently small cp > 0 and ca > 0, it
is shown that there exist positive definite matrices M̄1,M̄2, W̄ ∈ R4×4, and
a representation of the errors z̄ = (‖ep‖; ‖ev‖; eR‖; ‖eω‖) ∈ R4

≥0, such that

z̄>M̄1z̄ ≤ V̄ ≤ z̄>M̄2z̄,
˙̄V ≤ −z̄>W̄ z̄, (4.14)

along the solutions of the error dynamics. The proof can subsequently be
completed using a result such as Theorem 2.5 to show UES. 2

The domain D may seem overly restrictive, and it is reasonable ask how
the system behaves when initialized outside of this domain. Just as with the
geometric attitude control in Theorem 3.2, the origin of the error dynamics
can be shown to be asymptotically attractive for much larger errors, see [Lee
et al., 2010, Proposition 4], but does not result in an almost global result as
defined in this thesis. To highlight this result, it is stated below.

Proposition 4.2
Consider the system Σ in (4.1) in closed-loop feedback with Proposition 4.1,
but instead of assumption (A3), assume that the initial errors satisfy

Ψ(Rd(t◦),R(t◦)) ≤ φ < 2, (4.15a)

‖eω(t◦)‖2 ≤
2

λM (J)
kR(φ−Ψ(Rd(t◦),R(t◦))). (4.15b)

Then the origin (ep, ev, eR, eω) = (0,0,0,0) is asymptotically attractive. 2

Proof. The proof is given in [Lee et al., 2010, Appendix E], and follows by
showing boundedness of solutions before the errors approach D, as defined
in (4.12), after which the errors decay exponentially to the origin. 2

Remark 4.2
It is worth noting that due to the equivalence between Theorem 3.1 and
Theorem 3.2, the condition in (4.15b) can generally be ignored in practice,
as all solutions asymptotically to an element in the set Re ∈ {I} ∪ E with
E = {Re ∈ SO(3) | Tr(Re) = −1} forming a line on SO(3), and every
equilibrium point associated with an element of E is unstable by Theorem 3.1.2

Having presented this result, we will now discuss some of the assumptions
and their consequences when implementing the controller in real-time.
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Remark 4.3
While the constant Bf in Assumption (A2) is known in the reference trajectory,
Assumption (A1) cannot generally be guaranteed, as both fd and bd,3 are
defined in the controller errors (ep, ev). Consequently, when implementing
the controller, special checks need to be made to catch the cases where the
reference rotation approaches a point for which Rd is undefined. This can be
avoided by carefully designing the reference trajectory and assuming small
attitude errors, or resorting to the integration outlined in Remark 4.1, but
generally only becomes a problem during extreme large-angle maneuvers. 2

Remark 4.4
The system exhibits asymptotic attractiveness properties when initialized far
outside of the domain of exponential attraction, as pointed out in Proposi-
tion 4.2 and Remark 4.2. However, the force may be negative transiently if
(A3) is violated and the system is initialized outside of D. This becomes a
significant problem when actuating the UAV from large initial errors with
rotors that only spin in a single direction (as the f has to be positive under
the rotor model in Sec. 2.2.4). In practice it is uncommon to have fd · b3 < 0,
unless considering extreme maneuvers such as accelerating downward from a
hovering state with an acceleration greater than the gravitational acceleration.
As we shall see in later examples, it is rare to have negative forces even in
extremely aggressive looping maneuvers from large initial errors. 2

Remark 4.5
A more serious drawback of the controller in Proposition 4.1 is the need for
computing the first and second time-derivatives of Rd when evaluating the
desired attitude reference trajectory in (4.5). It should be noted that Rd is a
function of ep and ev, both of which are formed directly by the true states
p and v, which typically contain noise when estimated in practice. As such,
any evaluation of (ωd, ω̇d) requires the signals (ėx, ëx, ėp, ëp) to be known.
Unless a dedicated estimator is constructed, these signals have to be evaluated
using numerical differentiation, which generally becomes problematic. 2

In real-time implementations, the states of the system Σ in (4.1) are often
estimated from a set of measurements by a filter. If so, the signal ėv = p̈− p̈r
can be computed in the estimates through (2.19f), facilitating an evaluation
ωd in the memory if assuming knowledge of (pr, ṗr, p̈r,

...
p r,Rr, Ṙr). However,

the signal ω̇d typically becomes very noisy in real-time implementations, and
as such, it is often advantageous to simply assume small desired attitude
accelerations and let ω̇d = 0. This naturally sacrifices tracking performance
and stability guarantees, especially during volatile large-angle maneuvers, but
still results in good tracking performance if ωd is small. Before showing this,
we first consider the tracking performance of Proposition 4.1 in an idealized
setting, using numerical differentiation to compute (Rd,ωd, ω̇d).
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4.2 Geometric Control on SO(3)× R3

Example 4.1
To demonstrate the properties of the controller in Proposition 4.1, consider a
simulation where a UAV is actuated along a circular trajectory. This reference
trajectory is defined in the flat output space of the UAV, as

γ(t) = (3 sin(t); 3 cos(t); 0; −t) ∈ FΣ, (4.16)

and subsequently expanded through the differential flatness equations to yield
the signals (pr, ṗr, p̈r,Rr). Instead of using the complete state trajectory,
the direction br,1 is computed from Rr, and used to define Rd though (4.4)
and (4.5), with the signals ωd and ω̇d computed by numerical differentiation
of Rd. The UAV system is defined with random initial conditions sampled
from p(t◦),v(t◦) ∼ U([−1, 1]3), and with significant initial attitude rate
ω(t◦) ∼ U([−3, 3]3) and R(t◦) ∼ U(SO(3)), here realized as

R(t◦) =

 0.51 −0.05 −0.86
−0.78 0.41 −0.48
0.37 0.91 0.17

 ∈ SO(3). (4.17)

The system parameters are taken as m = 0.1 with g = 10, and the inertia is
randomized such that λm(J) = 0.05 and λM (J) = 0.1, here realized as

J =

0.08 0.01 0.02
0.01 0.07 0.00
0.02 0.00 0.07

 , (4.18)

when rounded to two digits. The controller in Proposition 4.1 is used to
actuate the UAV along this reference trajectory, here tuned with

kR = 4, kω = 1, kp = 0.3, kv = 0.09. (4.19)

The resulting system response is depicted in Figure 4.2, and relevant signals
of the controlled system are plotted as function of time in Figure 4.3. Here,
the attitude rates and control signals associated with the reference trajectory
(ωr, fr, τ r) show the convergence of the tracking errors, despite not being
explicitly used in the control system when implemented in this manner.

In this example, we note that near-perfect tracking is achieved over the 10
seconds during which the system is simulated, despite the very large initial
attitude errors. We also note that the distance Ψ(Rd,R) quickly decays, but
the distance Ψ(Rr,R) increases slightly as the translation error dynamics
converge to the intended reference trajectory. For this example, Bp = 2.52,
and given the reference trajectory, we can chose Bf = 1.2. Given these
bounds and the parameter tuning in (4.19), the system is initialized outside
of the domain of exponential attraction D in (4.12), indeed it is initialized
outside of the region defined in Proposition 4.2 as well. However, due to
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Figure 4.2 Simulated system response of Σ in (4.1) when controlled along
Σr in (4.2) defined by the flat output trajectory in (4.16) using geometric
controller in Proposition 4.1. Illustration of the system configurations, with
the positional reference trajectory (blue), the positional trajectory (black),
and the system attitude illustrated temporally equidistant over t ∈ [0, 10]
using the same color coding of the body basis vectors as used in Figure 2.5
and Figure 2.6. Left: Trajectory in three-dimensional space. Right: Projection
onto the-e1e2 plane. The simulated system response is shown in the video
chapter-4-simulations.mp4.

the asymptotic attractiveness properties of the controller, it converges to
a small tracking error nonetheless. As the errors induced by the numerical
differentiation in computing (ωd, ω̇d) using (4.5), the tracking errors do not
decay to machine precision in this example (as expected). The bounds on V̄
and its time-derivative ˙̄V are here satisfied at all times, with M̄1,M̄2, and
W̄ constructed from (4.10) and (4.11) described in [Lee et al., 2011]. 2

Remark 4.6
When the control system is implemented with numerical differentiation of Rd

to compute ωd and ω̇d, the real-time implementation simplifies significantly,
as the full flatness expansion is not needed. In this case, it is sufficient to
know (pr, ṗr, p̈r,Rr) to implement the controller. However, if taking this
approach, measurement noise may severely corrupt the signal Ṙd and even
more so R̈d. As such, the controller implementation in Example 4.1 might
not be well suited for real-time applications, depending on the noise levels.2

To summarize this section, the controller in Proposition 4.1 originally pre-
sented in [Lee et al., 2011, Propositions 3 and 4] is very powerful, yielding UES
of an equilibrium point corresponding to a zero tracking error when initialized
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Figure 4.3 Simulated response of the UAV dynamics Σ in (4.1) when
controlled along Σr in (4.2) by the full state feedback in Proposition 4.1.
Top, left: The computed reference force fr (gray) and control signal force f
(blue). Top, right: The reference torques τ r (gray) and computed control
signal torques τ (blue). Top center, left: The positional reference pr (gray)
and response p (blue). Top center, right: The velocity reference vr (gray)
and response v (blue). Bottom center, left: The attitude error in the Ψ-
distance on SO(3) with respect to the reference rotation Rr (black) and the
desired rotation Rd (blue). Bottom center, right: The attitude rate reference
ωr (gray) and response ω (blue). Bottom, left: The Lyapunov function V
in (4.13) in the 10-logarithm, and the associated quadratic bounds. Bottom,
left: The Lyapunov function time-derivative, and its associated bound. The
simulated system response is shown in the video chapter-4-simulations.mp4.

115

https://youtu.be/Wd33lfRUkxY


Chapter 4. Full State Feedback: UAV dynamics

on the domain D in (4.12), and asymptotic attractiveness for large attitude
errors as per Proposition 4.2. There are, however, some caveats to this control
system, as highlighted in Remark 4.3 and 4.4 relating to the Assumption (A1)
and (A3). But the most critical problem in the controller design is summa-
rized in Remark 4.5 and relates to the computation of the desired reference
trajectory (Rd,ωd, ω̇d). When considering real-time implementations, we
require either dedicated estimators, or numerical differentiation of potentially
noisy control errors, or removal of parts of the dynamic feed-forward terms
involving ω̇d (then sacrificing the proven stability properties). Even so, we
emphasize that this result is very powerful and incredibly useful in practice.

4.3 Geometric Control on SU(2)× R3

Given the strong similarities between the stability proofs of the attitude
controllers on SO(3) and SU(2), it should come as no surprise that an very
similar geometric controllers can be constructed for systems on SU(2)× R3.
However, one significant different is that we now require an attitude reference
Xd ∈ SU(2). As discussed in Chapter 2, the conversion of an element R ∈
SO(3) to X ∈ SU(2) is not unique, as R = E

SU(2)
SO(3)(±X). When constructing

the desired reference trajectory, an element Rd can be computed as described
in Sec. 4.2, before choosing one of the possible elements ±Xd ∈ SU(2).
If working with the discontinuous attitude controller, this choice does not
affect the closed-loop system, as the errors decay regardless of the controller
switching. However, if considering the continuous attitude controller, the
desired attitude needs to be chosen with care such that Xd is continuous in
time to avoid the phenomenon of dynamical unwinding (see Remark 3.5).

Remark 4.7
In a controller implementation running at a time-step of h [s], enforcing
continuity in Xd(t) is rather simple. It can be done at a time t by computing
one of the two elements X̄d(t) ∈ SU(2) associated with Rd(t) ∈ SO(3), taking

Xd(t) =

{
+X̄d(t), if Γ(X̄d(t),Xd(t− h)) < Γ(−X̄d(t),Xd(t− h))

−X̄d(t), otherwise
.

The computation of X̄d from Rd can be done though Definition 2.17, or by
other methods (e.g., using the ideas in [Bar-Itzhack, 2000]). 2

It should be noted that the introduction of memory to ensure continuity
of a quaternion was in fashion to Remark 4.7 was proposed in [Mayhew
et al., 2012]. Assuming that a desired reference trajectory can be computed
as described through Remark 4.7, a result analogous to Proposition 4.1 can
be given for dynamics configured on SU(2)× R3 as follows.
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4.3 Geometric Control on SU(2)× R3

Proposition 4.3—Geometric Control on SU(2)× R3

Consider the dynamics (4.1) controlled by a feedback where:

• the torques, τ , are computed by the controller Theorem 3.4 implemented
to track a desired attitude trajectory (Xd,ωd, ω̇d);

• the desired attitude reference trajectory is formed by (4.5), expanding
Rd or qd into Xd ∈ SU(2), and enforcing continuity by Remark 4.7;

• the actuating force is computed as f = fd ·Re3, with the desired force
fd computed as described in (4.3).

Assume that:

(A1) the reference trajectory (Xd,ωd, ω̇d) is well defined at all times;

(A2) there exists a bound ‖mge3 +mp̈r‖ ≤ Bf for all t ≥ t◦;
(A3) the initial attitude error satisfies Γ(Xd(t◦),X(t◦)) ≤ φ < 2−3;

(A4) the initial positional error satisfies ‖ep(t◦)‖ < Bp for a fixed Bp > 0;

(A5) the controller parameters (kp, kv, kX , kω, ca, cp) ∈ R6
>0, are chosen such

that for α = 2
√

2φ, the matrices

Maa
1 , 1

2

[
4kX −ca
? λm(J)

]
, Mpp

1 , 1

2

[
kp −cp
? m

]
, (4.20)

Maa
2 , 1

2

[
8kX
2−φ ca
? λM (J)

]
, Mpp

2 , 1

2

[
kp cp
? m

]
,

W aa =

[ cakX
λM (J) − cakw

2λm(J)

? kω − ca
4

]
, W pp ,

[
cpkp
m (1− α) − cpkv2m (1 + α)

? kv(1− α)− cp

]
,

are all positive definite, and there exist a matrix

W pa , 4

[
Bf cp
m 0

Bf + kpBp 0

]
, (4.21)

such that Bz = 4λm(W aa)λm(W pp)− ‖W pa‖2 > 0.

Let zp = (‖ep‖; ‖ev‖) ∈ R2
≥0, za = (‖eX‖; ‖eω‖) ∈ R2

≥0, and define a domain

D =



ep(t◦)
ev(t◦)
eX(t◦)
eω(t◦)

 ∈ R12

∣∣∣∣∣
Γ(Xd(t◦),X(t◦)) ≤ φ < 2−3,

‖eω(t◦)‖2 ≤ 2
λM (J)kX(φ− Γ(Xd(t◦),X(t◦))),

λM (Maa
2 )‖za(t◦)‖2 + λM (Mpp

2 )‖zp(t◦)‖2 ≤ 1
2kpB

2
p

 ,

(4.22)

Given (A1)-(A5), the point (ep, ev, eX , eω) = (0,0,0,0) is UES on D. 2
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Proof. The proof is given in Appendix B.8 and with more details in [Greiff
et al., 2021c]. Similar to the proof of [Lee et al., 2010, Proposition 2], it follows
by defining a Lyapunov function candidate

V̄ =
1

2
kp‖ep‖2 +

1

2
m‖ev‖2 +cpep ·ev+kXΓ(Xd,X)+caeX ·eω+

1

2
eω ·Jeω.

(4.23)
Given the assumptions (A1)-(A5), it is shown all solutions initialized on D
remain on this domain for all t ≥ t◦. Furthermore, it is shown V̄ is continuously
differentiable, and there exist a set of positive constants c1, c2, c3 > 0 expressed
in the eigenvalues of the matrices in (4.20) and the norm of (4.21), such that

c1‖z̄‖2 ≤ V̄ ≤ c2‖z̄‖2, (d/dt)V̄ ≤ −c3‖z̄‖2, (4.24)

where z̄ = (‖ep‖; ‖ev‖; ‖eX‖; ‖eω‖). This holds for all solutions of the error
dynamics on D. Applying Theorem 2.5 shows UES of z̄ = 0 on D. 2

While powerful, it should be noted that the geometric controller on
SU(2)×R3 in Proposition 4.3 suffers from the same problems as the geometric
controller on SO(3)× R3 in Proposition 4.1, as outlined in Remarks 4.3, 4.4,
and 4.5. It can encounter singularities in the computation of the desired
reference attitude, it can result in negative actuation forces, and it too
requires the numerical differentiation of the control errors to be implemented.

Remark 4.8
A completely analogous proof can be made with the discontinuous geometric
controller on SU(2) in Theorem 3.5, then omitting the need for keeping the
reference and system attitude continuous on SU(2). While such a controller can
yield poor robustness properties for specific classes of disturbances, it does not
require Xd(t) and X(t) to be continuous on SU(2), and the element selection
in Remark 4.7 need not be used. In this case, the Lyapunov function is instead
constructed using the function V± in (3.51) associated with Theorem 3.5, as

V̄± =
1

2
kp‖ep‖2 +

1

2
m‖ev‖2 + c1ep · ev + V±. (4.25)

The proof cannot be completed with Theorem 2.5, but has to be done using
the comparison lemma (see, e.g., [Khalil, 1996, Lemma 2.5]). This yields
exponential stability on a domain that can be expressed similar to (4.22). 2

Just as asymptotic attractiveness of the origin can be shown for all initial
errors satisfying Ψ(Rd(t◦),R(t◦)) < 2 for Proposition 4.1 in Proposition 4.2,
a similar result can be derived for the geometric controller on SU(2)× R3.
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Proposition 4.4
Consider the system Σ in (4.1) in closed-loop feedback with Proposition 4.3,
but instead of assumption (A3), assume that the initial errors satisfy

Γ(Xd(t◦),X(t◦)) ≤ φ < 2, (4.26a)

‖eω(t◦)‖2 ≤
2

λM (J)
kX(φ− Γ(Xd(t◦),X(t◦))). (4.26b)

Then the origin (ep, ev, eX , eω) = (0,0,0,0) is asymptotically attractive.2

Proof. This becomes completely analogous to the proof in [Lee et al., 2010,
Appendix E], therefore omitted for brevity. It follows by showing boundedness
of solutions on t ∈ [t◦, t∗], before the errors approach D as defined in (4.12)
at a finite time t∗, after which the errors decay exponentially to the origin.2

A simulation example is given for an extremely aggressive maneuver,
here with the desired attitude accelerations ω̇d are removed as described in
Remark 4.6 to show how such approximations affect the tracking performance.

Example 4.2
To demonstrate the controller in Proposition 4.3 for extremely aggressive
trajectory tracking, consider a simulation where a UAV is actuated along a
trajectory defined on the surface on a torus, defined parametrically in {G}, as

T (u, v) = (R+r cos(u)) cos(v)e1+(R+r cos(u)) sin(v)e2+r sin(u)e3 ∈ R3,

where u, v ∈ [0, 2π], R > r > 0. Take a flat output trajectory for a UAV, as

γ(t) = (T (ωut, ωvt); ωvt) ∈ FΣ. (4.27)

The velocity of the trajectory is given by ωu = 1.2π and ωv = 0.2π, with
the size of the torus determined by R = 6 and r = 2. This corresponds
to a translation speed of ‖vr(t)‖ = (ω2

v(r cos(ωvt) + R)2 + r2ω2
u)1/2 such

that ‖vr(t)‖ ∈ [7.95, 9.06], and is too fast to be followed by a Crazyflie 2.0
UAV [Bitcraze, 2021c] that will be used in the forthcoming experiments (see
Sec. 4.4). This example mainly serves to demonstrate the excellent trajectory
tracking properties of the controller in Proposition 4.3.

The defined flat output trajectory is subsequently expanded through the
differential flatness equations to yield the reference signals (pr, ṗr, p̈r,Rr).
Instead of using the complete state trajectory, the direction br,1 is computed
from Rr, and used to define Rd though (4.4) and (4.5). The signal ωd is
computed by numerical differentiation of Rd, but we let ω̇d = 0 for all times.
For this example, the geometric controller on SU(2) is implemented using the
discontinuous controller in Theorem 3.5, and as such, we do not need to define
a continuous reference trajectory Xd(t) by Remark 4.7. With this setup, the
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Figure 4.4 Simulated system response of the UAV dynamics Σ in (4.1)
when controlled along Σr in (4.2) defined by the flat output trajectory
in (4.27) when using the geometric controller in Proposition 4.3. Illustration
of the system configurations, with the positional reference trajectory (blue),
the positional trajectory (black), and the system attitude illustrated tem-
porally equidistant over t ∈ [0, 20] using the same color coding of the body
basis vectors as used in Figure 2.5 and Figure 2.6. Left: Trajectory in three-
dimensional space. Right: Projection onto the-e1e2 plane. The simulated
system response is shown in the video chapter-4-simulations.mp4.

UAV is defined with initial conditions and parameters realized exactly the
same as in Example 4.1, and the controller is tuned with

kX = 8, kω = 2, kp = 0.2 kv = 0.13. (4.28)

The resulting system response is illustrated with its configurations in Figure 4.4
and relevant signals in time in Figure 4.5. In the latter, the attitude rates
and control signals associated with the reference trajectory (ωr, fr, τ r) are
also depicted, despite not being used explicitly in the control system.

As the state of the simulation evolves directly on SU(2), the trajectory
X(t) is continuous in time, while the desired attitude Xd(t) may exhibit
discontinuous jumps in time when Remark 4.7 is not implemented. As such,
we observe expected periodic discontinuous jumps in the Γ(Xd,X). However,
in all of these jumps, the Lyapunov function remains continuous. We note
that the force f converges to a trajectory that is very similar to the force
fr computed in the flatness expansion, but there is a significant difference
between the torques τ r and τ . This is due to the disturbances introduced
by removing ω̇d = 0 in the feedback law. The induced disturbance gives
rise to asymptotic errors that are visible in the Lyapunov function, clearly
indicating the presence of small asymptotic errors. However, despite the
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Figure 4.5 Simulated system response of the UAV dynamics Σ in (4.1)
when controlled along Σr in (4.2) defined by the flat output trajectory
in (4.27) with the full state feedback in Proposition 4.3 implemented with
the discontinuous attitude controller in Theorem 3.5. Top, left: The reference
force fr (gray) and the computed control signal force f (blue). Top, right:
The reference torque τ r (gray) and the computed control signal torques
τ (blue). Center, left: The positional reference pr (gray) and the response
p (blue). Center, right: The velocity reference vr (gray) and the response
v (blue). Bottom, left: The attitude error in the Γ-distance on SU(2) with
respect to the reference rotation Xr. Bottom, right: The Lyapunov function
V in (4.25) in the 10-logarithm. The simulated system response is shown in
the video chapter-4-simulations.mp4.

volatile trajectory, excellent tracking is still observed. If the noise levels in a
real-time implementation makes it prohibitive to compute ω̇d in the control
errors, good tracking can typically be achieved when setting this term to zero.
However, this will depend on the desired motion and the system’s inertia.2
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Chapter 4. Full State Feedback: UAV dynamics

4.4 Real-Time Examples

In this section, the controller in Proposition 4.3 used in Example 4.2 is
implemented on a small Crazyflie 2.0 UAV [Bitcraze, 2021c] and run in real-
time. This is done for two separate scenarios. The first shows a spiraling
maneuver using Ultra-Wideband measurements (see Sec. 4.4.1), and the second
demonstrates how the controllers can be used for inventorying tasks using an
on-board camera and simultaneous localization and mapping (see Sec. 4.4.2).

The control system in these examples consists of three components: (i)
a reference generator, (ii) an estimator, and (iii) a controller. As such, it
follows a conventional control system design with an independently developed
estimator and controller, taking the estimates as input to a full state feedback
solution to Problem 4.1. The components of the control system are described
below in brevity to give a holistic view of the software implementation.

(i) The reference generator is implemented in the Crazyflie firmware as
described in [Greiff, 2017], permitting independent planning of the flat
outputs of the UAV, comprised of the global position, p, and the system
yaw, ψ. A trajectory is represented as a sequence of splines in each
dimension, which can be comprised of polynomial curves, Bézier curves,
sinusoidal curves, simple way-points, or any combination thereof. In the
case of the way-points, these are smoothed to ensure a sufficient degree
of continuity using the system, Σf , outlined in (2.25), with m = 4 and
q = 5. Regardless of its parameterization, the flat output trajectory
is expanded into a full state and control signal trajectory using the
flatness equations associated with the UAV dynamics Σ in (2.19).

(ii) To estimate the states of the UAV, the multiplicative scalar-update
extended Kalman filter in Bitcraze’s stock firmware is used. For addi-
tional details on the filter implementation, refer to [Mueller et al., 2015;
Mueller et al., 2016] or see the source code in [Bitcraze, 2021b].

(iii) In all of the examples, the controller is implemented as described in
Proposition 4.3, using the discontinuous attitude controller on SU(2) in
Theorem 3.5 implemented with ω̇d = 0, taking the approach in (4.8)
to synthesize a desired attitude qd ∈ H. Thus, the implementation
corresponds closely to the controller used in the simulation of the torus
looping maneuver in Example 4.2, but here executed at approximately
500 [Hz] instead of being run in continuous time.
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Figure 4.6 UWB anchor setup in the robotics laboratory, with the radio
anchors and the convex hull of their positions highlighted in blue, and the
Crazyflie UAV is marked in red. The global frame {G} is defined at the
anchor A0, and anchor A5 is located outside of the picture above anchor A1.

4.4.1 Aggressive Spiraling Maneuver
In this example, the Crazyflie is run with Bitcraze’s Loco Positioning sys-
tem [Bitcraze, 2021d], and set to takeoff and track a reference trajectory
defined by a sequence of steps, followed by a rapid spiraling maneuver. The
experimental setup is depicted in Figure 4.6, with the UWB anchors indicated
in blue, and the convex hull of the anchors forming a triangular prism shape.
In this example, the system is run in a two-way-ranging mode, and from the
theory of UWB multilateration [Mueller et al., 2015], the flight-path is largely
defined in the convex hull of the anchors to improve positioning performance.

Reference trajectory The reference trajectory is constructed by (i) a
sequence of filtered steps in the e2- and e3-directions over 20 seconds. This is
followed by (ii) a spiraling maneuver defined by a sinusoidal trajectory in the
e1e2-plane, while ramping the elevation of the UAV linearly in time. This
maneuver is conducted over 10 seconds, before (iii) steering the system to a
point between anchor A1 and A5 with a single filtered step. Throughout the
entire maneuver, the yaw angle is kept constant at zero, thus only exciting
the positional dimensions of the flat outputs. The evaluation of the reference
trajectory, filtering of the discontinuous step commands, and expansion of
the flat outputs are all implemented in C, and done on the UAV processor.
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Estimator To estimate the states of the UAV, the multiplicative EKF
in Bitcraze’s stock firmware is used. For additional details on the filter
implementation, refer to [Mueller et al., 2015; Mueller et al., 2016] or see the
source code in [Bitcraze, 2021b]. The 9-DOF IMU of the Crazyflie is used
along with the UWB system run in a two-way ranging mode. For additional
details on this mode of operation, refer to [Mueller et al., 2015; Greiff, 2017].

Controller The controller is implemented as described in Proposition 4.3,
but using the discontinuous attitude controller on SU(2) in Theorem 3.5.
Furthermore, the desired attitude accelerations are set to ω̇d = 0 in order to
avoid computing the second time-derivative of the desired attitude numeri-
cally in the real-time implementation, as this was shown to work well (see
Example 4.2). The desired attitude is computed using the third method (iii),
and implemented directly on H using the quaternion form in (4.8).

Results and Discussion An example of an aggressive spiraling maneuver
is depicted in Figure 4.7, in signals logged at approximately 20 [Hz] directly
from the Crazyflie (including the expanded flat output trajectory), with all of
the filtering and control algorithms run on the micro-controller of the Crazyflie.
In this example, the elementXe ∈ SU(2) was logged as a quaternion and later
converted to a Γ-distance for visualization. The experiment setup and system
response is shown in the video submission (see chapter-4-spiraling.mp4).

In this example, we start by noting that the Γ-distance takes a discontin-
uous jump as the controller activates at around t◦ = 3.2 [s]. This is due to
the control errors being computed in the control loop, which is not executing
when the motors are turned off. During this time, a zero-vector is instead
logged, resulting in a Γ-distance of 1. We note that the positional tracking
is slightly worse than in the simulation examples, likely due to modeling
errors and disturbances that were not present in the simulation. However,
given that a low-cost UWB system is used for positioning, this tracking
performance is deemed good. The experiment is repeatable, and here depicts
one of many consecutive successful runs. We also note that attitude errors are
induced when starting and exiting the sinusoidal maneuver, at t− t◦ = 20 and
t− t◦ = 40, respectively. The reason for this is that the flat output trajectory
is C4 on (t− t◦) ∈ R>0\{20, 40}, but it is not continuously differentiable at
these two times. This results in a slight but visible increase in the attitude
error, inducing a significant tracking error at these times. We emphasize that
this is expected given how the reference trajectory is defined.

In summary, this example demonstrates that geometric attitude controller
on SU(2) is well suited for use in practice. Despite letting ω̇d = 0 in the real-
time implementation, the many additional disturbances present in practice,
and the incorporation of estimates from an EKF with positional information
governed by a low-cost UWB system, the implemented control system is
clearly capable of perform aggressive large-angle maneuvers.
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Figure 4.7 System response for the spiraling scenario in Sec. 4.4.1, as
logged from a real-time experiment . Top, left: The positional reference pr
(black) and the response p (blue). Top, right: The tracking attitude error
in the distance on SU(2), slightly increasing upon entering and exiting the
spiraling maneuver. Center, left: Zoom on the positional response at the
start of the spiraling maneuver. Center, right: Zoom on the attitude error
when entering the spiraling maneuver. Bottom, left: Reference configurations
trajectory in R3 in time. Bottom, left: System response in R3 in time, showing
the reference trajectory, positional response, and measured rotation. The
experiment setup and response is shown in the video chapter-4-spiraling.mp4.
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Figure 4.8 Depiction of the setup in which the second example is run. A
set of shelves with various drinks are to be scanned, with the camera facing
the target shelf at all times. The origin of {G} is defined on a piece of paper.

4.4.2 Inventorying of Shelves
In this example, a small camera is mounted on the UAV, generating a video
stream which is sent to a host computer via radio. On this computer, the
simultaneous localization and mapping (SLAM) system developed from the
work in [Persson, 2018], is run on the video stream in real-time. This facilitates
a positioning without external motion capture system, and the positional
estimate is subsequently streamed back to the UAV fused with the IMU-data
in the onboard EKF. The experimental setup is depicted in Figure 4.8, and
the objective of the example is for the UAV to scan the items on the shelves.

Reference trajectory In this example, we assume knowledge of the shelf
location and geometry in the global frame {G}, and plan a trajectory at a
constant translation speed of 1 [m/s] along the shelves, scanning them in a
predefined order. For this purpose, a set of linear splines are planned in the
flat output space of the UAV with respect to the shelves, implementing a
turn occurring after approximately 25 seconds in order to keep the shelf in
the right-hand side in Figure 4.8 within the camera view. This can naturally
be done using more advanced motion planning methods, lifting assumptions
on the known geometry and free space, but such implementations are outside
the scope of this example. It should be noted that the reference trajectory is
C0 and cannot be followed perfectly. When performing the flatness expansion,
this will result in discontinuous signals. Note that all of the expanded reference
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signals are discontinuous but still well defined when switching between the
splines, and will induce tracking errors similar to the previous example.

Estimator To estimate the states of the UAV, the multiplicative EKF
in Bitcraze’s stock firmware is used once more. For additional details on
the filter implementation, refer to [Mueller et al., 2015; Mueller et al., 2016;
Bitcraze, 2021b]. The 9-DOF IMU of the Crazyflie is used along with positional
information from the SLAM algorithm described in [Persson, 2018], using ORB-
features in [Rublee et al., 2011] and the gyroscopic pre-integration method
outlined in [Forster et al., 2017]. Additional details on the implementation of
the SLAM system are given in [Greiff et al., 2021c]. The SLAM system is run
on an external computer in real-time, communicating positional estimates to
the Crazyflie which are queued in the EKF at a rate of approximately 50 [Hz].
Only the positional information in the SLAM system is fused in the onboard
EKF. The estimated attitude from the SLAM system is stored separately.

Controller Once again, the controller is implemented as described in Propo-
sition 4.3, with the discontinuous attitude controller on SU(2) in Theorem 3.5.
The desired attitude accelerations are set to ω̇d = 0, and desired attitude is
computed using the third method (iii), implemented directly on H by (4.8).

Results and Discussion The system response is shown in Figure 4.9, with
references and estimates logged from the Crazyflie at approximately 20 [Hz],
and estimates from the SLAM system at approximately 50 [Hz]. In addition,
the initial configuration of the UAV at the start and the termination configu-
ration are both´ depicted in Figure 4.10. The experiment setup and system
response is shown in the video submission (see chapter-4-inventorying.mp4).

In this real-time example, the estimates from the SLAM system are
logged separately and used to compute an attitude error with respect to
the reference trajectory. As such, the attitude error in Figure 4.9 does not
represent the attitude error on which the controller operates, but is the closest
approximation to the true attitude error that can be computed. The reference
attitude was sampled at the times where the SLAM system logged an attitude
estimate, and this error is represented in the distance on SO(3). We note a
slight lag in the positional trajectory tracking, and minor overshoots due to
the rapidly changing velocity references (recall, these are discontinuous and
cannot be followed perfectly). We also note that the turn is taken as intended,
such that the UAV always faces the shelves, this is seen in the attitude error
being small at all times, and also visible in the configuration response in the
bottom-most subplots of Figure 4.9. We note that the attitude error increases
as the system performs the turning maneuver, but that it remains small.

Finally, despite not having any external positioning system, and with the
rapid 90◦ turn (which is a challenging maneuver for the SLAM system), the
system remains stable and navigates back to the starting position down to a
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Figure 4.9 System response for the inventorying scenario in Sec. 4.4.2 as
logged from a real-time experiment . Top, left: The positional reference pr
(black) and the response p (blue), along with the time-derivative of the yaw
angle reference (red) indicating the time-interval during which the system
is turning (gray). Top, right: The tracking attitude error in the distance
on SO(3), slightly increasing during the turn, but otherwise small. Center,
left: Zoom on the positional response in the elevation just before the turn,
showing slight tracking errors and a small overshoot. Center, right: Zoom
on the attitude error during the turn. Bottom, left: Reference configuration
trajectory in R3. Bottom, left: System response in R3, showing the reference
trajectory, positional response, and measured rotation. The experiment setup
and system response is shown in the video chapter-4-inventorying.mp4.
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Figure 4.10 UAV configurations, (p,X), in the inventorying experiment.
Left : Initial configuration at t = t◦. Right : Terminal configuration at t = tf .

few centimeters (as illustrated in Figure 4.10). This is largely due to the high
performance of the SLAM system in [Persson, 2018; Greiff et al., 2021c], but
in no small part due to the sound control system implemented on the UAV.

The geometric attitude controller on SU(2)× R3 works well in practice,
even when removing of the desired attitude accelerations in accordance with
Example 4.2. It can automate tasks such as the inventorying of supermarkets,
and remarkably, this real-time example was performed without any external
motion capture system, but with additional computational power in the form
of an external computer to host the SLAM algorithm.

4.5 Summary

In this chapter, the solutions to attitude tracking problem in Chapter 3 were
leveraged to construct solutions to Problem 4.1. In particular, the continuous
geometric controller on SO(3)×R3 in [Lee et al., 2010] was reviewed, and the
exact same proof idea was used to derive a completely analogous set of con-
trollers on SU(2)×R3, using the results in Theorems 3.4 and 3.5, respectively.
When implemented with the discontinuous attitude controller in Theorem 3.5
and written out in the quaternion form, the controller in Proposition 4.3
becomes near-identical to the solution presented in the quaternion formalism
in [Brescianini and D’Andrea, 2018] (disregarding control allocation). As such,
the controllers in [Lee et al., 2010] and [Brescianini and D’Andrea, 2018]
are closely related, as the latter can be interpreted as a geometric controller
on SU(2)× R3 derived with respect to the distance Γ in Definition 2.19. In
contrast to [Brescianini and D’Andrea, 2018], a different approach was taken
to the stability proof, providing a joint Lyapunov function in the translation
and attitude tracking errors and further motivating the use of this controller.

Both of the controllers work exceptionally well. This was demonstrated by
the simulation examples in Examples 4.1 and 4.2, where aggressive maneuvers
were followed down to expected numerical errors, rivaling the capabilities
of complex nonlinear MPC approaches in [Foehn and Scaramuzza, 2018;
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Kaufmann et al., 2020] with comparatively simple and memory-less feedback
laws in Proposition 4.1 and 4.3. The latter controller was also demonstrated in
two separate real-time examples: one including a complex spiraling maneuver,
and the other involving a more realistic application to shelf inventorying.

While not undertaken in this chapter, it should be noted that the controller
in Proposition 4.3 can be extended with integral action in the positional errors,
completely analogously to the extensions of the work in [Lee et al., 2011]
by [Goodarzi et al., 2013]. In addition, we note that the robust control
approach on SO(3)×R3 in [Lee et al., 2013] starting from Theorem 3.3 can be
replicated on SU(2)× R3 using Theorem 3.6 as a starting point. The reason
for not doing this is that such extensions will retain some of the problems
highlighted in this chapter, three of which can be summarized as follows:

• Firstly, the force f can attain negative values during extreme maneuvers,
and there are points at which the desired attitude reference trajectory
becomes ill defined. The latter can be dealt with, but there are no
guarantees that the force is bounded away from zero in these controllers.

• Secondly, the computation of a desired trajectory (Rd,ωd, ω̇d), nec-
essarily requires a two-times differentiation of the translation control
errors when using the proposed positional PD-feedback for the transla-
tion dynamics. In particular, the second time-derivative of ev becomes
problematic, as it involves a differentiation of the system’s accelerations,
resulting in very noisy signals. As a consequence, the impact of simply
canceling this term was discussed, and as a fix, we let ω̇d = 0 in the
experiments. This induces disturbances in the attitude control, but is a
far more natural approach than to simply setting R̈d to zero, and still
permits excellent trajectory tracking as Example 4.2 demonstrates.

• Thirdly, even if the reference trajectory can be computed, the full state
feedback solution is implemented based on filter estimates. This forms
a triangular cascade on the form in (2.46), with the tracking errors
constituting one subsystem and the estimation errors constituting the
other. However, when considering their interconnection, need not be
stable, as shown in the discussion of peaking in Sec. 2.5. Indeed, to show
UAGAS in the entire closed-loop control system, we generally require
stronger notions of stability than the asymptotic attractiveness.

The first problem was comprehensively addressed in the full state feedback
solution presented in [Lefeber et al., 2017], in which the force is bound
away from the origin. However, even for this controller, the second and
third problems remain. This motivates the study of a related filtered output
feedback problem in the forthcoming chapters, where stability of estimation
and tracking errors are analyzed jointly, and the complete desired attitude
reference trajectory can be evaluated without numerical differentiation.
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5
Filtered Output Feedback:
Attitude Dynamics

5.1 Introduction

In this chapter, we study the problem of finding a filtered output feedback
(FOF) for the attitude dynamics of the UAV. That is, we seek to co-design
an estimator and a controller and analyze the resulting closed loop system.
Just as in Chapter 3, the system is configured on either SO(3) or SU(2), with
the sub-index (·)r denoting a reference, and the dynamics are given in (2.16).
However, in this chapter we do not assume direct knowledge of the states.
Instead, we assume knowledge of a set of measurements

y0(t) = ω(t) ∈ R3, (5.1a)

yi(t) = R(t)>vi ∈ R3, i ∈ 1, ..., N, (5.1b)

where y0 ∈ R3 are gyroscopic measurements registered by an IMU, and
yi ∈ R3 with i > 0 are a set of N directions measured in the body frame,
as rotated known directions in a global frame vi ∈ R3. The latter could for
instance be measurements of the gravitational field as v1, measurements of
a magnetic field as v2, or virtual measurements as the cross-product of the
two directions, with v3 = v1 × v2. Note that the measurements are taken to
be deterministic, and that the filter design will be done in a deterministic
framework along the lines of the estimators in [Mahony et al., 2008], ignoring
any knowledge of measurement noise statistics. The noise is seen as an
adversarial disturbance, with respect to which the controller should be robust.

Consequently, we seek a feedback law that does not use the measurements
directly in the computation of the controls, in order to mitigate the influence
of the measurement noise on the control signals and implicitly the states
of the attitude dynamics. Furthermore, we seek controllers yielding uniform
almost global and uniform local exponential stability properties.

131



Chapter 5. Filtered Output Feedback: Attitude Dynamics

5.1.1 The problem of Attitude Filtered Output Feedback
A controller that operates with the measurements in (5.1), and that does not
include these measurements directly in the computation of the control signals
is referred to as an attitude filtered output feedback (FOF). The problem
formulation addressed in this chapter is summarized in Problem 5.1 as follows.

Problem 5.1
Consider a system with a state x = (R,ω) ∈ SO(3)× R3, with an associated
reference trajectory xr = (Rr,ωr) ∈ SO(3) × R3, driven by τ ∈ R3 and
τ r ∈ R3, respectively. Let R = E

SU(2)
SO(3)(X) ∈ SO(3) and Rr = E

SU(2)
SO(3)(Xr) ∈

SO(3) by Definition 2.17, satisfying the dynamics in (2.16) and measurements
in (5.1) with a known set of directions {vi}Ni=1 in a global frame of reference.
Define a filter memory, ζa, and an estimate update law in this memory, the
measured signals, and reference trajectory, as

dζa
dt

= Ha(ζa, {yi}Ni=0,Xr,ωr, τ r, τ ), (5.2)

with an associated feedback law

τ = Ga(ζa,Xr,ωr, τ r), (5.3)

such that x(t)→ xr(t) as t→∞, and characterize the resulting equilibria.2

Just as in Chapter 3, we can at best hope to find almost globally stabilizing
controllers if considering continuous feedback laws. In addition to finding such
controllers, we seek to analyze them in terms of their resulting closed-loop
stability properties. A schematic overview of the FOF attitude controller is
given in Figure 5.1. In the controller implementations, the memory stored
in the reference dynamics Σa

r and the attitude dynamics Σa will both be
configured on SU(2). Similar to Chapter 3, a FOF controller on SU(2) or
SO(3) refers to the configuration manifold on which the errors are considered,
it does not refer to the complete memory of the controller.

5.1.2 Chapter Motivation
The somewhat exotic output feedback problem defined in Problem 5.1 is of
great practical interest, as it deals with measurements that are ubiquitous
in modern UAV applications and seeks to bound both the estimation and
trajectory tracking errors over time. One of the first solutions to a related the
tracking attitude filtered output feedback problem is presented in [Caccavale
and Villani, 1999, Theorem 2], where two controllers are developed in the
quaternion formalism. Local exponential stability is shown with a lead filter
for the attitude rate estimation. While the controllers result in error dynamics
with exponential stability properties, they rely on measuring the orientation
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Figure 5.1 Sketch of the filtered output feedback attitude controller.

directly, and omit any measurement of the attitude rates, which are available
in most modern UAV applications. A closely related solution, also in the
quaternion representation and without attitude rate measurements, was
presented by Tayebi in [Tayebi, 2008, Theorem 1]. Here, AGAS properties
are shown of an equilibrium representing a zero tracking error, but in both of
these works, the measurements and noise enter directly in the feedback law.

More recently, a solution to the attitude tracking filtered output feedback
control problem is proposed in [Zou, 2016, Theorem 3], operating directly with
elements of SO(3). Just as in [Caccavale and Villani, 1999] and [Tayebi, 2008],
this work omits the gyroscopic measurements. In [Zou, 2016], the proposed
solution has some caveats, namely that the control signal approaches τ (t)→
∞ as Ψ(Rr,R)→ 2. Furthermore, the proof is finalized with Theorem 2.5,
and concludes asymptotic stability. As such, little can be said about the
robustness of the resulting closed-loop system. Other approaches, such as
the work in [Shao et al., 2018], jointly consider tracking and observer errors
for attitude dynamics when working with the full UAV dynamics. Here
the problem of robustness is addressed by implementing an extended state
observer, yielding a local ultimate boundedness result in [Shao et al., 2018,
Theorem 1]. It is claimed to be an asymptotic stability result, but in the
sense that the ultimate bound goes to zero as the observer bandwidth goes to
infinity. It is not asymptotically stable as defined in this thesis, and the result
is local, as per [Shao et al., 2018, Assumption 1]. A similar approach is taken
in [Mishra et al., 2020] for a more general class of systems (but assuming full
actuation). As the considered estimation and control errors are independently
ULES and UAGAS, respectively, and the interconnection is shown to be LAS.

In the prior work on tracking filtered output feedback for attitude dynam-
ics, the stability results tend to be local and lack the property of uniform
convergence. Consequently, there is room for improvement by showing stronger
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stability properties that implicitly guarantee a measure of robustness by The-
orem 2.12. In addition, as it is possible to solve the problem locally without
gyroscopic measurements, these are often excluded in more academic problem
formulations. However, from a practical perspective, the inclusion of gyro-
scopic terms is more interesting, as these are typically available in practice.
This information should therefore be leveraged in the problem formulation to
improve the controller performance, further motivating Problem 5.1.

5.1.3 Contributions
The above considerations motivated the development of a solution to Prob-
lem 5.1 in [Lefeber, Greiff, and Robertsson, 2020, Proposition 2], which is the
main theoretical contribution in this chapter. Contrary to the prior work on
filtered output feedback solutions, the proposed control system:

(i) Assumes that the rotation is only known through directional measure-
ments, similar to the formulation in the explicit nonlinear complementary
filters in [Mahony et al., 2008] and explicit vector control in Theorem 3.1;

(ii) Assumes that the attitude rates are measured in the body frame;

(iii) Does not use any measurements directly in the computation of τ ;

(iv) Results in a UAGAS and ULES solution to Problem 5.1.

This last point is of particular importance, as it facilitates extensions of the
controller to the full UAV dynamics by cascade theorems. In addition, we
provide rules of thumb for tuning, and several simulation examples to provide
intuition and demonstrate the veracity of the theoretical results.

5.1.4 Overview
The output feedback result in [Tayebi, 2008] is reviewed in Sec. 5.2, highlighting
its strengths, but also pointing out some potential problems in the approach.
The solution in [Lefeber et al., 2020, Proposition 2], here referred to as explicit
vector FOF, is then presented using the techniques employed in Chapter 3.
This is done in Sec. 5.3, with a filter memory defined on SO(3) × R3. The
proposed theory is illustrated by simulation examples, and insights for the
tuning problem are given in Sec. 5.4, supported by simulations. To give an
overview, the results and examples are summarized in Table 5.1.
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Table 5.1 Overview of the results and examples of Chapter 5. Here, 1

indicates work of others, proofs given elsewhere; 2 indicates work tangential
with others, but with independent proofs given; and 3 indicates new work.

Reference Description

Thm. 5.1 1 Output feedback on H, without gyroscopic measurements and
with filter memory defined on H in [Tayebi, 2008, Thm. 2]

Thm. 5.2 3 Filtered output feedback on SO(3), with filter memory defined on
SO(3)× R3 in [Lefeber, Greiff, and Robertsson, 2020, Prop. 2]

Example 5.1 Simulation example with the output feedback in Thm. 5.1
Example 5.2 Simulation example with the filtered output feedback in Thm. 5.2
Example 5.3 Simulation example with Thm. 5.2, demonstrating tuning ideas

5.2 Output Feedback Without Attitude Rates

Before giving the main result, we first summarize the related result in [Tayebi,
2008], which is an output feedback (or partial state feedback) that introduces
an auxiliary system. It does not solve Problem 5.1, as the feedback (i) assumes
that the rotation is known in a quaternion representation at all times; (ii)
that the attitude rates are not measured; (iii) uses the measurements directly
in the feedback; and (iv) yields AGAS. Nonetheless, the theorem is insightful,
can be extended to the full UAV dynamics as done in [Abdessameud and
Tayebi, 2010], can be summarized in the context of Problem 5.1 as follows.

Theorem 5.1—[Tayebi, 2008, Theorem 1]
Define the filter memory by ζ , q̄ ∈ H and consider the errors

qe = q−1
r � q, Re = EH

SO(3)(qe), (5.4)

q̃ = q̄−1 � qe, ωe = ω −R>e ωr, (5.5)

Consider the attitude dynamics in (2.16) with direct measurements of the
quaternion attitude, q ∈ H. Define a feedback

τ = −k1=(qe)− k2=(q̄) + JR>e ω̇r + S(R>e ωr)JR
>
e ωr, (5.6a)

where the filter memory is updated by

dq̄
dt

=
1

2
q̄ �

[
0
δq

]
, δq = Kq=(q̃). (5.6b)

For any controller gains k1 > 0, k2 > 0, andKq = K>q � 0, limt→∞ qe = ±qI ,
limt→∞ q̃ = ±qI , limt→∞ ωe = 0⇒ R→ Rr and ω → ωr as t→∞. 2
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Proof. The proof is given in [Tayebi, 2008, Theorem 1], here sketched in a
different notation. It follows by analysis of the Lyapunov function candidate

V = k1‖qe − qI‖2 + k2‖q̃ − qI‖2 +
1

2
ω>e Jωe. (5.7)

By plugging in the error dynamics, it is shown that V̇ = −k2=(q̃)>Kq=(q̃) ≤
0 and also uniformly continuous along the solutions of the closed-loop system.
As V ≥ 0, the proof follows directly by application of Lemma 2.5. 2

While falling short of being a solution to Problem 5.1 (the feedback
includes the measurements directly through qe and Re, and does not use
the directional measurements nor gyroscopic information, ω), the controller
proposed by Tayebi is insightful. Remarkably, the tracking error ωe can be
driven to zero without any gyroscopic information. The feedback is AGAS,
which can be shown by further analyzing the Lyapunov function using, for
instance, the instability result in Theorem 2.6.

Remark 5.1
The auxiliary system in (5.6b) is introduced to generate a passive map from
the innovation term δq to =(q̃), as is discussed in [Tayebi, 2008, Remark 3].
However, q̄ does not have a physical interpretation. This memory does not
necessarily provide information that is useful outside of the controller. 2

Remark 5.2
The controller requires knowledge of a quaternion attitude, but there exist
no sensors capable of measuring such an attitude directly. Consequently, this
attitude has to be reconstructed from the directional measurements in (5.1b),
or some other sensory information. However, if this introduces dynamics in
the attitude estimate, then the stability analysis needs to be reconsidered.2

In spite of Remarks 5.1 and 5.2, the controller in Theorem 5.1 has several
uses. It is a partial-state feedback developed in the quaternion formalism,
facilitated by the introduction of the auxiliary system in (5.6b). Additionally,
some insights from its construction can be used to develop solutions to
Problem 5.1. Before doing so, we first demonstrate the properties of the
Tayebi’s OF controller summarized in Theorem 5.1 with an example.

Example 5.1
In this example, the output feedback solution in Theorem 5.1 is simulated. The
system is defined with randomized dense inertia matrix satisfying λm(J) =
0.5 and λM (J) = 1, analogous to the examples in Chapter 3, but with
a different realization. Similarly, the initial conditions are randomized on
q(t◦), qr(t◦), q̄(t◦) ∼ U(H) with ω(t◦),ωr(t◦) ∼ N (0, I). From these initial
conditions, the reference dynamics are driven by the torques

τ r(t) = (sin(2πt+ 1); sin(4πt+ 2); sin(6πt+ 3)) ∈ R3. (5.8)
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Figure 5.2 Closed-loop system response when in feedback with the filtered
output feedback in Theorem 5.1. Top, left: Reference torque trajectory, τ r,
driving the reference dynamics, and computed control signals τ . Top, right:
Elements of the reference attitude on Rr = EH

SO(3)(qr) ∈ SO(3) and the
controlled attitude on R = EH

SO(3)(q) ∈ SO(3). Center, left: The auxiliary
quaternion q̄. Center, right: Attitude rates, and reference attitude rates.
Bottom, left: Lyapunov function in the 10-logarithm. Bottom, right: Lya-
punov function time-derivative, analytical (black) and numerical (blue). The
simulated system response is shown in the video chapter-5-simulations.mp4.

The controller is tuned with k1 = k2 = 10,Kq = 10I3, and the simulation is
run over t ∈ [0, 10] [s], yielding the system response in Figure 5.2. To better
study the signals V and V̇ for small errors, no measurement noise is added.

The figure shows a relatively large transient in the control signal torques,
and how the auxiliary state q̄ converges to the identity element qI . Fur-
thermore, when mapping the internal quaternion attitude representation to
SO(3) and studying the top right and center right subplots, it is clear that
the controller in Theorem 5.1 achieves the tracking properties specified in
Problem 5.1. It is also worth noting the large transient in the attitude rates.
These transients are often observed with the controller, as it does not include
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any explicit measurements or estimates of the attitude rates. Finally, we
note that the Lyapunov function candidate in (5.7) decays monotonically in
time, and that its analytical time-derivative along the closed-loop solutions
matches the numerically differentiated Lyapunov function, validating the
implementation of Theorem 5.1 and the work in [Tayebi, 2008]. This result
will serve as an inspiration for the FOF developments made in this chapter. 2

5.3 Filtered Output Feedback With Attitude Rates

The key in constructing the FOF depicted in Figure 5.1 lies in the definition
of the filter memory and the observer. From the discussions in Chapter 3,
there are clear similarities between the generalized explicit vector control and
the various geometric controllers on SU(2) and SO(3). However, the explicit
vector control in Theorem 3.1 can be implemented based on cross-product
errors in rotated vectors, making it an appealing starting point for the FOF
controller derivation, considering the directional measurements in (5.1b). For
this reason, and due to a slightly simpler algebra, we opt to work with SO(3).
Consider an estimate of the rotation as R̂(t) ∈ SO(3), and an estimate of
the attitude rate as ω̂(t) ∈ R3, resulting in a filter memory ζa , (R̂, ω̂) in
Figure 5.1. These objects should be driven toward the states of the attitude
dynamics, x = (R,ω). Inspired by the auxiliary system introduced in (5.6b),
we seek two innovation terms δR ∈ R3 and δω ∈ R3, as functions of the
measurements and the reference states. Naturally, the attitude innovation
term, δR, should enter multiplicatively as an element of so(3) to keep the
estimate R̂ ∈ SO(3). With this intuition, we arrive at the following result.

Theorem 5.2—Explicit vector FOF on SO(3)
Define the filter memory ζa = (R̂, ω̂) ∈ SO(3)× R3 and consider the errors

Re = RrR
> ∈ SO(3), R̃ = R̂R> ∈ SO(3), (5.9a)

ωe = ωr − ω ∈ R3, ω̃ = ω̂ − ω ∈ R3, (5.9b)

ω̂e = ωr − ω̂ ∈ R3. (5.9c)

The attitude dynamics in (2.16) with measurements in (5.1) in feedback with

τ = τ r + S(Jω̂e)ωr +Kωω̂e +

N∑
i=1

kiS(R>r vi)R̂
>
vi, (5.10a)

where the estimates are computed by

dR̂
dt

= R̂S(ω + δR) (5.10b)

dJω̂
dt

= S(Jω)ω + τ + δω, (5.10c)
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with the innovation terms

δR = −cR
N∑
i=1

kiS(R̂
>
vi)(R

>
r vi +R>vi) (5.10d)

δω = −JS(ωr)ωe −Kωωe −Cωω̃, (5.10e)

for any Kω = K>ω � 0, Cω = C>ω � 0, cR > 0, and ki > 0 such that
M =

∑N
i=1 kiviv

>
i has distinct eigenvalues, renders the equilibrium point

(Re, R̃,ωe, ω̃) = (I, I,0,0) UAGAS and ULES. There exists 15 other unique
equilibrium points on SO(3)2 × R6, all of which are locally unstable. 2

Proof. The proof sketch was given in [Lefeber et al., 2020, Proposition 2]
and is here summarized in brevity, with a rigorous and detailed proof given
in Appendix C.1. First, the non-autonomous error dynamics in Re, R̃,ωe, ω̃
are derived. Secondly, a Lyapunov function candidate is proposed with

V1 =

N∑
i=1

ki
2
‖ReR̃

>
vi − vi‖2 +

1

2
ω>e Jωe +

N∑
i=1

ki
2
‖R̃vi − vi‖2 +

1

2
ω̃>Jω̃.

(5.11)

It is shown that the time derivative of this weak Lyapunov fuction candidate is
negative semi-definite in the errors along the closed-loop solutions. Specifically,

dV1

dt
= −cR

∥∥∥ N∑
i=1

kiS(R̂
>
vi)(R

>
r vi +R>vi)

∥∥∥2

− ω>e Kωωe − ω̃>Cωω̃.

(5.12)

Thirdly, by analysis with Lemma 2.5 and Lemma 2.7, it is shown that all
trajectories of the error dynamics converge to an invariant set

S =

{
(Re, R̃,ωe, ω̃) ∈ SO(3)2 × R6

∣∣∣∣∣
∑N
i=1 kiS(R>r vi)R̂

>
vi = 0, ωe = 0∑N

i=1 kiS(R>vi)R̂
>
vi = 0, ω̃ = 0

}
.

(5.13)

Furthermore, utilizing techniques similar to those used in proof of Theorem 3.1,
specifically Lemma B.3 and the assumptions on M , it is shown that all
trajectories of the non-autonomous error dynamics converge to a set of 16
isolated equilibrium points E ⊂ SO(3)2 × R6. Fourthly, with Y1 , V̇1 and

V2 = ω>e

N∑
i=1

kiS(R>r vi)R̂
>
vi, (5.14)
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one can show that (d/dt)V2 ≤ Y2, where Y2 is uniformly bounded in the
initial errors, and negative as V̇1 = 0 . Thus, the nested Matrosov result in
Theorem 2.7 is invoked to show uniform convergence to E . To assess the local
properties of the equilibrium points, Chetaev’s instability result in Theorem 2.6
is used to show that (Re, R̃,ωe, ω̃) = (I, I,0,0) is the only locally stable
point in E . This is confirmed by a local linearization performed on SO(3)2×R6

about the point (Re, R̃,ωe, ω̃) = (I, I,0,0), a local representation of the
errors, X ∈ R12, evolve by a ULES non-autonomous descriptor system

EẊ = A(t)X, (5.15)

where A(t) ∈ R12×12 and 0 ≺ E = E> ∈ R12×12. We stress that this is not
shown by spectral conditions, but rather done using Lyapunov theory. Thus,
(Re, R̃,ωe, ω̃) = (I, I,0,0) is ULES and UAGAS, concluding the proof. 2

This is a powerful result, and a feasible solution to Problem 5.1. Fur-
thermore, we note that the estimator is implementable given the available
measurement information due to the availability of the gyroscopic rates. We
emphasize that none of the taken measurements appear directly in the compu-
tation of the torques in (5.10a). Thus, all measurement noise passes through
at least one integrator before appearing in the control signals. This is not the
case with the full state feedback control laws in Chapter 3, where the noise
in the gyroscopic measurements enter directly in the control signals, as ω is a
factor in eω. Nor is it the case in the output feedback in Theorem 5.1, where
the measurement noise in the attitude enters directly in the control signals.

Remark 5.3
A drawback of the proposed filtered output feedback attitude controller
in Theorem 5.2 is that the proof is finalized with variants of Barbălat’s
Lemma, nested Matrosov theorems and local linearizations. Consequently,
while all trajectories converge to the single stable equilibrium point, we cannot
characterize the worst-case decay rates beyond a neighborhood of the stable
equilibrium (I, I,0,0) ∈ E . Similarly, while some robustness properties are
afforded to non-autonomous systems with uniform stability properties (see
Theorem 2.12), the resulting ultimate bounds become nontrivial to quantify
in a sense that is informative for the tuning problem. This makes the tuning
of the controller a nontrivial task, warranting its discussion in Sec. 5.4. 2

To illustrate the properties of the resulting closed-loop system, we give a
second simulation example (see Example 5.2). Here, the tracking performance
of the controller and estimator is shown, along with their joint Lyapunov func-
tion in (5.11) and its associated time-derivative in (5.12) along the trajectories
of the error dynamics. In addition, we show the proximity of the errors Re(t)
and R̃(t) to their associated equilibrium configurations (R◦, R̃◦,0,0) ∈ E .
This is visualized in the distances Ψ(Re(t),R◦) and Ψ(R̃(t), R̃◦), respectively.

140



5.3 Filtered Output Feedback With Attitude Rates

Example 5.2
In this example, the continuous FOF on SO(3) proposed in Theorem 5.2
is demonstrated. Consider a system with randomized dense inertia ma-
trix satisfying λm(J) = 0.5 and λM (J) = 1, with the same realization
as in Example 5.1. Similarly, the initial conditions are randomized on
R(t◦),Rr(t◦), R̂(t◦) ∼ U(SO(3)) with ω(t◦),ωr(t◦), ω̂(t◦) ∼ N (0, I). From
these initial conditions, the reference dynamics is driven by τ r(t) in (5.8).

To define the measurement model of the 9-DOF IMU, we consider a first
vector v1 = (0, 0,−1)> corresponding to the gravitational field direction in the
global east-north-up (ENU) coordinate frame. In addition, a second normal
vector is randomized as v2 = (−0.9754,−0.2086,−0.0713)>, corresponding to
the direction of the magnetic field in a global ENU frame. Finally, a virtual
measurement direction is then constructed by v3 = v1 × v2, such that for
any ki > 0, M � 0. The estimator update law and controller are tuned with

k1 = 2.0, k2 = 2.5, k3 = 3.0, Kω = I, Cω = I, cR = 2.

Given this tuning, we note that spec(M) = {1.95, 2.55, 2.98}. The estimates
are driven from the random initial conditions with the update law in (5.10b),
and the actuating torques are computed by the feedback in (5.10a). The
resulting closed-loop system tracking performance is illustrated in Figure 5.3.

With this particular realization of the initial conditions, we get significant
initial tracking and estimate attitude errors. Indeed at t◦, Ψ(Rr(t◦),R(t◦)) ≈
1.99 and Ψ(R̂(t◦),R(t◦)) ≈ 1.95. Despite this, we note a relatively fast
convergence of the attitude estimate and tracking errors, and in less than
5 seconds, the system error trajectories reach a region close to the single
stable equilibrium point (I, I,0,0) ∈ E . To get a sense of the volatility of
the rotation, the elements of the reference rotation, Rr(t), and the physical
rotation, R(t), are plotted in the top left subplot, yielding visibly good
tracking as Ψ(Rr,R) → 0. We also note that the controlled torque signal
satisfies τ → τ r, and that these signals are not excessively large transiently,
despite the substantial initial attitude errors. The attitude rate estimate
converges to the true attitude rate, with the true attitude rate subsequently
driven to the reference trajectory. Finally, the Lyapunov function V1 proposed
in (5.11) decays monotonically in the 10-logarithm, and its time-derivative is
here strictly negative. Furthermore, the numerically differentiated Lyapunov
function is plotted over the analytical expression in (5.12) when evaluated
using the signals in system memory, coinciding perfectly, thus validating the
derivations of the error dynamics and expression of the Lyapunov function
time-derivative along solutions of the closed-loop system. 2
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Figure 5.3 Closed-loop system response when in feedback with the filtered
output feedback in Theorem 5.2. Top, left: Reference torque trajectory,
τ r, driving the reference dynamics, and computed control signals τ . Top,
right: Elements of the reference attitude on Rr ∈ SO(3) and the controlled
attitude on R ∈ SO(3). Center top: Distance to configurations in E on SO(3)
for estimate and tracking errors, R̃ and Re respectively. Center bottom:
Estimate attitude rates, attitude rates, and reference attitude rates. Bottom,
left: Lyapunov function in the 10-logarithm. Bottom, right: Time-derivative
of the Lyapunov function, analytically (black) and numerically (blue). The
simulated system response is shown in the video chapter-5-simulations.mp4.
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5.4 Asymptotic Behavior and Tuning

Remark 5.4
It should be noted that despite similar convergence rates in Example 5.1 and
Example 5.2, the transient torque and attitude rates are much smaller in
the latter simulation with Theorem 5.2. This is partly due to the use of the
gyroscopic measurements in the latter (that appear directly in the Lyapunov
function time-derivative). As such, this example indicates the importance of
utilizing gyroscopic information if such measurements are available. However,
a tuning-independent comparison of the controllers analogous to that made
in Sec. 3.9 is not possible, as the error dynamics are fundamentally different.2

Remark 5.5
A great strength of the filtered output feedback solution in Theorem 5.2 is the
joint Lyapunov function for controller and estimator, with associated uniform
convergence properties, which can facilitate a productive cascade analysis for
the full UAV dynamics. Such an analysis was undertaken in [Lefeber, Greiff,
and Robertsson, 2020], and these results will be detailed in Chapter 6. 2

Due to this joint Lyapunov function, if the tracking and estimate errors
are initialized as small, they will never increase even if the trajectory becomes
more volatile over time. Such guarantees are also possible to give with the
output feedback in Theorem 5.1, but generally very difficult to show with
the design approaches in Chapter 3 and 4, where the FSF solution needs to
be combined with a full state estimator such as the EKF used in Sec. 4.4.
However, a drawback with the FOF controller in Theorem 5.2 is that we do
not know the worst case decay rates on subsets of SO(3)2 × R3 containing
the stable equilibrium point. Consequently, while tracking errors converge to
a single stable equilibrium, we cannot quantify how fast it will decay in the
initial transient. In practice this convergence tends to be fast, as Example 5.2
clearly demonstrates, but it complicates the problem of tuning the controller.
This tuning problem is therefore addressed in the next section.

5.4 Asymptotic Behavior and Tuning

As the local properties of the error dynamics are known by the linearization
in the proof of Theorem 5.2 (see Appendix C.1), some insights can be made
about the rather difficult problem of tuning the proposed filtered output
feedback controller. Judging by the Lyapunov function in (5.11), and its time
derivative in (5.12), it may be tempting to chose a large cR, as this seemingly
increases the rate at which the errors decay. However, somewhat surprisingly,
there are diminishing returns in increasing cR. To see this, consider the matrix

D(cR, li) =

 0 0 1
cRli −2cRli 0
−li li 0

 , (5.16)
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Figure 5.4 The spectrum of D(c, l) as a function of l ∈ (0, 2] for different
values of c ∈ (0, 5] (black to blue). Top, left: Real part of the critically
damped mode <(λ1(c, l)). Top, left: Real part of the complex eigenvalue pair
<(λ2,3(c, l)). Bottom, left: Eigenvalues in the complex plane for increasing
values of l ∈ (0, 2] with the marker o indicating the point where l = 2.
Bottom, right : Zoom in on the origin of the eigenvalues of D(c, l).

which is shown to be Hurwitz in Lemma C.3 for all cR > 0, li > 0. However,
the real part of the complex-valued eigenvalue pair approaches zero from
below with increasing cR (for almost all values of li), while the strictly real
eigenvalue is proportional to −2cRli for large cR (see Figure 5.4).

This matrix in (5.16) becomes relevant when studying the asymptotic
behavior of the system errors close to the exponentially stable equilibrium
point (Re, R̃,ωe, ω̃) = (I, I,0,0). Consider small deviations from this point
in the first two terms of the series expansion of the exponential map of SO(3),

Re(t) = ExpSO(3)([ε(t)]) = I + [ε(t)]∧SO(3) + o(‖ε‖2) ≈ I + [ε(t)]∧SO(3),

R̃(t) = ExpSO(3)([ε̃(t)]) = I + [ε̃(t)]∧SO(3) + o(‖ε̃‖2) ≈ I + [ε̃(t)]∧SO(3).

(5.17)

In Appendix C.1, it is shown that when defining X , (ε; ε̃; ωe; ω̃), close to
the point X = 0, these errors evolve by a non-autonomous descriptor system,

EẊ = A(t)X, (5.18)

which is uniformly locally exponentially stable. We stress that this proof is
done by means of Lyapunov theory without invoking spectrum conditions on
A(t). However, the spectrum of A(t) can be used to gain some insight on the
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system behavior, and it can be shown that at any given point in time t ≥ t◦,

spec(A(t)) ∈ {z∗D̄z − z∗3K̄ω(t)z3 − z∗4C̄ω(t)z4|z̄∗z̄ = 1}, (5.19)

where,

spec(K̄ω(t)) = spec(Kω), spec(D̄) =

3⋃
i=1

spec(D(cR, li)), (5.20a)

spec(C̄ω(t)) = spec(Cω), {l1, l2, l3} = spec
(( N∑

i=1

ki

)
I −M

)
, (5.20b)

and z , (z1
1 ; z2

1 ; z3
1 ; z1

2 ; z2
2 ; z3

2 ; z1
3 ; z2

3 ; z3
3) ∈ C9, z̄ , (z1, z2, z3, z4) ∈ C12, K̄ω

and C̄ω are real and symmetric, and D̄ ∈ R9×9 is real but not symmetric.
Consequently, it is very difficult to say exactly where the eigenvalues of

A(t) will end up as a function of the tuning, without explicitly solving the
associated eigenvalue problem along some time-varying reference trajectory.
In addition, we cannot draw any conclusions of the stability of the system
in (5.18) from spec(A(t)), as it is time-varying. But we can still use the
general shape of this spectrum to guide our tuning. If the eigenvalues of any
D(cR, li) has a real-part close to zero, then we run the risk of having a small
real-part in one or more of the eigenvalues in spec(A(t)). Consequently, a
good rule of thumb is to pick cR and li (implicitly ki) so as to achieve a
similar negative real part in λi ∈ spec(D(cR, li)), with max<(λi) ≈ λM (Cω).
As cR is the same for each D(cR, li), we should strive for similar li, however,
they cannot be chosen identical, as M cannot have a uniform spectrum. To
illustrate the effects of such a tuning, a numerical example is given below.

Example 5.3
For simplicity, let J = I3 such that E = I12 in (5.18). Take two different sets
of parameters for the FOF controller in Theorem 5.2, as

(A) Cω = 0.5I, Kω = 1.0I, cR = 3.0, k1 = 0.9, k2 = 1.0, k3 = 1.1,

(B) Cω = 1.0I, Kω = 0.5I, cR = 0.1, k1 = 7.2, k2 = 8.0, k3 = 8.8.

The spectrum of the matrix in (5.20b) is then

(A) {l1, l2, l3} = { 1.91, 1.97, 2.13},

(B) {l1, l2, l3} = {15.24, 15.73, 17.07},

whereby we can compute the spectrum of D(cR, l1) as

(A) spec(D(cR, l1)) = {−0.04− 1.00i,−0.04 + 1.00i,−11.92},

(B) spec(D(cR, l1)) = {−0.65− 3.62i,−0.65 + 3.62i,−1.89}.
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Figure 5.5 System response with the controller tuned with the parameters
(A) to the left, and with the parameters (B) to the right. Top: The spectrum
of A(t) in the complex plane (blue), with the maximum real part over all
eigenvalues in time γmax (gray) and the maximum average eigenvalue over
t ∈ [5, 10] as γavg (black, dashed). Center: The real-part of the spectrum
of A(t) in time (blue), with the maximum real part over all eigenvalues in
time γmax (gray) and the maximum average eigenvalue over t ∈ [5, 10] as
γavg (black, dashed). Bottom: The decay of the Lyapunov function in (5.11)
depicted in the 10 logarithm with tuning (A) left, and tuning (B) right.

with similar shapes of the spectra for D(cR, l2) and D(cR, l3) as well. In all
cases, D(cR, li) are Hurwitz, but we note a significant difference between the
largest and smallest real parts of the eigenvalue associated with the tuning
(A), whereas this difference is much smaller in tuning (B), where the largest
real part of any eigenvalue is significantly further away from the origin than in
tuning (A). This is in accordance with Figure 5.4. Therefore, with tuning (A)
we might run into eigenvalues which are close to the origin, and significant
variation in the eigenvalues of A(t) over the real axis. With tuning (B), the
eigenvalues of A(t) are likely to be further away from the origin.

This is seen when plotting spectrum of A(t) in Figure 5.5 in time, here
over t ∈ [0, 10] using the same simulation setup as in Example 5.2 but with
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J = I. The figure also shows the maximum real part of spec(A(t)) in time,
and the average asymptotic maximum real part of the spec(A(t)), defined as

γmax = max
t

max
i

(<(λi(t))) λi(t) ∈ spec(A(t)) t ∈ [0, 10], (5.21a)

γavg =
1

5

∫ 10

5

max
i

(<(λi(t)))]dt λi(t) ∈ spec(A(t)) t ∈ [5, 10], (5.21b)

respectively. The Lyapunov function V1 in (5.11) is also plotted along the
solutions of the closed-loop system when using the associated controller. As
the Lyapunov function is locally proportional to the system errors squared,
we should expect its decay to be proportional to the decay of the slowest
mode in the error dynamics when linearized at the stable equilibrium. That
is, we should expect the slowest mode to decay roughly proportionally to
exp(γavgt), with a squared error decay rate of approximately exp(2γavgt).
This is seen in Figure 5.5, where the decay is shown alongside V1 in (5.11). 2

From this example, it is clear that the choice of tuning parameters are
highly consequential for the performance of a system controlled by Theo-
rem 5.2, where the local errors decay a factor > 4.5 faster when using tuning
(B) as compared to tuning (A). While it does not make sense to compare Lya-
punov functions decay rates directly, we note that the local errors, X ∈ R12,
are defined the same way in both cases. It should be noted that all sets of
parameters characterized by Theorem 5.2 are feasible and result in an UAGAS
and ULES closed loop system, but the closed-loop tracking performance can
vary significantly. In general, we propose the controller be tuned with {ki}Ni=1

for a given set {vi}Ni=1 such that {li}3i=1 in (5.20b) are of a similar magnitude.
We then propose to pick cR based on Figure 5.4 such that spec(D(cR, li)) get
similar negative real parts, and that this is approximately equal to λM (Cω).
This rule of thumb is based on the shape of the possible spectra of A(t)
characterized by (5.19), but the eigenvectors are time-varying and the local
decay will depend on the time-varying signals in the error dynamics.

Remark 5.6
When considering the case E 6= I, we instead need to consider the eigenvalues
of E−1A(t). This transformation changes the spectrum of A(t) in non-trivial
ways, and it is advised to factor in the magnitude of J in Kω and Cω but
to otherwise follow the above tuning advice aided by Figure 5.4. 2

We emphasize that the spectrum of the system matrix of the descriptor sys-
tem in (5.18) is not used to conclude stability of the local error dynamics, here
specialized Lyapunov methods are required as the system is non-autonomous.
However, this spectrum can nonetheless be used to gain some insight on the
system characteristics. In the following chapters, we use the above ideas for
tuning, aiming for a controller of type (B) rather than type (A).
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5.5 Summary

In this chapter, the solutions in Chapter 3 were used as a starting point to
solve Problem 5.1. In particular, the explicit vector controller in Theorem 3.1
was extended with an estimator, resulting in the FOF solution summarized in
Theorem 5.2. Importantly, and in contrast to related approaches to full state
feedback and output feedback control, this filtered output feedback result:

(i) Assumes that the rotation is known through directional measurements;

(ii) Assumes that the attitude rates are measured in the body frame;

(iii) Does not use any measurements directly in the computation of τ ;

(iv) Results in a UAGAS and ULES closed-loop control system.

Theorem 5.2 facilitates important extensions to the full UAV dynamics, but
is also a valuable result in its own right. By comparing the system response
in Example 5.1 and Example 5.2, these numerical results suggest that the
gyroscopic rates should be included in the controller if these signals are
available in practice. Furthermore, the formulation with rotated directions is
particularly appealing in that it does not require a reconstruction of attitude,
an implicit weakness in much of the cited prior work, such as [Tayebi, 2008].

Just as in Theorem 3.1, the resulting control system poses very few restric-
tions on the controller gains. As such, it is relatively easy to find a feedback law
that is stabilizing. However, the performance of the control system will vary
greatly depending on the tuning. This was discussed in Sec. 5.4, where it was
shown that the local decay rates depend both on the controller gains, but also
on the reference trajectory (Rr,ωr, ω̇r). Consequently, only general guide-
lines were given, highlighting some counter-intuitive relationships between the
gains ki and cR with respect to the local decay rates. To assess the tuning in
practice, it is recommended to implement the controller with the appropriate
noise levels and explore various combinations of tuning parameters aided by
the intuition provided in Sec. 5.4.

In this chapter, Problem 5.1 is solved to such an extent that the controller
in Theorem 5.2 can be used to develop full UAV control systems (much like
how the attitude control results in Chapter 3 facilitated the developments in
Chapter 4). There are, however, certain aspects of the problem that may be
studied further. Three conceivable directions can be summarized as follows:

• If the intended application is satellite positioning, with the attitude
control being the sole goal, then integral action could be considered to
attenuate load disturbances on the control inputs.
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• The distance Ψ in Definition (2.18) could be used to upper-and lower
bound the rotational term in the Lyapunov function (5.11), which could
facilitate a characterization of the domain of exponential attraction.

• Finally, it may be interesting to explore similar controllers where the
attitude rate errors are defined by rotated attitude rates similar to
Theorem 5.1. It is quite possible that this can result in autonomous
error dynamics and greatly simplify the stability analysis, but no such
controllers have been found to date.

This last point is particularly interesting to consider in future work on filtered
output feedback. However, the reason for defining the attitude rate errors
of Theorem 5.2 as in (5.9) is highly intentional, which will become apparent
when considering the cascade analysis for the full UAV dynamics.
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6
Filtered Output Feedback:
UAV dynamics

6.1 Introduction

As shown in the previous chapters, a common way to approach UAV control
system design is to first consider (1) a full state feedback solution to control
the attitude dynamics (see Chapter 3), which (2) is put into a cascade with
a full state feedback translation controller (see Chapter 4), and finally (3)
combined with a full state estimator. This approach is illustrated in Figure 6.1,
and amounts to a separate design of estimator and controller. However, as
dynamics are introduced in the estimator, it generally becomes difficult to
make claims of stability for the entire closed-loop system.

Instead, we can leverage the filtered output feedback solution for the
attitude dynamics in Chapter 5, and take a substantially different view of the
control system, as illustrated with blue in Figure 6.1. Instead of considering
a disjoint controller and estimator design, we now (i) find a filtered output
feedback solution for the attitude dynamics, followed by (ii) the design a
filtered output feedback controller for the translation dynamics, which permits
an analysis of the entire control system through various cascade theorems.

In contrast to Chapter 4, where the problem of full state feedback was
studied for the UAV dynamics, we now consider the equations of motion with
the translation velocities defined in the body-frame. Furthermore, we do not
assume knowledge of the system states, but rather assume measurements of
the UAV position, and the measurements available through a 9-DOF IMU.
Furthermore, unlike Chapter 5, we only consider the attitude as configured
on SO(3), as its algebra is slightly easier to work with in the forthcoming
derivations. Just as in previous chapters, the sub-index (·)r denotes a reference,
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Figure 6.1 Abstraction of the UAV control system algorithms, with a
conventional approach (black) and the approach taken in this chapter (blue).

and the objective is to drive the trajectories of a controlled system

Σ :


Σp :

{
ṗ = Rv

v̇ = −S(ω)v − gR>e3 + (f/m)e3

Σa :

{
Ṙ = RS(ω)

Jω̇ = S(Jω)ω + τ

, (6.1)

along the trajectories of a reference system

Σr :


Σpr :

{
ṗr = Rrvr

v̇r = −S(ωr)vr − gR>r e3 + (fr/m)e3

Σar :

{
Ṙr = RrS(ωr)

Jω̇r = S(Jωr)ωr + τ r

, (6.2)

knowing partial state information, defined in continuous time without noise

yp(t) = p(t), (6.3a)

yω(t) = ω(t), (6.3b)

yi(t) = R(t)>vi(t), (6.3c)

collected in a measurement vector y(t) = (yp(t); yω(t); y1(t); ... ; yN (t)).
Apart from these measurements, we assume that the reference trajectory is
well defined, in the sense that the signals (pr,vr,R,ωr, ω̇r, fr, ḟr, f̈r, τ r) are
bounded and fr > 0 at all times. Note the difference between these conditions
and Assumption (A1) in Propositions 4.1 and 4.3. Given these relatively mild
conditions, the objective is to design a control system to drive Σ in (6.1) along
the solutions of Σr in (6.2) given the measurements in (6.3), as illustrated in
Figure 6.2.
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Figure 6.2 Sketch of the filtered output feedback controller.

From Theorem 5.2 in Chapter 5, it is clear that the subsystem Σa can
be controlled along the solutions of any reference system Σar given the mea-
surements in (6.3b) and (6.3c). Consequently, when devising the complete
control system for the UAV dynamics, we start by considering the problem
of controlling the subsystem Σp along the solutions of Σpr given the measure-
ments in (6.3a). We then present a method of interconnecting the two systems
inspired by [Lefeber et al., 2017], by augmenting the reference dynamics Σar ,
to facilitate a stability analysis of the complete control system in Figure 6.2
using cascade theorems. As such, this chapter deals with two main problems.
The first is to find a filtered output feedback for the positional dynamics when
the velocities are unknown, and the second is to find a way of interconnecting
the two subsystems. These problems are defined separately as follows.

6.1.1 The Problem of Positional Filtered Output Feedback
To simplify the analysis, the problem is considered with the translation
velocities of the system in the body frame, unlike the dynamics considered in
Chapter 4. Furthermore, two errors are defined as in [Lefeber et al., 2017],

pe = R>r (pr − p), ve = vr −R>r Rv. (6.4)

In these signals, plugging in Σp and Σpr , the error dynamics take the form

ṗe = −S(ωr)pe + ve, v̇e = −S(ωr)ve + u, (6.5)

where
u = −(f/m)R>r Re3 + (fr/m)e3 ∈ R3, (6.6)

is a virtual control input, which can be generated by controlling R and picking
f with knowledge of Rr and fr. Consequently, we can find a feedback law
for the non-autonomous system in (6.5), with the idea of augmenting the
reference system Σar such as to yield an equality in (6.6).
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Remark 6.1
Another reason for this abstraction is to introduce a saturation of the virtual
control input. This addresses the problem of negative thrusts highlighted in
Chapter 4. By ensuring that u(t) ∈ Bγ , any f(t) can be lower and upper
bounded by imposing mild constraints on the reference trajectory. Assuming
that f−r ≤ fr(t) ≤ f+

r for finite constants 0 < f−r < f+
r , then f−r −mγ ≤

f(t) ≤ f+
r + mγ for all t ≥ t◦. This becomes important when considering

actuator limitations, as rotors typically only spin in one direction (f cannot
be negative) and generate a bounded maximum thrust (f is bounded). 2

Remark 6.2
Note that the control input u differs slightly from that in [Lefeber et al., 2020],
as we are consistently working with an east-north-up (ENU) coordinates in
this thesis, as opposed to the north-east-down (NED) coordinates considered
in [Lefeber et al., 2020]. With the consequence that the sign on the right-hand
side of (6.6) is inverted. This results in subtle differences to [Lefeber et al.,
2020] when later considering the interconnection of the two FOF controllers.2

With this introduction, the first problem of the chapter is to design a
filtered output feedback controller for the system in (6.5), using only the
positional measurements. This is done using a class of smooth saturation
functions, which bound the virtual input u to a ball Bγ such that u retains a
certain degree of smoothness. This problem is summarized as follows.

Problem 6.1
Consider a system with a state x = (p,v,R,ω) ∈ R3 × R3 × SO(3) × R3,
with an associated reference trajectory xr = (pr,vr,Rr,ωr) ∈ R3 × R3 ×
SO(3)×R3, driven by (f, τ ) ∈ R≥0×R3 and (fr, τ r) ∈ R≥0×R3, respectively,
evolving by the UAV dynamics in (6.1) and (6.2), respectively. Consider a
virtual control signal, u, related to the signals f, fr,R,Rr as described in (6.6).
Define a filter memory, ζp, and an update law in this memory, as

dζp
dt

= Hp(ζp,yp,xr,u), (6.7)

with an associated saturated feedback law

u = Gp(ζp,xr) ∈ Bγ , (6.8)

for any saturation level γ > 0, such that the errors converge to (pe,ve, ζp)→
(0,0,0) as t→∞, and that this equilibrium point is UGAS and ULES. 2
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Figure 6.3 Sketch of the filtered output feedback controller, with the blue
boxes directly relating to the control system abstraction in Figure 6.1.

6.1.2 The Problem of Full Filtered Output Feedback
If a solution to Problem 6.1 can be found, then we can consider steering
the attitude subsystem Σa to an augmented reference trajectory, essentially
combining the solution to Problem 5.1 and Problem 6.1. To this end, consider
the slight expansion of Figure 6.2, as illustrated in Figure 6.3.

Here, the reference trajectory enters the positional FOF controller as
well as the block denoted by C. The latter generates an augmented reference
trajectory for the attitude FOF controller (R̄r, ω̄r, τ̄ r) and computes f . In the
field of UAV control, cascaded controller structures are common, where the
positional controller defines a desired attitude for the attitude controller (see,
e.g., Chapter 4). However, the abstraction in Figure 6.3 represents a notable
departure from the standard controller paradigms. Instead of constructing
a cascaded full state feedback for the UAV dynamics, and combining this
with a full state estimator, we instead consider the stability of a pair of
controller/observers independently, before combining them in a cascade. In
doing so, the stability properties of the entire control system can be analyzed
using cascade theorems. This second control problem is summarized as follows.

Problem 6.2
Consider a system with a state x = (p,v,R,ω) ∈ R3 × R3 × SO(3) × R3,
with an associated reference trajectory xr = (pr,vr,Rr,ωr) ∈ R3 × R3 ×
SO(3)×R3, driven by (f, τ ) ∈ R≥0×R3 and (fr, τ r) ∈ R≥0×R3, respectively,
evolving by the UAV dynamics in (6.1) and (6.2), respectively. Define a filter
memory, ζ, and an estimate update law in this memory, as

dζ
dt

= H(ζ,y,xr, τ r), (6.9)
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with an associated feedback law

(f ; τ ) = G(ζ,xr, fr, τ r), (6.10)

such that x(t)→ xr(t) as t→∞, and characterize the stability properties of
the resulting closed-loop system. 2

6.1.3 Contributions
In this chapter, we present two key results from [Lefeber et al., 2020]. The first
is a translational filtered output feedback solution to Problem 6.1, first pub-
lished in [Lefeber et al., 2020, Proposition 1]. However, the main contribution
of the chapter is the solution to Problem 6.2, originally published in [Lefeber
et al., 2020, Proposition 3]. In doing so, we present all of the necessary details
required for a real-time implementation of the control system, and provide
additional details and simulation results to demonstrate the veracity of the
proposed theory. With respect to prior work, the presented control system:

(i) Assumes the attitude to be measured through directional measurements;

(ii) Assumes that the attitude rates in the body frame are measured;

(iii) Assumes that the positions of the UAV are measured;

(iv) Does not use measurements directly in the computation of the controls;

(v) Confines the force, f , to a ball around the reference force, fr;

(vi) Results in a UAGAS and ULES solution to Problem 6.2.

While there exist approaches to the problem of output feedback given the
assumptions in (i)-(iii), such as the controller proposed in [Abdessameud and
Tayebi, 2010, Theorem 1], the control system considered in this chapter is
unique in that it (iv) does not use measurements directly in the computation
of the control signals. This enables high-order derivatives of the positional er-
rors to be expressed in the filter memory without requiring explicit numerical
differentiation of the measurements. Furthermore, by (v), the actuating force,
f , can be bounded away from the origin, complying with the physical con-
strains of UAVs that generally cannot produce negative thrusts (see Sec. 2.2.4).
Finally, we emphasize that by (vi), the resulting control system comes with a
joint stability proof of the trajectory tracking errors and estimation errors,
making it a powerful solution for tracking UAV control applications when
uniform almost global stability properties are deemed necessary.
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6.1.4 Overview
We start by giving some supplementary mathematical preliminaries in Sec. 6.2,
particularly concerning a class of vector-valued saturation functions that are
key to finding a saturated feedback law. These results are used in Sec. 6.3,
where a full state feedback solution is given for the sake of intuition before
presenting the filtered output feedback analogue. The system interconnection
is then presented in Sec. 6.4, followed by a cascade analysis in Sec. 6.5. A
simulation example of the complete control system is then given in Sec. 6.6,
and the summary in Sec. 6.7 concludes the chapter. To get an overview of
the developments, the results and examples are summarized in Table 6.1.

Table 6.1 Overview of the results and examples of Chapter 6. Here, 1

indicates work of others, proofs given elsewhere; 2 indicates work tangential
with others, but with independent proofs given; and 3 indicates new work.

Reference Description

Prop. 6.1 2 Preliminary result on translation control analogous to
[Lefeber et al., 2017], included to build intuition

Thm. 6.1 3 Translation filtered output feedback, with filter memory
on R9 in [Lefeber, Greiff, and Robertsson, 2020, Prop. 1]

Thm. 6.2 3 Filtered output feedback for a UAV, with filter memory on
SO(3)× R12 in [Lefeber, Greiff, and Robertsson, 2020, Prop. 3]

Example 6.1 Example on how the saturation functions can be constructed
Example 6.2 Simulation example with Thm. 6.1
Example 6.3 Simulation example with Thm. 6.1, showing saturated control
Example 6.4 Simulation example with Thm. 6.1, on control signal derivatives
Sec. 6.6.1 Simulation example with Thm. 6.2, stabilization, no noise
Sec. 6.6.2 Simulation example with Thm. 6.2, stabilization, with noise
Sec. 6.6.3 Simulation example with Thm. 6.2, tracking with noise

6.2 Preliminaries

Before presenting the filtered output feedback controllers, a general class
of vector-valued saturation functions is defined. These functions will be
instrumental in bounding the virtual control input u when solving Problem 6.1.

Definition 6.1
Let σ : Rn 7→ Bγ denote a vector-valued saturation function, with

σ(x) = s(‖x‖)‖x‖−1x, (6.11)

where s : R>0 7→ [0, γ] is a twice-continuous concave and increasing function
for a γ > 0, and s(0) = 0, with limy→0 s(y)y−1 = s′(0) > 0⇒ σ(0) = 0. 2
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This function bounds the input to a ball Bγ , and importantly preserves
the direction of the input, such that σ(x)‖x. Equally important is that
quadratic forms of the saturated output is bounded in quadratic forms of the
input. As such, when designing saturated feedback laws, it is often productive
to construct stability proofs with a Lyapunov-like function associated with
saturated errors, which can be defined for any saturation function as follows.

Definition 6.2
Let Vσ : Rn 7→ R≥0 denote a Lyapunov-like function associated with any
saturation function σ in Definition 6.1, where

Vσ(x) =

∫ ‖x‖
0

s(y)dy, (6.12)

which notably is positive definite in its argument and radially unbounded.2

Remark 6.3
A useful property of any Vσ(x) associated with a saturation function σ is
that there exist positive constants 0 < c1 ≤ s′(0)−1 and s′(0) ≤ c2, such that

c1
2
‖σ(x)‖2 ≤ Vσ(x) ≤ c2

2
‖x‖2. (6.13)

2

Proof. The proof follows from Definition 6.2 and is given in Appendix C.2.2

As a consequence, we can express saturated signals of the errors in the
closed-loop system, and construct stability proofs with Lyapunov function
candidates that include terms in Vσ. With these bounds, we can think of the
functions Vσ as quadratic positive functions of their arguments, which will
prove particularly useful in the forthcoming cascade analysis.

Remark 6.4
Another useful property of the saturation function σ is that the time-derivative
of the function Vσ can be expressed in the time-derivative of its argument, as

V̇σ(x) = ẋ>σ(x), ∀x ∈ Rn. (6.14)

2

Proof. This follows from Definitions 6.1 and 6.2, see Appendix C.3. 2

This fact can be used to find saturated feedback laws. If a control signal is
constructed such that ẋ = −σ(x) in some error x, then this typically results
in a term in the Lyapunov function time-derivative which is negative in x.
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Example 6.1
An example of a function s(y) that satisfies the conditions in Definition 6.1 is

s(y) = γ tanh(γ−1y), (6.15)

resulting in s(0) = 0 and s′(0) = 1 ∀γ > 0. In evaluating (6.12), the associated
saturated Lyapunov-like function is Vσ(x) = γ2 log(cosh(‖x‖γ−1)). While not
restricted to this particular choice, we will use (6.15) as the nominal saturation
function for future reference. Part of the reason for this particular choice
is that σ(x) ≈ x for small x independently of γ, which becomes important
when reasoning about the tuning of such saturated feedback laws. 2

These saturation functions can be defined in many ways, and the ab-
straction of these functions along these lines has been done previously in the
literature, notably in [Lefeber, 2000; Lefeber et al., 2017]. Here, we use a
slightly different notation, opting to work with the two-norm instead of the
squared two-norm, and to nominally use the hyperbolic tangent expression
in (6.15). With these tools, a solution to Problem 6.1 is derived in Sec. 6.3.

6.3 Positional Saturated Filtered Output Feedback

To introduce the notion of a filtered output feedback with positional informa-
tion, we first build some intuition by considering the problem of constructing
a saturated full state feedback for the dynamics in (6.5). If assuming that
both the positions and velocities are measured, a PD-like feedback law analo-
gous to the translational controller presented in [Lefeber et al., 2017] can be
constructed. Such a result is summarized in the above notation as follows.
Proposition 6.1
Assume that ωr is bounded, and take any σ : Rn 7→ Bγ by Definition 6.1.
With the errors defined in (6.4) evolving by (6.5), in feedback with

u = −σ(kppe + kvve) ∈ Bγ , (6.16)

where kp > 0, kv > 0, the point (pe,ve) = (0,0) is UGAS and ULES. 2

Proof. The proof is given in Appendix C.4, and follows by the definition of a
joint tracking error e , kppe + kvve, and subsequent analysis of a Lyapunov
function candidate using the associated Vσ in Definition 6.2, with

V1 =
kp
2
‖ve‖2 + Vσ(e). (6.17)

It is shown that V̇1 ≤ 0 and uniformly continuous in time along the solutions
of (6.5). Lemma 2.5 (Barbălat) is used with subsequent signal chasing by
Lemma 2.7 to show GAS. Theorem 2.7 (Matrosov) shows UGAS, and ULES
follows by linearization and application of Theorem 2.1 with Lemma 2.2. 2
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From this preliminary result, we note that when developing controllers for
the error dynamics in (6.5), it is useful to jointly saturate the proportional and
derivative parts of the feedback and construct a stability proof by including a
quadratic term in the velocity tracking errors in the Lyapunov function. If
combined with the function Vσ(e), the resulting Lyapunov function is positive
definite in e and ve, facilitating a signal chasing through the error dynamics
by which both of the tracking errors can be shown to converge to the origin.

With this intuition, we proceed to formulate a solution to Problem 6.1.
The general idea is to construct a saturated feedback in a set of tracking
error estimates p̂e ∈ R3 and v̂e ∈ R3. In doing so, the feedback will be
saturated at all times, and the feedback Gp in Problem 6.1 will never include
any of the measurements directly. However, just as with Tayebi’s output
feedback [Tayebi, 2008, Theorem 1] for the attitude dynamics summarized
in Theorem 5.1, this can be simplified by the introduction of an auxiliary
system. To this end, we define the memory of this system by z ∈ R3, and the
combined filter memory then takes the form ζp , (p̂e; v̂e; z) ∈ R9. With
this general intuition, a solution to Problem 6.1 is given as follows.

Theorem 6.1—[Lefeber et al., 2020, Proposition 1]
Define a filter memory ζ = (p̂e; v̂e; z) ∈ R9, and a set of errors in (6.4), as

pe = R>r (pr − p), ve = vr −R>r Rv (6.18a)
p̃e = pe − p̂e, ṽe = ve − v̂e, (6.18b)
z̃ = z − p̃e. (6.18c)

Assume that the positions are measured and that the signals ωr and ω̇r are
bounded. Consider the error dynamics in (6.5), in closed-loop feedback with

u = −σ(kpp̂e + kvv̂e) ∈ Bγ , (6.19a)

where the filter memory is updated by

˙̂pe = −S(ωr)p̂e + v̂e + L1z (6.19b)
˙̂ve = −S(ωr)v̂e + u+ L2z (6.19c)
ż = −S(ωr)z − (L1 + L3)z + (L1 + L3)p̃e. (6.19d)

For any controller gains kp > 0, kv > 0, saturation level γ > 0, and es-
timator gains L1 > 0, L2 > 0, and L3 > 2L2/L1, the equilibrium point
(pe,ve, p̃e, ṽe, z̃) = (0,0,0,0,0) is UGAS and ULES. 2
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Proof. The proof is given in Appendix C.5, and follows by the definition of
a Lyapunov function candidate in the form

V1 = Vσ(ê) +
1

2
kpv
>
e ve +

a

2
(p̃e − bṽe)>(p̃e − bṽe) +

ac

2
ṽ>e ṽe +

a

6
z̃>z̃,

(6.20)

where ê , kpp̂e + kvv̂e, with positive constants a, b, c > 0 expressed in the
controller parameters. By defining a X = (σ(ê); p̃e; ṽe; z̃) ∈ R12, the
time-derivative of V1 along the solutions of the error dynamics can be written

V̇1 = −X>MX. (6.21)

If constraining the Lyapunov function candidate to the parameter values

b =
2L1

3L2
, c =

2L2
1

9L2
2

+
1

L2
, (6.22)

a sufficient condition forM � 0 is found by taking L3 and a sufficiently large,

L3 > 2L2/L1, a >
(L1kp + L2kv)

2

4kv min(L1
3 ,

2L1−
√

4L2
1−4L1L2L3+L2

2L
2
3+16L2

2+L2L3

6L2
)
.

(6.23)

Given any such choice, V̇1 ≤ 0 along the solutions of the error dynamics,
with V1 being positive definite in X and radially unbounded. Application
of Lemma 2.5 (Barbălat) and subsequent signal chasing through Lemma 2.7
yields GAS. The Matrosov results in Theorem 2.7 yields UGAS, and a local
linearization of the error dynamics shows ULES when invoking Lemma 2.2.2

This represents a feasible solution to Problem 6.1, as the controller is
defined as a saturated nonlinear feedback in the estimated tracking errors
(p̂e; v̂e), which simultaneously confines the virtual control signal u to a ball
Bγ for any desired γ > 0. Note that the estimator is implementable in the
positional measurements, and that its implementation requires the reference
trajectory xr to be known. To illustrate the performance of the controller
and its stability properties, a simulation example is given (see Example 6.2).

Example 6.2
In this example, the closed-loop behavior of the FOF controller in
Theorem 6.1 is demonstrated in a simulation setup where the satura-
tion level, defined by γ, can be varied. The system is initialized with
pe(t◦),ve(t◦), p̂e(t◦), v̂e(t◦), z(t◦) ∼ U([−1, 1]3), with a reference ωr(t) as

ωr(t) = (sin(t+ 1); sin(2t+ 2); sin(3t+ 3)). (6.24)
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6.3 Positional Saturated Filtered Output Feedback

For the controller tuning, we let

kp = 2
√
kv, kv = 5, L1 = 4, L2 = 4, L3 = 4, (6.25)

satisfying L3 > 2L2/L1. To evaluate the Lyapunov function numerically, let

a = 1.129 · 103, b = 2/3, c = 0.4722, (6.26)

with b and c computed by (6.22) from (6.25), and a satisfying the con-
dition in (6.23). We emphasize that any controller parameters satisfying
(kp; kv; L1; L2) ∈ R4

>0 with an L3 > 2L2/L1 represents a feasible controller
tuning, rendering the origin UGAS and ULES. The explicit evaluation of the
parameters (a, b, c) is only done to illustrate the decay of the Lyapunov func-
tion V1 in (6.20), and to demonstrate that the analytical expression derived
in (6.21) holds numerically. Given a feasible choice of tuning parameters, we
are free to pick any saturation level γ > 0 defining the ball Bγ to which u
is constrained. For the purposes of this example, let the saturation function
be defined by s(y) = γ tanh(y/γ) in accordance with Example 6.1, here with
γ = 2. The resulting system response is illustrated in Figure 6.4.

In this simulation, we note that all of the errors (pe,ve, p̃e, ṽe, z̃) converge
to the origin, and that the virtual control input satisfies ‖u‖ ≤ γ = 2 for
all t > t◦. The position and velocity tracking errors are correctly estimated,
with p̃e and ṽe approaching the origin preceding the convergence of the
tracking errors pe and ve to the origin. Furthermore, when evaluating the
Lyapunov function V1 in (6.20) numerically, we note a linear decay in the
10-logarithm in time, illustrating the local exponential convergence properties.
Finally, to ascertain that the analytical expression for the Lyapunov function
time-derivative in (6.21) is correct, this expression is evaluated in the errors
and plotted over the numerically differentiated Lyapunov function V1 in time.
This demonstrates that the error dynamics have been correctly derived, and
that V1 satisfies the differential relationship in (6.21) along its solutions. 2

An interesting and important feature of the translation FOF in Theorem 6.1
is that the saturation level, γ, can be varied without affecting the stability
properties of the system. Additionally, if constructing σ(x) with a function
s(y) whose derivative in y at the origin does not depend on γ, then the local
behavior of the system is unaffected by γ. This is the case for the saturation
defined in Example 6.1. To illustrate this, the same exact simulation is repeated
in a second example, where γ ∈ {1, 1.5, · · · , 5.5, 6} (see Example 6.3).

Example 6.3
In this example, the exact same simulation setup, parameters, and realization
of the initial conditions and reference trajectory are used as in Example 6.2.
A simulation of the translation error dynamics in closed-loop feedback with
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Figure 6.4 The system response when controlling the translation error
dynamics in (6.5) through the virtual control input u using Theorem 6.1.
Top, left: The control signal u(t) ∈ Bγ and its norm ‖u(t)‖. Top, right:
Trajectory of the auxiliary system state z(t). Center, left: The positional
tracking error pe(t) (black) and the estimated tracking error p̂e(t) (blue).
Center, right: The velocity tracking error ve(t) (black) and the estimated
tracking error v̂e(t) (blue). Bottom, left: The Lyapunov function V1 in (6.20)
decreasing in time, decaying exponentially for small errors. Bottom, right:
The time-derivative (d/dt)V1 evaluated numerically from V1 (black) and
analytically in the signals of the system using the expression in (6.21) (blue).

Theorem 6.1 is run for every saturation level in γ ∈ {1, 1.5, · · · , 5.5, 6}, and
the resulting trajectory of the Lyapunov function and the virtual control
input is plotted in Figure 6.5, demonstrating that the bounds are saturated
as expected, and that the associated Lyapunov function decays with the same
rates after an initial transient which is longer for smaller saturation levels γ.

Based on this simulation, we note that virtual control input behaves as
intended, and that it is confined to Bγ irrespective of the chosen γ > 0, as
seen in the left-most subplot of Figure 6.5. By design, σ(ê) ≈ ê for small ê
for all choices of γ. As such, the local convergence properties of the system is
expected to be exponential and its decay is independent of the choice of γ,
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6.3 Positional Saturated Filtered Output Feedback

which is seen in the right-most subplot of Figure 6.5. 2
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Figure 6.5 Virtual control signal norm when varying γ from γ = 1 (red)
to γ = 6 (blue) in increments of 0.5. Left: Norm of the virtual control input
‖u‖ for an associated saturation level γ. Right : The Lyapunov function V1
in (6.20) depicted in the 10-logarithm, defined in the parameters in (6.26).

By the introduction of the filter memory, and knowledge of its time-
derivatives, we can express not only u, but also u̇ and ü in the memory of
the filter. This becomes important when designing the interconnection block
in Figure 6.3. Specifically, consider any saturation function in Definition 6.1,
letting x , ‖ê‖, and let s′(x) and s′′(x) denote the first and second derivative
of the function s with respect its argument. By the chain rule, we obtain

d
dt
σ(ê) =

s(x)

x
˙̂e+

(s′(x)

x
− s(x)

x2

)
ẋê, (6.27)

d2

dt2
σ(ê) =

s(x)

x
¨̂e+

(s′(x)

x
− s(x)

x2

)
(2ẋ ˙̂e+ ẍê)+

(s′′(x)

x
−2

s′(x)

x2
+2

s(x)

x3

)
ẋ2ê,

where

ẋ = (ê> ˙̂e)‖ê‖−1, ẍ = (‖ ˙̂e‖2 + ê>¨̂e)‖ê‖−1 − (ê> ˙̂e)2‖ê‖−3, (6.28a)

and

ê =kpp̂e + kpp̂e (6.29a)
˙̂e =− S(ωr)ê+ kpv̂e − kvσ(ê) + (kpL1 + kvL2)z (6.29b)
¨̂e =− S(ω̇r)ê− S(ωr)[−S(ωr)ê+ kpv̂e − kvσ(ê) + (kpL1 + kvL2)z]

+ kp[−S(ωr)v̂e − σ(ê) + L2z]− kv(d/dt)σ(ê)

+ (kpL1 + kvL2)[−S(ωr)z − (L1 + L3)z + (L1 + L3)p̃e]. (6.29c)

Note that these expressions should be interpreted in the limit as x→ 0.
As highlighted in Chapter 4, one should be suspicious of seeing a second
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time-derivative of the control signal appearing a practical application, as it
tends to be very noisy if computed from measured signals in the system. This
was one of the problems with the full state feedback approaches in Chapter 4.
Here, these derivatives need not be computed by numerical differentiation,
but can be evaluated directly from the filter memory. This is one of the major
advantages in designing the filtered output feedback, and the main reason for
Gp not including an argument in yp in Problem 6.1.

If there is any measurement noise present, it only enters through p̃e
additively on ¨̂e in (6.29c). Recall, this term can be expanded as p̃e = R>r (pr−
p)− p̂e by (6.18). As such, if the measured position yp contains noise which is
discontinuous, then we note that u is C1, and if the noise is continuous, then
u is C2. To illustrate this, consider measurement noise that at a time t > t◦
is realized as additive zero-mean Gaussian noise yp(t) = p(t) + pn(t), with
pn(t) ∼ N (0, σ2

pI), then it appears as an additive disturbance knR>r pn(t)
in (6.29c) with kn = −(kpL1 +kvL2)(L1 +L3). It does not enter directly in u,
or even u̇, and its effects on the control signal can be mitigated by decreasing
the controller gains, at the cost of a larger initial transient in the tracking
errors. To illustrate this, we once again make use of Example 6.2.

Example 6.4
Consider a simulation setup identical to that in Example 6.2. Take a slightly
slower tuning, with γ = 3, kp = 1, kv = 2, L1 = 1, L2 = 0.5, L3 = 2, such that
kn = 6. Take the hyperbolic tangent saturation function, then

s(y) = γ tanh
(
y
γ

)
, s′(y) = sech2

(
y
γ

)
, s′′(y) = − 2

γ tanh
(
y
γ

)
sech2

(
y
γ

)
,

permitting an evaluation of both u̇ and ü through (6.27), (6.28) and (6.29).
When omitting the stochastic measurement noise, the analytically evaluated
signals (u̇, ü) (black) are visualized over the numerically differentiated signals
(blue) in Figure 6.6. When adding the positional measurement noise, here
realized with σp = 0.05 and sampled at 100 [Hz], the resulting control signal
derivatives are illustrated in Figure 6.7.

Firstly, we note the perfect overlap in the numerically evaluated control
signal time-derivatives in Figure 6.6, when using the analytical evaluation
through (6.27), (6.28) and (6.29). This illustrates that the estimator memory,
ζp, can be leveraged in evaluating the control signal derivatives, and veri-
fies that the provided expressions are correct, at least with respect to the
hyperbolic saturation function. Secondly, when introducing the stochastic
measurement noise in Figure 6.7, the disturbance is barely visible in the
evaluation of u̇. As expected, it is clearly visible in the evaluation of ü, due
to it appearing linearly in these signals. However, due to how it enters the
dynamics of ¨̂e, its effects can be mitigated and controlled by tuning. 2
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Figure 6.6 Evaluation of the control signal time-derivative in the case
without measurement noise. The analytical expression evaluated in the solver
memory (black) and the numerically differentiated signal computed from u
(blue). Left : First time-derivative, u̇. Right : Second time-derivative, ü,
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Figure 6.7 Evaluation of the control signal time-derivative in the case
with measurement noise. The analytical expression evaluated in the solver
memory (black) and the numerically differentiated signal computed from u
(blue). Left : First time-derivative, u̇. Right : Second time-derivative, ü,

Remark 6.5
Just as with the attitude FOF in Theorem 5.2, knowledge of the behavior
of the translational error dynamics when in closed-loop feedback with in
Theorem 6.1 can be leveraged to gain some insight when tuning the controller.
In Appendix C.5, it is shown that the local error dynamics are governed by a
linear time-variant system in the form A(t) = F̄ + S̄(t), where F̄ ∈ R15×15

is Hurwitz and S̄(t) ∈ R15×15 is skew-symmetric and commutes with a class
of structured solutions to the linear Lyapunov equation. As such, we can
consider the spectrum of F̄ for the controller tuning, which can be expressed

p(λ) = (λ2 + b1λ+ b2)3(λ3 + a1λ
2 + a2λ+ a3)3, (6.30)

where the coefficients (b1, b2, a1, a3) are linear in the controller parameters
k , (kp, kv, L1, L2, L3), and a2 is nonlinear in the parameters k. As such, while
direct pole-placement design is possible, a simpler approach is to formulate
a constrained optimization problem which seeks to generate a desired pole
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placement while enforcing the feasibility constraints on the parameters. For
instance, if λ̄ ∈ C15 denotes the solution to p(λ) = 0 as a function of k, and
we seek a critically damped tuning with a pole location c < 0, we can solve

min
k∈R>0

L3>2L2/L1

‖c115 −<(λ̄)‖2 + ‖=(λ̄)‖2. (6.31)

Regardless of how the system is tuned, the solution to (6.30) should be
investigated as it provides good intuition on the general local behavior of the
system. However, much like Sec. 5.4, we emphasize that these error dynamics
are non-autonomous, and that the tuning should be investigated in simulation
as the local behavior will depend on the reference trajectory as well. 2

To summarize, Theorem 6.1 represents a feasible solution to Problem 6.1.
The feedback and estimator combination gives rise to an associated set of error
dynamics in which the origin is UGAS and ULES. Furthermore, the solution
permits the saturation of the virtual control input u, and the first and second
time-derivatives of this signal can be evaluated from the filter memory. This
will be important for the developments in the next section, where a method of
interconnecting the controllers in Theorem 5.2 and Theorem 6.1 is described.

6.4 Interconnection

To design the interconnection block, C, in Figure 6.2, we follow the approach
taken in [Lefeber et al., 2017]. Given the definition of the virtual control
in (6.6), it is clear that in order for this equality to hold, we require fR>r Re3

to converge to fre3 −mu. To this end, define the unit direction

fd =

fd1

fd2

fd3

 =
fre3 −mu
‖fre3 −mu‖

. (6.32)

From the previous discussion, we note that both ḟd and f̈d are known in
the memory of the filter, ζp. Furthermore, we can constrain the force such
that fd3 > 0 for all times, provided that ‖u‖ ≤ f−r /m. To this end, we
define a desired rotation as a rotation of θ = arccos(e3 · fd) about an axis of
n = (e3 × fd)‖(e3 × fd)‖−1, which can be written compactly as

Rd , ExpSO(3)([θn]∧SO(3)) =


1− f2

d1

1+fd3
− fd1fd21+fd3

fd1

− fd1fd21+fd3
1− f2

d2

1+fd3
fd2

−fd1 −fd2 fd3

 ∈ SO(3). (6.33)
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This rotation satisfies fd = Rde3. Furthermore, we note that the time-
derivative of the rotation matrix is known in (fd, ḟd), and as such

ωd = [R>d Ṙd]
∨. (6.34)

Finally, as R̈d is known in (fd, ḟd, f̈d), the attitude accelerations are simply

ω̇d = [Ṙ
>
d Ṙd +R>d R̈d]

∨. (6.35)

Using the fact that f = ‖fre3 −mu‖ and the expression in (6.33), we can
write fre3 −mu = fRde3, so the goal of choosing the torques τ which make
fR>r Re3 converge to fre3 −mu can be replaced by the goal to determine τ
which makes R>r R converge to Rd, or equivalently R to RrRd. Therefore, it
is natural to consider an augmented reference rotation R̄r = RrRd, where

˙̄Rr = ṘrRd +RrṘd (6.36a)
= RrS(ωr)Rd +RrRdS(ωd) (6.36b)

= RrRd(S(R>d ωr) + S(ωd)) (6.36c)
= R̄rS(ω̄r), (6.36d)

and ω̄r , R>d ωr +ωd. Finally, we note that the time-derivative of this signal,

˙̄ωr = −S(ωd)R
>
d ωr +R>d ω̇r + ω̇d, (6.37)

can be expressed in (6.33), (6.34), and (6.35), whereby the augmented refer-
ence torques can be computed by inverting the attitude rate dynamics,

J ˙̄ωr = S(Jω̄r)ω̄r + τ̄ r ⇒ τ̄ r = J ˙̄ωr − S(Jω̄r)ω̄r. (6.38)

To summarize, we have in this section defined a way of connecting the
two subsystems by the construction of an augmented reference trajectory
(R̄r, ω̄r, τ̄ r) which satisfies the dynamics of the attitude subsystem and defines
the interconnection block in Figure 6.3. This reference trajectory is computed
from the virtual control input (u, u̇, ü) which are available in the filter memory,
ζp, and with this interconnection term, we can proceed to analyze the cascade
of the entire closed-loop system, as will be done next.

6.5 Cascade Analysis

When closing the loop through the proposed interconnection, we no longer
get the desired virtual control input to the system in (6.5), and the system is
not perfectly actuated by the virtual control in (6.6), restated below,

u = (fr/m)e3 − (f/m)R>r Re3 ∈ R3, (6.39)
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but it is rather actuated by a perturbed virtual control input,

ū = (fr/m)e3 − (f/m)Rde3 ∈ R3. (6.40)

Note that ū can be expressed in u, plus some additive perturbation, as

ū = u− [(fr/m)e3 − (f/m)R>r Re3] + (fr/m)e3 − (f/m)Rde3 (6.41a)

= u− (f/m)R>r (RrRdR
> − I)Re3 (6.41b)

= u− ‖fre3 −mu‖
m

R>r (R̄R> − I)Re3. (6.41c)

This perturbation vanishes as R̄r → R, then resulting in ū→ u. Furthermore,
the entire control system in Figure 6.3 can be written out in terms of this
time-varying interconnection term and the error signals of the system.

Specifically, if the attitude control is done with the filtered output feedback
solution in Theorem 5.2, implemented with respect to the augmented reference
trajectory (R̄r, ω̄r, τ̄ r), we can choose to represent its state on the form

X2 ,
(

N∑
i=1

kiS(vi)Revi; ωe;

N∑
i=1

kiS(vi)R̃vi; ω̃

)
∈ R12, (6.42)

in the errors

Re = R̄rR
> ∈ SO(3), R̃ = R̂R> ∈ SO(3), (6.43a)

ωe = ω̄r − ω ∈ R3, ω̃ = ω̂ − ω ∈ R3. (6.43b)

Furthermore, the dynamics of this system can then be written

Σa2 : Ẋ2 = f2(t,X2), (6.44)

where the origin is UGAS and ULES by Theorem 5.2, as (R̄r, ω̄r, τ̄ r) satisfies
the attitude dynamics, the solutions converge uniformly globally asymptoti-
cally and locally uniformly exponentially to the invariant set S in (5.13).

Consider the errors of the translation subsystem in Theorem 6.1, and let

X1 , (pe; ve; p̃e; ṽe; z̃) ∈ R15, (6.45)

with
Σp′1 : Ẋ1 = f1(t,X1), (6.46)

denoting the error dynamics of the closed-loop system when the interconnec-
tion term is omitted. When taking the interconnection into account, we can
instead express the dynamics of the same errors as

Σp1 : Ẋ1 = f1(t,X1) + g(t,X1,X2)X2, (6.47)
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where the interconnection term is defined as

g(t,X1,X2)X2 = −


0
I
0
I
0

 ‖fre3 −mu‖
m

R>r (Re − I)Re3. (6.48)

Finally, we have arrived at a description of the error dynamics as a triangular
cascade structure, described by the systems {Σp1,Σp′1 ,Σa2} in the form (2.46),
and its stability properties can be analyzed though the interconnection term,
g, using Theorem 2.9, or by showing uniform boundedness of solutions and
applying Theorem 2.11. Taking the latter approach, the main result of this
chapter can then be summarized in the notation of this thesis as follows.

Theorem 6.2—[Lefeber et al., 2020, Proposition 3]
Consider the dynamics (6.2) in closed-loop feedback where:

• The torques, τ , are computed by the controller (5.10a) in Theorem 5.2
with respect to the augmented reference trajectory (R̄r, ω̄r, τ̄ r),

• The augmented reference is formed through by Rd,ωd and ω̇d given by
(6.33), (6.34) and, (6.35), as described in Sec. 6.4.

• The force f = ‖fre3 −mu‖, is computed from the saturated virtual
control signal in u which in turn is computed by (6.19a) in Theorem 6.1.

Assume that

• A saturation function is chosen by Definition 6.1, with a saturation level
γ such that mγ < f−r ≤ fr(t) ≤ f+

r for all t ≥ t◦.

• The reference trajectory is well defined, in the sense that the signals
(pr,vr,R,ωr, ω̇r, fr, ḟr, f̈r, τ r) are bounded, with fr > 0 for all t ≥ t◦.

• Feasible controller gains are chosen as kp > 0, kv > 0, L1 > 0, L2 >

0, L3 > 2L2/L1, Kω = K>ω � 0, Cω = C>ω � 0, cR > 0, with
N directions vi ∈ R3 with associated gains ki > 0 such that M =∑N
i=1 kiviv

>
i has distinct eigenvalues.

The equilibrium point (pe,ve, p̃e, ṽe, z̃,Re,ωe, R̃, ω̃) = (0,0,0,0,0, I,0, I,0)
is UAGAS and ULES. The equilibrium points characterized by Re 6= I or
R̃ 6= I are all locally unstable, and the set of initial conditions converging to
these equilibrium points form a lower dimensional manifold. 2
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Proof. The proof of this theorem is given in [Lefeber et al., 2020] and follows
the idea in [Lefeber et al., 2017], here stated with more details in the Ap-
pendix C.6. The main idea is to show that the solutions of the interconnected
system remain bounded. By differentiating the Lyapunov function Vp1 in (6.20)
along the solutions of the perturbed system Σp1 in (6.47), we obtain

V̇p1 ≤ δ1
√
Vp1‖Re − I‖. (6.49)

Utilizing the fact that the subsystem Σa2 is UAGAS and ULES and considering
the stability analysis on the almost global region of attraction of Σa2 , it can be
shown that there exists a finite time T ≥ t◦, after which the term ‖Re − I‖
decays exponentially to zero, and that ‖Re − I‖ ≤ 2 for all t ∈ [t◦, T ]. As
such, an upper bound for the Lyapunov function time-derivative is given by

V̇p1 ≤
{

2δ1
√
Vp1 , ∀ t ∈ [t◦, T ]

2δ1
√
Vp1 e−δ2(t−T ), ∀ t ≥ T . (6.50)

By the comparison lemma, a conservative upper bound on Vp1 can then be
expressed in terms of two solutions, φA(t; t◦, x◦) and φB(t; t◦, x◦) associated
with the differential equations in (6.50), stated explicitly in Appendix C.6.
These solutions can be used to derive a finite upper bound of the Lyapunov
function Vp1 along the solutions of Σp1 (also given in Appendix C.6), where

sup
t≥t◦
Vp1 (t) ≤ B̄(Vp1 (t◦), T, δ1, δ2). (6.51)

This bound is uniform in t◦ and illustrated in Figure 6.8. When considered on
the domain of almost global asymptotic attraction of Σa2 , the solutions of the
interconnected system Σp1 and Σa2 are uniformly bounded, UGAS and ULES
of X1 = 0 and X2 = 0 in the cascade follow by Theorem 2.11. As such,
the resulting cascade is ULES and UAGAS, with its almost global region of
attraction characterized by the almost global region of attraction of Σa2 . 2

The general shape of the bound of the Lyapunov function when considered
along the solutions of Σp1 indicates that we might see a peak, which relates back
to the peaking phenomenon outlined in Chapter 2, but as the solutions remain
bounded due to Σa

2 being ULES, both X1 and X2 converge to the origin.
We note that this peak is rarely observed in practice, as the bound is very
conservative and derived by upper-bounding negative semi-definite part of
the Lyapunov function time-derivative to zero. We emphasize that this result
is a joint stability proof for the tracking and estimation errors in the case of
trajectory tracking UAV control based on positional measurements, directional
measurements of the attitude, and gyroscopic measurements. Therefore, it
solves Problem 6.2, as highlighted below.
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Figure 6.8 A conservative upper bound on V1 associated with the trans-
lation subsystem when interconnected with the attitude subsystem, here for
a random δ with T = 5, showing boundedness of the solutions of Σp1.

Remark 6.6
The controller in Theorem 6.2 solves Problem 6.2, as pe → 0 implies p→ pr,
Re → I implies both that g(t,X1,X2)X2 → 0 and that R→ Rr. Together
with ve → 0 and ωe → 0, this results in v → vr and ω → ωr. 2

6.6 Simulation Examples

To demonstrate the theoretical developments, a set of simulation examples are
conducted. The first simulation in Sec. 6.6.1 demonstrates simple stabilization
at stationary hovering configuration from extremely large initial errors. This
simulation is conducted without noise to illustrate the potential peaking
of the solutions in the translation subsystem, and to show the asymptotic
convergence properties of the associated Lyapunov functions. This example is
reexamined in Sec. 6.6.2, where the effects of measurement noise and modeling
errors are studied in a stabilization example. Finally, a third example is given
in Sec. 6.6.3 where the differential flatness discussed in Sec. 2.2.5 is employed
to compute a reference trajectory corresponding to an aggressive trajectory-
tracking maneuver. For simplicity, we refer to the Lyapunov function in (5.11)
associated with the attitude subsystem Σa

2 with the notation Va1 , and the
Lyapunov function in (6.20) associated with Σp′1 with the notation Vp1 .

6.6.1 Stabilization With Large Initial Errors
In the first simulation example, the cascaded FOF control system in The-
orem 6.2 is initialized with substantial errors. The reference trajectory
is taken as a stationary hovering position, defined by a configuration
pr(t) = 0 and Rr(t) = ExpSO(3)([(π/2)e3]∧SO(3)) for all t ≥ t◦, which
then implies (vr,ωr, fr, ḟr, f̈r, τ r) = (0,0,mg, 0, 0,0). The system is ini-
tialized with substantial errors, taking p(t◦) = (6; 8; 10) and letting
ω(t◦),v(t◦), v̂e(t◦), p̂e(t◦), z(t◦), ω̂(t◦) ∼ U([−1, 1]3) with R(t◦), R̂(t◦) ∼
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U(SO(3)). The parameters are defined by a random dense inertia matrix
J = J> � 0 satisfying λm(J) = 0.05 and λM (J) = 0.1, the gravitational
acceleration is taken to be g = 10 [m/s2], and the UAV mass is defined as
m = 0.1 [kg]. The simulation is run from t◦ = 0 over 15 [s]. In the considered
realization, the inertia matrix is dense (here rounded to three digits), as

J = 0.01 ·

6.7 1.2 1.5
1.2 6.4 1.9
1.5 1.9 7.6

 . (6.52)

The initial attitudes on SO(3) (here rounded to two digits), are

R(t◦) =

−1.00 0.03 0.03
0.03 −0.01 1.00
0.03 1.00 0.01

 , R̂(t◦) =

0.03 0.36 0.93
0.36 −0.87 0.33
0.93 0.33 −0.16

 ,
resulting in substantial initial attitude errors, with

Ψ(Rr(t◦),R(t◦)) = 1.4960, (6.53a)

Ψ(Rr(t◦), R̂(t◦)) = 1.5817, (6.53b)

Ψ(R(t◦), R̂(t◦)) = 1.1506. (6.53c)

The attitude controller is tuned with (k1, k2, k3, cR,Cω,Kω) =
(2, 2.5, 3, 2, I, I), and the translation controller is tuned with the param-
eters (kp, kv, L1, L2, L3, γ) = (1, 2, 2.05, 2.0, 1.95, 8). Here, the tuning for the
attitude subsystem was found using the ideas in Sec. 5.4. By similar reasoning,
the parameters for the translation subsystem were obtained by placing the
poles of the time-invariant part error dynamics when considered close to the
stable equilibrium, by solving the optimization problem similar to that posed
in Remark 6.5. The poles of the modes associated of the local tracking errors
were placed in −1 in the complex plane, and the poles associated with the
local estimation errors and auxiliary system dynamics were made slightly
faster, in approximately −1.5 in the complex plane. The simulation results are
depicted in signals mirroring Example 5.2 (in which only the attitude FOF
was considered), but now following the augmented reference (R̄r, ω̄r, τ̄ r),
computed as described in Sec. 6.4. These signals are depicted in Figure 6.9.
Similarly, the signals associated with the translation subsystem are plotted
as in Example 6.2 are shown in Figure 6.10. Finally, to get a sense of the
maneuver in space, the configurations of the UAV are depicted in Figure 6.11.
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Figure 6.9 System response of the UAV dynamics Σ in (6.1) when con-
trolled along Σr in (6.2) by the filtered output feedback solution in Theo-
rem 6.2. Signals associated with Σa2 in the stabilization example, simulated
without measurement noise and with perfect knowledge of the inertia. Top,
left: Augmented torque trajectory, τ̄ r, and computed control signals, τ . Top,
right: Elements of the augmented reference attitude on R̄r ∈ SO(3) and the
controlled attitude on R ∈ SO(3). Center top: Distance to configurations in
E on SO(3) for estimate and tracking errors, R̃ and Re, respectively. Center
bottom: Estimate attitude rates, attitude rates, and reference attitude rates.
Bottom, left: The Lyapunov function Va1 in (5.11) decreasing in time in the
10-logarithm. Bottom, right: The time-derivative (d/dt)Va1 evaluated numer-
ically from Va1 (blue) and analytically in the signals by (5.12) (black). The
simulated system response is shown in the video chapter-6-simulations.mp4.
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Figure 6.10 System response of the UAV dynamics Σ in (6.1) when
controlled along Σr in (6.2) by the filtered output feedback solution in The-
orem 6.2. Signals associated with Σp1 in the stabilization example, simulated
without measurement noise and with perfect knowledge of the inertia. Top,
left: The virtual control input u(t) ∈ Bγ and its norm ‖u(t)‖. Top, right:
Trajectory of the auxiliary system state z(t). Center, left: The positional
tracking error pe(t) (black) and the estimated tracking error p̂e(t) (blue).
Center, right: The velocity tracking error ve(t) (black) and the estimated
tracking error v̂e(t) (blue). Bottom, left: The Lyapunov function Vp1 in (6.20)
decreasing in time, decaying exponentially for small errors. Bottom, right:
The time-derivative (d/dt)Vp1 evaluated numerically from Vp1 (black) and an-
alytically in the signals of the system through in (6.21) (blue). The simulated
system response is shown in the video chapter-6-simulations.mp4.
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Figure 6.11 System response of the UAV dynamics Σ in (6.1) when
controlled along Σr in (6.2) by the filtered output feedback solution in
Theorem 6.2. Configurations in the stabilization example, simulated without
measurement noise and with perfect knowledge of the inertia. The figures de-
pict the same trajectory, showing it from different angles, with the positional
trajectory (black), and the attitude illustrated in 50 configurations tempo-
rally equidistant over t ∈ [0, 15] using the same color coding of the body
basis vectors and illustration of the UAV as used in Figure 2.5 and Figure 2.6.
Top, left: Trajectory in three-dimensional space. Top, right: Projection onto
the-e1e2 plane. Bottom, left: Projection onto the e1e3-plane. Bottom, right:
Projection onto the e2e3-plane. The simulated system response is shown in
the video chapter-6-simulations.mp4.
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Discussion From this simulation example, we start by noting that the
attitude subsystem in Figure 6.9 behaves similar to the examples in Sec. 5.3,
but that the augmented reference trajectory, (R̄r, ω̄r, τ̄ r), now clearly differs
from the constant reference, (Rr,ωr, τ r), as ω̄r 6= 0. While it is slightly
difficult to discern in this simulation, the attitude rate estimates converge to
the true attitude rates after which the attitude rates converge to the reference
attitude rate trajectory. Furthermore, we note the usual linear decay of the
Lyapunov function Va1 in the logarithm in time, with the analytical expression
of the Lyapunov function time-derivative evaluated in the solutions of the
error dynamics corresponding perfectly to the numerically differentiated
time-derivative when computed directly from Va1 . This indicates that the
implementation is correct, and in particular that the augmented reference
trajectory (R̄r, ω̄r, τ̄ r) indeed satisfies the attitude dynamics.

When studying the errors associated with the translation subsystem
in Figure 6.10, note that the virtual control input used to compute f is
contained in a ball of radius γ. Since fr = mg = 1, we have that f(t) ∈
[fr −mγ, fr +mγ] = [0.2, 1.8] for all t ≥ t◦, guaranteeing that the augmented
reference trajectory is well defined (as the denominator in (6.32) is non-
zero). Despite the substantial initial errors, the tracking errors in position
and velocity converge to small values within 10 seconds, and asymptotically
these errors converge to zero (down to expected numerical integration errors).
Finally, when studying the Lyapunov function, it is clear that it approaches
the origin rapidly (decreasing 10 orders of magnitude over 15 seconds). In this
particular example, the Lyapunov function Vp1 does not exhibit peaking, but
this phenomenon is observed in more extreme system initializations. However,
even in the cases that exhibit peaking, the Lyapunov function Vp1 remains
below the theoretical bound in (6.51) transiently, and all errors converge to
the single stable equilibrium point corresponding to a zero tracking error.

The effects of the additive vanishing perturbation on the positional sub-
system can be clearly seen in the bottom right subplot of Figure 6.10 in some
simulations, which here may become positive transiently. The analytical time-
derivative of Vp1 along the unperturbed system in Σp′1 will not be the same as
the time derivative of Vp1 along the perturbed system Σp1. We stress that this
is expected from the theoretical analysis and that even if Vp1 is increasing in
the transient, it is bounded uniformly in time. As a sanity check, we show
the function Vp1 along the perturbed system Σp1 in the signals of the system
(blue) plotted of the numerically differentiated signal V1

p in Figure 6.10, again
indicating that the expressions in the proofs are correctly derived.

Given the definition of the initial errors as sampled from probability
distributions, 1000 simulations were performed with similarly large initial
errors. In all of these simulations, it was verified numerically that:
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• All estimation and tracking errors in the closed-loop system converge
to a small neighborhood of the origin within the simulation time;

• The virtual control input is saturated to Bγ at all times;

• The Lyapunov function Va1 decreases strictly in time;

• The Lyapunov function Vp1 may peak, but decreases after a transient.

The example demonstrates the almost global stability properties of the
closed-loop system defined by Theorem 6.2, showing an expected recovery
and perfect stabilization from large initial errors. We stress that these are
not only errors in the initial configuration with respect to the reference
trajectory, but equally large errors are in the initial memory associated
with the estimator. For a practitioner with experience of nonlinear Gaussian
filtering in UAV applications, it should be highly remarkable that the system
repeatably recovers from such an extreme initialization, as many of the
nonlinear Gaussian filters are prone to diverge if the system initialization is
poor. The example also demonstrates the theoretical properties of the control
system, verifying the statements associated with Theorems 5.2, 6.1 and 6.2.

6.6.2 Stabilization with Noise and Parameter Errors
With the numerical results in the previous section verifying the proposed
theory in an idealized scenario (without noise) with stabilization from large
initial errors, we next assess the performance of the controller when intro-
ducing disturbances that may appear in practice. In particular, the following
disturbances and parameter errors are introduced in the simulation:

• Gaussian noise, pnk ∼ N (0, σ2
pI), sampled at 100 [Hz] and entering

additively on the positional measurements, here with σp = 0.1;

• Gaussian noise, ωnk ∼ N (0, σ2
ωI), entering additively on the gyroscopic

measurements, with a noise density of 0.014 [◦/s/
√

Hz] correspond-
ing to the BMI088 gyroscope [Bosch Sensortec, 2020] used in the
Crazyflie [Bitcraze, 2021c]. When sampled at a constant rate of 500 [Hz],
this corresponds to a standard deviation in the noise of σω = 0.0039.

• Gaussian noise, ank ∼ N (0, σ2
aI), entering additively on the accelera-

tion measurements, with a noise density of 230 [µg/
√

Hz] correspond-
ing to the BMI088 accelerometer [Bosch Sensortec, 2020] used in the
Crazyflie [Bitcraze, 2021c]. When sampled at a constant rate of 500 [Hz],
this corresponds to a standard deviation in the noise of σa = 0.0034.

• Modeling errors in the system inertia, such that the controlled system
is simulated with Jsys , 1.2J , whereas the controllers and estimators
are implemented with an inertia of J , here realized as in (6.55).
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In the considered simulation setup, no noise is added to the magnetometer
measurements and all noise terms are unbiased by assumption. Furthermore,
no parametric errors are added in the mass and gravitational acceleration, as
these are both presumed to be known very exactly. It should be noted that
the noise on the positional states corresponds to the magnitude of the mea-
surement noise when employing Ultra-Wideband (UWB) positioning [Mueller
et al., 2015], and that these noise levels should be considered exaggerated
in practical implementations with high-performance camera systems, GNSS
positioning systems, or less conventional positioning systems such as the VIVE
lighthouse system [Greiff et al., 2019a]. As such, this setup is representative
of stabilization with realistic noise terms, albeit slightly exaggerated for the
positional measurements. We emphasize that the control system only has
access to measurements sampled from the associated measurement equations.

The simulation is run with the exact same realization as in Sec. 6.6.1 to
make the results comparable, and the system response is shown in Figure 6.12
in the control signals and the key tracking errors. The measurements in the
position and attitude rates are also depicted to give a sense of the noise levels.

Discussion In Figure 6.12, we observe minor effects on the errors of the
attitude subsystem Σa

2 in the initial transient. This is largely due to the
fact that the reference trajectory (pr,vr,Rr,ωr, fr, ḟr, f̈r, τ r) is independent
of the inertia in the case of stabilization. The inertia only appears in the
computation of the augmented reference trajectory, (R̄r, ω̄r, τ̄ r), and in the
estimator update law (5.10c) of Theorem 5.2. All remaining terms including
the inertia in the dynamic feed-forward of the FOF attitude controller are
canceled out as ωr = 0. Consequently, the effects of the inertia modeling
error are barely visible in the initial transient when comparing the Lyapunov
function Va1 in Figure 6.9 (without noise) and Figure 6.12 (with noise).

In the same Lyapunov function, a slight degradation of performance in the
attitude subsystem is visible, and the errors approach a noise floor at around
V1
a ≈ 10−5. These asymptotic errors are largely dependent on the magnitude

of the measurement noise, specifically the positional noise, and less dependent
on the inertia modeling errors. The effect of the positional measurement noise
is seen in the Lyapunov function Vp1 , which also reaches a noise floor. While
the attitude rate deviates slightly from the reference, it closely follows the
augmented reference trajectory (not plotted). Indeed, when studying the
zoomed attitude rate subplot, we note that the tracking is very good in the
ω3-state, but slightly worse in the ω1- and ω2-states. The reason is that the
augmented reference trajectory varies slightly along these dimensions when
correcting for the positional errors induced by the positional measurement
noise, whereas the corrective rotation Rd defined in (6.33) never induces a
rotation about the b3-direction, its rotational axis is always orthogonal to b3.
As such, the attitude rate errors seen in the bottom-center subplots are largely
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induced by the positional errors. This is can also seen in that Vp1 (bottom
left) approaches its noise floor slightly before Va1 (bottom right).

This noise floor associated with Vp1 is seemingly large, with V1
p ≈ 108

asymptotically. However, due to its construction, this Lyapunov function
should be comparatively large, and it is more insightful to study its change
relative to the initial errors, which here decreases by several orders of magni-
tude in the initial transient. To get a sense of the asymptotic errors, these
were zoomed in for the positional and attitude rate errors in the center and
center-bottom subplots of Figure 6.12. The attitude rate errors are relatively
large in comparison to the gyroscopic noise, due to the effects of the positional
measurement noise (as discussed previously). However, the tracking errors
in the position are significantly smaller than the standard deviation of the
positional measurement noise, and this is in large part due to the filtering.

Finally, we observe that despite the substantial noise added to the measured
signals, the control signals are not visibly noisy. When zooming in on the
control signal torques (not shown), the measurement noise is seen, as it
appears in these signals through ü (see Example 6.4). However, the actuating
force, f , is positive and smooth. Indeed f is C1, as it is computed through
the virtual control input u which is C1 if the positional measurement noise
is discontinuous (as explained in Sec. 6.3). This is one of the main reasons
for considering the design of a filtered output feedback, and why the control
signals are computed from the filter memory in the definition of Problem 6.2.

To conclude this simulation example and summarize the main points, it
is clear that the proposed controller performs well in the face of adversarial
disturbances that arise in practical implementations. The estimation and
tracking errors asymptotically hit a noise floor, which in the case of stabiliza-
tion is largely due to the positional measurement noise, and the asymptotic
errors for realistic noise levels are comparatively small (relative to the mea-
surement noise). As such, the controller not only works well in the idealized
case for which it was designed, but also for the case where perturbations are
added to the model parameters and noise introduced. This should come as no
surprise, as a system with UAGAS and ULES properties is associated with
generic robustness properties, as highlighted previously in Theorem 2.12.
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Figure 6.12 System response of the UAV dynamics Σ in (6.1) when
controlled along Σr in (6.2) by the filtered output feedback solution in
Theorem 6.2. Control signals and key errors for stabilization simulated with
measurement noise and parameter errors. Top, left: The virtual control input
u(t) ∈ Bγ (blue) and its norm ‖u(t)‖ (black). Top, right: Augmented torque
reference trajectory and control signal, τ . Top center, left and right: Distance
to the configurations in E for estimation and tracking errors, R̃ (left) and
Re (right), with respect to the augmented reference R̄r. Center, left and
right: Constant positional reference trajectory (black), here with sampled
measurements yp (gray), and the state of the controlled system (blue).
Bottom center, left and right: Constant attitude rate reference trajectory
(black), here with sampled measurements yω (gray), and the state of the
controlled system (blue). Bottom, left: The Lyapunov function Va1 in (5.11).
Bottom, right: The Lyapunov function Vp1 in (6.20). The simulated system
response is shown in the video chapter-6-simulations.mp4.
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6.6.3 Trajectory Tracking with Noise and Parameter Errors
In this final simulation example, the tracking performance of the controller
is demonstrated using an example similar to that in [Lefeber et al., 2020].
However, here a slightly more realistic setup is considered, which is closer to
what a large angle maneuver may look like in practice. Instead of performing a
looping maneuver, we consider an example where the system is initialized with
significant errors, although not as extreme as in the stabilization example. The
system is the run with the measurement noise defined in Sec. 6.6.2, including
positional, gyroscopic and accelerometer measurement noise, as well as poor
model of the system’s inertia. The system is controlled along a commanded
flat output trajectory γc(t), defined with the Heaviside step function Θ as

γc(t) = (5Θ(t− 5); 10Θ(t− 10); 5 sin(0.5t); (π/2) sin(t)) ∈ FΣ. (6.54)

This commanded flat output trajectory is discontinuous in time in the global
p1 position (east, γ1) and the global p2 position (north, γ2), while the global
p3 position (up, γ3) and the yaw ψ(t) (yaw in Definition 2.20, γ4) are both
smooth. As such, the commands require smoothing in order to permit a
flatness expansion to generate an associated reference trajectory. Following
the approach in Sec. 2.2.5, the commanded trajectory is filtered through a
system Σf in the form outlined in (2.25), with m = 4 and q = 5, and a
speed defined by the pole location characterized by c = 2. This generates
a flat output trajectory γ(t) in C4 where the signals {γ(i)(t)|i = 0, ..., 4}
are known in the memory of the filter, Σf . This flat output trajectory is
initialized with γ(i)(t◦) = 0 for all i = 0, ..., 4, and expanded into a reference
trajectory (pr,vr,Rr,ωr, ω̇r, fr, ḟr, f̈r, τ r) using the flatness maps associated
with Σr in (6.2) (see, e.g., [Greiff, 2017, Chapter 3.1]). This is precisely how
the reference generation was implemented for the examples in Chapter 4.

Remark 6.7
Such an implementation represents a realistic approach for a practical imple-
mentation, as it permits the use of discontinuous commands through joystick
control in the flat output space. But the pre-filtering can be omitted if the
flat output trajectory is sufficiently smooth, and the flatness expansion can
be omitted if a reference trajectory is computed by other means. 2

The system is initialized with significant errors, although not as extreme
as in the previous two subsections. Here, we let p(t◦) = (4; 4; 4) and
take ω(t◦),v(t◦), v̂e(t◦), p̂e(t◦), z(t◦), ω̂(t◦) ∼ U([−0.5, 0.5]3) with R(t◦) =

ExpSO(3)([n]∧SO(3)), R̂(t◦) = ExpSO(3)([n̂]∧SO(3)) for n, n̂ ∼ U([−0.5, 0.5]3).
The parameters are defined by a random dense inertia matrix J = J> � 0
satisfying λm(J) = 0.05 and λM (J) = 0.1, the gravitational acceleration is
taken to be g = 10 [m/s2], and the UAV mass is defined as m = 0.1 [kg]. The
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simulation is again run from t◦ = 0 over 15 [s]. In this example, the inertia
matrix is dense (here rounded to three digits), as

J = 0.01 ·

7.4 2.1 1.3
2.1 7.2 0.5
1.3 0.5 7.1

 . (6.55)

The initial attitudes on SO(3) (here rounded to two digits), are

R(t◦) =

 0.85 0.47 0.23
−0.48 0.87 0.03
−0.19 −0.13 0.97

 , R̂(t◦) =

0.91 −0.23 −0.34
0.34 0.89 0.30
0.23 −0.39 0.89

 ,
resulting in smaller initial attitude errors than in the previous examples, with

Ψ(Rr(t◦),R(t◦)) = 0.14, (6.56a)

Ψ(Rr(t◦), R̂(t◦)) = 0.15, (6.56b)

Ψ(R(t◦), R̂(t◦)) = 0.45. (6.56c)

The controller is tuned in the exact same way as in the previous two
simulation examples, the only exception being the saturation level, which
is tuned down slightly to γ = 2.5 in order to show its effect on virtual
control input u. The numerical results are depicted in terms of the attitude
errors corresponding to the positional subsystem in Figure 6.13, with the
control signals and key responses in Figure 6.14, and an illustration of the
configurations of the system in Figure 6.15.

Discussion In Figure 6.13, we note that the system exhibits very similar
properties to the stabilization example. All errors converge to visibly small
values as the auxiliary state starts to approach the origin, and the positional
measurement noise is visible in the signal pe, as expected. As this noise enters
directly in p̃, which in turn enters the Lyapunov function Vap as a quadratic
form scaled by a large parameter defined by (6.23), we should expect this
Lyapunov function to hit a noise floor at a level similar to that in the noisy
stabilization case in Sec. 6.6.2. This is clearly seen in the bottom left subplot
of Figure 6.13. As the noise enters directly in the Lyapunov function, its
numerical time-derivative cannot be evaluated numerically and hence omitted
in the bottom right subplot. Notably, given the saturation level of γ = 2.5,
the virtual control input is saturated in the transient, as seen in the top-left
subplot of Figure 6.13. Consequently, the actuating force is confined to the
interval, f(t) ∈ [fr(t) −mγ, fr(t) + mγ] at all times as seen in Figure 6.14.
However, despite saturating the virtual control, the force never reaches the
boundary points of its associated interval. The reason for this is that u is not
parallel with e3 in this particular simulation (see Equation 6.32).
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In Figure 6.14, the actuating torques are relatively small. The measurement
noise is visible when zooming in on these signals (this zoom is omitted here),
but it is not detrimental to a real-time implementation. We note that the
attitude errors quickly converge to the stable equilibrium, just as they did in
the stabilization case, and that no errors are induced when performing the
relatively large steps in p1 and p2. This is due to the augmented reference
trajectory (R̄r, ω̄r, τ̄ r) satisfying the attitude reference dynamics, for which
the attitude subsystem is UAGAS and ULES. The two Lyapunov functions
reach similar noise floors to what is observed in the stabilization example in
Sec. 6.6.2, and as a consequence, we get similar performance in the position
and attitude rate tracking as well.

Finally, the configuration response in (6.15) demonstrates how the UAV
follows the commanded reference trajectory. The position tracking is best
visible in the left-most subplots, and the attitude tracking is visible in the
top right subplot, clearly indicating that the yaw follows the commanded
reference trajectory defined in (6.54). We note that this system response
looks very similar to how a UAV of the given mass and inertia behaves in
practice, and stress that it can be run with even more extreme trajectories and
initialization (as highlighted in [Lefeber et al., 2020]). The present example
instead shows how the controlled system behaves when following aggressive
reference trajectory subject to relatively large initial errors and realistic
disturbances.

In conclusion, this simulation example demonstrates the tracking per-
formance of the UAV dynamics Σ in (6.1) when in feedback with the FOF
controller cascade in Theorem 6.2. The example is specifically designed to
show how the control system may be implemented in practice, and how the dif-
ferential flatness equations in [Greiff, 2017, Chapter 3.1] can be implemented
with pre-filtering to expand a reference trajectory that the UAV subsequently
can follow. In particular, when generating the reference trajectory in this
manner, we observe a tracking performance that is extremely similar to
the stabilization performance (c.f., the Lyapunov functions in Figure 6.12
and Figure 6.14). As such, the closed loop control system should be expected
to perform equally well for tracking and stabilization applications when the
measurements are corrupted by the unbiased Gaussian noise described in
Sec. 6.6.2, and we recommend its use in practice.
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Figure 6.13 System response of the UAV dynamics Σ in (6.1) when
controlled along Σr in (6.2) by the filtered output feedback solution in
Theorem 6.2. Signals associated with Σp

1 for trajectory tracking simulated
with measurement noise and parameter errors. Top, left: The virtual control
input u(t) ∈ Bγ and its norm ‖u(t)‖. Top, right: Trajectory of the auxiliary
system state z(t). Center, left: The positional tracking error pe(t) (black)
and the estimated tracking error p̂e(t) (blue). Center, right: The velocity
tracking error ve(t) (black) and the estimated tracking error v̂e(t) (blue).
Bottom, left: The Lyapunov function Vp1 in (6.20) decreasing in time, decaying
exponentially for small errors. Bottom, right: The time-derivative (d/dt)Vp1
evaluated analytically in the signals of the system using the expression
in (6.21) (black). The simulated system response is shown in the video
chapter-6-simulations.mp4.

184

https://youtu.be/0oKwr9a9z-4


6.6 Simulation Examples

0 5 10 15

0.5

1

1.5

0 5 10 15

-2

0

2

0 2 4 6 8 10

0

1

2

0 2 4 6 8 10

0

1

2

0 5 10 15

0

5

10

14 14.5 15

9.4

9.6

9.8

10

10.2

0 5 10 15

-1

-0.5

0

0.5

1

14 14.5 15

-0.1

-0.05

0

0.05

0 5 10 15

-6

-4

-2

0

0 5 10 15

6

8

10

12

Figure 6.14 System response of the UAV dynamics Σ in (6.1) when
controlled along Σr in (6.2) by the filtered output feedback solution in
Theorem 6.2. Control signals and key errors for trajectory tracking simulated
with measurement noise and parameter errors. Top, left: The reference force
fr(t) (black) and the control signal f(t) (blue). Top, right: Augmented
torque trajectory and control signal, τ . Top center, left and right: Distance
to the configurations in E for estimation and tracking errors, R̃ (left) and
Re (right), with respect to the augmented reference R̄r. Center, left and
right: Constant positional reference trajectory (black), here with sampled
measurements yp (gray), and the state of the controlled system (blue).
Bottom center, left and right: Constant attitude rate reference trajectory
(black), here with sampled measurements yω (gray), and the state of the
controlled system (blue). Bottom, left: The Lyapunov function Va1 in (5.11).
Bottom, right: The Lyapunov function Vp1 in (6.20). The simulated system
response is shown in the video chapter-6-simulations.mp4.
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Figure 6.15 System response of the UAV dynamics Σ in (6.1) when
controlled along Σr in (6.2) by the filtered output feedback solution in
Theorem 6.2. Configurations in the trajectory tracking example, simulated
with measurement noise and parameter errors. Illustration of the system
configurations, with the positional reference trajectory (blue), the positional
trajectory (black), and the system attitude illustrated temporally equidistant
over t ∈ [0, 15] using the same color coding of the body basis vectors and
illustration of the UAV as used in Figure 2.5 and Figure 2.6. Top, left:
Trajectory in three-dimensional space. Top, right: Projection onto the-e1e2
plane. Bottom, left: Projection onto the e1e3-plane. Bottom, right: Projection
onto the e2e3-plane. The simulated system response is shown in the video
chapter-6-simulations.mp4.
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6.7 Summary

In this chapter, we have presented the filtered output feedback controller first
published in [Lefeber et al., 2020, Proposition 3], which takes a diametrically
different view of the UAV control system to conventional design methods,
as illustrated in Figure 6.1. Instead of constructing a controller for the full
UAV dynamics independently, and coupling this with a full or extended
state estimator (the horizontal approach in Figure 6.1), we instead design a
filtered output feedback controller for the attitude and position subsystems
independently, before analyzing the resulting cascade (the vertical approach
in Figure 6.1). This results in a solution to Problem 6.2 that yields uniform
almost global asymptotic and uniform local exponential stability properties, in
both the tracking and the estimation errors, granting the resulting closed-loop
control system a measure of robustness in the sense of Theorem 2.12.

This is a powerful result, as it only assumes knowledge of the attitude
through a set of directional measurements, the attitude rates in the body
frame through gyroscopic measurements, and direct measurements of the UAV
position in a global frame. These signals are readily available in most modern
UAV applications, and can be made to encompass many additional sensors.
For instance, UWB measurements [Mueller et al., 2015] or even the more
recent VIVE Lighthouse positioning [Greiff et al., 2019a], can be converted
to a direct position estimate without introducing memory. The controller
can even handle monocular camera measurements, where the directional
information can enter as a measurement on the attitude. As such, the FOF
solution presented in this chapter has significant generality, and could be
implemented for a wide variety of applications. However, the inclusion of
pre-filtered estimates from a GNSS module should be considered with care,
as such methods typically introduce additional dynamics in the positions.

It should be noted that the controller is extremely challenging to imple-
ment in practice. A typical approach to a UAV control system design often
starts with the estimator, ensuring that it has been implemented correctly
through rigorous testing, before introducing simple attitude control, and then
progressing toward more elaborate methods of full state feedback, for instance
those described in Chapters 3 and 4. In stark contrast, when implementing
the cascaded FOF controller described in Theorem 6.2, one has to tune the
FOF controller for the attitude subsystem first, and this has to be done in
manual flight where the input commands are filtered to a sufficient degree of
smoothness to be expanded into the signals of attitude reference subsystem.
This is a difficult and potentially costly endeavor, and once it has been done,
the entire control system needs to be re-tuned when connecting the cascade.
In this case, we also require a complete reference trajectory, which typically
needs to be computed by exploiting the property of differential flatness.

Furthermore, all of the developments in this chapter are done in continuous
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time, and the update laws of the filter memory need to be discretized for the
real-time implementation. This is made more difficult by the fact that parts
of this memory evolves on SO(3). As such, to facilitate developments of this
control system, a subset of the above results have been implemented in C with
simulation options in Julia in the AerialVehicleControl.jl package [Greiff,
2020]. This implementation keeps an internal representation of the signal R̂ as
a quaternion, and simulates this system using a first order CG method outlined
in Sec. 2.3. While successful flights have been performed with the attitude FOF
controller using the reference generation described in Sec. 2.2, the complete
control system has only ever been successfully evaluated in simulation. Initial
experiments implementing the controller were done in [Zeng et al., 2021],
but in real-time, implementations of Theorem 6.2 have yet to yield tracking
results comparable to the solutions in Chapter 4.

In this thesis, a simulation evaluation was provided in Sec. 6.6. Here, the
focus was on illustrating the behavior of the system when initialized with
large errors, to demonstrate its almost global stability properties and the local
exponential decay of the error functions. This example was subsequently reused
to show the performance of the controller subject to realistic measurement
noise and parameter errors, corresponding to a high-performance IMU and
positional information corresponding to a low cost UWB system. Finally, a
similar simulation setup was used to demonstrate the tracking performance
of the controller, when initialized with more realistic initial errors, and also
including measurement noise and uncertainty in the inertia. Here, the UAV
was controlled along an aggressive reference trajectory computed using the
differential flatness maps associated with the UAV dynamics, after first
filtering a set of discontinuous commands in the flat output space. This is
representative of how the controller is intended to be used in practice, and
shows that it can be considered for trajectory tracking applications.

In conclusion, we have presented a filtered output feedback solution for
the UAV tracking control problem that is the first of its kind, taking a very
different view of the UAV control system than what is customary. Instead of
a disjoint design of the observer and controller, two filtered output feedback
controllers are combined in a cascade, facilitating proofs of UAGAS and ULES.
Based on the numerical results, we recommend that the presented control
should be considered for applications requiring high degrees of maneuverability
and almost global stability guarantees. However, it can also be considered
for simpler applications, including safety-critical inspection and surveying
missions, due to the favorable stability properties of the closed-loop system.
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7
Summary of Part I

Several theoretical contributions were made in Part I of the thesis. In this
summary, a subset of these are restated to give a comprehensive view of
the developments and show how they relate to the larger body of UAV
control literature. Each section describes the main results, and how these are
generalized and used in subsequent chapters, as illustrated in Figure 7.1.

Chapter 3
FSF of Σa
(Attitude)

Chapter 4
FSF of Σ
(Full UAV)

Chapter 5
(F)OF of Σa
(Attitude)

Chapter 6
FOF of Σ
(Full UAV)

Theorem 3.1 2

Generalized Vector
Control on SO(3)

⊃
Theorem 3.2 1

Continuous
Geom. on SO(3)

!
Theorem 3.4 2

Continuous
Geom. on SU(2)

Theorem 3.5 2

Discontinuous
Geom. on SO(3)

Theorem 3.3 1

Robust
Geom. on SO(3)

!
Theorem 3.6 3

Robust
Geom. on SU(2)

Proposition 4.1 1

Geometric
on SO(3) × R3

!
Proposition 4.3 2

Geometric
on SU(2) × R3

Theorem 5.2 3

Attitude FOF
on SO(3)

Theorem 5.1 1

Attitude OF
on H

Theorem 6.1 3

Full FOF
on SO(3) × R3

Theorem 6.2 3

Translation
FOF on R3

!
⊃

1
2
3

Same approach, different manifolds
One is a parameterized by the other
Is a generalization of, or inspired by
Work of others, proof given elsewhere
Similar to prior work, but new proofs
Original work, complete proofs given

Figure 7.1 Summary and overview of key results in Part I of the thesis.

Chapter 3 One of the most important contributions in this chapter is the
clarification of how several controllers for dynamical systems with rotational
degrees of freedom are related. By working directly with elements of SU(2) and
the Γ-distance in Definition 2.19, a clear link can be drawn between several
attitude controllers on SU(2) and their counterparts on SO(3) that operate
with the Ψ-distance in Definition 2.18. Of the latter controllers on SO(3), it
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was also shown that several independently derived results are similar if not
equivalent. For instance, the controller in Theorem 3.2 is characterized by
Theorem 3.1, and analogous ideas can be traced back further (see, e.g., [Bullo
and Murray, 1995, Theorem 4]). Importantly, due to the approach in the
stability proofs for the controllers on SU(2), a robust feedback law was derived.
The importance of clearly defining the stability properties of these controllers
and clarifying how they relate should not be overlooked, as these results form
the basis for the remaining theoretical developments in Part I of the thesis.

Chapter 4 In this chapter, it was demonstrated how the various attitude
controllers can be used to define full state feedback controllers for the UAV
dynamics. Due to the strong similarities between the geometric controllers on
SO(3) and SU(2), their extensions to the full UAV dynamics are similar in
the same sense. In particular, when working with the Ψ-distance on SO(3)
the geometric controllers in [Lee et al., 2011] are found, and when working
with the Γ-distance on SU(2), the controllers in [Brescianini and D’Andrea,
2018] are recovered. The performance of these controllers were discussed and
illustrated both in simulation and in practice. In doing so, we highlighted
three different problems of the considered full state feedback laws:

• There exist points at which the desired attitude reference is undefined;

• Computing this trajectory requires the second derivatives in the errors;

• Introducing an estimator with dynamics may result in instability.

While the controllers considered in this chapter work well in practice, these
three problems remain, motivating the study of the filtered output feedback
problem, representing a very different approach to the control system design.

Chapter 5 To facilitate a FOF solution for the full UAV dynamics, the
attitude dynamics were first considered. Much like the FSF controllers for
the full UAV dynamics, an attitude control result was used as a starting
point, in this case Theorem 3.1. This approach to attitude control was chosen
due to its UAGAS and ULES properties, and generalized by introducing
an estimator operating with a 9-DOF IMU, devising a feedback so as not
to use the measurements directly in the computation of the control signals.
The resulting controller was presented in Theorem 5.2, yielding UAGAS and
ULES properties of the error dynamics, and serving as a good starting point
for the developments of a FOF with respect to the full UAV dynamics.

Chapter 6 In this chapter, the FOF solution for the attitude dynamics was
combined with the FOF solution for the translation dynamics, designing an
interconnection of the two systems by ideas similar to the geometric feedback
laws for the full UAV dynamics in Chapter 4. However, in contrast to the
FSF solutions, the FOF controller has the following properties:
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• There exists no singularities in the computation of the desired attitude
in the interconnection term, as the actuating force can be bound to a
ball about the reference force fr;

• The desired reference trajectory can be computed directly in the filter
memory without the need for numerical differentiation;

• A joint stability proof is given for the tracking and estimation errors,
showing UAGAS and ULES for the entire cascade.

While the resulting control system is difficult to implement and tailored for
positional and IMU measurements, it provides rigorous stability guarantees
for the entire closed-loop control system. This control system was studied
in a set of simulation examples, introducing noise and parameter errors to
emulate disturbances that can arise in practice. These numerical experiments
verified the theoretical results, and constitute a strong argument for using
the filtered output feedback controller in real-time applications.

Final Remarks In the first part of the thesis, several good solutions to
the problem of attitude and UAV control are presented, both in the context
of full state feedback laws, and the more exotic filtered output feedback
laws. When considering UAV control in practice, it often suffices to use the
solutions in Chapter 4. This is demonstrated by the agile and large-angle ma-
neuvers in Sec. 4.4.1 and the example pertaining to supermarket inventorying
in Sec. 4.4.2. However, if the application is safety critical, requiring rigorous
joint stability proofs of both estimation and tracking errors, then we propose
the solution in Chapter 5 for attitude control, and the solution in Chapter 6.
These FOF control systems come with proofs of UAGAS and ULES for both
estimator and tracking errors. This is made possible by taking a very different
view of the control system, and effectively solves all of the problems identified
for the FSF controllers in Chapter 4, but has the drawback of making the
controller implementation more challenging. Regardless of the chosen control
system, any practical implementation can benefit greatly from the code base
in [Greiff, 2020]. This software implements many key results in Figure 7.1 in C
code, offering simulation options through the computer language Julia. This
includes all of the attitude controllers (including the filtered output feedback
in Theorem 5.2) and various flatness maps.
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8
Circumnavigation and
Target Tracking

8.1 Introduction

The theory and algorithms developed in Part I of the thesis can be used in
various ways. For example, applications can be envisioned where a UAV is to
track a target with a circular motion, in order to maintain sight of the target
at all times. Such problems are typically considered for fixed-wing UAVs,
which need to maintain a non-zero velocity at all times to remain airborne. A
tangible example is the circulating and tracking of a capsized boat during a
search and rescue reconnaissance mission, where the UAV flies at a greater
velocity than the drifting boat. For such missions, autonomous fixed-wing
UAVs could be considered. However, the developments of this chapter are
more general, and the presented results can be used to compute the velocity
references for controlled quadrotor UAVs or even ground vehicles as well.

In this chapter, we present a circumnavigation and target tracking con-
troller that is designed to suppress bounded disturbances on the control inputs
by introducing integral action. Such problems can broadly be categorized into
three cases based on available sensory information, with the agent knowing:

(i) its own position and relative distance and bearing angle to a target;

(ii) its own position and a relative distance to a target;

(iii) its own position and a bearing angle to a target.

In the works of [Marshall et al., 2006; Kim and Sugie, 2007; Ceccarelli et al.,
2008] the target position is assumed to be known. Such approaches require
significant sensory infrastructure: either communication between the target
and agent, where the target communicates its own position, or a sensory
setup as defined in (i). Even then, the target position is never known perfectly.
Works assuming (ii), where controllers are developed with knowledge of a
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relative distance to the target, are found in [Shames et al., 2011; Matveev
et al., 2016; Milutinović et al., 2017]. But such sensing is typically active and
realized by sonar, radar or LiDAR. Consequently, if the tracking agent wishes
to remain undetected, the measurements assumed in (iii) are of special interest.
The problem posed with (iii) has therefore seen significant attention with
recent results in [Zhao and Zelazo, 2015; Deghat et al., 2015; Shao and Tian,
2018; Li et al., 2018; Zou et al., 2020]. It is often considered in a simplified
setting, where it is assumed that the system can follow velocity references
in the body-fixed frame. In this chapter, we consider circumnavigation and
target tracking problem with bearing measurements, modeling the system as
a single integrator in R2, where the controller computes velocity references
for a controlled system, as summarized in Problem 8.1 and Figure 8.1.

x

p(t◦)

φ(t)

φ̄(t)

θ(t)

dr

d(t)

p(t)

e1

e2

Figure 8.1 Geometry of the circumnavigation and target tracking problem.

Problem 8.1
Consider the geometry in Figure 8.1, where x ∈ R2 is an unknown and
stationary target position, that is, ẋ = 0. Define the bearing direction to
the target as φ(t) = (cos(θ(t)); sin(θ(t))) ∈ R2 with an orthogonal bearing
direction φ̄(t) = (− sin(θ(t)); cos(θ(t))) ∈ R2. Let ṗ(t) = u(t) denote the
simplified process dynamics, and take x̂(t) to be the estimated position of
the target. Find a feedback with integral action in (8.1b) and an estimator,

u(t) = G(p(t),φ(t), x̂(t), z(t)), p(t◦) = p◦ ∈ R2, (8.1a)

ż(t) = Hz(p(t),φ(t), x̂(t)), z(t◦) = z◦ ∈ R2, (8.1b)
˙̂x(t) = Hx(p(t),φ(t), x̂(t)), x̂(t◦) = x̂◦ ∈ R2, (8.1c)

such that for any distance dr ∈ R>0 and target velocity αr ∈ R>0, results in
perfect tracking d(t) = ‖x− p(t)‖ → dr and ‖ṗ(t)‖ → αr as t− t◦ →∞. 2
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Remark 8.1
When developing such controllers, we need to ensure that the tracking agent
does not collide with the target in the initial transient, illustrated with the
black dashed trajectory in Figure 8.1. In practice, when applying a solution
to Problem 8.1 in R3 there will generally be no risk of physical collision,
provided that target and UAV reside at different elevations. However, at any
point in time where ‖x− p(t)‖ ≈ 0, the bearing angle will become volatile.
This should be avoided, as the bearing direction is used explicitly in (8.1a).2

Remark 8.2
In the case of the fixed-wing UAV, it is of great importance that its velocity
remains bounded away from the origin. Indeed, it should never be less than
some positive value, such that the UAV always remains airborne. This is less
important in the context of the quadrotor UAVs and UGVs, but will remain a
design requirement, as it facilitates arguments of persistent excitation (PE).2

A reasonable objection to this problem formulation is that few mechanical
systems can be modeled as a single integrator. There exist actuation and
modeling errors which appear in stationarity, and one may ask if it is an
interesting problem to study. However, if we consider a quadrotor in closed-
loop feedback with the control systems presented in the previous chapters,
this system can be controlled along velocity references in R2. Consequently,
a solution to Problem 8.1 can be used to compute the velocity references
for a closed-loop system, and if we wish, the resulting cascade may even be
analyzed using variants of Theorem 2.9. Indeed, any solution to Problem 8.1
can be considered for applications where the closed-loop system is capable
of following velocity references in R2. This encompasses fixed-wing UAVs,
quadrotor and multi-rotor UAVs, as well as UGVs. To highlight this generality,
a differentially driven UGV will be used to demonstrate the theory in practice.

8.1.1 Chapter Motivation
Problem formulations assuming knowledge of the bearing direction are gener-
ally interesting, as such directions can be measured using passive methods,
such as monocular camera systems (see e.g., [Jang et al., 2021]). Furthermore,
the reason for considering a simple integrator is its generality, but this solution
really only becomes interesting if (i) the resulting modeling errors can be
dealt with, and (ii) there exists a controller for the system in question, be it
an UAV or UGV, with the closed-loop system being UAGAS and ULES, such
that the resulting cascade can be analyzed. As problem (ii) has been solved
for the quadrotor UAV (see e.g., the solutions in Part I) and UGV systems
(see e.g., [Lefeber, 2000]), there exist significant motivation to address the
general circumnavigation problem outlined in Problem 8.1.

In this chapter, the solution proposed in [Greiff et al., 2021b] is presented.
This solution extends the popular method in [Deghat et al., 2010] with
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integral action, and characterizes the modeling and actuation errors under
which the control system represents a solution to Problem 8.1. In light of
Remark 8.2, the controller is constructed so as to ensure that the velocities
of the system are non-zero at all times. Furthermore, in light of Remark 8.1,
sufficient conditions ensuring collision avoidance in the transient phase of the
error dynamics are given. Additionally, the controller is designed to ensure
asymptotic convergence of the tracking errors if the adversarial disturbances
are sufficiently small transiently, and asymptotically constant. The utility of
the approach is illustrated with a real-time example using a UGV, but we
emphasize that the intended application is a fixed-wing or quadrotor UAV.

8.1.2 Overview
The primary purpose of this chapter is to show that the controller works
well in practice. To this end, a greater emphasis is put on explaining the
control system used in the experiments, with more theoretical details given
in [Greiff et al., 2021b]. To summarize the results, some additional mathe-
matical preliminaries are given in Sec. 8.2. This is followed by a presentation
of the two circumnavigation controllers before subsequently comparing them
in simulation. The main components of the control system of the UGV are
then detailed in Sec. 8.2, demonstrating the controller in practice in Sec. 8.4.
Finally, the chapter is concluded with a summary in Sec. 8.5. To give an
overview, the results and examples are summarized in Table 8.1.

Table 8.1 Overview of the results and examples of Chapter 8. Here, 1

indicates work of others, proofs given elsewhere; 2 indicates work tangential
with others, but with independent proofs given; and 3 indicates new work.

Reference Description

Thm. 8.1 1 Proportional circumnavigation output feedback controller,
originally in [Deghat et al., 2010, Theorem 1].

Thm. 8.2 3 Proportional-integral circumnavigation output feedback
controller, originally in [Greiff et al., 2021b, Theorem 3].

Example 8.1 Simulation example contrasting Thm. 8.1 versus Thm. 8.2
when adding asymptotically constant input disturbances

Sec. 8.4.3 Real-time example demonstrating Thm. 8.2 in practice
with a small unmanned ground vehicle
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8.2 Preliminaries

Throughout this chapter, p = (p1; p2) ∈ R2 is taken to denote the tracking
agent’s position in a local east-north (EN) frame, omitting the usual up-
direction and letting p(t) = p1(t)e1 + p2(t)e2 for unit vectors ei ∈ R2 with
the ith entry set to 1 (see Figure 8.1). The target’s position is denoted x ∈ R2,
and the tracking agent’s estimate of this position is denoted x̂ ∈ R2. Let
x̃ , x̂ − x and take d , ‖x − p‖ with d̂ = ‖x̂ − p‖ denoting the true and
estimated distance between the target and the tracking agent, respectively.
Similarly, let ∆ , d−dr, ∆̂ , d̂−dr, and δ , d− d̂ denote differences between
these various distances. Throughout this chapter, the velocity of the vehicle in
the EN frame is denoted by ṗ, and the velocity along the orthogonal bearing
direction by α(t) , ṗ(t) · φ̄(t). Furthermore, for a single-input single-output
(SISO) linear time-invariant system without direct term,

ξ̇ = Aξ +Bu (8.2a)
y = Cξ, (8.2b)

let P (s) = C(sI −A)−1B denote its description in the Laplace domain, with
impulse response P(t) = CeA(t−t◦)B, and its system 1-norm given by

‖P‖1 =

∫ ∞
t◦

|P(σ)|dσ. (8.3)

Note that if u(t) denotes an input to the system in the time-domain, and
its output is denoted y(t), then ‖y‖∞ ≤ ‖P‖1‖u‖∞, where for SISO systems

‖u‖∞ , sup
t≥t◦
|u(t)|. (8.4)

This inequality will be used to derive conservative sufficient conditions for
collision avoidance, which will be required in light of Remark 8.1.

8.3 Circumnavigation with Integral Action

Given these preliminaries, the elegant solution to Problem 8.1 originally
presented in [Deghat et al., 2010, Theorem 1] is summarized below as follows.

Theorem 8.1—Proportional Circumnavigation Control
The controller-observer combination

ṗ(t) = kP ∆̂(t)φ(t) + αrφ̄(t) (8.5a)
˙̂x(t) = k(I − φ(t)φ(t)>)(p(t)− x̂(t)) (8.5b)

ensures global asymptotic convergence of the distance d(t) = ‖x−p(t)‖ → dr
and velocity ‖ṗ(t)‖ → αr if (kP , k, dr, αr) ∈ R4

>0, and if d(t) 6= 0, ∀t ≥ t◦. 2
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This result is appealing and has seen significant popularity due to two main
reasons. Firstly, it offers an extremely simple implementation. Secondly, while
the proof is concluded with PE arguments and comes without a joint Lyapunov
function in the tracking and observer errors, the time derivative of a quadratic
function in the observer errors is negative semi-definite. Consequently, in the
case of the quadrotor UAV or UGV systems, it is safe to update the target
position estimate at all times, even during a lack of persistent excitation.
For instance, if the system is standing still before initializing the tracking
controller, the estimates may still be updated continuously during this time.
This would generally not be the case if the target position is estimated with
a nonlinear Kalman filter, which may cause the variance of the estimate to
diverge during such a lack of excitation (depending on the estimation model).

However, the feedback in Theorem 8.1 is essentially a proportional con-
troller, and there is no feedback in the velocity along φ̄. Consequently, any
stationary load disturbance on the control inputs will cause stationary track-
ing errors. As mentioned previously, such disturbances are expected to appear
in practice due to modeling errors. This problem can be mitigated by carefully
introducing integral action in the distance and velocity tracking errors. With
this idea, a slight extension of Theorem 8.1 is given in Theorem 8.2 below.

Theorem 8.2—Proportional-Integral Circumnavigation Control
The controller-observer combination

ṗ(t) = (uφ(t) + δφ)φ(t) + (uφ̄(t) + δφ̄)φ̄(t) (8.6a)

uφ(t) = kIz1(t) + kP ∆̂(t) (8.6b)
uφ̄(t) = αr − c1 tanh(c2z2(t)/c1) (8.6c)

ż1(t) = ∆̂(t) (8.6d)
ż2(t) = α− αr (8.6e)
˙̂x(t) = k(I − φ(t)φ(t)>)(p(t)− x̂(t)), (8.6f)

ensures global asymptotic convergence of d(t) = ‖x−p(t)‖ → dr and ‖ṗ(t)‖ →
αr, if (c1, c2, k, kI , kP , dr, αr) ∈ R6

>0 and |δφ̄| < c3 = min(αr − c1, c1), where
(δφ, δφ̄) are bounded and asymptotically stationary, if d(t) 6= 0 for all t ≥ t◦.2

Proof. The full proof is given in [Greiff et al., 2021b], and is here summarized
briefly. The main idea is to consider the control in the directions φ and φ̄
separately. By analysis of the latter, using the ideas on smooth saturation
functions in Chapter 6 with the hyperbolic tangent function in Example 6.1,
it can be shown that α > 0, ∀t ≥ t◦. This ensures that a PE condition
analogous to the one presented in [Deghat et al., 2010, Lemma 1] is met,
ensuring exponential convergence of the estimation error x̃(t) = x̂(t)− x to
the origin, with an associated Lyapunov function V = 1

2‖x̃‖2. As such, there
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8.3 Circumnavigation with Integral Action

exists a positive m > 0 expressed in ‖x̃(t◦)‖, and a constant β > 0, such that

‖x̃‖ ≤ me−β(t−t◦), (8.7)

implying that the distance estimate error is bounded in the initial errors, as

|δ(t)|= |d(t)− d̂(t)| ≤ ‖x̂(t)−x(t)‖= ‖x̃(t)‖≤ γ. (8.8)

Furthermore, by (8.8), we note that

Iδ(t) ,
∫ t

t◦

δ(σ)dσ ≤
∫ t

t◦

|δ(σ)|dσ ≤
∫ t

t◦

‖x̃(σ)‖dσ =
m

β
(1− e−β(t−t◦)) ≤ m

β
,

(8.9)
for all t ≥ t◦. By writing out the dynamics of the true distance ∆(t), and
using that p(t)− x = −d(t)φ(t), φ>φ = 1, and φ>φ̄ = 0 by Figure 8.1,

∆̇ =
ṗ(t)>(p(t)− x)

d(t)
= −kII∆(t)− kP∆(t) + kIIδ(t) + kP δ(t)− δφ,

(8.10)

where I∆(t) ,
∫ t
t◦

∆(σ)dσ. By defining u(t) , kIIδ(t) + kP δ(t) − δφ, and
letting ξ(t) = (I∆(t); ∆(t)) we note that (8.10) can be written in the form

ξ̇(t) =

[
0 1
−kI −kP

]
︸ ︷︷ ︸

,A

ξ(t) +

[
0
1

]
︸︷︷︸
,B

(kIIδ(t) + kP δ(t)− δφ)︸ ︷︷ ︸
,u

. (8.11)

Here, |u(t)| ≤ kIm/b+ kP γ + c3 ∀t ≥ t◦ by (8.8) and (8.9), and u converges
to a stationary point by (8.7) if δφ is asymptotically stationary. As A in (8.11)
is Hurwitz for all (kI , kP ) ∈ R2

>0, ∆(t)→ 0⇒ d(t)→ dr as (t− t◦)→∞. 2

However, it is clear that this only holds when d(t) 6= 0 for all t ≥ t◦.
Otherwise, the distance error dynamics in (8.10) become ill defined. This is
part of the reason for seeking a sufficient condition for the collision avoidance
detailed in Remark 8.1. Such a condition can be given as follows.

Proposition 8.1—[Greiff et al., 2021b, Proposition 2]
Let M = kI(m/β) + kP (γ + |∆(t◦)|) + c3, where γ is given in (8.8), m and
β in (8.9) and |δφ| < c3 denotes the upper bound of the disturbance. Let G
denote the impulse response of the system G(s) = s(s2 + kP s+ kI)

−1. For a
single integrator in closed-loop feedback with Theorem 8.2, if M‖G‖1 < 2dr
then d(t) > 0 for all t ≥ to. Furthermore, if the distance controller is tuned
such that the system matrix A in (8.11) is critically damped, with kI = K2

and kP = 2K for some K > 0, then M/(Ke) < dr ⇒ d(t) > 0 for all t > t◦.2
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Remark 8.3
The choice of kP , kI to make (8.11) critically damped is motivated by at-
tempting to keep ‖G‖1 as small as possible, thereby permitting larger M
while satisfying the condition in Proposition 8.1. Indeed, for any second order
system P (s) = s(s2 + 2ξωns+ω2

n)−1, ξ = 1 minimizes ‖P‖1 for any ωn > 0.2

Remark 8.4
The condition for collision avoidance in Proposition 8.1 is reminiscent of that
given in [Deghat et al., 2010, Lemma 1], which in this notation can be written
γ < dr. While the former is more restrictive, it is still quite insightful. If we
seek to ensure collision avoidance when using the controller in Theorem 8.2,
then we could (i) decrease the initial estimation error in (8.8) determining
γ, (ii) increase the convergence rate of the observer in (8.8) by increasing k,
(iii) reduce the upper bound on the load disturbances in the φ-direction, or
(iv) decrease K in the distance controller provided c3 � (m/β) or increasing
it if c3 � (m/β). However, we will always have a term 2K(γ + |∆(t◦)|) in
M . Consequently, any guarantees for collision avoidance by Proposition 8.1
largely depend on the initial distance errors in (8.8). 2

Remark 8.5
In practice, if the initial estimate error is large in relation to dr, then it may
be advantageous to disable the integral action initially, actuating the system
with Theorem 8.1. When enough time has passed, and the estimate error ‖x̃‖
has become sufficiently small, such that collision avoidance can be ensured by
Proposition 8.1, the controller in Theorem 8.2 may be switched on. 2

An advantage with the control system for circumnavigation proposed in
Theorem 8.2 is that it attenuates stationary tracking errors that can arise
from non-perfect actuation. Consequently, while the theory assumes that the
process can follow a desired velocity perfectly, deviations from this perfect
actuation can typically be modeled as input disturbances. As long as these
errors are sufficiently small and approximately constant in the body frame in
stationarity, we should expect the integral states to converge to a nonzero
value, and a vanishing tracking error in the distance and forward velocity.
Example 8.1
To illustrate and contrast the two theorems, and to highlight the practical
utility of Theorem 8.2, an example is given with a fixed-wing UAV where two
significant load disturbances are applied in the bearing- and orthogonal bearing
directions, respectively. The UAV is controlled from a random initial location
p(t◦) ∼ U([100, 200]2) with a significant random initial target estimate error
x̃(t◦) = x̂(t◦)−x ∼ U([100, 200]2), differing from the target position at x = 0
by hundreds of meters. The tuning of the controller and observer is chosen as

k = 0.2, αr = 15, dr = 100, kP = 1.5, kI =
k2
P

4
, c1 = 10, c2 = 0.1.
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This defines a circular target trajectory a distance dr = 100 [m] from the
initially unknown position of the target, which is to be traversed at a velocity
of αr = 15 [m/s]. The controller is chosen to be critically damped in φ-
direction, as motivated by Remark 8.3. Note that with the choice of c1 = 10,
we can guarantee that any load disturbance |δφ̄| < αr − c1 = 5 ensures that
α(t) > 0 for all t ≥ t◦. To illustrate the implications of introducing the integral
action, the disturbances are defined with the Heaviside step function Θ, as

δφ(t) = −20 + 40Θ(t− 100), δφ̄(t) = 2− 5Θ(t− 200) (8.12)

The system responses with Theorem 8.1 and Theorem 8.2, respectively, are
shown in Figure 8.4, and clearly demonstrates the differences between the two
feedback laws. With the applied disturbances, Theorem 8.1 yields stationary
tracking errors, while the accumulation of errors in the integral states, z(t),
result in the tracking error approaching zero when applying Theorem 8.2.
Note that in neither case, the sufficient conditions for collision avoidance
are satisfied. In practice the initial estimate error would be initialized using
heuristics, such that the condition for collision avoidance γ < dr defined
in [Deghat et al., 2010, Lemma 1] associated with Theorem 8.1 is satisfied. If
so, the controller can be implemented as per Remark 8.5, switching on the
integral states once the estimation errors have become sufficiently small. It is
noteworthy that the closed-loop system here exhibits collision-free tracking
despite the sufficient conditions for collision avoidance being violated. 2

8.4 Experimental Results

To illustrate Theorem 8.2 in a more realistic setting, incorporating naturally
arising noise, measurement outliers, unmodeled dynamics, and artifacts from
the numerical discretization, a real-time example is given with an F1/10
UGV [O’Kelly et al., 2019] retrofitted with a u-blox GNSS receiver [Liu and
Li, 2017] (see Figure 8.3). The car is differentially driven, and actuated by
low-level Vedder’s Electronic Speed Controller (VESC) developed in [Vedder,
2021], as wrapped in the PYVESC module [Bindle, 2021]. The two control
signals that are used to interface with the system are here denoted by cv ∈ R>0

[m/s], which relates to the velocity of the vehicle, v [m/s], and cρ ∈ R>0 [·],
which relates to the car’s steering angle, ρ [rad]. When thinking about the
system, we consider it modeled as a unicycle actuated by a v and a rate ω
[rad/s], driving the position p = (p1; p2) [m] and an attitude η [rad] through

ṗ1 = cos(η)v, (8.13a)
ṗ2 = sin(η)v, (8.13b)
η̇ = ω. (8.13c)
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Figure 8.2 Example simulation of the circumnavigation and target
tracking controllers in Theorem 8.1 (gray) and Theorem 8.2 (blue) for
a fixed-wing UAV scenario. Top: Position of the UAV in relation to the
target at the origin, with the target position estimate trajectories converging
to the origin. Top, center: Target position estimate trajectories. Center:
Distance reference (black dashed) and true distance to the target d(t) when
using Theorem 8.1 (gray) and Theorem 8.2 (blue). Bottom, center: Velocity
reference (black dashed) and true velocity to the using Theorem 8.1 (gray)
and Theorem 8.2 (blue). Bottom: Applied load disturbances. The system
response with Theorem 8.1 is shown in the video chapter-8-circumnav.mp4.
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R

−ρ

−ρ

l

Figure 8.3 Left: Depiction of the car used in the experiments. Right:
Illustration of the car geometry with steering angle ρ and turn radius R.

With knowledge of the vehicle length l = 0.34 [m], the relationship between
car velocity, v, and commanded velocity, cv, was determined to be v ≈ cv
[m/s] by a simple experiment. Similarly, the relationship between the car
steering angle, ρ, and the commanded angle, cρ, was found to be linear, with

ρ ≈ g(cρ) = acρ + b, (8.14)

with a = −0.8667 and b = 0.4698. From the geometry in Figure 8.3, the turn
radius of the car is given by R = l/ sin(ρ) and the turning rate with respect
to the global reference frame is then given by

ω =
v

R
=
v

l
sin(ρ) =

v

l
sin(g(cρ)), (8.15)

relating the signals (cv, cρ) to the unicycle inputs (v, ω).

8.4.1 Actuation
To actuate the car along the desired reference velocity vr(t) expressed in the
body-frame of the vehicle, we assume knowledge of the velocities of the UGV
in the body frame in v(t), and construct an approximate attitude error by

η − ηr = ηe ≈ sign(v1,rv2 − v2,rv1) arccos
( vr · v
‖vr‖‖v‖

)
. (8.16)

Consider a feedback law in the control signals (cv, cρ), as

cv = ‖vr‖, cρ = g−1(−ηe/‖vr‖). (8.17)

With this feedback, ‖ṗ‖ = ‖vr‖(cos2(η) + sin2(η)) = ‖vr‖ at all times, and

η̇e = η̇ − η̇r = ω − ωr = −‖vr‖
l

sin
( ηe
‖vr‖

)
− ωr ≈ −

1

l
ηe − ωr, (8.18)

205



Chapter 8. Circumnavigation and Target Tracking

for small ηe. Here, the feedback is purposely designed to yield error dynamics
that are locally exponentially stable when ωr = 0, with a decay rate character-
ized by l−1, but where any sufficiently small non-zero ωr results in bounded
tracking errors in ηe. Furthermore, if ωr is stationary, ηe converges to some
stationary value, implying a constant attitude tracking error in the body
frame of the vehicle. These are precisely the kinds of errors against which the
closed-loop control system in Theorem 8.2 is designed to be robust.

Remark 8.6
More refined low-level control strategies are possible, which permit a cascade
analysis. However, this lower-level velocity controller in (8.18) is specifically de-
signed to demonstrate how the integral action in Theorem 8.2 can compensate
for asymptotically stationary errors in modeling and actuation. Furthermore,
we will employ nonlinear Gaussian filtering for the outlier rejection, and as
such, no cascade analysis is undertaken for this chapter. 2

8.4.2 State Estimation
As the car is modeled as a unicycle, and the relationships between (cv, cρ)
and (v, ω) are known, we consider a simple estimation model in the form

ṗ1 = cos(η)(v + dβ1
1), (8.19a)

ṗ2 = sin(η)(v + dβ2
1), (8.19b)

η̇ = ω + dβ2(t), (8.19c)

where dβji (t) denote colored Wiener processes, with dβji (tk)− dβji (tk−1) ∼
N (0, hkqi), qi > 0, and tk = t◦+

∑k
i=0 hk with hk > 0. Define the state vector

x̄ , (p1; p2; η) ∈ R3 and the control signal vector ū , (v ; ω) ∈ R2. The
system in (8.19) is discretized using a zero-order hold assumption, as

x̄k+1 = f(x̄k, ūk) + qk, qk ∼ N (0,Qk), (8.20a)
yk = Cx̄k + rk, rk ∼ N (0,Rk), (8.20b)

where the noise is assumed to be independent and identically distributed,

f(x̄k, ūk) =

p1,k + hkvk cos(ηk)
p2,k + hkvk sin(ηk)

ηk + hkωk

 , Qk � 0, C =

[
1 0 0
0 1 0

]
, Rk =σ2

pI,

with the symmetric and positive definite process noise covariance given by

[Qk]11 = hkq1 + 1
3 (h3

kq2v
2
k sin2(ηk)), [Qk]12 = − 1

6 (h3
kq2v

2
k sin(2ηk)),

[Qk]13 = − 1
2 (h2

kq2vk sin(ηk)), [Qk]22 = hkq1 + 1
3 (h3

kq2v
2
k cos(ηk)2),

[Qk]23 = 1
2 (h2

kq2vk cos(ηk)), [Qk]33 = hkq2.
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In the filter implementation, the positional measurements for the circumnav-
igation controller are sampled at a uniform rate of 20 [Hz] from the filter
prediction, and the measurements are included asynchronously and as soon
as they arrive. If a measurement is zero (which is how outliers are represented
in the GNSS module), or the expected filter measurement prediction error
exceeds a threshold ‖yk−C(f(ˆ̄xk−1, ūk−1))‖ > 100 [m], the measurement yk
is discarded. The signals ūk are computed from the applied controls (cv, cρ)
through the inverse kinematics. In this example, a simple Gaussian filter is
used, here implemented with first-order moment approximations, resulting in
a continuous-discrete EKF (see, e.g., [Axelsson and Gustafsson, 2014]).

8.4.3 Circumnavigation
In this circumnavigation experiment, the car is initialized with the actua-
tion turned off, and the GNSS measurements are accumulated over a short
amount of time to fix the EN coordinate frame. After the EN frame has
been established, the EKF is initialized at a time t◦ = 0, and permitted
to converge over 10 [s]. It is slightly dangerous to have the EKF run for
too long without movement, as the η-state is not observable in the GNSS
measurements when the car is standing still. An advantage of estimating
the angle η in the EKF is that this simplifies the experiments significantly,
as they can be done with a known bearing direction to a virtual target. In
this experiment, the target position x is randomized at a known location
in the EN frame, and the bearing direction is computed and rotated into
the body frame of the UGV using η from the filtering posterior. In different
applications, such a direction in the body frame can be sensed by any of a
multitude of sensors. As such, this example should not bee seen as an end
application, but rather a validation that the ideas in Theorem 8.2 work as
expected when run with realistic modeling errors, disturbances, and noises.

During the time t ∈ [0, 10], the integral action in the controller is switched
off, but the target position estimate is continuously updated, converging to
a stationary point on a line connecting x and p◦. As (d/dt)‖x̃(t)‖2 ≤ 0 for
all t ≥ t◦, the target estimate error is expected to decrease to a stationary
non-zero value due to the lack of persistent excitation when the car is standing
still. At t = 10 [s], the actuation is promptly switched on, and the integral
states are permitted to build up. After this point, the car converges to a near
zero tracking error with respect to the desired motion (see Figure 8.4).

As t > 10 and increases, we note that the target estimate converges
to a point close to the true target position. Indeed, the estimation error is
approximately ‖x̃‖ ≈ 10−2 [m] in stationarity, an error which can be attributed
to the discretization of the estimator dynamics and noise in the system. We
also observe that the car converges to the desired circular trajectory (here only
the signals related to dr are visualized). This despite the ωr-term in (8.18)
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being non-zero at all times, and the UGV system in feedback with the velocity
controller in (8.17) being expected to yield stationary tracking errors when
asymptotically ωr 6= 0. The reason for the visibly good trajectory tracking
in the top-most subplot is found in the bottom-most subplot, where the
integral state z1(t) related to ∆(t) converges to a non-zero value, effectively
compensating for the input disturbance caused by the actuation errors.

This real-time example demonstrates the practical utility of introducing
integral action in the circumnavigation controller in Theorem 8.1, as described
in Theorem 8.2. It is clearly a valuable and feasible option for real-time
implementations, and often necessary in order to achieve small tracking errors.
We recommend its use in circumnavigation and target tracking problems for
UAVs and UGVs implementing Theorem 8.1. The Python code used in the
experiments as well as experiment logs are available in [Greiff, 2021].

8.5 Summary

In this chapter, a control system for circumnavigation is developed in The-
orem 8.2, which solves the problem posed in Problem 8.1, and introduces
integral action in the tracking errors. This solution imposes more restric-
tive sufficient conditions for collision avoidance than the related solution
in Theorem 8.1. However, the proposed control system has the benefit of
attenuating input disturbances in the body frame, provided that these are
sufficiently small and asymptotically constant. This is clearly demonstrated
with the fixed-wing UAV simulation in Example 8.1. Such load disturbances
are often found in practice due to non-perfect actuation, as demonstrated in
the real-time experiment with the differentially driven UGV in Sec. 8.4.

In the proposed solution, a feedback in the orthogonal bearing direction
can only be introduced if the resulting velocities α(t) are bounded away from
the origin at all times. To do this, the smooth saturation functions introduced
in Chapter 6 are instrumental. These saturation functions can be used for
a much wider variety of problems, not necessarily related to UAV control.
Furthermore, the real-time example demonstrates the usefulness of bounding
the system errors in time. In this particular case, it implies that the true
target position is within a circle that shrinks in time. Thus, it is safe to update
the target estimate even when the UGV stands still.

In conclusion, based on the promising demonstrations of the control system
with the UGV, we propose the control system with integral action to be tested
and evaluated for fixed-wing UAVs and boats in autonomous search and rescue
missions. Such applications will introduce additional disturbances, and it is
therefore interesting to investigate how a fixed-wing UAV in various wind
conditions performs with the controllers in Theorem 8.1 and 8.2, respectively.
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Figure 8.4 Experimental results when driving the UGV autonomously
using the simple controller in (8.17) with the output feedback controller pro-
posed in Theorem 8.2. Top: Two-dimensional position of the UGV, starting
at the origin of the EN frame, with the target position estimate trajectories
converging to the target position. The raw sampled GPS measurements are
shown as gray dots. Lyapunov function V = 1

2
‖x̃‖ associated with the target

estimation. Center: Target position estimate trajectories. Bottom, center:
Distance reference dr (black) and system response d (blue). Bottom: The
integral state associated with the distance in the φ-direction. The experiment
and system response is shown in the video chapter-8-circumnav.mp4.
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9
Radiation Mapping

9.1 Introduction

A quadrotor UAV equipped with a good and robust control system is an
incredibly useful tool that can find myriad applications in modern society. In
particular, it can be used for short surveying missions and remote sensing,
to collect data that are otherwise inaccessible for ground-based vehicles or
human-operated sensors. An example is the measurement of radiation intensity
at sites that are potentially hazardous to humans. Instead of walking with a
sensor in a backpack through the terrain, it can be carried by a large UAV to
quickly and efficiently survey the environment. In this chapter, we assume
that such a UAV is controlled by a solution similar to those presented in
Chapters 4 and 6, and proceed to consider the problem of mobile gamma
spectroscopy (see Figure 9.1), inferring the parameters of a modeled radiation
intensity function along a known surface from measurements taken by a UAV.

A popular approach for remote sensing and surveying with UAVs is to pose
a joint estimation and path planning problem, planning the motion of the
sensor to yield the most informative measurements [Hitz et al., 2017; Popović
et al., 2020]. Such informative path planning (IPP) solutions typically rely on
Gaussian Process (GP) regression or Kalman filtering, due to their favorable
computational properties and the need for the algorithm to be run in real-
time. An alternative approach is to consider a slightly more refined estimation
model, incorporating known geometries, more complex measurement models,
and non-Gaussian noise statistics. The estimation problem is then solved
offline, increasing the computational resources afforded to the estimator.

As the measurements taken by the detector are Poisson distributed, it is
natural to consider maximum-likelihood approaches with a Poisson likelihood.
Such methods have been studied rigorously in the related field of gamma
tomography, dating back to the early work in [Shepp and Vardi, 1982; Miller et
al., 1985]. In any implementation, it is common to discretize the domain of the
intensity function, here denoted as Ω, estimating an intensity per pixel or voxel
(see left-most subplot in Figure 9.2). Such modeling assumptions naturally
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Figure 9.1 The geometry of the mobile radiation mapping problem.

carry over to the more recent algorithms designed specifically for gamma
spectroscopy from UAVs. One such example is the Adaptively Reevaluated
Bayesian Localization (ARBL) algorithm, presented in [Miller et al., 2015],
which, for computational efficiency, approximates the measurement likelihood
as being Gaussian. Another example is the work in [Joshi et al., 2017], where
an intensity function is estimated using directional measurements, similarly
discretizing the domain Ω and considering a finite set of point sources.

There are two potential problems with such approaches. Firstly, they
generally introduce a large number of estimation variables. As such, if the
sensor is flown along a trajectory, the resulting model may be able to predict
the intensity measurements very well along this trajectory, but results may be
poor when moving further away from the traveled path. If the resolution of
the pixels is chosen too fine, the algorithm will tend to over-fit the data, often
with a poor reconstruction of the underlying intensity function as a result.
Secondly, the hyper-parameters of the estimation model, here the number of
pixels, their size, and their location, are user-defined and fixed.

Both of these problems are addressed by the promising Additive Point
Source Localization (APSL) algorithm in [Hellfeld et al., 2019; Vavrek et
al., 2020], which closely resembles the approach in [Joshi et al., 2017] in its
discrete form. However, in [Hellfeld et al., 2019], the APSL algorithm is also
formulated in a continuous setting, in the sense that it not only estimates
the intensity of the sources but also their spatial location and the cardinality
of the set of point sources (see center subplot in Figure 9.2). This gives the
estimation model significant flexibility, reducing the algorithm’s propensity
to overfit by minimizing a negative log-likelihood as well as the number of
estimation variables with respect to a Bayesian Information Criterion (BIC).
This is done in a maximum likelihood expectation-maximization algorithm
(ML-EM) [Dempster et al., 1977] over the intensity of the point sources,
combined with hyper-parameter optimization over their locations.
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Ω (discontinuous, Dirac)
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Figure 9.2 Illustration of a rectangular domain Ω ⊂ R2. Left : Basis
functions (Dirac) are fixed in the center of pixels, effectively discretizing Ω.
Center : A much smaller number of basis functions (Dirac), here permitted
to vary over Ω with two-degrees of freedom each. Right : A much smaller
number of basis functions (Gaussian), where the kernel center is permitted
to vary over Ω with an additional degree of freedom in its variance.

9.1.1 Chapter Motivation and Contributions
In the context of radiation mapping with mobile detectors, the computational
complexity of the ML and ML-EM methods primarily depends on the number
of observables (implicitly the coarseness of the discretization of the domain
parameterizing the intensity function) and the number of measurements
included. The continuous APSL enjoys a clear advantage over other candidate
methods, typically requiring fewer estimation parameters if the intensity is
well described by a small number of point sources. However, in many practical
surveying applications, this assumption is no longer valid. For instance, if
considering a meadow or roof that has been exposed to radioactive fallout,
it is highly unlikely that the intensity function over this surface will be
well described by a small number of point sources. In such scenarios, the
original APSL requires modifications to facilitate estimation over a richer
class of intensity functions. For this purpose, an extension of the APSL was
proposed in [Greiff et al., 2021d]. The resulting generalized APSL (GAPSL)
models the intensity function as a sum of weighted homogeneous Gaussian
kernels and permits their width, weights, and location to vary, as well as
the number of kernels entertained in the estimation model (see right-most
subplot in Figure 9.2). In this extension, prior knowledge of the radiating
surface geometry is included. In addition, the method addresses the problem
of varying background intensity (highlighted in [Vavrek et al., 2020]).

9.1.2 Overview
In this chapter, we start by giving the necessary mathematical preliminaries
specific to radiation mapping in Sec. 9.2. We then proceed to discuss the
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modeling and its relation to prior work in Sec. 9.3. The GAPSL is then
presented in Sec. 9.4, including a description of the ML-EM framework, the
alternating optimization approach, and how it can be combined with model
selection theory, here adapted to the case of Gaussian kernels. The algorithm
is subsequently demonstrated in a simulation setup in Sec. 9.5 to show when
and how it should be used, followed by an experimental verification in Sec. 9.6.
The summary in Sec. 9.7 concludes the chapter, highlighting the utility of
good UAV control and how it can solve problems in modern society.

9.2 Preliminaries

Throughout this chapter, take P(x|λ) = e−λλx/x! to denote a Poisson proba-
bility density function (PDF) with mean and variance λ, and support on the
natural numbers x ∈ N0. Let P(x|λ) =

∏n
i=1 P(xi|λi) define a multivariate

Poisson PDF. As in the previous chapters, let N (x|µ,Σ) be a multivariate
Gaussian PDF, with mean µ ∈ Rn and covariance Σ ∈ Rn×n, and take
KL(p‖q) to denote the Kullback-Leibler divergence of two PDFs, p and q,
respectively (see, e.g., [Murphy, 2012]). In the following, we let ◦ and � denote
element-wise multiplication and division, respectively. For future reference
and to simplify the reading, the key variables particular to this chapter are
summarized in Table 9.1, and will be defined in the forthcoming sections.

Notation Description

Ω ⊂ R2 Domain of interest
θ ∈ Ω Point on the domain Ω

S : Ω 7→ R3 Known radiating surface geometry
I : Ω 7→ R≥0 Intensity moment function
n ∈ N (n� 0) Number of measurements
Y ∈ Nn0 Sampled measurements

m ∈ N (m > 0) Number of kernels in model
kj : Ω 7→ R Kernels approximating I
ηj ∈ Dη,j Hyper-parameters of kj
wj ∈ R>0 Weight associated with kj

Sj = {wj ,ηj} Solution associated with kj
Ξ = {ηj}mj=1 Hyper-parameters of the model

w = (w1; ...; wm) Weights of model
S = {Sj}mj=1 Set of solutions

Table 9.1 Description of key parameters and variables. Depending on the
considered kernel, Dη,j = R>0 or Dη,j = R>0 × Ω or Dη,j = Ω.
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9.3 Modeling and Relation to Prior Work

In the following, we consider a two-dimensional domain Ω ⊆ R2, and let θ ∈ Ω,
which parameterizes a three-dimensional continuous surface S : Ω→ R3. This
general modeling approach facilitates the estimation of intensity functions
over silos, roofs of buildings, or lake sides. Consider a detector that resides at a
point pd ∈ R3 with a rotation matrix given by Rd ∈ SO(3), and a point source
at ps = S(θ) ∈ R3. The detector sensitivity is a function of its effective surface
area, A(ps,pd,Rd), and the distance from the detector to the radiating point.
The function A can be viewed as a calibration function, computed for specific
detectors though a set of experiments in a lab environment, here omitted for
brevity. Following [Tsoulfanidis, 1995, Chapter 8.2], we model the solid-angle
for a point isotropic source and a detector with a circular aperture with radius
R. Under the assumption that R� ‖S(θ)− pd‖2, we let

vs(S(θ),pd,Rd) , A(S(θ),pd,Rd)

4π‖S(θ)− pd‖2 . (9.1)

This function is an approximation of the fraction of radiated particles from
a point source at any S(θ) that are seen in the detector. If a specific point
S(θs) radiates with I(θs) [Bq], measured over ti [s] , with the detector at
pdi with an orientation Rd

i , we should expect to see I(θs)vs(S(θs),p
d
i ,R

d
i )ti

events in the detector from this source. However, we may also parameterize
this intensity function over larger portions of Ω. Consider an approximation
of expected intensity by a sum of weighted basis functions, with

I(θ) =

m∑
j=1

wjkj(θ;ηj). (9.2)

Here, ηj denotes a set of free hyper-parameters associated with this basis
function or kernel kj . This could for instance be a point defined by a Dirac
delta located at θj ∈ Ω, as kj(θ) = δ(θ − θj). If the location θj ∈ Ω is
fixed, then ηj = ∅, but if it is free and to be estimated, then ηj = θj . This
formulation also permits the use of a general Gaussian kernel

kj(θ;ηj) = N (θ|θj , σ2
j I2). (9.3)

Here, ηj = ∅ if all parameters are fixed, but it can also take the form
ηj = θj ∈ Ω if the kernel centers are permitted to vary. It can also be defined
by ηj = σj ∈ R>0 if only the variance of the kernel function is to be estimated,
or ηj = (θj , σj) ∈ Ω× R>0 if both the kernel centers and the variances are
permitted to vary. Let Sj = {wj ,ηj} be the set of weight and free hyper-
parameters, define a solution as S = {Sj}mj=1, and let Ξ = {η1, ...,ηm}
denote the set of all free hyper-parameters.
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With the intensity moment function approximated as in (9.2), the mea-
surements registered by the detector over a time-interval ti [s] is modeled by

Yi ∼ P
(
yi

∣∣∣ ∫
Ω

tivs(S(θ),pdi ,R
d
i )I(θ)dθ

)
(9.4a)

= P
(
yi

∣∣∣ m∑
j=1

wjti

∫
Ω

vs(S(θ),pdi ,R
d
i )kj(θ;ηj)dθ

)
(9.4b)

= P
(
yi

∣∣∣ m∑
j=1

Cij(ηj)wj

)
, (9.4c)

with an expected intensity that is linear in the weights characterizing (9.2),
and the contribution from each kernel kj at each time ti is defined by

Cij(ηj) = ti

∫
Ω

vs(S(θ),pdi ,R
d
i )kj(θ;ηj)dθ. (9.5)

In the following, we let C(Ξ) denote a large matrix, where the entry in the
ith row and jth column is given by the expression Cij(ηj) in (9.5). When
changing the cardinality of the solution set S, the number of rows of C(Ξ)
will remain constant, while the number of columns may vary as S changes.

9.3.1 Finite and Infinite Intensity Domains
An objection to the use of kernels other than the point-mass function is the
need to compute the integral in (9.5) for each kernel and measurement when
evaluating the measurement model. This is particularly problematic if the
integration domain is finite, but simplifies significantly for infinite domains.
In this case, we may apply the Gauss Hermite cubature in [Särkkä, 2013] or
the spherical cubature rules in [Arasaratnam and Haykin, 2009]. For (9.5),
letting gj(θ) , vs(S(θ),pdi ,R

d
i ) and θ̄ = (θ − θj)/σj ∈ R2,

Cij(ηj) = ti

∫
R2

gj(θj + σj θ̄)N (θ̄|0, I)dθ̄ ≈ ti
M∑
l=1

v(l)gj(θj + σjξ
(l)), (9.6)

for a set of weights v(l) ∈ R>0 and integration points ξ(l) ∈ R2. In the following,
we consider the 3rd-order spherical cubature in [Arasaratnam and Haykin,
2009], which when applied to (9.6) is characterized by M = 4, v(l) = 1/4

for all l ∈ {1, 2, 3, 4} and (ξ(1), ..., ξ(4)) =
√

2(I,−I) ∈ R2×4. Compared
to a single evaluation of (9.5), the Gaussian kernel then requires M = 4
evaluations, implying approximately a fourfold increase in the computational
burden associated with evaluating the measurement model.
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9.3.2 Measurement Model
The number of events measured in the scintillator crystal of the detector in
time is well described by the Poisson process [Tsoulfanidis, 1995]. Here, we
parameterize a Poisson process over Ω with the basis function approximation
in (9.2), letting w = (w1, ..., wm)> ∈ Rm and t = (t1, ..., tn)> ∈ Rn>0. Follow-
ing [Ebeigbe et al., 2020], we introduce a background rate b which is constant
in time and affects all measurement equally. The measurements are modeled
as being Poisson distributed, with

Y ∼ P(y|C(Ξ)w + bt). (9.7)

If the kernel is chosen as k(θ) = δ(θ−θj), and the parameters θj are fixed to
specific pixels, then a measurement model analogous to the one in [Ebeigbe
et al., 2020] is obtained. If θj is unknown and to be estimated, then we
recover the continuous problem formulation in [Hellfeld et al., 2019]. However,
by (9.6) the Gaussian kernels in (9.3) can also be considered, generating
sparse estimation models for spatially continuous intensity statistics over Ω.

9.4 A Generalized Intensity Inference Algorithm

In this section, we start by presenting the ML-EM algorithm in the context of
the measurement model in (9.7), followed by a discussion on model selection,
and approaches to combining elements of the solution, Si, when this is deemed
favorable with respect to an information criterion of interest.

9.4.1 The ML-EM Framework
The ML-EM framework dates back to the work in [Dempster et al., 1977], and
is an iterative algorithm commonly used in parameter estimation problems
(see, e.g., [Gibson and Ninness, 2005]). The method consists of an M-step and
an E-step. Intuitively, the M-step computes the most likely estimates of a
set of latent variables given a set of measurements, which is followed by the
E-step, maximizing the expected log-likelihood over the estimation variables.

The development of an ML-EM algorithm for the Poisson distributed
measurements was originally done for the related problem of gamma to-
mography in [Shepp and Vardi, 1982]. In the notation of this thesis, with
Y ∼ P(y|AZ),Y ∈ Nn0 ,A ∈ Rn×m,Z ∈ Rm, and λ = AZ, the negative
log-likelihood of Z given Y ∼ P(y|AZ) can be expressed in the form

l̄(Z;Y ) = − log(P(Y |AZ)) (9.8a)

=

n∑
i=1

[λi − Yi log(λi) + Γ(Yi + 1)] (9.8b)

= (AZ − Y ◦ log(AZ) + Γ(Y + 1)) · 1, (9.8c)
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where Γ here denotes the usual Gamma-function, applied element-wise. The
ML-EM algorithm in [Shepp and Vardi, 1982], derived with respect to the
likelihood in (9.8), reduces to a fixed-point iteration in the form

Ẑ
(q+1)

= (Ẑ
(q) � (A>1n)) ◦ (A>(Y � (AẐ

(q)
)), (9.9)

These iterations are easily generalized to the statistical measurement model
in (9.7), where background radiation of intensity b is introduced, along with
integration times for each sensor t ∈ Rn>0. Here, the above ML-EM iterations
can be applied with A = (C(Ξ), t) ∈ Rn×m+1 and observables Z = (w>, b)>,
which then recovers a formulation analogous to that in [Hellfeld et al., 2019].

Remark 9.1
The negative log-likelihood in (9.8) is convex in Z, and can be minimized by
other methods than the ML-EM algorithm. Nonetheless, the ML-EM iterations
in (9.9) are simple to implement, widely used, and have the property that the

negative likelihood is non-increasing over the iterations, i.e., l̄(Ẑ
(q+1)

;Y ) ≤
l̄(Ẑ

(q)
;Y ) for all q > 0 (see, e.g., [Dempster et al., 1977]). 2

Furthermore, if all of the elements in A are positive, and Z(0) is positive,
then Z(q) will remain positive for all iterations. As such, we can construct
algorithms that change A as defined by Ξ and m, while simultaneously
minimizing (9.8) through (9.9). Before doing so, we first demonstrate the
general convergence properties of the ML-EM algorithm in Example 9.1.

Example 9.1
In this example, consider two simple problems characterized by m = 3 and
m = 100, respectively. We let Z ∼ U([0, 10]m), take A ∼ U([0, 10]n×m), and
sample Y ∼ P(y|AZ), with n = 1000. The ML-EM iterations in (9.9) are

run to compute Ẑ from 10 different random initial Ẑ
(0) ∼ U([0, 10]m) (here

depicted in varying shades of blue), and the negative log-likelihood of the
estimate relative to the true parameters is depicted as a function of time for
each of these initializations (see Figure 9.3).

From this simple example, we make two observations. Firstly, for a small
number of estimation variables (m = 3), the estimates converge to a point
very close to the true parameters. This need not be the case when introducing
a very large number of estimation variables in relation to the number of
measurements, as seen in the bottom left subplot (m = 100), where the
estimates vary significantly in ŵ

(∗)
2 despite having very similar likelihood

costs. Secondly, the number of iterations required to converge to a small cost
generally increases with the number of estimation variables of the model.
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Figure 9.3 Example with ML-EM algorithm run on the two problems.
Left : The first two elements of Ẑ

(q)
, here (ŵ

(q)
1 , ŵ

(q)
2 ), as a function of the

number of iterations, q, for the problems defined bym = 3 (top) andm = 100
(bottom). The true parameters Z (red) and the terminal estimates for the
different initializations (green). Right : The relative negative log-likelihood
of the estimate as a function of the number of iterations.

9.4.2 An Alternating Optimization Approach
From Example 9.1, it is clear that it can be advantageous to reduce the number
of estimation variables in estimation model in (9.7), both with respect to the
general convergence rates of the ML-EM algorithm and the accuracy its the
estimates. This is one of the main reasons for refining the model characterized
by A over the algorithm’s execution, and one of the main motivations for
constructing the sparse APSL algorithm in [Hellfeld et al., 2019]. Here, an
ML-problem is solved by minimizing the negative log likelihood of a solution
set S given measurements sampled from (9.7). In contrast to the ML-EM
iterations, the APSL incorporates the weights as well as any free hyper-
parameters defining the kernels approximating the intensity in (9.2). If L(S;Y )
denotes the likelihood of S given Y , and A(Ξ) = (C(Ξ), t) ∈ Rn×m+1 and
Z = (w>, b)> ∈ Rm+1, we can disregard the terms in the Γ-function, and let

−log(L(S;Y ))∝ (A(Ξ)Z−Y ◦ log(A(Ξ)Z)) · 1,l(S;Y ),

permitting the ML-estimation problem to be written

Ŝ = argmin
S

(l(S;Y )), (9.10)
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The APSL solves (9.10) approximately by alternating

Ẑ
(q+1)

= argmin
Z,Ξ=Ξ̂

(q)

l(S;Y ), (9.11a)

Ξ̂
(q+1)

= argmin
Ξ,Z=Ẑ

(q+1)

l(S;Y ). (9.11b)

The first step is convex, as per Remark 9.1, and solved using the ML-EM
iterations in (9.9). The second step is non-convex, solved by a constrained
interior-point method. In the original APSL, the kernels are defined by the
Dirac delta function in kj(θ;ηj) = δ(θ − θj) (and these are not constrained
to a known surface). In contrast, the GAPSL proposed in [Greiff et al., 2021d]
constrains the intensity function to S, and employs the homogeneous Gaussian
kernels in (9.3). For the APSL, the constraints θj ∈ Ω need to be enforced for
all j = 1, ...,m when solving (9.11b). In the GAPSL the additional constraints
of σj > 0 are required if kernel j is Gaussian and σj is free.

Remark 9.2
When implementing the constrained optimization in (9.11b) with Gaussian
kernels, it is advised to bound 0 < σ−j < σj < σ+

j for some small σ−j . The
former improves the numerical robustness of the CKF-integration, and the
latter can be used to constrain θj ∈ Ωj ⊂ Ω, such that θj +

√
2σ̄ju ∈ Ω

for all unit vectors ‖u‖ = 1. In doing so, the evaluations in (9.6), given the
considered CKF integration point set, are well defined at all times. 2

9.4.3 Model Selection and Information Criteria
When alternating (9.11a) and (9.11b), it may be the case that the addition
or removal of weighted basis functions can increase the likelihood of the
estimate. For instance, if the data is well approximated by four point-sources,
the cardinality of S should change to best reflect this in (9.10). Selecting the
model that yields a good trade-off between a smaller number of parameters
and maximizing likelihood amounts to a problem of model selection, which
has been studied extensively (see, e.g., [Vrieze, 2012]). For this purpose, the
Bayesian information criterion (BIC), the Akaike information criteria (AIC),
or the second order AIC (AICc) could be considered. In the context of the
problem in (9.10) with the model in (9.7), these information criteria are

BIC(S) =−2 log(L(S;Y ))+k log(n), (9.12a)
AIC(S) =−2 log(L(S;Y ))+2k, (9.12b)

AICc(S) =−2 log(L(S;Y ))+2k(k+1)/(n−k−1), (9.12c)

where n is the number of measurements and k is the number of estimation
variables. For example, when using the discrete parameter space and a Dirac
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kernel, k = m+ 1; if the continuous parameter space is used and θj ∈ Ω ⊂ R2,
then k = 3m+ 1; and if we use the Gaussian kernel with free kernel centers
θj ∈ Ω ⊂ R2 and σj ∈ R>0, then k = 4m+ 1. The original APSL is developed
with respect to the BIC [Hellfeld et al., 2019], but in [Anderson and Burnham,
2004], it is evident that the AIC is in many cases preferable, and that the AICc
should be considered if n/k . 40, as will often be the case in the intended
applications. In the following, we let IC be any information criteria in (9.12),
but the experiments are done with the BIC to relate the GAPSL in [Greiff
et al., 2021d] to the original APSL in [Hellfeld et al., 2019].

9.4.4 Extending, Fusing and Pruning
Consider a solution S with k parameters, and let this solution be augmented by
adding or removing one weighted basis function yielding S̄ with k̄ parameters.
If IC(S̄) < IC(S), then the new solution should be accepted in favor of the
old. In the GAPSL, this solution augmentation is to be done in three different
ways: by extending, pruning, and fusing solutions.

• Extend(): Randomize a new kernel and weight, and add to the solution.
This is done on each GAPSL iteration, without reference to the IC.

• Prune(): Remove pairs of weights and kernels, Sj , from the solution,
S, if doing so decreases the chosen IC.

• Fuse(): Fuse two elements of S if it decreases the chosen IC. If two
kernels are located close to each other in Ω, then their contribution
to the likelihood may potentially be well approximated by a single
basis function at this location. The prune operation will not reduce the
IC if the weights are sufficiently large, hence the need for the Fuse()
operation, as outlined in Algorithm 2.

The only nontrivial aspect of these operations is the fusion of Gaussian kernels.
Several approaches exist for related problems in sensor fusion, including
covariance intersection (CI) and inverse covariance intersection (ICI) (see,
e.g., [Chen et al., 2002; Hurley, 2002]). However, the problem is made more
difficult in that we seek a single Gaussian kernel in the form (9.3) that best
approximates two components of S, making CI and ICI more difficult to
apply. Instead, we consider a weighted sum of two kernels associated with Si
and Sj , here denoted qij(θ) = (wiN (θ|θi, σ2

i I) +wjN (θ|θj , σ2
j I))/(wi +wj)

for wi >,wj > 0, and formulate a candidate kernel p(θ) = N (θ|θp, σ2
pI). We

then solve an optimization problem to find a pair Si,Sj ∈ S, such that

(i, j) = argmin
i 6=j

(
min
θp,σp

KL(qij ||p)
)
. (9.13)
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Solving this problem yields the homogeneous Gaussian kernel, p(θ), defined in
{θp, σp}, which best approximates the mixture of two other Gaussian kernels,
qij(θ), in its first two moments. The reason for considering this approach,
is that the solution to the problem of minimizing the KL-cost in (9.13) over
{θp, σp} can be expressed in the parameters {wi,θi, σi, wj ,θj , σj}.

wp =wi + wj , ni = wi/wp, nj = wj/wp, (9.14a)
θp =niθi + njθj , (9.14b)

σ2
p =(niσ

2
i +njσ

2
j )+ 1

2ninj(ni+nj)‖θi − θj‖2. (9.14c)

This solution can be found using the conditional covariance formula (see
Appendix D), and with it, the Fuse() operation is summarized in Algorithm 2.

Algorithm 2: Pseudo code of the Fuse() operation
1 Receive S;
2 Find candidates {Si,Sj} ∈ S by (9.13);
3 S(+) = {wp,θp, σp} using (9.14);
4 S̄ = (S ∪ S(+))\{Si,Sj};
5 if IC(S̄) < IC(S) then
6 S = S̄;
7 end
8 return S;

With these functions, the GAPSL is outlined in Algorithm 3. This algo-
rithm is similar to the original APSL in [Hellfeld et al., 2019], but notably
and significantly modified in (i) the evaluation of the measurement model, (ii)
the formulation of the optimization problem, and (iii) the fusing operation,
all to facilitate the inference of intensities parameterized by Gaussian kernels.

Remark 9.3
We emphasize that the APSL in this thesis differs slightly to the original
APSL algorithm evaluated in [Hellfeld et al., 2019; Vavrek et al., 2020], as the
algorithm is complex and implemented from scratch in Matlab based solely
on a mathematical description in [Vavrek et al., 2020]. In addition, a different
optimizer is used to solve (9.11b) over the hyper-parameters. Nonetheless,
our APSL implementation generates results that are very similar to those
in [Vavrek et al., 2020], as will be reported in the simulation examples. 2
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Algorithm 3: Pseudo code of the generalized APSL algorithm
(GAPSL)
1 Receive geometries: Ω,S;
2 Receive data: {Yi, ti,pdi ,Rd

i }ni=1;
3 Randomize: S(0);
4 for q = 1, ..., Nmax do
5 S̄

(q−1) ← Extend(S(q−1));

6 Estimate Ẑ
(q)

by solving (9.11a) with S̄(q−1);

7 Estimate Ξ̂
(q)

by solving (9.11b) with S̄(q−1);

8 Form S̄
(q) from Ẑ

(q)
and Ξ̂

(q)
;

9 S(q) ← Fuse(Prune(S̄
(q)

));
10 if IC(S(q)) > IC(S(q−1)) then
11 S(q) ← Fuse(Prune(S(q−1)));
12 end
13 end

9.5 Simulation Verification

To evaluate the generalized APSL, we give two examples with (i) the regular
ML-EM iterations with a discrete parameter space, and the APSL with a
continuous parameter space, both with (ii) the original version with Dirac
kernels and (iii) the generalized version with Gaussian kernels. Specifically,

(i) The classical ML-EM algorithm with Dirac kernels, fixed at N × N
pixels of length 0.1 [m]. Here, θ1 = (0.1, 0.1) and θm = (0.1N, 0.1N)
with N = 50. This corresponds to the left-most subplot in Figure 9.2.

(ii) The APSL with Dirac kernels, using the BIC in (9.12) for model se-
lection, with the free hyper-parameters defined as ηj = θj ∈ Ω, which
corresponds to the center subplot in Figure 9.2.´

(iii) The GAPSL with homogeneous Gaussian kernels, using the BIC in (9.12)
for model selection, with the free hyper-parameters defined as ηj =
{θj , σj}. This corresponds to the right-most subplot in Figure 9.2.

To generate the synthetic data, we consider two different scenarios, in both
cases with a surface characterized by S(θ) = (θ1, θ2, sin(πθ1/10) cos(πθ2/10))
over a relatively small domain given by Ω = [0, 5]2 ⊂ R2. These are detailed
separately below, with Scenario A corresponding to data generated from point
sources, and Scenario B corresponding to data generated from a continuous
intensity function parameterized in Gaussian kernels.
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9.5.1 Scenario A
In this first scenario, we consider four point sources located at θI1 = (1, 1),
θI2 = (1, 2), θI3 = (4, 4), θI4 = (3, 2), each radiating with an intensity of
wI1 = 200, wI2 = 300, wI3 = 200, wI4 = 400 [Bq], respectively, such that the
true intensity function used for sampling the Poisson distributed data is

I(θ) =

4∑
j=1

wIj δ(θ − θIj ). (9.15)

The integration time interval is taken to be ti = 1 [s] for i = 1, ..., n, and a total
of n = 103 measurements are sampled in a positional trajectory defined by a
constant height of 1 [m] above the surface S, such that pdi = S(θd(t))+(0, 0, 1),
where θd(t) = (2.5 + sin(2πt/n), 2.5 + cos(4πt/n)) and Rd(t) = I. This
corresponds to a 17 [min] long flight, which is roughly the length of a mission
on a single set of batteries with the Matrice 600 Pro AV [DJI, 2021].

9.5.2 Scenario B
In the second scenario, the intensity function is parameterized using a set of
Gaussian kernels in order to study the case where the intensity is not well
approximated by point sources. For this purpose,

I(θ) =

4∑
j=1

wIjN (θ|θIj , (σIj )2I), (9.16)

using the same four points θIj j = 1, ..., 4 as in the previous scenario, but now
also characterized by the four standard deviations σI1 = 1, σI2 = 1.2, σI3 = 1.5
and σI4 = 0.6, resulting in a continuous intensity statistics over Ω.

9.5.3 Simulation Results and Discussion
The results from the Monte Carlo (MC) study are compared in the following
statistics: the mean computational time; the number of parameters used in
the model; the negative log-likelihood of the solution relative to the likelihood
of the true model parameters given the sampled data ∆l(Ŝ,S) = l(Ŝ,Y )−
l(S,Y ); the BIC relative to the likelihood of the true model parameters
∆BIC(Ŝ,S) = BIC(Ŝ,Y ) − 2l(S,Y ); and the integrated difference of the
estimated and true intensity function when integrated over Ω, ∆I(Ŝ,S) =∫

Ω
‖I(θ;S) − I(θ; Ŝ)‖2dθ. The results from 100 MC runs are summarized

for Scenario A and B in Tables 9.2 and 9.3 respectively, and an example of
the intensity reconstructions for (i), (ii) and (iii) in Scenario A is shown in
Figure 9.4, and for Scenario B in Figure 9.5 and Figure 9.6.
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Table 9.2 Scenario A, with point sources constituting the true intensity
function. Average value and variance in parenthesis from Nmc = 100 runs.

Algorithm Kernel Form Comp. time [s] Num. param ∆l(Ŝ;S) ∆BIC(Ŝ;S) ∆I(Ŝ;S)

(i) ML-EM Dirac Disc. 6.06 (0.15) 2500 (0) -4.84 (3.08) 17259.7 (6.15) 21.62 (0.56)
(ii) APSL Dirac Cont. 11.14 (4.32) 12 (0) -3.12 (1.81) 76.64 (3.61) 12.85 (8.22)
(iii) GAPSL Gaussian Cont. 54.82 (11.53) 17.6 (2.19) 36.04 (41.87) 193.66 (88.39) 15.03 (0.46)

Table 9.3 Scenario B, with point sources constituting the true intensity
function. Average value and variance in parenthesis from Nmc = 100 runs.

Algorithm Kernel Form Comp. time [s] Num. param ∆l(Ŝ;S) ∆BIC(Ŝ;S) ∆I(Ŝ;S)

(i) ML-EM Dirac Disc. 6.13 (0.09) 2500 (0) -9.95 (4.02) 17249.48 (8.05) 8.37 (0.28)
(ii) APSL Dirac Cont. 17 (3.99) 16.2 (2.68) 23.94 (11.19) 159.78 (12.35) 13.52 (0.28)
(iii) GAPSL Gaussian Cont. 58.68 (16.32) 15.2 (1.79) 4.85 (5.8) 114.7 (14.84) 0.86 (0.38)
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Figure 9.4 Depiction of the first MC run with Scenario A. Top, left:
Problem geometry. Top, right: The estimated intensity Î(θ) with (i), dis-
crete hyper-parameter space and Dirac kernel (ML-EM). Bottom, left: The
estimated intensity Î(θ) with (ii), continuous hyper-parameter space and
Dirac kernel (APSL). Bottom, right: The estimated intensity Î(θ) with (iii),
continuous hyper-parameter space and Gaussian kernels (GAPSL).
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Figure 9.5 Depiction of the first MC run with Scenario B. True measure-
ment mean, sampled measurements, and measurement mean prediction of
the Poisson distributed models estimated by (i), (ii), and (iii).
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Figure 9.6 Depiction of the first MC run with Scenario B. Top, left: The
estimated intensity mean Î(θ) with (i), discrete ML-EM and Dirac kernel.
Top, right: The estimated intensity mean Î(θ) with (ii), continuous APSL
and Dirac kernel. Bottom, left: The estimated intensity mean Î(θ) with (iii),
continuous GAPSL and Gaussian kernel. Bottom, right Intensity used to
generate the synthetic data.
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One of the main contributions of the GAPSL in [Greiff et al., 2021d] is
the introduction of Gaussian kernels in the APSL algorithm, which should
result in approximately a factor of four slower execution time when compared
to the original APSL with Dirac kernels, provided the assumption of infinite
integration domains and subsequent application of the spherical cubature
rule defined in Sec. 9.3.1. This difference in computational time is seen in the
simulation study (see Tables 9.2-9.3), where the APSL with Gaussian kernels
is almost exactly a factor four slower on average. The ML-EM algorithm
is by far the fastest, but its computational speed depends greatly on the
resolution of the grid and the set convergence criteria, as seen in Example 9.1.
The problem of selecting the number of estimation parameters is dealt with
automatically through evaluation of the solution with respect to the ICs in
the APSL and GAPSL, resulting in a significantly fewer number of estimation
parameters and the ML-EM iterations converging faster and more reliably.

In the simulation examples, the ML-EM formulation consistently finds
a solution with a lower relative negative log-likelihood than the APSL and
GAPSL algorithms. This can easily be misconstrued as a positive, but is here
clearly indicative of over-fitting, as evident by the relative BIC in Tables 9.2-
9.3, which far exceeds that in the APSL-algorithms. This is further illustrated
in the integral of the intensity function construction error over Ω, where the
discrete ML-EM algorithm is outperformed by both APSL and GAPSL in
Scenario A, and by the GAPSL in Scenario B. In this measure, we note a
significant variance in the APSL over the MC runs. The reason being that
the integral is evaluated numerically, and that in some of the MC runs, the
positional error in the point source estimates is large with respect to the small
grid used in the evaluation of the considered measure. Note that despite the
visibly poor reconstruction of the intensity function in Scenario B when using
the ML-EM and APSL algorithms, the predicted mean intensity along the
path of the sensor is near perfect (see Figure 9.5). This is a significant problem
when considering practical applications, even for the APSL. The algorithms
can yield deceptively low negative log-likelihoods close to the sensor trajectory
and good reconstructions of the intensity to this trajectory. But generally, the
models will not result in good predictions along other sensor trajectories, even
when the model used to generate the data is perfectly known. This is seen
visibly in the disparity of the reconstructions, comparing the reconstructions
corresponding to the ML-EM algorithm and the APSL-algorithm in Scenario
B, with the true intensity function in Figure 9.6.

When considering the reconstruction with the GAPSL, we should expect
it to work well in Scenario A, as an intensity function described by a finite set
of point sources can be approximated by a set of Gaussian kernels with small
variance. The model should also be capable of generalizing well to Scenario
B, as it can represent the true intensity function perfectly in this case.

For Scenario A, the GAPSL consistently finds the correct number of point
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sources, as indicated by the number of parameters, and the kernel centers,
θj , consistently converge to locations very close to the true point sources,
θIj , but the variance σj of the kernels does not always converge to a small
value. When this happens, we observe a significant error in the likelihood as
well, indicated by the large variance of the GAPSL in the relative likelihood
measure. However, in the BIC, the GAPSL is still to be preferred over the
ML-EM algorithm in Scenario A.

For Scenario B, we observe that the GAPSL-algorithm outperforms the
ML-EM algorithm and the conventional APSL-algorithm in all performance
metrics apart from the computational time. Importantly, we note that it
will typically yield very good intensity reconstructions. This means that
predictions of the measurement intensity as a function of the sensor position
will be good when moving far away from the trajectory along which the
intensity was measured. We note that the conventional methods do not yield
good reconstructions for the specific scenario studied in Scenario B in this
setup, and stress that the algorithms should be compared and evaluated
on synthetic data which is representative of the experiment in which they
are to be applied. If it is interesting to predict the intensity far away from
the trajectory of the sensor, and the underlying intensity function is not
well described by a small set of point sources, then one should be hesitant
about relying on the reconstructions when using the ML-EM and conventional
APSL algorithms. However, we stress that the original APSL is an excellent
alternative if the data is well represented by a small number of point sources.

9.6 Experimental Results

To validate and demonstrate the performance of the GAPSL on real data, an
experiment was set up much like Scenario A. Three point sources of 137Cs,
133Ba, and 60Co with activities 135, 150, and 130 [MBq], respectively, were
placed on a meadow by the Barsebäck nuclear power plant in a triangular
formation, approximately 10 meters apart. A gamma-ray detector consisting
of a 3" NaI(Tl) scintillator crystal coupled to a photomultiplier tube by
Teledyne [Teledyne, 2021] and an Ortec Digibase [Ortec, 2021] was attached
to a DJI Matrice 600 Pro UAV [DJI, 2021], as shown in Figure 9.7. The system
was used to sample intensity data over ti ≈ 2 [s] integration intervals during
a 17 [min] manual flight at various heights around the sources. The locations
of the radioactive samples were measured in geodetic coordinates prior to the
flight using the GPS receiver of the UAV, and this data set was also used to fit
a three-dimensional plane to the ground as S(θ) = (0.033θ1, 0.014θ2,−0.800)
in a local east-north-up (ENU) coordinate frame.

After the flight, the sampled GPS data was interpolated using a polyphase
anti-aliasing filter, synchronized in time with the intensity, and re-sampled at
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NA(TI) detector

Battery GPS antennas

Mini PC

Figure 9.7 Left : Photo of the Matrice 600 pro UAV with detector pack-
age mounted underneath and the Barsebäck nuclear power plant in the
background. Right : The Matrice 600 pro UAV with added components.

the center of the intensity measurement integration intervals. The domain of
interest was defined by Ω = [−20, 20]2 [m2], thus defining all required inputs to
the generalized APSL in Algorithm 3. Three algorithms were tested, mirroring
the simulation examples: (i) the ML-EM algorithm with a discretized hyper-
parameter space using 41 equidistant tiles of 1× 1 [m2] each direction on Ω,
with a fixed Dirac kernel associated with each tile; (ii) the original APSL
using Dirac kernels and a continuous parameter space; and (iii) the GAPSL
with Gaussian kernels and a continuous parameter space.

The raw positional GPS data, as well as the re-sampled positional data
and the intensity measurements, the intensity prediction along this positional
trajectory of the sensor, and the resulting intensity function reconstruction
over Ω are shown in Figure 9.8. In this case, the discrete grid in (i) results
in a total of 1682 estimation parameters, while (ii) and (iii) converge to
reconstructions with three kernel functions, with 10 and 13 parameters,
respectively (as the variance in the Gaussian kernels is free). In (iii) the
resulting solution approaches small variances in the kernel functions, with
σ2

1 = 0.02, σ2
2 = 0.06, σ2

3 = 0.01, as should be expected if the true underlying
intensity is well described by point sources. Furthermore, the ML-EM approach
in (i) seems to have over-fitted the data, as evident by the relatively large
intensities estimated around θ = (−20,−14)> where no radioactive materials
were present. Despite this, the BIC of the solution in (i) is slightly smaller
than that of (ii) and (iii) due to it better fitting the large peaks in the data,
specifically around the sample indices i = {15, 100, 410}.

As the detector detects radiation from different isotopes with different
efficiency, it is not possible to relate the estimated weights of the kernel
functions to the known intensity of the point sources without extensive
calibration of the detector in this experiment. However, we note that the
weights associated with the kernels in the APSL and GAPSL were consistent,
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Figure 9.8 Data from experiments with a UAV and ground truth. Top,
left: The measured sensor trajectory (green) and interpolated positions
at which the intensity is sampled (with red indicating a higher intensity).
Bottom, left: Sampled intensity, and predicted intensity when using (i) a the
ML-EM algorithm with Dirac kernels (blue); (ii) the APSL with a continuous
hyper-parameter space and Dirac kernels (red); and (iii) the GAPSL with
continuous hyper-parameter space and Gaussian kernels (green). Right:
True source locations inferred from separate GPS data (red); the estimated
intensity with (i) discrete Dirac formulation shown in the surface plot; and
the estimated locations of the kernels when using the continuous formulations
are indicated with (ii) Dirac (black, plus), and (iii) Gaussian (black, circle).
The normalized intensity units (NIU) simply refer to the intensity units of
the sources with a nominal detector sensitivity in (9.1), and can be converted
to [Bq] by an approximately linear transformation after detector calibration.
The experiment setup and convergence of the GAPSL on the real data is
demonstrated in the video chapter-9-radiation.mp4.

and that their kernel centers, θj , were estimated to near-identical locations
(see Figure 9.8). Furthermore, the estimated models result in visibly good
predictions of the intensity along the trajectory of the sensor. As such, this
serves as a validation of the GAPSL against the APSL, and we should expect
results similar to the ones generated for Scenario B when instead considering
data that is not well described by point sources. However, such experiments
are difficult to construct in practice, as it is nontrivial to safely construct
experiments with continuous and known intensity functions over Ω.
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9.7 Summary

In this chapter, we demonstrated one of many potential use-cases of UAVs
equipped with good control systems: that of mobile radiation mapping. Specif-
ically, we have discussed how the UAV can be used to detect the locations
and intensities of radioactive sources. It was observed that many common
approaches, such as the ML-EM algorithm with respect to a Poisson likelihood
and discretized domain Ω, tend to include a very large number of estimation
variables in relation to the number of measurements gathered during a typical
UAV flight time. As such, these methods have a tendency to overfit the data.
This is partly what warranted the development of the APSL in [Vavrek et al.,
2020; Hellfeld et al., 2019], which yields a sparse reconstruction under the
assumption that the intensity function is well represented by a small set of
point sources. In this chapter, we presented the generalized APSL in [Greiff et
al., 2021d], with the radioactive sources constrained to known surfaces in R3,
and the intensity function being continuous over Ω. Furthermore, results from
non-linear Gaussian filtering were used to yield an efficient implementation.

The method was developed and validated in a simulation environment,
but also tested in an experimental setup where a detector was mounted on
a large UAV and flown over a field. In these experiments, the background
radiation was not known, but presumably negligible given the relatively strong
radiating point sources. The APSL and GAPSL algorithms were both shown
to converge to the three point sources in close vicinity of the true point sources,
similar to the results in the simulation study of Scenario A. This was clearly
replicated in Figure 9.8. It was also noted that the discrete ML-EM algorithm
resulted in the lowest relative log-likelihood, but found significant radiation
in a region which was not believed to be present. As such, the veracity of the
extended Gaussian APSL algorithm is confirmed by the close proximity of its
solution to that of the original APSL, and the true point source locations.

In conclusion, if the objective in the application is to predict the intensity
measurements close to the trajectory of the sensor, then any of the three
options can be implemented, as indicated by Figure 9.5 in the simulated
scenario, and Figure 9.8 with the experimental data. However, if we seek to
predict the measured intensity further away from the trajectory or draw any
conclusions about the intensity function reconstruction, then the algorithm
needs to be chosen with care. If it is a priori known that the intensity function
over the domain Ω is well represented by a small set of point sources, we
recommend the implementation of an APSL for the radiation reconstruction.
However, the GAPSL can be used just as well, provided the hyper-parameters
are initialized with very small variances. However, in applications where this
cannot be assumed, we recommend the implementation of the GAPSL due to
its great flexibility and good performance when the true intensity function is
well approximated by a finite set of weighted Gaussian kernels.
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Two applications are considered in Part II of the thesis: the first relates to
circumnavigation, and the second to radiation mapping. In this summary, the
ideas are restated and related to Part I, giving an overview of the developments.

Chapter 8 In this chapter, a result on target tracking is extended with
integral action to deal with bounded load disturbances in the body frame of
the vehicle, thereby attenuating disturbances that can arise in practice. The
intention is to apply such controllers to compute a reference for an already
closed-loop system, which is one of many ways that a reference system can be
implemented. For instance, it is clear from the examples in Chapter 4 that the
quadrotor UAV can be controlled to track smooth positional trajectory, and
that the proposed methods work well even when the flat output trajectory is
C0. Computing a velocity reference using the controller in Theorem 8.2 can
enable a UAV to perform circumnavigation tasks, safely inferring a target’s
position through bearing measurements and adjusting the reference trajectory
accordingly. Apart from the possibility of using the control systems in previous
sections together with the circumnavigation controller, we highlight that the
ideas related to smooth saturation functions in Chapter 6 are instrumental in
arriving at the result in Chapter 8 when introducing integral action.

While the intended applications primarily concern fixed-wing UAVs, the
controller may also be used for circumnavigation with quadrotor UAVs and
ground-based vehicles. As such, the theoretical results are demonstrated
in practice using a small unmanned ground vehicle. The control system of
the vehicle is designed heuristically using ideas analogous to the explicit
vector control in Chapter 3 but disregarding any dynamic feed-forward terms,
therefore giving rise to approximately constant asymptotic disturbances in
the body frame. It is demonstrated that the controller attenuates these errors,
achieving small asymptotic tracking errors with a non-zero integral state,
thereby demonstrating the effects of the integral action. In Chapter 8, it is
argued that no mechanical system behaves as a perfect single integrator. As
such there will always be actuation errors in practice, which can be attenuated
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by introducing integral action as described in Theorem 8.2. It is recommended
to explore this controller further in practice for fixed-wing UAVs.

Chapter 9 This chapter considers scenarios where a UAV is to survey
radiation in (i) potentially hazardous areas, or (ii) close to a facility such as
a nuclear power plant. To carry the required sensory equipment, the UAV
needs to have a significant load capacity, which in turn requires it to be large
in size. Increasing the size of the UAV and flying it in environments such as
(i) or (ii) makes it very important to guarantee that the control system is
robust, as any malfunction may cause severe damage both to the UAV and
its surroundings. This chapter explores how the gathered intensity data can
be used to infer an intensity function over a known surface, such as a meadow
in (i) or the wall of a nuclear power plant in (ii). As such, this chapter is
primarily focused on estimation theory and not nonlinear control.

It is shown that the additive point-source localization algorithm (APSL)
in [Hellfeld et al., 2019; Vavrek et al., 2020] can be extended with Gaussian
kernels, and that results from nonlinear Gaussian filtering can be used to
formulate a computationally tractable measurement model given certain as-
sumptions on the integration domain. It is demonstrated that this generalized
APSL (GAPSL) performs well when the radiation is not well described by
a small number of point sources, which is likely to be the case in many
practical scenarios. Importantly, it is also shown that the GAPSL is capa-
ble of representing a small number of point sources through the proposed
hyper-parameter optimization. Importantly, this chapter also highlights the
propensity of a standard voxelized ML-EM algorithm and the APSL to over-fit
the data, especially when using omni-directional radiation sensors.

It is argued that the GAPSL should be considered when there is reason
to suspect that the intensity is not well described by a small number of point
sources, and that methods which introduce a large number of estimation
variables should be used with care due to their propensity to over-fit.

Final Remarks In the second part of the thesis, it is demonstrated that
the solutions presented to the various theoretical problems in Part I can
facilitate applications that solve practical problems related to inspection
and surveying. In particular, the reference dynamics in the FSF and FOF
controller solutions can be replaced by the circumnavigation and target
tracking controller, which then enables the system to track a target with an
initially unknown position while simultaneously inferring the target’s position
using bearing measurements. It is also clear that robust control systems with
rigorous uniform stability guarantees become important when considering
applications such as the measuring of radiation intensity, where stakes are
high with respect to the control system malfunctioning. For both of these
applications, we recommend the use of the controllers in Chapter 4 and 6.
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A
Preliminaries

A.1 Lie maps

For the considered matrix Lie groups, either SO(3) or SU(2), the exponential
map ExpG : g→ G is equivalent to the matrix exponential,

ExpG([ω]∧G) =

∞∑
j=0

1

j!
([ω]∧G)j . (A.1)

This power series reduces to simpler analytical expressions given in Defini-
tions 2.9 and 2.10, here derived for SO(3) and SU(2) separately.

A.1.1 Exponential and Logarithmic Maps on SO(3)
Before defining the exponential map associated with SO(3), we recall the hat-
map in Definition 2.12, and its relation to the screw operator S : R3 → so(3)
in Definition 2.8. For this skew-symmetric operator, we have that S(ω)> =
−S(ω) for any ω ∈ R3. Thus, for any unit vector u ∈ R3,

S(u)2 = uu> − I, S(u)n = −S(u)n−2, S(ω)n = θnS(u)n,∀n > 1. (A.2)

Now, as [ω]∧SO(3) = S(ω), if ω = θu with ‖u‖ = 1 and θ ∈ R, we note that

([ω]∧SO(3))
2n+1 = (−1)nθ2n+1S(u), ([ω]∧SO(3))

2n+2 = (−1)nθ2n+2S(u)2,

for all n ≥ 0. Knowing this, the power-series in (A.1) simplifies as

R =

∞∑
n=0

1

j!
([ω]∧SO(3))

j (A.3a)

= I +
[ ∞∑
n=0

(−1)nθ2n+1

(2n+ 1)!

]
S(u) +

[
1−

∞∑
n=0

(−1)nθ2n

(2n)!

]
S(u)2 (A.3b)

= I + sin(θ)S(u) + (1− cos(θ))S(u)2 (A.3c)

= I + sinc(θ)[ω]∧SO(3) +
sinc(θ/2)2

2
([ω]∧SO(3))

2 ∈ SO(3), (A.3d)
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which, it should be noted, is well defined for all θ ∈ R. Inversely,

θ = arccos
(Tr(R)− 1

2

)
, [ω]∧SO(3) =

1

2sinc(θ)
(R−R>). (A.4)

As such, the exponential map ExpSO(3) : so(3) → SO(3) is given by (A.3),
and the inverse logarithmic map LogSO(3) : SO(3)→ so(3) is given by (A.4).

A.1.2 Exponential and Logarithmic Maps on SU(2)
As for X ∈ SU(2), if ω = θu with ‖u‖ = 1, a very similar set of identities
to (A.2) can be shown, here summarized as follows

([u]∧SU(2))
2 = −I, (A.5a)

([u]∧SU(2))
n = −([u]∧SU(2))

n−2, (A.5b)

([ω]∧SU(2))
n = θn([u]∧SU(2))

n, (A.5c)

for all n > 1. With these expressions, the exponential series in (A.1) becomes

X =

∞∑
j=0

1

j!
([ω]∧SU(2))

j (A.6a)

=
[ ∞∑
n=0

(−1)nθ2n

(2n)!

]
I +

[ ∞∑
j=0

(−1)nθ2n+1

(2n+ 1)!

]
[u]∧SU(2) (A.6b)

= cos(θ)I + sinc(θ)[ω]∧SU(2) ∈ SU(2), (A.6c)

and the inverse map follows directly from this expression, as

θ = arccos
(Tr(X)

2

)
, [ω]∧SU(2) =

1

sinc(θ)
(X − cos(θ)I). (A.7)

As such, the exponential map ExpSU(2) : su(2) → SU(2) is given by (A.6),
and the inverse logarithmic map LogSU(2) : SU(2)→ su(2) is given by (A.7).

A.1.3 Projections to SO(3) and SU(2)
When considering real-time implementations, it may be necessary to compute
attitudes from noisy measured directions. As such, we require a method of
projecting a matrix M ∈ R3×3 to the nearest element of SO(3). This can be
done by expressing an optimization problem in the Frobenius norm,

R = argmin
R∈SO(3)

‖M −R‖F , ProjSO(3)(M). (A.8)

This is an orthogonal matrix nearness problem discussed in [Higham, 1989,
Chapter 4], and here solved by taking an SVD M = UΣV >, where

R =

{
UV > if det(UV >) > 0[
[U ]:,1 [U ]:,2 −[U ]:,3

]
V if det(UV >) < 0

. (A.9)
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Similarly, ifM ∈ C2×2 and is to be projected to SU(2), we simply convertM
to a quaternion qM ∈ H̃ using the embedding in Definition 2.17, normalizing
and converting this to an element X = EH

SU(2)(qM/‖qM‖) ∈ SU(2).

A.1.4 Algebraic Properties of SO(3)
A set of algebraic properties relating to SO(3) can be summarized as follows:

(i) R>1 R2 ∈ SO(3), ∀R1,R2 ∈ SO(3), (A.10a)

(ii) [a]∧ + [b]∧ = [a+ b]∧ ∈ so(3), ∀a, b ∈ R3, (A.10b)

(iii) [αa]∧ = α[a]∧ ∈ so(3), ∀α ∈ R,a ∈ R3. (A.10c)

From (A.10b) and (A.10c), the SO(3) vee-map is additive and homogeneous,

(iv) [[a]∧ + [b]∧]∨ = [[a+ b]∧]∨ = a+ b ∈ R3, ∀a, b ∈ R3, (A.10d)

(v) [α[a]∧]∨ = α[[a]∧]∨ = αa ∈ R3, ∀α ∈ R,a ∈ R3. (A.10e)

We also have that

(vi) ([a]∧)> = −[a]∧ ∈ so(3), ∀a ∈ R3, (A.10f)

(vii) ([a]∧)>[a]∧ = ‖a‖2I − aa>, ∀a ∈ R3. (A.10g)

As the elements of the Lie algebra are skew-symmetric,

(viii) b>[a]∧b = 0 ∈ R3, ∀a, b ∈ R3, (A.10h)

and as [a]∧b = a× b, we can reverse the order and use the Jacobi identity

(ix) [a]∧b = −[b]∧a ∈ R3, ∀a, b ∈ R3, (A.10i)

(x) a>[b]∧c = c>[a]∧b = b>[c]∧a ∈ R3, ∀a, b, c ∈ R3, (A.10j)

It can also be verified that

(xi) [[a]∧b]∧ = ba> − ab> ∈ so(3), ∀a, b ∈ R3. (A.10k)

A set of identities can be derived with respect to the trace operation, as

(xii) Tr([a]∧M) = −a>[M −M>]∨, ∀a ∈ R3,M ∈ R3×3, (A.10l)

(xiii)[a]∧M +M>[a]∧ = [(Tr(M)I −M)a]∧,∀a ∈ R3,M ∈ R3×3. (A.10m)

Finally, we have

(xiv) R[a]∧ = [Ra]∧R ∈ R3, ∀a ∈ R3,R ∈ SO(3), (A.10n)

from which it also follows that

(xv) ‖R[a]∧R>‖ = ‖[Ra]∧‖ = ‖Ra‖ = ‖a‖, ∀a ∈ R3,R ∈ SO(3). (A.10o)
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A.1.5 Algebraic Properties of SU(2)
A set of algebraic properties relating to SU(2) can be summarized as follows:

(i) X∗1X2 ∈ SU(2), ∀X1,X2 ∈ SU(2), (A.11a)

(ii) [a]∧ + [b]∧ = [a+ b]∧ ∈ su(2), ∀a, b ∈ R3, (A.11b)

(iii) [αa]∧ = α[a]∧, ∀α ∈ R,a ∈ R3. (A.11c)

From (A.11b) and (A.11c), it follows that

(iv) [[a]∧ + [b]∧]∨ = [[a+ b]∧]∨ = a+ b ∈ R3, ∀a, b ∈ R3, (A.11d)

(v) [α[a]∧]∨ = α[[a]∧]∨ = αa ∈ R3, ∀α ∈ R,a ∈ R3. (A.11e)

By definition, the complex conjugate of elements of the lie algebra satisfies

(vi) ([a]∧)∗ = −[a]∧ ∈ su(2), ∀a ∈ R3, (A.11f)

(vii) ([a]∧)∗[a]∧ = ‖a‖2I, ∀a ∈ R3. (A.11g)

Similarly, by definition, an interesting trace identity can be derived as

(viii) Tr(X[a/2]∧) = [Tr(X)I/2−X]∨ · a, ∀X ∈ SU(2),a ∈ R3. (A.11h)

With these basic identities, we can derive much more complicated expressions,
such as the kinematics of elements of SU(2). IfX(t) ∈ SU(2)⇒X(t)∗X(t) =
I, assume that d

dt (X(t)) = X(t)A(t) for some A(t) ∈ C2×2, then

d
dt

(X(t)∗X(t)) =
d
dt
I ⇒ Ẋ(t)∗X(t) +X(t)∗Ẋ(t) = 0⇒ A(t)∗ +A(t) = 0.

Clearly, A(t) ∈ su(2) in Definition 2.10, and by Definition 2.17, it follows that

(ix)
d
dt

(X(t)) = X(t)[ω(t)/2]∧, ∀X(t) ∈ SU(2),ω(t) ∈ R3, (A.11i)

where ω denotes attitude rates in the body frame, as previously defined for
SO(3). Finally, we can consider the time-derivative of the conjugate product
X1(t)∗X2(t) ∈ SU(2). Dropping the time argument for notational simplicity,
for all X1,X2 ∈ SU(2) evolving in time by d

dt (Xi) = Xi[ωi/2]∧,

d
dt

(X∗1X2) = Ẋ
∗
1X2 +X∗1Ẋ2

= (X1[ω1/2]∧)∗X2 +X∗1(X2[ω2/2]∧)

= −[ω1/2]∧X∗1X2 +X∗1X2[ω2/2]∧

= (X∗1X2)([ω2/2]∧ − (X∗1X2)∗[ω1/2]∧(X∗1X2))

= (X∗1X2)([ω2/2]∧ − [[(X∗1X2)∗[ω1/2]∧(X∗1X2)]∨]∧)

= (X∗1X2)[(ω2 − [(X∗1X2)∗[ω1]∧(X∗1X2)]∨)/2]∧
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which can be summarized as

(x)
d
dt

(X∗1X2) = (X∗1X2)[(ω2 − [(X∗1X2)∗[ω1]∧(X∗1X2)]∨)/2]∧.

(A.11j)

A.1.6 Algebraic Properties of H
For the quaternions, the two operations [·]L and [·]R represent left and right
quaternion products, that is for any p, q ∈ H, p � q = [p]Lq = [q]Rp ∈ H.
Now, by Definition 2.14, if we take <(q) = qw and <(q) = qv, then

[q]L = qwI4 +

[
0 −q>v
qv S(qv)

]
, [q]R = qwI4 +

[
0 −q>v
qv −S(qv)

]
. (A.12)

A.2 Numerical Integration

While most of the simulation results presented in the thesis employ a
fixed-order RK method available through Simulink in Matlab, the C-
implementations of the controllers and numerical evaluation in Sec. 2.3 are
done with respect to specific RK methods, characterized below as follows.

A.2.1 Butcher Tableau
The butcher tableau defines the properties of the RK method, and is commonly
denoted by a matrix A ∈ Rs×s with elements aij , and two vectors b ∈ Rs and
c ∈ Rs, where s is an integer denoting the number of “stages” in the resulting
method. We consider the following butcher tableau for the RK4 method,

(RK4) A =


0 0 0 0
1
2 0 0 0

0 1
2 0 0

0 0 1 0

 , b =


0
1
2
1
2

1

 , c =


1
6
1
3
1
3
1
6

 , (A.13)

Only one CG-method is considered, and this is the CG4, where the considered
Butcher tableau was computed numerically using a least squares approach
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in [Jackiewicz et al., 2000]. The tableau for the s = 5-stage algorithm is

a21 = +0.8177227988124852 a31 = +0.3199876375476427

a32 = +0.0659864263556022 a41 = +0.9214417194464946

a42 = +0.4997857776773573 a43 = −1.0969984448371582

a51 = +0.3552358559023322 a52 = +0.2390958372307326

a53 = +1.3918565724203246 a54 = −1.1092979392113465

b1 = +0.1370831520630755 c1 = +0.0

b2 = −0.0183698531564020 c2 = +0.8177227988124852

b3 = +0.7397813985370780 c3 = +0.3859740639032449

b4 = −0.1907142565505889 c4 = +0.3242290522866937

b5 = +0.3322195591068374 c5 = +0.8768903263420429

with the remaining entries in A ∈ Rs×s set to zero.

A.2.2 Quaternion Open-Loop Simulation Example
Consider the attitude dynamics in (2.16). Let ω(t◦) = ω◦ and q(t◦) =
q◦ = qI , and take the inertia to be diagonal with J = diag(JT , JT , J3). If
ωn = ω◦,3(JT − J3)/JT , ωi = ‖Jω◦‖/JT ∈ R>0, h◦ = Jω◦/‖Jω◦‖ ∈ R3, it
can be verified that x(t) = (q(t); ω(t)) ∈ H× R3, given by

ω1(t) = ω◦,1 cos(ωnt) + ω◦,2 sin(ωnt) (A.14a)
ω2(t) = ω◦,2 cos(ωnt)− ω◦,1 sin(ωnt) (A.14b)
ω3(t) = ω◦,3 (A.14c)
y1(t) = cos(a(t)) cos(b(t))− h◦,3 sin(a(t)) sin(b(t)) (A.14d)
y2(t) = h◦,1 cos(a(t)) sin(b(t)) + h◦,2 sin(a(t)) sin(b(t)) (A.14e)
y3(t) = h◦,2 cos(a(t)) sin(b(t))− h◦,1 sin(a(t)) sin(b(t)) (A.14f)
y4(t) = h◦,3 cos(a(t)) sin(b(t)) + sin(a(t)) cos(b(t)) (A.14g)

where q(t) = y(t)� q◦, a(t) = (1/2)ωnt and b(t) = (1/2)ωit is a solution to
the dynamics in (2.16) when unforced, i.e., when letting τ = 0. It is with
respect to this analytical solution that the integration schemes are evaluated.

A.3 Lyapunov Theory

In this appendix, we highlight useful results pertaining to linear Lyapunov
theory that will be used to guide intuition in the various stability proofs.

Proof of Lemma 2.2. Let Ā(t) = F̄+S̄(t) ∈ Rmn×mn, where F̄ = F⊗Im,
and S̄(t) = In ⊗ S(t). Assume that (P ,Q(t)) is a solution to the Lyapunov
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equation with respect to F ∈ Rn×n. As F̄ = F⊗Im, there exist an orthogonal
permutation matrix T such that

F̄ 1 = T F̄T> = Im ⊗ F =


F 0 · · · 0
0 F · · · 0
...

...
. . .

...
0 0 · · · F

 . (A.15)

Furthermore, as (P ,Q(t)) solves the Lyapunov equation with respect to F ,
it is clear that (P̄ 1, Q̄1(t)) = (Im ⊗ P , Im ⊗Q(t)) is a solution with respect
to F̄ 1. It is then easy to verify that (P̄ , Q̄(t)) = (P ⊗ Im,Q(t) ⊗ Im) is a
solution with respect to F̄ . Finally, we note that P̄ and S̄(t) commute, as

P̄ S̄(t) =


[P ]1,1ImS(t)

... [P ]1,nImS(t)
...

. . .
...

[P ]n,1ImS(t)
... [P ]n,nImS(t)

 = S̄(t)P̄ .

Consequently,

Ā(t)>P̄ + P̄ Ā(t) = (F̄ + S̄(t))>P̄ + P̄ (F̄ + S̄(t))

= F̄
>
P̄ + P̄ F̄ + S̄(t)>P̄ + S̄(t)P̄

= Q̄(t) + (S̄(t)− S̄(t))P̄

= Q̄(t),

showing that (P̄ , Q̄(t)) solves the Lyapunov equation with respect to Ā(t).2

Proof of Lemma 2.3. LetR(t) ∈ SO(3) evolving by Ṙ(t) = R(t)[ω(t)]∧SO(3)
for some ω(t) ∈ R3. If z(t) = R(t)x(t), then

ż(t) = Ṙ(t)x(t) +R(t)ẋ(t)

= R(t)[ω(t)]∧R(t)>z(t) +R(t)A(t)R(t)>z(t)

= (R(t)A(t)R(t)> + [R(t)ω(t)]∧SO(3))z(t), (A.16)

where the last equality holds (A.10n), concluding the proof. 2

Proof of Lemma 2.4. By assumption, there exists a time-varying solution
(P ,Q(t)) to the Lyapunov equation for A(t), implying that Ṗ (t) = 0, and

A(t)>P + PA(t) +Q(t) = 0.
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If P and E are both symmetric, positive definite and commute, then we
can find a factorization E = E1/2E1/2, where E−1/2 is symmetric and also
commutes with P . Insertion into the solution of the Lyapunov equation yields

A(t)>P + PA(t) +Q(t) = 0⇔
A(t)>E−>E>P + PEE−1A(t) +Q(t) = 0⇔

Ā(t)>E1/2PE1/2 +E1/2PE1/2A(t) +Q(t) = 0.

Thus, the descriptor system in (2.41) characterized by Ā(t) = E−1A(t) satis-
fies the time-varying Lyapunov equation with a solution (E1/2PE1/2,Q(t)).
As E1/2 is square and of full rank, and P is symmetric, the implications in
stability stated in Lemma 2.4 follow directly from Theorem 2.1. 2
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Full State Feedback: Proofs

B.1 Theorem 3.1: Explicit vector FSF on SO(3)

Before giving the proof, we first recall a general Thompson-Tait-Chetaev
stability theorem, dating back to [Chetaev et al., 1961], extended to the
case of semidefinite damping in [Müller and Schiehlen, 1977], and concisely
summarized by in [Bernstein and Bhat, 1995, Theorem 1] for the special case
when the stiffness-matrix is singular, as restated below. This is rewritten into
two short and convenient lemmas, followed by a third lemma showing an
implication of an equation in the matrix M . These lemmas are later used in
the main proof of the explicit vector feedback law in Theorem 3.1.

Theorem B.1—[Bernstein and Bhat, 1995, Theorem 1]
ForM, C,G,K ∈ Rn×n, withM� 0, C � 0, G = −G>, and K = K> � 0,

Mq̈ + (C + G)q̇ +Kq = 0, q(t◦) ∈ Rn, q̇(t◦) ∈ Rn, (B.1)

at some initial time t◦ ∈ R, or equivalently stated

ẋ = Ax, x ,
[
q
q̇

]
, A =

[
0 I

−M−1K −M−1(C + G)

]
, (B.2)

is

(i) Stable, if and only if

rank

K G
0 K
0 C

 = rank(K) + n. (B.3)
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(ii) Semi-stable, that is lim(t−t◦)→∞ x(t) exists for all initial conditions
x(t◦), if and only if the system is stable, and

rank


Co

CoAo

...
CoA

n−1
o

 = rank

[
Co

Ao

]
, (B.4)

where
Ao ,

[
0 I

−M−1K −M−1G

]
, Co ,

[
C 0

]
. (B.5)

(iii) Asymptotically stable, if and only if it is semi-stable and K � 0. 2

Lemma B.1
If G = 0, the system in (B.1) is asymptotically stable if C � 0, and K � 0.2

Proof. The condition C � 0 implies rank(C) = n which implies semi-stability
by Theorem B.1 (ii), asymptotic stability follows by (iii) as K � 0. 2

Lemma B.2
If G = 0, the system in (B.1) is unstable if C � 0 and the stiffness matrix K
has at least one eigenvalue with negative real-part. 2

Proof. This can be shown in many ways. One is to invoke Lyapunov’s
instability theorem, see e.g., [Bloch et al., 1994, Theorem 3.1]. 2

Lemma B.3
Let R ∈ SO(3), and take 0 ≺M = M> ∈ R3×3 such that M = UΛU>. If

R>M = MR, (B.6)

then
R ∈ {I} ∪ {R ∈ SO(3) | Tr(R) = −1}, (B.7)

and if the eigenvalues of M are distinct, then

R ∈ {I} ∪ {UDiU
>}3i=1. (B.8)

2

Proof. By the assumptions on M , there exists a spectral decomposition
M = UΛU> where U>U = I. Following the proof in [Mahony et al., 2008,
Theorem 5.1], denote the eigenvalues and vectors of R by xi ∈ C3, where

Rxi = λixi ⇒ x∗iR
> = λ∗ix

∗
i . (B.9)
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Then, (B.6) yields

λ∗ix
∗
iMxi = x∗i (R

>M)xi = x∗i (MR)xi = λix
∗
iMxi ⇒ λ∗i = λi, (B.10)

for all i ∈ {1, 2, 3} ifM � 0. Since the eigenvalues of R ∈ SO(3) are given by

spec(R) = {1, cos(θ) + i sin(θ), cos(θ)− i sin(θ)},

it follows from (B.10) that Tr(R) ∈ {3,−1} which in turn implies R = R>.
This last implication can be seen by considering the parameterization of the
rotation matrix in (2.5) in a unit quaternion (a, b, c, d), and the solution to{

3a2 − b2 − c2 − d2 = Tr(R)

a2 + b2 + c2 + d2 = 1
, (B.11)

which results in the non-symmetric part of R being zero. Now, consider the
case where the eigenvalues are distinct, take R̄ = U>RU , then

R>M = MR⇒ R̄
>

Λ−ΛR̄
>

= 0⇒ (λj − λi)[R̄]ij = 0.

Consequently, if all the eigenvalues are distinct, all off-diagonal elements of
R̄ will necessarily be zero. Therefore, R̄ ∈ {I} ∪ {Di}3i=1 ⇒ R ∈ {I} ∪
{UDiU

>}3i=1, yielding (B.8) and concluding the proof. 2

Given these preliminaries, we can now give the proof of Theorem 3.1.

Proof of Theorem 3.1. Throughout this proof, for simplicity, the hat- and
vee-maps of SO(3) in Definition 2.12 are abbreviated as [·]∧SO(3) = [·]∧ and
[·]∨SO(3) = [·]∨, respectively. Plugging in the feedback law in (3.6), and taking
the time-derivative of the errors Re and eω, we obtain the error dynamics

Ṙe = ReS(eω) (B.12a)

Jėω = −Kωeω −
N∑
i=1

kiS(vi)R
>
e vi. (B.12b)

Consider the Lyapunov function candidate

V =

N∑
i=1

ki
2
‖Revi − vi‖2 +

1

2
e>ωJeω. (B.13)
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Differentiation of (B.13) along the solutions of the dynamics yields

dV
dt

=

N∑
i=1

ki(Revi − vi)>ReS(eω)vi + e>ωJėω

=

N∑
i=1

ki(v
>
i S(eω)vi − v>i ReS(eω)vi) + e>ωJėω

= −
N∑
i=1

kiv
>
i ReS(vi)eω + e>ω

[
−Kωeω −

N∑
i=1

kiS(vi)R
>
e vi

]
= −e>ωKωeω + e>ω

[ N∑
i=1

kiS(vi)R
>
e vi −

N∑
i=1

kiS(vi)R
>
e vi

]
= −e>ωKωeω.

Here, V̇ is negative definite in eω, implying that the Lyapunov function
is bounded in V(t) ≤ V(t◦). Furthermore, we then have λm(J)‖eω(t)‖2 ≤
eω(t)>Jeω(t) ≤ 2V(t◦), implying that V̇ is uniformly continuous, since

d2V
dt2

= −2eωKωJ
−1
[
−Kωeω −

N∑
i=1

kiS(vi)R
>
e vi

]
⇒

∥∥∥d2V
dt2

∥∥∥ ≤ 4λM (Kω)2

λm(J)2
V(t◦) +

2
√

2λM (Kω)

λm(J)3/2

√
V(t◦)

( N∑
i=1

ki

)
, ∀t ≥ t◦.

Consequently, application of Lemma 2.5 (Barbălat) yields

lim
(t−t◦)→∞

V̇(t) = 0⇒ lim
(t−t◦)→∞

eω(t) = 0. (B.14)

Since eω is bounded, the signal f0(t) =
∑N
i=1 kiS(vi)R

>
e vi is uniformly

continuous in time. Thus, application of Lemma 2.6 to (B.12b) yields

(B.14)⇒ lim
(t−t◦)→∞

ėω(t) = lim
(t−t◦)→∞

N∑
i=1

kiS(vi)R
>
e vi = 0. (B.15)

Finally, by invoking the identity in (A.10k), we have that

N∑
i=1

kiS(vi)R
>
e vi =

[ N∑
i=1

ki(R
>
e viv

>
i − vi(R>e vi)>)

]∨
= [R>eM −M>Re]

∨,

with

M ,
N∑
i=1

kiviv
>
i � 0.
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Consequently,

(B.15)⇒ lim
(t−t◦)→∞

R>eM −M>Re = 0⇒ lim
(t−t◦)→∞

Tr(Re) ∈ {−1, 3},

where the last implication holds due to Lemma B.3. Therefore, all trajec-
tories of the error dynamics tend towards a stationary point in the set
E = {(Re, eω) ∈ SO(3) × R3 | Tr(Re) ∈ {−1, 3}, eω = 0}. Furthermore, if
the eigenvalues of M are distinct, it follows by Lemma B.3 that the set E
then consists of four disjoint points SO(3)× R3, namely {(UDiU

>,0)}4i=1.

Local Linearizations To assess the nature of these equilibrium points,
take a first order approximation of the rotation error about (R◦, eω) ∈ E ,
using the first two terms in the power series of ExpSO(3), as

Re(t) = R◦(I + [ε(t)]∧) + o(‖ε(t)‖2) ≈ R◦(I + [ε(t)]∧), (B.16)

for small ε(t) ∈ R3. Then, the attitude error dynamics of the closed loop
system in (B.12a), close to (Re, eω) = (R◦,0), can be written as

d
dt

(R◦(I + [ε]∧)) = R◦((I + [ε]∧)[eω]∧)⇔

R◦
[ d
dt
ε
]∧

= R◦(I + [ε]∧)[eω]∧ ⇔[ d
dt
ε
]∧

= (I + [ε]∧)[eω]∧ ⇔
dε
dt

= eω + [[ε]∧[eω]∧]∨ , f1(ε, eω).

Given this local time-evolution of the perturbation, we find that

∂f1(ε, eω)

∂ε

∣∣∣
(ε,eω)=0

= 0,
∂f1(ε, eω)

∂eω

∣∣∣
(ε,eω)=0

= I, (B.17)

irrespective of the element R◦. Consequently, in a neighborhood of R◦, the
attitude rate error represents the time-derivative of the perturbation. Consider
the attitude rate error dynamics in (B.12b). Insertion of (B.64) yields

Jėω = −Kωeω −
N∑
i=1

kiS(vi)R
>
e vi (B.18a)

= −Kωeω + [R>eM −M>Re]
∨ (B.18b)

= −Kωeω + [(I + [ε]∧)>R>◦M −M>R◦(I + [ε]∧)]∨. (B.18c)
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Now, for any (R◦, eω) ∈ E , we have that Tr(R◦) ∈ {−1, 3}, which by
Lemma B.3 implies that R◦ = R>◦ . Using this property, (B.18) becomes

Jėω = −Kωeω + [−[ε]∧R>◦M −M>R◦[ε]
∧]∨

= −Kωeω + (R◦M − Tr(R◦M)I)ε

, f2(ε, eω),

where the second equality follows by the identity in (A.10m). Here, taking
the Jacobian of f2 at (ε, eω) = 0, we have that

∂f2(ε, eω)

∂ε

∣∣∣
(ε,eω)=0

= (R◦M − Tr(R◦M)I) , −K,

∂f2(ε, eω)

∂eω

∣∣∣
(ε,eω)=0

= −Kω , −C.

Thus, withM =M> = J � 0, C = C> = Kω � 0, and in a neighborhood of
a point (Re, eω) ∈ E , the perturbation evolves by the second-order dynamics,

Mε̈+ Cε̇+Kε = 0. (B.19)

This result is reminiscent to that in [Chaturvedi et al., 2011] and [Mahony
et al., 2008], but here in a different notation and for the tracking control
errors. We proceed to analyze the resulting equilibrium points in two separate
cases. First, when spec(M) = {λ1, λ2, λ3} is uniform (with λ1 = λ2 = λ3),
and second when the eigenvalues ofM are distinct (with λ1 6= λ2 6= λ3 6= λ1).

Uniform Spectrum TakeM to have a uniform spectrum, such thatM =
UΛU>, where then Λ = λ◦I for some λ◦ > 0. Consider the case where
Tr(R◦) = 3, i.e. a rotational error of R◦ = I. In this case, we obtain

K = −(R◦M − Tr(R◦M)I) = λ◦(3I − I) = 2λ◦I � 0. (B.20)

Consequently, as C � 0 and K � 0, the equilibrium point corresponding to a
rotational error of R◦ = I, the system (B.19) is locally asymptotically stable
by Lemma B.1, and hence locally exponentially stable, as the system in (B.19)
is linear and time-invariant.

Now, consider the case where Tr(R◦) = −1. This subset of SO(3) can be
parameterized in all purely imaginary quaternions by (2.5), as is also evident
by the geometry in Figure 2.3. Let u = (u1; u2; u3) ∈ R3, then

R◦ ∈ {R ∈ SO(3)|Tr(R) = −1} (B.21)

=


+u2

1 − u2
2 − u2

3 2u1u2 2u1u3

2u1u2 −u2
1 + u2

2 − u2
3 2u2u3

2u1u3 2u2u3 −u2
1 − u2

2 + u2
3

 ∈ SO(3)

∣∣∣∣∣‖u‖ = 1


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The resulting stiffness matrix for any element in this subset of SO(3) is

K = −λ◦(R◦ − Tr(R◦)I) = −λ◦(R◦ + I) = −λ◦(R◦ + I‖u‖2) = −2λ◦uu
>.

As u is a unit vector, we obtain a spectrum of the stiffness matrix as

spec(K) = {−2λ◦, 0, 0}. (B.22)

Consequently, C � 0 and K � 0, for any equilibrium point characterized by
(R◦,0) ∈ E\{(I,0)}. The local dynamics of perturbation (B.19) are unstable
at these points by Lemma B.2.

Distinct Spectrum If we instead takeM to have distinct eigenvalues, such
that M = UΛU>, with Λ = diag(λ1, λ2, λ3) and, without loss of generality
let λ1 > λ2 > λ3 > 0. Then we note that for any Di ∈ SO(3),

R◦M = UDiU
>UΛU> = UDiΛU

>, (B.23)

and as the trace of a matrix is the sum of its eigenvalues,

U>KU = −U>(R◦M − Tr(R◦M)I)U = Tr(DiΛ)I −DiΛ. (B.24)

We obtain the following stiffness matrices about the four equilibrium points

(R◦, eω) = (D1,0) ⇒ spec(K) = {−λ2 − λ3,+λ1 − λ3,+λ1 − λ2},
(R◦, eω) = (D2,0) ⇒ spec(K) = {+λ2 − λ3,−λ1 − λ3,+λ2 − λ3},
(R◦, eω) = (D3,0) ⇒ spec(K) = {−λ2 + λ3,−λ1 + λ3,−λ1 − λ2},
(R◦, eω) = (D4,0) ⇒ spec(K) = {+λ2 + λ3,+λ1 + λ3,+λ1 + λ2}.

About D4 = I, we have that C � 0 and K � 0, at the equilibrium point
corresponding to a rotational error of R◦ = I, the system (B.19) is locally
asymptotically stable by Lemma B.1, hence locally exponentially stable.

About the remaining equilibrium points, the stiffness matrix has one
negative eigenvalue in the case of D1, two negative eigenvalues in the case of
D2 and three negative eigenvalues in the case ofD3. Consequently, equilibrium
points corresponding to these errors are all unstable by Lemma B.2. 2
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B.2 Remark 3.1: Equivalences of Controllers on SO(3)

Proof of Remark 3.1. Consider the cross-product term in (3.6), assume
that N = 3, with ki = kR/2, ∀i = {1, 2, 3}, and take (v1,v2,v3) = I. Then

N∑
i=1

kiS(vi)R
>
e vi =

[[ N∑
i=1

kiS(vi)R
>
e vi

]∧
SO(3)

]∨
SO(3)

=
[ N∑
i=1

ki(R
>
e viv

>
i − vi(R>e vi)>)

]∨
SO(3)

=
[ N∑
i=1

ki(R
>
e viv

>
i − viv>i Re)

]∨
SO(3)

=
kR
2

[
R>e

N∑
i=1

(viv
>
i )−

N∑
i=1

(vivi)
>Re)

]∨
SO(3)

=
kR
2

[
R>e −Re

]∨
SO(3)

=
kR
2

[
R>Rr −R>r R

]∨
SO(3)

= −kReR,

where the second equality follows by (A.10k). Here, eR is recognized as the
attitude error of the geometric tracking control in (3.8a) of Theorem 3.2. In
this setting, the controller in Theorem 3.1 and 3.2 are equivalent. 2
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B.3 Proposition 3.1: Ultimate Bound

Proof. Following [Lee et al., 2010], there exists a Lyapunov function

V = kRΨ(Rr,R) + kceR · eω +
1

2
eω · Jeω, (B.25)

such that, with

z =

[
‖eR‖
‖eω‖

]
, W =

[
kckR
λM (J) − kckw

2λm(J)

− kckw
2λm(J) kω − kc

]
, (B.26)

M1 =
1

2

[
kR −kc
−kc λm(J)

]
, M2 =

1

2

[
2kR
2−φ kc
kc λM (J)

]
, (B.27)

where φ ∈ [0, 2) and Ψ(Rr(t◦),R(t◦)) ≤ φ < 2. Differentiation of the Lya-
punov function (B.25) along the solutions of the unperturbed system in (2.16),

z>M1z ≤ V ≤ z>M2z, V̇ ≤ −z>Wz. (B.28)

However, if we differentiate the very same Lyapunov function along the
solutions of the perturbed system in (3.16), we instead obtain

V̇ ≤ −z>Wz + eω ·∆ + kceR · J−1∆

≤ −z>Wz + z2‖∆‖+ kcλM (J−1)z1‖∆‖
≤ −z>Wz + ‖∆‖‖

[
kcλM (J−1) 1

]>
z‖

≤ −z>Wz + δ‖∆‖‖z‖,

where
δ ,

√
1 + k2

cλM (J−1)2, (B.29)

and subsequently, for any 0 < θ < 1,

V̇ ≤ −λm(W )(1− θ)‖z‖2 − λm(W )θ‖z‖2 + ‖z‖δ‖∆‖
≤ −λm(W )(1− θ)‖z‖2 − ‖z‖(λm(W )θ‖z‖ − δL).

Finally, we arrive at,

V̇ ≤ −λm(W )(1− θ)‖z‖2 ∀‖z‖ > δL

λm(W )θ
, µ. (B.30)

However, the above inequalities only hold if Ψ(Rr,R) ≤ φ for all t ≥ t◦. In the
original stability proof, boundedness is shown by letting kc = 0, and using the
negative semi-definiteness of V̇ to find a sufficiently small domain for which
Ψ(Rr,R) ≤ φ. However, this is not an option when including the disturbance,
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as kc = 0⇒ λm(W ) = 0 in (B.30). Instead, we utilize Remark 3.3. Assume
that the parameters (kR, kc, kω) result in a feasible tuning, with a Lyapunov
function in (B.25), bounded in the quadratic forms in (B.26). Then, any other
cross term 0 < k̄c ≤ kc also represents a feasible tuning with a valid Lyapunov
function, V̄ , in the form (B.25), which is similarly bounded in positive definite
matrices M̄1,M̄2, W̄ . Using this insight, we can derive a sufficient condition
for Ψ(Rr,R) ≤ φ to hold at all times when z ∈ Br ⊂ R2 of radius r. By
defining k̄c , kc/2,

kRΨ(Rr(t),R(t)) ≤ kRΨ(Rr(t),R(t)) +
1

2
eω(t) · Jeω(t)

= V̄(t)− k̄ceR(t) · eω(t)

≤ z(t)>M̄2z(t) + k̄cz1(t)z2(t)

= z(t)>M2z(t)

≤ λM (M2)‖z(t)‖2

≤ λM (M2)

λm(M1)
V(t).

Consequently,

λM (M2)2

λm(M1)
‖z(t◦)‖2 ≤ kRφ⇒

λM (M2)

λm(M1)
V(t◦) ≤ kRφ⇒ Ψ(Rr(t),R(t)) ≤ φ

for all t ≥ t◦. The inequalities in (B.30) hence hold for any z ∈ Br with

r ,
√
φkRλm(M1)/λM (M2). (B.31)

These sets are illustrated for a feasible choice of parameters in Figure 3.4.
This permits an application of Theorem 2.13. We start by noting that

V is continuously differentiable if ∆(t) is continuous in time, and define the
class-K functions α1(r) , λm(M1)r2, α2(r) , λM (M1)r2, and a positive
constant µ , δL/(θλm(W )), then

α1(‖z‖) ≤ z>M1z ≤ V ≤ z>M2z ≤ α2(‖z‖), (B.32a)

and

V̇ ≤ −λm(W )(1− θ)‖z‖2, ∀‖z‖ ≥ µ > 0. (B.32b)

Consequently, for any

µ = δL/(θλm(W )) < (α−1
2 ◦ α1)(r) =

√
λm(M1)

λM (M2)
r, (B.33)
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or equivalently in the bound of the disturbance L,

L <
θλm(W )

δ

√
λm(M1)

λM (M2)
r =

θ
√
φkRλm(W )λm(M1)

δλM (M2)
, (B.34)

and for sufficiently small initial errors,

‖z(t◦)‖ ≤ (α−1
2 ◦ α1)(r) =

√
λm(M1)

λM (M2)
r =

√
φkRλm(M1)

λM (M2)
, (B.35)

the errors are ultimately bounded by

‖z(t)‖ ≤ β(‖z(t◦)‖, t− t◦), ∀t ∈ [t◦, t◦ + T ], (B.36)

‖z(t)‖ ≤ (α2 ◦ α−1
1 )(µ) < r, ∀t ≥ t◦ + T, (B.37)

where δ is given in (B.29) and r is given in (B.31). Finally, on t◦ ≤ t ≤ t◦+T ,

V̇ ≤ −λm(W )(1− θ)‖z‖2 ≤ − λm(W )

λM (M2)
(1− θ)V, (B.38)

concluding the proof. 2

B.4 Theorem 3.4: Continuous Geometric FSF on SU(2)

Proof of Theorem 3.4. For simplicity, we here let [·]∧ = [·]∧SU(2) and [·]∨ =

[·]∨SU(2) as defined in Definition 2.13. The ideas in this proof will closely follow
that of [Lee et al., 2010], but all developments are done for elements Xr,X ∈
SU(2) using the distance Γ(Xr,X) and the identities in Appendix A.1.2. To
start, consider an attitude error Xe = X∗rX ∈ SU(2), and note that Γ is
positive for all Xe ∈ SU(2)\{−I}, and zero only when Xe = I. Consider the
time derivative of this error, which by (A.11j) takes the form

d
dt

(X∗rX) = (X∗rX)[(ω − [(X∗rX)∗[ωr]
∧(X∗rX)]∨)/2]∧ = (X∗rX)[eω/2]∧,

(B.39)
where

eω , ω − [(X∗rX)∗[ωr]
∧(X∗rX)]∨, (B.40)

can be thought of as the difference between the attitude rate of the system,
ω, and the attitude rate of the reference system, ωr, when compared in the
same tangent space TXSU(2). Considering the attitude rate error in (B.40),
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we proceed by expressing the time-derivative of Γ in this signal, as
d
dt

Γ(Xr,X) =
d
dt

1

2
Tr(I −X∗rX) (B.41a)

= −1

2
Tr
( d
dt

(X∗rX)
)

(B.41b)

= −1

2
Tr
(

(X∗rX)[eω/2]∧
)

(B.41c)

= −1

2
[Tr(X∗rX)I/2−X∗rX]∨ · eω (B.41d)

=
1

2
[X∗rX − Tr(X∗rX)I/2]∨ · eω, (B.41e)

where the last equality follows from identity (A.11h). Consequently, if we
choose to define an attitude error as

eX , 1

2
[X∗rX − Tr(X∗rX)I/2]∨, (B.42)

the time-derivative of the attitude distance can be written concisely as
d
dt

Γ(Xr,X) = eX · eω. (B.43)

Note that eX = 0 if and only if X∗rX ∈ {I,−I}, but eω = 0 can hold for
arbitrary ω,ωr ∈ R3 of the same length if X∗rX /∈ {I,−I}. However, if we
restrict the error dynamics to Xe ∈ {SU(2)|Γ(Xr,X) < 2}, then eX = 0
if and only if X∗rX = I, and at the point X∗rX = I, eω = 0 ⇒ ω = ωr.
Consequently, if we consider the function

V ′ = Γ(Xr,X) + eω · Jeω, (B.44)

we note that V ′ = 0⇒X = Xr ⇒ ω = ωr for all Xe ∈ {SU(2)|Γ(Xr,X) <
2}. Before defining the feedback law and writing out the error dynamics, note
that if u ∈ R3 is a unit vector such that eω = ‖eω‖u, then differentiating
the attitude error along the solutions of (B.39) yields

ėX =
d
dt

1

2
[X∗rX − Tr(X∗rX)I/2]∨ (B.45a)

=
1

2

[ d
dt

(X∗rX)− Tr
( d
dt

(X∗rX)
)I

2

]∨
(B.45b)

=
1

2

[
(X∗rX)[eω/2]∧ − Tr

(
(X∗rX)[eω/2]∧

)I
2

]∨
(B.45c)

=
1

2

[
(X∗rX)[(‖eω‖/2)u]∧ − Tr

(
(X∗rX)[(‖eω‖/2)u]∧

)I
2

]∨
(B.45d)

=
1

2

[
(‖eω‖/2)(X∗rX)[u]∧ − Tr

(
(‖eω‖/2)(X∗rX)[u]∧

)I
2

]∨
(B.45e)

=
‖eω‖

4

[
(X∗rX)[u]∧ − Tr

(
(X∗rX)[u]∧

)I
2

]∨
, (B.45f)
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and by (A.11g), we have that X̃ = (X∗rX)[u]∧ ∈ SU(2), as

X̃
∗
X̃ = (X∗rX[u]∧)∗(X∗rX)[u]∧ = ([u]∧)∗[u]∧ = (u>u)I = I, (B.46)

if u is a unit vector satisfying u>u = 1. Thus the time-derivative of the
attitude error is upper bounded in the attitude rate error as

‖ėX‖2 =
1

42
‖eω‖2

([
X̃−Tr(X̃)

I

2

]∨)>[
X̃−Tr(X̃)

I

2

]∨
≤ 1

42
‖eω‖2. (B.47)

Differentiating the attitude rate error along the solutions of (2.16b), we have

d
dt

(Jeω) =
d
dt

[J(ω − [X∗e[ωr]
∧Xe]

∨)] (B.48)

=Jω̇ − J d
dt

[X∗e[ωr]
∧Xe]

∨)]

=Jω̇ − J [(Xe[eω/2]∧)∗[ωr]
∧Xe +X∗e[ω̇r]

∧Xe +X∗e[ωr]
∧(Xe[eω/2]∧)]∨

=Jω̇ − J [−[eω/2]∧X∗e[ωr]
∧Xe +X∗e[ω̇r]

∧Xe +X∗e[ωr]
∧Xe[eω/2]∧]∨

=− kXeX − kωeω,

if the system is actuated with a feedback which cancels the cross product
terms in the attitude rate dynamics in (2.16b) and introduces a negative
feedback in the defined errors, that is, with

τ =− kXeX − kωeω − S(Jω)ω (B.49)
+ J [−[eω/2]∧X∗e[ωr]

∧Xe +X∗e[ω̇r]
∧Xe +X∗e[ωr]

∧Xe[eω/2]∧]∨.

Having established the attitude error dynamics, consider the introduction of
a cross-term in the Lyapunov function candidate, such that

V = kXΓ(Xr,X) + kceω · eX +
1

2
eω · Jeω. (B.50)

It is not immediately obvious that this is a positive definite function in the
errors, but since 4‖eX‖2 = ‖=(E

SU(2)
H (X∗rX))‖2, Remark 2.4 implies

2‖eX‖2 ≤ Γ(Xr,X) ≤ 4

(2− φ)
‖eX‖2 ∀Γ(Xr,X) ≤ φ < 2. (B.51)

Thus, if we let z = (z1, z2)> = (‖eX‖, ‖eω‖)> and use the bound in (B.51),

V ≤ 4kX
(2− φ)

z2
1 + kcz1z2 +

λM (J)

2
z2

2 , z>M2z, (B.52)

and
V ≥ 2kXz

2
1 − kcz1z2 +

λm(J)

2
z2

2 , z>M1z, (B.53)
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where

M1 , 1

2

[
4kX −kc
−kc λm(J)

]
, M2 , 1

2

[
8kX
2−φ kc
kc λM (J)

]
. (B.54)

If we can find a set of controller parameters kX , kc > 0 such that M1,M2

are positive definite in z, then it is clear that V = 0⇒ z = 0⇒ (eX , eω) =
0 ⇒ X = Xr,ω = ωr if Γ(Xr,X) < φ. Furthermore, differentiating the
Lyapunov function candidate in (B.50) along the dynamics in (2.16) with the
feedback (B.49), that is, by plugging in (B.45) and (B.48), we note that

dV
dt

= + kXeX · eω + kceω · ėX + kceX · ėω + eω · Jėω (B.55a)

= + kXeX · eω + kceω · ėX (B.55b)

+ kceX · J−1(−kXeX − kωeω) + eω · (−kXeX − kωeω) (B.55c)

= + kceω · ėX−kXkceX ·J−1eX−kωkceX ·J−1eω−kωeω ·eω (B.55d)

=− (kXkceX ·J−1eX+kωkceX ·J−1eω+kωeω ·eω−kceω ·ėX) (B.55e)

≤ −
( kXkc
λM (J)

z2
1 −

kckω
λm(J)

z1z2 + kωz
2
2 −

kc
2
z2

2) (B.55f)

= −z>Wz, (B.55g)

where the inequality follows from the bound given in (B.47), and

W ,
[

kXkc
λM (J) − kckω

2λm(J)

− kckω
2λm(J) kω − kc

4

]
. (B.56)

Here we have arrived at matrices M1,M2,W that are similar to the ones
arrived at in the stability proof of the geometric attitude control on SO(3), and
the final thing to consider is under which conditions the attitude trajectories
stay within the sub-level set of Lφ = {X∗rX ∈ SU(2)|Γ(Xr,X) ≤ φ < 2}.
Clearly, if we pick controller gains such that M1,M2,W � 0, then V is
non-increasing, and

kXΓ(Xr(t),X(t)) ≤ V(t) ≤ V(t◦) ≤ z(t◦)M2z(t◦) ≤ kXφ, (B.57)

implies that Xr(t)
∗X(t) ∈ Lφ ∀t ≥ t◦. Consequently, for any initial error on

D = {z(t◦) ∈ R2|z(t◦)M2z(t◦) ≤ kXφ}, (B.58)

the trajectories of Xr(t)
∗X(t) ∈ Lφ for all t ≥ t◦. By Theorem 2.4, we

conclude uniform exponential stability of the origin z = 0 on z(t◦) ∈ D.
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Application of Barbălat To show that the point (Xe, eω) = (I,0) is
UAGAS, we start by considering the Lyapunov function candidate V ′ = V|kc=0

in (B.44). Differentiation along the solutions of the closed-loop dynamics yields

dV ′
dt

= kXeX · eω + eω · (−kXeX − kωeω) = −kω‖eω‖2, (B.59)

d2V ′
dt2

= −2kωe
>
ω ėω = 2kωe

>
ωJ
−1(kXeX + kωeω). (B.60)

As V̇ ′ is along the solutions of the error dynamics, V ′ is non-increasing, which
implies that V ′(t) ≤ V ′(t◦) for all t ≥ t◦, bounding the attitude rate error as

λm(J)‖eω‖2 ≤ e>ωJeω ≤ 2V ′(t◦)⇒ ‖eω‖ ≤
√

2V ′(t◦)/λm(J). (B.61)

Consequently, as ‖eX‖ ≤ 1/2 for all Xe ∈ SU(2), we have that

∥∥∥d2V ′
dt2

∥∥∥ ≤ 2kω‖eω‖λM (J−1)(kX‖eX‖+ kω‖eω‖) (B.62)

≤ 2kω
√

2V ′(t◦)/λm(J)λM (J−1)(kX/2 + kω
√

2V ′(t◦)/λm(J)),

is upper bounded in the initial errors. Hence, V̇ ′ is uniformly continuous, and
application of Lemma 2.5 (Barbălat) yields

lim
(t−t◦)→∞

V̇ ′(t) = 0⇒ lim
(t−t◦)→∞

eω(t) = 0. (B.63)

Consider writing the closed-loop dynamics in (B.48) as

ḟ(t) = f0(t) + η(t),

where
f(t) = Jeω, η(t) = −kωeω(t), f0(t) = −kXeX .

By (B.63), f(t) → 0 and η(t) → 0 as t − t◦ → ∞. Furthermore, by (B.47)
and (B.61), ‖ėX‖ ≤ (1/2)‖eω‖ ≤ (1/2)

√
2V ′(t◦)/λm(J), implying that

f0(t) = −kXeX is uniformly continuous. Application of Lemma 2.7 yields

lim
(t−t◦)→∞

ḟ(t) = lim
(t−t◦)→∞

f0(t) = 0⇒ lim
(t−t◦)→∞

Xe(t) = ±I.

Consequently, all trajectories of the closed-loop system asymptotically con-
verge to one of the points (Xe, eω) = (±I,0), and to assess the stability
properties of these two equilibrium points, we perform local linearizations.
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Local Linearizations Take a first order approximation of the attitude
error around X◦ ∈ SU(2), as

Xe(t) ≈X◦(I + [ε(t)/2]∧), (B.64)

with some small perturbation ε(t) ∈ R3. The attitude kinematics become

d
dt

(X◦(I + [ε(t)/2]∧)) = X◦(I + [ε(t)/2]∧)[eω(t)/2]∧ ⇔

X◦
[1

2

d
dt
ε(t)

]∧
= X◦(I + [ε(t)/2]∧)[eω(t)/2]∧ ⇔[ d

dt
ε(t)

]∧
= (I + [ε(t)/2]∧)[eω(t)]∧ ⇔

d
dt
ε(t) = eω(t) + [[ε(t)/2]∧[eω(t)]∧]∨ , f1(ε(t), eω(t)).

and a local linearization about (ε, eω) = (0,0) yields

∂f1(ε, eω)

∂ε

∣∣∣
(ε,eω)=(0,0)

= 0,
∂f1(ε, eω)

∂eω

∣∣∣
(ε,eω)=(0,0)

= I. (B.65)

As such, close to the point (ε, eω) = (0,0), for any X◦ ∈ SU(2), the attitude
rate error corresponds to the time-derivative of the perturbation ε. If we
express the attitude error in terms of this perturbation, we obtain

eX =
1

2
[Xe−Tr(Xe)I/2]∨ =

1

2
[X◦(I+[ε(t)/2]∧)−Tr(X◦(I+[ε(t)/2]∧))I/2]∨,

and for X◦ = ±I, as Tr([ε(t)]∧) = 0, we obtain

eX |X◦=±I =
1

2
[±(I + [ε(t)/2]∧)− Tr(±(I + [ε(t)/2]∧))I/2]∨ = ±1

4
ε(t).

(B.66)

Given this, the time-evolution of the attitude rate error expressed in the
perturbation ε close to X◦ ∈ {I,−I}. By (B.66), for X◦ = ±I, we obtain

d
dt

(Jeω) = −kωeω − kXeX = −kωeω ∓
kX
4
ε , f2(ε, eω). (B.67)

Here, taking the Jacobian of f2 at (ε, eω) = 0, for X◦ = ±I, we have that

∂f2(ε, eω)

∂ε

∣∣∣
(ε,eω)=0

= ∓kX
4
I , −K, ∂f2(ε, eω)

∂eω

∣∣∣
(ε,eω)=0

= −kωI , −C.

Thus, asM =M> = J � 0, C = C> = kωI � 0, and in a neighborhood of a
point (Xe, eω) ∈ (±I,0), the perturbation evolves locally by the dynamics,

Mε̈+ Cε̇+Kε = 0. (B.68)
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Here, Lemma B.1 immediately yields that the point (Xe, eω) = (I,0) is locally
asymptotically stable, as it is semi-stable and in this case K = (kX/4)I � 0.
Additionally, the corresponding instability result in Lemma B.2 yields that the
point (Xe, eω) = (−I,0) is unstable, as in this case here K = −(kX/4)I ≺ 0.
As such, the only stable equilibrium point is found in (Xe, eω) = (I,0) and
this point is UAGAS, as the only other equilibrium point is unstable. 2

B.5 Proposition 3.2: Ultimate Bound

Proof of Proposition 3.2. The proof is analogous to the proof of Propo-
sition 3.1 in Appendix B.3, but using the Lyapunov function B.50, and the
associated matrices M1,M2,W , given in (B.71) and (B.56). 2

B.6 Theorem 3.5: Discontinuous Geometric FSF on
SU(2)

Proof of Theorem 3.5. Consider two controllers operating on the domains
SU(2)+ and SU(2)− respectively. For the former, we can invoke Theorem 3.4
to show uniform exponential stability on SU(2)+, but the latter requires more
thought. We start by noting that the time-derivative of Γ̄ can be expressed,

d
dt

Γ̄(Xr,X) = − d
dt

Γ(Xr,X) = −1

2
[X∗rX − Tr(X∗rX)I/2]∨ · eω = e−X · eω

where e−X = −e+
X . Here, the attitude rate error eω is exactly the same as that

in the continuous control law. Furthermore, the attitude error time-derivative
is upper bounded just as in (B.47), with

‖ė±X‖ ≤
1

4
‖eω‖. (B.69)

Consider next the construction of two separate Lyapunov function candidates

V = kXΓ(Xr,X) + kceω · e+
X +

1

2
eω · Jeω if X∗rX ∈ SU(2)+, (B.70a)

V̄ = kX Γ̄(Xr,X)− kceω · e−X +
1

2
eω · Jeω if X∗rX ∈ SU(2)−. (B.70b)

Here it is again not immediately clear that these are positive definite functions
of the errors on their respective domains, but if defining z± = (‖e±X‖, ‖eω‖),
noting that 4‖eX‖2 = ‖=(E

SU(2)
H (X∗rX))‖2, these functions can be upper

and lower-bounded on their respective domains by positive definite functions

c1‖z±‖2 ≤ (z±)>M1z
± ≤ V ≤ (z±)>M2z

± ≤ c2‖z±‖2 ∀X∗rX ∈ SU(2)+,

c1‖z±‖2 ≤ (z±)>M1z
± ≤ V̄ ≤ (z±)>M2z

± ≤ c2‖z±‖2 ∀X∗rX ∈ SU(2)−,
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where c1 = λm(M1), c2 = λM (M2) for a φ = 1, resulting in

M1 , 1

2

[
4kX −kc
−kc λm(J)

]
, M2 , 1

2

[
8kX kc
kc λM (J)

]
. (B.71)

The existence of gains kX , kc, kω such that M1,M2 � 0 is guaranteed by
Remark 3.6. Furthermore, consider any time ts ≥ t◦ where the attitude error
traverses the line Γ(Xr,X) = Γ̄(Xr,X) = 1. By defining t−s < ts < t+s ,

lim
t−s → ts

V(t−s ) = lim
t+s → ts

V̄(t+s ), (B.72a)

lim
t−s → ts

V̄(t−s ) = lim
t+s → ts

V(t+s ), (B.72b)

with equality between (B.72a) and (B.72b) over the time ts if and only if
eX · eω = 0. However, as the sign in the attitude error is switched on the
different sides of ts, we can define a composite a Lyapunov function candidate

V± =

{
V if Xe ∈ SU(2)+

V̄ if Xe ∈ SU(2)−
, (B.73)

which is then continuous over each switching time ts by (B.70) and (B.72).
Just is the proof of Theorem 3.4, differentiation of the Lyapunov functions
along the solutions of the error dynamics and the invocation of (B.69) yields

dV
dt
≤ −(z±)>Wz± ≤ −c3‖z±‖2 ∀X∗rX ∈ SU(2)+, (B.74)

dV̄
dt
≤ −(z±)>Wz± ≤ −c3‖z±‖2 ∀X∗rX ∈ SU(2)−, (B.75)

with c3 = λm(W ) where

W ,
[

kXkc
λM (J) − kckω

2λm(J)

− kckω
2λm(J) kω − kc

4

]
. (B.76)

The existence of a constant c3 > 0 again follows directly from Remark 3.6. In
contrast to the continuous controller, we no longer need to restrict the attitude
error trajectories to the sub-level sets of SU(2)+ or SU(2)−, as an escape from
one implies entry into the other across the line Γ(Xr,X) = Γ̄(Xr,X) = 1,
over which the composite Lyapunov function candidate in (B.73) is continuous.
However, V± is no longer continuously differentiable in time (if any switching
occurs), and we cannot use Theorem 2.3 as a consequence. Instead, the
comparison lemma (see, e.g., [Khalil, 1996, Lemma 2.5]) is invoked on

(d/dt)V± ≤ (λM (M2)/λM (W ))V±, (B.77)
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yielding global exponential stability of the origin z± = 0, for any z±(t◦) ∈
R2
≥0, and since z± → 0 ⇒ (e±X , eω) → 0 ⇒ (±X,ω) → (Xr,ωr) ⇒

(E
SU(2)
SO(3)(±X),ω) → (E

SU(2)
SO(3)(Xr),ωr), we have that convergence to this

origin implies a zero tracking error on SO(3). 2

B.7 Theorem 3.6: Robust Geometric FSF on SU(2)

Proof of Theorem 3.6. For notational simplicity, we denote the hat- and
vee-maps associated with SU(2) in Definition 2.13 as [·]∧ = [·]∧SU(2) and
[·]∨ = [·]∨SU(2), respectively. Consider the feedback law in Proposition 3.4.
Following the proof in [Lee et al., 2013] for the robust controller on SO(3),
we start by noting that with eA defined as in (3.53c), we obtain

eA · (∆− µX) ≤ ‖eA‖L−
L2‖eA‖2

L‖eA‖+ εX
=

L‖eA‖
L‖eA‖+ εX

εX ≤ εX .

Introducing the µX -term (3.53b) when controlling the perturbed dynamics
in (3.4), using the feedback law in (3.33) of Proposition 3.4 with the Lyapunov
function in (B.50), the relationship in (B.51) still holds with the matrices
in (3.31).The time-derivative of the Lyapunov function now becomes,

V̇ = kXeX · eω + kceω · ėX + kceX · ėω + eω · Jėω

≤ −
( kXkc
λM (J)

z2
1−

kckω
λm(J)

z1z2+kωz
2
2−

kc
4
z2

2

)
+ (kcJ

−1eX + eω) · (∆− µX)

= −z>Wz + eA · (∆− µX)

≤ −z>Wz + εX , (B.78)

and V̇ < 0 whenever V is sufficiently large, specifically

V > λM (M2)

λm(W )
εX = d1 ⇒ z>Wz > εX ⇒ V̇ < 0. (B.79)

If we consider the sub-level set of V characterized by S1 = {z|V < d1}, and
take a second sub-level set of V characterized by S2 = {z|V < d2}, where

d2 = λm(M1)φ(2− φ),

then S1 ⊂ S2 ⊂ D if d1 < d2, as V is increasing in z on D. A sufficient
condition is found in

d1 =
λM (M2)

λm(W )
εX < λm(M1)φ(2− φ) = d2 ⇔ εX <

λm(W )λm(M1)

λM (M2)
φ(2− φ).
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Provided that ∆(t) is continuous in time, The Lyapunov function V is
continuously differentiable along the perturbed attitude system trajectories.
Application of [Khalil, 1996, Theorem 5.1] yields that the solutions z(t) are
uniformly ultimately bounded. Furthermore, a conservative estimate for the
ultimate bound can be computed by [Khalil, 1996, Corollary 5.1], as

lim
t−to→∞

‖z(t)‖2 ≤ λM (M2)

λm(M1)λm(W )
εX . (B.80)

2

B.8 Proposition 4.3: Geometric FSF on SU(2)× R3

Proof of Proposition 4.3. This proof is strikingly similar to the proof for
the controller on SO(3)× R3 in [Lee et al., 2010, Appendix D], and a sketch
is given here with some key intermediary expressions. In the following, let

R = E
SU(2)
SO(3)(X) = EH

SO(3)(q), Rd = E
SU(2)
SO(3)(Xd) = EH

SO(3)(qd), (B.81)

and consider errors defined as in Theorem 3.4 but with respect to the desired
reference (Xd,ωd, ω̇d) ∈ SU(2) × R3 × R3. Specifically, consider an error
element Xe = X∗dX ∈ SU(2), in which the control errors are defined as

eX =
1

2
[Xe − Tr(Xe)I/2]∨SU(2), eω = ω − [X∗e[ωd]

∧
SU(2)Xe]

∨
SU(2), (B.82)

and the translation errors defined as in the proposition statement, with

ep = p− pr, ev = v − vr. (B.83)

In addition, consider errors related to the positional and attitude subsystems,

zp , (‖ep‖; ‖ev‖) ∈ R2
≥0, za , (‖eX‖; ‖eω‖) ∈ R2

≥0, (B.84)

respectively, as a combined error

z̄ , (zp; za) ∈ R4
≥0. (B.85)

Define a Lyapunov function comprised of two parts, one relating the attitude
subsystem, Va, and one relating to the translation subsystem, Vp. The former
is defined as in (B.50), and the latter is defined analogously, as

Va , kXΓ(Xd,X) + caeω · eX +
1

2
eω · Jeω, (B.86a)

Vp , 1

2
kp‖ep‖2 + cpep · ev +

1

2
m‖ev‖2, (B.86b)
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respectively. Given that the attitude dynamics are actuated by Theorem 3.4,
we can consider initial attitude errors on

(Xe(t◦), eω(t◦)) ∈ {(Xe, eω) ∈ Lφ × R3 | Va|ca=0 ≤ kXφ}, (B.87)

where

Lφ = {X∗dX ∈ SU(2) | Γ(Xd,X) ≤ φ < 2}. (B.88)

With the result in Theorem 3.4, it follows that Xe(t) ∈ Lφ for all t ≥ t◦ if
Va(t◦)|ca=0 ≤ kXφ, and that the errors converge exponentially to (Xe, eω) =
(I,0). As such, the main idea of the proof is to conduct the stability analysis
on a domain D = {(ep, ev,Xe, eω) ∈ R3 × R3 × Lφ × R3 | ‖ep‖ ≤ Bp},
and restrict the domain by making φ and Bp sufficiently small to guarantee
that all solutions remain within D. To facilitate such an analysis, we first
make a few preliminary geometric observations with respect to the vectors
bd3 = Rde3 and b3 = Re3, and their cosine angle bd3 · b3 = cos(θ):

• Firstly, note that for any φ < 1− 1/
√

2,

Γ(Xd,X) ≤ φ⇒ 1−cos(θ/2) < 1− 1√
2
⇔ 1√

2
< cos(θ/2)⇒ cos(θ) > 0.

(B.89)

• Secondly, as sin2(θ) ≤ 4 sin2(θ/2) for all cos(θ) > 0, we have that

sin2(θ) ≤ 22 sin2(θ/2) = 24‖eX‖2 ≤ 23Γ(Xd,X) ≤ 23φ , α2, (B.90)

as 4‖eX‖2 = ‖=(q∗d � q)‖ = 1
4 sin2(θ/2).

These geometric relationships are illustrated in Figure B.1, whereby

Γ(Xd,X) ≤ φ < 2−3 < 1− 1/
√

2⇒ cos(θ) > 0⇒
{
bd3 · b3 > 0

α < 1
. (B.91)

Therefore, consider performing the stability analysis on the domain charac-
terized by D with φ = 2−3 with a Lyapunov function candidate V = Va + Vp.
Translation Error Dynamics The translation error dynamics are

mėv = mp̈−mp̈r = −mge3 + fRe3 −mp̈r. (B.92)

Note that e3R
>
dRe3 = bd3 · b3 > 0 if we can ensure that (B.89) holds. If so,

the term f
e3R>d Re3

Rde3 is well defined, and as such, (B.92) can be expressed

mėv = −mge3 −mp̈r +
f

e3R
>
dRe3

Rde3 + f̄ , (B.93)
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Figure B.1 Illustration of the geometric relationships that facilitate the
stability proof. Left: Expressions relating to the cosine of the rotation angle
θ. Right: Expressions relating to the squared sine of the rotation angle θ.

where
f̄ =

f

e3R
>
dRe3

Rde3

(
(e3R

>
dRe3)Re3 −Rde3

)
. (B.94)

In addition, recalling the actuating force is computed by the desired force

fd = −kpep − kvev +mge3 +mp̈r. (B.95)

As bd3 = fd‖fd‖−1, we can express fd = ‖fd‖bd3 = ‖fd‖Rde3, whereby

f

e3R
>
dRe3

Rde3 =
fd ·Re3

e3R
>
dRe3

Rde3 = ‖fd‖Rde3 = fd. (B.96)

Insertion of this expression in (B.93) yields

mėv = −mge3 −mp̈r + fd + f̄ = −kpep − kvev + f̄ . (B.97)

To proceed, we will bound f̄ in the control errors using the Assumptions
(A1)–(A5), but first, we derive the expression for the time-derivative of the
part of the Lyapunov function associated with the translation errors.

Translation Lyapunov Function Candidate Differentiation of the Lya-
punov function associated with the translation dynamics yields

V̇p =− (kv − cp)‖ev‖2 −
cpkp
m
‖ep‖2 −

cpkv
m

(ep · ev) + f̄ ·
(
cpm

−1ep + ev

)
.

(B.98)

Furthermore, by (B.96), we have that

‖f̄‖ ≤ ‖fd‖‖(e3R
>
dRe3)Re3 −Rde3‖, (B.99)
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where the second term is recognized as the sine angle of the smallest rotation
angle between bd3 and b3, as pointed out in [Lee et al., 2010]. As such, we
can utilize the fact that this rotation angle is bounded in the control errors
on D, as per (B.89). By this simple observation, we obtain

‖f̄‖ ≤ ‖fd‖‖(e3R
>
dRe3)Re3 −Rde3‖ (B.100a)

≤ (kp‖ep‖+ kv‖ev‖+B)‖(e3R
>
dRe3)Re3 −Rde3‖ (B.100b)

≤ (kp‖ep‖+ kv‖ev‖+B)4‖eX‖ (B.100c)
≤ (kp‖ep‖+ kv‖ev‖+B)α, (B.100d)

where the second inequality follows from Assumption (A3), and the third and
fourth hold for all trajectories on D from the observations regarding the sine
angle in (B.90). Insertion of this bound in (B.101) yields

V̇p =− (kv − cp)‖ev‖2 −
cpkp
m
‖ep‖2 −

cpkv
m

(ep · ev) + f̄ ·
(cp
m
ep + ev

)
=− (kv(1− α)− cp)‖ev‖2 −

cpkp
m

(1− α)‖ep‖2

+
cpkv
m

(1 + α)‖ep‖‖ev‖

+ 4‖eX‖
(
B
(cp
m
‖ep‖+ ‖ev‖

)
+ kp‖ep‖‖ev‖

)
≤ −z>pW ppzp + z>pW

paza, (B.101)

with W pp and W pa defined as in the proposition statement, in (4.20)
and (4.21), respectively. In addition, we note that

z>pM
pp
1 zp ≤ Vp ≤ z>pMpp

2 zp, (B.102)

for Mpp
1 and Mpp

2 defined as in (4.20) of the proposition.

Complete Lyapunov Function Candidate In addition to these defini-
tions, take Maa

1 ,Maa
2 ,W aa, to be the matrices in (3.32) associated with the

controller in Theorem 3.4, also given in (4.20). In addition, define the matrices

M̄1 =

[
Mpp

1 0
? Maa

1

]
, M̄2 =

[
Mpp

2 0
? Maa

2

]
, W̄ =

[
W pp − 1

2W
pa

? W aa

]
.

When considering the combined Lyapunov function candidate V = Vp + Va,

z̄>M̄1z̄ ≤ V ≤ z̄>M̄2z̄. (B.103)

Differentiating V along the solutions of the error dynamics on D yields

V̇ = V̇p + V̇a ≤ −z̄>W̄ z̄. (B.104)

278



B.8 Proposition 4.3: Geometric FSF on SU(2)× R3

By assumption (A5), we have that

V̇ ≤ −z̄>W̄ z̄ (B.105a)

≤ −λm(W pp)‖zp‖2 + ‖W pa‖‖zp‖‖za‖ − λm(W aa)‖za‖2 (B.105b)

≤ −
[
‖zp‖
‖za‖

] [
λm(W pp) − 1

2‖W
pa‖

? λm(W aa)

] [
‖zp‖
‖za‖

]
(B.105c)

≤ −Bz(‖zp‖2 + ‖za‖2). (B.105d)

Consequently, the Lyapunov function time-derivative is negative definite in z̄
along the solutions of the error dynamics on D. By (B.105), it follows that V
is continuously differentiable on D, as the signals constituting V̈ are bounded
in the initial errors. As such, Theorem 2.5 yields that z̄ = 0 is UES on D.2
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C
Filtered Output Feedback:
Proofs

C.1 Theorem 5.2: Explicit Vector FOF on SO(3)

We start by giving some preliminary results before stating the proof of
Theorem 5.2. Here, Lemmas C.1 and C.2 concern quadratic functions of
rotated vectors that appear in the proposed Lyapunov function candidate.
This is followed by Lemma C.3, which details a specific set of solutions to the
Lyapunov equation for a linear system that appears when investigating the
local properties of the equilibrium points of the closed-loop system.

Lemma C.1
Consider the matrices in Definition 2.21, restated here as

D1 = diag(1,−1,−1), D2 = diag(−1, 1,−1), D3 = diag(−1,−1, 1).

Let v = (v1; v2; v3) ∈ R3 and consider a function fi : R3 → R≥0 defined as

fi(ε) = ‖ExpSO(3)([ε]
∧
SO(3))Div − v‖2, (C.1)

and let ei denotes a unit vector with the ith element set to 1. If ‖v‖2−v2
i 6= 0,

then fi(θei) decreases with an increasing θ in a neighborhood of θ = 0. 2

Proof. Consider (A.3), and let ε = θu for some unit vector u ∈ R3, and
some small θ > 0, such that

R(ε) , ExpSO(3)([ε]
∧
SO(3)) = I+sin(θ)[u]∧SO(3)+(1−cos(θ))([u]∧SO(3))

2 ∈ SO(3),

then,

fi(ε) = v>(DiR(ε)> − I)(R(ε)Di − I)v = v>(2I −DiR(ε)> −R(ε)Di)v,
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If we instead express this function in θ and ei, we obtain a scalar function

f̄i(θ) , fi(θei) = 2(‖v‖2 − v2
i )(cos(θ) + 1), (C.2)

where for small θ > 0,

df̄(θ)

dθ
= −2 sin(θ)(‖v‖2 − v2

i ) < 0, (C.3)

if ‖v‖2 − v2
i 6= 0. As such, there exist (at least one) direction ei associated

with each element Di in which the function in (C.1) is locally decreasing. 2

This lemma will be useful in the forthcoming local Chetaev instability
analysis, as it permits the construction of geodesics on SO(3) from a set of
equilibrium points characterized by the diagonal matricesDi in Definition 2.21,
along which the quadratic function in (C.1) is locally decreasing. To make
this clear, we will use the following version of the lemma.

Lemma C.2
Consider Dj ∈ SO(3) be any element in Definition 2.21, take N > 1 gains
ki > 0 and equally many associated linearly independent directions vi ∈ R3.
There exist an element R̃j ∈ SO(3) in the neighborhood of I for which

N∑
i=1

ki‖R̃jDjvi − vi‖2 <
N∑
i=1

ki‖Djvi − vi‖2. (C.4)
2

Proof. This follows from Lemma C.1. Let R̃j = ExpSO(3)([θej ]
∧
SO(3)), for a

small θ > 0. The left-hand side of (C.4) can be expressed in θ as using (C.2),

N∑
i=1

ki‖R̃jDjvi−vi‖2 =

N∑
i=1

2ki(‖vi‖2− [vi]
2
j )(cos(θ)+1) = M(cos(θ)+1).

where M =
∑N
i=1 2ki(‖vi‖2 − [vi]

2
j) > 0 by the assumption of ki being

positive and the directions vi being linearly independent. As such, given
an R̃j constructed as above, for θ > 0, derivative of M(cos(θ) + 1) in θ is
negative about θ = 0. As such, there exist an element R̃j arbitrarily close to
the identity element of SO(3), for which the equality in (C.4) holds. 2

A final preliminary result is stated before giving the main proof. This
result shows that a matrix with a very particular structure is Hurwitz, and
provides a parametric solution to the Lyapunov equation when imposing
certain structure on the associated Q matrix. These results are later used in
the main proof in the analysis of the local properties of the error dynamics.
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Lemma C.3
For any parameters c > 0 and l > 0, the matrix

D(c, l) ,

 0 0 1
cl −2cl 0
−l l 0

 , (C.5)

is Hurwitz, i.e., <(λ) < 0 for all λ ∈ spec(D(c, l)). 2

Proof. This can be shown by the Routh-Hurwitz stability criterion (see,
e.g., [Parks, 1962]). The characteristic polynomial of D(c, l) takes the form

p(λ) = det(λI −D(c, l)) = λ3 + 2clλ2 + lλ+ cl2 = 0. (C.6)

As the coefficients are positive, and 2cl · l > cl2, the matrix is Hurwitz. 2

Remark C.1
For D(c, l) in (C.5), it is also possible to find structured solutions to

D(c, l)>P (c, l) + P (c, l)D(c, l) +Q(c, l) = 0, ∀c, l > 0, (C.7)

with a positive semi-definite Q(c, l). For instance, with (c, l) ∈ R2
>0,

P (c, l) =

 l −l 0
−l 2l 0
0 0 1

 , Q(c, l) =

 2 −4 0
−4 8 0
0 0 0

 cl2, (C.8)

solves the Lyapunov equation, where Q(c, l) = Q(c, l)> � 0 with
spec(Q(c, l)) = {0, 0, 10cl2} and P (c, l) = P (c, l)> can be shown to posi-
tive definite by applying Sylvester’s criterion (see, e.g., [Hoffman and Kunze,
1971, Theorem 6, page 328]) 2
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Proof of Theorem 5.2. In this proof, to simplify notation, the hat- and
vee-maps of SO(3) are abbreviated as [·]∧SO(3) = [·]∧ = S(·) and [·]∨SO(3) = [·]∨,
respectively (see Definition 2.12). To recapitulate, we are working with five
different errors, which are notably differently defined to the attitude errors in
Chapter 3. In the remainder of this proof, let

Re = RrR
> ∈ SO(3), R̃ = R̂R> ∈ SO(3), (C.9a)

ωe = ωr − ω ∈ R3, ω̃ = ω̂ − ω ∈ R3, (C.9b)

ω̂e = ωr − ω̂ ∈ R3, (C.9c)

where then

ω̂e = ωr − ω̂ = ωr − (ω̃ + ω) = ωe − ω̃. (C.10)

The proof is structured as follows: we start by (i) deriving the error dynamics,
then proceed with (ii) computing the time-derivative of a proposed Lyapunov
function along the solutions of the error dynamics. We then (iii) show that the
errors trajectories converge to an invariant set, and the resulting equilibrium
points are found by variations of Barbălat’s lemma. Then, (iv) uniform
convergence is shown by a nested Matrosov theorem, after which (v) a
Chetaev instability theorem is used to characterize the local properties of the
equilibrium points, and finally (vi) the local properties of the single stable
equilibrium point are investigated by means of a local linearization.

(i) Error Dynamics Taking the time-derivative of Re,ωe, R̃e, ω̃e, and
plugging in the control law and estimator update in Theorem 5.2, we obtain

Ṙe =
(2.16a)

RrS(ωr)R
> −RrS(ω)R>

=
(C.9a)

(RrS(ωr)R
>
r −RrS(ω)R>r )Re

=
(A.10n)

[S(Rrωr)− S(Rrω)]Re

=
(A.10b)

[S(Rrωr −Rrω)]Re

=
(C.9b)

S(Rrωe)Re. (C.11a)

Here, we note that

S(Jω)ωe + S(Jω̃)ωr =
(C.9b)

S(Jω)(ωr − ω) + S(J(ω̂ − ω))ωr

=
(A.10b)

S(Jω)ωr − S(Jω)ω + S(Jω̂)ωr − S(Jω)ωr

=
(C.9c)

−S(Jω)ω + S(J(ωr − ω̂e))ωr

=
(A.10b)

S(Jωr)ωr − S(Jω)ω − S(Jω̂e)ωr. (C.11b)
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Considering the dynamics in (2.16b), and the proposed feedback in (5.10a)
the attitude tracking error dynamics can be expressed

Jω̇e =
(C.9b)

J(ω̇r − ω̇) (C.11c)

=
(2.16b)

S(Jωr)ωr + τ r − [S(Jω)ω + τ ]

=
(5.10a)

S(Jωr)ωr −
[
S(Jω)ω + S(Jω̂e)ωr +Kωω̂e +

N∑
i=1

kiS(R>r vi)R̂
>
vi

]
=

(C.11b)
S(Jω)ωe + S(Jω̃)ωr −

[
Kωω̂e +

N∑
i=1

kiS(R>r vi)R̂
>
vi

]
=

(C.10)
S(Jω)ωe+S(Jω̃)ωr−Kω(ωe−ω̃)−

N∑
i=1

kiS(R>r vi)R̂
>
vi.

The observer attitude error dynamics can similarly be expressed using the
proposed estimator update in (5.10b), with an innovation term in (5.10d), and
using the attitude kinematics on SO(3) in (2.16a), with the error dynamics

˙̃R =
(C.9a)

˙̂
RR> + R̂Ṙ

>

=
(5.10b)

R̂S(ω + δR)R> − R̂S(ω)R>

=
(A.10b)

R̂[S(ω) + S(δR)]R> − R̂S(ω)R>

=
(C.9a)

R̂S(δR)R̂
>
R̃

=
(A.10n)

S(R̂δR)R̃, (C.11d)

and the estimate attitude rate error simply becomes,

J ˙̃ω =
(C.9b)

J( ˙̂ω − ω̇) =
(5.10c)

δω. (C.11e)

(ii) Lyapunov Function Candidate Having established the error dy-
namics in equations (C.11), we next propose the Lyapunov function candidate

V1 =

N∑
i=1

ki
2
‖ReR̃

>
vi − vi‖2 +

1

2
ω>e Jωe +

N∑
i=1

ki
2
‖R̃vi − vi‖2 +

1

2
ω̃>Jω̃,

(C.12)
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Differentiation of (C.12) along solutions of the error dynamics in (C.11) yields

dV1

dt
= +

N∑
i=1

ki(ReR̃
>
vi − vi)>

d
dt

(ReR̃
>
vi)

+ ω>e
[
S(Jω)ωe + S(Jω̃)ωr −Kω(ωe − ω̃)−

N∑
i=1

kiS(R>r vi)R̂
>
vi

]
+

N∑
i=1

ki(R̃vi − vi)>
d
dt

(R̃vi)

+ ω̃>δω. (C.13)

Noting that

d
dt

(ReR̃
>

) = ṘeR̃
>

+Re
˙̃R>

=
(C.11)

S(Rrωe)ReR̃
>

+Re(S(R̂δR)R̃)>

=
(A.10f)

S(Rrωe)ReR̃
> −ReR̃

>
S(R̂δR)

=
(A.10a)

S(Rrωe)ReR̃
> −ReR̃

>
S(R̂δR)

(
ReR̃

>)>
ReR̃

>

=
(A.10n)

S(Rrωe −ReR̃
>
R̂δR)ReR̃

>

=
(C.9a)

S(Rrωe −RrR
>RR̂

>
R̂δR)ReR̃

>

=
(A.10a)

S(Rr[ωe − δR])ReR̃
>
,

and inserting the tracking and observer attitude error dynamics yields

dV1

dt
= +

N∑
i=1

ki(ReR̃
>
vi − vi)>S(Rr[ωe − δR])ReR̃

>
vi

+ ω>e
[
S(Jω)ωe + S(Jω̃)ωr −Kω(ωe − ω̃)−

N∑
i=1

kiS(R>r vi)R̂
>
vi

]
+

N∑
i=1

ki(R̃vi − vi)>S(R̂δR)R̃vi + ω̃>δω. (C.14)
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Canceling the quadratic forms in the skew-symmetric matrices, we obtain

dV1

dt
=−

N∑
i=1

kiv
>
i S(Rr[ωe − δR])ReR̃

>
vi

+ ω>e
[
S(Jω̃)ωr −Kω(ωe − ω̂)−

N∑
i=1

kiS(R>r vi)R̂
>
vi

]
−

N∑
i=1

kiv
>
i S(R̂δR)R̃vi + ω̃>δω. (C.15)

Here, we note that
N∑
i=1

kiv
>
i S(R̂δR)R̃vi =

(A.10n)

N∑
i=1

kiv
>
i R̂S(δR)R̂

>
R̃vi

=
(A.10i)

−
N∑
i=1

kiδ
>
RS(R̂

>
vi)R̂

>
R̂R>vi

=
(A.10i)

δ>R

N∑
i=1

kiS(R>vi)R̂
>
vi, (C.16a)

and, using the same set of identities, we obtain
N∑
i=1

kiv
>
i S(Rr[ωe−δR])ReR̃

>
vi = [ωe−δR]>

N∑
i=1

kiS(R̂
>
vi)R

>
r vi.

(C.16b)

Using (C.16), the Lyapunov time-derivative in (C.15) simplifies to

dV1

dt
=− [ωe − δR]>

N∑
i=1

kiS(R̂
>
vi)R

>
r vi

+ ω>e
[
S(Jω̃)ωr −Kω(ωe − ω̃)−

N∑
i=1

kiS(R>r vi)R̂
>
vi

]
− δ>R

N∑
i=1

kiS(R>vi)R̂
>
vi + ω̃>δω, (C.17)

whereby two of the terms in ωe terms cancel out, and we obtain

dV1

dt
= + δ>R

N∑
i=1

kiS(R̂
>
vi)(R

>
r vi +R>vi)

+ ω>e
[
S(Jω̃)ωr −Kω(ωe − ω̃)

]
+ ω̃>δω. (C.18)
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Here the second and third terms simplify using the symmetry of J and Kω,

ω>e
[
S(Jω̃)ωr −Kω(ωe − ω̃)

]
+ ω̃>δω

= −ω>e Kωωe + ω>e S(Jω̃)ωr + ω>e Kωω̃ + ω̃>δω

=
(A.10j)

−ω>e Kωωe + ω>r S(ωe)Jω̃ + ω>e Kωω̃ + ω̃>δω

= −ω>e Kωωe + ω̃>
[
JS(ωr)ωe +Kωωe + δω

]
. (C.19)

Insertion of the estimator innovation terms in (5.10d) yields

dV1

dt
= + δ>R

N∑
i=1

kiS(R̂
>
vi)(R

>
r vi +R>vi) (C.20)

− ω>e Kωωe + ω̃>
[
JS(ωr)ωe +Kωωe +

1

cω
δω

]
=− cR

∥∥∥ N∑
i=1

kiS(R̂
>
vi)(R

>
r vi +R>vi)

∥∥∥2

− ω>e Kωωe − ω̃>Cωω̃.

Here we arrive at a convenient expression of the Lyapunov function candidate
time derivative, which is negative in the errors in time along the controlled
system. To demonstrate that the above developments are sound, consider
the plot of this time-derivative in Example 5.2, where it is shown that the
analytical expression in (C.20) evaluated in the signals of the closed loop
system is identical to a numerically differentiation of V in (C.12).

(iii) Application of Barbălat As the Lyapunov function time-derivative
in (C.20) is negative semi-definite in the errors along the solutions of the error
dynamics, the V1 is bounded by its initial value. Thus, for all t ≥ t◦,

λm(J)

2
‖ωe‖2 ≤

1

2
ω>e Jωe ≤ V1(t◦)⇒ ‖ωe‖ ≤

√
2V1(t◦)
λm(J)

,M2, (C.21)

λm(J)

2
‖ω̃‖2 ≤ 1

2
ω̃>Jω̃ ≤ V1(t◦)⇒ ‖ω̃‖ ≤

√
2V1(t◦)
λm(J)

,M2.

Consequently, by the assumption of a constant bounding supt≥t◦ ‖ωr(t)‖ ≤
M1, we have that the attitude rates are bounded in the initial errors as

sup
t≥t◦
‖ω‖ = sup

t≥t◦
‖ωr − ωe‖ ≤ sup

t≥t◦
(‖ωr‖+ ‖ωe‖) ≤M1 +M2. (C.22a)

sup
t≥t◦
‖ω̂‖ = sup

t≥t◦
‖ω̃ − ω‖ ≤ sup

t≥t◦
(‖ω̃‖+ ‖ω‖) ≤M1 + 2M2.
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As the error dynamics in (C.11) only contain elements of SO(3) and the
attitude rates ω,ωr,ωe, ω̃, ω̂ are all bounded by (C.21) and (C.22), there
exists a conservative bound∥∥∥d2V1

dt2
∥∥∥ ≤ B(M1,M2, {ki}Ni=1,Kω,Cω), ∀t ≥ t◦.

Then, V̇1 is uniformly continuous, application of Lemma 2.5 to (C.20) yields

lim
(t−t◦)→∞

V̇1(t)=0⇒


lim

(t−t◦)→∞
ωe = 0

lim
(t−t◦)→∞

ω̃ = 0

lim
(t−t◦)→∞

N∑
i=1

kiS(R̂
>
vi)(R

>
r vi +R>vi) = 0

, (C.23)

Next, consider the tracking attitude error dynamics in (C.11c) and let

Jω̇e︸︷︷︸
,ḟ(t)

= S(Jω)ωe+S(Jω̃)ωr−Kω(ωe−ω̃)︸ ︷︷ ︸
,η(t)

−
N∑
i=1

kiS(R>r vi)R̂
>
vi︸ ︷︷ ︸

,f0(t)

. (C.24)

By (C.23), f(t) = Jωe → 0 and η(t)→ 0 as t− t◦ →∞. Furthermore, with
the innovation term δR defined as in (5.10d), we have that

‖δR‖ ≤ cR
N∑
i=1

ki‖S(R̂
>
vi)‖(‖R>r vi‖+ ‖R>vi‖) = 2cR

N∑
i=1

ki, (C.25)

the time derivative of f0 is bounded in the initial errors, as∥∥∥df0

dt

∥∥∥ =
∥∥∥ d
dt

N∑
i=1

kiS(R>r vi)R̂
>
vi

∥∥∥
=
∥∥∥ N∑
i=1

ki

(
S(Ṙ

>
r vi)R̂

>
vi + S(R>r vi)

˙̂
R>vi

)∥∥∥
=
∥∥∥ N∑
i=1

ki

(
S(ωr)R

>
r viS(R̂

>
vi)− S(R>r vi)S(ω + δR)R̂

>
vi

)∥∥∥
≤

N∑
i=1

ki

(
‖S(ωr)‖‖R>r vi‖‖S(R̂

>
vi)‖+ ‖S(R>r vi)‖‖S(ω + δR)‖‖R̂>vi‖

)
=

N∑
i=1

ki(‖ωr‖+ ‖ω + δR‖)

≤
N∑
i=1

ki

(
2M1 +M2 + 2cR

N∑
i=1

ki

)
. (C.26)
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Thus, f0 is uniformly continuous. Application of Lemma 2.7 to (C.24) yields

(C.23)⇒ lim
(t−t◦)→∞

Jω̇e(t) = lim
(t−t◦)→∞

N∑
i=1

kiS(R>r vi)R̂
>
vi = 0. (C.27)

combined with the third implication in (C.23), we conclude that the non-
autonomous error dynamics converge to an invariant set characterized by

S =

{
(Re, R̃,ωe, ω̃) ∈ SO(3)2 × R6

∣∣∣∣∣
∑N
i=1 kiS(R>r vi)R̂

>
vi = 0, ωe = 0∑N

i=1 kiS(R>vi)R̂
>
vi = 0, ω̃ = 0

}
.

(C.28)

Now, just as in the proof of Theorem 3.1 in Appendix B.1, for any R ∈ SO(3),
N∑
i=1

kiS(vi)R
>vi =

[[ N∑
i=1

kiS(vi)R
>vi

]∧]∨
= [R>M −M>R]∨,

with

M =

N∑
i=1

kiviv
>
i � 0,

which admits a spectral decomposition M = UΛU> with an orthogonal U ,
as M is real and symmetric by the assumptions on {(ki,vi)}Ni=1. Then,

(C.28)⇒


lim

(t−t◦)→∞
(R̂R>r )>M −M>(R̂R>r ) = 0

lim
(t−t◦)→∞

(R̂R>)>M −M>(R̂R>) = 0
(C.29a)

⇒


lim

(t−t◦)→∞
(R̂R>r ) ∈ {UDlU

>}4l=1

lim
(t−t◦)→∞

R̃ ∈ {UDkU
>}4k=1

(C.29b)

⇒


lim

(t−t◦)→∞
(R̃R>e ) ∈ {UDlU

>}4l=1

lim
(t−t◦)→∞

R̃ ∈ {UDkU
>}4k=1

(C.29c)

⇒


lim

(t−t◦)→∞
Re ∈ {UDkDlU

>}k=4, l=4
k=1, l=1

lim
(t−t◦)→∞

R̃ ∈ {UDkU
>}4k=1,

(C.29d)

where the second implication holds due to Lemma B.3, and the rest follows
from the orthogonality of U and R̃. Therefore, all trajectories of the error
dynamics tend towards a set of 16 unique equilibrium points characterized by

lim
(t−t◦)→∞

(Re, R̃,ωe, ω̃) ∈ {(UDkDlU
>,UDkU

>,0,0)}k=4, l=4
k=1, l=1 , E .

(C.30)
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(iv) Application of Matrosov As the error dynamics are non-
autonomous, we need to prove that the convergence to the set of equilibrium
points in (C.30) is uniform. To this end, let V̇1 , Y1 and consider a function

V2 = ω>e

N∑
i=1

kiS(R>r vi)R̂
>
vi. (C.31)

Differentiation of V2 along the solutions of the error dynamics, combined with
the bounds on the attitude rates following from the negative semi-definiteness
of V1 summarized in (C.21) and assumed bound on ωr, is upper bound by

dV2

dt
≤ −

∥∥∥∥∥
N∑
i=1

kiS(R>r vi)R̂
>
vi

∥∥∥∥∥
2

+M3

∥∥∥∥[ωeω̃
]∥∥∥∥+M4

∥∥∥∥[ωeω̃
]∥∥∥∥2

, Y2,

for some positive constantsM3 andM4. Clearly, we have that Y1 = 0⇒ Y2 ≤
0, and together, Y1 = 0 and Y2 = 0 imply that the tracking and estimate
error trajectories converge to the invariant set S in (C.28). Consequently,
the trajectories converge uniformly to S by Theorem 2.7, implying uniform
convergence to the equilibrium points characterized by E in (C.30).

(v) Local Chetaev Instability Analysis To investigate the local stability
properties of the equilibrium points in E , we start by noting that

V̇1(x◦) = 0, ∀x◦ ∈ E , (C.32a)

V̇1(x◦) < 0, ∀x◦ ∈ {SO(3)2 × R6}\E . (C.32b)

However, if we consider the two quadratic sums in V1, knowing that D2
k = I,

N∑
i=1

ki
2
‖UDkDlU

>UDkU
>vi − vi‖ =

N∑
i=1

ki
2
‖U(Dl − I)U>vi‖ = 0,

if and only if Dl = I (given that vi are linearly independent), and similarly

N∑
i=1

ki
2
‖U(Dk − I)U>vi‖ = 0,

if and only if Dk = I. Consequently, for any point on E we have that

V1(x◦) > 0, ∀ x◦ ∈ E\{(I, I,0,0)} ⊂ {SO(3)2 × R6}, (C.33)

V1(x◦) = 0, if x◦ = (I, I,0,0) ⊂ {SO(3)2 × R6}. (C.34)

Here, we note that by Lemma C.2, there exist points x̄◦ in the neighbor-
hood of x◦ ∈ E\{(I, I,0,0)} for which V1(x̄◦) < V1(x◦), and by (C.32b),
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V1(x̄◦) < 0 as x̄◦ /∈ E . Consequently, the points characterized by the set (C.33)
are locally unstable by Theorem 2.6 (Chetaev), and the point in (C.34) is
asymptotically stable, as all solutions converge asymptotically to E by (C.30).
As convergence to E is uniform, and locally unstable the equilibrium points in
E\(I, I,0,0) form a set of measure zero, we conclude that the point (I, I,0,0)
is UAGAS. Intuitively, the local error dynamics are non-autonomous, and
all trajectories starting in the neighborhood of (I, I,0,0) will converge uni-
formly and asymptotically to this point. For such an non-autonomous linear
system, ULES the follows by the equivalence in Theorem 2.2. This can be
shown more rigorously using the same linearization ideas as in the proof of
Theorem 3.1 in Appendix B.1, by an explicit linearization of the dynamics
about (Re, R̂,ωe, ω̃) = (I, I,0,0) (this is done in brevity below). 2

(vi) Local Linearization Consider an approach similar to the proof of
Theorem 3.1. Assume that Re and R̂ are close to elements R◦ and R̃o

respectively, and that they are locally described by two small perturbations,
ε(t) and ε̃(t), using the first two terms of the exponential series in (A.1), as

Re ≈ R◦(I + S(ε)), R̃ ≈ R̃◦(I + S(ε̃)). (C.35)

For simplicity, we here consider the stable equilibrium at R◦ = I and R̃◦ = I.
With the first-order approximations in (C.35), the error dynamics in the
perturbations (here omitting their exact expressions) becomes

ε̇ = f1(ε, ε̃,ωe, ω̃),

˙̃ε = f2(ε, ε̃,ωe, ω̃),

Jω̇e = f3(ε, ε̃,ωe, ω̃),

J ˙̃ω = f4(ε, ε̃,ωe, ω̃),

or more compactly with X , (ε, ε̃,ωe, ω̃) and E , diag(I, I,J ,J), as

EẊ = f(t,X). (C.36)

Taking the Jacobian of f with respect to X around X = 0 yields

A(t) , ∂f(t,X)

∂X

∣∣∣
X=0

(C.37)

=


0 0 Rr(t) 0

cRM̄ −2cRM̄ 0 0
−Rr(t)

>M̄ Rr(t)
>M̄ S(Jω(t))−Kω +JS(ωr(t)) +Kω

0 0 −JS(ωr(t))−Kω −Cω

 ,
where M̄ ,

(∑N
i=1 ki

)
I −M . Thus, about (R◦, R̃◦) = (I, I), the perturba-

tions and attitude rate errors evolve by time-varying descriptor dynamics

EẊ = A(t)X. (C.38)
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As E is symmetric, positive definite and real, we can instead consider

Ẋ = A(t)X, (C.39)

and find a solution to the Lyapunov equation with respect to A(t) in (P ,Q(t))
such that P and E commute, permitting application of Lemma 2.4. The
hunt for such a Lyapunov function becomes quite involved, and can be
undertaken using Lemmas 2.1 and 2.3. By applying sequence of orthogonal
transformations, the resulting system in the new coordinates can be partitioned
in such a way that its stability can be analyzed using Lemma 2.1 where the
non-autonomous part of the system matrix is Hurwitz if the matrix inD(cR, li)
studied in Lemma C.3 is Hurwitz with li > 0 being the eigenvalues of M̄ .
Taking such an approach, one arrives at a Lyapunov function candidate with

P ,


M̄ −M̄ 0 0
−M̄ 2M̄ 0 0

0 0 I 0
0 0 0 I

 , (C.40)

where it can be verified that

A(t)P + PA(t) = −


2cRM̄

2 −4cRM̄
2

0 0

−4cRM̄
2

8cRM̄
2

0 0
0 0 2Kω 0
0 0 0 2Cω

 , −Q, (C.41)

where P � 0 but Q � 0. Indeed, it can also be shown that

spec(P ) = {1, 1, 1} ∪
(

3⋃
i=1

spec(P (cR, li))

)
,

spec(Q) = {0, 0, 0} ∪ {10cRl
2
1, 10cRl

2
2, 10cRl

2
3} ∪ spec(2Kω) ∪ spec(2Cω),

with the matrix function P (c, l) � 0 as defined in (C.8). As P and E
commute, application of Lemma 2.4 then shows uniform stability of the
origin of (C.36) by Theorem 2.1. Furthermore, analysis using Lemma 2.5 and
subsequent signal chasing shows the expected asymptotic convergence to point
(ε, ε̃,ωe, ω̃e) = (0,0,0,0), and this convergence can further be shown to be
uniform by application of the Matrosov result in Theorem 2.7. Finally, as
UAS and UES is a distinction without a difference for linear non-autonomous
systems (see, e.g, Theorem 2.2), we conclude that the system in (2.4) is ULES.

C.2 Remark 6.3: Quadratic Bounds on Vσ
Proof of Remark 6.3. To show that for any Vσ by Definition 6.2,

c1
2
‖σ(x)‖2 ≤ Vσ(x) ≤ c2

2
‖x‖2, ∀x ∈ Rn, (C.42)
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simply let x = ‖x‖, and note that the statement (C.42) is equivalent to

f1(x) =

∫ x

0

s(y)dy − (c1/2)s(x)2 ≥ 0, (C.43a)

f2(x) = (c2/2)x2 −
∫ x

0

s(y)dy ≥ 0, (C.43b)

for all x ≥ 0. For both of these functions, we have that f1(0) = f2(0) = 0, and

d
dx
f1(x) = s(x)− c1s(x)s′(x) ≥ (1− c1s′(0))s(x) ≥ 0,

d
dx
f2(x) = c2x− s(x) ≥ (c2 − s′(0))x ≥ 0,

if 0 < c1 ≤ s′(0)−1 and s′(0) ≤ c2. Under these sufficient conditions, f1 and
f2 are increasing in x ≥ 0 from f1(0) = f2(0) = 0, whereby (C.43) holds for
all x ≥ 0, implying (C.42) and concluding the proof. 2

C.3 Remark 6.4: Time-derivative of Vσ
Proof of Remark 6.4. Let x(t), and (d/dt)x(t) = ẋ. By the chain rule,

d
dt
Vσ(x(t)) = s(‖x‖) d

dt

√
x>x = s(‖x‖) 1

2
√
x>x

(2x>ẋ) = σ(x)>ẋ. (C.44)
2

C.4 Proposition 6.1: Translation FSF

Proof of Proposition 6.1. By the assumptions of the proposition (refer-
ence trajectory feasibility and a smooth saturation function), there exist finite
positive constants γ1 > 0, γ2 > 0 such that

sup
t≥t◦
‖ωr(t)‖ ≤ γ1, sup

y∈R≥0

|s′(y)| ≤ γ2, sup
y∈R≥0

|s(y)y−1| ≤ γ2. (C.45)

These constants are required in showing that the Lyapunov function time-
derivative is uniformly continuous. Furthermore, it is assumed that a vector-
valued saturation function σ is constructed in accordance with Definition 6.1,
where s : R≥0 7→ [0, γ] for some positive saturation level γ > 0. The proof
follows the familiar structure of proposing a Lyapunov function candidate by
which UGS can be shown, to which the lemma of Barbălat is applied to show
GAS. The Matrosov theorem is subsequently used to show UGAS, and ULES
follows by a local linearization. As usual, we do not write out the arguments
of the Lyapunov function and time-varying signals.
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Application of Barbălat Consider an error e , kppe + kvve ∈ R3, and a
Lyapunov function candidate

V1 =
kp
2
‖ve‖2 + Vσ(e). (C.46)

Differentiating V1 along solutions of the error dynamics in (6.5) yields

V̇1 =kpv
>
e v̇e + ė>σ(e) (C.47a)

=− kpv>e S(ωr)ve − kpv>e σ(e) + kpp
>
e S(ωr)σ(e) (C.47b)

+ kpv
>
e σ(e) + kvv

>
e S(ωr)σ(e)− kvσ(e)>σ(e) (C.47c)

=e>S(ωr)σ(e)− kvσ(e)>σ(e) (C.47d)

=s(‖e‖)‖e‖−1e>S(ωr)e− kvσ(e)>σ(e)

=− kvσ(e)>σ(e) ≤ 0, (C.47e)

which is negative semi-definite in pe and ve. As V1 is non-increasing in time,

‖ve‖ ≤
√

(2/kp)V1(t◦) , v̄e, ∀t ≥ t◦. (C.48)

To proceed, let x = ‖e‖, and let v be a unit vector such that e = xv, then

∂σ(e)

∂e
=
(
s′(x)− s(x)

x

)
vv> +

s(x)

x
I3, (C.49)

by application of the chain rule, and we note that

lim
x→0

(
s′(x)− s(x)

x

)
= 0⇒ lim

x→0

∂σ(e)

∂e
= s′(0)I3. (C.50)

Furthermore, if a , s′(x)− s(x)x−1 and b , s(x)x−1, then supt≥t◦ |a| ≤ 2γ2

and supt≥t◦ |b| ≤ γ2 by (C.66a). Consequently, (C.49) is bounded in γ2, as(∂σ(e)

∂e

)> ∂σ(e)

∂e
� (a2 + 2ab)vv> + b2I3 � (|a|+ |b|)2I3,

whereby∥∥∥∂σ(e)

∂e

∥∥∥ =

√
λM

((∂σ(e)

∂e

)> ∂σ(e)

∂e

)
≤ |a|+ |b| ≤ 3γ2, ∀ t ≥ t◦.

Utilizing the expression in (C.49), we have that

σ(e)>
∂σ(e)

∂e
S(ωr)e =

s(x)2

x2
e>S(ωr)e = 0. (C.51a)
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Consequently, V̈1 is bounded in the initial errors in time, as

‖V̈1‖ = 2kv

∥∥∥σ(e)>
d
dt
σ(e)

∥∥∥ (C.52a)

= 2kv

∥∥∥σ(e)>
∂σ(e)

∂e
ė
∥∥∥ (C.52b)

= 2kv

∥∥∥σ(e)>
∂σ(e)

∂e
(−S(ωr)e+ kpve − σ(e))

∥∥∥ (C.52c)

= 2kv

∥∥∥σ(e)>
∂σ(e)

∂e
(kρve − σ(e))

∥∥∥ (C.52d)

≤ 6kvγγ2‖kρve − σ(e)‖ (C.52e)
≤ 6kvγγ2(kρv̄e + γ). (C.52f)

This implies that V̇1 ≤ 0 is uniformly continuous, and V1 ≥ 0 is lower bounded,
whereby application of Lemma 2.5 (Barbălat), yields

lim
t→∞

V̇1 = 0⇒ lim
t→∞

σ(e) = 0⇒ lim
t→∞

e = 0, (C.53)

where the last implication follows by Definition 6.1. Furthermore, let

ė︸︷︷︸
,ḟ(t)

= kpve︸︷︷︸
,f0(t)

−S(ωr)e− kvσ(e)︸ ︷︷ ︸
,η(t)

. (C.54)

As ‖v̇e‖ ≤ γ1v̄e + γ is upper bounded by (C.66a) and (C.48), we have that
f0(t) is uniformly continuous in time. We also note that f(t)→ 0 and η(t)→ 0
as t→∞ by (C.53). Consequently, Lemma 2.7 applied to (C.54) yields

lim
t→∞

ė(t) = lim
t→∞

ve = 0⇒ lim
t→∞

pe = 0, (C.55)

where the last implication holds due to (C.53), showing that the origin
(pe,ve) = (0,0) is GAS. Furthermore, as (i) V1 is continuously differentiable
by (C.52), and (ii) this function is positive definite and radially unbounded in
(pe,ve) as per Remark 6.3, and (iii) V̇1 is negative semi-definite in the same
errors, Theorem 2.3 is invoked to show that (pe,ve) = (0,0) is UGS.

Intermediary Computation of an Error Bound Before showing
UGAS, we derive a bound of the signal (d/dt)(−e>ė). As

p̈e =(−S(ω̇r) + S(ωr)
2)pe − 2S(ωr)ve − σ(e), (C.56)

v̈e =(−S(ω̇r) + S(ωr)
2)ve + S(ωr)σ(e)− σ̇(e),

ë =(−S(ω̇r) + S(ωr)
2)e− 2kpS(ωr)ve + (kvS(ωr)− kpI)σ(e)− kvσ̇(e),

thus

e>ë =e>S(ωr)
2e− 2kpe

>S(ωr)ve − kpe>σ(e)− kve>σ̇(e), (C.57a)
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and since

ė>ė =[kpve − S(ωr)e− kvσ(e)]>[kpve − S(ωr)e− kvσ(e)] (C.58a)

= + k2
pv
>
e ve − e>S(ωr)

2e+ k2
vσ(e)>σ(e) (C.58b)

− 2kpv
>
e S(ωr)e− 2kpkvv

>
e σ(e) (C.58c)

+ 2kvσ(e)>S(ωr)e (C.58d)

= + k2
pv
>
e ve − e>S(ωr)

2e+ k2
vσ(e)>σ(e) (C.58e)

− 2kpv
>
e S(ωr)e− 2kpkvv

>
e σ(e), (C.58f)

we get
d
dt

(−e>ė) = (C.59)

=− k2
pv
>
e ve + e>S(ωr)

2e+ 2kpv
>
e S(ωr)e− k2

vσ(e)>σ(e) + 2kpkvv
>
e σ(e)

− e>S(ωr)
2e+ 2kpe

>S(ωr)ve + kpe
>σ(e) + kve

>σ̇(e)

=− k2
pv
>
e ve − k2

vσ(e)>σ(e) + 2kpkvv
>
e σ(e) + kpe

>σ(e) + kve
>σ̇(e)

≤− k2
pv
>
e ve + 2kpkv v̄eγ2‖e‖+ kpγ2‖e‖2 + 3γ2kv‖e‖‖ė‖

≤ − k2
pv
>
e ve + 2kpkv v̄eγ2‖e‖+ kpγ2‖e‖2 + 3γ2kv‖e‖(kpv̄e + γ1‖e‖+ kvγ2‖e‖)

=− k2
pv
>
e ve + (2kpkv v̄eγ2 + kpv̄e)‖e‖+ [kpγ2 + 3γ2kv(γ1 + kvγ2)]‖e‖2

=− k2
pv
>
e ve +M1‖e‖1 +M2‖e‖2, (C.60)

where M1 = (2kpkv v̄eγ2 + kpv̄e) and M2 = kpγ2 + 3γ2kv(γ1 + kvγ2).

Application of Matrosov To show that the convergence to the origin is
uniform, consider a function

V̇1 = −kvσ(e)>σ(e) , Y1(pe,ve), (C.61)

then, condition (i) in Theorem 2.7 is satisfied, as V1 shows UGS. Furthermore,
condition (ii) is met with respect to the functions {V1,Y1} due to the equality
in (C.61). Next, consider a function V2 = −e>ė. Differentiating this function
along the solutions of the error dynamics as done in (C.60) yields

V̇2 =− ė>ė− e>ë ≤ −k2
pv
>
e ve +B(e) , Y2(pe,ve), (C.62)

where

B(e) =M1‖e‖1 +M2‖e‖2,
is a positive definite function in e, where the constants M1 and M2 ex-
pressed in the initial errors, controller parameters, and signal bounds
{kp, kv, v̄e, γ, γ1, γ2}. Thus, condition (ii) in Theorem 2.7 is satisfied with
respect to {V2,Y2}. We also note that (iii) Y1 = 0 ⇒ e = 0 ⇒ B(e) =
0 ⇒ Y2 = −k2

pv
>
e ve ≤ 0. Furthermore, it is clear that (iv) Y1 = Y2 = 0 ⇒

(pe,ve) = (0,0). Hence, the origin (pe,ve) = (0,0) is UGAS by Theorem 2.7.
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Local Linearization To show that the origin is ULES, consider a simple
linearization. Let X , (pe; ve), the closed-loop system can then be written
in the form Ẋ = f(t,X). In a neighborhood of the origin, X = 0, the errors
evolve by a non-autonomous linear system

Ẋ = A(t)X + o(‖X‖2). (C.63)

Using the expression for the Jacobian in (C.49) and the limit in (C.50),

∂σ(e)

∂pe

∣∣∣
X=0

=
∂σ(e)

∂e

∂e

∂pe

∣∣∣
X=0

= kps
′(0)I , aI,

∂σ(e)

∂ve

∣∣∣
X=0

=
∂σ(e)

∂e

∂e

∂ve

∣∣∣
X=0

= kvs
′(0)I , bI,

where a = kps
′(0) > 0, kvs′(0) > 0, as s′(0) > 0 by definition. We then obtain

A(t) , ∂f(t,X)

∂X

∣∣∣
X=0

=

[
−S(ωr) I
−kps′(0)I −S(ωr)− kvs′(0)I

]
=

[
0 I
−aI −bI

]
+

[
−S(ωr) 0

0 −S(ωr)

]
= F ⊗ I3︸ ︷︷ ︸

,F̄

+ I2 ⊗−S(ωr)︸ ︷︷ ︸
,S̄(t)

,

where

F =

[
0 1
−a −b

]
∈ R2×2, S(ωr) = −S(ωr)

> ∈ R3×3.

This is precisely the form of the system in Lemma 2.2. It is clear that F
and implicitly F̄ is Hurwitz, and the Lyapunov equation F̄>P̄ + P̄ F̄ = −Q̄
admits a block-structured symmetric solution for Q̄ = I,

P̄ = P̄
>

=

[
a2+a+b2

ab − 1
2a

? a+1
2ab

]
⊗ I3 � 0. (C.64)

Given the solution in (C.64), we note that S̄(t)P = PS̄(t), whereby

S̄(t)>P + PS̄(t) = −S̄(t)P + PS̄(t) = (S̄(t)− S̄(t))P = 0, (C.65)

and

A(t)>P + PA(t) = (F̄ + S̄(t))>P + P (F̄ + S̄(t)) = F̄
>
P + PF̄ = −I.

Thus, uniform local exponential stability of X = 0 follows directly from
Theorem 2.1, as P andQ are positive definite, symmetric and time-invariant.2
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C.5 Theorem 6.1: Translation FOF

We start by recalling a preliminary result for Schur complements.

Lemma C.4
For a symmetric matrix M = M>,

M =

[
A B

B> C

]
� 0⇔ A � 0 and C −B>A−1B � 0. 2

Proof. See, e.g, the proof in [Cottle, 1974, Page 194]. 2

Proof of Theorem 6.1. By the assumptions in Theorem 6.1 (reference
trajectory feasibility and a smooth saturation function), there exist finite
positive constants γ1 > 0, γ2 > 0 such that

sup
t≥t◦
‖ωr(t)‖ ≤ γ1, sup

y∈R≥0

|s′(y)| ≤ γ2, sup
y∈R≥0

|s(y)y−1| ≤ γ2, (C.66a)

where s : R≥0 → [0, γ] is used in the construction the vector-valued saturation
function σ in accordance with Definition 6.1. The proof follows the same
structure as in the proof of Proposition 6.1. We start by stating the error
dynamics, proceed to construct a Lyapunov function candidate by which UGS
can be shown, to which the lemma of Barbălat is applied to show GAS. The
Matrosov theorem is subsequently used to show UGAS, and ULES follows
from a local linearization. For the clarity, we do not write out the arguments
of the Lyapunov function nor the time argument of the signals of the system.

Errors and Error Dynamics In the following, consider the errors

pe = R>r (pr − p), ve = vr −R>r Rv, (C.67a)
p̃e = pe − p̂e, ṽe = ve − v̂e, (C.67b)
z̃ = z − p̃e, ê = kpp̂e + kvv̂e, (C.67c)

Knowing time-evolution of the errors pe and ve from (6.5), insertion of the
proposed estimator dynamics in (6.19b), (6.19c), and (6.19d) yields

ṗe = −S(ωr)pe + ve, (C.68a)
v̇e = −S(ωr)ve + u, (C.68b)

˙̂e = −S(ωr)ê+ kpv̂e + kvu+ (kpL1 + kvL2)z (C.68c)
˙̃pe = −S(ωr)p̃e + ṽe − L1z (C.68d)
˙̃ve = −S(ωr)ṽe − L2z (C.68e)
˙̃z = −S(ωr)z̃ − L3z̃ + L1p̃e − ṽe. (C.68f)
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Application of Barbălat Consider the Lyapunov function candidate

V1 = Vσ(ê) +
1

2
kpv
>
e ve +

a

2
(p̃e − bṽe)>(p̃e − bṽe) +

ac

2
ṽ>e ṽe +

a

6
z̃>z̃.

(C.69)

This function is positive definite and radially unbounded in the errors ê, ve,
p̃e, ṽe and z̃. By a series of resulting implications, it can be shown that
V1 = 0 ⇒ pe = 0, despite not explicitly appearing as an argument in V1.
Consider a differentiation of this Lyapunov function candidate along the
solutions of the error dynamics in (C.68). By defining b = (2L1)/(3L2) and
c = (2L2

1)/(9L2
2) + 1/(L2) and inserting the feedback in (6.19a), we obtain

V̇1 =σ(ê) ˙̂e+ kpv
>
e v̇e + a(p̃e − bṽe)>( ˙̃pe − b ˙̃ve) + acṽ>e ˙̃ve +

a

3
z̃> ˙̃z,

= + σ(ê)>[kpv̂e + kvu+ (kpL1 + kvL2)z] (C.70a)

+ kpv
>
e u (C.70b)

+ a(p̃e − bṽe)>[ṽe − L1z − b(−L2z)] (C.70c)

− acL2ṽ
>
e z (C.70d)

+
a

3
z̃>[−L3z̃ + L1p̃e − ṽe] (C.70e)

= + σ(ê)>[−kvσ(ê) + (kpL1 + kvL2)(z̃ + p̃e)] (C.70f)

− a
[

+
1

3
L1p̃

>
e p̃e + bṽ>e ṽe +

4

3
z̃>ṽe +

1

3
L3z̃

>z̃
]
. (C.70g)

Equivalently, this expression for the Lyapunov function time-derivative
can be written as a quadratic form in the signals X , (σ(ê); p̃e; ṽe; z̃), as

V̇1 = −X>MX, (C.71)

where M , M̄ ⊗ I3, and

M̄ ,


+kv −kpL1+kvL2

2 +
kp
2 −kpL1+kvL2

2

−kpL1+kvL2

2 +aL1

3 0 0
kp
2 0 + 2aL1

3L2
+ 2a

3

−kpL1+kvL2

2 0 + 2a
3 +aL3

3

 . (C.72)

The lower right block of M̄ , specifically [M̄ ]2:4,2:4 ∈ R3×3 is recognized as
being positive definite, and its eigenvalues can be made arbitrarily large by
increasing the parameter a. Indeed, spec([M̄ ]2:4,2:4) = {λ1, λ2, λ3}, where

λ1 = L1

3 a (C.73a)

λ2 =
2L1−
√

4L2
1−4L1L2L3+L2

2L
2
3+16L2

2+L2L3

6L2
a (C.73b)

λ3 =
2L1+
√

4L2
1−4L1L2L3+L2

2L
2
3+16L2

2+L2L3

6L2
a. (C.73c)
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From the Schur complement equivalence in Lemma C.4, M � 0 if and only if

(i) [M̄ ]1,1 � 0, and

(ii) [M̄ ]2:4,2:4 − [M̄ ]2:4,1[M̄ ]−1
1,1[M̄ ]1,2:4 � 0.

Here, (i) holds by the assumptions on kp, and a sufficient condition for (ii)
can be found by examination of (C.73). Firstly, it can be verified that

spec([M̄ ]2:4,1[M̄ ]−1
1,1[M̄ ]1,2:4) =

{
0, 0,

(L1kp+L2kv)2

4kv

}
.

Given that kp > 0, kv > 0, L1 > 0, L2 > 0, L3 > 0, we must then have
[M̄ ]2:4,2:4 � 0 for (ii) to hold. This can be guaranteed by letting

[M̄ ]2:4,2:4 � 0⇔ λ2 > 0

⇔ 4L2
1 − 4L1L2L3 + L2

2L
2
3 + 16L2

2 < (2L1 + L2L3)2

⇔ 2L2/L1 < L3.

By imposing this constraint, a sufficient condition for (ii) to hold is found in

(L1kp+L2kv)2

4kv
< min(λ1, λ2),

or equivalently stated

a >
(L1kp + L2kv)

2

4kv min(L1
3 ,

2L1−
√

4L2
1−4L1L2L3+L2

2L
2
3+16L2

2+L2L3

6L2
)
> 0. (C.74)

To summarize, for any L3 > 2L2/L1 and a satisfying the condition in (C.74),

V̇1 = −X>MX ≤ 0, (C.75)

and notably negative definite inX. As such, the Lyapunov function candidate
V1 is decreasing in time, and V1(t) ≤ V1(t◦) for all t ≥ t◦. To proceed,
consider a saturation function σ by Definition 6.1, the associated Lyapunov-
like function in Definition 6.2 can be written

Vσ(x) = fσ(‖x‖) =

∫ ‖x‖
0

s(y)dy,

where fσ : R≥0 → R≥0 is surjective by the constraints on s. Also, note that

a

2

[
p̃e
ṽe

] [
I −bI
−bI (b2 + c)I

]
︸ ︷︷ ︸

,M̃

[
p̃e
ṽe

]
≤ V(t) ≤ V(t◦), ∀t ≥ t◦,
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where M̃ � 0 for all b > 0, c > 0. As such, V1 being non-increasing implies

‖ê‖ ≤ γê, ‖ve‖ ≤ γve
, ‖p̃e‖ ≤ γ̃, ‖z̃‖ ≤ γz̃, ‖ṽe‖ ≤ γ̃, (C.76)

for all t ≥ t◦, where

γê , f−1
σ (V1(t◦)), γve

,
√

2
kp
V1(t◦),

γz̃ ,
√

6
aV1(t◦), γ̃ ,

√
2
aV(t◦)/λm(M̃).

Furthermore, as ṽe and ve are bounded in the initial errors, it follows that

‖v̂e‖ = ‖ve − ṽe‖ ≤ γve
+ γ̃ , γv̂e

, (C.77a)

‖p̂e‖ = 1
kp
‖ê− kvv̂e‖ ≤ 1

kp
(γê + kvγv̂e

) , γp̂e
, (C.77b)

‖z‖ = ‖z̃ + p̃e‖ ≤ γz̃ + γ̃ , γz. (C.77c)

Thus, ‖X‖ ≤
√
γ2 + 2γ̃2 + γz̃ is bounded for all t ≥ t◦. Furthermore, as

all of the signals on the right-hand side of the error dynamics in (C.68) are
bounded in the initial errors by (C.76) and (C.77), there exists a bound

‖Ẋ‖ ≤ B(γωr
, γω̇r

, γê, γv̂e
, γz, γ̃, γz̃), (C.78)

Consequently,

V̈1 = −2X>MẊ ≤ 2λM (M)‖X‖‖Ẋ‖, (C.79)

is bounded in the initial errors, and V̇1 ≤ 0 is uniformly continuous. Applica-
tion of the Lemma 2.5 (Barbălat) yields

lim
t→∞

V̇1 = 0⇒ lim
t→∞

X = 0⇒



lim
t→∞

ê = 0

lim
t→∞

p̃e = 0

lim
t→∞

ṽe = 0

lim
t→∞

z̃ = 0

, (C.80)

To show that this implies the convergence of tracking errors (pe,ve) to the
origin, consider first the combined estimate error dynamics, and let

˙̂e︸︷︷︸
,ḟ(t)

= + kpv̂e︸︷︷︸
,f0(t)

−S(ωr)ê− kvσ(ê) + (kpL1 + kvL2)(z̃ + p̃e)︸ ︷︷ ︸
,η(t)

. (C.81)

As ‖ ˙̂ve‖ ≤ γωr
γv̂e

+ γ + L2γz is bounded in time in the initial errors, f0 is
uniformly continuous in time. Furthermore, f(t)→ 0 and η(t)→ 0 by (C.80)
as t→∞. Consequently, Lemma 2.7 applied to (C.81) yields

lim
t→∞

˙̂e(t) = lim
t→∞

kpv̂e = 0⇒ lim
t→∞

p̂e = 0, (C.82)
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where the last implication holds as ê = kppe + kvv̂e. Combined with (C.80), lim
t→∞

p̂e = 0

lim
t→∞

p̃e = 0
⇒ lim

t→∞
pe = 0,

 lim
t→∞

v̂e = 0

lim
t→∞

ṽe = 0
⇒ lim

t→∞
ve = 0. (C.83)

showing that the equilibrium point characterized by (pe,ve, ṽe, p̃e, z̃) =
(0,0,0,0,0) is GAS. We also note that as V1 is continuously differentiable
by (C.79), and a positive definite function in (ê,ve, ṽe, p̃e, z̃) with a negative
semi-definite time-derivative in these signals, consequently V1 can be used to
show UGS of the point (ê,ve, ṽe, p̃e, z̃) = (0,0,0,0,0) by Theorem 2.3.

Application of Matrosov To show that the point (pe,ve, ṽe, p̃e, z̃) =
(0,0,0,0,0) is UGAS, it suffices to show that convergence to the point
(ve, ê, p̃e, ṽe, z̃) = (0,0,0,0,0) is UGAS, as the latter implies the former. To
start, let

V̇1 = −X>MX = Y1, (C.84)

which satisfies conditions (i) and (ii) of Theorem 2.7 with respect to {V1,Y1}.
Next, define V2 , −v>e ê. Differentiating this function along the solutions
of (C.68e) and (6.19d) yields

V̇2 =− v>e ˙̂e− ê>v̇e
=− v>e [−S(ωr)ê+ kpv̂e − kvσ(ê) + (kpL1 + kvL2)z]

− ê>[−S(ωr)ve − σ(ê)]

=− v>e [+kp(ve − ṽe)− kvσ(ê) + (kpL1 + kvL2)(z̃ + p̃e)]

− ê>[−σ(ê)]

=− kpv>e ve + v>e [−kpṽe − kvσ(ê) + (kpL1 + kvL2)(z̃ + p̃e)]− ê>[−σ(ê)]

,Y2

Thus, condition (ii) in Theorem 2.7 is satisfied with respect to {V2,Y2}, and
we note that (iii) Y1 = 0 ⇒ X = 0 ⇒ Y2 = −kpv>e ve ≤ 0. Furthermore,
it is clear that (iv) Y1 = Y2 = 0 ⇒ X = 0 and ve = 0. Hence, the origin
(ve, ê, ṽe, p̃e, z̃) = (0,0,0,0,0) is UGAS by Theorem 2.7. At this point{

ve = 0

ṽe = 0
⇒ v̂e = 0,

{
v̂e = 0

ê = 0
⇒ p̂e = 0,

{
p̂e = 0

p̃e = 0
⇒ pe = 0

and we conclude that the point (pe,ve, ṽe, p̃e, z̃) = (0,0,0,0,0) is UGAS.
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Local Linearization To show ULES, we once again consider a local lin-
earization. This time, let X , (ve, ê, p̃e, ṽe, z̃), the closed-loop system can
then be written as a non-autonomous system on the form Ẋ = f(t,X). Close
to the origin, X = 0, the errors evolve by a non-autonomous linear system

Ẋ = A(t)X + o(‖X‖2). (C.85)

Here, A(t) can be decomposed into two parts, a skew symmetric time-variant
part, S̄(t), and a time-invariant part, F̄ , as

A(t) = F̄ + S̄(t) ∈ R15×15, (C.86)

where

F̄ = F ⊗ I3, S̄(t) = I5 ⊗ (−S(ωr(t))), (C.87)

and

F =


0 −s′(0) 0 0 0
kp −s′(0)kv L1kp + L2kv −kp L1kp + L2kv
0 0 −L1 1 −L1

0 0 −L2 0 −L2

0 0 L1 −1 −L3

 . (C.88)

While not immediately clear, we start by noting that F is Hurwitz for all
(kp, kv, s

′(0), L1, L2, L3) ∈ R6
>0. This is perhaps easiest seen by considering

its characteristic polynomial, which can be written in a factorized form as

p(λ) = det(λI5 − F )

=(λ2 + kvs
′(0)λ+ kps

′(0))×
(λ3 + (L1 + L3)λ2 + (L2

1 + L3L1)λ+ L2L1 + L2L3)

= (λ2 + b1λ+ b2)︸ ︷︷ ︸
,pb(λ)

(λ3 + a1λ
2 + a2λ+ a3)︸ ︷︷ ︸

,pa(λ)

,

where

b1 = kvs
′(0), b2 = kps

′(0),

a1 = L1 + L3, a2 = L2
1 + L3L1, a3 = L2L1 + L2L3.

By the assumptions on s′, kp, kv, we have that b1, b2 > 0, which is sufficient
to conclude that the roots of the characteristic polynomial pb(λ) reside in the
open left half plane by the Routh-Hurwitz stability criterion (see, e.g., [Parks,
1962]). Similarly, by the same stability criterion, the solutions to pa(λ) = 0
reside in the open left half plane if a1 > 0, a2 > 0, a3 > 0 and a1a2 > a3.
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The first condition holds trivially given the assumptions that the parameters
{Li}3i=1 are positive, and second condition can be written

a1a2 > a3 ⇔ (L1 + L3)(L2
1 + L3L1) > (L2L1 + L2L3) (C.89a)

⇔ L1(L1 + L3)2 > L2(L1 + L3) (C.89b)
⇔ L3 > L2/L1 − L1. (C.89c)

Given the Theorem’s assumption that L3 > 2L2/L1, we have that a1a2 > a3,
all of the solutions to pa(λ) = 0 reside in the open left half plane, and F is
Hurwitz. As such, there exists a solution (P ,Q) to the Lyapunov equation

F>P + PF = −Q, (C.90)

for some positive definite symmetric P = P> � 0 and Q = Q> � 0.
Furthermore, P̄ = P ⊗ I3 and Q̄ = Q⊗ I3 then solve the Lyapunov equation

F̄
>
P̄ + P̄ F̄ = −Q̄. (C.91)

The solution P̄ has a three-by-three block structure by its definition through
the Kronecker product, and similar to the local linearization in the proof of
Theorem 6.1 (see Appendix C.4), S̄(t) commutes with P̄ . As a consequence,

S̄(t)>P̄ + P̄ S̄(t) = (S̄(t)> + S̄(t))P̄ = 0. (C.92)

Using this fact, P̄ also solves the Lyapunov equation A(t) in (C.85), as

A(t)>P̄ + P̄A(t) = (F̄ + S̄(t))>P̄ + P̄ (F̄ + S̄(t)) = F̄
>
P̄ + P̄ F̄ = −Q̄.

Thus, ULES of X = 0 follows directly from Theorem 2.1, as P̄ and Q̄ are
positive definite, symmetric and time-invariant, concluding the proof. 2

C.6 Theorem 6.2: Cascade Analysis

Before stating the proof, we note that the two nonlinear ODEs

ẋ(t) = 2δ1
√
x(t), x(t◦) = x◦ > 0, δ1 > 0, (C.93a)

ẏ(t) = 2δ2
√
y(t)e−δ3(t−t◦), y(t◦) = y◦ > 0, δ2, δ3 > 0, (C.93b)

can be solved analytically, with the particular solutions

x(t) = φA(t; t◦, x◦) = (δ1(t− t◦) +
√
x◦)

2, (C.94a)

y(t) = φB(t; t◦, y◦) =
1

δ2
3

e−2δ3t(δ2(eδ3t◦ − eδ3t) +
√
y◦δ3e

δ3t)2, (C.94b)
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where notably, the limit

lim
t→∞

φB(t; t◦, y◦) =
(δ2 +

√
y◦δ3)2

δ2
3

, (C.95)

exists and is finite for any y◦, δ2, δ3 > 0. With these preliminaries, the proof
will be developed with respect to the solutions defined in φA and φB .

Lemma C.5
For any saturation function σ by Definition 6.1, and any two vectors v1,v2

with associated positive constants c1, c2 > 0, there exist c4, c3 > 0, such that

‖c1v1 + c2σ(v2)‖2 ≤ c3(‖v1‖2 + c4Vσ(v2)). (C.96)

Specifically, this holds for sufficiently large c3 ≥ c21 + c22 and c4 > 2s′(0). 2

Proof. To start, we note that

‖c1v1 + c2σ(v2)‖2 ≤ c3(‖v1‖2 + ‖σ(v2)‖2), (C.97)

if

A =

[
(c3 − c21)I −c1c2I
−c1c2I (c3 − c22)I

]
� 0. (C.98)

Here, a sufficient condition for A � 0 can be found by taking c3 sufficiently
large, with c3 ≥ c21 + c22. Furthermore, by Remark 6.3, for any c4 > 2s′(0),

‖σ(v2)‖2 ≤ c4Vσ(v2). (C.99)

Combining (C.97) and (C.99), we obtain the sought expression

‖c1v1 + c2σ(v2)‖2 ≤ c3(‖v1‖2 + c4Vσ(v2)). (C.100)
2

Proof of Theorem 6.2. In this proof, we consider the system

Σ1 : Ẋ1 = f1(t,X1) + g(t,X1,X2)X2 (C.101a)

Σ2 : Ẋ2 = f2(t,X2) (C.101b)

with Σ1 defined in (6.47), where f1(t,X1) describes to the error dynamics
of the closed-loop translation subsystem without the interconnection; the
interconnection term g(t,X1,X2)X2 is given in (6.48); and the system Σ2

corresponds to the error dynamics of the attitude subsystem. Let

Σ′1 : Ẋ1 = f1(t,X1), (C.102)

305



Appendix C. Filtered Output Feedback: Proofs

denote the dynamics of the translation FOF subsystem when not intercon-
nected with the attitude FOF subsystem. To start, consider the Lyapunov
function associated with the translation FOF subsystem in (C.69), as

V = Vσ(ê)+
1

2
kpv
>
e ve+

a

2
(p̃e−bṽe)>(p̃e−bṽe)+

ac

2
ṽ>e ṽe+

a

6
z̃>z̃. (C.103)

When differentiated along Σ′1, we recall that V̇ ≤ 0 is negative semi-definite
in the errors. When instead differentiating this function along Σ1, we obtain

V̇ ≤ −[kpve + kvσ(ê)]>
‖fre3 −mu‖

m
R>r (Re − I)Re3 (C.104a)

≤ ‖kpve + kvσ(ê)‖‖fre3 −mu‖
m

‖Re − I‖ (C.104b)

≤
√
c3(‖ve‖2 + c4Vσ(ê))

‖fre3 −mu‖
m

‖Re − I‖, (C.104c)

where the last inequality follows by Lemma C.5, and holds for sufficiently
large c3 ≥ k2

p + k2
v and c4 > 2s′(0). Furthermore, as

c3(‖ve‖2 + c4Vσ(ê)) = c3c4

( 1

c4
‖ve‖2 + Vσ(ê)

)
≤ c3c4V, (C.105)

for any 1/c4 ≤ kp/2⇔ 2/kp ≤ c4. Thus, the bound in (C.104) can be written

V̇(t) ≤ δ1
√
V‖Re − I‖, ∀ t ≥ t◦, (C.106)

for any

δ1 ≥
√

2(k2
p + k2

v) max{s′(0), 1/kp}
(f+

r +mγ

m

)
. (C.107)

The second subsystem is UAGAS, and when considering trajectories on its
almost global domain of asymptotic attraction, there exists a finite time
T ≥ t◦ at which point the errors, X2, approach a neighborhood of the origin.
In this neighborhood, the only stable equilibrium is at Re = I which implies
that Re → I exponentially after a time t > T , with some positive decay rate
of δ2 > 0. And as ‖Re−I‖ ≤ 2 for all Re ∈ SO(3), we have that ‖Re−I‖ ≤ 2
for t◦ ≤ t ≤ T and ‖Re − I‖ ≤ 2e−δ2(t−T ) for t ≥ T . As such, we can express
a conservative bound of the Lyapunov function associated with the translation
subsystem along the solutions of the interconnected system in Σ1 as

V̇(t) ≤
{

2δ1
√
V ∀ t ∈ [t◦, T ]

2δ1
√
Ve−δ2(t−T ) ∀ t > T

, (C.108)

306



C.6 Theorem 6.2: Cascade Analysis

whereby the comparison lemma (see, e.g., [Khalil, 1996, Lemma 2.5]) is applied
to express this upper bound in the solutions φA and φB in (C.94), as

V(t) ≤
{
φA(t; t◦,V(t◦)), ∀ t◦ ≤ t ≤ T
φB(t;T, φA(T ; t◦,V(t◦))), ∀ t > T

. (C.109)

This upper bound is finite in time as T is finite, where then (i) the bound
converges to a finite limit as shown in (C.95), and (ii) it attains a maximum

V(t) ≤ B(V(t◦), t◦, T, δ1, δ2), ∀ t ≥ t◦, (C.110)

where

B(V(t◦), t◦, T, δ1, δ2) = (C.111)

= max
{(
δ1(T − t◦) +

√
V(t◦)

)2

,
(
δ1(δ−1

2 − (T − t◦))−
√
V(t◦)

)2}
.

This is illustrated in two cases, one where the first expression dominates the
second, in which case the maximum is attained at T , and the other where
the exponential decay rate is much smaller, where the second expression
dominates the first, in which case the maximum of this bound is found in
the limit (see Figure C.1). Regardless of the system initialization, the bound
B(V(t◦), t◦, T, δ1, δ2) is finite. As the arguments within the quadratic functions
are linear in t◦, the bound attaining a maximum at the endpoints where
t◦ = 0 or t◦ = T . Irrespective of the initial time, we have that

V ≤ B(V(t◦), t◦, T, δ1, δ2)

≤ max
{(
δ1T +

√
V(t◦)

)2

,
(
δ1(δ−1

2 − T )−
√
V(t◦)

)2

,
(
δ1δ
−1
2 −

√
V(t◦)

)2}
, B̄(V(t◦), T, δ1, δ2) (C.112)

As such, the solutions to the interconnected system, Σ1, are uniformly bounded
for all times in the initial errors X1(t◦) and all X2(t◦) on the domain of
asymptotic attraction of Σa2 . Furthermore, as Σ2 is UAGAS its solutions are
uniformly bounded. A such, ULES and UGAS of the resulting cascade follows
by Theorem 2.11 when considered on the almost global region of attraction
of Σa2 , and we conclude that the resulting cascade is ULES and UAGAS. 2
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Figure C.1 Example demonstrating the solutions φA and φB in relation
to the bound B(V(t◦), t◦, T, δ1, δ2) when the decay rate is varied. For this
example, V(t◦) = 2, t◦ = 0, T = 5, δ1 = 0.1. In the top plots, δ2 =
0.2/(T − t◦)−1 and in the bottom plots, δ2 = 0.1/(T − t◦)−1.
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D
Radiation Mapping

D.1 Fusion of Gaussian Kernels

In this appendix, we consider the problem of fusing two components of
the solution, S, required to implement the Fuse() function in the GAPSL
for Gaussian kernels. Specifically, the problem is to combine two weighted
Gaussian kernels w1N (θ|θ1, σ

2
1I2) and w2N (θ|θ2, σ

2
2I2), into to a single

kernel, wpN (θ|θp, σ2
pI2), which also is homogeneous. Consider a weighted

sum of the two kernels by a variable ni = wi/(w1 + w2), as

q(θ) =

2∑
i=1

niN (θ|θi, σ2
i I2). (D.1)

If we were to take wq = w1 + w2, then∫
wqq(θ)dθ =

∫
w1N (θ|θ1, σ

2
1I2) + w2N (θ|θ1, σ

2
1I2)dθ. (D.2)

However, unless the kernel centers θ1 and θ2 coincide, we need to approximate
this function by a single Gaussian kernel. A feasible approach is to compute
the first two moments of q(θ) by the conditional covariance formula, which
can be expressed as

θq =n1θ1 + n2θ2 (D.3)

Σq =(n1σ
2
1 + n1σ

2
2)I + n1n2(n1 + n2)(θ1 − θ2)(θ1 − θ2)>.

This expression may contain cross-covariance in Σq, but we seek a homoge-
neous Gaussian density p(θ) = N (θ|θp, σ2

pI2) that best approximates q(θ).
This problem can be posed as minimizing KL-divergence from p to q, as

{θp, σp} = argmin
θp,σp

(KL(p||q)). (D.4)
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As the KL-divergence of multivariate Gaussian distributions takes the form

KL(q||p) =
1

2

(
log
|Σp|
|Σq|

− 2 + Tr(Σ−1
p Σq) + (θq − θp)>Σ−1

p (θq − θp)
)
,

we can zero the quadratic term by θp = θq. Consider the equivalent problem

σp = argmin
σp

(KL(p||q)) with θp = θq. (D.5)

Now, let x =
√

det(Σp) = σ2
p. Then

2KL(q||p)
∣∣∣
θp=θq

= log(x2)− log(|Σq|)− 2 + Tr(Σq)/x. (D.6)

Then,
d
dx

(
2KL(q||p)

∣∣∣
θp=θq

)
=

2x− Tr(Σq)

x2
= 0, (D.7)

when x = Tr(Σq)/2 ⇒ σp =
√

Tr(Σq)/2, is a minimizer of (D.5) as the
function in (D.6) is convex on x > 0. Expressed in (D.3), we obtain

wp =w1 + w2 (D.8)
θp =n1θ1 + n2θ2,

σ2
p =(n1σ

2
1 + n2σ

2
2),+ 1

2n1n2(n1 + n2)‖θ1 − θ2‖2,

which are the equations used in the Fuse() operation of the GAPSL.
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